WO2023109029A1 - 用于芯片冷却的流道结构及其制作方法 - Google Patents

用于芯片冷却的流道结构及其制作方法 Download PDF

Info

Publication number
WO2023109029A1
WO2023109029A1 PCT/CN2022/096794 CN2022096794W WO2023109029A1 WO 2023109029 A1 WO2023109029 A1 WO 2023109029A1 CN 2022096794 W CN2022096794 W CN 2022096794W WO 2023109029 A1 WO2023109029 A1 WO 2023109029A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
fin
fins
channel structure
flow
Prior art date
Application number
PCT/CN2022/096794
Other languages
English (en)
French (fr)
Inventor
陈钏
曹立强
周云燕
陈海英
Original Assignee
华进半导体封装先导技术研发中心有限公司
上海先方半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华进半导体封装先导技术研发中心有限公司, 上海先方半导体有限公司 filed Critical 华进半导体封装先导技术研发中心有限公司
Publication of WO2023109029A1 publication Critical patent/WO2023109029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Definitions

  • the invention relates to the technical field of integrated circuits, in particular to a flow channel structure for chip cooling and a manufacturing method thereof.
  • micro-channels with a cross-sectional shape of only tens to hundreds of microns are produced by photolithography, etching or micro-machining.
  • micro-channels The function of these micro-channels is to allow the cooling liquid to pass through the These micro-channels take away the heat generated by them, so as to use the micro-scale heat transfer performance to achieve the purpose of efficient heat dissipation.
  • the existing rectangular micro-channel structure has limited heat dissipation capability, and with the continuous increase of chip integration scale, higher heat dissipation capability is required.
  • the object of the present invention is to provide a channel structure for chip cooling and a manufacturing method thereof, so as to solve the problem of low heat dissipation capacity of the existing micro-channel structure.
  • the present invention provides a flow channel structure for chip cooling and a manufacturing method thereof, including:
  • At least one first fin arranged on the first side wall of the flow channel, the first fin extending along the first direction for guiding the cooling liquid in the flow channel along the first direction;
  • At least one second fin is arranged on the second side wall surface of the flow channel, and the second fin extends along the second direction for guiding the cooling liquid in the flow channel along the second direction, wherein the first fin and the first The two ribs intersect with each other and communicate with each other at the intersection.
  • the term "A and B intersect each other” means that A and B are not parallel to each other, that is, they form an angle greater than 0°, such as 30°, 45°, 60°, 90°, 120° , 135° and other angles.
  • the first direction intersects with the second direction, so that each first fin intersects at least one second fin, so that the fluid flows in the When the flow inside the channel flows, it flows along the extending direction of the first fin and/or the second fin, and/or turbulence and rotation occur at the intersection of the first fin and the second fin.
  • the width of the first rib perpendicular to the side wall of the flow channel is half of the width of the flow channel, and the width of the second rib perpendicular to the side wall of the flow channel is half of the width of the flow channel, so that the first rib contacting and not interfering with the sidewall of the second rib;
  • first fin and the second fin are not in contact, and the fluid can directly pass through the gap between the first fin and the second fin.
  • each of the first fins extends from the top surface of the flow channel to the bottom surface of the flow channel, and each of the second fins extends from the top surface of the flow channel Extend to the bottom surface of the runner;
  • first fins and/or the second fins do not extend to the top surface and/or the bottom surface of the flow channel.
  • the top surface of the channel and the bottom surface of the channel are provided with sealing plates, and the two ends of the first rib are respectively connected to the top surface of the channel.
  • the covering sealing plate is closely connected with the covering and sealing plate on the bottom surface of the flow channel; the two ends of the second rib are respectively in close contact with the covering and sealing plate on the top surface of the flow channel and the covering and sealing plate on the bottom surface of the flow channel.
  • the first rib and the second rib contact at the intersection without interfering with each other to form a top space and a bottom space, and the fluid When passing through the upstream side of each intersection, it is divided into top flow and bottom flow, and rejoins at the downstream side of the intersection to flow to the next intersection.
  • the space between two adjacent first fins is a fluid cavity, or the space between two adjacent second fins
  • the space is a fluid chamber, and two adjacent fluid chambers are respectively used as an inflow port and an outflow port, or the two fluid chambers at the top of the flow channel are respectively used as an inflow port and an outflow port.
  • the cross-sectional width of the channel is 0.1-2 mm
  • the cross-sectional depth of the channel is 0.1-5 mm
  • the distance between two adjacent channels is 0.1-2 mm
  • the inclination of the first fin and the second fin is 15°-75°
  • the material of the first fin and the second fin is metal or silicon.
  • the present invention also provides a method for manufacturing the above-mentioned flow channel structure for chip cooling.
  • the flow channel structure is obtained by machining or 3D printing, and the flow channel structure is obtained by bonding or welding thermal interface materials. fixed on the chip surface.
  • the present invention also provides a radiator, comprising the above-mentioned flow channel structure for chip cooling.
  • the present invention is based on the following insights of the inventors.
  • the main reason for the limited heat dissipation capacity of the existing rectangular micro-channels is that in the rectangular micro-channels, as the fluid flows, the boundary layer becomes thicker, which greatly restricts the flow rate of the micro-flow. Therefore, the heat dissipation performance of the microchannel cannot be significantly improved by only increasing the flow rate.
  • the inventors have also discovered through research that the thickening problem of the boundary layer can be greatly improved by dispersing the flow direction of the fluid in the micro-channel.
  • the first fins are distributed on the first side wall of the flow channel
