WO2023109274A1 - 马达振动控制方法、装置、计算机设备和存储介质 - Google Patents

马达振动控制方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2023109274A1
WO2023109274A1 PCT/CN2022/124497 CN2022124497W WO2023109274A1 WO 2023109274 A1 WO2023109274 A1 WO 2023109274A1 CN 2022124497 W CN2022124497 W CN 2022124497W WO 2023109274 A1 WO2023109274 A1 WO 2023109274A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
acceleration
data
audio signal
motor
Prior art date
Application number
PCT/CN2022/124497
Other languages
English (en)
French (fr)
Inventor
刘兵
刘钰佳
杨鑫峰
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2023109274A1 publication Critical patent/WO2023109274A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/02Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type
    • H02P7/025Arrangements for regulating or controlling the speed or torque of electric DC motors the DC motors being of the linear type the DC motors being of the moving coil type, e.g. voice coil motors
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering

Definitions

  • the invention relates to the technical field of motor vibration control, in particular to a motor vibration control method, device, computer equipment and storage medium.
  • Linear Resonant Actuator has been widely used in various vibration occasions of consumer electronics, especially games and AR/VR products, due to its advantages of strong vibration, richness, crispness, and low energy consumption.
  • broadband vibration can provide a richer and more realistic tactile experience, and has a very good application prospect in games, AR/VR and other fields.
  • the present application provides a motor vibration control method, device, computer equipment and storage medium.
  • the present application can enhance the vibration experience of broadband vibration and avoid the technical problem of motor sounding at the same time.
  • a first aspect provides a motor vibration control method, the method comprising:
  • the audio signal is an audio signal used to drive the motor
  • the characteristic data includes the bandwidth of the frequency sweep characteristic of the motor and the sound frequency band
  • Power amplification is performed on the driving voltage, and the driving motor generates vibration feedback.
  • performing low-pass filtering and high-pass filtering on the audio signal based on the feature data to obtain preliminary acceleration includes:
  • the cutoff frequency of the low-pass filter is set to be the smaller value in the upper limit frequency of the frequency sweep characteristic bandwidth and the lower limit frequency of the sound frequency band, and the cutoff frequency of the high pass filter is the lower limit frequency of the frequency sweep characteristic bandwidth;
  • the signal enhancement method includes:
  • the preliminary acceleration, the low-frequency acceleration and the high-frequency acceleration are linearly superimposed to obtain an enhanced acceleration.
  • the low-frequency acceleration obtained based on the ultra-low frequency signal in the audio signal includes:
  • the obtaining high-frequency acceleration based on the ultra-high frequency signal in the audio signal includes:
  • the cut-off frequency of the high-pass filter is the smaller value of the upper limit frequency of the frequency sweep characteristic bandwidth and the lower limit frequency of the sound frequency band
  • a sinusoidal signal is used to fill the maximum value curve to obtain high-frequency acceleration, wherein the frequency of the sinusoidal signal is the smaller value of the upper limit frequency of the frequency sweep characteristic bandwidth and the lower limit frequency of the sounding frequency band.
  • the method further includes:
  • the first enhanced acceleration is signal enhanced to obtain the secondary enhanced acceleration of the target acceleration, and the signal enhanced method includes:
  • the single frame peak value query the preset amplitude amplification lookup table to obtain the enhanced single frame peak value
  • the determining the single-frame peak value of the absolute value of the enhanced acceleration includes:
  • sampling rate of the audio signal and the duration of the single frame data calculate the number of sampling data of the single frame data
  • the determining the driving voltage corresponding to the target acceleration based on the target acceleration includes:
  • the driving voltage of the motor is obtained according to the driving voltage of the motor and the transfer characteristic of the target acceleration.
  • the second aspect provides a motor vibration control device, including:
  • the input signal unit is used to acquire an audio signal and characteristic data of the motor; wherein, the audio signal is an audio signal used to drive the motor, and the characteristic data includes the bandwidth and the sounding frequency band of the frequency sweep characteristic of the motor;
  • An algorithm processing unit configured to perform low-pass filtering and high-pass filtering on the audio signal based on the feature data to obtain preliminary acceleration
  • a vibration signal unit configured to determine a driving voltage corresponding to the target acceleration based on the target acceleration
  • the power amplifying unit is used to amplify the driving voltage to drive the motor to generate vibration feedback.
  • a third aspect provides a computer device, including a memory and a processor, where computer-readable instructions are stored in the memory, and when the computer-readable instructions are executed by the processor, the processor executes the above-mentioned The steps of a motor vibration control method.
  • the fourth aspect provides a storage medium storing computer-readable instructions, and when the computer-readable instructions are executed by one or more processors, one or more processors execute the steps of the motor vibration control method described above .
  • the audio signal and the characteristic data of the motor are first obtained; then based on the characteristic data, the audio signal is subjected to low-pass filtering and high-pass filtering to obtain the target acceleration of the motor; that is The audio input is filtered to obtain the preliminary acceleration (vibration waveform), and then based on the target acceleration, the driving voltage corresponding to the target acceleration is determined; finally, the power of the driving voltage is amplified to drive the motor to generate vibration feedback.
  • the bandwidth of the motor is fully utilized, and the sounding frequency band is avoided, so the problem of motor sounding can be avoided;
  • the amplitude of the preliminary acceleration is enhanced, so that stronger vibration feedback can be output;
  • the driving voltage required to achieve the target acceleration is calculated according to the theoretical transfer relationship between the acceleration of the motor and the voltage, so a more accurate driving voltage can be obtained.
  • Fig. 1 is the flowchart of motor vibration control method in one embodiment
  • FIG. 1A is a flowchart of a motor vibration control method in another embodiment
  • Fig. 2 is a schematic diagram of the amplitude amplification look-up table LUT of the motor vibration control method in one embodiment
  • 3 is an audio signal (drive voltage signal) before and after processing of the motor vibration control method in one embodiment
  • Fig. 4 is a structural block diagram of a motor vibration control device in an embodiment
  • Fig. 5 is a schematic diagram of the internal structure of a computer device in an embodiment.
  • An implementation environment of the motor vibration control method provided in an embodiment of the present application may include a computer device 110 and a linear motor.
  • the computer device 110 is an algorithm processing device, and the computer device 110 has an interface, for example, the interface may be an API (Application Programming Interface, ie an application program interface).
  • the computer device 110 performs the next motor vibration control.
  • a motor vibration control method is proposed, the motor vibration control method can be applied to the above-mentioned computer device 110, as shown in Figure 1, specifically may include the following steps:
  • Step 101 acquiring the audio signal and characteristic data of the motor; wherein, the audio signal is an audio signal used to drive the motor, and the characteristic data includes the bandwidth and sound frequency band of the motor's frequency sweep characteristic;
  • the signal input is divided into 4 parts, as follows:
  • Audio signal the audio signal can be the sound effect actually output by the game application; it can also be a broadband signal customized and designed according to the game scene, and stored and input in audio format;
  • Step 102 based on the feature data, perform low-pass filtering and high-pass filtering on the audio signal to obtain preliminary acceleration;
  • a linear motor can be called a linear motor, a linear motor or a linear motor, including a vibrator and a stator.
