WO2023109227A1 - 一种高水胶比塑性混凝土制备方法 - Google Patents

一种高水胶比塑性混凝土制备方法 Download PDF

Info

Publication number
WO2023109227A1
WO2023109227A1 PCT/CN2022/119747 CN2022119747W WO2023109227A1 WO 2023109227 A1 WO2023109227 A1 WO 2023109227A1 CN 2022119747 W CN2022119747 W CN 2022119747W WO 2023109227 A1 WO2023109227 A1 WO 2023109227A1
Authority
WO
WIPO (PCT)
Prior art keywords
bentonite
plastic concrete
water
binder ratio
weight
Prior art date
Application number
PCT/CN2022/119747
Other languages
English (en)
French (fr)
Inventor
徐浩青
姜朋明
周爱兆
刘顺青
齐永正
侯贺营
吴思麟
吴涛
胡梦狄
梁景瑞
施鑫淼
孔德辉
陈建国
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Publication of WO2023109227A1 publication Critical patent/WO2023109227A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to the technical field of plastic concrete preparation, and relates to a method for preparing plastic concrete with a high water-binder ratio.
  • Plastic concrete is widely used in water conservancy and hydropower projects, sewage treatment projects and landfill restoration projects due to its advantages of high fluidity, low elastic modulus, and good impermeability.
  • the water-binder ratio of plastic concrete is mostly below 1.3.
  • a lower water-binder ratio will lead to a larger amount of cement, while increasing the water-binder ratio will cause bleeding and segregation of plastic concrete materials, and the porosity and permeability coefficient will increase. Reduced compressive strength.
  • plastic concrete material that can not only increase the water-binder ratio, but also avoid bleeding and segregation, and ensure that the ease of construction, compressive strength and permeability coefficient meet the design requirements. foreground.
  • the development of plastic concrete with high water-binder ratio is carried out, and the plastic concrete with high water-binder ratio is applied to sewage treatment projects and landfill repair projects, which greatly reduces the amount of cement and carbon dioxide emissions; and adds industrial waste to replace parts Cement increases waste utilization, avoids energy waste, and saves costs.
  • the purpose of the present invention is to provide a method for preparing plastic concrete with a high water-to-cement ratio, which solves the problem of plastic concrete water-to-cement ratio in the prior art to meet design requirements such as fluidity, unconfined compressive strength, and permeability coefficient.
  • design requirements such as fluidity, unconfined compressive strength, and permeability coefficient.
  • the technical effect of low porosity, low permeability coefficient, high compressive strength and low price has been achieved.
  • step (3) the bentonite slurry placed for 24h in step (1) is stirred again to obtain fully expanded bentonite slurry;
  • step (3) Add the mixed dry material prepared in step (2) into the fully expanded bentonite slurry in step (3), mix and stir evenly, maintain and shape, and finally obtain high water-binder ratio plastic concrete.
  • step (1) the weight ratio of water to bentonite in the bentonite slurry is 22:4.
  • the water is deionized water with conductivity less than 0.1 ⁇ s/cm.
  • the bentonite is at least one of calcium-based bentonite and sodium-based bentonite, and the particle size is 0.075-0.5mm.
  • step (2) the weight ratio of cement, slag powder, steel fiber and sand in the mixed dry material is 1:7:1:66.
  • step (2) the particle size of the slag powder is 0.075-0.5mm
  • the length of the steel fiber is 10-20mm, the diameter is 0.2-0.4mm, and the aspect ratio is 40-80;
  • the sand grain size is 0.5mm-2mm.
  • the ratio of the water to the cementitious material formed by bentonite, cement and slag powder is 1.7:1-2.1:1.
  • the present invention has the characteristics of the present invention: 1.
  • the plastic concrete prepared by the high water-binder ratio plastic concrete preparation method of the present invention reduces the effect on bentonite swelling due to the deionized water used. impact, and the bentonite slurry is sealed and placed, and the bentonite is fully expanded when the water loss is small, which effectively solves the bleeding and segregation of plastic concrete under the condition of high water-to-cement ratio.
