WO2023108658A1 - 一种数据重传方法及设备/存储介质/装置 - Google Patents

一种数据重传方法及设备/存储介质/装置 Download PDF

Info

Publication number
WO2023108658A1
WO2023108658A1 PCT/CN2021/139337 CN2021139337W WO2023108658A1 WO 2023108658 A1 WO2023108658 A1 WO 2023108658A1 CN 2021139337 W CN2021139337 W CN 2021139337W WO 2023108658 A1 WO2023108658 A1 WO 2023108658A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
data
retransmission
present disclosure
sending
Prior art date
Application number
PCT/CN2021/139337
Other languages
English (en)
French (fr)
Inventor
杨星
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/139337 priority Critical patent/WO2023108658A1/zh
Priority to CN202180004521.2A priority patent/CN114402553A/zh
Publication of WO2023108658A1 publication Critical patent/WO2023108658A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/188Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of communications, and in particular to a data retransmission method and equipment/storage medium/apparatus.
  • the direct communication between UE (User Equipment, user equipment) and UE is realized by introducing the Sidelink (direct connection of things) communication mode.
  • a hybrid automatic repeat request (Hybrid Automatic Repeat Quest, HARQ) feedback method will be used for interaction.
  • the HARQ feedback mode includes two kinds, respectively feedback ACK (Acknowledgment, positive confirmation) or NACK (Negative Acknowledgment, negative confirmation), and only feedback NACK; wherein, for the feedback mode of feedback ACK or NACK, when receiving When the UE data is successfully received, ACK will be fed back to the sending UE.
  • NACK When the receiving UE fails to receive data, NACK will be fed back to the sending UE, or no feedback will be given.
  • NACK For the feedback method that only feeds back NACK, when the receiving UE fails to receive data, NACK will be fed back, and no feedback will be given when the receiving UE data is successfully received.
  • the uplink transmission resources of the cellular network may be reused during Sidelink between UEs, where the UE cannot perform uplink transmission and Sidelink transceiving at the same time. Then, when the Sidelink transmission resources overlap with the uplink transmission resources of the cellular network, it is necessary to determine which data is to be transmitted preferentially according to the priorities of the Sidelink data and the uplink data to be transmitted. At this time, if the priority of the uplink data to be sent is high, it may cause the sidelink data to fail to be sent, causing confusion in the HARQ feedback mechanism, resulting in power consumption or resource waste of the UE.
  • the HARQ feedback method is to only feed back NACK
  • the receiving UE when the receiving UE fails to receive data, it will send NACK to the sending UE, and at the same time start the retransmission timer to receive the data retransmitted by the sending UE.
  • NACK cannot be successfully sent to the sending UE
  • the sending UE cannot receive feedback, and it will think that the receiving UE has successfully received the data, and the sending UE will not The data will be retransmitted. Therefore, the retransmission timer started by the receiving UE cannot receive the data retransmitted by the sending UE at all, which will cause the UE to consume power and waste resources.
  • the HARQ feedback mode is feedback ACK or NACK
  • the receiving UE when it successfully receives data, it will send ACK to the sending UE.
  • ACK cannot be successfully sent to the sending UE"
  • the sending UE cannot receive feedback, and will think that the receiving UE has failed to receive data, and the sending UE will retransmit the data, which will also cause UE power consumption and resource waste.
  • the data retransmission method and equipment/storage medium/device proposed in the present disclosure are used to solve the technical problem that the data retransmission method of the related art easily leads to power consumption and waste of resources of the UE.
  • the receiving UE In response to the timeout of the RTT timer and the receiving UE does not send the PSFCH, determine whether to start the retransmission timer based on the HARQ feedback mode corresponding to the receiving UE.
  • the data retransmission device proposed by the embodiment includes:
  • the determining module is configured to determine whether to start the retransmission timer based on the hybrid automatic repeat request HARQ feedback mode corresponding to the receiving UE in response to the timeout of the RTT timer and the receiving UE does not send the PSFCH.
  • an embodiment provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The device executes the method provided in the embodiment of the foregoing aspect.
  • a communication device provided by an embodiment of another aspect of the present disclosure includes: a processor and an interface circuit;
  • the interface circuit is used to receive code instructions and transmit them to the processor
  • the processor is configured to run the code instructions to execute the method provided in one embodiment.
  • the computer-readable storage medium provided by another embodiment of the present disclosure is used to store instructions, and when the instructions are executed, the method provided by the first embodiment is implemented.
  • the receiving UE when the RTT timer of the receiving UE expires and the receiving UE does not send PSFCH, the receiving UE will The corresponding HARQ feedback method determines whether to start the retransmission timer, thereby avoiding "the receiving UE starts the retransmission timer, but the sending UE does not retransmit data", or "the receiving UE does not start the retransmission timer, but the sending UE Retransmission of data" and similar situations occur, thereby saving UE power consumption and avoiding resource waste.
  • FIG. 1 is a schematic flowchart of a data retransmission method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a data retransmission method provided by another embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a data retransmission method provided by another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a data retransmission method provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a data retransmission method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a data retransmission method provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a data retransmission method provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a data retransmission method provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a data retransmission device provided by an embodiment of the present disclosure.
  • Fig. 10 is a block diagram of a user equipment provided by an embodiment of the present disclosure.
  • Fig. 11 is a block diagram of a network side device provided by an embodiment of the present disclosure.
  • first, second, third, etc. may use the terms first, second, third, etc. to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another. For example, without departing from the scope of the embodiments of the present disclosure, first information may also be called second information, and similarly, second information may also be called first information.
  • first information may also be called second information
  • second information may also be called first information.
  • the words "if” and "if” as used herein may be interpreted as “at” or "when” or "in response to a determination.”
  • FIG. 1 is a schematic flowchart of a data retransmission method provided by an embodiment of the present disclosure, which is applied to a receiving UE.
  • the data retransmission method may include the following steps:
  • Step 101 in response to the RTT (Round Trip Time, round-trip delay) timer overtime, and the receiving UE has not sent PSFCH (Physical Sidelink Feedback Channel, physical direct feedback channel), determine whether to start re-starting based on the HARQ feedback method corresponding to the receiving UE pass timer.
  • RTT Random Trip Time, round-trip delay
  • PSFCH Physical Sidelink Feedback Channel, physical direct feedback channel
  • a UE may be a device that provides voice and/or data connectivity to a user.
  • Terminal equipment can communicate with one or more core networks via RAN (Radio Access Network, wireless access network), and UE can be an IoT terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and a
  • the computer of the networked terminal for example, may be a fixed, portable, pocket, hand-held, built-in computer or vehicle-mounted device.
  • station Station, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • user terminal or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, it may be a trip computer with a wireless communication function, or a wireless terminal connected externally to the trip computer.
  • the UE may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • the sending UE may send data to the receiving UE in any form of multicast, unicast, or broadcast.
  • the above-mentioned HARQ feedback method may include any of the following:
  • the first type Feedback ACK or NACK
  • the second type only feedback NACK.
  • the receiving UE when the receiving UE receives data successfully, the receiving UE will feed back ACK to the sending UE, and when the receiving UE fails to receive data, the receiving UE will feed back NACK to the sending UE, or no feedback.
