WO2023108986A1 - 臂架控制方法、臂架装置、工程车辆和可读存储介质 - Google Patents

臂架控制方法、臂架装置、工程车辆和可读存储介质 Download PDF

Info

Publication number
WO2023108986A1
WO2023108986A1 PCT/CN2022/090028 CN2022090028W WO2023108986A1 WO 2023108986 A1 WO2023108986 A1 WO 2023108986A1 CN 2022090028 W CN2022090028 W CN 2022090028W WO 2023108986 A1 WO2023108986 A1 WO 2023108986A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
drive mechanism
information
rotary drive
control method
Prior art date
Application number
PCT/CN2022/090028
Other languages
English (en)
French (fr)
Inventor
丁园
张铁桥
吕亮
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Publication of WO2023108986A1 publication Critical patent/WO2023108986A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/38Cantilever beams, i.e. booms;, e.g. manufacturing processes, forms, geometry or materials used for booms; Dipper-arms, e.g. manufacturing processes, forms, geometry or materials used for dipper-arms; Bucket-arms
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D19/00Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase
    • G05D19/02Control of mechanical oscillations, e.g. of amplitude, of frequency, of phase characterised by the use of electric means

Definitions

  • the present application relates to the technical field of engineering vehicles, in particular to a boom control method, a boom device, an engineering vehicle and a readable storage medium.
  • the boom device is often used in construction vehicles such as concrete pump trucks, through the rotation and expansion of the boom device to expand the scope of work. Since the length of the jib is usually long, vibrations often occur due to inertia during the rotation process, especially when the rotation stops, the vibration at the end of the jib is particularly obvious, and with the elongation of the jib, it will further aggravate the vibration of the jib. The vibration at the end of the boom will affect the working efficiency. In addition, the vibration will also aggravate the wear of the boom and affect the service life.
  • the existing technology provides some solutions to alleviate the vibration of the boom.
  • the rotation speed of the boom during normal rotation operation is adjusted through the working posture information of the boom and the target tilt angle, thereby alleviating the vibration of the boom, but the solution is Correcting the speed during the overall rotation of the boom will affect the normal rotation of the boom, and after the rotation stops, the vibration caused by inertia cannot be effectively suppressed, and the vibration suppression effect is not good.
  • the present application provides a boom control method, a boom device, an engineering vehicle and a readable storage medium.
  • the present application provides a boom control method, which includes the following steps: receiving a stop signal of a rotary drive mechanism of a boom; obtaining state information of the boom; controlling the operation of the rotary drive mechanism according to the state information, and driving the The boom end of the boom performs a vibration damping action opposite to the vibration direction.
  • the step of: controlling the operation of the rotary driving mechanism according to the state information, and driving the boom end of the boom to perform a vibration suppression action opposite to the vibration direction includes: according to the The status information determines the vibration suppression parameters of the rotary drive mechanism; the operation of the rotary drive mechanism is controlled with a compensation current corresponding to the vibration suppression parameters, and the boom end of the boom is driven to perform a vibration suppression action opposite to the vibration direction .
  • the state information includes: terminal angular velocity information of the boom end of the boom, vibration direction information, and inclination information of each section arm of the boom , attitude information, angular velocity information, and the working state information of the rotary drive mechanism;
  • the vibration suppression parameters include the energization time interval, energization duration and amplitude of the compensation current;
  • the step: determine the The vibration suppression parameters of the rotating drive mechanism of the boom include: calling the dynamic mathematical model of the boom to calculate the state information to obtain the power-on time interval of the compensation current; according to the terminal angular velocity at the end of the boom The information determines the energization duration and the amplitude of the compensation current.
  • the step of: determining the power-on duration and the amplitude according to the terminal angular velocity information of the boom terminal includes: determining the boom terminal according to the terminal angular velocity information of the boom terminal The amplitude and cycle; determine the amplitude according to the amplitude, and determine the power-on duration according to the cycle.
  • the compensation current in the boom control method includes half-period sine wave current or square wave current.
  • the boom control method further includes the following steps: obtaining the terminal angular velocity information of the boom terminal in the current state; determining the terminal amplitude of the boom terminal according to the terminal angular velocity information; judging the If the terminal amplitude is greater than or equal to the amplitude threshold, a judgment result is generated; if the judgment result is yes, the step is performed again: obtaining the status information of the boom.
  • the present application also provides a boom device, including: a boom; a rotation drive mechanism, which is connected with the boom to drive the boom to rotate; a detection component is arranged on the boom to detect the The state information of the boom; the controller is connected in communication with the rotary drive mechanism and the detection component, so as to respectively receive the stop signal of the rotary drive mechanism and the state information detected by the detection component; wherein, the The controller receives the stop signal of the rotary drive mechanism, and controls the operation of the rotary drive mechanism according to the state information, so as to drive the boom end of the boom to perform a vibration suppression action opposite to the vibration direction.
  • the boom device further includes: a remote operation terminal communicatively connected to the rotary drive mechanism, and the remote operation terminal is configured for an operator to input an operation command corresponding to the rotary drive mechanism.
  • the detection assembly includes a plurality of angular velocity sensors and a plurality of inclination sensors; wherein, at least one of the angular velocity sensors and at least one inclination sensor is provided on each joint of the boom, And both the angular velocity sensor and the inclination sensor are in communication connection with the controller.
  • the present application also provides an engineering vehicle, comprising: a vehicle body; and the jib device described in any one of the above, provided on the vehicle body.
  • the present application also provides a readable storage medium, wherein a computer program is stored in the readable storage medium, and when the computer program is run by a processor, the boom control method described in any one of the above is executed
  • the technical solution of the present application can effectively suppress the vibration after the boom stops rotating, has higher accuracy, can effectively improve the stability and working efficiency of the boom during use, and is conducive to reducing the wear of the boom and extending the boom.
  • the service life of the boom; in addition, the technical solution of the application is controlled only after the boom rotation stops, which will not affect the normal rotation operation of the boom.
  • FIG. 1 is a schematic flowchart of a boom control method provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a boom control method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a boom control method provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a boom control method provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a boom control method provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a boom control method provided by an embodiment of the present application.
  • Fig. 7 is a schematic block diagram of an arm support device provided by an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of an arm support device provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an arm support device provided by an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of an engineering vehicle provided by an embodiment of the present application.
  • plural means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back, top, bottom%) in the embodiments of the present application are only used to explain the relationship between the components in a certain posture (as shown in the accompanying drawings) If the specific posture changes, the directional indication will also change accordingly. Furthermore, the terms “include” and “have”, as well as any variations thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, system, product or device comprising a series of steps or units is not limited to the listed steps or units, but optionally also includes unlisted steps or units, or optionally further includes For other steps or units inherent in these processes, methods, products or apparatuses.
  • an embodiment means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the occurrences of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It is understood explicitly and implicitly by those skilled in the art that the embodiments described herein can be combined with other embodiments.
  • An embodiment of the present application provides a boom control method, which can be applied to a boom device.
  • the boom control method includes:
  • Step S110 receiving a stop signal of the rotation driving mechanism of the boom
  • Step S120 Obtain the status information of the boom
  • Step S130 Control the operation of the rotary drive mechanism according to the state information, and drive the boom end of the boom to perform a vibration suppression action opposite to the vibration direction.
  • step S110 determine the signal that the rotation drive mechanism of the boom stops rotating, thereby starting the following control operations; through step S120 and step S130, obtain the state information of the boom, to determine this According to the overall state characteristics of the boom, and then control the operation of the rotary drive mechanism according to the state information, so that the rotary drive mechanism performs corresponding actions, and then drives the boom end of the boom to produce an action opposite to the vibration direction, thereby offsetting the inertia of the boom end , to achieve vibration suppression.
  • the rotation drive mechanism in this embodiment includes but is not limited to an electro-hydraulic motor; the state parameters of the boom can be obtained through corresponding detection components (such as angular velocity sensors, inclination sensors, etc.).
  • the boom control method of the present application After the boom stops rotating, by adjusting the rotation drive mechanism, the boom produces a vibration damping action opposite to the vibration direction, thereby offsetting the vibration at the end of the boom caused by inertia.
  • the accuracy of the control operation is higher, which can effectively improve the stability and working efficiency of the boom during use.
  • the device undergoes excessive modification operations, which are easy to implement.
