WO2023108499A1 - 直连通信资源选择方法及装置 - Google Patents

直连通信资源选择方法及装置 Download PDF

Info

Publication number
WO2023108499A1
WO2023108499A1 PCT/CN2021/138474 CN2021138474W WO2023108499A1 WO 2023108499 A1 WO2023108499 A1 WO 2023108499A1 CN 2021138474 W CN2021138474 W CN 2021138474W WO 2023108499 A1 WO2023108499 A1 WO 2023108499A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resource selection
time
resources
frequency
Prior art date
Application number
PCT/CN2021/138474
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180004537.3A priority Critical patent/CN114365538A/zh
Priority to PCT/CN2021/138474 priority patent/WO2023108499A1/zh
Publication of WO2023108499A1 publication Critical patent/WO2023108499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present disclosure relates to the technical field of mobile communication, and in particular to a method and device for selecting direct communication resources.
  • UE User Equipment
  • the present disclosure proposes a direct connection communication resource selection method and device, so that a user equipment (User Equipment, UE) can perform resource selection based on partial monitoring triggered by periodic direct connection transmission according to the The resource selection mode of the direct connection transmission selection resource of periodic resource reservation performs resource selection, thereby improving data transmission performance.
  • a user equipment User Equipment, UE
  • the resource selection mode of the direct connection transmission selection resource of periodic resource reservation performs resource selection, thereby improving data transmission performance.
  • the embodiment of the first aspect of the present disclosure provides a direct connection communication resource selection method, the method is executed by the sending end UE, and the method includes: during the resource selection process triggered by the periodic direct connection transmission, in the When the transmission resource pool of the UE supports periodic resource reservation and the UE is configured to perform resource selection based on partial monitoring and the time-frequency resources to be selected do not meet the conditions required by the first resource selection mode, according to the second resource selection mode Perform resource selection; wherein, the first resource selection mode is used to select resources for direct connection transmission with periodic resource reservation, and the second resource selection mode is used for direct connection transmission without periodic resource reservation Select a resource.
  • a medium access control MAC layer or a higher layer indicates that the resource reservation period is not 0, and the higher layer includes an RLC layer, a PDCP layer, an RRC layer and/or an application layer,
  • the resource reservation period indicates a time interval between resources to be reserved when the UE performs periodic resource reservation.
  • the conditions required for the first resource selection mode include: the number of candidate time-frequency resources satisfying the first monitoring condition among the time-frequency resources to be selected exceeds a first threshold; wherein the first monitoring condition includes : The UE monitors on a first set of listening resources; wherein the first set of listening resources is determined according to a set of specific resource reservation periods and time-frequency positions of candidate time-frequency resources.
  • the performing aperiodic resource selection includes: selecting a candidate time-frequency resource that satisfies a second monitoring condition not less than a second threshold from the time-frequency resources to be selected; wherein, the second monitoring condition Including: the UE monitors on the second set of listening resources; wherein the second set of listening resources is determined according to the specific resource reservation period set and the time-frequency position of the candidate time-frequency resource; or only according to the time-frequency position of the candidate time-frequency resource The frequency position is determined.
  • performing aperiodic resource selection includes: performing random resource selection among the time-frequency resources to be selected.
  • the method further includes indicating to the MAC layer or a higher layer through the physical layer to perform resource selection according to the second resource selection mode in the resource selection process, and the higher layer includes an RLC layer, a PDCP layer, an RRC layer, and /or application layer.
  • the embodiment of the second aspect of the present disclosure provides a direct connection communication resource selection device, including: a processing module, configured to support periodic resource reservation and the UE is configured to perform resource selection based on partial monitoring and the time-frequency resources to be selected do not meet the conditions required by the first resource selection mode, perform resource selection according to the second resource selection mode; wherein, the The first resource selection mode is used to select resources for direct connection transmission with periodic resource reservation, and the second resource selection mode is used to select resources for direct connection transmission without periodic resource reservation.
  • a medium access control MAC layer or a higher layer indicates that the resource reservation period is not 0, and the higher layer includes an RLC layer, a PDCP layer, an RRC layer and/or an application layer,
  • the resource reservation period indicates a time interval between resources to be reserved when the UE performs periodic resource reservation.
  • the conditions required for the first resource selection mode include: the number of candidate time-frequency resources satisfying the first monitoring condition among the time-frequency resources to be selected exceeds a first threshold; wherein the first monitoring condition includes : The UE monitors on a first set of listening resources; wherein the first set of listening resources is determined according to a set of specific resource reservation periods and time-frequency positions of candidate time-frequency resources.
  • the processing module is configured to: select a candidate time-frequency resource satisfying a second monitoring condition that is not less than a second threshold from the time-frequency resources to be selected; wherein the second monitoring condition includes: the UE Perform monitoring on the second set of listening resources; wherein the second set of listening resources is determined according to the specific resource reservation period set and the time-frequency positions of candidate time-frequency resources; or is determined only according to the time-frequency positions of candidate time-frequency resources.
  • the processing module is configured to: perform random resource selection among the time-frequency resources to be selected.
  • the device further includes: a transceiver module, configured to indicate to the MAC layer or a higher layer through the physical layer to perform resource selection according to the second resource selection mode in the resource selection process, and the higher layer includes an RLC layer, PDCP layer, RRC layer and/or application layer.
  • a transceiver module configured to indicate to the MAC layer or a higher layer through the physical layer to perform resource selection according to the second resource selection mode in the resource selection process, and the higher layer includes an RLC layer, PDCP layer, RRC layer and/or application layer.
  • the embodiment of the third aspect of the present disclosure provides a communication device, including: a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, configured to execute computer-executable instructions on the memory , controlling the wireless signal sending and receiving of the transceiver, and implementing the direct connection communication resource selection method in the embodiment of the first aspect above.
  • the embodiment of the fourth aspect of the present disclosure provides a computer storage medium, wherein the computer storage medium stores computer-executable instructions; after the computer-executable instructions are executed by a processor, the above-mentioned embodiment of the first aspect can be implemented.
  • Direct communication resource selection method
  • Embodiments of the present disclosure provide a direct connection communication resource selection method and device.
  • the transmission resource pool of the user equipment supports periodic resource reservation and
  • the user equipment is configured to perform resource selection based on partial monitoring and the time-frequency resource to be selected does not meet the conditions required by the first resource selection mode, perform resource selection according to the second resource selection mode, wherein the first resource selection mode is used for performing A resource is selected for direct-connected transmission with periodic resource reservation, and the second resource selection mode is used to select resources for direct-connected transmission without periodic resource reservation.
  • the first resource selection mode is used for performing A resource is selected for direct-connected transmission with periodic resource reservation
  • the second resource selection mode is used to select resources for direct-connected transmission without periodic resource reservation.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for selecting direct communication resources according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for selecting direct communication resources according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for selecting direct communication resources according to an embodiment of the present disclosure
  • Fig. 5 is a block diagram of a direct connection communication resource selection device according to an embodiment of the present disclosure
  • Fig. 6 is a block diagram of a direct connection communication resource selection device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • the network device configures various transmission parameters for data transmission for the direct communication device 1 .
  • the direct communication device 1 serves as a data sending end
  • the direct communication device 2 serves as a data receiving end, and the two communicate directly.
  • the link for communication between the network device and the direct communication device is an uplink and downlink
  • the link between the direct communication device and the direct communication device is a direct link (sidelink).
  • the wireless communication system shown in FIG. 1 is only for schematic illustration, and the wireless communication system may also include other network devices, such as core network devices, wireless relay devices, and wireless backhaul devices, etc. Not shown in Figure 1.
  • the embodiment of the present disclosure does not limit the number of network devices and the number of terminals included in the wireless communication system.
  • the wireless communication system in the embodiment of the present disclosure is a network that provides a wireless communication function.
  • Wireless communication systems can use different communication technologies, such as code division multiple access (CDMA), wideband code division multiple access (WCDMA), time division multiple access (TDMA), Frequency division multiple access (FDMA), orthogonal frequency-division multiple access (OFDMA), single carrier frequency-division multiple access (single Carrier FDMA, SC-FDMA), carrier sense multiple access Access/Conflict Avoidance (Carrier Sense Multiple Access with Collision Avoidance).
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • TDMA time division multiple access
  • FDMA Frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single Carrier FDMA single Carrier FDMA
  • SC-FDMA carrier sense multiple access Access/Conflict Avoidance
  • Carrier Sense Multiple Access with Collision Avoidance Carrier Sense Multiple Access with Collision Avoidance
  • the network can be divided into 2G (English: generation) network, 3G network, 4G network or future evolution network, such as 5G network, 5G network can also be called a new wireless network ( New Radio, NR).
  • 2G International: generation
  • 3G network 4G network or future evolution network, such as 5G network
  • 5G network can also be called a new wireless network ( New Radio, NR).
  • New Radio New Radio
  • the present disclosure sometimes simply refers to a wireless communication network as a network.
  • the wireless access network device may be: a base station, an evolved base station (evolved node B, eNB), a home base station, an access point (access point, AP) in a wireless fidelity (wirelessfidelity, WIFI) system, and a wireless relay node , wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP), etc., can also be the gNB in the NR system, or it can also be a component or a part of equipment that constitutes the base station, etc. .
  • the network device may also be a vehicle-mounted device.
  • V2X vehicle-to-everything
  • the network device may also be a vehicle-mounted device. It should be understood that in the embodiments of the present disclosure, no limitation is imposed on the specific technology and specific device form adopted by the network device.
  • the terminals involved in this disclosure may also be referred to as terminal equipment, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc.
  • Devices with voice and/or data connectivity for example, the terminal may be a handheld device, a vehicle-mounted device, etc. with a wireless connection function.
  • examples of some terminals are: Smartphone (Mobile Phone), Pocket Personal Computer (Pocket Personal Computer, PPC), PDA, Personal Digital Assistant (Personal Digital Assistant, PDA), notebook computer, tablet computer, wearable device, or vehicle-mounted equipment etc.
  • V2X vehicle-to-everything
  • the terminal device may also be a vehicle-mounted device. It should be understood that the embodiment of the present disclosure does not limit the specific technology and specific device form adopted by the terminal.
  • the communication scenario of direct communication between directly connected communication devices may also be a device-to-device (Device to Device, D2D) communication scenario.
  • the direct communication devices for direct communication in the embodiments of the present disclosure may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user Equipment (User Equipment, UE), mobile station (Mobilestation, MS), terminal (terminal), terminal equipment (Terminal Equipment) and so on.
  • UE user Equipment
  • MS mobile station
  • terminal terminal equipment
  • Terminal Equipment Terminal Equipment
  • V2X Vehicle to Everything
  • V2X communication includes Vehicle to Vehicle (V2V) communication, Vehicle to Infrastructure (V2I) communication and Vehicle to People (V2P) communication.
  • V2X applications will improve driving safety, reduce congestion and vehicle energy consumption, and improve traffic efficiency.
  • Utilizing existing cellular communication technology to support IoV communication can effectively utilize existing base station deployment, reduce equipment overhead, and be more conducive to providing services with QoS guarantees to meet the needs of IOV services.