  • the second fins are distributed on the second side wall of the flow channel
  • the first direction in which the first fins extend intersects with the second direction in which the second fins extend, forming The intersection is broken, when the fluid flows through the intersection, it will be broken up and diverted, and the flow direction will be re-formed, avoiding the fact that the fluid simply flows along the length of the flow channel, which will make the boundary layer thicker and take away heat
  • the present invention significantly reduces the thickening of the boundary layer by redirecting or dispersing the flow direction of the heat dissipation fluid in the microchannel, thereby improving the heat dissipation capacity.
  • the present invention breaks through the limitation of the heat dissipation capacity of the micro-channel by optimizing the structure of the micro-channel. Under the same conditions as the structural parameters and flow rate of the rectangular micro-channel, the present invention reduces the equivalent thermal resistance of the micro-channel and breaks the boundary layer , improves the heat dissipation performance, effectively solves the heat dissipation problem of high-power chips, and realizes the advantages of high packaging integration, small size, and low cost.
  • FIG. 1 is an enlarged schematic view of the flow channel structure details for chip cooling in an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the overall flow channel structure and the direction of inflow and outflow for chip cooling in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of the overall flow channel structure and inflow and outflow direction for chip cooling in another embodiment of the present invention.
  • Fig. 4 is a schematic diagram of a fluid rotating microchannel structure (radiating body) in an embodiment of the present invention.
  • the quantifiers "a” and “an” do not exclude the scene of multiple elements.
  • the object of the present invention is to provide a channel structure for chip cooling and a manufacturing method thereof, so as to solve the problem of low heat dissipation capacity of the existing micro-channel structure.
  • the present invention provides a flow channel structure for chip cooling and a manufacturing method thereof, comprising: at least one first fin arranged on the first side wall of the flow channel, and the first fin is arranged along the first side wall of the flow channel. extending in one direction for guiding the cooling liquid in the channel along the first direction; and at least one second fin arranged on the second side wall of the channel, the second rib extending along the second direction for guiding the coolant in the channel along the first direction;
  • the coolant in the channel is guided in two directions, wherein the first fin and the second fin intersect with each other and communicate with each other at the intersection.
  • the present invention provides a flow channel structure for chip cooling and a manufacturing method thereof, as shown in FIG.
  • the fins 4 extend along the first direction for guiding the cooling liquid in the flow channel along the first direction; and at least one second fin 5 is configured to be distributed on the second side wall surface 6 of the flow channel, and the second fins 5 extends along the second direction for guiding the cooling liquid in the channel along the second direction; wherein the first direction and the second direction intersect.
  • the first rib and the second rib intersect with each other and communicate with each other at the intersection.
  • the invention proposes a new fluid rotating microchannel structure.
  • the runner heat sink is in the shape of a plate, and there are multiple parallel flow channels along the width direction of the runner heat sink.
  • the fluid flows from one end of the runner to the other end to take away the heat
  • the heat of the chip under the sink, the runner heat sink and the chip can be fixed together by TIM bonding or welding, and there can be one or more of solder balls, solder joints, wiring layers and substrates under the chip;
  • the first ribs 4 and the second ribs 5 are arranged side by side in the flow channel, blocking the view from the other side of the entire flow channel, but the reality is that the first ribs 4 and the second ribs 5 are staggered, for example
  • the inclination direction of the first rib 4 is that the top surface is closer to the observer, the bottom surface is far away from the observer, and the second rib 5 is opposite, the top surface is far away from the observer, and the bottom surface is close to the observer, so " X" shape.
  • the flow channel is not completely closed between the first fin 4 and the second fin 5, but there are gaps from the top and bottom of the intersection 7, and a part of the fluid may be diverted in the
  • the front and upper part of the intersection 7 rushes to the first rib 4, and then turns and continues to flow forward along the upward view of the upper half of the second rib 5, and another part of the fluid flow may rush to the rear and lower part of the intersection 7 to the first rib 4, then turn around and continue to flow forward along the lower half of the second rib 5.
  • the fluid on the top view flows through the lower gap after turning, and the fluid on the bottom view flows through the upper gap after turning.
  • the rotating structure also increases the contact area with the fluid, which improves the heat dissipation performance of the micro-channel.
  • the first direction and the second direction intersect, so that each first fin 4 is at least connected to one second fin 5, so that when the fluid flows inside the channel, it flows along the extension direction of the first fin 4 and/or the second fin 5, and/or at the intersection of the first fin 4 and the second fin 5 7 Disturbance and rotation occur.
  • the width of the first rib 4 perpendicular to the side wall of the channel is half of the width of the channel, and the second rib
  • the width of the piece 5 perpendicular to the side wall of the flow channel is half of the width of the flow channel, so that the side walls of the first fin 4 and the second fin 5 are in contact and do not interfere with each other.
  • the width of the fins can be appropriately adjusted according to the speed of the fluid, the size of the heat dissipation power, and the difficulty of the process, so that the first fins and the second fins interfere at the intersection, and the first fins and the second fins do not block the flow or the first fin and the second fin are not in contact, and the fluid can directly pass through the gap between the first fin and the second fin.