  • the stator can be driven to generate an induced magnetic field.
  • the vibrator interacts with the stator to generate an induced electromotive force.
  • the vibrator drives the signal according to the stator. Different forms of mechanical vibration are produced.
  • the vibration waveform of the linear motor matches the vibration waveform of the audio signal, so the acceleration of the motor can be obtained by processing the audio signal.
  • the above step 102 may include:
  • Step 1021 setting the cut-off frequency of the low-pass filter to be the smaller value of the upper limit frequency of the frequency sweep characteristic bandwidth and the lower limit frequency of the sounding frequency band, and setting the cut-off frequency of the high-pass filter to be the lower limit frequency of the frequency sweep characteristic bandwidth;
  • filter parameters are set, and the cut-off frequency f L and high -pass Filter cut-off frequency f H .
  • f L takes the smaller value of the upper limit frequency f aH of the motor sweep characteristic bandwidth and the lower limit frequency f vL of the motor sound frequency band
  • f H takes the lower limit frequency f aL of the motor sweep characteristic bandwidth
  • the input audio signal is sequentially subjected to low-pass filtering and high-pass filtering to obtain the preliminary acceleration a 1 (t). That is, the ultra-high-frequency signal and the ultra-low-frequency signal in the audio signal are removed, and the signal of the middle frequency band is retained.
  • Step 103 performing amplitude enhancement on the preliminary acceleration to obtain the target acceleration
  • the amplitude of the preliminary acceleration constructed is enhanced, so that stronger vibration feedback can be output; thus, the driving voltage required to achieve the target acceleration is calculated according to the theoretical transfer relationship between the target acceleration of the motor and the voltage, so A more accurate driving voltage can be obtained.
  • the above step 103 may include:
  • Step 1031 performing a primary enhancement on the amplitude of the preliminary acceleration to obtain an enhanced acceleration
  • Step 1032 enhance the amplitude of the once-enhanced acceleration to obtain the target acceleration.
  • the audio frequency distribution outside the motor bandwidth is then processed to obtain an enhanced acceleration for the initial enhancement; then the amplitude amplification lookup table is set to determine the amplification factor of the current frame according to the amplitude of the single-frame acceleration, and the current frame Acceleration is linearly amplified, that is, the second enhanced target acceleration is obtained.
  • the above step 1031 may include:
  • Step 1031a obtain low-frequency acceleration based on the ultra-low frequency signal in the audio signal
  • step 1031a above in FIG. 1B may include:
  • Step 1031a using a low-pass filter to perform low-pass filtering on the audio signal, wherein the cut-off frequency of the low-pass filter is the lower limit frequency of the frequency sweep characteristic bandwidth;
  • Step 1031a2 taking the absolute value of the low-pass filtered audio signal
  • Step 1031a3 Record the data at three consecutive sampling moments, compare the data at the second sampling moment in the middle with the data at the first and third sampling moments, if the data at the second sampling moment is greater than or equal to the first and third sampling moments at the same time
  • the data at the second sampling time will be output as the local maximum value and kept until the next local maximum value appears and then updated;
  • the local maximum value detection is performed on the audio signal after taking the absolute value, that is, the data at three consecutive sampling moments are recorded, and the data at the second sampling moment in the middle is compared with the data at the first and third sampling moments.
  • the data at the second sampling time is greater than or equal to the data at the first and third sampling time at the same time, then output the data at the second sampling time as the local maximum value and keep it until the next local maximum value appears and then update;
  • Step 1031a performing low-pass filtering on the obtained local maximum value data to obtain a relatively smooth maximum value curve
  • Step 1031a using the sinusoidal signal to fill the maximum value curve to obtain the low-frequency acceleration, wherein the frequency of the sinusoidal signal is the lower limit frequency of the frequency sweep characteristic bandwidth;
  • Step 1031b obtain high-frequency acceleration based on the ultra-high frequency signal in the audio signal
  • step 1031b above may include:
  • Step 1031b using a high-pass filter to perform high-pass filtering on the audio signal, wherein the cut-off frequency of the high-pass filter is the smaller value of the upper limit frequency of the frequency sweep characteristic bandwidth and the lower limit frequency of the sound frequency band;
  • Step 1031b taking the absolute value of the high-pass filtered audio signal
  • Step 1031b3 Record the data at three consecutive sampling moments, compare the data at the second sampling moment in the middle with the data at the first and third sampling moments, if the data at the second sampling moment is greater than or equal to the first and third sampling moments The data at the second sampling time will be output as the local maximum value and kept until the next local maximum value appears and then updated;
  • the local maximum value detection is performed on the audio signal after taking the absolute value, that is, the data at three consecutive sampling moments are recorded, and the data at the second sampling moment in the middle is compared with the data at the first and third sampling moments.
  • the data at the second sampling time is greater than or equal to the data at the first and third sampling time at the same time, then output the data at the second sampling time as the local maximum value and keep it until the next local maximum value appears and then update;
  • Step 1031b performing high-pass filtering on the obtained local maximum value data to obtain a relatively smooth maximum value curve
  • Step 1031b5 Use the sinusoidal signal to fill the maximum value curve to obtain the high-frequency acceleration, wherein the frequency of the sinusoidal signal is the smaller value of the upper limit frequency of the frequency sweep characteristic bandwidth and the lower limit frequency of the sounding frequency band.
  • Step 1031c linearly superpose the preliminary acceleration, the low-frequency acceleration and the high-frequency acceleration to obtain an enhanced acceleration.
  • step 102 it is determined that the sum of the preliminary acceleration, the low-frequency acceleration and the high-frequency acceleration is an enhanced acceleration that is initially enhanced in amplitude.
  • the above step 1032 may include:
  • Step 1032a determine the absolute value of an enhanced acceleration
  • Step 1032b determine the single frame peak value of the absolute value
  • the single-frame peak value is the maximum sampling data in the single-frame data.
  • step 1032b as shown in Figure 1b2 may include:
  • Step 1032b preset the duration of single frame data
  • Step 1032b2 according to the sampling rate of the audio signal and the duration of the single frame data, calculate the number of sampling data of the single frame data
  • Step 1032b Determine the maximum sampled data in each single frame of data, and use the maximum sampled data as the single frame peak value of the single frame of data.