  • the cellular network supports the V2X communication of the Internet of Vehicles, that is, C-V2X (cellular based V2X).
  • C-V2X the communication between the vehicle equipment and other equipment can be transferred through the base station and the core network, that is, the communication link between the user equipment and the base station in the original cellular network is used for communication (UL/DL communication); It is possible to communicate directly through a direct link between devices (sidelink communication).
  • sidelink communication Compared with UL/DL communication, sidelink communication has the characteristics of short delay and low overhead, and is very suitable for direct communication between on-board equipment and other peripheral equipment close to the geographical location.
  • 5G NR New Radio
  • 3GPP Release 16 3GPP Release 16
  • 5G V2X sidelink can provide higher communication rate, shorter communication delay, and more reliable communication quality.
  • the UE In sidelink communication, the UE is supported to adopt resource reservation and channel monitoring-based resource selection methods. Since the user equipment will consume a lot of power for continuous channel monitoring, the concept of "partial monitoring" is introduced to achieve the effect of power saving.
  • Resource selection based on partial monitoring can include the following situations:
  • resource selection based on partial monitoring triggered by periodic direct transmission is performed in the mode 2 resource pool that supports periodic resource reservation;
  • resource selection based on partial monitoring triggered by aperiodic direct transmission is performed in the mode 2 resource pool that supports periodic resource reservation;
  • resource selection based on partial monitoring triggered by aperiodic direct transmission is performed in the mode 2 resource pool that does not support periodic resource reservation.
  • this disclosure proposes a direct connection communication resource selection method and device, so that during the resource selection process based on partial monitoring triggered by periodic direct connection transmission, if the UE cannot provide enough channel monitoring As a result, aperiodic resource selection based on partial listening can be performed, so that data transmission performance can be improved.
  • Fig. 2 shows a schematic flowchart of a method for selecting direct communication resources according to an embodiment of the present disclosure. As shown in Fig. 2, the method can be executed by the UE at the sending end, and includes the following steps.
  • the transmission resource pool of the UE supports periodic resource reservation and the UE is configured to perform resource selection based on partial monitoring and the time-frequency resources to be selected do not meet the first
  • a resource selection mode requires a condition, perform resource selection according to a second resource selection mode.
  • the first resource selection mode is used to select resources for direct connection transmission with periodic resource reservation
  • the second resource selection mode is used to select resources for direct connection transmission without periodic resource reservation.
  • the UE may perform resource selection according to different resource selection modes, for example, may perform resource selection according to a first resource selection mode, or may perform resource selection according to a second resource selection mode.
  • the "first resource selection mode” is used to select resources for direct transmission with periodic resource reservation, that is, in direct transmission using resources selected according to the first resource selection mode, Periodic resource reservation is performed.
  • periodic resource selection may also be referred to as “periodic resource selection”.
  • “Second resource selection mode” is used to select resources for direct transmission without periodic resource reservation, that is, in direct transmission using resources selected according to the second resource selection mode, periodic For resource reservation, hereinafter, for simplicity, “resource selection according to the second resource selection mode” may also be referred to as “aperiodic resource selection”.
  • time-frequency resources to be selected may refer to time-frequency resources in the resource selection window used by the UE when performing resource selection.
  • the UE In the resource selection process triggered by periodic direct transmission, usually, if the UE’s transmission resource pool supports periodic resource reservation, the UE is expected to be triggered to perform periodic resource selection, but if the current UE is Configured to perform resource selection based on partial monitoring, whether the UE can perform periodic resource selection depends on whether the time-frequency resource to be selected satisfies a specific partial monitoring condition, that is, if the time-frequency resource to be selected does not meet the specific partial monitoring condition , the UE cannot perform periodic resource selection.
  • the transmission resource pool of the UE supports periodic resource reservation and the UE is configured to perform resource selection based on partial monitoring and the time and frequency to be selected
  • the UE performs aperiodic resource selection.
  • the medium access control (Media Access Control, MAC) layer or higher layer signaling indicates that the resource reservation period is greater than 0.
  • the higher layer may be an RLC layer, a PDCP layer, an RRC layer and/or an application layer.
  • the MAC layer or higher layer When resource selection is triggered, the MAC layer or higher layer will indicate resource selection parameters to the physical layer for resource selection operation.
  • periodic resource selection When the indicated resource reservation period is not 0, periodic resource selection is triggered, that is, the UE is expected to perform periodic resource reservation with a non-zero period during the direct transmission using the selected resource.
  • the periodic resource reservation refers to that the UE reserves the time-frequency resources of the next period when performing the direct connection transmission of the current period. For example, if the resource reservation period is Ts, when the UE performs direct connection transmission at time t, it will reserve transmission resources at time t+Ts.
  • the value of the resource reservation period Ts is generally a limited set of numerical values, for example including 0, 100, 200, 300, 400, 500 and other milliseconds.
  • the unit of Ts can be physical time units such as milliseconds, seconds, time slots, and subframes, or logical time units such as logical time slots.
  • logical time units such as logical time slots.
  • all time units that can be used for direct connection transmission are arranged in time order Numbering is called a direct logical time unit, and the logical time difference between two moments is the number of logical time units between the two.
  • the required condition for the first resource selection mode includes: the number of candidate time-frequency resources satisfying the first listening condition among the time-frequency resources to be selected exceeds the first threshold; wherein, the first listening condition includes: the UE at the Monitoring is performed on a set of monitoring resources; wherein the first set of monitoring resources is determined according to a set of specific resource reservation periods and time-frequency positions of candidate time-frequency resources.
  • the "candidate time-frequency resource” may refer to the time-frequency resource selected by the UE for direct connection transmission when performing resource selection.
  • the UE needs to be able to select candidate time-frequency resources not less than the first threshold from time-frequency resources to be selected , and the candidate time-frequency domain resource satisfies the first listening condition, that is, the UE listens on the first set of listening resources, which can be determined according to the set of specific resource reservation periods and the time-frequency position of the candidate time-frequency resource .
  • the resources in the first listening resource set may be before resource selection is triggered, or after resource selection is triggered.
  • the first set of listening resources may be determined according to the specific resource reservation period set configured by the resource pool (pre-configured or) used in the direct connection transmission, and according to the time-frequency position of the candidate time-frequency resource.
  • the reservation period set may be a subset of all resource reservation period sets supported by the resource pool.
  • the UE cannot select candidate time-frequency resources satisfying the first monitoring condition not less than the first threshold from the time-frequency resources to be selected, the UE cannot select candidate time-frequency resources by performing periodic resource selection based on partial monitoring. time-frequency resources. Therefore, in this embodiment, during the resource selection process triggered by periodic direct transmission, if the transmission resource pool of the UE supports periodic resource reservation and the UE is configured to perform resource selection based on partial monitoring, but When the time-frequency resources to be selected do not meet the required conditions of the first resource selection mode, that is, the number of candidate time-frequency resources that meet the first monitoring condition in the time-frequency resources to be selected (such as time-frequency resources in the resource selection window) does not exceed the first When a threshold is reached, the UE will perform aperiodic resource selection based on partial listening.
  • the UE Since the UE does not need to perform periodic resource reservation in the direct transmission on the selected resources when performing aperiodic resource selection based on partial monitoring, compared to the periodic resource selection based on partial monitoring, based on partial Some of the monitoring conditions that need to be met for the aperiodic resource selection of monitoring are looser.
  • the first threshold is preconfigured or determined according to the threshold carried in the downlink signaling received from the network device.
  • the first threshold may be preset, for example, set according to protocol regulations, or may be determined by receiving downlink signaling from a network device, and the threshold carried in the downlink signaling is determined as the first threshold.
  • the transmission resource pool of the user equipment supports periodic resource reservation and the user equipment is configured To perform resource selection based on partial monitoring and when the time-frequency resources to be selected do not meet the conditions required by the first resource selection mode, perform resource selection according to the second resource selection mode, wherein the first resource selection mode is used for periodic resource reservation.
  • the reserved direct transmission selects resources, and the second resource selection mode is used to select resources for direct transmission without periodic resource reservation.
  • Fig. 3 shows a schematic flowchart of a method for selecting direct communication resources according to an embodiment of the present disclosure. As shown in Fig. 3, the method can be executed by the UE at the sending end, and includes the following steps.
  • the transmission resource pool of the UE supports periodic resource reservation and the UE is configured to perform resource selection based on partial monitoring and the time-frequency resources to be selected do not meet the first
  • a resource selection mode requires a condition, perform resource selection according to a second resource selection mode.
  • the first resource selection mode is used to select resources for direct connection transmission with periodic resource reservation
  • the second resource selection mode is used to select resources for direct connection transmission without periodic resource reservation.
  • the MAC layer or higher layer signaling indicates that the resource reservation period is greater than 0 when the resource selection procedure is triggered.
  • the higher layer may be an RLC layer, a PDCP layer, an RRC layer and/or an application layer.
  • the required condition for the first resource selection mode includes: the number of candidate time-frequency resources satisfying the first listening condition among the time-frequency resources to be selected exceeds the first threshold; wherein, the first listening condition includes: the UE at the Monitoring is performed on a set of monitoring resources; wherein the first set of monitoring resources is determined according to a set of specific resource reservation periods and time-frequency positions of candidate time-frequency resources.
  • the first threshold is preconfigured or determined according to the threshold carried in the downlink signaling received from the network device.
  • step S301 For a detailed description of the above step S301 and its related details, reference may be made to the description of step S201 and its related details, which will not be repeated here.
  • step S301 may include any one of the following steps:
  • the second monitoring condition includes: the UE monitors on the second monitoring resource set; wherein the second monitoring resource set is determined according to the specific resource reservation period set and the time-frequency position of the candidate time-frequency resource; or only according to the candidate time-frequency resource The time-frequency position of is determined.
  • the UE can select candidate time-frequency resources not less than the second threshold from the time-frequency resources to be selected, and the candidate time-frequency resources meet the second monitoring condition, that is, the UE Monitoring is performed on the second listening resource set.
  • the second listening resource set may be determined according to the specific resource reservation period set and the time-frequency position of the candidate time-frequency resource, or may be determined only according to the time-frequency position of the candidate time-frequency resource.
  • the second listening resource set may be determined according to the specific resource reservation period set configured in the resource pool used in the direct transmission and according to the time-frequency positions of the candidate time-frequency resources, and the specific resource reservation period set may be all a subset of all resource reservation period sets supported by the above resource pool; or, the second set of monitoring resources may be determined only according to the time-frequency positions of candidate time-frequency resources, thus, compared to the periodic resources based on partial monitoring selection, the aperiodic resource selection based on partial monitoring requires more relaxed partial monitoring conditions, because the monitoring resource set corresponding to the candidate time-frequency resource can be determined only according to the time-frequency position of the candidate time-frequency resource, for example, if for a Resources that cannot be monitored on the set of monitoring resources determined according to the time-frequency position of the resource and the set of specific resource reservation periods, but can be monitored only on the set of monitoring resources determined only according to the time-frequency position of the resource monitoring, the resource can still be determined as a candidate resource.