  • the above-mentioned widths are illustrative and not intended to limit the specific solutions of the present invention.
  • the width of the fins can be appropriately adjusted according to the velocity of the fluid, the size of the heat dissipation power, and the difficulty of the process.
  • the width of the first fin 4 and the second fin 5 is smaller than the width of the flow channel, and it is sufficient not to block the flow channel, or the first fin 4 and the second fin 5 are not in contact, and a small part of the fluid flows directly from the two
  • the gaps between them pass through, and the above settings are all within the protection scope of the present invention.
  • each of the first ribs 4 extends from the top surface 2 of the channel to the bottom surface 1 of the channel, and each of the first fins 4
  • the two fins 5 extend from the top surface 2 of the flow channel to the bottom surface 1 of the flow channel, or the first fin and/or the second fin do not extend to the top surface of the flow channel and/or the bottom surface of the flow channel.
  • the top surface 2 of the channel and the bottom surface 1 of the channel have a sealing plate, and the two ends of the first rib 4 are respectively connected to the top surface 2 of the channel.
  • the sealing plate is tightly sealed with the sealing plate on the bottom surface 1 of the flow channel; the two ends of the second rib 5 are respectively in close contact with the sealing plate on the top surface 2 of the flow channel and the sealing plate on the bottom surface 1 of the flow channel. combine.
  • the above heights of the ribs are illustrative and not intended to limit the specific solutions of the present invention.
  • the heights of the first fins 4 and the second fins 5 can be appropriately adjusted according to the speed of the fluid, the size of the heat dissipation power, and the difficulty of the process. As long as they are not higher than the height of the flow channel, the flow channel cannot be closed. Can.
  • the first rib 4 and the second rib 5 contact at the intersection 7 without interfering with each other, forming The top surface gap and the bottom surface gap, when the fluid passes through the upstream side of each intersection 7, it is divided into top surface flow and bottom surface flow, and meets again at the back flow side of the intersection 7, and flows to the next intersection 7.
  • the space between two adjacent first fins 4 is a fluid cavity 3, or two adjacent
  • the space between the second fins 5 is a fluid chamber 3, and two adjacent fluid chambers 3 are respectively used as an inflow port and an outflow port (as shown in Figure 2), or the topmost two fluid chambers of the flow channel.
  • the cavities 3 are respectively used as an inflow port and an outflow port (as shown in FIG. 3 ).
  • the cross-sectional width of the channel can be 0.1-2 mm, and the cross-sectional depth of the channel can be 0.1-5 mm.
  • the distance between adjacent flow channels can be 0.1-2mm, the inclination of the first fin 4 and the second fin 5 can be 15°-75°, and the material of the first fin 4 and the second fin 5 is
  • the internal fins can be two intersecting fins, or only one fin.
  • Embodiments of the present invention also provide a method for manufacturing a flow channel structure for chip cooling as described above.
  • the flow channel structure is obtained by machining or 3D printing, and the flow channel structure is bonded or welded by a thermal interface material.
  • the channel structure is fixed on the surface of the chip.
  • An embodiment of the present invention also provides a radiator, as shown in FIG. 4 , which includes the flow channel structure for chip cooling as described in FIG. 1 .
  • the micro-fluid channel (heat sink) proposed by the present invention can be obtained by machining or 3D printing, and fixed on the surface of the chip by thermal interface material bonding or welding or other methods, and is easy to manufacture and assemble. This technology is applicable to the heat dissipation of various microsystem packages.
  • Figure 4 is a schematic diagram of the cooling scheme of the flip chip.
  • the flow channel heat sink is attached to the surface of the chip through the TIM layer material to take away heat.
  • Fig. 2 is a schematic diagram of the structure of a fluid rotating microchannel, the lines with downward arrows represent fluid inflow, and the lines with upward arrows represent fluid outflow.
  • the schematic diagram shows that on the basis of a rectangular flow channel, ribs with cross directions are distributed on the walls on both sides of the flow channel. The partial enlargement is shown in Figure 1. When the fluid encounters the obliquely distributed fins, the flow direction is changed, resulting in rotation.
  • Figure 1 is a schematic diagram of a multi-manifold form
  • Figure 3 is a schematic diagram of a one-inlet-one-outlet manifold form. Through the manifold, the flow resistance can be further reduced and the heat dissipation capacity can be enhanced.
  • the first fins 4 are distributed on the first side wall surface of the flow channel
  • the second fins 5 are distributed on the second side wall surface of the flow channel
  • the first The first direction in which the fins 4 extend and the second direction in which the second fins 5 extend intersect to form an intersection 7.
  • the present invention breaks through the limitation of the heat dissipation capacity of the micro-channel by optimizing the structure of the micro-channel.
  • the present invention reduces the equivalent thermal resistance of the micro-channel and breaks the boundary layer , improve the heat dissipation performance, and effectively solve the heat dissipation problem of high-power chips.
  • the above-mentioned embodiments have described in detail the different configurations of the flow channel structure and its manufacturing method for chip cooling.
  • the present invention includes but is not limited to the configurations listed in the above-mentioned implementation.
  • the contents transformed on the basis of the configurations provided by the examples all belong to the protection scope of the present invention.
  • Those skilled in the art can draw inferences based on the content of the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明提供了一种用于芯片冷却的流道结构及其制作方法,包括:至少一个第一肋片,布置于流道第一侧壁面,所述第一肋片沿第一方向延伸以用于沿第一方向引导流道中的冷却液;以及至少一个第二肋片,布置于流道第二侧壁面,所述第二肋片沿第二方向延伸以用于沿第二方向引导流道中的冷却液,其中所述第一肋片与第二肋片彼此相交并在相交处彼此连通。