  • the receiving UE when the receiving UE fails to receive data, the receiving UE will feed back NACK to the sending UE, and when the receiving UE successfully receives data, the receiving UE will not feedback.
  • the aforementioned PSFCH may be used to transmit and receive HARQ feedback (ie, ACK feedback or NACK feedback) sent by the UE.
  • HARQ feedback ie, ACK feedback or NACK feedback
  • the aforementioned receiving UE not sending PSFCH may include the following situations:
  • Scenario 1 Based on the HARQ feedback method and the receiving UE's data reception result (ie, reception success or reception failure), it is determined that there is no need to send HARQ feedback through the PSFCH. For example, in the case of feedback ACK or NACK, when the receiving UE fails to receive data, the receiving UE does not feed back, or, for the case of only feeding back NACK, when the receiving UE receives data successfully, the receiving UE does not feedback, because there is no need to receive UE feedback , naturally there is no need to send HARQ feedback through PSFCH;
  • Scenario 2 Based on the HARQ feedback method and the receiving UE's data reception result (ie, reception success or reception failure), it is determined that HARQ feedback needs to be sent through PSFCH, but due to transmission conflict between HARQ feedback and other data (such as uplink data to be sent), and The priority of the HARQ feedback is lower than that of other data, so that the HARQ feedback cannot be sent. For example, in the case of feedback ACK or NACK, when the receiving UE receives data successfully, the receiving UE will feed back ACK to the sending UE, or when the receiving UE fails to receive data, the receiving UE will feed back NACK to the sending UE.
  • feedback ACK or NACK when the receiving UE receives data successfully, the receiving UE will feed back ACK to the sending UE, or when the receiving UE fails to receive data, the receiving UE will feed back NACK to the sending UE.
  • the receiving UE when the receiving UE fails to receive data, the receiving UE will feed back NACK to the sending UE. In the above situation, it is necessary to send HARQ feedback through PSFCH. However, due to the above reasons (that is, transmission conflict between HARQ feedback and other data and the priority of HARQ feedback is low), HARQ feedback cannot be sent through PSFCH.
  • the above-mentioned method of determining whether to start the retransmission timer based on receiving the HARQ feedback corresponding to the UE may include at least one of the following:
  • Method 1 In response to the fact that the HARQ feedback mode is ACK or NACK, and the receiving UE fails to receive data, start a retransmission timer.
  • HARQ feedback methods and several situations that the receiving UE may not send PSFCH it can be known that for the above method one, when the receiving UE The current HARQ feedback method is feedback ACK or NACK, and when the receiving UE fails to receive data, if the receiving UE does not send PSFCH, it means the following two situations:
  • Scenario 1b The receiving UE determines to feed back NACK to the sending UE, but the NACK conflicts with other data transmissions, and the priority of the NACK is low, so the receiving UE cannot currently send NACK to the sending UE (that is, the receiving UE has not sent PSFCH) .
  • the sending UE can receive the feedback from the receiving UE, and the feedback mode is ACK or NACK at this time.
  • the sending UE will think that the receiving UE has not successfully received the data, and will retransmit the data. Based on Therefore, in one embodiment of the present disclosure, the receiving UE can start the retransmission timer to monitor the PSCCH (Physical Sidelink Control Channel, Physical Sidelink Control Channel) to receive the data retransmitted by the sending UE, thereby avoiding "receiving UE does not start the retransmission timer, but sends UE retransmission data", which reduces UE power consumption and avoids resource waste.
  • PSCCH Physical Sidelink Control Channel
  • Method 2 Start a retransmission timer in response to the HARQ feedback mode being ACK or NACK feedback.
  • Scenario 2b The receiving UE fails to receive data, and the receiving UE determines to feed back NACK to the sending UE. However, the NACK conflicts with other data transmissions, and the priority of the NACK is low, so the receiving UE cannot currently send NACK to the sending UE ( That is, the receiving UE does not send the PSFCH).
  • Scenario 2c The receiving UE successfully receives the data, and the receiving UE determines to feed back an ACK to the sending UE. However, the transmission conflict between the ACK and other data occurs, and the priority of the ACK is low, so the receiving UE cannot currently send an ACK to the sending UE (that is, The receiving UE does not send PSFCH).
  • the sending UE cannot receive the feedback from the receiving UE.
  • the sending UE will think that the receiving UE has not successfully received the data, and will retransmit the data.
  • the receiving UE can start a retransmission timer.
  • the receiving UE can monitor the PSCCH to receive the data retransmitted by the sending UE, thereby avoiding the occurrence of "the receiving UE The retransmission timer is not started, but the UE retransmission data is sent", which reduces UE power consumption and avoids resource waste.
  • Method 3 In response to the fact that the HARQ feedback mode is only NACK feedback, the retransmission timer is not started.
  • Scenario 3a The receiving UE fails to receive data, and the receiving UE determines to feed back NACK to the sending UE. However, the NACK conflicts with other data transmissions, and the priority of the NACK is low, so the receiving UE cannot currently send NACK to the sending UE ( That is, the receiving UE does not send the PSFCH).
  • the sending UE can receive the feedback from the receiving UE.
  • NACK is fed back.
  • the sending UE will think that the receiving UE has successfully received the data, and will not retransmit the data.
  • the receiving UE may not start the retransmission timer, thereby avoiding the situation of "the receiving UE starts the retransmission timer, but the sending UE does not retransmit the data", which reduces the power consumption of the UE and Waste of resources is avoided.
  • Method 4 In response to the fact that the HARQ feedback mode is only NACK feedback and the receiving UE fails to receive data, the receiving UE receives NACK feedback sent by other UEs in the same group, and starts a retransmission timer.
  • the fourth method is applied in a multicast transmission situation.
  • Scenario 4a The receiving UE determines to feed back NACK to the sending UE, but the NACK conflicts with other data transmissions, and the priority of the NACK is low, so the receiving UE cannot currently send NACK to the sending UE (that is, the receiving UE has not sent PSFCH) .
  • the receiving UE failed to feed back NACK to the sending UE, but at this time, if the receiving UE receives NACK feedback sent by other UEs in the same group, it means that the sending UE will also receive NACK feedback sent by other UEs. NACK feedback. At this time, the sending UE will know that the data has not been sent successfully, and will retransmit the data again through multicast. At this time, the receiving UE can start the retransmission timer.
  • the receiving UE can be monitored to receive data retransmitted by the sending UE, so as to avoid the situation of "the receiving UE does not start the retransmission timer, but the sending UE retransmits data", which reduces UE power consumption and avoids resource waste.
  • the receiving UE when the RTT timer of the receiving UE expires and the receiving UE does not send PSFCH, the receiving UE will The corresponding HARQ feedback method determines whether to start the retransmission timer, thereby avoiding "the receiving UE starts the retransmission timer, but the sending UE does not retransmit data", or "the receiving UE does not start the retransmission timer, but the sending UE Retransmission of data" and similar situations occur, thereby saving UE power consumption and avoiding resource waste.
  • FIG. 2 is a schematic flowchart of a data retransmission method provided by an embodiment of the present disclosure, which is applied to a receiving UE.
  • the data retransmission method may include the following steps:
  • Step 201 In response to the timeout of the RTT timer and the receiving UE does not send PSFCH, if the HARQ feedback mode is feedback ACK or NACK and the receiving UE fails to receive data, start the retransmission timer.
  • step 201 for the related introduction of step 201, reference may be made to the description of the above-mentioned embodiments, and the embodiments of the present disclosure are not repeated here.
  • the receiving UE when the RTT timer of the receiving UE expires and the receiving UE does not send PSFCH, the receiving UE will The corresponding HARQ feedback method determines whether to start the retransmission timer, thereby avoiding "the receiving UE starts the retransmission timer, but the sending UE does not retransmit data", or "the receiving UE does not start the retransmission timer, but the sending UE Retransmission of data" and similar situations occur, thereby saving UE power consumption and avoiding resource waste.