  • the peak detection is performed on the single frame data, that is, the data peak value of the current frame is detected by the sequential comparison method, that is, it is assumed that the current frame has n buffer data a1, a2, ..., an; compare a1 and a2, and take the larger value as a max ; then compare a max with a3, and take the larger value as the new a max ; and so on, until comparing a max with an, take the larger value as the final a max , that is, the peak value of a single frame;
  • Step 1032b3 According to the single frame peak value, query the preset amplitude amplification lookup table LUT to obtain the enhanced single frame peak value;
  • the amplitude amplification lookup table LUT is set, as shown in Figure 2, the set LUT uses the single frame peak value amax as input, and the table lookup obtains the enhanced peak value amax2 ;
  • Step 1032b dividing the single-frame peak value after enhancement by the single-frame peak value before enhancement to obtain a single-frame enhancement coefficient
  • the single-frame enhancement coefficient is calculated by dividing the enhanced peak a max2 by the pre-enhancement peak a max to obtain the single-frame enhancement coefficient k a , namely
  • Step 1032b5 Multiply the single-frame data of the primary target acceleration by the single-frame enhancement coefficient to obtain the secondary-enhanced target acceleration in amplitude.
  • the acquired single-frame data of the primary enhanced target acceleration is multiplied by the single-frame enhanced coefficient ka to obtain the secondary enhanced target acceleration a 3 (t).
  • this method not only achieves amplitude enhancement, but also ensures the linear and proportional amplification of single-frame data, reducing the The original waveform is distorted by the data amplitude difference within a single frame range.
  • Step 104 based on the target acceleration, determine the driving voltage corresponding to the target acceleration
  • the drive voltage of the linear motor is obtained according to the drive voltage of the linear motor and the transfer characteristic of the target acceleration.
  • Step 105 amplifying the power of the driving voltage, and driving the motor to generate vibration feedback.
  • a power amplifier circuit is used to amplify the driving voltage.
  • the above step 104 may include: obtaining the driving voltage of the motor according to the driving voltage of the motor and the transfer characteristic of the target acceleration.
  • T is the audio sampling period.
  • This application first filters the audio input to obtain the preliminary acceleration (vibration waveform); then processes the audio distribution outside the motor bandwidth to obtain the initial enhanced target acceleration; then sets the amplitude amplification lookup table, according to the amplitude of the single frame acceleration The value determines the amplification factor of the current frame, and linearly amplifies the acceleration of the current frame, that is, the target acceleration of the secondary enhancement is obtained; then the driving voltage is calculated by combining the motor characteristics.
  • the proposed scheme first enhances the acceleration of the bandwidth boundary in the frequency domain, and then enhances the amplitude of the acceleration through a single-frame linear amplification method, which not only realizes the enhancement of the vibration feeling, but basically does not lose the intensity of the original waveform in a single frame. Weak differential information.
  • the abscissa in the figure is time, and the ordinate is the audio signal.
  • the signal amplitude after processing is significantly enhanced, and the relationship between the amplitude of the signal in a local range remains the same. get better retention.
  • a motor vibration control device is provided, the motor vibration control device can be integrated in the above-mentioned computer equipment 110, specifically can include:
  • the input signal unit 411 is used to obtain the characteristic data of the audio signal and the motor; wherein, the audio signal is an audio signal for driving the motor, and the characteristic data includes the bandwidth and the sounding frequency band of the frequency sweep characteristic of the motor;
  • the signal input is divided into 4 parts;
  • Audio signal can be the actual output sound effect of the game application; it can also be a broadband signal customized and designed according to the game scene, and stored and input in audio format;
  • the bandwidth of the frequency sweep characteristic of the motor (the frequency domain response characteristic of the acceleration amplitude under the unit driving voltage), that is, [f aL ,f aH ];
  • the vocal frequency band of the motor namely [f vL , f vH ];
  • the basic parameters of the motor include vibrator mass m, magnetic field strength Bl, spring stiffness coefficient k, damping coefficient r, and coil DC resistance Re.
  • a preliminary processing unit 412 configured to perform low-pass filtering and high-pass filtering on the audio signal based on the feature data to obtain preliminary acceleration;
  • the input signal is subjected to signal processing such as step 101 to step 104 of the control method, and the driving motor generates enhanced broadband vibration feedback.
  • the amplitude enhancement unit 413 is configured to enhance the amplitude of the preliminary acceleration to obtain the target acceleration.
  • a voltage output unit 414 configured to determine a driving voltage corresponding to the target acceleration based on the target acceleration
  • the vibration signal is the motor driving voltage signal obtained after the algorithm processing module processes the input signal.
  • the power amplifying unit 415 is used to amplify the power of the driving voltage to drive the motor to generate vibration feedback.
  • the selected power amplifier is usually an amplifier that performs power matching on the input signal, such as Class A, Class B, Class AB, or Class D drivers.
  • the input signal can be an analog signal or a customized digital signal. Signal.
  • the motor 416 is a broadband linear motor (Linear Resonant Actuator), and its frequency sweep characteristic (frequency response characteristic of acceleration amplitude under unit driving voltage) has a certain broadband characteristic.
  • Fig. 5 is a schematic diagram of the internal structure of a computer device in an embodiment.
  • the computer device may include a processor, a storage medium, a memory, and a network API interface connected through a system bus.
  • the storage medium of the computer device stores an operating system, a database, and computer-readable instructions
  • the database can store control information sequences.
  • the processor can realize a motor vibration control method.
  • the processor of the computer equipment is used to provide computing and control capabilities, and supports the operation of the entire computer equipment.
  • Computer-readable instructions may be stored in the memory of the computer device, and when the computer-readable instructions are executed by the processor, the processor may be made to execute a motor vibration control method.
  • the network API interface of the computer device is used to connect and communicate with the terminal.
  • Figure 1 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation to the computer equipment on which the solution of the application is applied.
  • the specific computer equipment can be More or fewer components than shown in the figures may be included, or certain components may be combined, or have a different arrangement of components.
  • a computer device may include a memory, a processor, and a computer program stored on the memory and operable on the processor.
  • the processor executes the computer program, the following steps are implemented: acquiring an audio signal and the characteristic data of the motor; wherein, the audio signal is the audio signal used to drive the motor, and the characteristic data includes the bandwidth and the sounding frequency band of the motor's frequency sweep characteristic; based on the characteristic data, low-pass filtering and high-pass filtering are performed on the audio signal to obtain a preliminary Acceleration: Enhance the amplitude of the initial acceleration to obtain the target acceleration; determine the driving voltage corresponding to the target acceleration based on the target acceleration; amplify the power of the driving voltage, and drive the motor to generate vibration feedback.
  • a storage medium storing computer-readable instructions that, when executed by one or more processors, causes one or more processors to perform the steps of: acquiring an audio signal and The characteristic data of the motor; wherein, the audio signal is the audio signal used to drive the motor, and the characteristic data includes the bandwidth and sound frequency band of the motor's frequency sweep characteristic; based on the characteristic data, low-pass filtering and high-pass filtering are performed on the audio signal to obtain the preliminary acceleration ; Enhance the amplitude of the preliminary acceleration to obtain the target acceleration; determine the driving voltage corresponding to the target acceleration based on the target acceleration; amplify the power of the driving voltage, and drive the motor to generate vibration feedback.