  • plastic concrete It has good construction workability, the 28d unconfined compressive strength is increased by 47%, and the 28d permeability coefficient is reduced by nearly an order of magnitude; 2, the plastic concrete prepared by the high water-binder ratio plastic concrete preparation method of the present invention, the plastic concrete is mixed with Adding slag powder, using industrial waste, increasing waste utilization, avoiding energy waste, and saving costs; slag powder has obvious water-reducing effect, so that high water-binder ratio plastic concrete still has better construction workability; 3.
  • the present invention The plastic concrete prepared by the high water-binder ratio plastic concrete preparation method, the steel fiber is mixed into the plastic concrete, to a certain extent, the problem of insufficient compressive strength of the plastic concrete caused by the high water-binder ratio is made up, and the steel fiber is in the plastic There will be no balls in the concrete, the distribution is uniform, and the actual working performance is better than that of plastic concrete with the same fluidity.
  • Fig. 1 is a structural flow chart of the present invention
  • Fig. 2 is a schematic diagram of the test process of the present invention.
  • a method for preparing plastic concrete with a high water-binder ratio comprises the following steps:
  • Step 1 Mix water and bentonite, and stir evenly, then seal and place in a constant temperature box at a temperature of 20°C for 24 hours to make it fully expanded to obtain bentonite slurry, which is ready for use;
  • Step 2 Dry mix cement, slag powder, steel fiber, and sand evenly to obtain a mixed dry material for use;
  • the ratio of the cementitious material generated by the water to bentonite, cement and slag powder is 1.7:1-2.1:1 (that is: the ratio of water to cementitious material (bentonite, cement, slag powder) 1.7:1-2.1:1).
  • Comparative Example 1 the bentonite was mixed and stirred with the rest of the dry materials, and then poured into deionized water.
  • Comparative Example 2 the bentonite was first poured into deionized water and stirred, but the bentonite slurry was not sealed and placed in a 20°C thermostat for 24 hours, but The rest of the mixed dry material was directly poured into the bentonite slurry.
  • Comparative Examples 3 and 4 also adopted the preparation methods of Comparative Examples 1 and 2, but the bentonite was replaced by calcium-based bentonite with sodium-based bentonite.
  • Example 1 Comparing Example 1 with Comparative Examples 1 to 2, it was found that: without expanding the Inner Mongolia bentonite, the prepared plastic concrete with high water-binder ratio increased by 29% and 23%, and the 28d unconfined compression resistance The strength is reduced by 32% and 28%, the 28d permeability coefficient is increased by nearly an order of magnitude, and the porosity is increased by 32% and 27%.
  • the high water-binder ratio produced in Comparative Examples 1 and 2 Plastic concrete has obvious bleeding and segregation phenomena.
  • the 28d unconfined compressive strength is 2.5MPa
  • the high water-binder ratio plastic concrete prepared in Comparative Examples 1 and 2 has a 28d unconfined compressive strength None of them reached 2MPa.
  • Example 1 Compared with Example 1, the 28d permeability coefficient was 5 ⁇ 10 -8 cm/s, and the 28d permeability coefficients of the high water-binder ratio plastic concrete prepared in Comparative Examples 1 and 2 were both greater than 10 -7 cm/s. Comparing Example 3 with Comparative Examples 3 to 4, it was found that: without expanding the Suzhou bentonite, the prepared plastic concrete with high water-binder ratio increased by 29% and 24%, and the 28d unconfined compression resistance The strength is reduced by 29% and 21%, the 28d permeability coefficient is increased by nearly an order of magnitude, and the porosity is increased by 38% and 33%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明公开了一种高水胶比塑性混凝土制备方法。属于塑性混凝土制备技术领域;具体步骤:1、将水与膨润土混合,并搅拌均匀,然后在温度为20℃的恒温箱中密封放置24h,得膨润土浆液;2、将水泥、矿渣粉、钢纤维、砂混合干拌均匀,得到混合干料;3、将步骤1中放置24h的膨润土浆液再次进行搅拌,得充分膨化的膨润土浆液;4、将步骤2中制得的混合干料掺入到步骤3中充分膨化后的膨润土浆液中,混合搅拌均匀,养护成型,最终制得高水胶比塑性混凝土。采用本发明制备塑性混凝土可增大水胶比,减少水泥用量,在不掺加减水剂的情况下,避免塑性混凝土泌水和离析现象,具有孔隙率小、渗透系数低、抗压强度高、价格低廉等优点。