  • FIG. 3 is a schematic flowchart of a data retransmission method provided by an embodiment of the present disclosure, which is applied to a receiving UE.
  • the data retransmission method may include the following steps:
  • Step 301 In response to the RTT timer being overdue and the receiving UE not sending PSFCH, if the HARQ feedback mode is ACK or NACK feedback, start the retransmission timer.
  • step 301 For the relevant introduction of step 301, reference may be made to the description of the foregoing embodiments, and the embodiments of the present disclosure are not described in detail here.
  • the receiving UE when the RTT timer of the receiving UE expires and the receiving UE does not send PSFCH, the receiving UE will The corresponding HARQ feedback method determines whether to start the retransmission timer, thereby avoiding "the receiving UE starts the retransmission timer, but the sending UE does not retransmit data", or "the receiving UE does not start the retransmission timer, but the sending UE Retransmission of data" and similar situations occur, thereby saving UE power consumption and avoiding resource waste.
  • FIG. 4 is a schematic flowchart of a data retransmission method provided by an embodiment of the present disclosure, which is applied to a receiving UE.
  • the data retransmission method may include the following steps:
  • Step 401 in response to the RTT timer being timed out and the receiving UE not sending PSFCH, if the HARQ feedback mode is only NACK feedback, the retransmission timer is not started.
  • step 401 For the related introduction of step 401, reference may be made to the description of the above-mentioned embodiments, and the embodiments of the present disclosure are not repeated here.
  • the receiving UE when the RTT timer of the receiving UE expires and the receiving UE does not send PSFCH, the receiving UE will The corresponding HARQ feedback method determines whether to start the retransmission timer, thereby avoiding "the receiving UE starts the retransmission timer, but the sending UE does not retransmit data", or "the receiving UE does not start the retransmission timer, but the sending UE Retransmission of data" and similar situations occur, thereby saving UE power consumption and avoiding resource waste.
  • FIG. 5 is a schematic flowchart of a data retransmission method provided by an embodiment of the present disclosure, which is applied to a receiving UE. As shown in FIG. 5, the data retransmission method may include the following steps:
  • Step 501 In response to the RTT timer timeout, and the receiving UE does not send PSFCH, if the HARQ feedback mode is only NACK feedback, and the receiving UE fails to receive data, the receiving UE receives NACK feedback sent by other UEs, and starts the retransmission timer .
  • step 501 For the relevant introduction about step 501, reference may be made to the description of the foregoing embodiments, and details are not described in this embodiment of the present disclosure.
  • the receiving UE when the RTT timer of the receiving UE expires and the receiving UE does not send PSFCH, the receiving UE will The corresponding HARQ feedback method determines whether to start the retransmission timer, thereby avoiding "the receiving UE starts the retransmission timer, but the sending UE does not retransmit data", or "the receiving UE does not start the retransmission timer, but the sending UE Retransmission of data" and similar situations occur, thereby saving UE power consumption and avoiding resource waste.
  • FIG. 6 is a schematic flowchart of a data retransmission method provided by an embodiment of the present disclosure, which is applied to a receiving UE. As shown in FIG. 6, the data retransmission method may include the following steps:
  • Step 601 start the RTT timer.
  • the method for starting the RTT timer may include:
  • the RTT timer is started at the first slot after the PSFCH resource location in response to receiving that the UE did not transmit a PSFCH.
  • Step 602 in response to the RTT timer being timed out and the receiving UE not sending the PSFCH, determine whether to start the retransmission timer based on the HARQ feedback mode corresponding to the receiving UE.
  • step 602 reference may be made to the description of the foregoing embodiments, and the embodiments of the present disclosure are not described in detail here.
  • the receiving UE when the RTT timer of the receiving UE expires and the receiving UE does not send PSFCH, the receiving UE will The corresponding HARQ feedback method determines whether to start the retransmission timer, thereby avoiding "the receiving UE starts the retransmission timer, but the sending UE does not retransmit data", or "the receiving UE does not start the retransmission timer, but the sending UE Retransmission of data" and similar situations occur, thereby saving UE power consumption and avoiding resource waste.
  • FIG. 7 is a schematic flowchart of a data retransmission method provided by an embodiment of the present disclosure, which is applied to a receiving UE.
  • the data retransmission method may include the following steps:
  • Step 701 in response to the RTT timer being timed out and the receiving UE not sending the PSFCH, determine whether to start the retransmission timer based on the HARQ feedback mode corresponding to the receiving UE.
  • step 701 for the related introduction of step 701, reference may be made to the description of the foregoing embodiments, and the embodiments of the present disclosure are not repeated here.
  • Step 702. In response to starting the retransmission timer, monitor the PSCCH during the retransmission timer start period.
  • the receiving UE monitors the PSCCH to receive the retransmission data sent by the sending UE only when the retransmission timer is started, so as to achieve the purpose of energy saving.
  • the receiving UE when the RTT timer of the receiving UE expires and the receiving UE does not send PSFCH, the receiving UE will The corresponding HARQ feedback method determines whether to start the retransmission timer, thereby avoiding "the receiving UE starts the retransmission timer, but the sending UE does not retransmit data", or "the receiving UE does not start the retransmission timer, but the sending UE Retransmission of data" and similar situations occur, thereby saving UE power consumption and avoiding resource waste.
  • FIG. 8 is a schematic flowchart of a data retransmission method provided by an embodiment of the present disclosure, which is applied to a receiving UE. As shown in FIG. 8, the data retransmission method may include the following steps:
  • Step 801 the receiving UE receives data sent by the sending UE in the form of multicast.
  • Step 802 in response to the RTT timer being timed out and the receiving UE not sending the PSFCH, determine whether to start the retransmission timer based on the HARQ feedback mode corresponding to the receiving UE.
  • step 802 reference may be made to the description of the foregoing embodiments, and the embodiments of the present disclosure are not described in detail here.
  • the receiving UE when the RTT timer of the receiving UE expires and the receiving UE does not send PSFCH, the receiving UE will The corresponding HARQ feedback method determines whether to start the retransmission timer, thereby avoiding "the receiving UE starts the retransmission timer, but the sending UE does not retransmit data", or "the receiving UE does not start the retransmission timer, but the sending UE Retransmission of data" and similar situations occur, thereby saving UE power consumption and avoiding resource waste.
  • Fig. 9 is a schematic structural diagram of a data retransmission device provided by an embodiment of the present disclosure. As shown in Fig. 9, the device may include:
  • the determining module 901 is configured to determine whether to start a retransmission timer based on the hybrid automatic repeat request HARQ feedback mode corresponding to the receiving UE in response to the timeout of the RTT timer and the receiving UE does not send the PSFCH.
  • the receiving UE when the RTT timer of the receiving UE expires and the receiving UE does not send PSFCH, the receiving UE will determine whether to Start the retransmission timer, so as to avoid the similar situation of "the receiving UE starts the retransmission timer, but the sending UE does not retransmit the data", or "the receiving UE does not start the retransmission timer, but the sending UE retransmits the data" occurs, thereby saving UE power consumption and avoiding resource waste.
  • the determination module is also used for:
  • the retransmission timer is not started
  • the receiving UE In response to the fact that the HARQ feedback mode is only NACK feedback and the receiving UE fails to receive data, the receiving UE receives NACK feedback sent by other UEs, and starts the retransmission timer.
  • the device is also used for:
  • a physical bypass control channel PSCCH
  • PSCCH Physical bypass control channel
  • the device is also used for:
  • the device is also used for:
  • the RTT timer is started at the first time slot after the PSFCH resource location.
  • the device is also used for:
  • the receiving UE receives the data sent by the sending UE in the form of multicast.
  • Fig. 10 is a block diagram of a user equipment UE1000 provided by an embodiment of the present disclosure.