  • the computer program can be stored in a computer-readable storage medium. During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the foregoing storage medium may be a nonvolatile storage medium such as a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种马达振动控制方法、装置、计算机设备和存储介质,该方法包括:获取音频信号和马达的特征数据;其中,音频信号为用于驱动马达的音频信号,特征数据包括马达的扫频特性的带宽和发声频带;基于特征数据,对音频信号进行低通滤波和高通滤波,得到初步加速度;对初步加速度进行幅值上的增强,得到目标加速度;基于目标加速度,确定目标加速度对应的驱动电压;对驱动电压进行功率放大,驱动马达产生振感反馈。上述方法能增强宽频振动的振感体验,同时避免马达发声的技术问题。

Description

马达振动控制方法、装置、计算机设备和存储介质 技术领域
本发明涉及马达振动控制技术领域,特别是涉及马达振动控制方法、装置、计算机设备和存储介质。
背景技术
线性马达(Linear Resonant Actuator,LRA)凭借其振感强烈、丰富、清脆,能耗低等优点,已经广泛应用于消费电子的各种振动场合,尤其是游戏与AR/VR产品。
目前,单一频率的振动丰富性有限,已经不能满足当前消费产品的振动需求。宽频振动相对于单一频率的振动,可以提供更加丰富、真实的触觉体验,在游戏、AR/VR等领域有着非常好的应用前景。
在相关技术中,在宽频振动场合,直接用音频来驱动线性马达(LRA)很可能导致线性马达的高频振感非常弱、小音量情况下振感也不强的情况,从而形成与音频不太相符的振动反馈。这一方面是由于宽频LRA的带宽有限,另一方面是由于人的触觉不如听觉灵敏,同等幅值的差异,触觉对振动强弱差异的分辨能力远不如听觉对音量高低差异的分辨能力。此外,直接播放音频还会带来马达发声问题,影响用户体验。
发明内容
本申请提供了一种马达振动控制方法、装置、计算机设备和存储介质。本申请能增强宽频振动的振感体验,同时避免马达发声的技术问题。
第一方面提供了一种马达振动控制方法,所述方法包括:
获取音频信号和马达的特征数据;其中,音频信号为用于驱动马达的音频信号,特征数据包括马达的扫频特性的带宽和发声频带;
基于所述特征数据,对音频信号进行低通滤波和高通滤波,得到初步加速度;
基于所述目标加速度,确定所述目标加速度对应的驱动电压;
对所述驱动电压进行功率放大,驱动马达产生振感反馈。
在一些实施例中,所述基于所述特征数据,对所述音频信号进行低通滤波和高通滤波,得到初步加速度,包括:
设置低通滤波器的截止频率为所述扫频特性带宽的上限频率和所述发声频带的下限频率中较小的值,高通滤波器的截止频率为所述扫频特性带宽的下限频率;
利用所述低通滤波器和所述高通滤波器对所述音频信号进行低通滤波和高通滤波,得到所述初步加速度。
在一些实施例中,在所述基于所述特征数据,对所述音频信号进行低通滤波和高通滤波,得到初步加速度之后和所述基于所述目标加速度,确定所述目标加速度对应的驱动电压之前,还包括:对所述目标加速度进行信号增强,得到所述目标加速度的一次增强加速度,所 述信号增强方法包括:
基于所述音频信号中的超低频信号,得到低频加速度;
基于所述音频信号中的超高频信号,得到高频加速度;
将所述初步加速度、所述低频加速度和所述高频加速度进行线性叠加,得到一次增强加速度。
在一些实施例中,所述基于所述音频信号中的超低频信号,得到低频加速度,包括:
利用低通滤波器对所述音频信号进行低通滤波,其中所述低通滤波器的截止频率为所述扫频特性带宽的下限频率;
对低通滤波后的音频信号取绝对值;
记录连续3个采样时刻的数据,比较中间的第二采样时刻的数据与第一、第三采样时刻的数据大小,若第二采样时刻的数据同时大于或等于第一、第三采样时刻的数据,则输出第二采样时刻的数据,作为局部极大值并保持,直到下一个局部极大值出现再更新;
对得到的局部极大值数据进行低通滤波,得到相对平滑的极大值曲线;
利用正弦信号填充极大值曲线,得到低频加速度,其中,所述正弦信号的频率为所述扫频特性带宽的下限频率;
所述基于所述音频信号中的超高频信号,得到高频加速度,包括:
利用高通滤波器对所述音频信号进行高通滤波,其中所述高通滤波器的截止频率为所述扫频特性带宽的上限频率和所述发声频带的下限频率中较小的值;
对高通滤波后的音频信号取绝对值;
记录连续3个采样时刻的数据,比较中间的第二采样时刻的数据与第一、第三采样时刻的数据大小,若第二采样时刻的数据同时大于或等于第一、第三采样时刻的数据,则输出第二采样时刻的数据,作为局部极大值并保持,直到下一个局部极大值出现再更新;
对得到的局部极大值数据进行高通滤波,得到相对平滑的极大值曲线;
利用正弦信号填充极大值曲线,得到高频加速度,其中,所述正弦信号的频率为所述扫频特性带宽的上限频率和所述发声频带的下限频率中较小的值。
在一些实施例中,在对所述目标加速度进行信号增强,得到所述目标加速度的一次增强加速度之后和所述基于所述目标加速度,确定所述目标加速度对应的驱动电压之前,还包括:对所述一次增强加速度进行信号增强,得到所述目标加速度的二次增强加速度,所述信号增强方法包括:
确定所述一次增强加速度的绝对值;
确定所述一次增强加速度的绝对值的单帧峰值;
根据所述单帧峰值,查询预置的幅值放大查找表,得到增强后的单帧峰值;
将增强后的单帧峰值与增强前的单帧峰值相除,得到单帧增强系数;
将所述初次目标加速度的单帧数据与单帧增强系数相乘,得到幅 值上二次增强的目标加速度。
在一些实施例中,所述确定所述一次增强加速度的绝对值的单帧峰值,包括:
预设单帧数据的时长;
根据所述音频信号的采样率和所述单帧数据的时长,计算单帧数据的采样数据个数;
确定每个所述单帧数据中的最大采样数据,并以所述最大采样数据为所述单帧数据的单帧峰值。
在一些实施例中,所述基于所述目标加速度,确定所述目标加速度对应的驱动电压,包括:
根据所述马达的驱动电压和所述目标加速度的传递特性,得到所述马达的驱动电压。
第二方面提供了一种马达振动控制装置,包括:
输入信号单元,用于获取音频信号和马达的特征数据;其中,所述音频信号为用于驱动所述马达的音频信号,所述特征数据包括所述马达的扫频特性的带宽和发声频带;
算法处理单元,用于基于所述特征数据,对音频信号进行低通滤波和高通滤波,得到初步加速度;
振动信号单元,用于基于所述目标加速度,确定所述目标加速度对应的驱动电压;
功率放大单元,用于对所述驱动电压进行功率放大,驱动马达产生振感反馈。
第三方面提供了一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行上述所述马达振动控制方法的步骤。
第四方面提供了一种存储有计算机可读指令的存储介质,所述计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行上述所述马达振动控制方法的步骤。
上述马达振动控制方法、装置、计算机设备和存储介质,该方法中首先获取音频信号和马达的特征数据;然后基于特征数据,对音频信号进行低通滤波和高通滤波,得到马达的目标加速度;即对音频输入进行滤波处理,得到初步加速度(振动波形),再然后基于目标加速,确定目标加速度对应的驱动电压;最后对驱动电压进行功率放大,驱动马达产生振感反馈。该方案中,在构造初步加速度时,由于对音频信号进行了低通滤波和高通滤波,从而充分利用了马达扫频特性的带宽,并且规避了发声频带,因此能够避免马达发声问题;对构造的初步加速度进行幅值上的增强,进而能够输出较强烈的振动反馈;根据马达的加速度和电压的理论传递关系来计算实现目标加速度所需的驱动电压,因此能够得到比较精准的驱动电压。