Description

一种高水胶比塑性混凝土制备方法 技术领域
本发明涉及塑性混凝土制备技术领域,涉及一种高水胶比塑性混凝土制备方法。
背景技术
塑性混凝土因其流动性大、弹性模量低、抗渗性能好等优点被广泛应用于水利水电工程、污水处理工程及垃圾填埋场修复工程。目前塑性混凝土的水胶比大多在1.3以下,较低的水胶比使得水泥用量较大,而提高水胶比则会导致塑性混凝土材料产生泌水与离析现象,孔隙率和渗透系数增大,抗压强度降低。
因此,目前研发一种不仅可以使水胶比增大,又可以避免产生泌水与离析现象,保证施工和易性、抗压强度以及渗透系数满足设计要求的塑性混凝土材料是非常有意义和市场前景的。为此进行高水胶比塑性混凝土的研制,将高水胶比塑性混凝土应用于污水处理工程及垃圾填埋场修复工程中,大大降低水泥用量,减少二氧化碳的排放;并且加入工业废弃物替代部分水泥,增加废物利用率,避免能源浪费,节约了成本。
发明内容
发明目的:本发明的目的是提供了一种高水胶比塑性混凝土制备方法,解决了现有技术中为满足流动度、无侧限抗压强度、渗透系数等设计要求导致塑性混凝土水胶比较低的问题,实现了孔隙率小、渗透系数低、抗压强度高、价格低廉的技术效果。
技术方案:本发明所述的一种高水胶比塑性混凝土制备方法,其具体操作步骤如下:
(1)、将水与膨润土混合,并搅拌均匀,然后在温度为20℃的恒温箱中密封放置24h,得膨润土浆液,待用;
(2)、将水泥、矿渣粉、钢纤维、砂混合干拌均匀,得到混合干料,待用;
(3)、将步骤(1)中放置24h的膨润土浆液再次进行搅拌,得充分膨化的膨润土浆液;
(4)、将步骤(2)中制得的混合干料掺入到步骤(3)中充分膨化后的膨润土浆液中,混合搅拌均匀,养护成型,最终制得高水胶比塑性混凝土。
进一步的,在步骤(1)中,所述膨润土浆液中水与膨润土的重量比为22:4。
进一步的,在步骤(1)中,所述水为电导率小于0.1μs/cm的去离子水。
进一步的,在步骤(1)中,所述膨润土为钙基膨润土和钠基膨润土中的至少一种,粒度为0.075-0.5mm。
进一步的,在步骤(2)中,所述混合干料的水泥、矿渣粉、钢纤维和砂的重量比为1:7:1:66。
进一步的,在步骤(2)中,所述矿渣粉粒度为0.075-0.5mm;
钢纤维的长度为10-20mm,直径为0.2-0.4mm,长径比为40-80;
砂粒度为0.5mm-2mm。
进一步的,在步骤(1)和(2)中,所述水与膨润土、水泥、矿渣粉生成的胶凝材料的比值为1.7:1-2.1:1。
有益效果:本发明与现有技术相比,本发明的特点:1、本发明的高水胶比塑性混凝土制备方法制备的塑性混凝土,由于所用的水为去离子水,减少了对膨润土膨化的影响,且膨润土浆液密封放置,在水分损失很小的情况下,使得膨润土充分膨化,有效解决了高水胶比情况下,塑性混凝土的泌水和离析现象,与其他制备方法相比,塑性混凝土有较好的施工和易性,28d无侧限抗压强度提高47%,28d渗透系数降低接近一个数量级;2、本发明的高水胶比塑性混凝土制备方法制备的塑性混凝土,塑性混凝土中掺入矿渣粉,利用了工业废料,增加废物利用率,避免能源浪费,节约了成本;矿渣粉减水效果明显,使得高水胶比塑性混凝土仍然有较好的施工和易性;3、本发明的高水胶比塑性混凝土制备方法制备的塑性混凝土,塑性混凝土中掺入钢纤维,一定程度上弥补了由于水胶比过高而导致的塑性混凝土抗压强度不足的问题,且钢纤维在塑性混凝土中不会结球,分布均匀,实际工作性能要优于相同流动度的塑性混凝土。
附图说明
图1是本发明的结构流程图;