  • UE1000 may be a mobile phone, a computer, a digital broadcasting terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • UE1000 may include at least one of the following components: a processing component 1002, a memory 1004, a power supply component 1006, a multimedia component 1008, an audio component 1010, an input/output (I/O) interface 1012, a sensor component 1013, and a communication component 1016.
  • Processing component 1002 generally controls the overall operations of UE 1000, such as those associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1002 may include at least one processor 1020 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • processing component 1002 can include at least one module to facilitate interaction between processing component 1002 and other components.
  • processing component 1002 may include a multimedia module to facilitate interaction between multimedia component 1008 and processing component 1002 .
  • the memory 1004 is configured to store various types of data to support operations at the UE 1000 . Examples of such data include instructions for any application or method operating on UE1000, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 1004 can be realized by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power supply component 1006 provides power to various components of the UE 1000 .
  • Power component 1006 may include a power management system, at least one power supply, and other components associated with generating, managing, and distributing power for UE 1000 .
  • the multimedia component 1008 includes a screen providing an output interface between the UE 1000 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also detect a wake-up time and pressure related to the touch or slide operation.
  • the multimedia component 1008 includes a front camera and/or a rear camera. When the UE1000 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 1010 is configured to output and/or input audio signals.
  • the audio component 1010 includes a microphone (MIC), which is configured to receive an external audio signal when the UE 1000 is in an operation mode, such as a call mode, a recording mode and a voice recognition mode. Received audio signals may be further stored in memory 1004 or sent via communication component 1016 .
  • the audio component 1010 also includes a speaker for outputting audio signals.
  • the I/O interface 1012 provides an interface between the processing component 1002 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • the sensor component 1013 includes at least one sensor, which is used to provide various aspects of status assessment for the UE 1000 .
  • the sensor component 1013 can detect the open/close state of the device 1000, the relative positioning of components, such as the display and the keypad of the UE1000, the sensor component 1013 can also detect the position change of the UE1000 or a component of the UE1000, and the user and Presence or absence of UE1000 contact, UE1000 orientation or acceleration/deceleration and temperature change of UE1000.
  • the sensor assembly 1013 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • the sensor assembly 1013 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 1013 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • Communication component 1016 is configured to facilitate wired or wireless communications between UE 1000 and other devices.
  • UE1000 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or their combination.
  • the communication component 1016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1016 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wideband
  • Bluetooth Bluetooth
  • UE 1000 may be powered by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components for implementing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components for implementing the above method.
  • FIG. 11 is a block diagram of a network-side device 1100 provided by an embodiment of the present application.
  • the network side device 1100 may be provided as a network side device.
  • the network side device 1100 includes a processing component 1111 , which further includes at least one processor, and a memory resource represented by a memory 1132 for storing instructions executable by the processing component 1122 , such as an application program.
  • the application program stored in memory 1132 may include one or more modules each corresponding to a set of instructions.
  • the processing component 1115 is configured to execute instructions, so as to execute any of the aforementioned methods applied to the network side device, for example, the method shown in FIG. 1 .
  • the network side device 1100 may also include a power supply component 1126 configured to perform power management of the network side device 1100, a wired or wireless network interface 1150 configured to connect the network side device 1100 to the network, and an input/output (I/O ) interface 1158.
  • the network side device 1100 can operate based on the operating system stored in the memory 1132, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, Free BSDTM or similar.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device and the UE respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network side device and the UE respectively.
  • the network side device and the UE may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the communication device may include a transceiver module and a processing module.
  • the transceiver module may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module can realize the sending function and/or the receiving function.
  • the communication device may be a terminal device (such as the terminal device in the foregoing method embodiments), or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device may be a network device, or a terminal device (such as the terminal device in the above method embodiment), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A chip, a chip system, or a processor for realizing the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • a communications device may include one or more processors.
  • the processor may be a general purpose processor or a special purpose processor or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as network side equipment, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.)
  • a computer program that processes data for a computer program.
  • the communication device may further include one or more memories, on which computer programs may be stored, and the processor executes the computer programs, so that the communication device executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • the communication device and the memory can be set separately or integrated together.
  • the communication device may further include a transceiver and an antenna.
  • the transceiver may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device may further include one or more interface circuits.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor executes the code instructions to enable the communication device to execute the methods described in the foregoing method embodiments.
  • the communication device is a terminal device (such as the terminal device in the above method embodiment): the processor is configured to execute any of the methods shown in FIGS. 1-6 .
  • the communication device is a network device: the transceiver is used to execute the method shown in any one of Fig. 7-Fig. 8 .
  • the processor may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor may store a computer program, and the computer program runs on the processor to enable the communication device to execute the methods described in the foregoing method embodiments.
  • a computer program may be embedded in a processor, in which case the processor may be implemented by hardware.
  • the communication device may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (Gas), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS bipolar junction transistor
  • BJT bipolar CMOS
  • SiGe silicon germanium
  • Gas gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the above method embodiments), but the scope of the communication device described in this disclosure is not limited thereto, and the structure of the communication device may not be affected by limits.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communications device may be a chip or system-on-a-chip
  • the chip includes a processor and an interface.
  • the number of processors may be one or more, and the number of interfaces may be more than one.
  • the chip also includes a memory, which is used to store necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining the duration of a side link, the system includes a communication device as a terminal device (such as the first terminal device in the method embodiment above) in the above embodiment and a communication device as a network device, Alternatively, the system includes a communication device serving as a terminal device in the above embodiment (such as the first terminal device in the above method embodiment) and a communication device serving as a network device.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本公开提出一种数据重传方法及设备/存储介质/装置,属于通信技术领域。其中,该方法包括:响应于往返时间RTT定时器超时,且所述接收UE未发送PSFCH,基于所述接收UE对应的混合自动重传请求HARQ反馈方式确定是否启动重传定时器,本公开提供的方法可以避免UE耗电和资源浪费。