  • the boom control method in this embodiment performs the control operation only after the boom stops rotating, which will not affect the normal rotation operation of the boom.
  • An embodiment of the present application provides a boom control method, which can be applied to a boom device.
  • the boom control method includes:
  • Step S110 receiving a stop signal of the rotation driving mechanism of the boom
  • Step S120 Obtain the status information of the boom
  • Step S131 Determine the vibration suppression parameters of the rotary drive mechanism according to the state information
  • Step S140 Control the operation of the rotary drive mechanism with the compensation current corresponding to the vibration suppression parameter, and drive the boom end of the boom to perform a vibration suppression action opposite to the vibration direction.
  • step S130 is further improved on the basis of the above embodiments.
  • step S130 includes steps S131 and S140.
  • step S131 by analyzing the state information of the boom, the vibration suppression parameters that can suppress the vibration of the rotary drive mechanism are determined, and then through step S140, the vibration suppression parameters are used as the vibration suppression parameters of the rotary drive mechanism.
  • Operating parameters pass the compensation current corresponding to the vibration suppression parameters to the rotary drive mechanism, control the rotary drive mechanism to run with the vibration suppression parameters, and drive the boom end of the boom to move in the opposite direction to the vibration direction, so as to suppress the vibration of the boom vibration at the end.
  • An embodiment of the present application provides a boom control method, which can be applied to a boom device.
  • the boom control method includes:
  • Step S110 receiving a stop signal of the rotation driving mechanism of the boom
  • Step S120 Obtain the status information of the boom
  • Step S132 call the dynamic mathematical model of the boom to calculate the state information, and obtain the power-on time interval of the compensation current;
  • Step S133 Determine the power-on duration and amplitude of the compensation current according to the end angular velocity information at the end of the boom;
  • Step S140 Control the operation of the rotary drive mechanism with a compensation current corresponding to the vibration suppression parameter, and drive the boom end of the boom to perform a vibration suppression action opposite to the vibration direction;
  • the state information includes: the end angular velocity information of the boom end of the boom, the vibration direction information and the inclination information, attitude information, angular velocity information and the working status information of the rotary drive mechanism of each section of the boom;
  • the vibration suppression parameters include The energization time interval, energization duration and amplitude of the compensation current.
  • step S130 is further improved on the basis of the above embodiments.
  • the state information includes the terminal angular velocity information and vibration direction information of the boom end of the boom, and also includes the inclination information, attitude information, angular velocity information and the working status information of the rotary drive mechanism of each section arm of the boom; vibration suppression
  • the parameters include the energization time interval, energization duration and amplitude of the compensation current.
  • the boom has a dynamic mathematical model for different states. Under different states, there is a certain time difference between the rotation stop command of the boom and the start of movement at the end of the boom. There is a correspondence between the above state parameters of the boom and the time difference. relationship; the energization time interval of the compensation current corresponds to the time difference, that is, the corresponding relationship between the state parameters of the boom and the energization interval time of the compensation current can be established.
  • the dynamic mathematical model of the boom is retrieved through step S132, and the state parameters are calculated and analyzed to obtain the energization time interval of the compensation current as one of the vibration suppression parameters.
  • the power-on duration and amplitude corresponding to the compensation current can be determined by using the terminal angular velocity information of the boom terminal.
  • the magnitude of the compensation current is related to the maximum energizing current.
  • the vibration suppression parameters of the compensation current can be accurately obtained by using the boom state parameters and the dynamic mathematical model, so that the vibration suppression action of the subsequent boom can match its own vibration, thereby enhancing the vibration suppression
  • the effect of the vibration action can effectively prevent the phenomenon of aggravated vibration caused by the mismatch between the vibration suppression action and the self-vibration of the boom.
  • An embodiment of the present application provides a boom control method, which can be applied to a boom device.
  • the boom control method includes:
  • Step S110 receiving a stop signal of the rotation driving mechanism of the boom
  • Step S120 Obtain the status information of the boom
  • Step S132 call the dynamic mathematical model of the boom to calculate the state information, and obtain the power-on time interval of the compensation current;
  • Step S134 Determine the amplitude and period of the boom end according to the terminal angular velocity information of the boom end;
  • Step S135 Determine the amplitude of the compensation current according to the amplitude, and determine the duration of the compensation current according to the cycle;
  • Step S140 controlling the rotating drive mechanism to operate with a compensation current corresponding to the vibration suppression parameter, and driving the boom end of the boom to perform a vibration suppression action opposite to the vibration direction;
  • the state information includes: the end angular velocity information of the boom end of the boom, the vibration direction information and the inclination information, attitude information, angular velocity information and the working status information of the rotary drive mechanism of each section of the boom;
  • the vibration suppression parameters include The energization time interval, energization duration and amplitude of the compensation current.
  • the boom control method in this embodiment further improves step S133 on the basis of the above embodiments.
  • the terminal angular velocity at the end of the boom is related to the amplitude and period of the vibration.
  • the amplitude of the boom terminal is used to determine the amplitude of the compensation current, using The period at the end of the boom determines the energization time of the compensation current as a parameter of the compensation current.
  • the magnitude of the compensation current is related to the maximum driving current. It can be understood that the reverse vibration suppression action needs to meet certain conditions.
  • the amplitude and period of the compensation current can be determined by the amplitude and period of the boom end, so that the reverse vibration suppression action of the boom can match its own vibration.
  • the amplitude of the compensation current is equal to the amplitude of the boom end, and the duration of the compensation current is equal to the period of the boom end.
  • An embodiment of the present application provides a boom control method, which can be applied to a boom device.
  • the boom control method includes:
  • Step S110 receiving a stop signal of the rotation driving mechanism of the boom
  • Step S120 Obtain the status information of the boom
  • Step S130 Control the operation of the rotary drive mechanism according to the state information, and drive the boom end of the boom to perform a vibration suppression action opposite to the vibration direction;
  • Step S150 Obtain the end angular velocity information of the end of the jib in the current state
  • Step S160 Determine the terminal amplitude of the boom terminal according to the terminal angular velocity information
  • Step S170 Determine whether the terminal amplitude is greater than or equal to the amplitude threshold, and generate a determination result; if the determination result is yes, execute step S120 again; if the determination result is no, the method steps end.
  • the boom control method in this embodiment further adds steps S150 to S170 on the basis of the above embodiments. Specifically, after completing a reverse vibration suppression operation, the vibration at the end of the boom has slowed down, and the vibration parameters have also changed accordingly. At this time, through steps S150 and S160, it can be determined that in the current state The tip amplitude of the boom tip to determine the vibration state of the boom tip in the current state.
  • step S170 compare the size relationship between the terminal amplitude and the amplitude threshold to determine whether the vibration at the end of the boom is within the allowable range in the current state; when the terminal amplitude is greater than or equal to the amplitude threshold, it indicates that the vibration at the end of the boom Still beyond the allowable range, at this time, by executing step S120 again, the state information of the boom in the current state is obtained, and then the boom is controlled to perform the reverse vibration suppression action again through subsequent steps, so as to further alleviate the vibration at the end of the boom until the boom
  • the vibration at the end of the jib is weakened to the allowable range; when the amplitude of the end is less than the amplitude threshold, it indicates that the vibration at the end of the jib has been weakened to the allowable range, and the vibration at this time has little impact on the normal operation of the jib.
  • Performing a further reverse vibration suppression action can directly end the steps of the boom control method.
  • the amplitude threshold can be set
  • the boom can be controlled to perform multiple reverse vibration suppression operations until the vibration at the end of the boom weakens to an allowable range, which is beneficial to further improve the vibration suppression effect.
  • the dynamic parameters of the boom can be grasped, and the state parameters of the boom can be updated after each reverse vibration suppression operation, so that the vibration suppression parameters referenced by each reverse vibration suppression operation can be updated in real time, which is conducive to further improving vibration suppression accuracy of operation.
  • An embodiment of the present application provides a boom control method, which can be applied to a boom device.
  • the boom control method includes:
  • Step S120 Obtain the status information of the boom
  • Step S131 Determine the vibration suppression parameters of the rotary drive mechanism according to the state information
  • Step S140 Control the operation of the rotary drive mechanism with a compensation current corresponding to the vibration suppression parameter, and drive the boom end of the boom to perform a vibration suppression action opposite to the vibration direction;
  • Step S150 Obtain the end angular velocity information of the end of the jib in the current state
  • Step S160 Determine the terminal amplitude of the boom terminal according to the terminal angular velocity information