  • the interval is a time unit that is an integer multiple of P' reserve ; or for the selected time unit y', the UE needs to perform channel monitoring in the time unit set ⁇ y'-P' reserve ⁇ , and P' reserve can be reserved for the specific resource Several cycles in the reserved cycle set, for example, P' reserve is
  • the time unit set is only determined according to the time-frequency position of the selected time unit.
  • the second threshold is preconfigured or determined according to the threshold carried in the downlink signaling received from the network device.
  • the second threshold may be preset, for example, set according to protocol regulations, or may be determined as the second threshold according to the threshold carried in the downlink signaling by receiving downlink signaling from the network device.
  • the UE When the UE performs aperiodic resource selection based on partial monitoring, it can perform random resource selection to select candidate time-frequency resources from the time-frequency resources to be selected, that is, it does not need to consider the result of channel monitoring, but can select from the time-frequency resources to be selected
  • the candidate time-frequency resources are randomly selected from the time-frequency resources.
  • the transmission resource pool of the user equipment supports periodic resource reservation and the user equipment is configured To perform resource selection based on partial monitoring and when the time-frequency resources to be selected do not meet the conditions required by the first resource selection mode, perform resource selection according to the second resource selection mode, wherein the first resource selection mode is used for periodic resource reservation.
  • the reserved direct transmission selects resources, and the second resource selection mode is used to select resources for direct transmission without periodic resource reservation.
  • Fig. 4 shows a schematic flowchart of a method for selecting direct communication resources according to an embodiment of the present disclosure. As shown in Fig. 4, the method can be executed by the UE at the sending end, and includes the following steps.
  • the transmission resource pool of the UE supports periodic resource reservation and the UE is configured to perform resource selection based on partial monitoring, and the time-frequency resource to be selected does not meet the first requirement.
  • a resource selection mode requires a condition, perform resource selection according to a second resource selection mode.
  • the first resource selection mode is used to select resources for direct connection transmission with periodic resource reservation
  • the second resource selection mode is used to select resources for direct connection transmission without periodic resource reservation.
  • the MAC layer or higher layer signaling indicates that the resource reservation period is greater than 0 when the resource selection procedure is triggered.
  • the higher layer may be an RLC layer, a PDCP layer, an RRC layer and/or an application layer.
  • the required condition for the first resource selection mode includes: the number of candidate time-frequency resources satisfying the first listening condition among the time-frequency resources to be selected exceeds the first threshold; wherein, the first listening condition includes: the UE at the Monitoring is performed on a set of monitoring resources; wherein the first set of monitoring resources is determined according to a set of specific resource reservation periods and time-frequency positions of candidate time-frequency resources.
  • the first threshold is preconfigured or determined according to the threshold carried in the downlink signaling received from the network device.
  • step S401 For a detailed description of the above step S401 and its related details, reference may be made to the description of steps S201, S301 and its related details, and details will not be repeated here.
  • the higher layer may be an RLC layer, a PDCP layer, an RRC layer and/or an application layer.
  • the UE in the resource selection process triggered by periodic direct transmission, usually when the transmission resource pool of the UE supports periodic resource reservation, the UE is expected to be triggered to perform periodic resource selection, and If the UE performs aperiodic resource selection during the resource selection process triggered by periodic direct transmission, that is, the UE does not perform periodic resource selection as expected, it needs to indicate to the MAC layer or higher layers through the physical layer Aperiodic resource selection is performed during the resource selection process.
  • the physical layer needs to report the candidate time-frequency resource set to the MAC layer or a higher layer, and at the same time indicate that the candidate time-frequency resource set
  • the frequency resource set is selected by the UE to perform resource selection according to the second resource selection mode.
  • the transmission resource pool of the user equipment supports periodic resource reservation and the user equipment is configured To perform resource selection based on partial monitoring and when the time-frequency resources to be selected do not meet the conditions required by the first resource selection mode, perform resource selection according to the second resource selection mode, wherein the first resource selection mode is used for periodic resource reservation.
  • the second resource selection mode is used to select resources for direct transmission without periodic resource reservation, and when reporting the set of candidate time-frequency resources, it is also indicated that it is selected according to the second resource selection mode
  • the set of candidate time-frequency resources enables the MAC layer or a higher layer to know that the set of candidate time-frequency resources is selected according to the second resource selection mode rather than the first resource selection mode.
  • the method provided in the embodiments of the present application is introduced from the perspective of the user equipment.
  • the user equipment may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • the present disclosure also provides a device for selecting direct-connected communication resources.
  • the implementation of the method for selecting direct-connected communication resources is also applicable to the device for selecting direct-connected communication resources provided in this embodiment, and will not be described in detail in this embodiment.
  • FIG. 5 is a schematic structural diagram of an apparatus 500 for selecting direct-connected communication resources provided by an embodiment of the present disclosure.
  • the apparatus 500 may include a processing module 501 .
  • the processing module 501 is configured to, during the resource selection process triggered by the periodic direct transmission, the transmission resource pool of the UE supports periodic resource reservation and the UE is configured to perform resource selection based on partial monitoring and wait for When the selected time-frequency resources do not meet the conditions required by the first resource selection mode, perform resource selection according to the second resource selection mode; wherein the first resource selection mode is used to select resources for direct transmission of periodic resource reservation , the second resource selection mode is used to select resources for direct transmission without periodic resource reservation.
  • the transmission resource pool of the user equipment supports periodic resource reservation and the user equipment is configured To perform resource selection based on partial monitoring and when the time-frequency resources to be selected do not meet the conditions required by the first resource selection mode, perform resource selection according to the second resource selection mode, wherein the first resource selection mode is used for periodic resource reservation.
  • the reserved direct transmission selects resources, and the second resource selection mode is used to select resources for direct transmission without periodic resource reservation.
  • the medium access control MAC layer or a higher layer indicates that the resource reservation period is not 0, and the higher layer includes an RLC layer, a PDCP layer, an RRC layer and/or an application layer, wherein the resource reservation period indicates the time interval between resources that the UE needs to reserve when performing periodic resource reservation.
  • the conditions required for the first resource selection mode include: the number of candidate time-frequency resources satisfying the first monitoring condition among the time-frequency resources to be selected exceeds a first threshold; wherein, the first monitoring The conditions include: the UE monitors on a first set of listening resources; wherein the first set of listening resources is determined according to a set of specific resource reservation periods and time-frequency positions of candidate time-frequency resources.
  • the processing module 501 is configured to: select a candidate time-frequency resource satisfying a second monitoring condition not less than a second threshold from the time-frequency resources to be selected; wherein the second monitoring condition includes: The UE monitors on the second set of listening resources; wherein the second set of listening resources is determined according to the specific resource reservation period set and the time-frequency position of the candidate time-frequency resource; or only according to the time-frequency position of the candidate time-frequency resource Sure.
  • the processing module 501 is configured to: perform random resource selection among the time-frequency resources to be selected.
  • the first threshold is preconfigured or determined according to the threshold carried in the downlink signaling received from the network device; the second threshold is preconfigured or determined according to the downlink signaling received from the network device The threshold carried in is determined.
  • the apparatus 500 further includes: a transceiver module 502, configured to indicate to the MAC layer or a higher layer through the physical layer to perform resource selection according to the second resource selection mode in the resource selection process.
  • the higher layer includes an RLC layer, a PDCP layer, an RRC layer and/or an application layer.
  • FIG. 7 is a schematic structural diagram of a communication device 700 provided in an embodiment of the present application.
  • the communication device 700 may be a user equipment, or a chip, a chip system, or a processor that supports network equipment to implement the above method, or a chip, a chip system, or a processor that supports the user equipment to implement the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 700 may include one or more processors 701 .
  • the processor 701 may be a general-purpose processor or a special-purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 700 may further include one or more memories 702, on which a computer program 704 may be stored, and the processor 701 executes the computer program 704, so that the communication device 700 executes the method described in the above method embodiments. method.
  • data may also be stored in the memory 702 .
  • the communication device 700 and the memory 702 can be set separately or integrated together.
  • the communication device 700 may further include a transceiver 705 and an antenna 706 .
  • the transceiver 705 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 705 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 700 may further include one or more interface circuits 707 .
  • the interface circuit 707 is used to receive code instructions and transmit them to the processor 701 .
  • the processor 701 runs the code instructions to enable the communication device 700 to execute the methods described in the foregoing method embodiments.
  • the communication device 700 is a user equipment: the processor 701 is used to execute step S201 in FIG. 2 , S301 in FIG. 3 , including S3011-S3012 , and S401 in FIG. 4 ; the transceiver 705 is used to execute step S402 in FIG. 4 .
  • the processor 701 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 701 may store a computer program 703, and the computer program 703 runs on the processor 701, and may cause the communication device 700 to execute the methods described in the foregoing method embodiments.
  • the computer program 703 may be solidified in the processor 701, and in this case, the processor 701 may be implemented by hardware.
  • the communication device 700 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a user device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 7 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 8 includes a processor 801 and an interface 802 .
  • the number of processors 801 may be one or more, and the number of interfaces 802 may be more than one.
  • the processor 801 is used to execute step S201 in FIG. 2, S301 in FIG. 3, including S3011-S3012, and S401 in FIG. 4; Then step S402 in FIG. 4 is executed.
  • the chip further includes a memory 803 for storing necessary computer programs and data.
  • the embodiment of the present application also provides a system for realizing direct connection communication resource selection.
  • the system includes the communication device as the user equipment in the aforementioned embodiments of FIG. 5 and FIG. communication device.
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • time unit involved in the embodiments of the present disclosure may be a physical time unit or a logical time unit, for example, the unit is second, millisecond, microsecond, frame, subframe, time slot (slot), orthogonal Frequency division multiplexing symbols, etc.
  • time-frequency resources involved in the embodiments of the present disclosure may include time-domain resources and/or frequency-domain resources, and correspondingly, the time-frequency position of the time-frequency resource represents the time-domain position and/or frequency domain The frequency domain location of the resource.
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or means for providing machine instructions and/or data to a programmable processor (for example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN) and the Internet.
  • a computer system may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • steps may be reordered, added or deleted using the various forms of flow shown above.
  • each step described in the present disclosure may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution disclosed in the present disclosure can be achieved, no limitation is imposed herein.