Description

一种数据重传方法及设备/存储介质/装置 技术领域
本公开涉及通信技术领域,尤其涉及一种数据重传方法及设备/存储介质/装置。
背景技术
在通信系统中,通过引入Sidelink(物物直连)通信方式,以实现UE(User Equipment,用户设备)与UE之间的直接通信。其中,UE之间直接通信时,会采用混合自动重传请求(HybridAutom atic Repeat Quest,HARQ)反馈方式进行交互。其中,HARQ反馈方式包括两种,分别为反馈ACK(Acknowledgement,肯定的确认)或NACK(Negative Acknowledgement,否定的确认)、仅反馈NACK;其中,对于反馈ACK或NACK的反馈方式而言,当接收UE数据接收成功时,会向发送UE反馈ACK,当接收UE数据接收失败时,会向发送UE反馈NACK,或不反馈;对于仅反馈NACK的反馈方式而言,当接收UE数据接收失败时,会反馈NACK,当接收UE数据接收成功时,不反馈。
但是,相关技术中,UE之间Sidelink时可能会复用蜂窝网络的上行发送资源,其中,由于UE无法同时进行上行发送和Sidelink的收发。则当Sidelink发送资源和蜂窝网络的上行发送资源重叠时,需要按照Sidelink数据和上行待发数据的优先级判断优先发送哪种数据。此时,若上行待发数据的优先级较高,则可能会导致Sidelink数据发送失败,造成HARQ反馈机制混乱,导致UE耗电或资源浪费。
具体而言,假设HARQ反馈方式为仅反馈NACK,则当接收UE接收数据失败时,会向发送UE发送NACK,同时会启动重传定时器来接收发送UE重传的数据,此时,若由于“Sidelink数据和上行待发数据发生传输冲突,且Sidelink数据优先级较低而导致NACK无法成功发送至发送UE”,则发送UE无法收到反馈,会认为接收UE数据接收成功,则发送UE不会重传数据,由此,接收UE所开启的重传定时器根本无法接收到发送UE重传的数据,则会导致UE耗电和资源浪费。
或者,假设HARQ反馈方式为反馈ACK或NACK,则当接收UE接收数据成功时,会向发送UE发送ACK,此时,若由于“Sidelink数据和上行待发数据发生传输冲突,且Sidelink数据优先级较低而导致ACK无法成功发送至发送UE”,则发送UE无法收到反馈,会认为接收UE数据接收失败,则发送UE会重传数据,同样会导致UE耗电和资源浪费。
发明内容
本公开提出的数据重传方法及设备/存储介质/装置,以解决相关技术的数据重传方法易导致UE耗电和资源浪费的技术问题。
本公开一方面实施例提出的数据重传方法,包括:
响应于往返时间RTT定时器超时,且所述接收UE未发送PSFCH,基于所述接收UE对应的混合自动重传请求HARQ反馈方式确定是否启动重传定时器。
本公开又一方面实施例提出的数据重传装置,包括:
确定模块,用于响应于RTT定时器超时,且所述接收UE未发送PSFCH,基于所述接收UE对应的混合自动重传请求HARQ反馈方式确定是否启动重传定时器。
本公开又一方面实施例提出的一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如上一方面实施例提出的方法。
本公开又一方面实施例提出的通信装置,包括:处理器和接口电路;
所述接口电路,用于接收代码指令并传输至所述处理器;
所述处理器,用于运行所述代码指令以执行如一方面实施例提出的方法。
本公开又一方面实施例提出的计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如一方面实施例提出的方法被实现。
综上所述,在本公开实施例提供的数据重传方法及设备/存储介质/装置之中,当接收UE的RTT定 时器超时,且接收UE未发送PSFCH时,接收UE会基于该接收UE对应的HARQ反馈方式确定是否启动重传定时器,由此可以避免出现“接收UE启动重传定时器,但发送UE未重传数据”、或者“接收UE未启动重传定时器,但发送UE重传数据”类似情况的发生,进而节省了UE耗电且避免了资源浪费。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的数据重传方法的流程示意图;
图2为本公开再一个实施例所提供的数据重传方法的流程示意图;
图3为本公开再一个实施例所提供的数据重传方法的流程示意图;
图4为本公开又一个实施例所提供的数据重传方法的流程示意图;
图5为本公开又一个实施例所提供的数据重传方法的流程示意图;
图6为本公开又一个实施例所提供的数据重传方法的流程示意图;
图7为本公开又一个实施例所提供的数据重传方法的流程示意图;
图8为本公开再一个实施例所提供的数据重传方法的流程示意图;
图9为本公开一个实施例所提供的数据重传装置的结构示意图;
图10是本公开一个实施例所提供的一种用户设备的框图;
图11为本公开一个实施例所提供的一种网络侧设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图对本公开提供的数据重传方法及设备/存储介质/装置进行详细描述。
图1为本公开实施例所提供的一种数据重传方法的流程示意图,应用于接收UE,如图1所示,该数据重传方法可以包括以下步骤:
步骤101、响应于RTT(Round Trip Time,往返时延)定时器超时,且接收UE未发送PSFCH(Physical Sidelink Feedback Channel,物理直连反馈信道),基于接收UE对应的HARQ反馈方式确定是否启动重传定时器。
需要说明的是,在本公开的一个实施例之中,UE可以是指向用户提供语音和/或数据连通性的设备。 终端设备可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,在本公开的一个实施例之中,发送UE可以是以组播、单播、广播中的任一种形式向接收UE发送数据。
以及,在本公开的一个实施例之中,上述的HARQ反馈方式可以包括以下任意一种:
第一种:反馈ACK或NACK;
第二种:仅反馈NACK。
其中,对于第一种的反馈方式而言,当接收UE数据接收成功时,接收UE会向发送UE反馈ACK,当接收UE数据接收失败时,接收UE会向发送UE反馈NACK,或不反馈。
对于第二种的反馈方式而言,当接收UE数据接收失败时,接收UE会向发送UE反馈NACK,当接收UE数据接收成功时,接收UE不反馈。
以及,在本公开的一个实施例之中,上述PSFCH可以用于传输接收UE发送的HARQ反馈(即ACK反馈或NACK反馈)。
进一步地,在本公开的一个实施例之中,上述的接收UE未发送PSFCH可以包括以下几种情形:
情形一:基于HARQ反馈方式和接收UE对于数据的接收结果(即接收成功或接收失败)确定无需通过PSFCH发送HARQ反馈。例如,对于反馈ACK或NACK的情况,当接收UE数据接收失败时,接收UE不反馈,或者,对于仅反馈NACK的情况,当接收UE数据接收成功时,接收UE不反馈,由于无需接收UE反馈,自然不需要通过PSFCH发送HARQ反馈;
情形二:基于HARQ反馈方式和接收UE对于数据的接收结果(即接收成功或接收失败)确定需要通过PSFCH发送HARQ反馈,但是由于HARQ反馈与其他数据(例如上行待发数据)发生传输冲突,且HARQ反馈优先级低于其他数据的优先级,而导致HARQ反馈无法发送。例如,对于反馈ACK或NACK的情况,当接收UE数据接收成功时,接收UE会向发送UE反馈ACK,或者当接收UE数据接收失败时,接收UE会向发送UE反馈NACK,对于仅反馈NACK的情况,当接收UE数据接收失败时,接收UE会向发送UE反馈NACK。在上述情况中,需要通过PSFCH发送HARQ反馈,然而由于上述原因(即HARQ反馈与其他数据发生传输冲突且HARQ反馈的优先级较低),无法通过PSFCH发送HARQ反馈。
在此基础上,在本公开的一个实施例之中,上述的基于接收UE对应的HARQ反馈方式确定是否启动重传定时器的可以包括以下至少一种:
方法一:响应于HARQ反馈方式为反馈ACK或NACK,且接收UE未成功接收数据,启动重传定时器。
其中,在本公开的一个实施例之中,基于上述对于“HARQ反馈方式和接收UE未发送PSFCH可以包括的几种情形”的介绍内容的基础上可知,针对上述方法一而言,当接收UE当前的HARQ反馈方式为反馈ACK或NACK,且接收UE未成功接收数据时,若接收UE未发送PSFCH则意味着以下两种情形:
情形1a:接收UE确定不向发送UE反馈(即接收UE未发送PSFCH)。
情形1b:接收UE确定向发送UE反馈NACK,但是,该NACK与其他数据发生传输冲突,且该NACK的优先级较低,则接收UE当前无法向发送UE发送NACK(即接收UE未发送PSFCH)。
则基于上述两种情形而言,发送UE均无法接收到接收UE的反馈,则此时基于反馈方式为反馈 ACK或NACK,发送UE会认为接收UE未成功接收数据,则会重传数据,基于此,在本公开的一个实施例之中,接收UE可以启动重传定时器,以监听PSCCH(Physical Sidelink Control Channel,物理旁路控制信道)来接收发送UE重传的数据,从而避免出现“接收UE未启动重传定时器,但发送UE重传数据”的情况,降低了UE功耗且避免了资源浪费。
方法二、响应于HARQ反馈方式为反馈ACK或NACK,启动重传定时器。
其中,在本公开的一个实施例之中,基于上述对于“HARQ反馈方式和接收UE未发送PSFCH可以包括的几种情形”的介绍内容的基础上可知,针对上述方法二而言,当接收UE当前的HARQ反馈方式为反馈ACK或NACK时,若接收UE未发送PSFCH则意味着以下三种情形:
情形2a:接收UE未成功接收数据,接收UE确定不向发送UE反馈(即接收UE未发送PSFCH)。
情形2b:接收UE未成功接收数据,接收UE确定向发送UE反馈NACK,但是,该NACK与其他数据发生传输冲突,且该NACK的优先级较低,则接收UE当前无法向发送UE发送NACK(即接收UE未发送PSFCH)。
情形2c:接收UE成功接收数据,接收UE确定向发送UE反馈ACK,但是,该ACK与其他数据发生传输冲突,且该ACK的优先级较低,则接收UE当前无法向发送UE发送ACK(即接收UE未发送PSFCH)。
则基于上述三种情形而言,发送UE均无法接收到接收UE的反馈,则此时基于反馈方式为反馈ACK或NACK,发送UE会认为接收UE未成功接收数据,则会重传数据,基于此,在本公开的一个实施例之中,接收UE可以启动重传定时器,在该重传定时器启动期间,接收UE可以监听PSCCH来接收发送UE重传的数据,从而避免出现“接收UE未启动重传定时器,但发送UE重传数据”的情况,降低了UE功耗且避免了资源浪费。
方法三、响应于HARQ反馈方式为仅反馈NACK,不启动重传定时器。
其中,在本公开的一个实施例之中,基于上述对于“HARQ反馈方式和接收UE未发送PSFCH可以包括的几种情形”的介绍内容的基础上可知,针对上述方法三而言,当接收UE当前的HARQ反馈方式为仅反馈NACK时,若接收UE未发送PSFCH则意味着以下两种情形:
情形3a:接收UE未成功接收数据,接收UE确定向发送UE反馈NACK,但是,该NACK与其他数据发生传输冲突,且该NACK的优先级较低,则接收UE当前无法向发送UE发送NACK(即接收UE未发送PSFCH)。