  • Step S170 Determine whether the terminal amplitude is greater than or equal to the amplitude threshold, and generate a determination result; if the determination result is yes, execute step S120 again; if the determination result is no, the method steps end.
  • the boom control method in this embodiment is a combination of method steps in the foregoing embodiments. Specifically, step S130 in the foregoing embodiments is further improved. As one of the preferred embodiments of the present application, this embodiment has the above-mentioned All the beneficial effects of the boom control method in the embodiment will not be repeated here.
  • Step S110 receiving a stop signal of the rotation driving mechanism of the boom
  • Step S120 Obtain the status information of the boom
  • Step S131 Determine the vibration suppression parameters of the rotary drive mechanism according to the state information
  • Step S140 Control the operation of the rotary drive mechanism with the compensation current corresponding to the vibration suppression parameter, and drive the boom end of the boom to perform a vibration suppression action opposite to the vibration direction;
  • the compensation current includes a sine wave current or a square wave current.
  • the jib control method in this embodiment further improves the form of the compensation current on the basis of the above embodiments, and the compensation current may include a sine wave current or a square wave current.
  • the sine wave current is a half cycle. Since the vibration form at the end of the jib is close to that of a sine wave, the vibration within one cycle is similar to the shape of a half cycle sine wave, so a half cycle sine wave current is used As a compensating current, the drive boom performs reverse action, which can effectively suppress vibration starting, and the vibration suppression process is relatively smooth and stable.
  • the square wave current is used as the compensation current to control the boom to perform reverse action. When the vibration suppression parameters match the vibration at the end of the boom, the vibration suppression effect can also be achieved.
  • the form of the compensation current in the boom control method of the present application is not limited to the example in this embodiment, and other forms of current other than sine wave current and square wave current may also be used.
  • the technical solution of the boom control method of the present application is not limited to the method steps shown in the above embodiments, and the method steps in the above embodiments can also be combined according to actual needs, so as to achieve better technical effects
  • the boom control method in any of the above embodiments can be supplemented with steps S150 to S170 above, or, in the boom control method in any of the above embodiments, the compensation current of the rotary drive mechanism can also be a sine wave current or square wave current, which will not be repeated here.
  • a boom device 10 is provided. As shown in FIG. 1
  • the rotation driving mechanism 102 is transmission connected with the boom 101 , and the rotation driving mechanism 102 can output power to the boom 101 to drive the boom 101 to rotate to adjust the working position of the boom 101 .
  • the detection component 103 is arranged on the jib 101, to detect the state information of the jib 101 through the detection component 103, such as the end angular velocity information of the jib end of the jib 101, the vibration direction information and the inclination angle of each section arm of the jib 101 information, attitude information, angular velocity information, and working status information of the rotary drive mechanism 102, etc.
  • Both the rotary drive mechanism 102 and the detection assembly 103 are connected in communication with the controller 104, and the controller 104 can receive the stop signal of the rotary drive mechanism 102 and the state information of the boom 101 detected by the detection assembly 103, and can control the rotary drive mechanism 102 and Operation of detection component 103 .
  • the type and quantity of the detection components 103 can be set according to the specific conditions of the boom 101 .
  • the controller 104 When the controller 104 receives the stop signal of the rotary drive mechanism 102, the controller 104 can control the operation of the rotary drive mechanism 102 according to the state information of the boom 101, thereby driving the boom end of the boom 101 to perform an action opposite to the vibration direction, Achieve the effect of suppressing vibration.
  • the jib device 10 in this embodiment can effectively suppress the vibration after the jib 101 stops rotating, and the accuracy of the vibration suppression operation is higher, which is conducive to improving the stability and working efficiency of the jib 101 during use, and at the same time It is beneficial to reduce the wear of the boom 101 and prolong the service life of the boom 101 , and the vibration suppression operation will not affect the normal rotation of the boom 101 .
  • the controller 104 can determine the vibration suppression parameter of the rotary drive mechanism 102 according to the state information of the boom 101, and then control the rotary drive mechanism 102 to pass in a compensation current, so that the rotary drive mechanism 102 uses the compensation current corresponding to the vibration suppression parameter run, and then drive the boom end of the boom 101 to perform an action opposite to the vibration direction.
  • the vibration suppression parameters include parameters such as the energization time interval, energization duration, and amplitude of the compensation current.
  • rotation driving mechanism 102 includes but not limited to an electro-hydraulic motor.
  • the controller 104 can also perform corresponding control operations on the boom driving mechanism and the detection assembly 103, and execute the steps of the boom control method in any of the above-mentioned embodiments, thus , the boom device 10 in this embodiment should also have all the beneficial effects of the boom control method in any of the above-mentioned embodiments, which will not be repeated here.
  • the boom device 10 includes a boom 101 , a rotation drive mechanism 102 , a detection component 103 , a controller 104 and a remote operation terminal 105 .
  • a remote operation terminal 105 is further added.
  • the operation of the rotary driving mechanism 102 is controlled by setting a remote operation terminal 105 communicatively connected with the rotary driving mechanism 102 for the operator to input operation instructions.
  • the remote operation terminal 105 includes, but is not limited to, a rotary multi-way valve handle, and the operator can control the rotation driving mechanism 102 to drive the arm frame 101 to rotate or stop rotating by operating the rotary multi-way valve handle.
  • the remote operation terminal 105 may also be other forms of terminal devices, such as mobile phones, tablet computers, and the like.
  • the detection component 103 includes a plurality of angular velocity sensors 1031 and a plurality of inclination sensors 1032 .
  • Each jib of the jib 101 is provided with at least one angular velocity sensor 1031 and at least one inclination sensor 1032, so that the angular velocity information of each jib of the jib 101 is obtained by using the angular velocity sensor 1031, and the angular velocity information of each jib of the jib 101 is obtained by using the inclination sensor 1032.
  • the inclination information of each jib; the angular velocity sensor 1031 and the inclination sensor 1032 are all communicatively connected with the controller 104, so as to send the obtained angular velocity information and inclination information to the controller 104 as the reference information of the controller 104, and then Determine the state information of the jib 101 .
  • the number of angular velocity sensors 1031 or inclination sensors 1032 can also be reduced as appropriate according to the situation, for example, only on the arm An angular velocity sensor 1031 or an inclination sensor 1032 is installed on the end of the frame or on the last section arm, and the vibration suppression control is performed with the angular velocity information and inclination angle information at this position as a reference.
  • the vibration suppression operation may have a certain impact on the vibration suppression operation, it can effectively control the equipment Cost, especially when the jib 101 has a large number of jibs, when the impact on the vibration suppression action is within an acceptable range, the above measures can take into account the vibration suppression effect and cost control, which is beneficial to the actual situation. application.
  • communication connections described in the above embodiments of the present application include wired communication connections and wireless communication connections.
  • an engineering vehicle 20 is provided. As shown in FIG. 10 , the engineering vehicle 20 includes a vehicle body 201 and the boom device 10 in any of the above-mentioned embodiments.
  • the boom device 10 is arranged on the car body 201 to move with the car body 201; the boom 101 of the boom device 10 can rotate relative to the car body 201 under the drive of the rotary drive mechanism 102, so as to change the operation of the boom 101 Location.
  • the controller 104 of the boom device 10 can control the operation of the detection assembly 103 and the rotation driving mechanism 102, so that when the boom 101 stops rotating, the rotation driving mechanism 102 drives the boom 101 to perform a reverse vibration suppression action, Vibration caused by inertia is suppressed, thereby improving the stability of the jib 101 .
  • controller 104 may be a dedicated control element, or may be a control element of the engineering vehicle 20, such as a vehicle control unit (Vehicle Control Unit, VCU), and of course may be other forms of control elements.
  • VCU Vehicle Control Unit
  • the engineering vehicle 20 in this embodiment should also have all the beneficial effects of the boom device 10 in any of the above-mentioned embodiments, which will not be repeated here.
  • a readable storage medium is provided.
  • a computer program is stored in the readable storage medium.
  • the boom control method in any of the above-mentioned embodiments can be executed, so that Suppress the vibration of the boom.
  • the readable storage medium in this embodiment should also have all the beneficial effects of the boom control method in any of the above embodiments, which will not be repeated here.
  • each component can be decomposed and/or reassembled. These decompositions and/or recombinations should be considered equivalents of this application.
  • the computer program product in the present application can be written in any combination of one or more programming languages for executing the program codes for the operations of the embodiments of the present application, and the programming languages include object-oriented programming languages, such as Java, C++, etc. , also includes conventional procedural programming languages, such as the "C" language or similar programming languages.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server to execute.
  • the readable storage medium in this application may adopt any combination of one or more readable mediums.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • a readable storage medium may include, but is not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof, for example. More specific examples (non-exhaustive list) of readable storage media include: electrical connection with one or more conductors, portable disk, hard disk, random access memory (RAM), read only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Jib Cranes (AREA)