附图说明
图1为一个实施例中马达振动控制方法的流程图;
图1A为另一个实施例中马达振动控制方法的流程图;
图1B一个实施例中马达振动控制方法的确定低频加速度的流程 图;
图1C一个实施例中马达振动控制方法的确定高频加速度的流程图;
图1D一个实施例中马达振动控制方法的确定二次增强加速度的流程图;
图2为一个实施例中马达振动控制方法的幅值放大查找表LUT的示意图;
图3为一个实施例中马达振动控制方法的处理前和处理后的音频信号(驱动电压信号);
图4为一个实施例中马达振动控制装置的结构框图;
图5为一个实施例中计算机设备的内部结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。
本申请一个实施例中提供的马达振动控制方法的实施环境,在该实施环境中,可以包括计算机设备110以及线性马达。
计算机设备110为算法处理方设备,计算机设备110具有接口, 例如可以为接口是API(Application Programming Interface,即应用程序接口)。当马达振动控制时,计算机设备110进行接下来的马达振动控制。
如图1至3所示,在一个实施例中,提出了一种马达振动控制方法,该马达振动控制方法可以应用于上述的计算机设备110中,如图1所示,具体可以包括以下步骤:
步骤101、获取音频信号和马达的特征数据;其中,音频信号为用于驱动马达的音频信号,特征数据包括马达的扫频特性的带宽和发声频带;
其中,信号输入,该信号输入分为4部分,具体如下:
(1)音频信号,该音频信号可以是游戏应用实际输出的音效;也可以是根据游戏场景定制设计的宽频信号,并以音频格式存储与输入;
(2)马达的扫频特性(单位驱动电压下加速度幅值的频域响应特性)的带宽,即[f aL,f aH];
(3)马达的发声频带,即[f vL,f vH];
(4)马达的基本参数,包括振子质量m、磁场强度Bl、弹簧劲度系数k、阻尼系数r、线圈直流电阻Re。
步骤102、基于特征数据,对音频信号进行低通滤波和高通滤波,得到初步加速度;
可以理解的是,线性马达为可称为线性电机、直线电机或直线马达,包括振子和定子,定子可被驱动产生感应磁场的结构,振子与 定子相互作用,产生感应电动势,振子根据定子驱动信号的不同而产生不同形式的机械振动。线性马达的振动波形为配合音频信号的振动波形,故通过对音频信号的处理,可以得到马达的加速度。
在一些实施例中,上述步骤102可以包括:
步骤1021、设置低通滤波器的截止频率为扫频特性带宽的上限频率和发声频带的下限频率中较小的值,高通滤波器的截止频率为扫频特性带宽的下限频率;
该步骤中,设置滤波器参数,根据马达的扫频特性的带宽[f aL,f aH]和马达发声的频带范围[f vL,f vH],确定低通滤波器的截止频率f L和高通滤波器的截止频率f H。其中f L取马达扫频特性带宽的上限频率f aH和马达发声频带的下限频率f vL中较小的值;f H取马达扫频特性带宽的下限频率f aL
1022、利用低通滤波器和高通滤波器对音频信号进行低通滤波和高通滤波,得到初步加速度。
该步骤中,依次对输入的音频信号进行低通滤波和高通滤波,得到初步加速度a 1(t)。即,去除音频信号中的超高频信号和超低频信号保留中间频段的信号。
步骤103、对初步加速度进行幅值上的增强,得到目标加速度;
该步骤中,对构造的初步加速度进行幅值上的增强,因此能够输出较强烈的振动反馈;从而,根据马达的目标加速度和电压的理论传递关系来计算实现目标加速度所需的驱动电压,因此能够得到比较精准的驱动电压。
在一些实施中,如图1A所示,上述步骤103可以包括:
步骤1031、对初步加速进行幅值上的初次增强,得到一次增强加速度;
步骤1032、对一次增强加速度进行幅值上的增强,得到目标加速度。
该实施例中,然后对马达带宽外的音频分布进行处理,得到初次增强的一次增强加速度;再设置幅值放大查找表,根据单帧加速度的幅值确定当前帧的放大系数,并对当前帧的加速度进行线性放大,即得到二次增强的目标加速度。
在一些实施例中,上述步骤1031可以包括:
步骤1031a、基于音频信号中的超低频信号,得到低频加速度;
在一些实施中,如图1B上述步骤1031a,可以包括:
步骤1031a1、利用低通滤波器对音频信号进行低通滤波,其中低通滤波器的截止频率为扫频特性带宽的下限频率;
其中,根据步骤102中高通滤波器的截止频率f H设置低通滤波器的截止频率f L2,即f L2=f H,然后对输入的音频信号进行低通滤波;
步骤1031a2、对低通滤波后的音频信号取绝对值;
步骤1031a3、记录连续3个采样时刻的数据,比较中间的第二采样时刻的数据与第一、第三采样时刻的数据大小,若第二采样时刻的数据同时大于或等于第一、第三采样时刻的数据,则输出第二采样时刻的数据,作为局部极大值并保持,直到下一个局部极大值出现再更新;
其中,对取绝对值后的音频信号进行局部极大值检测,即记录连续3个采样时刻的数据,比较中间的第二采样时刻的数据与第一、第三采样时刻的数据大小,若第二采样时刻的数据同时大于或等于第一、第三采样时刻的数据,则输出第二采样时刻的数据,作为局部极大值并保持,直到下一个局部极大值出现再更新;
步骤1031a4、对得到的局部极大值数据进行低通滤波,得到相对平滑的极大值曲线;
其中,对检测得到的局部极大值数据进行低通滤波,得到相对平滑的极大值曲线A L(t);
步骤1031a5、利用正弦信号填充极大值曲线,得到低频加速度,其中,正弦信号的频率为扫频特性带宽的下限频率;
其中,低频加速度构造,利用频率为f L2的正弦信号填充极大值曲线A L(t),生成幅值为A L(t)、频率为f L2的单频正弦信号a L(t),即低频加速度,具体计算公式为a L(t)=A L(t)sin(2πf L2t);
步骤1031b、基于音频信号中的超高频信号,得到高频加速度;
在一些实施中,如图1C上述步骤1031b,可以包括:
步骤1031b1、利用高通滤波器对音频信号进行高通滤波,其中高通滤波器的截止频率为扫频特性带宽的上限频率和发声频带的下限频率中较小的值;
其中,根据步骤102中低通滤波器的截止频率f L设置高通滤波器的截止频率f H2,即f H2=f L,然后对输入的音频信号进行高通滤波;
步骤1031b、对高通滤波后的音频信号取绝对值;
步骤1031b3、记录连续3个采样时刻的数据,比较中间的第二采样时刻的数据与第一、第三采样时刻的数据大小,若第二采样时刻的数据同时大于或等于第一、第三采样时刻的数据,则输出第二采样时刻的数据,作为局部极大值并保持,直到下一个局部极大值出现再更新;
其中,对取绝对值后的音频信号进行局部极大值检测,即记录连续3个采样时刻的数据,比较中间的第二采样时刻的数据与第一、第三采样时刻的数据大小,若第二采样时刻的数据同时大于或等于第一、第三采样时刻的数据,则输出第二采样时刻的数据,作为局部极大值并保持,直到下一个局部极大值出现再更新;
步骤1031b4、对得到的局部极大值数据进行高通滤波,得到相对平滑的极大值曲线;
其中,对检测得到的局部极大值数据进行低通滤波,得到相对平滑的极大值曲线A H(t);
步骤1031b5、利用正弦信号填充极大值曲线,得到高频加速度,其中,正弦信号的频率为扫频特性带宽的上限频率和发声频带的下限频率中较小的值。