Description

用于芯片冷却的流道结构及其制作方法 技术领域
本发明涉及集成电路技术领域,特别涉及一种用于芯片冷却的流道结构及其制作方法。
背景技术
随着半导体工艺节点的演变,单位面积的晶体管数量越来越多,芯片的功能和计算能力越来越强,功率密度和发热量也越来越大;同时,随着系统级封装技术的发展,集成度越来越高,对封装产品的轻、薄、小型化也提出了更高的要求,单位面积的功耗也越来越大,使得散热问题更加突出。基于微流道的散热结构,用光刻、蚀刻或微加工的方式制作出截面形状仅有几十到上百微米的微流道,其中这些微流道的作用是,冷却液通过芯片顶部的这些微流道带走其产生的热量,以利用微尺度的换热性能达到高效散热的目的。现有的矩形微流道结构的散热能力有限,而随着芯片的集成规模不断增大,需要更高的散热能力。
发明内容
本发明的目的在于提供一种用于芯片冷却的流道结构及其制作方法,以解决现有的微流道结构散热能力不高的问题。
为解决上述技术问题,本发明提供一种用于芯片冷却的流道结构及其制作方法,包括:
至少一个第一肋片,布置于流道第一侧壁面,所述第一肋片沿第一方向延伸以用于沿第一方向引导流道中的冷却液;以及
至少一个第二肋片,布置于流道第二侧壁面,所述第二肋片沿第二方向延伸以用于沿第二方向引导流道中的冷却液,其中所述第一肋片与第二肋片彼此相交并在相交处彼此连通。在本发明中,术语“A与B彼此相交” 是指,A和B彼此不平行,即二者之间成大于0°的角度、例如30°、45°、60°、90°、120°、135°等角度。
可选的,在所述的用于芯片冷却的流道结构中,所述第一方向和第二方向交叉,以使每个第一肋片至少与一个第二肋片相交,以使流体在流道内部流动时,沿第一肋片和/或第二肋片的延伸方向流动,和/或在第一肋片和第二肋片的相交处出现扰动和旋转。
可选的,在所述的用于芯片冷却的流道结构中,
所述第一肋片垂直于流道侧壁面的宽度为流道宽度的一半,所述第二肋片垂直于流道侧壁面的宽度为流道宽度的一半,以使所述第一肋片和所述第二肋片的侧壁相接触且不相干涉;
或根据流体的速度、散热功率的大小、工艺难易度调整肋片的宽度,使得第一肋片和第二肋片在相交处干涉,且第一肋片和第二肋片不封堵流道;
或第一肋片和第二肋片不接触,流体能够直接从第一肋片和第二肋片之间的空隙穿过。
可选的,在所述的用于芯片冷却的流道结构中,每个所述第一肋片由流道顶面延伸至流道底面,每个所述第二肋片由流道顶面延伸至流道底面;
或第一肋片和/或第二肋片不延伸至流道顶面和/或流道底面。
可选的,在所述的用于芯片冷却的流道结构中,所述流道顶面和流道底面具有盖合密封板,所述第一肋片的两端分别与流道顶面的盖合密封板和流道底面的盖合密封板密合;所述第二肋片的两端分别与流道顶面的盖合密封板和流道底面的盖合密封板密合。
可选的,在所述的用于芯片冷却的流道结构中,流道结构中通过第一肋片和第二肋片在相交处接触且不相互干涉,形成顶面空隙和底面空隙,流体经过每个相交处的迎流侧时被分流为顶面流和底面流,并在该相交处背流侧再次交汇,流向下一个相交处。
可选的,在所述的用于芯片冷却的流道结构中,相邻的两个第一肋片之间的空间为一个流体容腔,或相邻的两个第二肋片之间的空间为一个流体容腔,两个相邻的流体容腔分别作为流入口和流出口,或流道的最顶端 的两个流体容腔分别作为流入口和流出口。
可选的,在所述的用于芯片冷却的流道结构中,流道截面宽为0.1~2mm,流道截面深为0.1~5mm,两个相邻流道之间的间距为0.1~2mm,第一肋片和第二肋片的倾斜度为15°~75°,第一肋片和第二肋片的材料为金属或硅。
本发明还提供一种如上所述的用于芯片冷却的流道结构的制作方法,通过机械加工或3D打印的方式获取该流道结构,通过热界面材料粘接或焊接方式将该流道结构固定在芯片表面。
本发明还提供一种散热体,包括如上所述的用于芯片冷却的流道结构。
本发明基于发明人的如下洞察,现有矩形截面的微流道的散热能力有限的主要原因在于,在矩形微流道中,随着流体的流动,边界层越来越厚,大大限制了微流道的散热能力,因此仅仅通过提高流速无法给微流道的散热性能带来明显的改善。本发明人通过研究同时发现,通过分散微流道中的流体的流向可以极大改善边界层的增厚问题,具体方式为,在本发明提供的用于芯片冷却的流道结构及其制作方法中,通过第一肋片分布于流道第一侧壁面,第二肋片分布于流道第二侧壁面,第一肋片延伸的第一方向和第二肋片延伸的第二方向相交,形成了相交处,流体流经相交处的时候会被打散分流,重新形成流动方向,避免了流体仅仅是简单地始终沿流道长度方向流过,而这会使得边界层较厚,带走热量的能力较弱,也就是说,本发明通过重定向或分散微流道中散热流体的流向,显著降低了边界层的增厚,从而提高散热能力。本发明通过优化微流道的结构,突破微流道散热能力的限制,与矩形微流道结构参数和流速相同的情况下,本发明降低了微流道的等效热阻,打破了边界层,提高了散热性能,有效解决了大功率芯片的散热问题,同时实现了封装集成度高、体积小、成本低等优点。
附图说明
图1是本发明一实施例中的用于芯片冷却的流道结构细节放大示意图;
图2是本发明一实施例中的用于芯片冷却的流道结构整体及流入流出方向示意图;