图2是本发明试验过程示意图。
具体实施方式
下面结合附图及实施例对本实用新型作进一步的说明。
如图所示,本发明所述的一种高水胶比塑性混凝土制备方法,包括以下步骤:
步骤1:将水与膨润土混合,并搅拌均匀,然后密封放置在温度为20℃的恒温箱中24h,使其充分膨化,得膨润土浆液,待用;
其中,所述膨润土浆液的水与膨润土的重量比为22:4,通常情况下,水的重量份为22,膨润土的重量份为3~4;
所用水为电导率小于0.1μs/cm的去离子水;
所述膨润土为钙基膨润土和钠基膨润土中的至少一种,粒度为0.075-0.5mm;
步骤2:将水泥、矿渣粉、钢纤维、砂混合干拌均匀,得到混合干料,待用;
其中,所述混合干料的水泥、矿渣粉、钢纤维和砂的重量比为1:7:1:66;
具体的,所述水泥的重量份为1-2,矿渣粉的重量份为7,钢纤维的重量份为1,砂的重量份为64-66,水泥为42.5普通硅酸盐水泥;
矿渣粉粒度为0.075-0.5mm,砂粒度为0.5mm-2mm,钢纤维的长度为10-20mm,直径为0.2-0.4mm,长径比为40-80;
步骤3:将步骤(1)中放置24h的膨润土浆液再次进行搅拌,避免膨润土泥浆沉底;得充分膨化的膨润土浆液;
步骤4:将步骤(2)中制得的混合干料掺入到步骤(3)中充分膨化后的膨润土浆液中,混合搅拌均匀,养护成型,最终制得高水胶比塑性混凝土。
在步骤1和2中,所述水与膨润土、水泥、矿渣粉生成的胶凝材料的比值为1.7:1-2.1:1(即:水与胶凝材料(膨润土、水泥、矿渣粉)的比值为1.7:1-2.1:1)。
实施例1:本实施例提供了一种高水胶比塑性混凝土,包括:22重量份的水,4重量份的内蒙古膨润土,2重量份的水泥,7重量份的矿渣粉,1重量份的钢纤维,64重量份的砂,即水胶比为1.7的塑性混凝土;
具体的,将4重量份的内蒙古膨润土倒入22重量份的水中,并搅拌120s,然后密封放置在温度为20℃的恒温箱中24h,所用水的电导率为0.098μs/cm的去离子水,内蒙古膨润土为钙基膨润土,粒度为0.1mm;待内蒙古膨润土膨化24h后,将2重量份的水泥、7重量份的矿渣粉、1重量份的钢纤维以及64重量份的砂混合并搅拌60s,得到混合干料,水泥为42.5普通硅酸盐水泥,矿渣粉粒度为0.1mm,砂粒度为分布在0.5mm~2mm之间,钢纤维的长度为10mm,直径为0.2mm,长径比为50;再次搅拌膨润土浆液60s,避免膨润土泥浆沉底,然后将混合好的干料倒入膨润土浆液中搅拌120s,最后养护成型。
实施例2:本实施例提供了一种高水胶比塑性混凝土,包括:22重量份的水,3重量份的内蒙古膨润土,1重量份的水泥,7重量份的矿渣粉,1重量份的钢纤维,66重量份的砂,即水胶比为2.1的塑性混凝土;
具体的,将3重量份的内蒙古膨润土倒入22重量份的水中,并搅拌120s,然后密封放置在温度为20℃的恒温箱中24h,所用水的电导率为0.098μs/cm的去离子水,内蒙古膨润土为钙基膨润土,粒度为0.1mm;待内蒙古膨润土膨化24h后,将1重量份的水泥、7重量份的矿渣粉、1重量份的钢纤维以及66重量份的砂混合并搅拌60s,得到混合干料,水泥为42.5普通硅酸盐水泥,矿渣粉粒度为0.1mm,砂粒度为分布在0.5mm~2mm之间,钢纤维的长度为10mm,直径 为0.2mm,长径比为50;再次搅拌膨润土浆液60s,避免膨润土泥浆沉底,然后将混合好的干料倒入膨润土浆液中搅拌120s,最后养护成型。