其中,高频加速度构造,利用频率为f H2的正弦信号填充极大值曲线A H(t),生成幅值为A H(t)、频率为f H2的单频正弦信号a H(t),即高频加速度,具体计算公式为a H(t)=A H(t)sin(2πf H2t);
步骤1031c、将初步加速度、低频加速度和高频加速度进行线性叠加,得到一次增强加速度。
该步骤中,确定初步加速度、低频加速度和高频加速的之和为幅值上初次增强的一次增强加速度。将步骤102获取的初步加速度a 1(t)、低频加速度a L(t)和高频加速度a H(t)线性叠加,得到幅值上初次增强的的目标加速度a 2(t),具体计算公式为:a 2(t)=a 1(t)+a L(t)+a H(t)。
在一些实施例中,如图1b所示,上述步骤1032可以包括:
步骤1032a、确定一次增强加速度的绝对值;
步骤1032b、确定绝对值的单帧峰值;
其中,单帧峰值单帧数据中的最大采样数据。
在一些实施例中,如图1b2上述步骤1032b,可以包括:
步骤1032b1、预设单帧数据的时长;
其中,设定单帧数据的时长t buffer,例如设置t buffer=1ms。
步骤1032b2、根据音频信号的采样率和单帧数据的时长,计算单帧数据的采样数据个数;
其中,根据音频采样率F s计算单帧数据个数n buffer,例如F s=48kHz对应的单帧数据个数为n buffer=t bufferF s=48。
步骤1032b3、确定每个单帧数据中的最大采样数据,并以最大采样数据为单帧数据的单帧峰值。
其中,对单帧数据进行峰值检测,即采用顺序比较法检测当前帧的数据峰值,即假设当前帧有n buffer个数据a1、a2,…,an;比较a1和a2,取其中较大值作为a max;再比较a max与a3,取其中较大值作为新的a max;依此类推,直到比较a max与an,取其中较大值作为最终的a max,即单帧峰值;
步骤1032b3、根据单帧峰值,查询预置的幅值放大查找表LUT,得到增强后的单帧峰值;
该步骤中,设置幅值放大查找表LUT,如图2所示,所设置的LUT,以单帧峰值a max作为输入,查表得到增强后的峰值a max2
步骤1032b4、将增强后的单帧峰值与增强前的单帧峰值相除,得到单帧增强系数;
该步骤中,单帧增强系数计算,将增强后的峰值a max2与增强前的峰值a max相除,得到单帧增强系数k a,即
Figure PCTCN2022124497-appb-000001
步骤1032b5、将初次目标加速度的单帧数据与单帧增强系数相乘,得到幅值上二次增强的目标加速度。
该步骤中,获取的初次增强的目标加速度的单帧数据乘以单帧增强系数k a,得到二次增强的目标加速度a 3(t)。
由于增强后的加速度相对于增强前的加速度在单帧范围内所有数据点均为线性放大,因此该方法在实现幅值增强的同时,又保证了单帧数据的线性同比例放大,尽可能降低原波形在单帧范围内数据幅值差异的失真。
步骤104、基于目标加速度,确定目标加速度对应的驱动电压;
该步骤中,根据线性马达的驱动电压和目标加速度的传递特性得到线性马达的驱动电压。
步骤105、对驱动电压进行功率放大,驱动马达产生振感反馈。
该步骤中,采用功率放大电路对驱动电压进行功率放大。
在一些实施例中,上述步骤104可以包括:根据马达的驱动电压 和目标加速度的传递特性,得到马达的驱动电压。
进一步地,具体的迭代公式为:
Figure PCTCN2022124497-appb-000002
式中,
Figure PCTCN2022124497-appb-000003
T为音频采样周期。
本申请先对音频输入进行滤波处理,得到初步加速度(振动波形);然后对马达带宽外的音频分布进行处理,得到初次增强的目标加速度;再设置幅值放大查找表,根据单帧加速度的幅值确定当前帧的放大系数,并对当前帧的加速度进行线性放大,即得到二次增强的目标加速度;再结合马达特性解算驱动电压。所提方案先从频域上对带宽边界的加速度进行增强;再通过单帧线性放大的方式对加速度进行幅值增强,既实现了振感增强,又基本不损失原波形在单帧内的强弱差异信息。
如图3所示,图中横坐标为时间,纵坐标为音频信号,采用本申请处理前后的信号对比,处理后信号幅值得到明显增强,且在局部范围内信号的幅值强弱关系依旧得到较好的保留。
如图4所示,在一个实施例中,提供了一种马达振动控制装置,该马达振动控制装置可以集成于上述的计算机设备110中,具体可以 包括:
输入信号单元411,用于获取音频信号和马达的特征数据;其中,音频信号为用于驱动马达的音频信号,特征数据包括马达的扫频特性的带宽和发声频带;
其中,信号输入分为4部分;
音频信号,该音频信号可以是游戏应用实际输出的音效;也可以是根据游戏场景定制设计的宽频信号,并以音频格式存储与输入;
马达的扫频特性(单位驱动电压下加速度幅值的频域响应特性)的带宽,即[f aL,f aH];
马达的发声频带,即[f vL,f vH];
马达的基本参数,包括振子质量m、磁场强度Bl、弹簧劲度系数k、阻尼系数r、线圈直流电阻Re。
初步处理单元412,用于基于特征数据,对音频信号进行低通滤波和高通滤波,得到初步加速度;
其中,对输入信号进行如控制方法步骤101至步骤104的信号处理,驱动马达产生增强的宽频振动反馈。
幅值增强单元413,用于对初步加速度进行幅值上的增强,得到目标加速度。
电压输出单元414,用于基于目标加速度,确定目标加速度对应的驱动电压;
其中,该振动信号为算法处理模块对输入信号处理后获得的马达驱动电压信号。
功率放大单元415,用于对驱动电压进行功率放大,驱动马达产生振感反馈。
其中,选用的功率放大器,通常是一个对输入信号进行功率匹配的放大器,常见的如A类,B类,AB类,或者D类驱动器,输入信号可以是模拟信号,也可以是一定制式的数字信号。
马达416,该马达是宽频线性马达(Linear Resonant Actuator),其扫频特性(单位驱动电压下的加速度幅值的频率响应特性)具有一定的宽频特性。
图5为一个实施例中计算机设备的内部结构示意图。如图5所示,该计算机设备可以包括通过系统总线连接的处理器、存储介质、存储器和网络API接口。其中,该计算机设备的存储介质存储有操作系统、数据库和计算机可读指令,数据库中可存储有控件信息序列,该计算机可读指令被处理器执行时,可使得处理器实现一种马达振动控制方法。该计算机设备的处理器用于提供计算和控制能力,支撑整个计算机设备的运行。该计算机设备的存储器中可存储有计算机可读指令,该计算机可读指令被处理器执行时,可使得处理器执行一种马达振动控制方法。该计算机设备的网络API接口用于与终端连接通信。本领域技术人员可以理解,图1中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提出了一种计算机设备,计算机设备可以包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现以下步骤:获取音频信号和马达的特征数据;其中,音频信号为用于驱动马达的音频信号,特征数据包括马达的扫频特性的带宽和发声频带;基于特征数据,对音频信号进行低通滤波和高通滤波,得到初步加速度;对初步加速度进行幅值上的增强,得到目标加速度;基于目标加速度,确定目标加速度对应的驱动电压;对驱动电压进行功率放大,驱动马达产生振感反馈。