Abstract

一种臂架(101)控制方法、臂架装置(10)、工程车辆(20)和可读存储介质,臂架(101)控制方法包括:接收臂架(101)的旋转驱动机构(102)的停止信号(S110);获取臂架(101)的状态信息(S120);根据状态信息控制旋转驱动机构(102)运行,驱动臂架(101)的臂架末端进行与振动方向相反的抑振动作(S130)。该臂架(101)控制方法能够对臂架(101)旋转停止后的振动进行有效抑制。

Description

臂架控制方法、臂架装置、工程车辆和可读存储介质
本申请要求于2021年12月15日提交到中国国家知识产权局的申请号为202111534911.9、发明名称为“臂架控制方法、臂架装置、工程车辆和可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及工程车辆技术领域,具体涉及一种臂架控制方法、一种臂架装置、一种工程车辆和一种可读存储介质。
背景技术
臂架装置常应用于混凝土泵车等工程车辆中,通过臂架装置的旋转和伸缩,以扩大作业范围。由于臂架的长度通常较长,在旋转过程中由于惯性的作用经常会发生振动,特别是在旋转停止时,臂架末端的振动特别明显,而且随着臂架的伸长,会进一步加剧臂架末端的振动,影响作业效率,另外,振动也会加剧臂架的磨损,影响使用寿命。现有技术中提供了一些缓解臂架振动的方案,通过臂架的工作姿态信息和目标倾斜角度对臂架的正常旋转作业时的旋转速度进行调整,进而缓解臂架的振动,但该方案是对臂架整体旋转过程中的速度进行修正,会影响臂架的正常旋转作业,且在旋转停止后,对因惯性而造成的振动无法进行有效抑制,抑振效果不佳。
发明内容
有鉴于此,为解决上述技术问题,本申请提供了一种臂架控制方法、一种臂架装置、一种工程车辆和一种可读存储介质。
本申请提供一种臂架控制方法,包括以下步骤:接收臂架的旋转驱动机构的停止信号;获取所述臂架的状态信息;根据所述状态信息控制所述旋转驱动机构运行,驱动所述臂架的臂架末端进行与振动方向相反的抑振动作。
在一种可行的实现方式中,所述步骤:根据所述状态信息控制所述旋转驱动机构运行,驱动所述臂架的臂架末端进行与振动方向相反的抑振动作,包括:根据所述状态信息确定所述旋转驱动机构的抑振参数;以对应于所述抑振参数的补偿电流控制所述旋转驱动机构运行,驱动所述臂架的臂架末端进行与振动方向相反的抑振动作。
在一种可行的实现方式中,臂架控制方法中,所述状态信息包括:所述臂架的臂架末端的末端角速度信息、振动方向信息和所述臂架的每个节臂的倾角信息、姿态信息、角速度信息以及所述旋转驱动机构的工作状态信息;所述抑振参数包括所述补偿电流的通电时间间隔、通电时长和幅值;所述步骤:根据所述状态信息确定所述臂架的旋转驱动机构的抑振参数,包括:调用所述臂架的动态数学模型对所述状态信息进行运算,得出所述补偿电流的通电时间间隔;根据所述臂架末端的末端角速度信息确定所述补偿电流的通电时长和所述幅值。
在一种可行的实现方式中,所述步骤:根据所述臂架末端的末端角速度信息确定所述通电时长和所述幅值,包括:根据所述臂架末端的末端角速度信息确定臂架末端的振幅和周期;根据所述振幅确定所述幅值,根据所述周期确定所述通电时长。
在一种可行的实现方式中,臂架控制方法中的所述补偿电流包括半个周期的正弦波电流或方波电流。
在一种可行的实现方式中,臂架控制方法还包括以下步骤:获取当前状态下所述臂架末端的末端角速度信息;根据所述末端角速度信息确定所述臂架末端的末端振幅;判断所述末端振幅是否大于或等于振幅阈值,生成判断结果;若所述判断结果为是,再次执行所述步骤:获取所述臂架的状态信息。
本申请还提供了一种臂架装置,包括:臂架;旋转驱动机构,与所述臂架传动连接,以驱动所述臂架转动;检测组件,设于所述臂架上,以检测所述臂架的状态信息;控制器,与所述旋转驱动机构和所述检测组件通信连接,以分别接收所述旋转驱动机构的停止信号和所述检测组件检测到的状态信息;其中,所述控制器接收到所述旋转驱动机构的停止信号,根 据所述状态信息控制所述旋转驱动机构运行,以驱动所述臂架的臂架末端进行与振动方向相反的抑振动作。
在一种可行的实现方式中,臂架装置还包括:远程操作终端,与所述旋转驱动机构通信连接,所述远程操作终端配置为供操作人员输入对应于所述旋转驱动机构的操作指令。
在一种可行的实现方式中,所述检测组件包括多个角速度传感器和多个倾角传感器;其中,所述臂架的每个节臂上设有至少一个所述角速度传感器和至少一个倾角传感器,且所述角速度传感器和所述倾角传感器均与所述控制器通信连接。
本申请还提供了一种工程车辆,包括:车体;上述任一项中所述的臂架装置,设于所述车体上。
本申请还提供了一种可读存储介质,所述可读存储介质中存储有计算机程序,当所述计算机程序被处理器运行时,执行上述任一项中所述的臂架控制方法
本申请的有益效果体现在:
本申请的技术方案能够对臂架旋转停止后的振动进行有效抑制,准确性更高,能够有效提升臂架在使用过程中的稳定性和作业效率,同时有利于减少臂架的磨损、延长臂架的使用寿命;此外,本申请的技术方案在臂架旋转停止后才进行控制,不会对臂架的正常旋转作业造成影响。
附图说明
图1所示为本申请一实施例提供的一种臂架控制方法的流程示意图。
图2所示为本申请一实施例提供的一种臂架控制方法的流程示意图。
图3所示为本申请一实施例提供的一种臂架控制方法的流程示意图。
图4所示为本申请一实施例提供的一种臂架控制方法的流程示意图。
图5所示为本申请一实施例提供的一种臂架控制方法的流程示意图。
图6所示为本申请一实施例提供的一种臂架控制方法的流程示意图。
图7所示为本申请一实施例提供的一种臂架装置的示意框图。
图8所示为本申请一实施例提供的一种臂架装置的示意框图。
图9所示为本申请一实施例提供的一种臂架装置的示意框图。
图10所示为本申请一实施例提供的一种工程车辆的示意框图。
附图标记说明:
10臂架装置,101臂架,102旋转驱动机构,103检测组件,1031角速度传感器,1032倾角传感器,104控制器,105远程操作终端,20工程车辆,201车体。
具体实施方式
本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后、顶、底……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
另外,在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的一个实施例中提供了一种臂架控制方法,可以应用于臂架装置。如图1所示,臂架控制方法包括:
步骤S110:接收臂架的旋转驱动机构的停止信号;
步骤S120:获取臂架的状态信息;
步骤S130:根据状态信息控制旋转驱动机构运行,驱动臂架的臂架末端进行与振动方向相反的抑振动作。
本实施例中的臂架控制方法,通过步骤S110,确定臂架的旋转驱动机构停止旋转的信号,从而开启以下的控制操作;通过步骤S120和步骤S130,获取臂架的状态信息,以确定此时臂架的整体状态特征,进而根据状态信息控制旋转驱动机构运行,使旋转驱动机构进行相应的动作,进而驱动臂架的臂架末端产生与振动方向相反的动作,从而抵消臂架末端的惯性,实现抑振。