Abstract

本公开提出了一种直连通信资源选择方法及装置,涉及通信领域,本申请的技术方案主要是发送端用户设备在周期性的直连传输所触发的资源选择过程中,在用户设备的发送资源池支持周期性资源预留并且用户设备被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择,其中第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。UE在被周期性的直连传输触发的基于部分监听的资源选择过程中,可以根据用于为不进行周期性资源预留的直连传输选择资源的资源选择模式执行资源选择,从而能够提高数据传输性能。

Description

直连通信资源选择方法及装置 技术领域
本公开涉及移动通信技术领域,特别涉及一种直连通信资源选择方法及装置。
背景技术
在直连链路(sidelink,SL)通信中,支持用户设备(User Equipment,UE)采用资源预留和基于信道监听的资源选择方法。由于用户设备不停的进行信道监听会耗费大量的电量,引入了“部分监听”的概念以获得节电的效果。
在LTE(Long Term Evolution)V2X(Vehicle to Everything)中只支持周期性资源预留,因此当UE被配置为执行基于部分监听的资源选择,但无法提供足够的信道监听结果以满足部分监听条件时,UE将无法执行基于部分监听的资源选择,而只能执行随机资源选择,其性能不如基于部分监听的资源选择。
然而,在NR(New Radio)V2X中,支持周期性资源预留和非周期性资源预留,在这种情况下,不再适于仍采用类似LTE V2X中的资源选择方案。
发明内容
本公开提出了一种直连通信资源选择方法及装置,使得用户设备(User Equipment,UE)在被周期性的直连传输触发的基于部分监听的资源选择过程中,可以根据用于为不进行周期性资源预留的直连传输选择资源的资源选择模式执行资源选择,从而能够提高数据传输性能。
本公开的第一方面实施例提供了一种直连通信资源选择方法,所述方法由发送端UE执行,所述方法包括:在周期性的直连传输所触发的资源选择过程中,在所述UE的发送资源池支持周期性资源预留并且所述UE被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择;其中,所述第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,所述第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。
可选地,在所述资源选择过程被触发时,媒体访问控制MAC层或更高层指示资源预留周期不为0,所述更高层包括RLC层、PDCP层、RRC层和/或应用层,其中所述资源预留周期指示所述UE进行周期性资源预留时所需预留的资源之间的时间间隔。
可选地,所述第一资源选择模式所需条件包括:所述待选择时频资源中满足第一监听条件的候选时频资源的数目超过第一阈值;其中,所述第一监听条件包括:所述UE在第一监听资源集合上进行监听;其中所述第一监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定。
可选地,所述执行非周期性的资源选择,包括:从待选择时频资源中选择不少于第二阈值的满足第二监听条件的候选时频资源;其中,所述第二监听条件包括:所述UE在第二监听资源集合上进行监听;其中所述第二监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定;或者只根据候选时频资源的时频位置确定。
可选地,所述执行非周期性的资源选择,包括:在所述待选择时频资源中进行随机资源选择。
可选地,所述方法还包括通过物理层向MAC层或更高层指示在所述资源选择过程中根据第二资源选择模式执行资源选择,所述更高层包括RLC层、PDCP层、RRC层和/或应用层。
本公开第二方面实施例提供了一种直连通信资源选择装置,包括:处理模块,用于在周期性的直连传输所触发的资源选择过程中,在所述UE的发送资源池支持周期性资源预留并且所述UE被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择;其中,所述第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,所述第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。
可选地,在所述资源选择过程被触发时,媒体访问控制MAC层或更高层指示资源预留周期不为0,所述更高层包括RLC层、PDCP层、RRC层和/或应用层,其中所述资源预留周期指示所述UE进行周期性资源预留时所需预留的资源之间的时间间隔。
可选地,所述第一资源选择模式所需条件包括:所述待选择时频资源中满足第一监听条件的候选时频资源的数目超过第一阈值;其中,所述第一监听条件包括:所述UE在第一监听资源集合上进行监听;其中所述第一监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定。
可选地,所述处理模块用于:从待选择时频资源中选择不少于第二阈值的满足第二监听条件的候选时频资源;其中,所述第二监听条件包括:所述UE在第二监听资源集合上进行监听;其中所述第二监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定;或者只根据候选时频资源的时频位置确定。
可选地,所述处理模块用于:在所述待选择时频资源中进行随机资源选择。
可选地,所述装置还包括:收发模块,用于通过物理层向MAC层或更高层指示在所述资源选择过程中根据第二资源选择模式执行资源选择,所述更高层包括RLC层、PDCP层、RRC层和/或应用层。
本公开的第三方面实施例提供了一种通信设备,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现上述第一方面实施例的直连通信资源选择方法。
本公开第四方面实施例提出了一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现上述第一方面实施例的直连通信资源选择方法。
本公开实施例提供了一种直连通信资源选择方法及装置,发送端用户设备在周期性的直连传输所触发的资源选择过程中,在用户设备的发送资源池支持周期性资源预留并且用户设备被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择,其中第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。以此方式,UE在被周期性的直连传输触发的基于部分监听的资源选择过程中,如果无法提供足够的信道监听结果,可以根据用于为不进行周期性资源预留的直连传输选择资源的资源选择模式执行资源选择,从而能够提高数据传输性能。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开实施例的一种通信系统的架构示意图;
图2为根据本公开实施例的一种直连通信资源选择方法的流程示意图;
图3为根据本公开实施例的一种直连通信资源选择方法的流程示意图;
图4为根据本公开实施例的一种直连通信资源选择方法的流程示意图;
图5为根据本公开实施例的一种直连通信资源选择装置的框图;
图6为根据本公开实施例的一种直连通信资源选择装置的框图;
图7为本公开实施例提供的一种通信装置的结构示意图;
图8为本公开实施例提供的一种芯片的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了更好的理解本申请实施例公开的直连通信资源选择方法及装置,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,直连通信设备之间进行直连通信的场景中,网络设备为直连通信设备1配置各种用于数据传输的传输参数。直连通信设备1作为数据发送端,直连通信设备2作为数据接收端,二者进行直接通信。网络设备与直连通信设备之间进行通信的链路为上下行链路,直连通信设备与直连通信设备之间的链路是直连链路(sidelink)。
可以理解的是,图1所示的无线通信系统仅是进行示意性说明,无线通信系统中还可包括其它网络设备,例如还可以包括核心网设备、无线中继设备和无线回传设备等,在图1中未画出。本公开实施例对该无线通信系统中包括的网络设备数目和终端数目不做限定。
进一步可以理解的是,本公开实施例的无线通信系统,是一种提供无线通信功能的网络。无线通信系统可以采用不同的通信技术,例如码分多址(code division multipleaccess,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multipleaccess,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single Carrier FDMA,SC-FDMA)、载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance)。根据不同网络的容量、速率、时延等因素可以将网络分为2G(英文:generation)网络、3G网络、4G网络或者未来演进网络,如5G网络,5G网络也可称为是新无线网络(New Radio,NR)。为了方便描述,本公开有时会将无线通信网络简称为网络。
进一步的,本公开中涉及的网络设备也可以称为无线接入网设备。该无线接入网设备可以是:基站、演进型基站(evolved node B,eNB)、家庭基站、无线保真(wirelessfidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为车联网(V2X)通信系统时, 网络设备还可以是车载设备。应理解,本公开的实施例中,对网络设备所采用的具体技术和具体设备形态不做限定。
进一步的,本公开中涉及的终端,也可以称为终端设备、用户设备(UserEquipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(PocketPersonal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,终端设备还可以是车载设备。应理解,本公开实施例对终端所采用的具体技术和具体设备形态不做限定。
本公开中,直连通信设备之间直接通信的通信场景也可以是终端到终端(Deviceto Device,D2D)的通信场景。本公开实施例中进行直接通信的直连通信设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobilestation,MS),终端(terminal),终端设备(Terminal Equipment)等等。为方便描述,本公开实施例以下以直连通信设备为终端为例进行说明。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