在一个实施例中,提出了一种存储有计算机可读指令的存储介质,该计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行以下步骤:获取音频信号和马达的特征数据;其中,音频信号为用于驱动马达的音频信号,特征数据包括马达的扫频特性的带宽和发声频带;基于特征数据,对音频信号进行低通滤波和高通滤波,得到初步加速度;对初步加速度进行幅值上的增强,得到目标加速度;基于目标加速度,确定目标加速度对应的驱动电压;对驱动电压进行功率放大,驱动马达产生振感反馈。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,该计算机程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,前述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等非易失性存 储介质,或随机存储记忆体(Random Access Memory,RAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种马达振动控制方法,其特征在于,所述方法包括:
    获取音频信号和马达的特征数据;其中,音频信号为用于驱动马达的音频信号,特征数据包括马达的扫频特性的带宽和发声频带;
    基于所述特征数据,对音频信号进行低通滤波和高通滤波,得到初步加速度;
    对所述初步加速度进行幅值上的增强,得到目标加速度;
    基于所述目标加速度,确定所述目标加速度对应的驱动电压;
    对所述驱动电压进行功率放大,驱动马达产生振感反馈。
  2. 根据权利要求1所述的马达振动控制方法,其特征在于,所述基于所述特征数据,对所述音频信号进行低通滤波和高通滤波,得到初步加速度,包括:
    设置低通滤波器的截止频率为所述扫频特性带宽的上限频率和所述发声频带的下限频率中较小的值,高通滤波器的截止频率为所述扫频特性带宽的下限频率;
    利用所述低通滤波器和所述高通滤波器对所述音频信号进行低通滤波和高通滤波,得到所述初步加速度。
  3. 根据权利要求1所述的马达振动控制方法,其特征在于,所述对所述初步加速度进行幅值上的增强,得到目标加速度,包括:
    对所述初步加速进行幅值上的初次增强,得到一次增强加速度;
    对所述一次增强加速度进行幅值上的增强,得到所述目标加速度。
  4. 根据权利要求3所述的马达振动控制方法,其特征在于,所述对所述初步加速进行幅值上的初次增强,得到一次增强加速度,包 括:
    基于所述音频信号中的超低频信号,得到低频加速度;
    基于所述音频信号中的超高频信号,得到高频加速度;
    将所述初步加速度、所述低频加速度和所述高频加速度进行线性叠加,得到一次增强加速度。
  5. 根据权利要求4所述的马达振动控制方法,其特征在于,所述基于所述音频信号中的超低频信号,得到低频加速度,包括:
    利用低通滤波器对所述音频信号进行低通滤波,其中所述低通滤波器的截止频率为所述扫频特性带宽的下限频率;
    对低通滤波后的音频信号取绝对值;
    记录连续3个采样时刻的数据,比较中间的第二采样时刻的数据与第一、第三采样时刻的数据大小,若第二采样时刻的数据同时大于或等于第一、第三采样时刻的数据,则输出第二采样时刻的数据,作为局部极大值并保持,直到下一个局部极大值出现再更新;
    对得到的局部极大值数据进行低通滤波,得到相对平滑的极大值曲线;
    利用正弦信号填充极大值曲线,得到低频加速度,其中,所述正弦信号的频率为所述扫频特性带宽的下限频率;
    所述基于所述音频信号中的超高频信号,得到高频加速度,包括:
    利用高通滤波器对所述音频信号进行高通滤波,其中所述高通滤波器的截止频率为所述扫频特性带宽的上限频率和所述发声频带的下限频率中较小的值;
    对高通滤波后的音频信号取绝对值;
    记录连续3个采样时刻的数据,比较中间的第二采样时刻的数据与第一、第三采样时刻的数据大小,若第二采样时刻的数据同时大于或等于第一、第三采样时刻的数据,则输出第二采样时刻的数据,作为局部极大值并保持,直到下一个局部极大值出现再更新;
    对得到的局部极大值数据进行高通滤波,得到相对平滑的极大值曲线;
    利用正弦信号填充极大值曲线,得到高频加速度,其中,所述正弦信号的频率为所述扫频特性带宽的上限频率和所述发声频带的下限频率中较小的值。
  6. 根据权利要求3所述的马达振动控制方法,其特征在于,所述对所述一次增强加速度进行幅值上的增强,得到所述目标加速度,包括:
    确定所述一次增强加速度的绝对值;
    确定所述绝对值的单帧峰值;
    根据所述单帧峰值,查询预置的幅值放大查找表,得到增强后的单帧峰值;
    将增强后的单帧峰值与增强前的单帧峰值相除,得到单帧增强系数;
    将所述单帧数据与单帧增强系数相乘,得到幅值上二次增强的目标加速度。
  7. 根据权利要求6所述的马达振动控制方法,其特征在于,所 述确定所述绝对值的单帧峰值,包括:
    预设单帧数据的时长;
    根据所述音频信号的采样率和所述单帧数据的时长,计算单帧数据的采样数据个数;
    确定每个所述单帧数据中的最大采样数据,并以所述最大采样数据为所述单帧数据的单帧峰值。
  8. 一种马达振动控制装置,其特征在于,包括:
    输入信号单元,用于获取音频信号和马达的特征数据;其中,所述音频信号为用于驱动所述马达的音频信号,所述特征数据包括所述马达的扫频特性的带宽和发声频带;
    初步处理单元,用于基于所述特征数据,对音频信号进行低通滤波和高通滤波,得到初步加速度;
    幅值增强单元,用于对所述初步加速度进行幅值上的增强,得到目标加速度;
    电压输出单元,用于基于所述目标加速度,确定所述目标加速度对应的驱动电压;
    功率放大单元,用于对所述驱动电压进行功率放大,驱动马达产生振感反馈。
  9. 一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机可读指令,所述计算机可读指令被所述处理器执行时,使得所述处理器执行如权利要求1至7中任一项权利要求所述马达振动控制方法的步骤。
  10. 一种存储有计算机可读指令的存储介质,所述计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行如权利要求1至7中任一项权利要求所述马达振动控制方法的步骤。
PCT/CN2022/124497 2021-12-14 2022-10-11 马达振动控制方法、装置、计算机设备和存储介质 WO2023109274A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111528662.2A CN114389491B (zh) 2021-12-14 2021-12-14 马达振动控制方法、装置、计算机设备和存储介质
CN202111528662.2 2021-12-14

Publications (1)

Publication Number Publication Date
WO2023109274A1 true WO2023109274A1 (zh) 2023-06-22

Family

ID=81195952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124497 WO2023109274A1 (zh) 2021-12-14 2022-10-11 马达振动控制方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN114389491B (zh)