需要说明的是,本实施例中的旋转驱动机构包括但不限于电控液压马达;臂架的状态参数可以通过相应的检测组件(例如角速度传感器、倾角传感器等)获取。
通过本申请的臂架控制方法,能够在臂架停止旋转后,通过调节旋转驱动机构,使臂架产生与振动方向相反的抑振动作,从而抵消因惯性引起的臂架末端的振动,一方面控制操作的准确性更高,能够有效提升臂架在使用过程中的稳定性和作业效率,另一方面,能够有效减少臂架的磨损,延长臂架的使用寿命,且无需对现有臂架装置进行过多的改装操作,易于实现。此外,本实施例中的臂架控制方法仅在臂架旋转停止后才进行控制操作,不会对臂架的正常旋转作业造成影响。
本申请的一个实施例中提供了一种臂架控制方法,可以应用于臂架装置。如图2所示,臂架控制方法包括:
步骤S110:接收臂架的旋转驱动机构的停止信号;
步骤S120:获取臂架的状态信息;
步骤S131:根据状态信息确定旋转驱动机构的抑振参数;
步骤S140:以对应于抑振参数的补偿电流控制旋转驱动机构运行,驱动臂架的臂架末端进行与振动方向相反的抑振动作。
本实施例的臂架控制方法,在上述实施例的基础上对步骤S130做了进一步改进。具体地,步骤S130包括步骤S131和S140,通过步骤S131,通 过分析臂架的状态信息,确定出旋转驱动机构能够抑制振动的抑振参数,进而通过步骤S140,以抑振参数作为旋转驱动机构的运行参数,向旋转驱动机构通入与抑振参数相对应的补偿电流,控制旋转驱动机构以该抑振参数运行,以驱动臂架的臂架末端进行与振动方向相反的动作,以抑制臂架末端的振动。在臂架的正常旋转作业结束后,通过对旋转驱动机构的电流控制,实现抑振作用,控制准确性和精度高,且无需额外增加辅助装置,实施成本较小,有利于在现有臂架装置中应用。
在本申请的一个实施例中提供了一种臂架控制方法,可以应用于臂架装置。如图3所示,臂架控制方法包括:
步骤S110:接收臂架的旋转驱动机构的停止信号;
步骤S120:获取臂架的状态信息;
步骤S132:调用臂架的动态数学模型对状态信息进行运算,得出补偿电流的通电时间间隔;
步骤S133:根据臂架末端的末端角速度信息确定补偿电流的通电时长和幅值;
步骤S140:以对应于抑振参数的补偿电流控制旋转驱动机构运行,驱动臂架的臂架末端进行与振动方向相反的抑振动作;
其中,状态信息包括:臂架的臂架末端的末端角速度信息、振动方向信息和臂架的每个节臂的倾角信息、姿态信息、角速度信息以及旋转驱动机构的工作状态信息;抑振参数包括补偿电流的通电时间间隔、通电时长和幅值。
本实施例中的臂架控制方法,在上述实施例的基础上对步骤S130做了进一步改进。具体地,状态信息包括臂架的臂架末端的末端角速度信息、振动方向信息,还包括臂架的每个节臂的倾角信息、姿态信息、角速度信息以及旋转驱动机构的工作状态信息;抑振参数包括补偿电流的通电时间间隔、通电时长和幅值。其中,臂架具有针对于不同状态的动态数学模型,在不同状态下,臂架的旋转停止指令发出到臂架末端开始动作存在一定的时间差,臂架的上述状态参数与该时间差之间存在对应关系;补偿电流的通电时间间隔与该时间差相对应,即能够建立臂架的状态参数与补偿电流 的通电间隔时间之间的对应关系。
当获取了臂架的状态参数后,通过步骤S132,调取臂架的动态数学模型,对状态参数进行运算和分析,即可得出补偿电流的通电时间间隔,作为抑振参数之一。通过步骤S133,利用臂架末端的末端角速度信息能够确定出补偿电流对应的通电时长和幅值。其中,补偿电流的幅值与最大通电电流相关。
通过本实施例中的臂架控制方法,能够利用臂架状态参数和动态数学模型,准确得出补偿电流的抑振参数,以使后续臂架的抑振动作与自身振动相匹配,进而增强抑振动作的效果,可有效防止因抑振动作与臂架的自身振动不匹配而产生加剧振动的现象。
在本申请的一个实施例中提供了一种臂架控制方法,可以应用于臂架装置。如图4所示,臂架控制方法包括:
步骤S110:接收臂架的旋转驱动机构的停止信号;
步骤S120:获取臂架的状态信息;
步骤S132:调用臂架的动态数学模型对状态信息进行运算,得出补偿电流的通电时间间隔;
步骤S134:根据臂架末端的末端角速度信息确定臂架末端的振幅和周期;
步骤S135:根据振幅确定补偿电流的幅值,根据周期确定补偿电流的持续时长;
步骤S140:控制旋转驱动机构以对应于抑振参数的补偿电流运行,驱动臂架的臂架末端进行与振动方向相反的抑振动作;
其中,状态信息包括:臂架的臂架末端的末端角速度信息、振动方向信息和臂架的每个节臂的倾角信息、姿态信息、角速度信息以及旋转驱动机构的工作状态信息;抑振参数包括补偿电流的通电时间间隔、通电时长和幅值。
本实施例中的臂架控制方法,在上述实施例的基础上对步骤S133做了进一步改进。具体地,臂架末端的末端角速度与振动的振幅和周期有关,通过步骤S134,确定臂架末端的振幅和周期后,进而通过步骤S135,利用 臂架末端的振幅确定补偿电流的幅值,利用臂架末端的周期确定补偿电流的通电时长,以作为补偿电流的参数。其中,补偿电流的幅值与最大驱动电流相关。可以理解,反向抑振动作需要满足一定的条件,因而通过臂架末端的振幅和周期确定补偿电流的幅值和通电时长,能够使臂架的反向抑振动作与自身振动相匹配。较优地,补偿电流的幅值与臂架末端的振幅大小相等,补偿电流的通电时长与臂架末端的周期大小相等。
在本申请的一个实施例中提供了一种臂架控制方法,可以应用于臂架装置。如图5所示,臂架控制方法包括:
步骤S110:接收臂架的旋转驱动机构的停止信号;
步骤S120:获取臂架的状态信息;
步骤S130:根据状态信息控制旋转驱动机构运行,驱动臂架的臂架末端进行与振动方向相反的抑振动作;
步骤S150:获取当前状态下臂架末端的末端角速度信息;
步骤S160:根据末端角速度信息确定臂架末端的末端振幅;
步骤S170:判断末端振幅是否大于或等于振幅阈值,生成判断结果;若判断结果为是,则再次执行步骤S120;若判断结果为否,则方法步骤结束。
本实施例中的臂架控制方法,在上述实施例的基础上进一步增加了步骤S150至步骤S170。具体地,在完成一次反向抑振动作后,此时臂架末端的振动有所减缓,且振动的参数也发生了相应的改变,此时,通过步骤S150和步骤S160,可以确定当前状态下臂架末端的末端振幅,以确定当前状态下臂架末端的振动状态。通过步骤S170,对比末端振幅与振幅阈值之间的大小关系,以判断当前状态下臂架末端的振动是否已经处于允许的范围内;当末端振幅大于或等于振幅阈值时,表明臂架末端的振动仍然超出允许范围,此时通过再次执行步骤S120,获取当前状态下臂架的状态信息,进而通过后续的步骤再次控制臂架进行反向抑振动作,以进一步缓解臂架末端的振动,直至臂架末端的振动减弱至允许的范围内为止;当末端振幅小于振幅阈值时,表明臂架末端的振动已经减弱至允许范围内,此时的振动对臂架的正常作业的影响已经较小,无需进行进一步的反向抑振动作, 可以直接结束臂架控制方法的步骤。其中,振幅阈值可以根据臂架的结构、材质、规格等不同而进行相应的设定。