实施例3:本实施例提供了一种高水胶比塑性混凝土,包括:22重量份的水,4重量份的苏州膨润土,2重量份的水泥,7重量份的矿渣粉,1重量份的钢纤维,64重量份的砂,即水胶比为1.7的塑性混凝土;
具体的,将4重量份的苏州膨润土倒入22重量份的水中,并搅拌120s,然后密封放置在温度为20℃的恒温箱中24h,所用水的电导率为0.098μs/cm的去离子水,苏州膨润土为钠基膨润土,粒度为0.1mm;待苏州膨润土膨化24h后,将2重量份的水泥、7重量份的矿渣粉、1重量份的钢纤维以及64重量份的砂混合并搅拌60s,得到混合干料,水泥为42.5普通硅酸盐水泥,矿渣粉粒度为0.1mm,砂粒度为分布在0.5mm~2mm之间,钢纤维的长度为10mm,直径为0.2mm,长径比为50;再次搅拌膨润土浆液60s,避免膨润土泥浆沉底,然后将混合好的干料倒入膨润土浆液中搅拌120s,最后养护成型。
对比例1:本对比例提供了一种高水胶比塑性混凝土,包括:22重量份的水,4重量份的内蒙古膨润土,2重量份的水泥,7重量份的矿渣粉,1重量份的钢纤维,64重量份的砂,即水胶比为1.7的塑性混凝土;
具体的,将4重量份的内蒙古膨润土、2重量份的水泥、7重量份的矿渣粉、1重量份的钢纤维以及64重量份的砂混合并搅拌60s,得到混合干料,内蒙古膨润土为钙基膨润土,粒度为0.1mm,水泥为42.5普通硅酸盐水泥,矿渣粉粒度为0.1mm,砂粒度为分布在0.5mm~2mm之间,钢纤维的长度为10mm,直径为0.2mm,长径比为50;将混合干料倒入22重量份的水中搅拌120s,最后养护成型,所用水的电导率为0.098μs/cm的去离子水。
对比例2:本对比例提供了一种高水胶比塑性混凝土,包括:22重量份的水,4重量份的内蒙古膨润土,2重量份的水泥,7重量份的矿渣粉,1重量份的钢纤维,64重量份的砂,即水胶比为1.7的塑性混凝土;
具体的,将4重量份的内蒙古膨润土倒入22重量份的水中,并搅拌120s,所用水的电导率为0.098μs/cm的去离子水,内蒙古膨润土为钙基膨润土,粒度为0.1mm;将2重量份的水泥、7重量份的矿渣粉、1重量份的钢纤维以及64重量份的砂混合并搅拌60s,得到混合干料,水泥为42.5普通硅酸盐水泥,矿渣粉粒度为0.1mm,砂粒度为分布在0.5mm~2mm之间,钢纤维的长度为10mm,直径为0.2mm,长径比为50;膨润土浆液不密封放置在20℃恒温箱中24h,而是将混合好的干料立即倒入膨润土浆液中搅拌120s,最后养护成型。
对比例3:本对比例提供了一种高水胶比塑性混凝土,包括:22重量份的水, 4重量份的苏州膨润土,2重量份的水泥,7重量份的矿渣粉,1重量份的钢纤维,64重量份的砂,即水胶比为1.7的塑性混凝土;
具体的,将4重量份的苏州膨润土、2重量份的水泥、7重量份的矿渣粉、1重量份的钢纤维以及64重量份的砂混合并搅拌60s,得到混合干料,苏州膨润土为钠基膨润土,粒度为0.1mm,水泥为42.5普通硅酸盐水泥,矿渣粉粒度为0.1mm,砂粒度为分布在0.5mm~2mm之间,钢纤维的长度为10mm,直径为0.2mm,长径比为50;将混合干料倒入22重量份的水中搅拌120s,最后养护成型,所用水的电导率为0.098μs/cm的去离子水。
对比例4:本对比例提供了一种高水胶比塑性混凝土,包括:22重量份的水,4重量份的苏州膨润土,2重量份的水泥,7重量份的矿渣粉,1重量份的钢纤维,64重量份的砂,即水胶比为1.7的塑性混凝土;
