CN213366584U - 基于阵列微喷结构的一体化散热封装结构 - Google Patents

基于阵列微喷结构的一体化散热封装结构 Download PDF

Info

Publication number
CN213366584U
CN213366584U CN202022065073.2U CN202022065073U CN213366584U CN 213366584 U CN213366584 U CN 213366584U CN 202022065073 U CN202022065073 U CN 202022065073U CN 213366584 U CN213366584 U CN 213366584U
Authority
CN
China
Prior art keywords
channel
micro
input
adapter plate
horizontal parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202022065073.2U
Other languages
English (en)
Inventor
马盛林
练婷婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202022065073.2U priority Critical patent/CN213366584U/zh
Application granted granted Critical
Publication of CN213366584U publication Critical patent/CN213366584U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本实用新型公开了一种基于阵列微喷结构的一体化散热封装结构,包括CPU、转接板和壳体,转接板装配于壳体内,CPU设于转接板的封装区之上并与转接板封闭连接;转接板设有第一输入微流道、第二输入微流道、第三输入微流道和输出微流道,转接板的封装区内设有若干水平平行槽道,水平平行槽道的两端分别与第一输入微流道和输出微流道导通,水平平行槽道之内设有垂直阵列喷嘴,垂直阵列喷嘴于垂直方向上与第二输入微流道和第三输入微流道导通。本实用新型通过于转接板上同时设置平行直通式槽道与垂直阵列微喷结构实现扰流,有效提高散热能力的同时降低转接板与CPU的键合工艺难度,提高CPU的机械强度。