情形3b:接收UE成功接收数据,接收UE确定不向发送UE反馈。
则基于上述两种情形而言,发送UE均无法接收到接收UE的反馈,则此时基于反馈方式为仅反馈NACK,发送UE会认为接收UE成功接收数据,则不会重传数据,基于此,在本公开的一个实施例之中,接收UE可以不启动重传定时器,从而避免出现“接收UE启动重传定时器,但发送UE未重传数据”的情况,降低了UE功耗且避免了资源浪费。
方法四、响应于HARQ反馈方式为仅反馈NACK,且接收UE未成功接收数据,接收UE接收到同组其他UE发送的NACK反馈,启动重传定时器。
需要说明的是,在本公开的一个实施例之中,该方法四是应用于组播传输情形中的。
以及,在本公开的一个实施例之中,基于上述对于“HARQ反馈方式和接收UE未发送PSFCH可以包括的几种情形”的介绍内容的基础上可知,针对上述方法四而言,当接收UE当前的HARQ反馈方式为仅反馈NACK,且接收UE未成功接收数据时,若接收UE未发送PSFCH则意味着以下一种情形:
情形4a:接收UE确定向发送UE反馈NACK,但是,该NACK与其他数据发生传输冲突,且该NACK的优先级较低,则接收UE当前无法向发送UE发送NACK(即接收UE未发送PSFCH)。
则基于上述一种情形可知,该接收UE未成功向发送UE反馈NACK,但是此时,若该接收UE接 收到同组其他UE发送的NACK反馈,则说明发送UE也会接收到其他UE发送的NACK反馈,此时,发送UE会知晓数据未发送成功,则会通过组播的方式再次重传数据,此时,接收UE可以启动重传定时器,在该重传定时器启动期间,接收UE可以监听PSCCH来接收发送UE重传的数据,从而避免出现“接收UE未启动重传定时器,但发送UE重传数据”的情况,降低了UE功耗且避免了资源浪费。
综上所述,在本公开实施例提供的数据重传方法及设备/存储介质/装置之中,当接收UE的RTT定时器超时,且接收UE未发送PSFCH时,接收UE会基于该接收UE对应的HARQ反馈方式确定是否启动重传定时器,由此可以避免出现“接收UE启动重传定时器,但发送UE未重传数据”、或者“接收UE未启动重传定时器,但发送UE重传数据”类似情况的发生,进而节省了UE耗电且避免了资源浪费。
图2为本公开实施例所提供的一种数据重传方法的流程示意图,应用于接收UE,如图2所示,该数据重传方法可以包括以下步骤:
步骤201、响应于RTT定时器超时,且接收UE未发送PSFCH,若HARQ反馈方式为反馈ACK或NACK,且接收UE未成功接收数据,启动重传定时器。
其中,关于步骤201的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的数据重传方法及设备/存储介质/装置之中,当接收UE的RTT定时器超时,且接收UE未发送PSFCH时,接收UE会基于该接收UE对应的HARQ反馈方式确定是否启动重传定时器,由此可以避免出现“接收UE启动重传定时器,但发送UE未重传数据”、或者“接收UE未启动重传定时器,但发送UE重传数据”类似情况的发生,进而节省了UE耗电且避免了资源浪费。
图3为本公开实施例所提供的一种数据重传方法的流程示意图,应用于接收UE,如图3所示,该数据重传方法可以包括以下步骤:
步骤301、响应于RTT定时器超时,且接收UE未发送PSFCH,若HARQ反馈方式为反馈ACK或NACK,启动重传定时器。
其中,关于步骤301的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的数据重传方法及设备/存储介质/装置之中,当接收UE的RTT定时器超时,且接收UE未发送PSFCH时,接收UE会基于该接收UE对应的HARQ反馈方式确定是否启动重传定时器,由此可以避免出现“接收UE启动重传定时器,但发送UE未重传数据”、或者“接收UE未启动重传定时器,但发送UE重传数据”类似情况的发生,进而节省了UE耗电且避免了资源浪费。
图4为本公开实施例所提供的一种数据重传方法的流程示意图,应用于接收UE,如图4所示,该数据重传方法可以包括以下步骤:
步骤401、响应于RTT定时器超时,且接收UE未发送PSFCH,若HARQ反馈方式为仅反馈NACK,不启动重传定时器。
其中,关于步骤401的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的数据重传方法及设备/存储介质/装置之中,当接收UE的RTT定时器超时,且接收UE未发送PSFCH时,接收UE会基于该接收UE对应的HARQ反馈方式确定是否启动重传定时器,由此可以避免出现“接收UE启动重传定时器,但发送UE未重传数据”、或者“接收UE未启动重传定时器,但发送UE重传数据”类似情况的发生,进而节省了UE耗电且避免了资源浪费。
图5为本公开实施例所提供的一种数据重传方法的流程示意图,应用于接收UE,如图5所示,该数据重传方法可以包括以下步骤:
步骤501、响应于RTT定时器超时,且接收UE未发送PSFCH,若HARQ反馈方式为仅反馈NACK,且接收UE未成功接收数据,接收UE接收到其他UE发送的NACK反馈,启动重传定时器。
其中,关于步骤501的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的数据重传方法及设备/存储介质/装置之中,当接收UE的RTT定 时器超时,且接收UE未发送PSFCH时,接收UE会基于该接收UE对应的HARQ反馈方式确定是否启动重传定时器,由此可以避免出现“接收UE启动重传定时器,但发送UE未重传数据”、或者“接收UE未启动重传定时器,但发送UE重传数据”类似情况的发生,进而节省了UE耗电且避免了资源浪费。
图6为本公开实施例所提供的一种数据重传方法的流程示意图,应用于接收UE,如图6所示,该数据重传方法可以包括以下步骤:
步骤601、启动RTT定时器。
其中,在本公开的一个实施例之中,启动RTT定时器的方法可以包括:
响应于接收UE未发送PSFCH,在PSFCH资源位置之后的第一个时隙启动该RTT定时器。
步骤602、响应于RTT定时器超时,且接收UE未发送PSFCH,基于接收UE对应的混合自动重传请求HARQ反馈方式确定是否启动重传定时器。
其中,关于步骤602的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的数据重传方法及设备/存储介质/装置之中,当接收UE的RTT定时器超时,且接收UE未发送PSFCH时,接收UE会基于该接收UE对应的HARQ反馈方式确定是否启动重传定时器,由此可以避免出现“接收UE启动重传定时器,但发送UE未重传数据”、或者“接收UE未启动重传定时器,但发送UE重传数据”类似情况的发生,进而节省了UE耗电且避免了资源浪费。
图7为本公开实施例所提供的一种数据重传方法的流程示意图,应用于接收UE,如图7所示,该数据重传方法可以包括以下步骤:
步骤701、响应于RTT定时器超时,且接收UE未发送PSFCH,基于接收UE对应的混合自动重传请求HARQ反馈方式确定是否启动重传定时器。
其中,关于步骤701的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
步骤702、响应于启动重传定时器,在重传定时器启动期间,监听PSCCH。
其中,在本公开的一个实施例之中,接收UE只有在重传定时器启动期间才会监听PSCCH以接收发送UE发送的重传数据,从而可以起到节能的目的。
综上所述,在本公开实施例提供的数据重传方法及设备/存储介质/装置之中,当接收UE的RTT定时器超时,且接收UE未发送PSFCH时,接收UE会基于该接收UE对应的HARQ反馈方式确定是否启动重传定时器,由此可以避免出现“接收UE启动重传定时器,但发送UE未重传数据”、或者“接收UE未启动重传定时器,但发送UE重传数据”类似情况的发生,进而节省了UE耗电且避免了资源浪费。
图8为本公开实施例所提供的一种数据重传方法的流程示意图,应用于接收UE,如图8所示,该数据重传方法可以包括以下步骤:
步骤801、接收UE以组播的形式接收发送UE发送的数据。
步骤802、响应于RTT定时器超时,且接收UE未发送PSFCH,基于接收UE对应的混合自动重传请求HARQ反馈方式确定是否启动重传定时器。
其中,关于步骤802的相关介绍可以参考上述实施例描述,本公开实施例在此不做赘述。
综上所述,在本公开实施例提供的数据重传方法及设备/存储介质/装置之中,当接收UE的RTT定时器超时,且接收UE未发送PSFCH时,接收UE会基于该接收UE对应的HARQ反馈方式确定是否启动重传定时器,由此可以避免出现“接收UE启动重传定时器,但发送UE未重传数据”、或者“接收UE未启动重传定时器,但发送UE重传数据”类似情况的发生,进而节省了UE耗电且避免了资源浪费。
图9本公开一个实施例所提供的一种数据重传装置的结构示意图,如图9所示,装置可以包括:
确定模块901,用于响应于RTT定时器超时,且所述接收UE未发送PSFCH,基于所述接收UE对应的混合自动重传请求HARQ反馈方式确定是否启动重传定时器。
综上所述,在本公开实施例提供的数据重传装置之中,当接收UE的RTT定时器超时,且接收UE 未发送PSFCH时,接收UE会基于该接收UE对应的HARQ反馈方式确定是否启动重传定时器,由此可以避免出现“接收UE启动重传定时器,但发送UE未重传数据”、或者“接收UE未启动重传定时器,但发送UE重传数据”类似情况的发生,进而节省了UE耗电且避免了资源浪费。
在本公开一个实施例之中,所述确定模块还用于:
响应于所述HARQ反馈方式为反馈肯定的确认ACK或否定的确认NACK,且所述接收UE未成功接收数据,启动所述重传定时器;
响应于所述HARQ反馈方式为反馈ACK或NACK,启动所述重传定时器;
响应于所述HARQ反馈方式为仅反馈NACK,不启动所述重传定时器;
响应于所述HARQ反馈方式为仅反馈NACK,且所述接收UE未成功接收数据,所述接收UE接收到其他UE发送的NACK反馈,启动所述重传定时器。
进一步地,在本公开另一个实施例之中,所述装置还用于:
响应于启动所述重传定时器,在所述重传定时器启动期间,监听物理旁路控制信道PSCCH。
进一步地,在本公开另一个实施例之中,所述装置还用于:
启动所述RTT定时器。
进一步地,在本公开另一个实施例之中,所述装置还用于:
响应于所述接收UE未发送PSFCH,在PSFCH资源位置之后的第一个时隙启动所述RTT定时器。
进一步地,在本公开另一个实施例之中,所述装置还用于:
所述接收UE以组播的形式接收发送UE发送的数据。
图10是本公开一个实施例所提供的一种用户设备UE1000的框图。例如,UE1000可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图10,UE1000可以包括以下至少一个组件:处理组件1002,存储器1004,电源组件1006,多媒体组件1008,音频组件1010,输入/输出(I/O)的接口1012,传感器组件1013,以及通信组件1016。