图3是本发明另一实施例中的用于芯片冷却的流道结构整体及流入流出方向示意图;
图4是本发明一实施例中的流体旋转型微流道结构(散热体)示意图;
图中所示:1-流道底面;2-流道顶面;3-流体容腔;4-第一肋片;5-第二肋片;6-第二侧壁面;7-相交处。
具体实施方式
下面结合具体实施方式参考附图进一步阐述本发明。
应当指出,各附图中的各组件可能为了图解说明而被夸大地示出,而不一定是比例正确的。在各附图中,给相同或功能相同的组件配备了相同的附图标记。
在本发明中,除非特别指出,“布置在…上”、“布置在…上方”以及“布置在…之上”并未排除二者之间存在中间物的情况。此外,“布置在…上或上方”仅仅表示两个部件之间的相对位置关系,而在一定情况下、如在颠倒产品方向后,也可以转换为“布置在…下或下方”,反之亦然。
在本发明中,各实施例仅仅旨在说明本发明的方案,而不应被理解为限制性的。
在本发明中,除非特别指出,量词“一个”、“一”并未排除多个元素的场景。
在此还应当指出,在本发明的实施例中,为清楚、简单起见,可能示出了仅仅一部分部件或组件,但是本领域的普通技术人员能够理解,在本发明的教导下,可根据具体场景需要添加所需的部件或组件。另外,除非另行说明,本发明的不同实施例中的特征可以相互组合。例如,可以用第二实施例中的某特征替换第一实施例中相对应或功能相同或相似的特征,所得到的实施例同样落入本申请的公开范围或记载范围。
在此还应当指出,在本发明的范围内,“相同”、“相等”、“等于”等措辞并不意味着二者数值绝对相等,而是允许一定的合理误差,也就是说,所述措辞也涵盖了“基本上相同”、“基本上相等”、“基本上等于”。以此类推,在本发明中,表方向的术语“垂直于”、“平行于”等等同样涵盖了“基 本上垂直于”、“基本上平行于”的含义。
另外,本发明的各方法的步骤的编号并未限定所述方法步骤的执行顺序。除非特别指出,各方法步骤可以以不同顺序执行。
以下结合附图和具体实施例对本发明提出的用于芯片冷却的流道结构及其制作方法作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的目的在于提供一种用于芯片冷却的流道结构及其制作方法,以解决现有的微流道结构散热能力不高的问题。
为实现上述目的,本发明提供了一种用于芯片冷却的流道结构及其制作方法,包括:至少一个第一肋片,布置于流道第一侧壁面,所述第一肋片沿第一方向延伸以用于沿第一方向引导流道中的冷却液;以及至少一个第二肋片,布置于流道第二侧壁面,所述第二肋片沿第二方向延伸以用于沿第二方向引导流道中的冷却液,其中所述第一肋片与第二肋片彼此相交并在相交处彼此连通。
本发明提供一种用于芯片冷却的流道结构及其制作方法,如图1所示,包括:至少一个第一肋片4,被配置为分布于流道第一侧壁面,所述第一肋片4沿第一方向延伸以用于沿第一方向引导流道中的冷却液;以及至少一个第二肋片5,被配置为分布于流道第二侧壁面6,所述第二肋片5沿第二方向延伸以用于沿第二方向引导流道中的冷却液;其中所述第一方向和第二方向相交。其中所述第一肋片与第二肋片彼此相交并在相交处彼此连通。
本发明提出了一种新的流体旋转型微流道结构。如图2、4所示,流道热沉为一块板状,沿流道热沉的宽度方向具有多个相互平行的流道,流体从流道的一端流向另一端,以带走流道热沉下方的芯片的热量,流道热沉与芯片之间可以通过TIM贴合或焊接固定在一起,芯片下方还可以具有焊球、焊点、布线层和基板中的一种或几种;在流道两侧的壁面(第一侧壁面和第二侧壁面)上分布着方向交叉的肋片(第一肋片4和第二肋片5),将流体热沉沿宽度方向作剖面,暴露出一个流道的整体,则会看到第一肋 片4和第二肋片5呈“X”形,将流体热沉沿长度方向作剖面,暴露出所有流道的截面,则会看到第一肋片4和第二肋片5并排在流道内,将整个流道的另一侧视线遮挡住,但真实情况是,第一肋片4和第二肋片5是交错的,例如第一肋片4的倾斜方向为顶面更靠近观察者,底面远离观测者,第二肋片5相反,顶面远离观测者,底面靠近观测者,因此才会在宽度方向的剖面上看到“X”形。
举例来说,如图1所示,第一肋片4和第二肋片5之间没有完全封闭流道,而是从相交处7的上方和下方分别具有空隙,流体的一部分分流可能会在相交处7的前上方冲到第一肋片4上,然后转弯沿第二肋片5的上半部分的仰视面继续向前流,流体的另一部分分流可能会在相交处7的后下方冲到第一肋片4上,然后转弯沿第二肋片5的下半部分的俯视面继续向前流,换言之,流体的一部分冲撞到第一肋片4的俯视面,流体的另一部分冲撞到第二肋片5的仰视面,到俯视面的流体转弯后从下方的空隙流过,到仰视面的流体转弯后从上方的空隙流过。以上所述的方向、部件均为示例性说明,不作为限制本发明的具体方案的特征。
综上所述,流体在内部流动时,会顺着肋片出现扰动和旋转,使得流体热边界层打破,流道上下液体进行交换融合。另外,旋转型结构相比矩形流道还增加了和流体的接触面积,提升了微流道的散热性能。
在本发明的一个实施例中,在所述的用于芯片冷却的流道结构中,所述第一方向和第二方向交叉,以使每个第一肋片4至少与一个第二肋片5相交,以使流体在流道内部流动时,沿第一肋片4和/或第二肋片5的延伸方向流动,和/或在第一肋片4和第二肋片5的相交处7出现扰动和旋转。