Description

基于阵列微喷结构的一体化散热封装结构
技术领域
本实用新型涉及微电子封装领域,更具体的涉及一种基于阵列微喷结构的一体化散热封装结构。
背景技术
随着信息时代的不断更迭,半导体行业的发展取得了显著的进展,面对日益增加的高性能和高集成度的需求,晶体管的不断小型化伴随着热流密度的急剧上升。高功率CPU作为现代计算机的核心部件,具有面积大、热流密度大的特点,若CPU的运行温度不能及时降低,其性能将大幅下降。当前已有的冷却方式有风冷散热,热管散热以及一体式水冷散热等。然而随着高功率CPU小型集成化发展,热流密度不断升高,散热问题依然成为高功率CPU应用发展亟需解决的问题。
为了满足高功率CPU的散热需求,微流道散热技术作为一种主动散热技术,具有极高的散热能力。1981年,美国斯坦福大学提出平行直通式硅基微流道散热结构,展示了790W/cm2的散热能力,最优热阻值为0.09℃/W。2011年,美国佐治亚理工学院提出了一种集成交错圆柱扰流式微通道结构的三维集成系统概念,实现单层或多层微流道分层散热。在流速为70mL/min条件下,可以使100W/cm2功率密度的测试芯片的温度降低至47.9℃。2017年,IMEC针对高性能应用,引入了一种基于低成本制造技术的新型3D形状的聚合物多喷嘴冲击冷却器,旨在直接冷却高性能芯片或芯片堆叠的背面。使用PVC机械加工制造了直径为450μm的4×4阵列射流冲击冷却器,并将其与测试芯片封装进行实验表征。结果表明,对于600mL/min的流量,所需的泵浦功率仅为0.4W,其热阻非常低,为0.25K/W,并且整个芯片表面具有良好的温度均匀性。
上述方案中,平行直通式微流道具有结构简单,流阻小,易于装配实现但散热效率低等特点。交错圆柱扰流式微通道散热效率高,但其流阻较大,对封装要求高,若采用开放的扰流柱式微流道与高功率CPU键合,键合工艺难度高。采用阵列微喷结构实现冷却的方法由于没有热界面材料,因此散热效率高,可使冷却表面温度分布均匀,但该结构流阻大。目标冷却芯片与阵列微喷结构的散热器键合暴露出的空腔结构,由于冷却工质的垂直喷射,存在应力变形问题,机械结构强度面临风险大,可能导致高功率CPU性能退化与可靠性下降。
实用新型内容
本实用新型的目的在于克服现有技术存在的不足,提供一种基于阵列微喷结构的一体化散热封装结构。
为了实现以上目的,本实用新型的技术方案为:
一种基于阵列微喷结构的一体化散热封装结构,包括CPU、转接板和壳体,所述转接板装配于所述壳体内,所述转接板的上表面具有封装区,所述CPU设于所述封装区之上并与所述转接板封闭连接;所述转接板的体内设有分别沿垂直方向延伸的第一输入微流道、第二输入微流道、第三输入微流道和输出微流道,所述转接板的封装区内设有第一导流结构和若干水平平行槽道,所述水平平行槽道的两端分别通过所述第一导流结构与所述第一输入微流道和所述输出微流道导通,所述水平平行槽道之内设有垂直阵列喷嘴,所述垂直阵列喷嘴于垂直方向上与所述第二输入微流道和第三输入微流道导通;所述壳体设有分别与所述第一输入微流道、第二输入微流道、第三输入微流道和输出微流道导通的流道。
可选的,所述第一输入微流道于所述转接板的上表面设有第一出口,于所述转接板的下表面设有第一入口;所述输出微流道于所述转接板的上表面设有输出入口,于所述转接板的下表面设有输出出口;所述水平平行槽道的两端分别通过所述第一导流结构与所述第一出口和输出入口导通。
可选的,所述转接板的内部还设有第二导流结构和若干水平平行微通道;所述第二输入微通道和第三输入微通道分别于所述转接板的内部设有第二出口和第三出口、于所述转接板的下表面设有第二入口和第三入口;所述水平平行微通道的两端分别通过所述第二导流结构与所述第二出口和第三出口导通;所述垂直阵列喷嘴于垂直方向上与所述水平平行微通道导通。
可选的,所述水平平行微通道和所述水平平行槽道互相垂直设置。
可选的,所述垂直阵列喷嘴的顶部为出水口,所述出水口高于所述水平平行槽道的底部。
可选的,所述垂直阵列喷嘴的出水口的尺寸为30-100微米。
可选的,所述第一输入微流道、第二输入微流道、第三输入微流道和输出微流道的口径分别由上至下阶梯式渐次扩大,且于阶梯变化处向所述封装区的外侧偏移。
可选的,所述CPU背面和所述转接板的封装区之间通过图形化粘结密封层连接,并闭合所述第一输入微通道、输出微通道、第一导流结构和水平平行槽道形成封闭的流道。
本实用新型的有益效果为:
1)转接板上表面设置平行直通式微流道与高功率CPU背面衬底对准键合,降低了垂直喷射流体对高功率CPU的力学冲击,提高了高功率CPU与转接板键合的机械强度;
2)转接板上表面同时设置平行直通式微流道与垂直喷嘴实现扰流,结合水平平行槽道流阻小,微喷及扰流散热效率高的优点,使形成的结构在流阻及散热效率方面达到最优;
3)转接板上表面设置的垂直喷嘴壁面高于水平平行槽道底面,避免水平流向的液体直接灌入垂直喷嘴,降低射流的性能的同时简化结构,便于加工。
4)由转接板与壳体构成的一体式水冷散热结构可直接封装至高功率CPU背面,便于商业化。
附图说明
图1是实施例的一种基于阵列微喷结构的一体化散热封装结构的整体结构示意图;
图2是转接板的结构示意图;
图3是图2和图1中沿a-a’、b-b’、c-c’、d-d’方向上的俯视截面图;
图4是转接板与壳体流道连接关系的俯视示意图;
图5是转接板的制作工艺示意图。
具体实施方式
以下结合附图和具体实施例对本实用新型做进一步解释。本实用新型的各附图仅为示意以更容易了解本实用新型,其具体比例可依照设计需求进行调整。文中所描述的图形中相对元件的上下关系以及正面/背面的定义,在本领域技术人员应能理解是指构件的相对位置而言,因此皆可以翻转而呈现相同的构件,此皆应同属本说明书所揭露的范围。
一种基于阵列微喷结构的一体化散热封装结构,如图1所示,主要包括高功率CPU000、转接板130和壳体210。转接板130装配于壳体210内,转接板130的上表面具有封装区,CPU000设于封装区之上并与转接板130封闭连接。
参考图1至图4,转接板的体内设有分别沿垂直方向延伸的第一输入微流道a、输出微流道b、第二输入微流道c和第三输入微流道d,转接板130的封装区内设有第一导流结构137x和若干水平平行槽道118,水平平行槽道118的两端分别通过第一导流结构137x与第一输入微流道a和输出微流道b导通,水平平行槽道118之内设有垂直阵列喷嘴112,垂直阵列喷嘴112于垂直方向上与第二输入微流道c和第三输入微流道d导通。壳体210设有分别与第一输入微流道、第二输入微流道、第三输入微流道和输出微流道导通的流道。