处理组件1002通常控制UE1000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1002可以包括至少一个处理器1020来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1002可以包括至少一个模块,便于处理组件1002和其他组件之间的交互。例如,处理组件1002可以包括多媒体模块,以方便多媒体组件1008和处理组件1002之间的交互。
存储器1004被配置为存储各种类型的数据以支持在UE1000的操作。这些数据的示例包括用于在UE1000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1006为UE1000的各种组件提供电力。电源组件1006可以包括电源管理系统,至少一个电源,及其他与为UE1000生成、管理和分配电力相关联的组件。
多媒体组件1008包括在所述UE1000和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1008包括一个前置摄像头和/或后置摄像头。当UE1000处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1010被配置为输出和/或输入音频信号。例如,音频组件1010包括一个麦克风(MIC),当UE1000处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1004或经由通信组件1016发送。在一些实施例中,音频 组件1010还包括一个扬声器,用于输出音频信号。
I/O接口1012为处理组件1002和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1013包括至少一个传感器,用于为UE1000提供各个方面的状态评估。例如,传感器组件1013可以检测到设备1000的打开/关闭状态,组件的相对定位,例如所述组件为UE1000的显示器和小键盘,传感器组件1013还可以检测UE1000或UE1000一个组件的位置改变,用户与UE1000接触的存在或不存在,UE1000方位或加速/减速和UE1000的温度变化。传感器组件1013可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1013还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1013还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1016被配置为便于UE1000和其他设备之间有线或无线方式的通信。UE1000可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1016经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1000可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
图11是本申请实施例所提供的一种网络侧设备1100的框图。例如,网络侧设备1100可以被提供为一网络侧设备。参照图11,网络侧设备1100包括处理组件1111,其进一步包括至少一个处理器,以及由存储器1132所代表的存储器资源,用于存储可由处理组件1122的执行的指令,例如应用程序。存储器1132中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件1115被配置为执行指令,以执行上述方法前述应用在所述网络侧设备的任意方法,例如,如图1所示方法。
网络侧设备1100还可以包括一个电源组件1126被配置为执行网络侧设备1100的电源管理,一个有线或无线网络接口1150被配置为将网络侧设备1100连接到网络,和一个输入输出(I/O)接口1158。网络侧设备1100可以操作基于存储在存储器1132的操作系统,例如Windows Server TM,Mac OS XTM,Unix TM,Linux TM,Free BSDTM或类似。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
上述本公开提供的实施例中,分别从网络侧设备、UE的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络侧设备和UE可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本公开实施例提供的一种通信装置。通信装置可包括收发模块和处理模块。收发模块可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块可以实现发送功能和/或接收功能。
通信装置可以是终端设备(如上述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
本公开实施例提供的另一种通信装置。通信装置可以是网络设备,也可以是终端设备(如上述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描 述的方法,具体可以参见上述方法实施例中的说明。
通信装置可以包括一个或多个处理器。处理器可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,网络侧设备、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置中还可以包括一个或多个存储器,其上可以存有计算机程序,处理器执行所述计算机程序,以使得通信装置执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。通信装置和存储器可以单独设置,也可以集成在一起。
可选的,通信装置还可以包括收发器、天线。收发器可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置中还可以包括一个或多个接口电路。接口电路用于接收代码指令并传输至处理器。处理器运行所述代码指令以使通信装置执行上述方法实施例中描述的方法。
通信装置为终端设备(如上述方法实施例中的终端设备):处理器用于执行图1-图6任一所示的方法。
通信装置为网络设备:收发器用于执行图7-图8任一所示的方法。
在一种实现方式中,处理器中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器可以存有计算机程序,计算机程序在处理器上运行,可使得通信装置执行上述方法实施例中描述的方法。计算机程序可能固化在处理器中,该种情况下,处理器可能由硬件实现。
在一种实现方式中,通信装置可以包括电路,所述电路可以实现上述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(Gas)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如上述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,芯片包括处理器和接口。其中,处理器的数量可以是一个或多个,接口的数量可以是多个。
可选的,芯片还包括存储器,存储器用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种确定侧链路时长的系统,该系统包括上述实施例中作为终端设备(如上述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置,或者,该系统包括上述实施例中作为终端设备(如上述方法实施例中的第一终端设备)的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种数据重传方法,其特征在于,由接收用户设备UE执行,包括:
    响应于往返时间RTT定时器超时,且所述接收UE未发送物理直连反馈信道PSFCH,基于所述接收UE对应的混合自动重传请求HARQ反馈方式确定是否启动重传定时器。
  2. 如权利要求1所述的方法,其特征在于,所述基于所述接收UE对应的HARQ反馈方式确定是否启动重传定时器包括以下至少一种:
    响应于所述HARQ反馈方式为反馈肯定的确认ACK或否定的确认NACK,且所述接收UE未成功接收数据,启动所述重传定时器;
    响应于所述HARQ反馈方式为反馈ACK或NACK,启动所述重传定时器;
    响应于所述HARQ反馈方式为仅反馈NACK,不启动所述重传定时器;
    响应于所述HARQ反馈方式为仅反馈NACK,且所述接收UE未成功接收数据,所述接收UE接收到其他UE发送的NACK反馈,启动所述重传定时器。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    响应于启动所述重传定时器,在所述重传定时器启动期间,监听物理旁路控制信道PSCCH。
  4. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    启动所述RTT定时器。
  5. 如权利要求4所述的方法,其特征在于,所述启动所述RTT定时器,包括:
    响应于所述接收UE未发送PSFCH,在PSFCH资源位置之后的第一个时隙启动所述RTT定时器。
  6. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述接收UE以组播的形式接收发送UE发送的数据。
  7. 一种数据重传装置,其特征在于,包括:
    确定模块,用于响应于RTT定时器超时,且所述接收UE未发送PSFCH,基于所述接收UE对应的混合自动重传请求HARQ反馈方式确定是否启动重传定时器。
  8. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至6中任一项所述的方法。
  9. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至6中任一项所述的方法。
  10. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至6中任一项所述的方法被实现。
PCT/CN2021/139337 2021-12-17 2021-12-17 一种数据重传方法及设备/存储介质/装置 WO2023108658A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/139337 WO2023108658A1 (zh) 2021-12-17 2021-12-17 一种数据重传方法及设备/存储介质/装置
CN202180004521.2A CN114402553A (zh) 2021-12-17 2021-12-17 一种数据重传方法及设备/存储介质/装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/139337 WO2023108658A1 (zh) 2021-12-17 2021-12-17 一种数据重传方法及设备/存储介质/装置