通过本实施例中的臂架控制方法,能够控制臂架进行多次反向抑振动作,直至臂架末端的振动减弱至允许的范围内为止,有利于进一步提升抑振效果。另外,可以掌握臂架的动态参数,在每次反向抑振动作之后更新臂架的状态参数,使得每次反向抑振动作所参照的抑振参数能够实时更新,有利于进一步提升抑振操作的准确性。
在本申请的一个实施例中提供了一种臂架控制方法,可以应用于臂架装置。如图6所示,臂架控制方法包括:
步骤S110:接收臂架的旋转驱动机构的停止信号;
步骤S120:获取臂架的状态信息;
步骤S131:根据状态信息确定旋转驱动机构的抑振参数;
步骤S140:以对应于抑振参数的补偿电流控制旋转驱动机构运行,驱动臂架的臂架末端进行与振动方向相反的抑振动作;
步骤S150:获取当前状态下臂架末端的末端角速度信息;
步骤S160:根据末端角速度信息确定臂架末端的末端振幅;
步骤S170:判断末端振幅是否大于或等于振幅阈值,生成判断结果;若判断结果为是,则再次执行步骤S120;若判断结果为否,则方法步骤结束。
本实施例中的臂架控制方法为前述实施例的方法步骤的组合,具体地,对上述实施例中的步骤S130做了进一步改进,本实施例作为本申请的优选实施例之一,具有上述实施例中的臂架控制方法的全部有益效果,在此不再赘述。
在本申请的一个实施例中提供了一种臂架控制方法,可以应用于具臂架装置。如图2所示,臂架控制方法包括:
步骤S110:接收臂架的旋转驱动机构的停止信号;
步骤S120:获取臂架的状态信息;
步骤S131:根据状态信息确定旋转驱动机构的抑振参数;
步骤S140:以对应于抑振参数的补偿电流控制旋转驱动机构运行,驱 动臂架的臂架末端进行与振动方向相反的抑振动作;
其中,补偿电流包括正弦波电流或方波电流。
本实施例中的臂架控制方法,在上述实施例的基础上,对补偿电流的形式做了进一步改进,补偿电流可以包括正弦波电流或方波电流。具体地,正弦波电流为半个周期,由于臂架末端的振动形式与正弦波的形态接近,一个周期内的振动与半个周期的正弦波的形态类似,因而采用半个周期的正弦波电流作为补偿电流,驱动臂架进行反向动作,能够对振动起动有效的抑制作用,而且抑振过程相对比较平缓,稳定性较强。此外,采用方波电流作为补偿电流,控制臂架进行反向动作,当抑振参数与臂架末端的振动相匹配时,也可以实现抑振效果。当然,本申请的臂架控制方法中的补偿电流的形式不限于本实施例中的示例,也可以采用正弦波电流和方波电流之外的其他形式的电流。
需要说明的是,本申请的臂架控制方法的技术方案不局限于上述实施例中示出的方法步骤,以上实施例中的方法步骤也可以根据实际需要进行组合,从而达到更优的技术效果,例如,上述任一实施例中的臂架控制方法均可以补充上述步骤S150至步骤S170,或者,上述任一实施例的臂架控制方法中,旋转驱动机构的补偿电流也可以是正弦波电流或方波电流,在此不再赘述。
在本申请的一个实施例中提供了一种臂架装置10,如图7所示,臂架装置10包括臂架101、旋转驱动机构102、检测组件103和控制器104。
旋转驱动机构102与臂架101传动连接,旋转驱动机构102能够向臂架101输出动力,驱动臂架101发生旋转,以调整臂架101的作业位置。检测组件103设置在臂架101上,以通过检测组件103检测臂架101的状态信息,例如臂架101的臂架末端的末端角速度信息、振动方向信息和臂架101的每个节臂的倾角信息、姿态信息、角速度信息、以及旋转驱动机构102的工作状态信息等。旋转驱动机构102和检测组件103均与控制器104通信连接,控制器104能够接收旋转驱动机构102的停止信号和检测组件103检测到的臂架101的状态信息,并能够控制旋转驱动机构102和检测组件103的运行。其中,检测组件103的类型和数量可以根据臂架101 的具体情况而设置。
当控制器104接收到旋转驱动机构102的停止信号时,控制器104能够根据臂架101的状态信息控制旋转驱动机构102运行,从而驱动臂架101的臂架末端进行与振动方向相反的动作,实现抑制振动的效果。
本实施例中的臂架装置10,能够对臂架101停止旋转后的振动进行有效抑制,抑振操作准确性更高,有利于提升臂架101在使用过程中的稳定性和作业效率,同时有利于减少臂架101的磨损、延长臂架101的使用寿命,而且抑振操作不会对臂架101的正常旋转作业造成影响。
进一步地,控制器104能够根据臂架101的状态信息确定旋转驱动机构102的抑振参数,进而控制旋转驱动机构102通入补偿电流,使旋转驱动机构102以对应于该抑振参数的补偿电流运行,进而驱动臂架101的臂架末端进行与振动方向相反的动作。其中,抑振参数包括补偿电流的通电时间间隔、通电时长、幅值等参数。
进一步地,旋转驱动机构102包括但不限于电控液压马达。
进一步地,本实施例的臂架装置10中,控制器104还能够对臂架驱动机构和检测组件103进行相应的控制操作,并执行上述任一实施例中的臂架控制方法的步骤,因而,本实施例中的臂架装置10还应具有上述任一实施例中的臂架控制方法的全部有益效果,在此不再赘述。
在本申请的一些实施例中,如图8所示,臂架装置10包括臂架101、旋转驱动机构102、检测组件103、控制器104和远程操作终端105。在上述实施例的基础上,进一步增加了远程操作终端105。通过设置与旋转驱动机构102通信连接的远程操作终端105,以供操作人员输入操作指令,控制旋转驱动机构102的运行。具体地,远程操作终端105包括但不限于旋转多路阀手柄,操作人员可以通过操作旋转多路阀手柄控制旋转驱动机构102动作,驱动臂架101旋转或停止旋转。当然,远程操作终端105也可以是其他形式的终端设备,例如手机、平板电脑等。
进一步地,如图9所示,检测组件103包括多个角速度传感器1031和多个倾角传感器1032。臂架101的每个节臂上均设有至少一个角速度传感器1031和至少一个倾角传感器1032,以利用角速度传感器1031获取臂架 101的每个节臂的角速度信息,利用倾角传感器1032获取臂架101的每个节臂的倾角信息;角速度传感器1031和倾角传感器1032均与控制器104通信连接,以将所获取的角速度信息和倾角信息发送至控制器104,以作为控制器104的参考信息,进而确定臂架101的状态信息。
需要说明的是,在实际应用中,由于传感器的数量会影响臂架装置10的整体成本,考虑到成本控制,也可以根据情况酌情减少角速度传感器1031或倾角传感器1032的数量,例如,仅在臂架末端或次末节节臂上设置角速度传感器1031或倾角传感器1032,以该位置的角速度信息和倾角信息作为参照进行抑振控制,虽然可能会对抑振动作产生一定的影响,但能够有效控制设备成本,特别是在臂架101的节臂数量较多时,当对抑振动作所产生的影响在可接受的范围内时,以上措施能够兼顾到抑振效果和成本控制,有利于在实际情况中应用。
需要说明的是,本申请的上述实施例中所描述的通信连接包括有线通信连接和无线通信连接。