WO (1) WO2023109274A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389491B (zh) * 2021-12-14 2023-10-20 歌尔股份有限公司 马达振动控制方法、装置、计算机设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178942A1 (en) * 2006-01-30 2007-08-02 Sadler Daniel J Method for abruptly stopping a linear vibration motor in portable communication device
CN102354232A (zh) * 2011-07-14 2012-02-15 瑞声声学科技(深圳)有限公司 振动系统及其驱动方法
CN111551848A (zh) * 2019-12-30 2020-08-18 瑞声科技(新加坡)有限公司 马达体验失真指标的测试方法、电子设备及存储介质
CN113359892A (zh) * 2021-06-21 2021-09-07 歌尔股份有限公司 振动电机的传递函数生成方法、装置及存储介质
CN114389491A (zh) * 2021-12-14 2022-04-22 歌尔股份有限公司 马达振动控制方法、装置、计算机设备和存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07210178A (ja) * 1994-01-19 1995-08-11 Hitachi Ltd 能動型騒音制御装置
JPH11215587A (ja) * 1998-01-23 1999-08-06 Onkyo Corp Mfb型オーディオ再生装置
CN101793873B (zh) * 2010-03-02 2013-01-02 王宏伟 一种钢琴音板声振动与点振动特性测试方法及其专用设备
WO2017191097A1 (en) * 2016-05-02 2017-11-09 Purifi Aps A method of controlling loudspeaker diaphragm excursion
CN106803752A (zh) * 2016-09-23 2017-06-06 建讯域有限公司 一种音频信号处理装置及方法
JP6330012B2 (ja) * 2016-11-02 2018-05-23 ローム株式会社 生体センサ
GB2566497B (en) * 2017-09-15 2020-07-29 Illinois Tool Works Braking system for electromagnetic motors
CN109067243B (zh) * 2018-08-15 2020-06-02 天津大学 一种压电振动发电机等效电路参数确定方法
CN113702829B (zh) * 2021-08-31 2024-03-08 歌尔股份有限公司 振动电机的扫频特性曲线生成方法、装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178942A1 (en) * 2006-01-30 2007-08-02 Sadler Daniel J Method for abruptly stopping a linear vibration motor in portable communication device
CN102354232A (zh) * 2011-07-14 2012-02-15 瑞声声学科技(深圳)有限公司 振动系统及其驱动方法
CN111551848A (zh) * 2019-12-30 2020-08-18 瑞声科技(新加坡)有限公司 马达体验失真指标的测试方法、电子设备及存储介质
CN113359892A (zh) * 2021-06-21 2021-09-07 歌尔股份有限公司 振动电机的传递函数生成方法、装置及存储介质
CN114389491A (zh) * 2021-12-14 2022-04-22 歌尔股份有限公司 马达振动控制方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN114389491B (zh) 2023-10-20
CN114389491A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
CN103686578B (zh) 具有可编程频率响应的扩音器
EP3223536B1 (en) Techniques for tuning the distortion response of a loudspeaker
US10219090B2 (en) Method and detector of loudspeaker diaphragm excursion
WO2023109274A1 (zh) 马达振动控制方法、装置、计算机设备和存储介质
US20120206246A1 (en) Sound to haptic effect conversion system using amplitude value
CN103247296A (zh) 利用波形的声音到触觉效应转换系统
JPWO2018116861A1 (ja) 音響処理装置および方法、並びにプログラム
US20070237335A1 (en) Hormonic inversion of room impulse response signals
CA2734352C (en) Signal processing device and stringed instrument
JPH06177688A (ja) オーディオ信号処理装置
CN108028984B (zh) 调节使用电声换能器的音频系统的方法
JPH10200351A (ja) デジタルオーディオプロセッサ
CN110679157B (zh) 用于动态扩展扬声器能力的方法和系统
JP6671001B2 (ja) 音声再生装置
Yeh et al. Nonlinear modeling of a guitar loudspeaker cabinet
JP2007507166A (ja) 中域圧縮機能付音声信号前置増幅回路
CN111050251A (zh) 用于扬声器的倒相箱建模的非线性端口参数
JPH0523396A (ja) 揺らぎ刺激生成装置とこれを用いた就寝装置
US20100150362A1 (en) Acoustic apparatus
US20230163739A1 (en) Method for increasing perceived loudness of an audio data signal
JP3681559B2 (ja) コンプレッション処理方法および装置
RU2582304C1 (ru) Способ формирования сигнала для управления электроакустическим излучателем
RU2542637C1 (ru) Способ формирования сигнала для управления электроакустическим излучателем
RU2558653C2 (ru) Способ формирования сигнала для управления электроакустическим излучателем
JP2023062165A (ja) 音響再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906026

Country of ref document: EP

Kind code of ref document: A1