车联网(Vehicle to Everything,V2X)是未来智能交通运输系统的关键技术,主要研究基于第三代合作伙伴项目(Third Generation Partnership Project,3GPP)通信协议的车辆数据传输方案。V2X通信包括车与车(Vehicle to Vehicle,V2V)通信、车与路侧设备(Vehicle to Infrastructure,V2I)通信以及车载设备与行人(Vehicle to People,V2P)通信。V2X应用将改善驾驶安全性、减少拥堵和车辆能耗、提高交通效率等。利用现有的蜂窝通信技术支持车联网通信可以有效利用现有基站部署,减少设备开销,也更有利于提供具有QoS保证的服务,满足车联网业务的需求。因此,在LTE版本14/15中提供了蜂窝网络对于车联网V2X通信的支持,即C-V2X(cellular based V2X)。在C-V2X中车载设备和其他设备之间的通信可以通过基站以及核心网进行中转,即利用原有蜂窝网络中用户设备和基站之间的通信链路进行通信(UL/DL通信);也可以直接通过设备之间的直连链路进行通信(sidelink通信)。与UL/DL通信相比,sidelink通信具有时延短,开销小等特点,非常适合用于车载设备和地理位置接近的其他周边设备直接的通信。
随着5G移动通信技术的发展,在3GPP版本16中利用5G NR(New Radio)技术实现了对新的V2X通信服务和场景的支持,如车队管理(Vehicles Platooning),感知扩展(Extended Sensors),先进驾驶(Advanced Driving),和远程驾驶(remote driving)等。总体来说,5G V2X sidelink能够提供更高的通信速率,更短的通信延时,更可靠的通信质量。
在sidelink通信中,支持UE采用资源预留和基于信道监听的资源选择方法。由于用户设备不停的进行信道监听会耗费大量的电量,引入了“部分监听”的概念以获得节电的效果。
基于部分监听的资源选择可以包括以下几种情况:
情况1,在支持周期性资源预留的模式2资源池中进行由周期性的直连传输触发的基于部分监听的资源选择;
情况2,在支持周期性资源预留的模式2资源池中进行由非周期性的直连传输触发的基于部分监听的资源选择;
情况3,在不支持周期性资源预留的模式2资源池中进行由非周期性的直连传输触发的基于部分监听的资源选择。
其中,在执行上述基于部分监听的资源选择时,需要满足特定的部分监听条件,基于不同情况的部分监听所需要的满足的条件可能有所不同。由于周期性数据的到达相对更加容易预测,一般情况2和情况3中需要满足的部分监听条件相比于情况1中需要满足的部分监听条件要更宽松。
在LTE(Long Term Evolution)V2X(Vehicle to Everything)中只支持周期性资源预留,因此当UE被配置为执行基于部分监听的资源选择,但无法提供足够的信道监听结果以满足部分监听条件时,UE将无法执行基于部分监听的资源选择,而只能执行随机资源选择。随机资源选择只能通过随机化来避免传输碰撞,其性能不如基于部分监听的资源选择。
在NR(New Radio)V2X中,既支持周期性资源预留又支持非周期性资源预留,在这种情况下,不再适于仍采用类似LTE V2X中的资源选择方案。
为此,针对NR V2X通信,本公开提出了一种直连通信资源选择方法及装置,使得UE在被周期性直连传输触发的基于部分监听的资源选择过程中,如果无法提供足够的信道监听结果,可以执行基于部分监听的非周期性的资源选择,从而能够提高数据传输性能。
下面结合附图对本申请所提供的直连通信资源选择方法及装置进行详细地介绍。
图2示出了根据本公开实施例的一种直连通信资源选择方法的流程示意图。如图2所示,该方法可由发送端UE执行,且包括以下步骤。
S201,在周期性的直连传输所触发的资源选择过程中,在UE的发送资源池支持周期性资源预留并且UE被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择。
其中,第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。
UE可以根据不同资源选择模式执行资源选择,例如可以根据第一资源选择模式执行资源选择,也可以根据第二资源选择模式进行资源选择。在本申请中,“第一资源选择模式”用于为进行周期性资源预留的直连传输选择资源,也就是说,在使用根据第一资源选择模式选择出的资源的直连传输中,进行周期性资源预留,下文中,为简便起见,“根据第一资源选择模式的资源选择”也可被称为“周期性的资源选择”。“第二资源选择模式”用于为不进行周期性资源预留的直连传输选择资源,也就是说,在使用根据第二资源选择模式选择出的资源的直连传输中,不进行周期性资源预留,下文中,为简便起见,“根据第二资源选择模式的资源选择”也可被称为“非周期性的资源选择”。
此外,在本申请中,“待选择时频资源”可以指的是UE在执行资源选择时所采用的资源选择窗口中的时频资源。
在周期性的直连传输所触发的资源选择过程中,通常地,在UE的发送资源池支持周期性资源预留的情况下,UE预期被触发执行周期性的资源选择,但若当前UE被配置为进 行基于部分监听的资源选择,则UE是否能够执行周期性的资源选择取决于待选择时频资源是否满足特定的部分监听条件,即,如果待选择时频资源不满足特定的部分监听条件,则UE不能执行周期性的资源选择。在本实施例中,在周期性的直连传输所触发的资源选择过程中,在UE的发送资源池支持周期性资源预留且UE被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件(即,该待选择时频资源不能满足周期性的资源选择所需要满足的特定的部分监听条件)时,UE执行非周期性的资源选择。
在一些实施例中,在资源选择过程被触发时,媒体访问控制(Media Access Control,MAC)层或更高层信令指示资源预留周期大于0。该更高层可以为RLC层、PDCP层、RRC层和/或应用层。
当资源选择被触发时,MAC层或更高层会指示资源选择参数给物理层以进行资源选择操作。当所指示的资源预留周期不为0时,周期性的资源选择被触发,即UE被预期在使用所选资源的直连传输中进行周期不为0的周期性资源预留。其中周期性资源预留指的是UE在进行当前周期的直连传输时,对下一周期的时频资源进行预留。例如,若资源预留周期为Ts,UE在时刻t进行直连传输时,将预留t+Ts时刻的传输资源。资源预留周期Ts的取值一般为有限集合的数值,例如包括0、100、200、300、400、500等毫秒。应该理解的是,Ts的单位可以是毫秒,秒,时隙,子帧等物理时间单位,也可以是逻辑时隙等逻辑时间单位,例如将所有可以用于直连传输的时间单元按照时间顺序进行编号,称为直连逻辑时间单元,两个时刻之间的逻辑时间差为两者之间逻辑时间单元的数目。
在一些实施例中,第一资源选择模式所需条件包括:待选择时频资源中满足第一监听条件的候选时频资源的数目超过第一阈值;其中,第一监听条件包括:UE在第一监听资源集合上进行监听;其中第一监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定。
在本申请中,“候选时频资源”可以指的是UE在执行资源选择所选出来的用于直连传输的时频资源。
若要在周期性的直连传输所触发的资源选择过程中执行基于部分监听的周期性的资源选择,则UE需要能够从待选择时频资源选择出不少于第一阈值的候选时频资源,且候选时频域资源满足第一监听条件,即UE在第一监听资源集合上进行监听,该第一监听资源集合可以根据特定资源预留周期集合和该候选时频资源的时频位置确定。注意,该第一监听资源集合中的资源可能处于资源选择被触发之前,也可能处于资源选择被触发之后。具体地,该第一监听资源集合可以根据直连传输中使用的资源池(预配置或)配置的特定资源预留周期集合,以及根据候选时频资源的时频位置来确定,该特定资源预留周期集合可以是所述资源池所支持的全部资源预留周期集合的子集。
例如,UE在执行基于部分监听的周期性的资源选择时,需要从资源选择窗口中选择出Y个时间单元,Y>=Y min,并且对于所选时间单元y,UE需要在时间单元集合{y-k*P reserve}中进行信道监听,其中k为正整数,P reserve为所述特定资源预留周期集合中的任意一个周期,k为使y-k*P reserve小于y0的最小的正整数,其中y0为Y个时间单元中最早的一个时间单元,如此UE就需要在y0之前最近的一个和时间单元y间隔为P reserve的整数倍的时间单元上进行信道监听;或者对于所选时间单元y,UE需要在时间单元集合{y-P reserve}中进行信道监听,P reserve可以为所述特定资源预留周期集合中的若干个周期,例如,P reserve为100、200、300、400、500、600、700、800、900以及1000,如此UE需要对时间单元y-100、 时间单元y-200、时间单元y-300、时间单元y-400、时间单元y-500、时间单元y-600、时间单元y-700、时间单元y-800、时间单元y-900、时间单元y-1000上进行信道监听。
相反地,如果UE不能从待选择时频资源选择出不少于第一阈值的满足第一监听条件的候选时频资源,则UE无法通过执行基于部分监听的周期性的资源选择来选择出候选时频资源。由此,在本实施例中,在周期性的直连传输所触发的资源选择过程中,若UE的发送资源池支持周期性资源预留且UE被配置为进行基于部分监听的资源选择,但待选择时频资源不满足第一资源选择模式所需条件时,即待选择时频资源(例如资源选择窗口中的时频资源)中满足第一监听条件的候选时频资源的数目不超过第一阈值时,UE将执行基于部分监听的非周期性的资源选择。
由于UE在执行基于部分监听的非周期性的资源选择时,无需在选择出的资源上的直连传输中进行周期性资源预留,因此相对于基于部分监听的周期性的资源选择,基于部分监听的非周期性的资源选择所需满足的部分监听条件更宽松。
在一些实施例中,第一阈值是预配置的或者根据从网络设备接收的下行信令中携带的阈值确定。
第一阈值可以是预先设置的,例如经过协议规定设置的,或者可以是通过接收网络设备的下行信令,该下行信令中携带的阈值被确定为该第一阈值。
根据本公开实施例的直连通信资源选择方法,发送端用户设备在周期性的直连传输所触发的资源选择过程中,在用户设备的发送资源池支持周期性资源预留并且用户设备被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择,其中第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。以此方式,UE在被周期性的直连传输触发的基于部分监听的资源选择过程中,如果无法提供足够的信道监听结果,可以根据用于为不进行周期性资源预留的直连传输选择资源的资源选择模式执行资源选择,从而能够提高数据传输性能。