在本申请的一个实施例中提供了一种工程车辆20,如图10所示,工程车辆20包括车体201和上述任一实施例中的臂架装置10。臂架装置10设置在车体201上,以随车体201移动;臂架装置10的臂架101能够在旋转驱动机构102的驱动下相对于车体201进行旋转,以改变臂架101的作业位置。其中,臂架装置10的控制器104能够对检测组件103和旋转驱动机构102的运行进行控制,以在臂架101停止旋转时,通过旋转驱动机构102驱动臂架101进行反向抑振动作,以抑制因惯性而引起的振动,从而提高臂架101的稳定性。
进一步地,控制器104可以是专门的控制元件,也可以工程车辆20自带的控制元件,例如整车控制器(Vehicle Control Unit,VCU),当然还可以是其他形式的控制元件。
此外,本实施例中的工程车辆20还应具有上述任一实施例中的臂架装置10的全部有益效果,在此不再赘述。
在本申请的一个实施例中提供了一种可读存储介质,可读存储介质中存储有计算机程序,当该计算机程序被运行时,可以执行上述任一实施例 中的臂架控制方法,从而对臂架的振动进行抑制。
此外,本实施例中的可读存储介质还应具有上述任一实施例中的臂架控制方法的全部有益效果,在此不再赘述。
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。
本申请中涉及的器件、装置、设备、系统的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、系统。诸如“包括”、“包含”、“具有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。
还需要指出的是,在本申请的装置和设备中,各部件是可以分解和/或重新组合的。这些分解和/或重新组合应视为本申请的等效方案。
本申请中的计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
本申请中的可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器 (RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本申请的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本申请。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本申请的范围。因此,本申请不意图被限制到在此示出的方面,而是按照与在本申请的原理和新颖的特征一致的最宽范围。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种臂架控制方法,其中,包括以下步骤:
    接收臂架的旋转驱动机构的停止信号;
    获取所述臂架的状态信息;
    根据所述状态信息控制所述旋转驱动机构运行,驱动所述臂架的臂架末端进行与振动方向相反的抑振动作。
  2. 根据权利要求1所述的臂架控制方法,其中,所述步骤:根据所述状态信息控制所述旋转驱动机构运行,驱动所述臂架的臂架末端进行与振动方向相反的抑振动作,包括:
    根据所述状态信息确定所述旋转驱动机构的抑振参数;
    以对应于所述抑振参数的补偿电流控制所述旋转驱动机构运行,驱动所述臂架的臂架末端进行与振动方向相反的抑振动作。
  3. 根据权利要求2所述的臂架控制方法,其中,
    所述状态信息包括:所述臂架的臂架末端的末端角速度信息、振动方向信息和所述臂架的每个节臂的倾角信息、姿态信息、角速度信息以及所述旋转驱动机构的工作状态信息;
    所述抑振参数包括所述补偿电流的通电时间间隔、通电时长和幅值;
    所述步骤:根据所述状态信息确定所述臂架的旋转驱动机构的抑振参数,包括:
    调用所述臂架的动态数学模型对所述状态信息进行运算,得出所述补偿电流的通电时间间隔;
    根据所述臂架末端的末端角速度信息确定所述补偿电流的通电时长和所述幅值。
  4. 根据权利要求3所述的臂架控制方法,其中,所述步骤:根据所述臂架末端的末端角速度信息确定所述通电时长和所述幅值,包括:
    根据所述臂架末端的末端角速度信息确定臂架末端的振幅和周期;
    根据所述振幅确定所述幅值,根据所述周期确定所述通电时长。
  5. 根据权利要求2至4中任一项所述的臂架控制方法,其中,
    所述补偿电流包括半个周期的正弦波电流或方波电流。
  6. 根据权利要求1至4中任一项所述的臂架控制方法,其中,还包括以下步骤:
    获取当前状态下所述臂架末端的末端角速度信息;
    根据所述末端角速度信息确定所述臂架末端的末端振幅;
    判断所述末端振幅是否大于或等于振幅阈值,生成判断结果;
    若所述判断结果为是,再次执行所述步骤:获取所述臂架的状态信息。
  7. 一种臂架装置(10),其中,包括:
    臂架(101);
    旋转驱动机构(102),与所述臂架(101)传动连接,以驱动所述臂架(101)转动;
    检测组件(103),设于所述臂架(101)上,以检测所述臂架(101)的状态信息;
    控制器(104),与所述旋转驱动机构(102)和所述检测组件(103)通信连接,以分别接收所述旋转驱动机构(102)的停止信号和所述检测组件(103)检测到的状态信息;
    其中,所述控制器(104)接收到所述旋转驱动机构(102)的停止信号,根据所述状态信息控制所述旋转驱动机构(102)运行,以驱动所述臂架(101)的臂架末端进行与振动方向相反的抑振动作。
  8. 根据权利要求7所述的臂架装置(10),其中,还包括:
    远程操作终端(105),与所述旋转驱动机构(102)通信连接,所述远程操作终端(105)配置为供操作人员输入对应于所述旋转驱动机构(102)的操作指令。
  9. 根据权利要求8所述的臂架装置(10),其中,
    所述检测组件(103)包括多个角速度传感器(1031)和多个倾角传感器(1032);
    其中,所述臂架(101)的每个节臂上设有至少一个所述角速度传感器(1031)和至少一个倾角传感器(1032),且所述角速度传感器(1031)和所述倾角传感器(1032)均与所述控制器(104)通信连接。
  10. 一种工程车辆(20),其中,包括:
    车体(201);
    如权利要求7至9中任一项所述的臂架装置(10),设于所述车体(201)上。
  11. 一种可读存储介质,其中,所述可读存储介质中存储有计算机程序,当所述计算机程序被配置为运行时执行如权利要求1至6中任一项所述的臂架控制方法。
PCT/CN2022/090028 2021-12-15 2022-04-28 臂架控制方法、臂架装置、工程车辆和可读存储介质 WO2023108986A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111534911.9 2021-12-15
CN202111534911.9A CN114217646A (zh) 2021-12-15 2021-12-15 臂架控制方法、臂架装置、工程车辆和可读存储介质