具体的,将4重量份的苏州膨润土倒入22重量份的水中,并搅拌120s,所用水的电导率为0.098μs/cm的去离子水,苏州膨润土为钠基膨润土,粒度为0.1mm;将2重量份的水泥、7重量份的矿渣粉、1重量份的钢纤维以及64重量份的砂混合并搅拌60s,得到混合干料,水泥为42.5普通硅酸盐水泥,矿渣粉粒度为0.1mm,砂粒度为分布在0.5mm~2mm之间,钢纤维的长度为10mm,直径为0.2mm,长径比为50;膨润土浆液不密封放置在20℃恒温箱中24h,而是将混合好的干料立即倒入膨润土浆液中搅拌120s,最后养护成型。
对上述三个实施例制得的高水胶比塑性混凝土和四个对比例制得的高水胶比塑性混凝土分别进行流动度测试、无侧限抗压强度测试、渗透系数测试和孔隙率测试,得到如表1所示的测试结果。
表1
Figure PCTCN2022119747-appb-000001
根据上表1,实施例1至3的高水胶比塑性混凝土的测试对比发现,实施例1至3有较好的流动性,无泌水和离析现象产生,施工和易性良好,28d无侧限抗压强度均大于2MPa,孔隙率较小,28d渗透系数均小于10 -7cm/s,说明这三个实施例在水胶比较高的情况下,同样满足流动度、无侧限抗压强度、渗透系数等设计要求,实现了孔隙率小、渗透系数低、抗压强度高、价格低廉的技术效果;其中实施例1的高水胶比塑性混凝土抗压强度最高,孔隙率最小,渗透系数最低,说明实施例1为本发明的优选实施例。
对比例1将膨润土与其余干料一起混合搅拌,然后倒入去离子水中,对比例2将膨润土先倒入去离子水中搅拌,但未将膨润土浆液密封放置在20℃恒温箱中24h,而是直接将其余混合好的干料倒入膨润土浆液中,对比例3和4同样采用对比例1和2的制备方法,但膨润土由钙基膨润土换作钠基膨润土。将实施例1与对比例1至2分别进行对比发现:未对内蒙古膨润土进行膨化处理,制得的高水胶比塑性混凝土,流动度增大了29%和23%,28d无侧限抗压强度降低32%和28%,28d渗透系数增大了接近一个数量级,孔隙率增大了32%和27%,相对于实施例1流动度145mm,对比例1和2制得的高水胶比塑性混凝土,有明显的泌水和离析现象,相对于实施例1,28d无侧限抗压强度2.5MPa,对比例1和2制得的高水胶比塑性混凝土,28d无侧限抗压强度均未达到2MPa,相对于实施例1,28d渗透系数5×10 -8cm/s,对比例1和2制得的高水胶比塑性混凝土,28d渗透系数均大于10 -7cm/s。将实施例3与对比例3至4分别进行对比发现:未对苏州膨润土进行膨化处理,制得的高水胶比塑性混凝土,流动度增大了29%和24%,28d无侧限抗压强度降低29%和21%,28d渗透系数增大了接近一个数量级,孔隙率增大了38%和33%,相对于实施例3流动度142mm,对比例3和4制得的高水胶比塑性混凝土,有明显的泌水和离析现象,相对于实施例3,28d无侧限抗压强度2.4MPa,对比例3和4制得的高水胶比塑性混凝土,28d无侧限抗压强度均未达到2MPa,相对于实施例3,28d渗透系数4×10 -8cm/s,对比例3和4制得的高水胶比塑性混凝土,28d渗透系数均大于10 -7cm/s。说明无论是钙基膨润土还是钠基膨润土,如果未将膨润土充分膨化,都会在较大程度上影响塑性混凝土的流动度、无侧限抗压强度和渗透系数。
以上仅是本实用新型的优选实施方式,本实用新型的保护范围并不仅局限于上述实施例,凡属于本实用新型思路下的技术方案均属于本实用新型的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理前提下的若干改进和润饰,应视为本实用新型的保护范围。