图3示出了根据本公开实施例的一种直连通信资源选择方法的流程示意图。如图3所示,该方法可由发送端UE执行,且包括以下步骤。
S301,在周期性的直连传输所触发的资源选择过程中,在UE的发送资源池支持周期性资源预留并且UE被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择。
其中,第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。
在一些实施例中,在资源选择过程被触发时,MAC层或更高层信令指示资源预留周期大于0。该更高层可以为RLC层、PDCP层、RRC层和/或应用层。
在一些实施例中,第一资源选择模式所需条件包括:待选择时频资源中满足第一监听条件的候选时频资源的数目超过第一阈值;其中,第一监听条件包括:UE在第一监听资源集合上进行监听;其中第一监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定。
在一些实施例中,第一阈值是预配置的或者根据从网络设备接收的下行信令中携带的阈值确定。
关于上述步骤S301及其相关细节的详细描述,可以参考关于步骤S201及其相关细节的描述,在此不再赘诉。
此外,在一些实施例中,上述步骤S301可以包括以下步骤中的任意一项:
S3011,从待选择时频资源中选择不少于第二阈值的满足第二监听条件的候选时频资源。
其中,第二监听条件包括:UE在第二监听资源集合上进行监听;其中第二监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定;或者只根据候选时频资源的时频位置确定。
UE在执行基于部分监听的非周期性的资源选择时,UE可以从待选择时频资源选择出不少于第二阈值的候选时频资源,且候选时频资源满足第二监听条件,即UE在第二监听资源集合上进行监听,该第二监听资源集合可以根据特定资源预留周期集合和该候选时频资源的时频位置确定,或者可以仅根据候选时频资源的时频位置确定。具体地,该第二监听资源集合可以根据直连传输中使用的资源池配置的特定资源预留周期集合并根据候选时频资源的时频位置来确定,该特定资源预留周期集合可以是所述资源池所支持的全部资源预留周期集合的子集;或者,第二监听资源集合可以仅根据候选时频资源的时频位置来确定,由此,相对于基于部分监听的周期性的资源选择,基于部分监听的非周期性的资源选择所需满足的部分监听条件更宽松,因为候选时频资源对应的监听资源集合可以仅根据候选时频资源的时频位置来确定,例如如果对于某资源,未能满足在根据该资源的时频位置以及根据特定资源预留周期集合所确定的监听资源集合上进行监听,但是能够满足在仅根据该资源的时频位置确定的监听资源集合上进行监听,该资源仍然可以被确定为候选资源。
例如,UE在执行基于部分监听的非周期性的资源选择时,可以从资源选择窗口中选择出Y’个时间单元,Y’>=Y’ min,并且对于所选时间单元y’,UE需要在时间单元集合{y’-k’*P’ reserve}中进行信道监听,其中k’为正整数,P’ reserve为所述特定资源预留周期集合中的任意一个周期,k’为使y’-k’*P’ reserve小于y0’的最小的正整数,其中y0’为Y’个时间单元中最早的一个时间单元,如此UE就需要监听在y0’之前最近的一个和时间单元y’间隔为P’ reserve的整数倍的时间单元;或者对于所选时间单元y’,UE需要在时间单元集合{y’-P’ reserve}中进行信道监听,P’ reserve可以为所述特定资源预留周期集合中的若干个周期,例如,P’ reserve为100、200、300、400、500、600、700、800、900以及1000,如此UE需要对时间单元y’-100、时间单元y’-200、时间单元y’-300、时间单元y’-400、时间单元y’-500、y’-600、时间单元y’-700、时间单元y’-800、时间单元y’-900、时间单元y’-1000进行信道监听。在上述两个示例中,时间单元集合根据特定资源预留周期集合以及所选时间单元的时频位置确定。
又例如,UE在执行基于部分监听的非周期性的资源选择时,可以从资源选择窗口中选择出Y’个时间单元,Y’>=Y’ min,并且对于任意所选时间单元y’,UE需要在时间单元集合[y’–M,y0]中进行信道监听,其中M可以为1-31个时隙,在上述示例中,时间单元集合仅根据所选时间单元的时频位置确定。
在一些实施例中,第二阈值是预配置的或者根据从网络设备接收的下行信令中携带的阈值确定。
第二阈值可以是预先设置的,例如经过协议规定设置的,或者可以是通过接收网络设备的下行信令,根据该下行信令中携带的阈值被确定为该第二阈值。
S3012,在待选择时频资源中执行随机资源选择。
UE在执行基于部分监听的非周期性的资源选择时,可以执行随机资源选择以从待选择时频资源中选择出候选时频资源,也就是说,无需考虑信道监听结果,而可以从待选择时频资源中随机地选择出候选时频资源。
根据本公开实施例的直连通信资源选择方法,发送端用户设备在周期性的直连传输所触发的资源选择过程中,在用户设备的发送资源池支持周期性资源预留并且用户设备被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择,其中第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。以此方式,UE在被周期性的直连传输触发的基于部分监听的资源选择过程中,如果无法提供足够的信道监听结果,可以根据用于为不进行周期性资源预留的直连传输选择资源的资源选择模式执行资源选择,从而能够提高数据传输性能。
图4示出了根据本公开实施例的一种直连通信资源选择方法的流程示意图。如图4所示,该方法可由发送端UE执行,且包括以下步骤。
S401,在周期性的直连传输所触发的资源选择过程中,在UE的发送资源池支持周期性资源预留并且UE被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择。
其中,第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。
在一些实施例中,在资源选择过程被触发时,MAC层或更高层信令指示资源预留周期大于0。该更高层可以为RLC层、PDCP层、RRC层和/或应用层。
在一些实施例中,第一资源选择模式所需条件包括:待选择时频资源中满足第一监听条件的候选时频资源的数目超过第一阈值;其中,第一监听条件包括:UE在第一监听资源集合上进行监听;其中第一监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定。
在一些实施例中,第一阈值是预配置的或者根据从网络设备接收的下行信令中携带的阈值确定。
关于上述步骤S401及其相关细节的详细描述,可以参考关于步骤S201、S301及其相关细节的描述,在此不再赘诉。
S402,通过物理层向MAC层或更高层指示在资源选择过程中根据第二资源选择模式执行资源选择。该更高层可以为RLC层、PDCP层、RRC层和/或应用层。
如前所述,在周期性的直连传输所触发的资源选择过程中,通常地在UE的发送资源池支持周期性资源预留的情况下,UE预期被触发执行周期性的资源选择,而如果UE在周期性的直连传输所触发的资源选择过程中执行的是非周期性的资源选择,即UE未如预期那样执行周期性的资源选择,则需要通过物理层向MAC层或更高层指示在资源选择过程中执行非周期性的资源选择。
具体地,在UE通过执行基于部分选择的非周期性的资源选择来选择出候选时频资源集合后,物理层需要将该候选时频资源集合上报给MAC层或更高层,同时指示该候选时频资源集合是UE根据第二资源选择模式执行资源选择所选择出的。
根据本公开实施例的直连通信资源选择方法,发送端用户设备在周期性的直连传输所触发的资源选择过程中,在用户设备的发送资源池支持周期性资源预留并且用户设备被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择,其中第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源,并且在上报候选时频资源集合时同时指出是根据第二资源选择模式选出该候选时频资源集合,从而MAC层或更高层能够知晓候选时频资源集合是根据第二资源选择模式而非根据第一资源选择模式选出的。
上述本申请提供的实施例中,从用户设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,用户设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
与上述几种实施例提供的直连通信资源选择方法相对应,本公开还提供一种直连通信资源选择装置,由于本公开实施例提供的直连通信资源选择装置与上述几种实施例提供的直连通信资源选择方法相对应,因此直连通信资源选择方法的实施方式也适用于本实施例提供的直连通信资源选择装置,在本实施例中不再详细描述。
图5为本公开实施例提供的一种直连通信资源选择装置500的结构示意图。
如图5所示,该装置500可以包括处理模块501。
处理模块501用于在周期性的直连传输所触发的资源选择过程中,在所述UE的发送资源池支持周期性资源预留并且所述UE被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择;其中,所述第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,所述第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。
根据本公开实施例的直连通信资源选择装置,发送端用户设备在周期性的直连传输所触发的资源选择过程中,在用户设备的发送资源池支持周期性资源预留并且用户设备被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择,其中第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。以此方式,UE在被周期性的直连传输触发的基于部分监听的资源选择过程中,如果无法提供足够的信道监听结果,可以根据用于为不进行周期性资源预留的直连传输选择资源的资源选择模式执行资源选择,从而能够提高数据传输性能。
在一些实施例中,在所述资源选择过程被触发时,媒体访问控制MAC层或更高层指示资源预留周期不为0,所述更高层包括RLC层、PDCP层、RRC层和/或应用层,其中所述资源预留周期指示所述UE进行周期性资源预留时所需预留的资源之间的时间间隔。