在本发明的一个实施例中,在所述的用于芯片冷却的流道结构中,所述第一肋片4垂直于流道侧壁面的宽度为流道宽度的一半,所述第二肋片5垂直于流道侧壁面的宽度为流道宽度的一半,以使所述第一肋片4和所述第二肋片5的侧壁相接触且不相干涉。或根据流体的速度、散热功率的大小、工艺难易度调整肋片的宽度,使得第一肋片和第二肋片在相交处干涉,且第一肋片和第二肋片不封堵流道;或第一肋片和第二肋片不接触,流体能够直接从第一肋片和第二肋片之间的空隙穿过。以上所述的宽度为 示例性说明,不作为限制本发明的具体方案的特征。事实上,可以根据流体的速度、散热功率的大小、工艺难易度适当性的调整肋片的宽度,例如,第一肋片4和第二肋片5在相交处7有微量的干涉,只要第一肋片4和第二肋片5的宽度小于流道宽度、不封堵流道即可,或第一肋片4和第二肋片5没有相接触,有小部分的流体直接从二者之间的空隙穿过,以上设置均在本发明的保护范围之内。
在本发明的一个实施例中,在所述的用于芯片冷却的流道结构中,每个所述第一肋片4由流道顶面2延伸至流道底面1,每个所述第二肋片5由流道顶面2延伸至流道底面1,或第一肋片和/或第二肋片不延伸至流道顶面和/或流道底面。在所述的用于芯片冷却的流道结构中,所述流道顶面2和流道底面1具有盖合密封板,所述第一肋片4的两端分别与流道顶面2的盖合密封板和流道底面1的盖合密封板密合;所述第二肋片5的两端分别与流道顶面2的盖合密封板和流道底面1的盖合密封板密合。以上肋片的高度是示例性说明,不作为限制本发明的具体方案的特征。事实上,可以根据流体的速度、散热功率的大小、工艺难易度适当性的调整第一肋片4和第二肋片5的高度,只要不高于流道高度,造成无法封闭流道即可。
在本发明的一个实施例中,在所述的用于芯片冷却的流道结构中,流道结构中通过第一肋片4和第二肋片5在相交处7接触且不相互干涉,形成顶面空隙和底面空隙,流体经过每个相交处7的迎流侧时被分流为顶面流和底面流,并在该相交处7背流侧再次交汇,流向下一个相交处7。
在本发明的一个实施例中,在所述的用于芯片冷却的流道结构中,相邻的两个第一肋片4之间的空间为一个流体容腔3,或相邻的两个第二肋片5之间的空间为一个流体容腔3,两个相邻的流体容腔3分别作为流入口和流出口(如图2所示),或流道的最顶端的两个流体容腔3分别作为流入口和流出口(如图3所示)。
在本发明的一个实施例中,在所述的用于芯片冷却的流道结构中,作为具体实施例,流道截面宽可为0.1~2mm,流道截面深可为0.1~5mm,两个相邻流道之间的间距可为0.1~2mm,第一肋片4和第二肋片5的倾斜度可为15°~75°,第一肋片4和第二肋片5的材料为金属或硅等导热良好 的材料,内部肋片可以是两片交叉,也可以是只有一块肋片。以上尺寸、角度和材料是示例性说明,不作为限制本发明的具体方案的特征。事实上,可以根据流体的速度、散热功率的大小、工艺难易度适当性的调整以上方案。以上设置均在本发明的保护范围之内。
本发明的实施例还提供一种如上所述的用于芯片冷却的流道结构的制作方法,通过机械加工或3D打印的方式获取该流道结构,通过热界面材料粘接或焊接方式将该流道结构固定在芯片表面。本发明的实施例还提供一种散热体,如图4所示,包括如图1所述的用于芯片冷却的流道结构。本发明提出的微流道(散热体)可通过机械加工或3D打印的方式获取,通过热界面材料粘接或焊接或其它方式固定在芯片表面,易于制造和组装。本技术适用于多种微系统封装的散热。
图4为倒装芯片的冷却方案示意图,流道热沉通过TIM层材料贴于芯片表面带走热量。图2是流体旋转型微流道结构示意图,箭头向下的线表示流体流入,箭头向上的线表示流体流出。示意图展示在矩形流道的基础上,在流道两侧的壁面上分布着方向交叉的肋片,局部放大如图1所示。流体在遇到倾斜分布的肋片时,流向改变,产生旋转。旋转的流体在类似于翅片结构打破边界层的同时,上下流体也出现位置的改变,使得上面温度低的流体进入流道底面1,更进一步增强散热能力。图1所示是多歧管形式的示意图,图3是一进一出歧管形式的示意图,通过歧管,可以进一步降低流阻,增强散热能力。
在本发明提供的用于芯片冷却的流道结构及其制作方法中,通过第一肋片4分布于流道第一侧壁面,第二肋片5分布于流道第二侧壁面,第一肋片4延伸的第一方向和第二肋片5延伸的第二方向交叉,形成了相交处7,流体流经相交处7的时候会被打散分流,重新形成流动方向,避免流体仅仅是简单的始终沿流道长度方向流过,边界层较厚,带走热量的能力较弱。本发明通过优化微流道的结构,突破微流道散热能力的限制,与矩形微流道结构参数和流速相同的情况下,本发明降低了微流道的等效热阻,打破了边界层,提高了散热性能,有效解决了大功率芯片的散热问题。
综上,上述实施例对用于芯片冷却的流道结构及其制作方法的不同构 型进行了详细说明,当然,本发明包括但不局限于上述实施中所列举的构型,任何在上述实施例提供的构型基础上进行变换的内容,均属于本发明所保护的范围。本领域技术人员可以根据上述实施例的内容举一反三。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (10)