Claims (7)

  1. 一种高水胶比塑性混凝土制备方法,其特征在于,其具体操作步骤如下:
    (1)、将水与膨润土混合,并搅拌均匀,然后在温度为20℃的恒温箱中密封放置24h,得膨润土浆液,待用;
    (2)、将水泥、矿渣粉、钢纤维、砂混合干拌均匀,得到混合干料,待用;
    (3)、将步骤(1)中放置24h的膨润土浆液再次进行搅拌,得充分膨化的膨润土浆液;
    (4)、将步骤(2)中制得的混合干料掺入到步骤(3)中充分膨化后的膨润土浆液中,混合搅拌均匀,养护成型,最终制得高水胶比塑性混凝土。
  2. 根据权利要求1所述的一种高水胶比塑性混凝土制备方法,其特征在于,
    在步骤(1)中,所述膨润土浆液中水与膨润土的重量比为22:4。
  3. 根据权利要求1所述的一种高水胶比塑性混凝土制备方法,其特征在于,
    在步骤(1)中,所述的水是:电导率小于0.1μs/cm的去离子水。
  4. 根据权利要求1所述的一种高水胶比塑性混凝土制备方法,其特征在于,
    在步骤(1)中,所述膨润土为钙基膨润土和钠基膨润土中的至少一种,其粒度为0.075-0.5mm。
  5. 根据权利要求1所述的一种高水胶比塑性混凝土制备方法,其特征在于,
    在步骤(2)中,所述混合干料中水泥、矿渣粉、钢纤维和砂的重量比为1:7:1:66。
  6. 根据权利要求1所述的一种高水胶比塑性混凝土制备方法,其特征在于,
    在步骤(2)中,所述矿渣粉粒度为0.075-0.5mm;
    钢纤维的长度为10-20mm,直径为0.2-0.4mm,长径比为40-80;
    砂粒度为0.5mm-2mm。
  7. 根据权利要求1所述的一种高水胶比塑性混凝土制备方法,其特征在于,
    在步骤(1)和(2)中,所述水与膨润土、水泥、矿渣粉生成的胶凝材料的比值为1.7:1-2.1:1。
PCT/CN2022/119747 2021-12-16 2022-09-20 一种高水胶比塑性混凝土制备方法 WO2023109227A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111540377.2A CN114349417A (zh) 2021-12-16 2021-12-16 一种高水胶比塑性混凝土制备方法
CN202111540377.2 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023109227A1 true WO2023109227A1 (zh) 2023-06-22

Family

ID=81099088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119747 WO2023109227A1 (zh) 2021-12-16 2022-09-20 一种高水胶比塑性混凝土制备方法

Country Status (2)