在一些实施例中,所述第一资源选择模式所需条件包括:所述待选择时频资源中满足第一监听条件的候选时频资源的数目超过第一阈值;其中,所述第一监听条件包括:所述UE在第一监听资源集合上进行监听;其中所述第一监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定。
在一些实施例中,所述处理模块501用于:从待选择时频资源中选择不少于第二阈值的满足第二监听条件的候选时频资源;其中,所述第二监听条件包括:所述UE在第二监 听资源集合上进行监听;其中所述第二监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定;或者只根据候选时频资源的时频位置确定。
在一些实施例中,所述处理模块501用于:在所述待选择时频资源中进行随机资源选择。
在一些实施例中,所述第一阈值是预配置的或者根据从网络设备接收的下行信令中携带的阈值确定;所述第二阈值是预配置的或者根据从网络设备接收的下行信令中携带的阈值确定。
在一些实施例中,如图6所示,所述装置500还包括:收发模块502,用于通过物理层向MAC层或更高层指示在所述资源选择过程中根据第二资源选择模式执行资源选择,所述更高层包括RLC层、PDCP层、RRC层和/或应用层。
请参见图7,图7是本申请实施例提供的一种通信装置700的结构示意图。通信装置700可以是用户设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持用户设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置700可以包括一个或多个处理器701。处理器701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置700中还可以包括一个或多个存储器702,其上可以存有计算机程序704,处理器701执行所述计算机程序704,以使得通信装置700执行上述方法实施例中描述的方法。可选的,所述存储器702中还可以存储有数据。通信装置700和存储器702可以单独设置,也可以集成在一起。
可选的,通信装置700还可以包括收发器705、天线706。收发器705可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器705可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置700中还可以包括一个或多个接口电路707。接口电路707用于接收代码指令并传输至处理器701。处理器701运行所述代码指令以使通信装置700执行上述方法实施例中描述的方法。
通信装置700为用户设备:处理器701用于执行图2中的步骤S201,图3中的S301、包括S3011-S3012,图4中的S401;收发器705用于执行图4中的步骤S402。
在一种实现方式中,处理器701中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器701可以存有计算机程序703,计算机程序703在处理器701上运行,可使得通信装置700执行上述方法实施例中描述的方法。计算机程序703可能固化在处理器701中,该种情况下,处理器701可能由硬件实现。
在一种实现方式中,通信装置700可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者用户设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图7的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图8所示的芯片的结构示意图。图8所示的芯片包括处理器801和接口802。其中,处理器801的数量可以是一个或多个,接口802的数量可以是多个。
对于芯片用于实现本申请实施例中用户设备的功能的情况:处理器801用于执行图2中的步骤S201,图3中的S301、包括S3011-S3012,图4中的S401;接口802用于执行图4中的步骤S402。
可选的,芯片还包括存储器803,存储器803用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种实现直连通信资源选择的系统,该系统包括前述图5、图6实施例中作为用户设备的通信装置,或者,该系统包括前述图7实施例中作为用户设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
可以理解的是,本公开实施例中涉及的时间单元可能是物理时间单元,也可能是逻辑时间单元,例如单位为秒、毫秒、微秒、帧、子帧、时隙(slot)、正交频分复用符号等。
可以理解的是,本公开实施例中涉及的时频资源可以包括时域资源和/或频域资源,相应地,时频资源的时频位置表示时域资源的时域位置和/或频域资源的频域位置。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
此外,应该理解,本申请所述的各种实施例可以单独实施,也可以在方案允许的情况下与其他实施例组合实施。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种直连通信资源选择方法,其特征在于,所述方法由发送端用户设备UE执行,所述方法包括:
    在周期性的直连传输所触发的资源选择过程中,在所述UE的发送资源池支持周期性资源预留并且所述UE被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择;
    其中,所述第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,所述第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。
  2. 如权利要求1所述的方法,其特征在于,在所述资源选择过程被触发时,媒体访问控制MAC层或更高层指示资源预留周期不为0,所述更高层包括RLC层、PDCP层、RRC层和/或应用层,其中所述资源预留周期指示所述UE进行周期性资源预留时所需预留的资源之间的时间间隔。
  3. 如权利要求1所述的方法,其特征在于,所述第一资源选择模式所需条件包括:
    所述待选择时频资源中满足第一监听条件的候选时频资源的数目超过第一阈值;
    其中,所述第一监听条件包括:
    所述UE在第一监听资源集合上进行监听;其中所述第一监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定。
  4. 如权利要求1-3中任一项所述的方法,其特征在于,所述根据第二资源选择模式执行资源选择,包括:
    从所述待选择时频资源中选择不少于第二阈值的满足第二监听条件的候选时频资源;
    其中,所述第二监听条件包括:所述UE在第二监听资源集合上进行监听;其中所述第二监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定;或者只根据候选时频资源的时频位置确定。
  5. 如权利要求1-3中任一项所述的方法,其特征在于,所述根据第二资源选择模式执行资源选择,包括:
    在所述待选择时频资源中进行随机资源选择。
  6. 如权利要求1-5中任一项所述的方法,还包括:
    通过物理层向MAC层或更高层指示在所述资源选择过程中根据第二资源选择模式执行资源选择,所述更高层包括RLC层、PDCP层、RRC层和/或应用层。
  7. 一种直连通信资源选择装置,其特征在于,包括:
    处理模块,用于在周期性的直连传输所触发的资源选择过程中,在所述UE的发送资源池支持周期性资源预留并且所述UE被配置为进行基于部分监听的资源选择以及待选择时频资源不满足第一资源选择模式所需条件时,根据第二资源选择模式执行资源选择;
    其中,所述第一资源选择模式用于为进行周期性资源预留的直连传输选择资源,所述第二资源选择模式用于为不进行周期性资源预留的直连传输选择资源。
  8. 如权利要求7所述的装置,其特征在于,在所述资源选择过程被触发时,媒体访问控制MAC层或更高层指示资源预留周期不为0,所述更高层包括RLC层、PDCP层、RRC层和/或应用层,其中所述资源预留周期指示所述UE进行周期性资源预留时所需预留的资源之间的时间间隔。
  9. 如权利要求7所述的装置,其特征在于,所述第一资源选择模式所需条件包括:
    所述待选择时频资源中满足第一监听条件的候选时频资源的数目超过第一阈值;
    其中,所述第一监听条件包括:
    所述UE在第一监听资源集合上进行监听;其中所述第一监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定。
  10. 如权利要求7-9中任一项所述的装置,其特征在于,所述处理模块用于:
    从待选择时频资源中选择不少于第二阈值的满足第二监听条件的候选时频资源;
    其中,所述第二监听条件包括:
    所述UE在第二监听资源集合上进行监听;其中所述第二监听资源集合根据特定资源预留周期集合和候选时频资源的时频位置确定;或者只根据候选时频资源的时频位置确定。
  11. 如权利要求7-9中任一项所述的装置,其特征在于,所述处理模块用于:
    在所述待选择时频资源中进行随机资源选择。
  12. 如权利要求7-11中任一项所述的方法,其特征在于,还包括:
    收发模块,通过物理层向MAC层或更高层指示在所述资源选择过程中根据第二资源选择模式执行资源选择,所述更高层包括RLC层、PDCP层、RRC层和/或应用层。
  13. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1-6任一项所述的方法。
  14. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-6任一项所述的方法。
PCT/CN2021/138474 2021-12-15 2021-12-15 直连通信资源选择方法及装置 WO2023108499A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180004537.3A CN114365538A (zh) 2021-12-15 2021-12-15 直连通信资源选择方法及装置
PCT/CN2021/138474 WO2023108499A1 (zh) 2021-12-15 2021-12-15 直连通信资源选择方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/138474 WO2023108499A1 (zh) 2021-12-15 2021-12-15 直连通信资源选择方法及装置