  1. 一种用于芯片冷却的流道结构,其特征在于,包括:
    至少一个第一肋片,布置于流道第一侧壁面,所述第一肋片沿第一方向延伸以用于沿第一方向引导流道中的冷却液;以及
    至少一个第二肋片,布置于流道第二侧壁面,所述第二肋片沿第二方向延伸以用于沿第二方向引导流道中的冷却液,其中所述第一肋片与第二肋片彼此相交并在相交处彼此连通。
  2. 如权利要求1所述的用于芯片冷却的流道结构,其特征在于,所述第一方向和第二方向交叉,以使每个第一肋片至少与一个第二肋片相交,以使流体在流道内部流动时,沿第一肋片和/或第二肋片的延伸方向流动,和/或在第一肋片和第二肋片的相交处出现扰动和旋转。
  3. 如权利要求2所述的用于芯片冷却的流道结构,其特征在于,所述第一肋片垂直于流道侧壁面的宽度为流道宽度的一半,所述第二肋片垂直于流道侧壁面的宽度为流道宽度的一半,以使所述第一肋片和所述第二肋片的侧壁相接触且不相干涉;
    或根据流体的速度、散热功率的大小、工艺难易度调整肋片的宽度,使得第一肋片和第二肋片在相交处干涉,且第一肋片和第二肋片不封堵流道;
    或第一肋片和第二肋片不接触,流体能够直接从第一肋片和第二肋片之间的空隙穿过。
  4. 如权利要求3所述的用于芯片冷却的流道结构,其特征在于,每个所述第一肋片由流道顶面延伸至流道底面,每个所述第二肋片由流道顶面延伸至流道底面;
    或第一肋片和/或第二肋片不延伸至流道顶面和/或流道底面。
  5. 如权利要求4所述的用于芯片冷却的流道结构,其特征在于,所述流道顶面和流道底面具有盖合密封板,所述第一肋片的两端分别与流道顶面的盖合密封板和流道底面的盖合密封板密合;所述第二肋片的两端分别与流道顶面的盖合密封板和流道底面的盖合密封板密合。
  6. 如权利要求4所述的用于芯片冷却的流道结构,其特征在于,流道 结构中通过第一肋片和第二肋片在相交处接触且不相互干涉,形成顶面空隙和底面空隙,流体经过每个相交处的迎流侧时被分流为顶面流和底面流,并在该相交处背流侧再次交汇,流向下一个相交处。
  7. 如权利要求1所述的用于芯片冷却的流道结构,其特征在于,相邻的两个第一肋片之间的空间为一个流体容腔,或相邻的两个第二肋片之间的空间为一个流体容腔,两个相邻的流体容腔分别作为流入口和流出口,或流道的最顶端的两个流体容腔分别作为流入口和流出口。
  8. 如权利要求1所述的用于芯片冷却的流道结构,其特征在于,流道截面宽为0.1~2mm,流道截面深为0.1~5mm,两个相邻流道之间的间距为0.1~2mm,第一肋片和第二肋片的倾斜度为15°~75°,第一肋片和第二肋片的材料为金属或硅。
  9. 一种如权利要求1所述的用于芯片冷却的流道结构的制作方法,其特征在于,通过机械加工或3D打印的方式获取该流道结构,通过热界面材料粘接或焊接方式将该流道结构固定在芯片表面。
  10. 一种散热体,其特征在于,包括如权利要求1所述的用于芯片冷却的流道结构。
PCT/CN2022/096794 2021-12-17 2022-06-02 用于芯片冷却的流道结构及其制作方法 WO2023109029A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111548477.X 2021-12-17
CN202111548477.XA CN114245583B (zh) 2021-12-17 2021-12-17 用于芯片冷却的流道结构及其制作方法