Country Link
CN (1) CN114349417A (zh)
WO (1) WO2023109227A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114349417A (zh) * 2021-12-16 2022-04-15 江苏科技大学 一种高水胶比塑性混凝土制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303052A (ja) * 2000-04-17 2001-10-31 Sumitomo Osaka Cement Co Ltd 可塑性注入材
CN106116317A (zh) * 2016-06-30 2016-11-16 中国水利水电第五工程局有限公司 一种高塑性混凝土及控制其拌合性能的方法
CN114349417A (zh) * 2021-12-16 2022-04-15 江苏科技大学 一种高水胶比塑性混凝土制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303052A (ja) * 2000-04-17 2001-10-31 Sumitomo Osaka Cement Co Ltd 可塑性注入材
CN106116317A (zh) * 2016-06-30 2016-11-16 中国水利水电第五工程局有限公司 一种高塑性混凝土及控制其拌合性能的方法
CN114349417A (zh) * 2021-12-16 2022-04-15 江苏科技大学 一种高水胶比塑性混凝土制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"CONCRETE AND ITS PRODUCTS PROCESS SCIENCE, 1ST EDITION", 31 August 2012, ISBN: 978-7-5160-0186-8, article CHEN, LIJUN ET AL: "Steel Fiber Reinforced Concrete", pages: 252 - 254, XP009547402 *
"DESIGN CONSTRUCTION AND DESIGN OF THE UNDERGROUND DIAPHRAGM WALL, 1ST EDITION", 28 February 2001, CHINA WATER AND POWER PRESS, ISBN: 7-5084-0412-2, article CONG, AISEN: "Change and Adjustment of Slurry Performance", XP009547404 *
"INTRODUCTION TO CONSTRUCTION TECHNIQUES FOR REINFORCED CONCRETE STRUCTURES, 1ST EDITION", 31 May 2009, ISBN: 978-7-5337-4426-7, article LU, ZHEN: "Application of Slag Powders)", pages: 113 - 114, XP009547398 *
"YANGTZE RIVER THREE GORGES WATER CONSERVANCY HUB BUILDING DESIGN AND CONSTRUCTION TECHNOLOGY (B), 1ST EDITION", 31 December 2018, ISBN: 978-7-5492-5789-8, article ZHENG, SHOUREN ET AL.: "Discussion of Technical Issues on Deep Water Earth and Rock Cofferdam Weir and Weir Base Seepage Control Design", XP009547366 *
HUANG, YONGCHENG: "Design and Study on The Proportion of Mixture of Plastic Concrete Impermeable Wall of Merowe Dam, Sudan", SICHUAN WATER POWER, vol. 27, no. 02, 30 April 2008 (2008-04-30), XP009547234, ISSN: 1001-2184 *
PENG, DONGSHENG: "Plastic Concrete Construction Technology and Quality Control of Clay Core Wall Dam Impermeable Wall", WATER AND ELECTRICITY CONSTRUCTION, no. 04, 31 August 2009 (2009-08-31), XP009547233 *

Also Published As

Publication number Publication date
CN114349417A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN106517934B (zh) 一种掺碱激发剂早强超高性能混凝土及其制备方法
CN104016617B (zh) 一种混凝土强效剂及其制备方法
WO2022062493A1 (zh) 一种建筑垃圾免烧再生砖及其制备方法
CN107162535A (zh) 一种轻质高强陶粒混凝土及其制备方法
CN110818364B (zh) 一种轻质高强防水混凝土及其制备方法
CN107814515B (zh) 一种利用大掺量炉底渣制备的预拌砂浆及其制备方法
CN113831152B (zh) 一种全固废高强透水地聚合物混凝土及其制备方法
CN112723806A (zh) 一种轻质保温高强度混凝土及其制备方法
WO2023109227A1 (zh) 一种高水胶比塑性混凝土制备方法
CN107721287A (zh) 一种硅藻土改性混凝土及其制备方法
CN112851273B (zh) 一种铁尾矿砂基节能保温轻质混凝土及其制备方法、应用
CN112592131B (zh) 采用含红砖的再生细粉制作的烧结砌块专用超薄层砌筑砂浆
CN116217193B (zh) 用于岛礁的碱激发全固废海水海砂珊瑚混凝土及制备工艺
CN113149553A (zh) 一种轻质保温高强度混凝土及其制备方法
WO2024077901A1 (zh) 一种工业固废碳化固化免烧砌块及制备方法
WO2024124508A1 (zh) 一种生态型易泵高填充性超高性能混凝土及其制备方法
CN116639935A (zh) 一种无掺和料的低热水泥混凝土及其制备方法
CN113831090B (zh) 一种大流态抗渗抗冲磨水工混凝土及其制备方法
CN115745528A (zh) 用于高原地区桥梁薄壁空心墩的高性能混凝土及制备方法
CN109231876A (zh) 一种先张法预应力管桩混凝土用早强降粘型外加剂
WO2023155180A1 (zh) 混凝土用可繁殖自愈型无机内掺剂及其制备方法
CN113429146A (zh) 一种碳酸锂-埃洛石纳米管及其制备方法与应用
CN112239342A (zh) 一种水泥基复合材料及制备水泥基砂浆的方法
CN110963755A (zh) 一种关于混凝土的可调控内养护技术
CN112321211B (zh) 一种采用低碱度水泥的水泥基混凝土板材及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905980

Country of ref document: EP

Kind code of ref document: A1