Publications (1)

Publication Number Publication Date
WO2023108499A1 true WO2023108499A1 (zh) 2023-06-22

Family

ID=81104857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138474 WO2023108499A1 (zh) 2021-12-15 2021-12-15 直连通信资源选择方法及装置

Country Status (2)

Country Link
CN (1) CN114365538A (zh)
WO (1) WO2023108499A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727624A (zh) * 2020-05-09 2020-09-29 北京小米移动软件有限公司 部分监听方法、装置、终端设备及存储介质
CN112512008A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 通信资源选择方法、装置、电子设备和存储介质
CN112840708A (zh) * 2021-01-14 2021-05-25 北京小米移动软件有限公司 一种通信方法、装置及存储介质
CN113678491A (zh) * 2021-07-14 2021-11-19 北京小米移动软件有限公司 待传输时频资源的评估方法、资源选择方法、装置及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111727624A (zh) * 2020-05-09 2020-09-29 北京小米移动软件有限公司 部分监听方法、装置、终端设备及存储介质
CN112512008A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 通信资源选择方法、装置、电子设备和存储介质
CN112840708A (zh) * 2021-01-14 2021-05-25 北京小米移动软件有限公司 一种通信方法、装置及存储介质
CN113678491A (zh) * 2021-07-14 2021-11-19 北京小米移动软件有限公司 待传输时频资源的评估方法、资源选择方法、装置及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Sidelink resource allocation to reduce power consumption", 3GPP TSG RAN WG1 MEETING #103-E R1-2007615, 24 October 2020 (2020-10-24), XP051946440 *

Also Published As

Publication number Publication date
CN114365538A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
US10973053B2 (en) Listen-before-talk procedure with priority and interference addition awareness
WO2018076956A1 (zh) 免授权传输的方法、终端设备和网络设备
WO2020038334A1 (zh) 信息发送、接收方法与通信设备
JP7478161B2 (ja) Pdcchのモニタリング方法及び装置
WO2015045556A1 (ja) 通信制御装置、通信制御方法、端末装置及び情報処理装置
WO2023044805A1 (zh) 小区配置的确定方法及装置
WO2019245641A1 (en) 5g nr fast low-power mode
TW202234909A (zh) 行動通訊中更快頻寬部分切換增強之方法
WO2022006879A1 (zh) 一种寻呼指示的传输方法、电子设备及存储介质
KR102501134B1 (ko) 무선 통신들에서의 유연한 다운링크 제어 신호 모니터링
WO2020083333A1 (zh) 通信方法和装置
IL295815A (en) Physical channel monitoring method and terminal device
WO2023010288A1 (zh) 资源选择方法、装置和存储介质
US20220322262A1 (en) Method, apparatus, and system for signal synchronization
WO2023108499A1 (zh) 直连通信资源选择方法及装置
CN113348709A (zh) 一种资源管理方法及装置
CN107950046B (zh) 设备和方法
WO2024031716A1 (zh) 一种直连通信方法及装置
WO2022257796A1 (zh) 通信方法和通信装置
WO2022205379A1 (zh) 一种联合信道估计触发方法及装置
WO2024026700A1 (zh) 资源选择方法及装置
WO2023051202A1 (zh) 一种用于寻呼的方法和通信装置
WO2024066909A1 (zh) 一种通信方法、装置及系统
WO2021138907A1 (en) Method and apparatus for geo-based sidelink communication
WO2024026699A1 (zh) 资源选择方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967635

Country of ref document: EP

Kind code of ref document: A1