Publications (1)

Publication Number Publication Date
WO2023109029A1 true WO2023109029A1 (zh) 2023-06-22

Family

ID=80757750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096794 WO2023109029A1 (zh) 2021-12-17 2022-06-02 用于芯片冷却的流道结构及其制作方法

Country Status (2)

Country Link
CN (1) CN114245583B (zh)
WO (1) WO2023109029A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114245583B (zh) * 2021-12-17 2023-04-11 华进半导体封装先导技术研发中心有限公司 用于芯片冷却的流道结构及其制作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395212A (en) * 1991-07-04 1995-03-07 Hitachi, Ltd. Member having internal cooling passage
US6290462B1 (en) * 1998-03-26 2001-09-18 Mitsubishi Heavy Industries, Ltd. Gas turbine cooled blade
KR20170105298A (ko) * 2016-03-09 2017-09-19 신상용 마이크로채널 히트싱크
CN108336045A (zh) * 2018-02-07 2018-07-27 电子科技大学 采用3d打印的仿机翼截面散热肋构成的微通道散热系统
CN207834280U (zh) * 2018-02-02 2018-09-07 郑州大学 一种新型微通道热沉结构
CN110828401A (zh) * 2019-11-20 2020-02-21 中国电子科技集团公司第三十八研究所 一种超高热流密度微通道热沉冷板
CN112151478A (zh) * 2020-08-31 2020-12-29 中国石油大学(华东) 一种微流道散热器及其制备方法与应用
CN112708400A (zh) * 2020-12-17 2021-04-27 上海先方半导体有限公司 一种热界面材料及其制造方法
CN114245583A (zh) * 2021-12-17 2022-03-25 华进半导体封装先导技术研发中心有限公司 用于芯片冷却的流道结构及其制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102548367B (zh) * 2012-02-07 2014-07-02 山东大学 含双梯形截面肋片的电力电子集成模块微小通道液冷基板
CN112071813A (zh) * 2020-08-07 2020-12-11 深圳基本半导体有限公司 一种集成电路芯片散热结构

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395212A (en) * 1991-07-04 1995-03-07 Hitachi, Ltd. Member having internal cooling passage
US6290462B1 (en) * 1998-03-26 2001-09-18 Mitsubishi Heavy Industries, Ltd. Gas turbine cooled blade
KR20170105298A (ko) * 2016-03-09 2017-09-19 신상용 마이크로채널 히트싱크
CN207834280U (zh) * 2018-02-02 2018-09-07 郑州大学 一种新型微通道热沉结构
CN108336045A (zh) * 2018-02-07 2018-07-27 电子科技大学 采用3d打印的仿机翼截面散热肋构成的微通道散热系统
CN110828401A (zh) * 2019-11-20 2020-02-21 中国电子科技集团公司第三十八研究所 一种超高热流密度微通道热沉冷板
CN112151478A (zh) * 2020-08-31 2020-12-29 中国石油大学(华东) 一种微流道散热器及其制备方法与应用
CN112708400A (zh) * 2020-12-17 2021-04-27 上海先方半导体有限公司 一种热界面材料及其制造方法
CN114245583A (zh) * 2021-12-17 2022-03-25 华进半导体封装先导技术研发中心有限公司 用于芯片冷却的流道结构及其制作方法

Also Published As

Publication number Publication date
CN114245583B (zh) 2023-04-11
CN114245583A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
JP6341285B2 (ja) 半導体装置
TWI482244B (zh) 熱交換器以及半導體模組
US9472489B2 (en) Heat exchanger
US7414843B2 (en) Method and apparatus for a layered thermal management arrangement
JP4586772B2 (ja) 冷却構造及び冷却構造の製造方法
CN104465562B (zh) 一种链式交错型微通道结构
JP6093186B2 (ja) 半導体モジュール用冷却器
JP6951786B2 (ja) ヒートシンク
WO2020248905A1 (zh) 一种晶圆级三维堆叠微流道散热结构及其制造方法
WO2023109029A1 (zh) 用于芯片冷却的流道结构及其制作方法
JP2017143171A (ja) 冷却器、流路ユニット
US7992625B1 (en) Fluid-operated heat transfer device
JP4721412B2 (ja) 冷却器およびその製造方法
CN104112736B (zh) 带有层间复杂微通道流体冷却的3d‑ic
CN115050715A (zh) 一种基于合成双射流激励器的液冷散热装置
CN102620592B (zh) 应用于半导体激光器的液体制冷器的制备方法及其制冷装置
JP7195542B2 (ja) 冷却器、半導体モジュール
JP5715352B2 (ja) ヒートシンク
JP3164946U (ja) 熱交換器構造
CN213366584U (zh) 基于阵列微喷结构的一体化散热封装结构
JP7160216B2 (ja) 半導体装置
JP5970838B2 (ja) 半導体モジュールの冷却構造
CN211125625U (zh) 液冷散热组件、液冷散热装置及电力电子设备
JP2005166789A (ja) 放熱器
CN112040723B (zh) 一体化微型散热器及散热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905795

Country of ref document: EP

Kind code of ref document: A1