第一输入微流道a和输出微流道b分别由上至下包括连通且口径不同的第一槽孔(图中以111a、111b体现)、第二槽孔121(分别为121a、121b)和第三槽孔122,其中第一输入微流道a于转接板130的上表面设有第一出口111a,于转接板130的下表面设有第一入口122a;输出微流道b于转接板130的上表面设有输出入口111b,于转接板130的下表面设有输出出口122b;水平平行槽道118的两端分别通过第一导流结构137x与第一出口111a和输出入口122b导通。流体由第一入口122a进入第一输入微流道a,通过第一出口111a水平流经水平平行槽道118,由输出入口111b进入输出微流道b,然后由输出出口122b流出。
第二输入微流道c和第三输入微流道d分别由上至下包括连通且口径不同的第二槽孔121和第三槽孔122。所述转接板130的内部还设有第二导流结构137y和若干水平平行微通道119;第二输入微通道c和第三输入微通道d分别于转接板130的内部设有第二出口121c和第三出口121d、于所述转接板130的下表面设有第二入口122c和第三入口122d;水平平行微通道119的两端分别通过第二导流结构137y与第二出口121c和第三出口121d导通;垂直阵列喷嘴112的底部于垂直方向上与水平平行微通道119导通,顶部位于水平平行槽道118内。流体由第二入口122c和第三入口122d分别进入第二输入微通道c和第三输入微通道d,再分别通过第二出口121c和第三出口121d一起汇入水平平行微通道119,从垂直阵列喷嘴112顶部喷出进入水平平行槽道118后由输出微流道b流出。
转接板130为高阻硅基底,电阻率≥1000Ω·Cm。第一槽孔、第二槽孔121和第三槽孔122的口径渐次扩大,且呈阶梯式逐层向外偏移,使得第一入口122a和输出出口122b分别位于第一出口111a和输出入口111b的外侧。优选的,水平平行微通道119和水平平行槽道118互相垂直设置,从而第一输入微流道a和输出微流道b于第一方向上相对设置,第二输入微流道c和第三输入微流道d于第二方向上相对设置,且第一方向和第二方向垂直。
垂直阵列喷嘴112的顶部为出水口,且出水口高于水平平行槽道118的底部,即垂直阵列喷嘴112壁面高于水平平行槽道118底面,避免水平流向的液体直接灌入垂直喷嘴,降低射流的性能的同时简化结构,便于加工。垂直阵列喷嘴112的出水口的特征尺寸(口径)为30-100微米,可根据散热对象调整特征尺寸。
转接板130装配于壳体210内,壳体210具有四个流道210a、210b、210c和210d,且流道210a、210b、210c和210d与第一入口122a、输出出口122b、第三入口122c和第四入口122d导通。高功率CPU 000设于转接板130之上,封装区与高功率CPU键合,具体,CPU背面设有第一图形化粘结密封层013,转接板130的上表面设有第二图形化粘结密封层136,通过第一图形化粘结密封层013和第二图形化粘结密封层136对应连接,并闭合第一出口111a、输出入口111b、第一导流结构137x和水平平行槽道118形成封闭的流道系统。从而外界流体分三路分别经由壳体的流道210a、210c和210d进入第一输入微流道a、第二输入微流道c和第三输入微流道d,其中一路进入水平平行槽道118,另两路从垂直阵列喷嘴112垂直喷出至高功率CPU 000正下方,所有流体皆从输出微流道b流回壳体的流道210b。上述结构同时设置平行直通式微流道与垂直喷嘴实现扰流,结合水平平行槽道流阻小,微喷及扰流散热效率高的优点,在流阻及散热效率方面达到最优。
参考图1至图5,以下具体说明其制作方法。
1)转接板130:参考图5并结合图2至4,
1.1)提供双面抛光的第一高阻硅圆片110和第二高阻硅圆片120,电阻率≥1000Ω·cm,如图2所示,通过光刻和深硅刻蚀工艺(DRIE)、激光等工艺在第一高阻硅圆片110的上表面制作第一导流结构137x以及水平平行槽道118,并制作贯穿上下表面的两个第一槽孔,水平平行槽道118两端分别通过第一导流结构137x与两个第一槽孔一一对应导通;第一高阻硅圆片110的下表面制作贯穿下表面至水平平行槽道底部的垂直阵列喷嘴112;第二高阻硅圆片120的上表面制作带有一定深度的四个第二槽孔121、第二导流结构137y和水平平行微通道119,水平平行微通道119两端分别通过第二导流结构137y与其中两个第二槽孔121一一对应导通,第二高阻硅圆片120的下表面制作四个第三槽孔122,第二槽孔121和第三槽孔122一一对应相连通,其中与水平平行微通道119导通的两个第二槽孔121和第三槽孔122分别形成第二输入微流道c和第三输入微流道d。
1.2)所述第一高阻硅圆片110下表面和第二高阻硅圆片120上表面通过圆片级键合工艺连接形成转接板130,使得第一高阻硅圆片110的第一槽孔和第二高阻硅圆片120的另外两个第二槽孔121一一对应拼合,从而形成第一输入微流道a和输出微流道b。所述键合工艺为硅-硅键合、聚合物键合、金金键合、金锡键合、铜锡键合等工艺。
1.3)通过机械减薄、研磨、化学抛光等工艺在所述转接板130进行减薄工艺,以此减少基板整体厚度。
2)利用导电胶、焊料、纳米银浆等将转接板130键合体一面装配至壳体210,壳体具有四个流道210a、210b、210c和210d,第一输入微流道a、第二输入微流道c、第三输入微流道d和输出微流道b与四个流道210a、210b、210c和210d一一对应密封导通。所述壳体210可为铝合金、铜、AlN陶瓷材质。
3)至少在所述高功率CPU000的衬底和转接板130的上表面分别制作相对应的第一图形化粘接密封层013和第二图形化粘接密封层136,可通过图形化电镀Cu/Sn、Au/Sn、Ag/Sn焊料或者涂覆BCB等有机物图形化、或者印刷玻璃浆料等方式实现,通过图形化粘接密封层至少包围并使之闭合转接板130的第一出口111a、输出入口111b以及水平平行槽道118形成封闭的散热流道系统。
上述实施例仅用来进一步说明本实用新型的一种基于阵列微喷结构的一体化散热封装结构,但本实用新型并不局限于实施例,凡是依据本实用新型的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均落入本实用新型技术方案的保护范围内。