Publications (1)

Publication Number Publication Date
WO2023108658A1 true WO2023108658A1 (zh) 2023-06-22

Family

ID=81229590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139337 WO2023108658A1 (zh) 2021-12-17 2021-12-17 一种数据重传方法及设备/存储介质/装置

Country Status (2)

Country Link
CN (1) CN114402553A (zh)
WO (1) WO2023108658A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112189351A (zh) * 2019-05-02 2021-01-05 联发科技股份有限公司 侧链路通信的无线链路监测
CN113348684A (zh) * 2021-04-08 2021-09-03 北京小米移动软件有限公司 物理直连链路反馈方法、装置及存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112189351A (zh) * 2019-05-02 2021-01-05 联发科技股份有限公司 侧链路通信的无线链路监测
CN113348684A (zh) * 2021-04-08 2021-09-03 北京小米移动软件有限公司 物理直连链路反馈方法、装置及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion on HARQ RTT and Retransmission Timer for SL DRX", 3GPP TSG RAN WG2 MEETING #113BIS, R2-2103287, 2 April 2021 (2021-04-02), XP052174875 *
FUJITSU: "Remaining details on HARQ RTT and Retransmission Timer for SL DRX", 3GPP TSG RAN WG2 MEETING #115E, R2-2107653, 6 August 2021 (2021-08-06), XP052034301 *

Also Published As

Publication number Publication date
CN114402553A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2021088009A1 (zh) 反馈方法、反馈装置及存储介质
WO2021026824A1 (zh) 非活动定时器的控制方法和装置
US20220394704A1 (en) Feedback method, feedback apparatus and storage medium
WO2022246711A1 (zh) 盲重传时隙资源的确定方法、装置及通信设备
WO2023184116A1 (zh) 侧行链路sidelink通信方法及装置
WO2021087829A1 (zh) Harq-ack处理方法及装置、通信设备及存储介质
WO2021007783A1 (zh) 反馈信息传输方法及装置、用户设备和基站
WO2023201760A1 (zh) PScell添加或改变的成功报告的记录方法、装置
WO2023108658A1 (zh) 一种数据重传方法及设备/存储介质/装置
US20220191897A1 (en) Method for transmitting hybrid automatic repeat request acknowledgement information, apparatus, and storage medium
WO2023164908A1 (zh) 一种信号复用方法/装置/设备及存储介质
WO2023000230A1 (zh) 辅助配置方法及其装置
WO2023122986A1 (zh) 一种重复传输的终止方法及设备/存储介质/装置
WO2023004554A1 (zh) 一种业务控制方法、装置、用户设备、基站及存储介质
WO2021087766A1 (zh) 混合自动重传请求应答传输方法及装置、设备及介质
WO2023201586A1 (zh) 一种物理信道重复传输的指示方法及设备/存储介质/装置
WO2022213378A1 (zh) 确定harq码本的方法、harq反馈信息的接收方法、及其装置
WO2023122987A1 (zh) 一种重复传输方法及设备/存储介质/装置
WO2022110004A1 (zh) 一种传输方法、传输装置及存储介质
WO2023123481A1 (zh) 一种传输方式的切换方法及设备/存储介质/装置
WO2023039910A1 (zh) 一种临时参考信号传输方法、装置及存储介质
WO2023133694A1 (zh) 一种测量放松方法、设备、存储介质及装置
WO2022226784A1 (zh) 生成状态报告、设置定时器、信息配置方法及装置
WO2023184260A1 (zh) 一种信号传输方法/装置/设备及存储介质
WO2023197331A1 (zh) 数据传输方法/装置/设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967790

Country of ref document: EP

Kind code of ref document: A1