Publications (1)

Publication Number Publication Date
WO2023108986A1 true WO2023108986A1 (zh) 2023-06-22

Family

ID=80702271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090028 WO2023108986A1 (zh) 2021-12-15 2022-04-28 臂架控制方法、臂架装置、工程车辆和可读存储介质

Country Status (2)

Country Link
CN (1) CN114217646A (zh)
WO (1) WO2023108986A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116576176A (zh) * 2023-07-06 2023-08-11 徐工消防安全装备有限公司 抑制臂架振动的方法、装置及作业平台

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114217646A (zh) * 2021-12-15 2022-03-22 三一汽车制造有限公司 臂架控制方法、臂架装置、工程车辆和可读存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598671A (ja) * 1991-03-20 1993-04-20 Hitachi Constr Mach Co Ltd 油圧作業機械における作業装置の振動抑制制御装置
US20050081519A1 (en) * 2003-10-16 2005-04-21 Pengfei Ma System for preventing swing wag for a work machine with a boom assembly
CN103047337A (zh) * 2012-12-03 2013-04-17 中联重科股份有限公司 混凝土布料设备及其臂架振动抑制的方法、控制器和装置
CN103558875A (zh) * 2013-10-24 2014-02-05 中联重科股份有限公司 一种泵车臂架减振控制设备、系统、方法和工程机械
CN103629293A (zh) * 2013-12-04 2014-03-12 中联重科股份有限公司 臂架残余振动的抑制方法及装置
CN105317217A (zh) * 2014-06-17 2016-02-10 中联重科股份有限公司 臂架回转振动抑制设备、系统、方法及工程机械
CN111377380A (zh) * 2018-12-31 2020-07-07 上海格拉曼国际消防装备有限公司 一种用于臂架减振的方法及装置
CN112049426A (zh) * 2020-08-31 2020-12-08 三一汽车制造有限公司 臂架控制系统、方法和作业车辆
CN114217646A (zh) * 2021-12-15 2022-03-22 三一汽车制造有限公司 臂架控制方法、臂架装置、工程车辆和可读存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1932215B (zh) * 2006-09-30 2010-08-11 三一重工股份有限公司 用于抑制混凝土泵车臂架振动的方法及装置
CN102338191B (zh) * 2011-07-01 2013-06-05 三一重工股份有限公司 臂架振动抑制方法、系统及臂架式工程机械
CN102434620B (zh) * 2011-09-13 2014-04-30 中联重科股份有限公司 泵车稳定性控制方法、装置、系统以及具有该系统的泵车

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0598671A (ja) * 1991-03-20 1993-04-20 Hitachi Constr Mach Co Ltd 油圧作業機械における作業装置の振動抑制制御装置
US20050081519A1 (en) * 2003-10-16 2005-04-21 Pengfei Ma System for preventing swing wag for a work machine with a boom assembly
CN103047337A (zh) * 2012-12-03 2013-04-17 中联重科股份有限公司 混凝土布料设备及其臂架振动抑制的方法、控制器和装置
CN103558875A (zh) * 2013-10-24 2014-02-05 中联重科股份有限公司 一种泵车臂架减振控制设备、系统、方法和工程机械
CN103629293A (zh) * 2013-12-04 2014-03-12 中联重科股份有限公司 臂架残余振动的抑制方法及装置
CN105317217A (zh) * 2014-06-17 2016-02-10 中联重科股份有限公司 臂架回转振动抑制设备、系统、方法及工程机械
CN111377380A (zh) * 2018-12-31 2020-07-07 上海格拉曼国际消防装备有限公司 一种用于臂架减振的方法及装置
CN112049426A (zh) * 2020-08-31 2020-12-08 三一汽车制造有限公司 臂架控制系统、方法和作业车辆
CN114217646A (zh) * 2021-12-15 2022-03-22 三一汽车制造有限公司 臂架控制方法、臂架装置、工程车辆和可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116576176A (zh) * 2023-07-06 2023-08-11 徐工消防安全装备有限公司 抑制臂架振动的方法、装置及作业平台
CN116576176B (zh) * 2023-07-06 2023-09-29 徐工消防安全装备有限公司 抑制臂架振动的方法、装置及作业平台

Also Published As

Publication number Publication date
CN114217646A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2023108986A1 (zh) 臂架控制方法、臂架装置、工程车辆和可读存储介质
CN108568814B (zh) 机器人以及机器人的控制方法
CN103234002B (zh) 抑制臂架回转振动的设备、方法、系统及工程机械
CN109291055B (zh) 机器人运动控制方法、装置、计算机设备和存储介质
KR20190107082A (ko) 스티어 휠 동역학에 기초한 트랙션 속력 복구
RU2016125496A (ru) Устройство и способ управления раскачиванием груза, подвешенного на подъемном устройстве
WO2023050684A1 (zh) 平地辅助系统、方法及作业机械
CN110977974A (zh) 一种机器人规避奇异位型的导纳控制方法、装置及系统
WO2021159784A1 (zh) 机器人用减速机的运行保护方法及其系统、存储介质
US20200175827A1 (en) Systems and Methods for Controlling Actuator Drive Signals for Improving Transient Response Characteristics
EP2439344A2 (en) Device and method for controlling swing of construction equipment
CN109129475A (zh) 机械臂的重力补偿方法、装置、系统及存储介质
WO2020103894A1 (zh) 一种电机控制方法和系统、控制器
CN102275824A (zh) 回转式起重机回转运动的控制方法与控制系统
CN114281119B (zh) 水压控制方法、二次供水系统、电子设备以及存储介质
CN113250255A (zh) 一种基于电子围墙的工程机械控制方法、装置及工程机械
JP2010095906A (ja) 建設機械および旋回制御装置
JPH0991025A (ja) 動作デューティを考慮したロボットの最短時間制御方法
CN103853571A (zh) 一种工作状态切换方法及电子设备
JP5499865B2 (ja) 多関節型ロボットの速度指令プロファイルの生成方法
JP4389980B2 (ja) 多関節型ロボットの制御方法
JP2004137702A (ja) 作業機械のアクチュエータ制御装置
JP2014174842A (ja) S字加減速制御プログラム、動作制御プログラム、記録媒体、コントローラ、s字加減速制御演算方法およびワーク動作制御システム
CN109313420B (zh) 机器人系统、驱动器、存储装置及控制模式的切换方法
KR101805333B1 (ko) 하이브리드 굴삭기의 동력보조 장치 및 동력보조 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905754

Country of ref document: EP

Kind code of ref document: A1