Claims (8)

1.一种基于阵列微喷结构的一体化散热封装结构,其特征在于:
包括CPU、转接板和壳体,所述转接板装配于所述壳体内,所述转接板的上表面具有封装区,所述CPU设于所述封装区之上并与所述转接板封闭连接;
所述转接板的体内设有分别沿垂直方向延伸的第一输入微流道、第二输入微流道、第三输入微流道和输出微流道,所述转接板的封装区内设有第一导流结构和若干水平平行槽道,所述水平平行槽道的两端分别通过所述第一导流结构与所述第一输入微流道和所述输出微流道导通,所述水平平行槽道之内设有垂直阵列喷嘴,所述垂直阵列喷嘴于垂直方向上与所述第二输入微流道和第三输入微流道导通;
所述壳体设有分别与所述第一输入微流道、第二输入微流道、第三输入微流道和输出微流道导通的流道。
2.根据权利要求1所述的一体化散热封装结构,其特征在于:所述第一输入微流道于所述转接板的上表面设有第一出口,于所述转接板的下表面设有第一入口;所述输出微流道于所述转接板的上表面设有输出入口,于所述转接板的下表面设有输出出口;所述水平平行槽道的两端分别通过所述第一导流结构与所述第一出口和输出入口导通。
3.根据权利要求1所述的一体化散热封装结构,其特征在于:所述转接板的内部还设有第二导流结构和若干水平平行微通道;所述第二输入微通道和第三输入微通道分别于所述转接板的内部设有第二出口和第三出口、于所述转接板的下表面设有第二入口和第三入口;所述水平平行微通道的两端分别通过所述第二导流结构与所述第二出口和第三出口导通;所述垂直阵列喷嘴于垂直方向上与所述水平平行微通道导通。
4.根据权利要求3所述的一体化散热封装结构,其特征在于:所述水平平行微通道和所述水平平行槽道互相垂直设置。
5.根据权利要求1所述的一体化散热封装结构,其特征在于:所述垂直阵列喷嘴的顶部为出水口,所述出水口高于所述水平平行槽道的底部。
6.根据权利要求5所述的一体化散热封装结构,其特征在于:所述垂直阵列喷嘴的出水口的尺寸为30-100微米。
7.根据权利要求1所述的一体化散热封装结构,其特征在于:所述第一输入微流道、第二输入微流道、第三输入微流道和输出微流道的口径分别由上至下阶梯式渐次扩大,且于阶梯变化处向所述封装区的外侧偏移。
8.根据权利要求1所述的一体化散热封装结构,其特征在于:所述CPU背面和所述转接板的封装区之间通过图形化粘结密封层连接,并闭合所述第一输入微通道、输出微通道、第一导流结构和水平平行槽道形成封闭的流道。
CN202022065073.2U 2020-09-17 2020-09-17 基于阵列微喷结构的一体化散热封装结构 Active CN213366584U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202022065073.2U CN213366584U (zh) 2020-09-17 2020-09-17 基于阵列微喷结构的一体化散热封装结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202022065073.2U CN213366584U (zh) 2020-09-17 2020-09-17 基于阵列微喷结构的一体化散热封装结构

Publications (1)

Publication Number Publication Date
CN213366584U true CN213366584U (zh) 2021-06-04

Family

ID=76153965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202022065073.2U Active CN213366584U (zh) 2020-09-17 2020-09-17 基于阵列微喷结构的一体化散热封装结构

Country Status (1)

Country Link
CN (1) CN213366584U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201636A (zh) * 2020-09-17 2021-01-08 厦门大学 基于阵列微喷结构的一体化散热封装结构及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112201636A (zh) * 2020-09-17 2021-01-08 厦门大学 基于阵列微喷结构的一体化散热封装结构及其制作方法

Similar Documents

Publication Publication Date Title
US7888786B2 (en) Electronic module comprising memory and integrated circuit processor chips formed on a microchannel cooling device
US5514906A (en) Apparatus for cooling semiconductor chips in multichip modules
US20100187682A1 (en) Electronic package and method of assembling the same
WO2022241848A1 (zh) 一种硅基扇出型封装结构及其制备方法
WO2020248905A1 (zh) 一种晶圆级三维堆叠微流道散热结构及其制造方法
CN107275297B (zh) 一种微流体散热通道、散热方法及制备方法
CN113241332B (zh) 具有微流道的半导体结构、芯片堆叠结构以及制备方法
CN114300428A (zh) 一种可六面散热的微流道封装结构及其制作方法
CN111769087A (zh) 一种大功率GaN器件散热与集成一体化结构及制作方法
CN213366584U (zh) 基于阵列微喷结构的一体化散热封装结构
CN114975312A (zh) 内嵌微流道的硅基三维封装结构及其制作方法
US20240136251A1 (en) Semiconductor device and manufacturing method thereof
CN115050711A (zh) 基于微流道的散热基板
CN114975318A (zh) 一种内嵌微流道的三维集成硅基惯性微系统及其制造方法
CN112614785B (zh) 集成微流道的三维封装结构及封装方法
CN112340694B (zh) 一种用于氮化镓功放芯片的玻璃微流道散热器制备方法
CN108682660B (zh) 一种微型冷却单元及其集成方法和装置
CN102620592B (zh) 应用于半导体激光器的液体制冷器的制备方法及其制冷装置
WO2022241846A1 (zh) 一种包括嵌入歧管式微流道的引线键合结构及其制备方法
CN112201636A (zh) 基于阵列微喷结构的一体化散热封装结构及其制作方法
US11121061B2 (en) Cooling chip structures having a jet impingement system and assembly having the same
CN114245583B (zh) 用于芯片冷却的流道结构及其制作方法
CN116002609A (zh) 一种基于三维集成tsv转接板的微流道结构及制备方法
CN212848377U (zh) 大功率GaN器件散热与集成一体化结构
KR102423373B1 (ko) 반도체 디바이스 및 그 제조 방법

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant