WO2024066909A1 - 一种通信方法、装置及系统 - Google Patents

一种通信方法、装置及系统 Download PDF

Info

Publication number
WO2024066909A1
WO2024066909A1 PCT/CN2023/116299 CN2023116299W WO2024066909A1 WO 2024066909 A1 WO2024066909 A1 WO 2024066909A1 CN 2023116299 W CN2023116299 W CN 2023116299W WO 2024066909 A1 WO2024066909 A1 WO 2024066909A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiver
receiving antennas
supported
indication information
terminal device
Prior art date
Application number
PCT/CN2023/116299
Other languages
English (en)
French (fr)
Inventor
罗之虎
金哲
孙欢
曲韦霖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024066909A1 publication Critical patent/WO2024066909A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and more specifically, to a communication method, device and system.
  • IoT Internet of things
  • the device can enter the sleep state.
  • Devices in the sleep state can enjoy lower power consumption, but the delay of receiving data will increase. Therefore, devices in the sleep state need to periodically receive wake-up signals from network devices and determine whether there is downlink data from network devices to be received based on the information carried in the wake-up signal.
  • IEEE 802.11ba is designed to equip IoT devices with two radio chains, namely the primary connection radio (PCR) and the companion radio (CR).
  • the primary connection radio can also be called the primary receiver
  • the companion connection radio can also be called the wake-up receiver.
  • the device detects the wake-up signal through the wake-up receiver, it can trigger the wake-up of the primary receiver according to the wake-up signal, and then the primary receiver can be used for data transmission.
  • the wake-up receiver has lower power consumption, and the wake-up receiver reuses all or part of the RF hardware of the primary receiver, which can reduce costs.
  • the number of receiving antennas supported by the wake-up receiver will affect the receiving performance and coverage capability of the wake-up receiver.
  • There are differences in receiving performance and coverage capability between the primary receiver and the wake-up receiver which will affect the transmission parameters used by the network device when scheduling transmission, reduce the transmission efficiency of the system, and also cause coverage holes, affecting the communication quality.
  • the present application provides a communication method, device and system, which can improve transmission efficiency, solve the problem of coverage holes and improve communication quality.
  • a communication method is provided, which is executed by a terminal device, or may be executed by a component (such as a circuit or a chip) configured in the terminal device. This application does not limit this.
  • the method includes: a terminal device sends first indication information to a network device, wherein the first indication information is used to indicate information about the number of receiving antennas of a first receiver of the terminal device; and the terminal device uses the first receiver to receive a wake-up signal sent by the network device.
  • the terminal device can report the number of receiving antennas supported by the first receiver of the terminal device to the network device through the first indication information, thereby assisting the network device in determining the transmission parameters of the wake-up signal and improving the transmission efficiency.
  • the above technical solution improves the flexibility of the terminal device, so that the terminal device can select the number of receiving antennas supported by the first receiver for reporting according to its own energy saving requirements or coverage requirements.
  • the smart home appliance sends the first indication information according to its own energy-saving requirements, and reports the number of receiving antennas supported by the wake-up receiver to the base station.
  • the base station receives the first indication information, and determines the number of receiving antennas supported by the smart home appliance wake-up receiver through the first indication information, thereby adjusting the transmission parameters of the wake-up signal and improving the transmission efficiency.
  • the first indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the first receiver and the second receiver have the same number of receiving antennas.
  • the terminal device indicates through the first indication information that the first receiver and the second receiver support the same number of receiving antennas, so there is no need to additionally indicate the specific number of receiving antennas of the first receiver, thereby saving signaling overhead.
  • the first indication information indicates that the first receiver and the second receiver have different numbers of receiving antennas.
  • the terminal device sends second indication information to the network device, where the second indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the number of receiving antennas supported by the first receiver is one of 1, 2 or 4.
  • the first indication information indicates frequency band information supported by the first receiver, wherein there is a correlation between the number of receiving antennas supported by the first receiver and the frequency band information supported by the first receiver.
  • the terminal device indicates the frequency band information supported by the first receiver through the first indication information.
  • the base station receives the first indication information and determines the number of receiving antennas through the association between the number of receiving antennas supported by the first receiver and the frequency band information supported by the first receiver. Therefore, there is no need to additionally receive indication information indicating the specific number of receiving antennas of the first receiver, thereby saving signaling overhead.
  • the first indication information indicates the number of receiving antennas supported by the second receiver; the number of receiving antennas supported by the first receiver is the same as the number of receiving antennas supported by the second receiver.
  • the terminal device indicates the number of receiving antennas supported by the second receiver through the first indication information.
  • the base station receives the first indication information, and determines the number of receiving antennas supported by the first receiver by the number of receiving antennas supported by the first receiver being the same as the number of receiving antennas supported by the second receiver. Therefore, there is no need to receive an additional indication information to indicate the number of receiving antennas of the first receiver, thereby saving signaling overhead.
  • the terminal device receives configuration information; the terminal device in the first state enters the second state according to the configuration information.
  • the terminal device can change its state according to the configuration information. Considering that the first receiver supports a different number of receiving antennas than the second receiver, the coverage capabilities of the first receiver and the second receiver are different. The more receiving antennas there are, the larger the coverage range. According to the configuration information, the terminal device can change its state and use different receivers to communicate with the network device, avoiding coverage holes caused by the difference in coverage capabilities between the first receiver and the second receiver, thereby improving communication quality.
  • a pedestrian carries a smart wearable device.
  • the smart wearable device When the pedestrian moves to a location closer to the base station, the smart wearable device is in the first state, and uses a wake-up receiver to receive a wake-up signal sent by the base station.
  • the number of receiving antennas supported by the wake-up receiver of the smart wearable device cannot meet the coverage distance between the pedestrian and the base station.
  • the smart wearable device enters the second state according to the configuration information and uses the main receiver to communicate with the base station. Therefore, this design can avoid coverage holes caused by the gap in coverage capabilities between the first receiver and the second receiver, thereby improving communication quality.
  • the configuration information includes: a plurality of candidate thresholds, wherein different candidate thresholds are associated with different numbers of receiving antennas that may be supported by the first receiver; and the terminal device determines the number of candidate thresholds according to the first The first threshold is determined from the multiple candidate thresholds according to the number of receiving antennas supported by a receiver.
  • the terminal device can more accurately determine the timing of entering the second state from the first state according to the different numbers of receiving antennas that the first receiver may support, thereby further improving the communication quality.
  • the configuration information is a candidate threshold and one or more bias information
  • the candidate threshold is associated with a number of receiving antennas that may be supported by the first receiver
  • the different bias information is associated with different numbers of receiving antennas that may be supported by the first receiver
  • the terminal device determines the first bias information from the one or more bias information according to the number of receiving antennas supported by the first receiver
  • the terminal device determines the first threshold in combination with the candidate threshold and the first bias information.
  • the signaling overhead required for the network device to configure the bias information is usually less than the signaling overhead required to configure the candidate threshold itself.
  • the terminal device determines the first threshold by combining a candidate threshold and a bias information, so that the network device can use less signaling overhead to achieve the same configuration effect.
  • the second receiver or the first receiver performs measurement based on a first reference signal and obtains a measurement result; the measurement result satisfies a first relationship with the first threshold; and the terminal device enters the second state from the first state.
  • a communication method is provided, which is executed by a network device, or may be executed by a component (such as a circuit or a chip) configured in the network device. This application does not limit this.
  • the method includes: a network device receives first indication information sent by a terminal device, wherein the first indication information is used to indicate the number of receiving antennas of a first receiver of the terminal device; and according to the first indication information, the network device sends a wake-up signal to the terminal device.
  • the network device can determine the number of receiving antennas supported by the first receiver of the terminal device through the first indication information, thereby determining the transmission parameters of the wake-up signal and improving the transmission efficiency.
  • the above technical solution improves the flexibility of the terminal device, so that the network device can obtain the number of receiving antennas supported by the first receiver selected by the terminal device according to its own energy saving requirements or coverage requirements.
  • the smart home appliance sends the first indication information according to its own energy-saving requirements, and reports the number of receiving antennas supported by the wake-up receiver to the base station.
  • the base station receives the first indication information, and determines the number of receiving antennas supported by the smart home appliance wake-up receiver through the first indication information, thereby adjusting the transmission parameters of the wake-up signal and improving the transmission efficiency.
  • the network device sends the first indication information to the core network.
  • the first indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the first receiver and the second receiver have the same number of receiving antennas.
  • the signaling overhead of the first indication information can be saved.
  • the signaling overhead of the first indication information can be saved.
  • the first indication information indicates that the first receiver and the second receiver have different numbers of receiving antennas.
  • the network device receives second indication information sent by the terminal device, and the second indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the number of receiving antennas supported by the first receiver is one of 1, 2 or 4.
  • the first indication information indicates frequency band information supported by the first receiver, wherein: There is a correlation between the number of receiving antennas supported by the first receiver and the frequency band information supported by the first receiver.
  • the base station receives the first indication information and determines the number of receiving antennas based on the correlation between the number of receiving antennas supported by the first receiver and the frequency band information supported by the first receiver. Therefore, there is no need to additionally receive indication information indicating the specific number of receiving antennas of the first receiver, thereby saving signaling overhead.
  • the first indication information indicates the number of receiving antennas supported by the second receiver; the number of receiving antennas supported by the first receiver is the same as the number of receiving antennas supported by the second receiver.
  • the base station receives the first indication information and determines the number of receiving antennas supported by the first receiver by the fact that the number of receiving antennas supported by the first receiver is the same as the number of receiving antennas supported by the second receiver. Therefore, there is no need to receive an additional indication information indicating the number of receiving antennas of the first receiver, thereby saving signaling overhead.
  • the network device sends configuration information to the terminal device; and the configuration information is used for the terminal device to enter the first state or the second state.
  • the terminal device can change its state according to the configuration information. Considering that the first receiver supports a different number of receiving antennas than the second receiver, the coverage capabilities of the first receiver and the second receiver are different. The more receiving antennas there are, the larger the coverage range. According to the configuration information, the terminal device can use different receivers to communicate with the network device, avoiding coverage holes caused by the difference in coverage capabilities between the first receiver and the second receiver, thereby improving communication quality.
  • a pedestrian carries a smart wearable device.
  • the smart wearable device When the pedestrian moves to a location closer to the base station, the smart wearable device is in the first state, and uses a wake-up receiver to receive a wake-up signal sent by the base station.
  • the number of receiving antennas supported by the wake-up receiver of the smart wearable device cannot meet the coverage distance between the pedestrian and the base station.
  • the smart wearable device enters the second state according to the configuration information and uses the main receiver to communicate with the base station. Therefore, this design can avoid coverage holes caused by the gap in coverage capabilities between the first receiver and the second receiver, thereby improving communication quality.
  • the configuration information is a first threshold.
  • the configuration information is a plurality of candidate thresholds, wherein different candidate thresholds are associated with different numbers of receiving antennas that may be supported by the first receiver.
  • the terminal device can more accurately determine the timing of entering the second state from the first state according to the different numbers of receiving antennas that the first receiver may support, thereby further improving the communication quality.
  • the configuration information includes: the configuration information is a candidate threshold and one or more bias information; the candidate threshold is associated with a number of receiving antennas that the first receiver may support; and the different bias information is associated with different numbers of receiving antennas that the first receiver may support.
  • the signaling overhead required for the network device to configure the bias information is usually less than the signaling overhead required to configure the candidate threshold itself.
  • the terminal device determines the first threshold by combining a candidate threshold and a bias information, so that the network device can use less signaling overhead to achieve the same configuration effect.
  • a terminal device which can execute the method provided in the first aspect, and the terminal device specifically includes: a processing unit, used to determine first indication information, wherein the first indication information is used to indicate the number of receiving antennas of the first receiver of the terminal device; a transceiver unit, used to send the first indication information to a network device; the transceiver unit is also used to use the first receiver to receive a wake-up signal sent by the network device.
  • the first indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the first receiver and the second receiver have the same number of receiving antennas.
  • the first indication information indicates that the first receiver and the second receiver have different numbers of receiving antennas.
  • the transceiver unit is also used to send second indication information to the network device, where the second indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the number of receiving antennas supported by the first receiver is one of 1, 2 or 4.
  • the first indication information indicates frequency band information supported by the first receiver, wherein there is a correlation between the number of receiving antennas supported by the first receiver and the frequency band information supported by the first receiver.
  • the first indication information indicates the number of receiving antennas supported by the second receiver; the number of receiving antennas supported by the first receiver is the same as the number of receiving antennas supported by the second receiver.
  • the transceiver unit is also used to receive configuration information; the processing unit is also used to make the terminal device in the first state enter the second state according to the configuration information.
  • the configuration information is a first threshold.
  • the configuration information includes: the configuration information is multiple candidate thresholds, where different candidate thresholds are associated with different numbers of receiving antennas that the first receiver may support; the processing unit is also used to determine the first threshold from the multiple candidate thresholds based on the number of receiving antennas supported by the first receiver.
  • the configuration information includes: the configuration information is a candidate threshold and one or more bias information; the candidate threshold is associated with a number of receiving antennas that the first receiver may support; the different bias information is associated with different numbers of receiving antennas that the first receiver may support; the processing unit is also used to determine the first bias information from the one or more bias information according to the number of receiving antennas supported by the first receiver; the processing unit is also used to determine the first threshold in combination with the candidate threshold and the first bias information.
  • the transceiver unit is also used to use the first receiver or the second receiver to receive a first reference signal; the processing unit is also used to perform measurements based on the first reference signal and obtain measurement results; the measurement results and the first threshold satisfy a first relationship; the processing unit is also used to enable the terminal device in the first state to enter the second state.
  • a network device which can execute the method provided in the second aspect, and the network device specifically includes: a transceiver unit, used to receive first indication information sent by a terminal device; a processing unit, used to determine the number of receiving antennas of the first receiver of the terminal device based on the first indication information; the transceiver unit is also used to send a wake-up signal to the terminal device based on the number of receiving antennas of the first receiver.
  • the transceiver unit is also used to send the first indication information to the core network.
  • the first indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the first receiver and the second receiver have the same number of receiving antennas.
  • the first indication information indicates that the first receiver and the second receiver have different numbers of receiving antennas.
  • the transceiver unit is also used to receive second indication information sent by the terminal device, where the second indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the number of receiving antennas supported by the first receiver is one of 1, 2 or 4.
  • the first indication information indicates frequency band information supported by the first receiver, wherein: There is a correlation between the number of receiving antennas supported by the first receiver and the frequency band information supported by the first receiver.
  • the first indication information indicates the number of receiving antennas supported by the second receiver; the number of receiving antennas supported by the first receiver is the same as the number of receiving antennas supported by the second receiver.
  • the transceiver unit is also used to send configuration information to the terminal device; the configuration information is used for the terminal device to enter the first state or the second state.
  • the configuration information is a plurality of candidate thresholds, wherein different candidate thresholds are associated with different numbers of receiving antennas that may be supported by the first receiver.
  • the configuration information includes: the configuration information is a candidate threshold and one or more bias information; the candidate threshold is associated with a number of receiving antennas that the first receiver may support; and the different bias information is associated with different numbers of receiving antennas that the first receiver may support.
  • a communication device comprising a processor, wherein the processor is coupled to at least one memory, and the processor is used to read a computer program stored in the at least one memory to execute the method in the above first aspect or any possible design of the first aspect, or to execute the above second aspect or any possible design of the second aspect.
  • a computer-readable storage medium is provided, wherein the computer-readable storage medium is used to store a computer program.
  • the computer program runs on a computer, the computer executes the method described in the first aspect or the second aspect or any possible design thereof.
  • a computer program product which, when executed on a computer, enables the computer to execute the method described in the first aspect or the second aspect or any possible design thereof.
  • a chip comprising a processor and a communication interface, wherein the processor is used to read instructions or computer programs to execute the method described in the first aspect or the second aspect or any possible design thereof.
  • a communication system comprising a terminal device in the third aspect or any possible design of the third aspect, and a network device in the fourth aspect or any possible design of the fourth aspect.
  • beneficial effects of the above third to ninth aspects and possible designs thereof may refer to the beneficial effects of the first or second aspect and possible designs thereof.
  • FIG1 is a schematic diagram of a system architecture scenario applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an example of a receiver of a terminal device of the present application.
  • FIG. 3 is a schematic diagram showing a wake-up receiver supporting different numbers of receiving antennas.
  • FIG4 is a schematic diagram of an example of a communication method provided in an embodiment of the present application.
  • FIG5 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG6 is a schematic block diagram of another communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • FIG8 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • GSM global mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • 5G fifth generation mobile communication technology
  • NR new radio
  • V2X vehicle-to-X
  • V2X may include vehicle to network (V2N), vehicle to vehicle (V2V), vehicle to infrastructure (V2I), vehicle to pedestrian (V2 pedestrian, V2P), Long Term Evolution-Vehicle (LTE-V), Internet of Vehicles, machine type communication (MTC), IoT, Long Term Evolution-Machine (LTE-M), Machine to Machine (M2M), etc.
  • FIG. 1 shows a schematic diagram of a system architecture scenario applicable to the communication method and device of the embodiments of the present application.
  • the communication system includes at least one network device (such as base station #1 and base station #2 in FIG. 1) and at least one terminal device (such as terminal #1 to terminal #8 in FIG. 1).
  • base station #1 sends information to one or more terminal devices in terminal #1 to terminal #6.
  • Base station #1 sends information to one or more terminal devices in terminal #7 and terminal #8 through base station #2.
  • terminal devices #4 to terminal devices #6 also constitute a communication system, in which terminal device #4 can send information to one or more terminal devices in terminal device #5 and terminal device #6.
  • Base station #2, terminal #7 and terminal #8 also constitute a communication system, in which base station #2 can send information to one or more terminal devices in terminal #7 and terminal #8.
  • Network devices and terminal devices can be fixed or movable. In the embodiments of the present application, the network device and the terminal device can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; can also be deployed on the water surface; can also be deployed on aircraft, balloons and satellites in the air. The embodiments of the present application do not limit the scenarios in which the network device and the terminal device are located.
  • Figure 1 is only an example and does not constitute any limitation on the protection scope of this application.
  • the communication method provided in the embodiment of this application may also involve network elements or devices not shown in Figure 1.
  • the communication method provided in the embodiment of this application may also include only some of the network elements shown in Figure 1.
  • a terminal device includes a device that provides voice and/or data connectivity to a user, specifically, includes a device that provides voice to a user, or includes a device that provides data connectivity to a user, or includes a device that provides voice and data connectivity to a user.
  • the terminal device may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • the terminal device in an embodiment of the present application may be a mobile phone, a tablet computer (pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in self driving, a wireless terminal in remote medical, a smart grid, or a wireless terminal in a smart home.
  • a virtual reality (VR) terminal device may be a computer with wireless transceiver function
  • VR virtual reality
  • AR augmented reality
  • wireless terminal in industrial control a wireless terminal in self driving
  • a wireless terminal in remote medical a smart grid
  • a wireless terminal in a smart home a wireless terminal in a smart home.
  • the present invention relates to wireless terminals in the wireless grid, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks, or terminal devices in future evolved public land mobile communication networks (PLMNs), etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • terminal devices in 5G networks or terminal devices in future evolved public land mobile communication networks (PLMNs)
  • PLMNs public land mobile communication networks
  • wearable devices can also be called wearable smart devices, which are a general term for the intelligent design and development of wearable devices for daily wear using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • Wearable devices are portable devices that are worn directly on the body or integrated into the user's clothes or accessories.
  • Wearable devices are not only hardware devices, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, and independent of smartphones to achieve complete or partial functions, such as smart watches or smart glasses, as well as those that only focus on a certain type of application function and need to be used in conjunction with other devices such as smartphones, such as various smart bracelets and smart jewelry for vital sign monitoring.
  • the terminal device can also be a terminal device in the IoT system.
  • IoT is an important part of the future development of information technology. Its main technical feature is to connect objects to the network through communication technology, thereby realizing an intelligent network that interconnects people and machines and things.
  • the device for realizing the function of the terminal device can be the terminal device, or it can be a device that can support the terminal device to realize the function, such as a chip system or a chip, which can be installed in the terminal device.
  • the chip system can be composed of a chip, or it can include a chip and other discrete devices.
  • This application does not limit the specific form of the terminal device.
  • the network device can be any device with wireless transceiver function.
  • the device includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved NodeB, or home NodeB, HNB), base band unit (BBU), wireless fidelity (WIFI) system Access point (AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., can also be the next generation node B (gNB) or transmission point (TRP or TP) in the 5G NR system, or one or a group of antenna panels (including multiple antenna panels) of a base station in the 5G system, or it can also be a network node constituting a gNB or a transmission point, such as a baseband unit (BBU) or a distributed unit (DU).
  • eNB evolved Node B
  • RNC radio network controller
  • the network device can be a network device in the future sixth generation mobile communication technology (the 6th generation, 6G) network or a network device in the future evolved PLMN network, etc., which is not limited in the embodiments of the present application.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing the functions of the radio resource control (RRC) and packet data convergence protocol (PDCP) layers.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, the medium access control (MAC) layer, and the physical (PHY) layer.
  • the AAU implements some physical layer processing. processing functions, RF processing and related functions of active antennas.
  • the network device can be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into a network device in the access network (radio access network, RAN), and the CU can also be divided into a network device in the core network (core network, CN), and this application does not limit this.
  • the network equipment provides services for the cell, and the terminal equipment communicates with the cell through the transmission resources (for example, frequency domain resources, or spectrum resources) allocated by the network equipment.
  • the cell can belong to a macro base station (for example, macro eNB or macro gNB, etc.), or to a base station corresponding to a small cell.
  • the small cells here may include: metro cell, micro cell, pico cell, femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • the terminal device In general, whether the terminal device is in an idle state or an inactive state to perform a paging reception process, or the terminal device is in a connected state to receive data, it is implemented through the same receiving module (or receiver, or receiving circuit).
  • the module that completes these functions (or performs related steps) is called the main receiver. It can be understood that the main receiver is only named for distinction, and its specific naming does not limit the scope of protection of this application.
  • the main receiver consumes more power, but it has more functions and can send and receive more types of signals. In the process of communicating with network devices, the main receiver is used to undertake the main data transmission.
  • the main receiver can be used to receive, for example, a synchronization signal block (SSB), a physical downlink control channel (PDCCH), a physical downlink shared channel (PDSCH), or a channel state information reference signal (CSI RS), or can be used to receive binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), 16 quadrature amplitude modulation (QAM), 64QAM or 256QAM modulated signals, or can be used to receive a signal subjected to a fast Fourier transform (FFT) or an inverse fast Fourier transform (IFFT).
  • the main receiver can be a receiver with a higher local oscillator accuracy.
  • the signal received by the terminal device using the main receiver can be called a signal transmitted on the main link, where the main link represents a connection relationship between the terminal device and the network device, which is a logical concept rather than a physical entity. It can be understood that the main link is only named for distinction, and its specific naming does not limit the scope of protection of this application.
  • the terminal device uses the main receiver to receive paging, the power consumption is high. For example, the terminal device needs to periodically wake up the main receiver every discontinuous reception (DRX) cycle. When the terminal device has no signaling and data services to transmit, the behavior of waking up the main receiver once in each DRX cycle causes the main power consumption of the terminal device. In addition, since the main receiver is relatively complex, its baseline power consumption (or static power consumption) during operation is relatively high.
  • DRX discontinuous reception
  • the terminal device can use a separate low-power small circuit to receive the wake-up signal.
  • the low-power small circuit has the ability to monitor the wake-up signal with ultra-low power consumption, and the main receiver can be in a closed or deep sleep state, while the low-power small circuit can be in an active state or an intermittently active state.
  • the terminal device detects the wake-up signal through the low-power small circuit, the terminal device can trigger the wake-up of the main receiver according to the wake-up signal.
  • the main receiver is turned on, it can be used for data transmission.
  • the low-power small circuit can use a structure It is implemented as a single small circuit, module or chip with simple structure and low power consumption.
  • the above-mentioned low-power small circuit can be called, for example, a wake-up receiver (WUR), a low-power wake-up receiver (WUR), a wake-up radio (WUR), an auxiliary receiver, or a wake-up circuit, a low-power circuit, etc., and the present application does not limit the naming.
  • WUR wake-up receiver
  • WUR low-power wake-up receiver
  • WUR wake-up radio
  • auxiliary receiver auxiliary receiver
  • the wake-up receiver can be used, for example, to receive signals modulated by on-off key (OOK) or frequency shift keying (FSK), or can be used to receive signals that do not require FFT or IFFT during the generation or decoding process, or can be used to receive Manchester-encoded signals.
  • OOK on-off key
  • FSK frequency shift keying
  • the signal received by the terminal device using the wake-up receiver can be called a signal transmitted on the wake-up link, where the wake-up link represents a connection relationship between the terminal device and the network device, which is a logical concept rather than a physical entity.
  • the wake-up link is only a name for distinction, and its specific name does not limit the scope of protection of this application.
  • the wake-up link can also be called a WUR link.
  • the wake-up receiver has lower energy consumption than the main receiver.
  • the energy consumption of the wake-up receiver receiving the signal transmitted on the wake-up link is lower than the energy consumption of the main receiver receiving the signal transmitted on the main link;
  • the energy consumption of the wake-up receiver itself is lower than that of the main receiver;
  • the wake-up receiver is a receiver with low local oscillator accuracy;
  • the wake-up receiver is a receiver using envelope detection;
  • the wake-up receiver is a receiver for signals that do not require FFT or IFFT.
  • the key to energy saving of the wake-up receiver lies in the receiver structure that does not use a high-precision crystal oscillator (0.1ppm) or a low-precision oscillator (such as a ring oscillator).
  • 0.1ppm high-precision crystal oscillator
  • a low-precision oscillator such as a ring oscillator.
  • FIG2 shows a schematic diagram of an example of a receiver of a terminal device of the present application.
  • the wake-up receiver can be used to receive a wake-up signal, and then the wake-up receiver can determine whether to trigger the wake-up of the main receiver according to whether the wake-up signal contains the identifier of the terminal device.
  • the main receiver is triggered to wake up (turn on), as shown in (a) of FIG2; if the wake-up signal does not contain the identifier of the terminal device, the main receiver is in an off state or a deep sleep state, as shown in (b) of FIG2.
  • the wake-up receiver reuses part of the RF hardware of the main receiver, such as the receiving antenna of the main receiver, which can reduce costs.
  • the signal received by the wake-up receiver may be referred to as a "wake-up signal”, "a signal transmitted on a wake-up link”, “a WUR signal”, etc., and the present application does not limit the naming thereof. For the sake of convenience, the following description is uniformly referred to as a wake-up signal.
  • the wake-up signal can be used to indicate whether a terminal device or a group of terminal devices is paged. Exemplarily, if the wake-up signal includes an identifier of a terminal device (UE ID), it indicates that the terminal device is paged; conversely, if the wake-up signal does not include the identifier of the terminal device, it indicates that the terminal device is not paged.
  • the UE ID is, for example, 5G-S-TMSI, or the UE ID may be composed of some bits in the 5G-S-TMSI, for example, the UE ID may be composed of high bits in the 5G-TMSI.
  • the terminal device After receiving the wake-up signal, the terminal device can wake up the main receiver according to the wake-up signal, receive paging through the main receiver, and then initiate random access; in the second mode, after receiving the wake-up signal, the terminal device can wake up the main receiver according to the wake-up signal and directly initiate random access.
  • the wake-up signal can be modulated by on-off key (OOK) or frequency shift keying.
  • OOK frequency shift keying
  • FSK frequency shift keying
  • each bit corresponds to a symbol (also called a chip).
  • bit when the bit is 1, it means that a signal is sent within the symbol length (that is, the signal power within the symbol length is not 0), and when the bit is 0, it means that no signal is sent within the symbol length (that is, the signal power within the symbol length is 0); in another case, when the bit is 0, it means that a signal is sent within the symbol length (that is, the signal power within the symbol length is not 0), and when the bit is 1, it means that no signal is sent within the symbol length (that is, the signal power within the symbol length is 0).
  • the signal transmitted by the network device through the wake-up link may include a synchronization signal in addition to the wake-up signal.
  • the synchronization signal can be used for time synchronization of the wake-up link and can also be used by the terminal device to detect the quality of the wake-up link.
  • the number of receiving antennas may also be expressed as the number of receiving branches (Rx branch) or the number of multiple-input multiple-output layers (MIMO layer) and so on. This application does not limit the naming thereof. For the sake of convenience, the following description is uniformly referred to as the number of receiving antennas.
  • the wake-up receiver has lower power consumption, and the wake-up receiver reuses all or part of the RF hardware of the main receiver, which can reduce costs.
  • the coverage performance of the wake-up receiver is much lower than that of the coherent reception of the main receiver.
  • the number of receiving antennas supported by the wake-up receiver will also affect the receiving performance and coverage capability of the wake-up receiver.
  • Figure 3 shows a schematic diagram of the different numbers of receiving antennas supported by the wake-up receiver.
  • a small number of receiving antennas has a large energy-saving gain, which is suitable for scenarios with high power consumption requirements; a large number of receiving antennas can resist deep fading and obtain spatial reception diversity gain.
  • the present application provides a communication method and device, which can improve transmission efficiency and solve the problem of coverage holes.
  • the communication method provided by the embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • the communication method provided by the embodiment of the present application can be applied to the communication system shown in Figure 1 above.
  • FIG4 is a schematic diagram of an example of a communication method provided in an embodiment of the present application.
  • the method 400 may include S410 to S440. It should be understood that FIG4 shows the steps or operations of the communication method, but these steps or operations are only examples, and the embodiment of the present application may also perform other operations or variations of the operations in FIG4, or reasonable exchanges between steps.
  • the terminal device sends first indication information, where the first indication information indicates the number of receiving antennas supported by the first receiver.
  • the first receiver may be a wake-up receiver of the terminal device, or may be a main receiver of the terminal device.
  • the terminal may select the number of receiving antennas supported by the wake-up receiver within the number of receiving antennas supported by the main receiver according to one or more of its own coverage requirements, energy consumption requirements, and mobility requirements, and send the first indication information to the network device.
  • the coverage requirement may be determined according to the service situation or coverage-related parameters.
  • the terminal device determines through measurement that the reference signal received power (RSRP) is good and satisfies the measurement relaxation condition, and the terminal device may report that the number of receiving antennas supported by the wake-up receiver is 1;
  • the terminal device determines through measurement that the RSRP is poor, or that the measurement relaxation conditions are not met, and the terminal device can report that the number of receiving antennas supported by the wake-up receiver is 2 or 4.
  • RSRP reference signal received power
  • the first indication information indicating the number of receiving antennas supported by the first receiver may indicate the number of receiving antennas supported by the main receiver of the terminal.
  • the first indication information may also further indicate the number of receiving antennas supported by the wake-up receiver of the terminal.
  • the first indication information indicating the number of receiving antennas supported by the first receiver may indicate the number of receiving antennas supported by the wake-up receiver of the terminal.
  • the first indication information indicates the number of receiving antennas supported by the first receiver.
  • the number of antennas here may refer to the specific number of receiving antennas.
  • the first indication information indicates 4; if the number of receiving antennas supported by the first receiver determined by the terminal device is 2, the first indication information indicates 2.
  • the specific number of receiving antennas can be indicated by 2 bits of information, for example, 00 can indicate that the number of receiving antennas supported by the first receiver is 1, 01 can indicate that the number of receiving antennas supported by the first receiver is 2, and 10 can indicate that the number of receiving antennas supported by the first receiver is 4.
  • the number of receiving antennas supported by the first receiver may be indicated in other ways.
  • two cases are introduced in which the number of antennas of the first receiver may be indicated by indicating the relationship between the numbers of receiving antennas of two receivers.
  • Case 1 the first indication information indicates that the first receiver and the second receiver have the same number of receiving antennas.
  • the indication method in which the first indication information indicates that the number of receiving antennas of the first receiver and the second receiver is the same is specifically introduced.
  • the first receiver is a wake-up receiver of the terminal device
  • the second receiver is the main receiver of the terminal device.
  • the terminal device can pre-notify the second receiver of the number of receiving antennas before executing step 410.
  • Step 410 directly indicates that the number of receiving antennas of the first receiver and the second receiver is the same through the first indication information.
  • the base station determines the number of receiving antennas of the first receiver based on the pre-known number of receiving antennas of the second receiver and the first indication information. It should be understood that the pre-notification can also be after step 410.
  • the base station can also obtain the number of receiving antennas of the second receiver by other means.
  • the terminal device does not need to notify the base station of the number of receiving antennas of the second receiver, thereby further saving signaling overhead.
  • the method of notifying the second receiver of the number of receiving antennas can refer to the above embodiment and will not be repeated here.
  • Case 2 the first indication information indicates that the first receiver and the second receiver have different numbers of receiving antennas.
  • a possible implementation method is that the terminal device sends a second indication information to the network device, and the second indication information indicates the number of receiving antennas supported by the first receiver.
  • Step 410 indicates that the number of receiving antennas of the first receiver and the second receiver is different through the first indication information, and the base station determines the number of receiving antennas of the first receiver based on the first indication information and the second indication information.
  • the terminal device can also send the second indication information to the network device before sending the first indication information.
  • the method for determining the number of receiving antennas indicated by the second indication information can refer to the relevant embodiments of indicating the number of receiving antennas of the first receiver, which will not be repeated here.
  • step 410 indicates through first indication information that the number of receiving antennas of the first receiver and the second receiver are different, and the base station can determine the number of receiving antennas of the first receiver according to the first indication information and a preset rule.
  • the terminal device may notify the second receiver of the number of receiving antennas before executing step 410.
  • the number of receiving antennas of the second receiver is 4, the number of antennas that the first receiver may support is one of ⁇ 1, 2, 3, 4 ⁇ .
  • the preset rule is “if the number of receiving antennas of the first receiver and the second receiver is different, The number of receiving antennas of the first receiver is half of the number of receiving antennas of the second receiver", then step 410 indicates through the first indication information that the number of receiving antennas of the first receiver and the second receiver are different, and the base station determines that the number of receiving antennas of the first receiver is 2 according to the number of receiving antennas of the second receiver known in advance, the first indication information and the preset rule.
  • the preset rule is "if the number of receiving antennas of the first receiver and the second receiver are different, the number of receiving antennas of the first receiver is less than the maximum supportable number of receiving antennas of the second receiver", then step 410 indicates through the first indication information that the number of receiving antennas of the first receiver and the second receiver are different, and the base station determines that the number of receiving antennas of the first receiver is 3 according to the number of receiving antennas of the second receiver known in advance, the first indication information and the preset rule. It should be understood that the advance notification can also be after step 410.
  • the base station can also obtain the number of receiving antennas of the second receiver by other means. In this case, the terminal device does not need to notify the base station of the number of receiving antennas of the second receiver, thereby further saving signaling overhead.
  • the method of notifying the second receiver of the number of receiving antennas can refer to the above embodiment and will not be repeated here.
  • the number of receiving antennas of the first receiver and the second receiver is different, the number of receiving antennas of the first receiver is preset to be a specific value.
  • the preset rule is "if the number of receiving antennas of the first receiver and the second receiver is different, the number of receiving antennas of the first receiver is 2", then step 410 indicates that the number of receiving antennas of the first receiver and the second receiver is different through the first indication information, and the base station determines that the number of receiving antennas of the first receiver is 2 according to the first indication information and the preset rule.
  • the first indication information can indicate whether the number of receiving antennas of the first receiver and the second receiver is the same through one bit. If they are the same, the implementation method of Case 1 can be directly executed. In this case, the terminal may not send the above second indication information; if they are different, the implementation method of Case 2 can be executed, or the number of receiving antennas of the first receiver can be directly indicated. With this design, the signaling overhead for reporting by the terminal device can be saved. Specifically, when the number of receiving antennas of the first receiver and the second receiver is the same, the terminal may not report the second indication information, and only report the number of receiving antennas supported by the first receiver through the above one bit.
  • the second indication information indicates that the number of receiving antennas supported by the first receiver is one of 1, 2 or 4.
  • the first indication information indicates that the number of receiving antennas supported by the first receiver is one of 1, 2 or 4.
  • the terminal device indicates the following status values through the first indication information or the second indication information: the number of receiving antennas supported by the wake-up receiver is the same as that of the main receiver, the number of receiving antennas supported by the wake-up receiver is 1, the number of receiving antennas supported by the wake-up receiver is 2, and the number of receiving antennas supported by the wake-up receiver is 4.
  • the first indication information or the second indication information can indicate the specific number of receiving antennas through 2 bits of information, for example, 00 can indicate that the number of receiving antennas supported by the first receiver is 1, 01 can indicate that the number of receiving antennas supported by the first receiver is 2, and 10 can indicate that the number of receiving antennas supported by the first receiver is 4.
  • the first indication information indicates frequency band information supported by the first receiver, wherein there is a correlation between the number of receiving antennas supported by the first receiver and the frequency band information supported by the first receiver.
  • the terminal device indicates the frequency band information supported by the wake-up receiver through the first indication information.
  • the network device can be notified of the number of receiving antennas supported by the wake-up receiver of the terminal device. For example, it is agreed that the wake-up receiver operates in certain frequency bands, and the minimum number of receiving antennas supported by the wake-up receiver is 2. It is agreed that the wake-up receiver operates in other frequency bands, and the minimum number of receiving antennas supported by the wake-up receiver is 4.
  • the maximum number of receiving antennas supported by the first receiver is 4, and the frequency band supported by the first receiver is NR
  • the maximum number of receiving antennas supported by the first receiver is 2.
  • the first indication information indicates the number of receiving antennas supported by the second receiver; the number of receiving antennas supported by the first receiver is the same as the number of receiving antennas supported by the second receiver.
  • the terminal device indicates the number of receiving antennas supported by the main receiver of the terminal device through the first indication information.
  • the base station determines the number of receiving antennas of the wake-up receiver based on the first indication information and the fact that the number of receiving antennas of the wake-up receiver of the terminal device and the main receiver of the terminal device are the same. For example, if the terminal device indicates that the number of receiving antennas of the main receiver is 2 through the indication information, the base station determines that the number of receiving antennas supported by the wake-up receiver is also 2.
  • the first indication information may be carried in uplink transmission during a random access process, or may be carried in uplink transmission in a connected state.
  • the indication information may be carried in Msg3, or the indication information may be carried in the information element UERadioPagingInformation, or the indication information may be carried in the information element UERadioAccessCapabilityInformation, or the indication information may be carried in the information element UEAssistanceInformation.
  • the RRC state of the terminal device may be an idle state, an inactive state, or a connected state.
  • the network device receives first indication information, and determines information about the number of receiving antennas supported by the first receiver according to the first indication information.
  • the first receiver may be a wake-up receiver of the terminal device, or may be a main receiver of the terminal device.
  • the method for determining the number of receiving antennas indicated by the first indication information may refer to the above embodiment, and will not be described in detail here.
  • the first indication information indicating the number of receiving antennas supported by the first receiver may indicate the number of receiving antennas supported by the main receiver of the terminal.
  • the first indication information may also further indicate the number of receiving antennas supported by the wake-up receiver of the terminal.
  • the first indication information indicating the number of receiving antennas supported by the first receiver may indicate the number of receiving antennas supported by the wake-up receiver of the terminal.
  • the network device forwards the first indication information sent by the terminal device to the core network.
  • the core network element may be an access and mobility management function (AMF) or other network elements, such as a mobility management entity (MME) in an LTE network, or a network element with mobility management function in future communication technologies.
  • AMF access and mobility management function
  • MME mobility management entity
  • the first indication information may be carried.
  • the first indication information indicates the number of receiving antennas supported by the first receiver.
  • the number of antennas here may refer to the specific number of receiving antennas.
  • the network device determines that the number of receiving antennas supported by the first receiver of the terminal device is 4; if the first indication information indicates 2, the terminal device determines that the number of receiving antennas supported by the first receiver is 2.
  • the specific number of receiving antennas can be indicated by 2 bits of information, for example, 00 can indicate that the number of receiving antennas supported by the first receiver is 1, 01 can indicate that the number of receiving antennas supported by the first receiver is 2, and 10 can indicate that the number of receiving antennas supported by the first receiver is 4.
  • the indication method in the above example can also be used to indicate the number of receiving antennas supported by the first receiver.
  • the following two cases can be described in which the first receiver can be indicated by indicating the relationship between the number of receiving antennas of the two receivers. The number of antennas.
  • Case 1 the first indication information indicates that the first receiver and the second receiver have the same number of receiving antennas.
  • the indication method in which the first indication information indicates that the number of receiving antennas of the first receiver and the second receiver is the same is specifically introduced.
  • the first receiver is a wake-up receiver of the terminal device
  • the second receiver is a main receiver of the terminal device.
  • the network device can know the number of receiving antennas of the second receiver in advance before executing step 410.
  • Step 410 directly determines that the number of receiving antennas of the first receiver and the second receiver is the same through the first indication information.
  • the base station determines the number of receiving antennas of the first receiver based on the number of receiving antennas of the second receiver known in advance and the first indication information. It should be understood that the advance notification can also be after step 410.
  • the base station can know the number of receiving antennas of the second receiver through the notification of the terminal device, or can know the number of receiving antennas of the second receiver through other methods.
  • the terminal device does not need to notify the base station of the number of receiving antennas of the second receiver.
  • the method of notifying the second receiver of the number of receiving antennas can refer to the above embodiment and will not be repeated here.
  • Case 2 the first indication information indicates that the first receiver and the second receiver have different numbers of receiving antennas.
  • a possible implementation method is that the network device receives the second indication information sent by the terminal device, and the second indication information indicates the number of receiving antennas supported by the first receiver.
  • Step 410 indicates that the number of receiving antennas of the first receiver and the second receiver is different through the first indication information, and the base station determines the number of receiving antennas of the first receiver according to the first indication information and the second indication information.
  • the terminal device may send the second indication information to the network device before sending the first indication information.
  • the method for determining the number of receiving antennas indicated by the second indication information can refer to the above embodiment, which will not be repeated here.
  • step 410 indicates through first indication information that the first receiver and the second receiver have different numbers of receiving antennas, and the base station determines the number of receiving antennas of the first receiver according to the first indication information and a preset rule.
  • the terminal device may notify the second receiver of the number of receiving antennas in advance before executing step 410, for example, notifying the second receiver that the number of receiving antennas is 4, and the number of antennas that the first receiver may support is one of ⁇ 1, 2, 3, 4 ⁇ .
  • the preset rule is "if the number of receiving antennas of the first receiver and the second receiver is different, the number of receiving antennas of the first receiver is half of the number of receiving antennas of the second receiver", then step 410 indicates that the number of receiving antennas of the first receiver and the second receiver is different through the first indication information, and the base station determines that the number of receiving antennas of the first receiver is 2 based on the pre-known number of receiving antennas of the second receiver, the first indication information and the preset rule.
  • the preset rule is "if the number of receiving antennas of the first receiver and the second receiver are different, the number of receiving antennas of the first receiver is the maximum supportable number of receiving antennas that is less than the number of receiving antennas of the second receiver", then step 410 indicates through the first indication information that the number of receiving antennas of the first receiver and the second receiver are different, and the base station determines that the number of receiving antennas of the first receiver is 3 based on the pre-known number of receiving antennas of the second receiver and the first indication information and the preset rule. It should be understood that the advance notification may also be after step 410.
  • the base station may also obtain the number of receiving antennas of the second receiver by other means. In this case, the terminal device may not notify the base station of the number of receiving antennas of the second receiver. The method of notifying the second receiver of the number of receiving antennas can refer to the above embodiment and will not be repeated here.
  • the number of receiving antennas of the first receiver and the second receiver is different, the number of receiving antennas of the first receiver is preset to be a specific value.
  • the preset rule is "if the number of receiving antennas of the first receiver and the second receiver is different, the number of receiving antennas of the first receiver is 2", then step 410 indicates that the number of receiving antennas of the first receiver and the second receiver is different through the first indication information, and the base station determines that the number of receiving antennas of the first receiver is 2 according to the first indication information and the preset rule.
  • the first indication information can indicate whether the number of receiving antennas of the first receiver and the second receiver is the same through one bit. If they are the same, the implementation method of Case 1 can be directly executed. In this case, the terminal may not send the above second indication information; if they are different, the implementation method of Case 2 can be executed, or the number of receiving antennas of the first receiver can be directly indicated. With this design, the signaling overhead for reporting by the terminal device can be saved. Specifically, when the number of receiving antennas of the first receiver and the second receiver is the same, the terminal may not report the second indication information, and only report the number of receiving antennas supported by the first receiver through the above one bit.
  • the second indication information indicates that the number of receiving antennas supported by the first receiver is one of 1, 2 or 4.
  • the first indication information indicates that the number of receiving antennas supported by the first receiver is one of 1, 2 or 4.
  • the network device determines the following state values through the received first indication information: the number of receiving antennas supported by the wake-up receiver is the same as that of the main receiver, the number of receiving antennas supported by the wake-up receiver is 1, the number of receiving antennas supported by the wake-up receiver is 2, and the number of receiving antennas supported by the wake-up receiver is 4.
  • the first indication information or the second indication information can indicate the specific number of receiving antennas through 2-bit information, for example, 00 can indicate that the number of receiving antennas supported by the first receiver is 1, 01 can indicate that the number of receiving antennas supported by the first receiver is 2, and 10 can indicate that the number of receiving antennas supported by the first receiver is 4.
  • the first indication information indicates frequency band information supported by the first receiver, wherein there is a correlation between the number of receiving antennas supported by the first receiver and the frequency band information supported by the first receiver.
  • the network device determines the frequency band information supported by the wake-up receiver by receiving the first indication information. According to the association between the frequency band information and the number of receiving antennas supported by the wake-up receiver, the number of receiving antennas supported by the wake-up receiver of the terminal device can be determined. For example, it is agreed that the wake-up receiver operates in certain frequency bands, and the minimum number of receiving antennas supported by the wake-up receiver is 2. It is agreed that the wake-up receiver operates in other frequency bands, and the minimum number of receiving antennas supported by the wake-up receiver is 4.
  • the maximum number of receiving antennas supported by the first receiver is 4, and when the frequency band supported by the first receiver is at least one of the frequency bands other than n7, n38, n41, n48, n77, n78, and n79 in the NR working frequency band, the maximum number of receiving antennas supported by the first receiver is 2.
  • the first indication information indicates the number of receiving antennas supported by the second receiver; the number of receiving antennas supported by the first receiver is the same as the number of receiving antennas supported by the second receiver.
  • the first indication information indicates the number of receiving antennas supported by the second receiver; the number of receiving antennas supported by the first receiver is the same as the number of receiving antennas supported by the second receiver.
  • the network device determines the number of receiving antennas supported by the main receiver of the terminal device through the first indication information, and the base station determines the number of receiving antennas of the wake-up receiver based on the first indication information and the fact that the number of receiving antennas of the wake-up receiver of the terminal device and the main receiver of the terminal device are the same. For example, if the network device determines that the number of receiving antennas of the main receiver is 2 through the first indication information, the base station determines that the number of receiving antennas supported by the wake-up receiver is also 2.
  • the first indication information may be carried in uplink transmission during a random access process, or may be carried in uplink transmission in a connected state.
  • the indication information may be carried in Msg3, or the indication information may be carried in the information element UERadioPagingInformation, or the indication information may be carried in the information element UERadioAccessCapabilityInformation, or the indication information may be carried in the information element UEAssistanceInformation.
  • the RRC state of the terminal device may be an idle state, or, Inactive state, or connected state.
  • the network device sends a wake-up signal to the terminal device.
  • the network device can adaptively adjust the transmission parameters of the wake-up data, such as code rate, number of repetitions, bandwidth, transmission block size, etc., according to the number of receiving antennas supported by the wake-up receiver of the terminal device.
  • the terminal device uses the first receiver to receive the wake-up signal sent by the network device.
  • the network device sends configuration information, where the configuration information is used for the terminal device to enter the first state or the second state.
  • step S450 is optional and is not shown in FIG. 4 .
  • the network device can send configuration information through RRC signaling, and can also send configuration information through MAC layer control elements (MAC control element, MAC CE), and can also send configuration information through downlink control information (downlink control information, DCI), and this application is not limited.
  • MAC control element MAC control element
  • DCI downlink control information
  • the terminal device communicates with the network device through the main receiver; in the second state, the terminal device receives the wake-up signal sent by the network device through the wake-up receiver.
  • the first state and the second state may correspond to different RRC states, for example, the second state may be a new RRC state other than RRC_IDLE, RRC_INACTIVE and RRC_CONNECTED.
  • the first state and the second state may correspond to different power states, for example, the power consumption of the terminal device in the second state is lower than the power consumption of the terminal device in the first state.
  • the entry in step S450 can be the terminal device entering the first state or the second state according to the configuration information, or it can be the switching of the terminal device between the first state and the second state.
  • the present application does not limit the specific switching operation. It can be understood that the terminal device is already in the first state or the second state before receiving the configuration information, and the configuration information of the present application is used to change the state of the terminal device.
  • Method 1 The configuration information is the first threshold.
  • the first threshold configured by the network device may be an RSRP threshold, and the RSRP threshold may be set based on the number of receiving antennas supported by the wake-up receiver being 1.
  • the configuration information is a plurality of candidate thresholds, wherein different candidate thresholds are associated with different numbers of receiving antennas that the wake-up receiver may support.
  • the network device configures multiple RSRP thresholds, and different RSRP thresholds correspond to different numbers of receiving antennas supported by the wake-up receiver.
  • Table 2 shows the corresponding relationship between the RSRP threshold configured by the network and the number of receiving antennas supported by the wake-up receiver.
  • Method 3 Configuration information is a candidate threshold and one or more bias information; the candidate threshold and the wake-up receiver There is an association relationship between the number of possible receiving antennas supported; different bias information is associated with different numbers of possible receiving antennas supported by the wake-up receiver. In this way, the signaling overhead can be further optimized.
  • a candidate threshold value configured by the network device may be an RSRP threshold, and the RSRP threshold may be set for the number of receiving antennas supported by the wake-up receiver to be 1.
  • the network configures multiple bias information, and different bias information corresponds to different numbers of receiving antennas supported by the wake-up receiver.
  • the corresponding RSRP threshold can be determined based on the configured candidate threshold and bias information.
  • Table 3 shows the correspondence between the candidate RSRP thresholds configured by the network and the bias information and the number of receiving antennas supported by the wake-up receiver.
  • the terminal device receives configuration information; the terminal device in the first state enters the second state according to the configuration information.
  • step S460 is optional and is not shown in FIG. 4 .
  • the terminal device can determine the configuration information by receiving RRC signaling, or by receiving MAC CE, or by receiving DCI, and this application does not limit this.
  • the terminal device communicates with the network device through the main receiver; in the second state, the terminal device receives the wake-up signal sent by the network device through the wake-up receiver. It can be understood that the terminal device can enter the second state from the first state according to the configuration information, and can also enter the first state from the second state according to the configuration information.
  • the terminal device can enter the second state from the first state according to the configuration information, and can also enter the first state from the second state according to the configuration information.
  • Method 1 The configuration information is the first threshold.
  • the configuration information received by the terminal device is a first threshold value, which may be an RSRP threshold, and the RSRP threshold may be set based on the number of receiving antennas supported by the wake-up receiver being 1.
  • Method 2 The configuration information is multiple candidate thresholds, where different candidate thresholds are associated with different numbers of receiving antennas that the wake-up receiver may support; the terminal device determines the first threshold from the multiple candidate thresholds according to the number of receiving antennas supported by the wake-up receiver.
  • the configuration information received by the terminal device is a plurality of RSRP thresholds, and different RSRP thresholds correspond to different numbers of receiving antennas supported by the wake-up receiver.
  • the terminal device determines an RSRP threshold according to the number of receiving antennas supported by its own wake-up receiver, and the RSRP threshold is the first threshold.
  • Table 2 shows the correspondence between the RSRP threshold configured by the network and the number of receiving antennas supported by the wake-up receiver.
  • the terminal device receives the configuration information sent by the network device, and the number of receiving antennas supported by the wake-up receiver of the terminal device is 1, then the terminal device determines the first threshold to be -80dBm; the number of receiving antennas supported by the wake-up receiver of the terminal device is 2, then the terminal device determines the first threshold to be -83dBm.
  • the configuration information is a candidate threshold and one or more bias information; the candidate threshold is associated with a number of receiving antennas that the wake-up receiver may support; different bias information is associated with different numbers of receiving antennas that the wake-up receiver may support; the terminal device determines the first bias information from one or more bias information according to the number of receiving antennas supported by the wake-up receiver; the terminal device determines the first threshold by combining the candidate threshold and the first bias information.
  • the configuration information received by the terminal device is a candidate threshold and one or more bias information.
  • the candidate threshold may be an RSRP threshold, and the RSRP threshold may be set for the number of receiving antennas supported by the wake-up receiver to be 1.
  • different bias information corresponds to different numbers of receiving antennas supported by the wake-up receiver.
  • the terminal device determines a bias information based on the number of receiving antennas supported by its own wake-up receiver, and determines an RSRP threshold in combination with the candidate threshold, and the RSRP threshold is the first threshold.
  • Table 3 shows the correspondence between the candidate RSRP thresholds and bias information configured by the network and the number of receiving antennas supported by the wake-up receiver.
  • the terminal device receives the configuration information sent by the network device. If the number of receiving antennas supported by the wake-up receiver of the terminal device is 2, the terminal device determines the bias information to be -3dBm. Combined with the candidate threshold value of -80dBm, the first threshold value is determined to be -83dBm. If the number of receiving antennas supported by the wake-up receiver of the terminal device is 4, the terminal device determines the bias information to be -6dBm. Combined with the candidate threshold value of -80dBm, the first threshold value is determined to be -86dBm.
  • the second receiver or the first receiver performs measurement based on the first reference signal and obtains a measurement result; the measurement result satisfies a first relationship with a first threshold; and the terminal device enters the second state from the first state.
  • the terminal device changes its state based on the measurement results of the primary receiver.
  • the main receiver can perform measurements based on SSB or other signals, and this application is not limited thereto.
  • the measurement result and the first threshold satisfy the first relationship, which may be that the measurement result is greater than or greater than or equal to the first threshold, or that the measurement result is less than or less than or equal to the first threshold.
  • the main receiver determines that the RSRP threshold is less than or equal to the first threshold based on the result of the SSB measurement, and the terminal device uses the wake-up receiver to receive the wake-up signal; the main receiver determines that the RSRP threshold is greater than the first threshold based on the result of the SSB measurement, and the terminal device uses the main receiver to maintain a connection with the network device.
  • the measurement result and the first threshold satisfying the first relationship may also satisfy other preset or preconfigured first relationships.
  • the terminal device changes its state based on the measurement result of waking up the receiver.
  • the wake-up receiver can perform measurements based on a periodically sent reference signal or other signals, and this application is not limited thereto.
  • the measurement result and the first threshold satisfy the first relationship, which may be that the measurement result is greater than or greater than or equal to the first threshold, or that the measurement result is less than or less than or equal to the first threshold.
  • the wake-up receiver is less than or equal to the RSRP threshold determined by the first threshold according to the result of the reference signal measurement, and the terminal device uses the wake-up receiver to receive the wake-up signal; the wake-up receiver is greater than the RSRP threshold determined by the first threshold according to the result of the reference signal measurement, and the terminal device uses the main receiver to maintain connection with the network device.
  • step S450 to step S460 can be used as a separate embodiment, and this application will not describe them in detail here.
  • the first receiver and the second receiver may be replaced by different states of the terminal device.
  • the number of receiving antennas of the first receiver may be the number of receiving antennas corresponding to the terminal device in the second state
  • the number of receiving antennas of the second receiver may be the number of receiving antennas corresponding to the terminal device in the first state.
  • the wake-up receiver and the main receiver may also be replaced by different states of the terminal device.
  • the number of receiving antennas of the wake-up receiver may be the number of receiving antennas corresponding to the terminal device in the second state.
  • the number of receiving antennas corresponding to the main receiver can be the number of receiving antennas corresponding to the terminal device in the first state.
  • the above-mentioned wake-up receiver receiving the wake-up signal can be replaced by the terminal device receiving the wake-up signal
  • the above-mentioned main receiver maintaining connection with the network device can be replaced by the terminal device maintaining connection with the network device.
  • the first state and the second state may correspond to different RRC states, for example, the second state may be a new RRC state other than RRC_IDLE, RRC_INACTIVE and RRC_CONNECTED.
  • the first state and the second state may correspond to different power states, for example, the power consumption of the terminal device in the second state is lower than that of the terminal device in the first state.
  • an implementation method may be:
  • the terminal device sends first indication information to the network device, where the first indication information is used to indicate the corresponding number of receiving antennas when the terminal device is in the second state; the terminal device receives the wake-up signal sent by the network device.
  • a network device receives first indication information sent by a terminal device, where the first indication information is used to indicate the corresponding number of receiving antennas when the terminal device is in a second state; based on the first indication information, the network device sends a wake-up signal to the terminal device.
  • a terminal device includes: a processing unit, used to determine first indication information, wherein the first indication information is used to indicate the corresponding number of receiving antennas when the terminal device is in a second state; a transceiver unit, used to send the first indication information to a network device; the transceiver unit is also used to receive a wake-up signal sent by the network device.
  • a network device comprises: a transceiver unit for receiving first indication information sent by a terminal device; a processing unit for determining, based on the first indication information, information on the number of receiving antennas corresponding to when the terminal device is in a second state; the transceiver unit is also used to send a wake-up signal to the terminal device based on the information on the number of receiving antennas corresponding to when the terminal device is in the second state.
  • steps S410 to S460 in the above embodiment as shown in Figure 4 can all be replaced by the same equivalent, and the explanation of the relevant contents and beneficial effects therein can refer to the corresponding method and device embodiments provided above, which will not be repeated here.
  • the present application embodiment proposes a communication device 500, which can be applied to the terminal device in the method embodiment of FIG. 4, or can be a component implementing the method in the embodiment of FIG. 4, such as a chip.
  • a schematic block diagram of a communication device 500 in an embodiment of the present application is shown.
  • the communication device 500 includes:
  • the processing unit 510 is configured to determine first indication information, where the first indication information is used to indicate information about the number of receiving antennas of a first receiver of the terminal device;
  • the transceiver unit 520 is used to send first indication information to the network device
  • the transceiver unit 520 is further configured to use the first receiver to receive a wake-up signal sent by the network device.
  • the transceiver unit may be a sending unit when executing the sending step, and may be a receiving unit when executing the receiving step.
  • the transceiver unit may be replaced by a transceiver, the sending unit may be replaced by a transmitter, and the receiving unit may be replaced by a receiver.
  • the first indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the first receiver and the second receiver have the same number of receiving antennas.
  • the first indication information indicates that the first receiver and the second receiver have different numbers of receiving antennas.
  • the transceiver unit 520 is further used to send second indication information to the network device, where the second indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the number of receiving antennas supported by the first receiver is one of 1, 2 or 4.
  • the first indication information indicates frequency band information supported by the first receiver, wherein there is a correlation between the number of receiving antennas supported by the first receiver and the frequency band information supported by the first receiver.
  • the first indication information indicates the number of receiving antennas supported by the second receiver; the number of receiving antennas supported by the first receiver is the same as the number of receiving antennas supported by the second receiver.
  • the transceiver unit 520 is further used to receive configuration information; the processing unit 510 is further used to enable the terminal device in the first state to enter the second state according to the configuration information.
  • the configuration information is a first threshold.
  • the configuration information is multiple candidate thresholds, where different candidate thresholds are associated with different numbers of receiving antennas that the first receiver may support; the processing unit 510 is also used to determine the first threshold from the multiple candidate thresholds based on the number of receiving antennas supported by the first receiver.
  • the configuration information is a candidate threshold and one or more bias information;
  • the candidate threshold is associated with a number of receiving antennas that may be supported by the first receiver;
  • the different bias information is associated with different numbers of receiving antennas that may be supported by the first receiver;
  • the processing unit 510 is also used to determine the first bias information from the one or more bias information according to the number of receiving antennas supported by the first receiver;
  • the processing unit 510 is also used to determine the first threshold in combination with the candidate threshold and the first bias information.
  • the transceiver unit 520 is also used to receive a first reference signal using the first receiver or the second receiver; the processing unit 510 is also used to perform measurements based on the first reference signal and obtain measurement results; the measurement results and the first threshold satisfy a first relationship; the processing unit 510 is also used to cause the terminal device in the first state to enter the second state.
  • the communication device 500 shown in FIG5 can implement various processes involving network devices in the above method embodiments.
  • the operations and/or functions of each module in the communication device 500 are respectively to implement the corresponding processes in the above method embodiments.
  • the explanation and beneficial effects of the relevant contents in any of the above-mentioned devices can refer to the corresponding method embodiments provided above, and will not be repeated here.
  • the present application embodiment proposes another communication device 600, which can be applied to the network device in the method embodiment of FIG. 4, or can be a component implementing the method in the embodiment of FIG. 4, such as a chip.
  • FIG. 6 a schematic block diagram of a communication device 600 of the present application embodiment is shown.
  • the communication device 600 includes:
  • the transceiver unit 610 is configured to receive first indication information sent by a terminal device
  • the processing unit 620 is configured to determine the number of receiving antennas of the first receiver of the terminal device according to the first indication information
  • the transceiver unit 610 is further used to send a wake-up signal to the terminal device according to the number of receiving antennas of the first receiver.
  • the transceiver unit 610 is further used to send the first indication information to a core network.
  • the first indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the first receiver and the second receiver have the same number of receiving antennas.
  • the first indication information indicates that the first receiver and the second receiver have different numbers of receiving antennas.
  • the transceiver unit 610 is further configured to receive second indication information sent by the terminal device, the first The second indication information indicates the number of receiving antennas supported by the first receiver.
  • the first indication information indicates that the number of receiving antennas supported by the first receiver is one of 1, 2 or 4.
  • the first indication information indicates frequency band information supported by the first receiver, wherein there is a correlation between the number of receiving antennas supported by the first receiver and the frequency band information supported by the first receiver.
  • the first indication information indicates the number of receiving antennas supported by the second receiver; the number of receiving antennas supported by the first receiver is the same as the number of receiving antennas supported by the second receiver.
  • the transceiver unit 610 is further used to send configuration information to the terminal device; the configuration information is used for the terminal device to enter the first state or the second state.
  • the configuration information is a first threshold.
  • the configuration information is a plurality of candidate thresholds, wherein different candidate thresholds are associated with different numbers of receiving antennas that may be supported by the first receiver.
  • the configuration information is a candidate threshold and one or more bias information; the candidate threshold is associated with a number of receiving antennas that the first receiver may support; and the different bias information is associated with different numbers of receiving antennas that the first receiver may support.
  • the communication device 600 shown in FIG6 can implement various processes involving network devices in the above method embodiments.
  • the operations and/or functions of each module in the communication device 600 are respectively to implement the corresponding processes in the above method embodiments.
  • the explanation and beneficial effects of the relevant contents in any of the above-mentioned devices can refer to the corresponding method embodiments provided above, and will not be repeated here.
  • the embodiment of the present application proposes a communication device 700, as shown in Figure 7, which shows a schematic block diagram of another communication device of the embodiment of the present application.
  • the communication device 700 includes a processor 710, the processor 710 is coupled to at least one memory 720, and the processor 710 is used to read the computer program stored in the at least one memory 720 to execute the method in any possible implementation of the embodiment of the present application.
  • the processor 710 may be an integrated circuit chip with signal processing capability. In the implementation process, each step of the above method embodiment may be completed by an integrated logic circuit of hardware in the processor or an instruction in the form of software.
  • the above processor may be a general processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed by a hardware decoding processor, or may be executed by a combination of hardware and software modules in a decoding processor.
  • the software module may be located in a mature storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory 720 may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the nonvolatile memory may be a read-only memory (ROM), a programmable ROM (PROM), an erasable PROM (EPROM), an electrically erasable PROM (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external Cache.
  • RAM random access memory
  • many forms of RAM are available, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchlink DRAM (SLDRAM), and direct rambus RAM (DR RAM).
  • An embodiment of the present application provides a communication chip, including a processor and a communication interface, wherein the processor is used to read instructions or computer programs to execute the method in the embodiment of the present application.
  • the embodiment of the present application provides a communication system 800, including a terminal device 810 and a network device 820 in the communication method provided in the embodiment of the present application. As shown in FIG8 , a schematic block diagram of a communication system 800 of the embodiment of the present application is shown.
  • the present application also provides a computer-readable storage medium on which a computer program for implementing the method in the present application is stored.
  • the computer program When the computer program is run on a computer, the computer can implement the method in the above method embodiment.
  • the embodiment of the present application also provides a computer program product, which, when executed on a computer, enables the computer to execute the method in the embodiment of the present application.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • first, second, and other various digital numbers involved in the present application are only for the convenience of description and are not intended to limit the scope of the embodiments of the present application.
  • the specific values of the numbers (also referred to as indexes) in the present application, the specific values of the quantities, and the positions are only for illustrative purposes, are not the only form of representation, and are not intended to limit the scope of the embodiments of the present application.
  • the first, second, and other various digital numbers involved in the present application are also only for the convenience of description and are not intended to limit the scope of the embodiments of the present application.
  • a and/or B can represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the objects associated before and after are in an "or” relationship; the term “at least one” in this application can mean “one” and "two or more”.
  • at least one of A, B and C can represent seven situations: A exists alone, B exists alone, C exists alone, A and B exist at the same time, A and C exist at the same time, C and B exist at the same time, and A, B and C exist at the same time.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be essentially or partly embodied in the form of a software product that contributes to the prior art.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、装置及系统,适用于IoT领域,能够提高传输效率和通信质量。该方法包括:终端设备向网络设备发送第一指示信息,所述第一指示信息用于指示所述终端设备的第一接收机的接收天线数量信息;所述终端设备使用所述第一接收机接收所述网络设备发送的唤醒信号。

Description

一种通信方法、装置及系统 技术领域
本申请涉及通信领域,并且更具体地,涉及一种通信方法、装置及系统。
背景技术
随着科技的发展,物联网(Internet of things,IoT)设备逐渐的进入了人们的生活,并在逐渐地改善着人们的生活。
为了降低IoT设备的功耗,根据IEEE 802.11的省电模式操作,设备可以进入休眠状态。处于休眠状态中的设备可以享受更低的功耗,但会增加接收数据的时延。因此,处于休眠状态中的设备需要周期性的接收来自网络设备的唤醒信号,根据唤醒信号中携带的信息判断是否有来自网络设备的下行数据需要接收。
为了能够进一步降低IoT设备的功耗,IEEE 802.11ba为IoT设备设计配备了两个无线电链,称为主连接无线电(primary connection radio,PCR)和伴连接无线电(companion radio,CR),主连接无线电也可以称为主接收机,伴连接无线电也可以称为唤醒接收机。当设备通过唤醒接收机检测到唤醒信号后,可以根据该唤醒信号触发主接收机的唤醒,进而,主接收机可用于数据传输。唤醒接收机的功耗更低,且唤醒接收机复用主接收机的全部或部分射频硬件,可以降低成本。但是,唤醒接收机支持的接收天线数会影响唤醒接收机的接收性能和覆盖能力。主接收机和唤醒接收机在接收性能和覆盖能力上存在差异,会影响网络设备调度传输时采用的传输参数,降低系统的传输效率,同时也会造成覆盖空洞的问题,影响通信质量。
发明内容
本申请提供一种通信方法、装置及系统,能够提高传输效率,同时解决覆盖空洞的问题,提高通信质量。
第一方面,提供了一种通信方法,该方法由终端设备执行,或者也可以由配置于终端设备的部件(如电路或芯片)执行。本申请对此不作限定。
该方法包括:终端设备向网络设备发送第一指示信息,所述第一指示信息用于指示所述终端设备的第一接收机的接收天线数量信息;所述终端设备使用所述第一接收机接收所述网络设备发送的唤醒信号。
基于上述技术方案,终端设备可以通过第一指示信息向网络设备上报终端设备的第一接收机支持的接收天线数量信息,从而辅助网络设备确定唤醒信号的传输参数,提高传输效率。此外,上述技术方案提高了终端设备实现的灵活性,使得终端设备可以根据自身的节能需求或覆盖需求选择第一接收机支持的接收天线数量信息进行上报。
例如,智能家电根据自身的节能需求发送第一指示信息,向基站上报唤醒接收机支持的接收天线数。基站接收第一指示信息,并通过第一指示信息确定智能家电唤醒接收机支持的接收天线数,从而调整唤醒信号的传输参数,提高了传输效率。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的接收天线数。
在一种可能的设计中,所述第一指示信息指示所述第一接收机和第二接收机的接收天线数相同。
采用该设计,可以节省第一指示信息的信令开销。终端设备通过第一指示信息指示第一接收机和第二接收机支持的接收天线数相同,就不需要再额外指示该第一接收机具体的接收天线数,从而节省了信令开销。
在一种可能的设计中,所述第一指示信息指示所述第一接收机和所述第二接收机的接收天线数不同。
在一种可能的设计中,所述终端设备向所述网络设备发送第二指示信息,所述第二指示信息指示所述第一接收机支持的接收天线数。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的接收天线数为1、2或4中的一个。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的频带信息,其中,所述第一接收机支持的接收天线数和所述第一接收机支持的频带信息存在关联关系。
采用该设计,可以节省信令开销。终端设备通过第一指示信息指示第一接收机支持的频带信息。基站接收第一指示信息,并通过第一接收机支持的接收天线数和第一接收机支持的频带信息的关联关系确定接收天线数,就不需要再额外接收指示该第一接收机具体接收天线数的指示信息,从而节省了信令开销。
在一种可能的设计中,所述第一指示信息指示所述第二接收机支持的接收天线数;所述第一接收机支持的接收天线数和所述第二接收机支持的接收天线数相同。
采用该设计,可以节省信令开销。终端设备通过第一指示信息指示第二接收机支持的接收天线数。基站接收第一指示信息,并通过第一接收机支持的接收天线数和第二接收机支持的接收天线数相同确定第一接收机支持的接收天线数,就不需要再额外接收一个指示信息指示该第一接收机的接收天线数,从而节省了信令开销。
在一种可能的设计中,包括:所述终端设备接收配置信息;处于第一状态的所述终端设备根据所述配置信息进入第二状态。
采用该设计,终端设备可以根据配置信息改变所处状态。考虑到第一接收机支持不同于第二接收机支持的接收天线数,第一接收机和第二接收机的覆盖能力是不同的,接收天线数越多,覆盖范围越大。根据配置信息,终端设备可以改变所处的状态,采用不同的接收机与网络设备进行通信,避免第一接收机和第二接收机的覆盖能力差距产生的覆盖空洞,从而提高通信质量。
例如,行人身上携带智能穿戴设备。行人移动至距离基站较近的位置,智能穿戴设备处于第一状态,采用唤醒接收机接收基站发送的唤醒信号。行人移动至距离基站较远的位置,智能穿戴设备的唤醒接收机支持的接收天线数不能满足行人和基站之间的覆盖距离,智能穿戴设备根据配置信息进入第二状态,采用主接收机与基站进行通信。因此,采用该设计可以避免第一接收机和第二接收机的覆盖能力差距产生的覆盖空洞,从而提高通信质量。
在一种可能的设计中,所述配置信息为第一阈值。
在一种可能的设计中,包括:所述配置信息为多个候选阈值,其中,不同的候选阈值与所述第一接收机可能支持的不同的接收天线数存在关联关系;所述终端设备根据所述第 一接收机支持的接收天线数从所述多个候选阈值中确定所述第一阈值。
采用该设计,终端设备可以根据第一接收机可能支持的不同的接收天线数更加准确的判断从第一状态进入第二状态的时机,进一步提高通信质量。
在一种可能的设计中,包括:所述配置信息为一个候选阈值以及一个或多个偏置信息;所述候选阈值与所述第一接收机可能支持的一个接收天线数存在关联关系;所述不同的偏置信息与所述第一接收机可能支持的不同的接收天线数存在关联关系;所述终端设备根据所述第一接收机支持的接收天线数从所述一个或多个偏置信息中确定第一偏置信息;所述终端设备结合所述候选阈值和所述第一偏置信息确定所述第一阈值。
采用该设计,可以节省信令开销。网络设备配置偏置信息所需的信令开销通常小于配置候选阈值本身所需的信令开销。终端设备结合一个候选阈值和一个偏置信息确定第一阈值,可以使网络设备采用更小的信令开销达到同样的配置效果。
在一种可能的设计中,包括:所述第二接收机或所述第一接收机基于第一参考信号进行测量,并获得测量结果;所述测量结果与所述第一阈值满足第一关系;所述终端设备从所述第一状态进入所述第二状态。
第二方面,提供了一种通信方法,该方法由网络设备执行,或者也可以由配置于网络设备的部件(如电路或芯片)执行。本申请对此不作限定。
该方法包括:网络设备接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备的第一接收机的接收天线数量信息;根据所述第一指示信息,所述网络设备向所述终端设备发送唤醒信号。
基于上述技术方案,网络设备可以通过第一指示信息确定终端设备的第一接收机支持的接收天线数量信息,从而确定唤醒信号的传输参数,提高传输效率。此外,上述技术方案提高了终端设备实现的灵活性,使得网络设备可以获知终端设备根据自身的节能需求或覆盖需求选择的第一接收机支持的接收天线数量信息。
例如,智能家电根据自身的节能需求发送第一指示信息,向基站上报唤醒接收机支持的接收天线数。基站接收第一指示信息,并通过第一指示信息确定智能家电唤醒接收机支持的接收天线数,从而调整唤醒信号的传输参数,提高了传输效率。
在一种可能的设计中,所述网络设备将所述第一指示信息发送给核心网。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的接收天线数。
在一种可能的设计中,所述第一指示信息指示所述第一接收机和第二接收机的接收天线数相同。
采用该设计,可以节省第一指示信息的信令开销。指示第一接收机和第二接收机支持的接收天线数相同,就不需要再额外指示该第一接收机具体的接收天线数,从而节省了信令开销。
在一种可能的设计中,所述第一指示信息指示所述第一接收机和所述第二接收机的接收天线数不同。
在一种可能的设计中,所述网络设备接收所述终端设备发送的第二指示信息,所述第二指示信息指示所述第一接收机支持的接收天线数。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的接收天线数为1、2或4中的一个。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的频带信息,其中, 所述第一接收机支持的接收天线数和所述第一接收机支持的频带信息存在关联关系。
采用该设计,可以节省信令开销。基站接收第一指示信息,并通过第一接收机支持的接收天线数和第一接收机支持的频带信息存在关联关系确定接收天线数,就不需要再额外接收指示该第一接收机具体接收天线数的指示信息,从而节省了信令开销。
在一种可能的设计中,所述第一指示信息指示所述第二接收机支持的接收天线数;所述第一接收机支持的接收天线数和所述第二接收机支持的接收天线数相同。
采用该设计,可以节省信令开销。基站接收第一指示信息,并通过第一接收机支持的接收天线数和第二接收机支持的接收天线数相同确定第一接收机支持的接收天线数,就不需要再额外接收一个指示信息指示该第一接收机的接收天线数,从而节省了信令开销。
在一种可能的设计中,包括:所述网络设备向所述终端设备发送配置信息;所述配置信息用于所述终端设备进入第一状态或第二状态。
采用该设计,终端设备可以根据配置信息改变所处状态。考虑到第一接收机支持不同于第二接收机支持的接收天线数,第一接收机和第二接收机的覆盖能力是不同的,接收天线数越多,覆盖范围越大。根据配置信息,终端设备可以采用不同的接收机与网络设备进行通信,避免第一接收机和第二接收机的覆盖能力差距产生的覆盖空洞,从而提高通信质量。
例如,行人身上携带智能穿戴设备。行人移动至距离基站较近的位置,智能穿戴设备处于第一状态,采用唤醒接收机接收基站发送的唤醒信号。行人移动至距离基站较远的位置,智能穿戴设备的唤醒接收机支持的接收天线数不能满足行人和基站之间的覆盖距离,智能穿戴设备根据配置信息进入第二状态,采用主接收机与基站进行通信。因此,采用该设计可以避免第一接收机和第二接收机的覆盖能力差距产生的覆盖空洞,从而提高通信质量。
在一种可能的设计中,所述配置信息为第一阈值。
在一种可能的设计中,所述配置信息为多个候选阈值,其中,不同的候选阈值与所述第一接收机可能支持的不同的接收天线数存在关联关系。
采用该设计,终端设备可以根据第一接收机可能支持的不同的接收天线数更加准确的判断从第一状态进入第二状态的时机,进一步提高通信质量。
在一种可能的设计中,包括:所述配置信息为一个候选阈值以及一个或多个偏置信息;所述候选阈值与所述第一接收机可能支持的一个接收天线数存在关联关系;所述不同的偏置信息与所述第一接收机可能支持的不同的接收天线数存在关联关系。
采用该设计,可以节省信令开销。网络设备配置偏置信息所需的信令开销通常小于配置候选阈值本身所需的信令开销。终端设备结合一个候选阈值和一个偏置信息确定第一阈值,可以使网络设备采用更小的信令开销达到同样的配置效果。
第三方面,提供了一种终端设备,此终端设备可以执行第一方面提供的方法,终端设备具体包括:处理单元,用于确定第一指示信息,所述第一指示信息用于指示所述终端设备的第一接收机的接收天线数量信息;收发单元,用于向网络设备发送第一指示信息;所述收发单元还用于,使用所述第一接收机接收所述网络设备发送的唤醒信号。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的接收天线数。
在一种可能的设计中,所述第一指示信息指示所述第一接收机和第二接收机的接收天线数相同。
在一种可能的设计中,所述第一指示信息指示所述第一接收机和所述第二接收机的接收天线数不同。
在一种可能的设计中,所述收发单元还用于,向所述网络设备发送第二指示信息,所述第二指示信息指示所述第一接收机支持的接收天线数。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的接收天线数为1、2或4中的一个。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的频带信息,其中,所述第一接收机支持的接收天线数和所述第一接收机支持的频带信息存在关联关系。
在一种可能的设计中,所述第一指示信息指示所述第二接收机支持的接收天线数;所述第一接收机支持的接收天线数和所述第二接收机支持的接收天线数相同。
在一种可能的设计中,包括:所述收发单元还用于,接收配置信息;所述处理单元还用于,根据所述配置信息使处于第一状态的所述终端设备进入第二状态。
在一种可能的设计中,所述配置信息为第一阈值。
在一种可能的设计中,包括:所述配置信息为多个候选阈值,其中,不同的候选阈值与所述第一接收机可能支持的不同的接收天线数存在关联关系;所述处理单元还用于,根据所述第一接收机支持的接收天线数从所述多个候选阈值中确定所述第一阈值。
在一种可能的设计中,包括:所述配置信息为一个候选阈值以及一个或多个偏置信息;所述候选阈值与所述第一接收机可能支持的一个接收天线数存在关联关系;所述不同的偏置信息与所述第一接收机可能支持的不同的接收天线数存在关联关系;所述处理单元还用于,根据所述第一接收机支持的接收天线数从所述一个或多个偏置信息中确定第一偏置信息;所述处理单元还用于,结合所述候选阈值和所述第一偏置信息确定所述第一阈值。
在一种可能的设计中,包括:所述收发单元还用于,使用所述第一接收机或所述第二接收机接收第一参考信号;所述处理单元还用于,基于第一参考信号进行测量,并获得测量结果;所述测量结果与所述第一阈值满足第一关系;所述处理单元还用于,使处于第一状态的所述终端设备进入第二状态。
第四方面,提供了一种网络设备,此网络设备可以执行第二方面提供的方法,网络设备具体包括:收发单元,用于接收终端设备发送的第一指示信息;处理单元,用于根据所述第一指示信息确定所述终端设备的第一接收机的接收天线数量信息;所述收发单元还用于,根据所述第一接收机的接收天线数量信息,向所述终端设备发送唤醒信号。
在一种可能的设计中,所述收发单元还用于,将所述第一指示信息发送给核心网。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的接收天线数。
在一种可能的设计中,所述第一指示信息指示所述第一接收机和第二接收机的接收天线数相同。
在一种可能的设计中,所述第一指示信息指示所述第一接收机和所述第二接收机的接收天线数不同。
在一种可能的设计中,所述收发单元还用于,接收所述终端设备发送的第二指示信息,所述第二指示信息指示所述第一接收机支持的接收天线数。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的接收天线数为1、2或4中的一个。
在一种可能的设计中,所述第一指示信息指示所述第一接收机支持的频带信息,其中, 所述第一接收机支持的接收天线数和所述第一接收机支持的频带信息存在关联关系。
在一种可能的设计中,包括:所述第一指示信息指示所述第二接收机支持的接收天线数;所述第一接收机支持的接收天线数和所述第二接收机支持的接收天线数相同。
在一种可能的设计中,包括:所述收发单元还用于,向所述终端设备发送配置信息;所述配置信息用于所述终端设备进入第一状态或第二状态。
在一种可能的设计中,所述配置信息为第一阈值。
在一种可能的设计中,所述配置信息为多个候选阈值,其中,不同的候选阈值与所述第一接收机可能支持的不同的接收天线数存在关联关系。
在一种可能的设计中,包括:所述配置信息为一个候选阈值以及一个或多个偏置信息;所述候选阈值与所述第一接收机可能支持的一个接收天线数存在关联关系;所述不同的偏置信息与所述第一接收机可能支持的不同的接收天线数存在关联关系。
第五方面,提供了一种通信装置,包括处理器,所述处理器与至少一个存储器耦合,所述处理器用于读取所述至少一个存储器所存储的计算机程序,以执行以上第一方面或第一方面的任意可能的设计中的方法,或执行以上第二方面或第二方面的任意可能的设计中的方法。
第六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或第二方面或其任意一种可能的设计中所述的方法。
第七方面,提供了一种计算机程序产品,当其在计算机上运行时,使得该计算机执行上述第一方面或第二方面或其任意一种可能的设计中所述的方法。
第八方面,提供了一种芯片,包括处理器和通信接口,所述处理器用于读取指令或计算机程序以执行上述第一方面或第二方面或其任意一种可能的设计中所述的方法。
第九方面,提供了一种通信系统,包括第三方面或第三方面的任意可能的设计中的终端设备,以及包括第四方面或第四方面的任意可能的设计中的网络设备。
以上第三方面至第九方面及其可能的设计的有益效果可参照第一或第二方面及其可能的设计中的有益效果。
附图说明
图1是适用于本申请实施例的系统架构场景示意图。
图2是本申请的终端设备的接收机的一例示意图。
图3是唤醒接收机支持不同的接收天线数示意图。
图4是本申请实施例提供的通信方法的一例示意图。
图5是本申请实施例的一种通信设备的示意性框图。
图6是本申请实施例的另一种通信设备的示意性框图。
图7是本申请实施例的一种通信装置的示意性框图。
图8是本申请实施例的一种通信系统的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global  system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代移动通信技术(the 5th generation,5G)系统或新空口(new radio,NR)系统,车到其它设备(vehicle-to-X,V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(Long Term Evolution-Vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、IoT、机器间通信长期演进技术(Long Term Evolution-Machine,LTE-M),机器到机器(Machine to Machine,M2M)等。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的系统架构场景。图1示出了适用于本申请实施例的通信方法和装置的系统架构场景示意图。如图1所示,该通信系统中包括至少一个网络设备(如图1中的基站#1、基站#2)和至少一个终端设备(如图1中的终端#1至终端#8)。在该通信系统中,基站#1发送信息给终端#1至终端#6中的一个或多个终端设备。基站#1通过基站#2发送信息给终端#7和终端#8中的一个或多个终端设备。此外,终端设备#4至终端设备#6也组成一个通信系统,在该通信系统中,终端设备#4可以发送信息给终端设备#5和终端设备#6中的一个或多个终端设备。基站#2,终端#7和终端#8也组成一个通信系统,该通信系统中,基站#2可以发送信息给终端#7和终端#8中的一个或多个终端设备。网络设备和终端设备可以是固定位置的,也可以是可移动的。在本申请实施例中,网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
可以理解,图1只是一种示例,对本申请的保护范围不构成任何限定。本申请实施例提供的通信方法还可以涉及图1中未示出的网元或设备,当然本申请实施例提供的通信方法也可以只包括图1示出的部分网元。
可以理解,上述应用于本申请实施例的网络架构仅是一种举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请实施例。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备
在本申请实施例中,终端设备包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端(terminal)、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart  grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是IoT系统中的终端设备。IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统或芯片,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请对于终端设备的具体形式不作限定。
2)网络设备
本申请实施例中,网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home NodeB,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G NR系统中的下一代节点B(next generation node B,gNB)或传输点(TRP或TP),或者,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。或者该网络设备可以为未来第六代移动通信技术(the 6th generation,6G)网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。本申请实施例对网络设备所采用的具体技术和具体设备形态不做限制。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、介质接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处 理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
网络设备为小区提供服务,终端设备通过网络设备分配的传输资源(例如,频域资源,或者说,频谱资源)与小区进行通信,该小区可以属于宏基站(例如,宏eNB或宏gNB等),也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(metro cell)、微小区(micro cell)、微微小区(pico cell)、毫微微小区(femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
3)主接收机(main radio)
一般情况下,无论终端设备在空闲态或者非活动态执行接收寻呼的流程时,还是终端设备在连接态进行数据接收时,都是通过相同的接收模块(或者接收机,或者接收电路)来实现。在本申请中,为便于描述,将完成这些功能(或执行相关步骤)的模块称为主接收机。可以理解,主接收机仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。
主接收机的功耗较高,但主接收机的功能更多,可以收发的信号种类也更多。在与网络设备通信过程中,主接收机用于承担主要的数据传输。
在本申请中,主接收机例如可用于接收同步信号块(synchronization signal block,SSB)、物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH)、或信道状态信息参考信号(channel state reference signal,CSI RS),或者可用于接收二进制相移键控(binary phase shift keying,BPSK)、正交相移键控(quadrature phase shift keying,QPSK)、16正交振幅调制(quadrature amplitude modulation,QAM)、64QAM或256QAM调制信号,或者可用于接收做快速傅里叶变换(fast Fourier transform,FFT)的信号或快速傅里叶逆变换(inverse fast fourier transform,IFFT)的信号。主接收机可以是本地振荡器精度较高的接收机。
终端设备使用主接收机接收的信号可以被称为在主链路上传输的信号,其中,主链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。可以理解,主链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。
当终端设备采用主接收机接收寻呼时,功耗较高。例如,终端设备需要每隔一个非连续接收(discontinuous reception,DRX)周期就周期性地唤醒一次主接收机,当终端设备没有信令和数据业务进行传输时,在每个DRX周期唤醒一次主接收机的行为造成了终端设备的主要功耗。此外,由于主接收机较为复杂,其运行时的基准功耗(或静态功耗)比较高。
为了降低终端设备接收寻呼带来的功耗,一种可能的方法是,终端设备可以使用一个单独的低功耗小电路接收唤醒信号。该低功耗小电路有能力超低功耗监听唤醒信号,且主接收机可以处于关闭或深度睡眠状态,而该低功耗小电路可以处于激活状态或间歇性激活状态。当终端设备通过该低功耗小电路检测到唤醒信号后,终端设备可根据该唤醒信号触发主接收机的唤醒。主接收机打开时,可用于数据传输。该低功耗小电路可以使用一个结 构简单的单独的小电路、模块或芯片实现,其功耗较低。
4)唤醒接收机(wake-up receiver,WUR)
上述低功耗小电路可以称为例如唤醒接收机(wake up receiver,WUR)、低功耗唤醒接收机(low power wake-up receiver)、唤醒射频(wake-up radio,WUR)、辅接收机,或者也可以称为唤醒电路、低功耗电路,等等,关于其命名,本申请不予限制。下文为便于说明,统一描述为唤醒接收机。
在本申请中,唤醒接收机例如可用于接收用开关键控(on-off key,OOK)调制或频移键控(frequency shift keying,FSK)调制的信号,或者可用于接收在生成或解码过程中不用做FFT或IFFT的信号,或者可用于接收曼彻斯特编码的信号。
终端设备使用唤醒接收机接收的信号可以被称为在唤醒链路上传输的信号,其中,唤醒链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。可以理解,唤醒链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定,例如,唤醒链路还可以称为WUR链路。
在本申请中,唤醒接收机和主接收机相比能耗更低,示例性地,可表现为以下方面中的至少一种:唤醒接收机接收唤醒链路上传输的信号的能耗与主接收机接收主链路上传输的信号的能耗相比能耗更低;与主接收机相比,唤醒接收机本身的能耗更低;唤醒接收机是本地振荡器精度较低的接收机;唤醒接收机是采用包络检波的接收机;唤醒接收机是不需要做FFT或IFFT的信号的接收机。唤醒接收机节能的关键在于不采用高精度晶振(0.1ppm),或者采用低精度的振荡器(如环形振荡器)的接收机结构。采用这种接收机架构,最终都需要采用包络检波的方式实现下变频。包络检波是一种非相干接收方式,相比主接收机相干接收的方式,覆盖性能存在较大差距。
图2示出了本申请的终端设备的接收机的一例示意图。其中,唤醒接收机可用于接收唤醒信号,进而,唤醒接收机可根据该唤醒信号中是否包含该终端设备的标识,判断是否触发主接收机的唤醒。作为示例,若唤醒信号中包含该终端设备的标识,则触发主接收机唤醒(开启),如图2中的(a)所示;若唤醒信号中不包含该终端设备的标识,则主接收机处于关闭状态或者深度睡眠状态,如图2中的(b)所示。
唤醒接收机复用主接收机的部分射频硬件,比如主接收机的接收天线,可以降低成本。
5)唤醒信号
使用唤醒接收机接收的信号可以称作“唤醒信号”、“在唤醒链路上传输的信号”、“WUR信号”,等等,关于其命名,本申请不予限制。下文为便于说明,统一描述为唤醒信号。
唤醒信号可用于指示一个终端设备或者一组终端设备是否被寻呼。示例性地,若唤醒信号中包括某个终端设备的标识(UE ID),则表示该终端设备被寻呼;相反地,若唤醒信号中不包括该终端设备的标识,则表示该终端设备未被寻呼。其中,UE ID例如为5G-S-TMSI,或者,UE ID可由5G-S-TMSI中的部分比特位组成,例如,UE ID可由5G-TMSI中的高比特位组成。
终端设备在收到唤醒信号后有两种可能的工作方式,在第一种方式中,终端设备在收到唤醒信号后,可根据该唤醒信号唤醒主接收机,并通过主接收机接收寻呼(paging),之后,再发起随机接入;在第二种方式中,终端设备在收到唤醒信号后,可根据该唤醒信号唤醒主接收机并直接发起随机接入。
在本申请中,唤醒信号可以是用开关键控(on-off key,OOK)调制或频移键控 (frequency shift keying,FSK)调制的信号,或者也可以是在生成或解码过程中不用快速傅里叶变换(fast Fourier transform,FFT)或快速傅里叶逆变换(inverse fast fourier transform,IFFT)的信号,或者也可以是采用曼彻斯特编码的信号。当采用OOK调制时,每个比特(该比特可以是编码后的比特)对应一个符号(也可以被称为一个码片(chip))。在一种可能的情况中,当比特为1时,表示该符号长度内有信号发出(即该符号长度内信号功率不为0),而当比特为0时,表示该符号长度内无信号发出(即该符号长度内信号功率为0);在另一种情况中,当比特为0时,表示该符号长度内有信号发出(即该符号长度内信号功率不为0),当比特为1时,表示该符号长度内无信号发出(即该符号长度内信号功率为0)。
网络设备通过唤醒链路传输的信号,除了唤醒信号外,可能还包含同步信号。同步信号可用于唤醒链路的时间同步,还可用于终端设备检测唤醒链路的质量。
6)接收天线数
接收天线数也可以表述为“接收分支(Rx branch)数”、“多输入多输出层(MIMO layer)数”,等等,关于其命名,本申请不予限制。下文为便于说明,统一描述为接收天线数。
上面对本申请中涉及到的术语做了简单说明,下文实施例中不再赘述。
如前所述,唤醒接收机的功耗更低,且唤醒接收机复用主接收机的全部或部分射频硬件,可以降低成本。但是,唤醒接收机相比主接收机相干接收的方式,覆盖性能存在较大差距。同时,唤醒接收机支持的接收天线数也会影响唤醒接收机的接收性能和覆盖能力。图3示出了唤醒接收机支持不同的接收天线数示意图,接收天线数少,节能增益大,适用于功耗需求大的场景;接收天线数多,能够对抗深衰落,获取空域接收分集增益,在保证一定节能效果情况下,适用于覆盖需求大的场景。主接收机和唤醒接收机在接收性能和覆盖能力上存在差异,会影响网络设备调度传输时采用的传输参数,降低系统的传输效率,同时,开启唤醒接收机的终端设备在多个小区之间移动时可能会出现唤醒接收机的覆盖空洞。
有鉴于此,本申请提供一种通信方法和装置,能够提高传输效率,同时解决覆盖空洞的问题。下文将结合附图详细说明本申请实施例提供的通信方法。本申请实施例提供的通信方法可以应用于上述图1所示的通信系统中。
图4是本申请实施例提供的通信方法的一例示意图。该方法400可以包括S410至S440。应理解,图4示出了该通信方法的步骤或操作,但这些步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图4中的各个操作的变形,或者是合理的步骤间的调换。
S410,终端设备发送第一指示信息,第一指示信息指示第一接收机支持的接收天线数量信息。
具体的,该第一接收机可以是终端设备的唤醒接收机,也可以是终端设备的主接收机。
在一种可能的设计中,终端可以根据自身覆盖需求、能耗需求、移动性需求中的一个或多个,在主接收机支持的接收天线数内,选择唤醒接收机支持的接收天线数,通过第一指示信息发送给网络设备。具体的,覆盖需求可以是根据业务情况或者是覆盖相关参数确定的。
示例性的,终端设备通过测量判断参考信号接收功率(reference signal received power,RSRP)较好,满足测量放松条件,终端设备可以上报唤醒接收机支持的接收天线数为1; 终端设备通过测量判断RSRP较差,或者,不满足测量放松条件,终端设备可以上报唤醒接收机支持的接收天线数为2或4。
根据上面示例,若第一接收机是终端设备的主接收机,相应的,第一指示信息指示第一接收机支持的接收天线数量信息可以是指示终端的主接收机支持的接收天线数。第一指示信息还可以进一步同时指示终端的唤醒接收机支持的接收天线数。
同样的,若第一接收机是终端设备的唤醒接收机,相应的,第一指示信息指示第一接收机支持的接收天线数量信息可以是指示终端的唤醒接收机支持的接收天线数。
可选的,第一指示信息指示第一接收机支持的接收天线数。这里的天线数可以是指具体的接收天线数量。
示例性的,终端设备确定的第一接收机支持的接收天线数为4,则第一指示信息指示4;终端设备确定的第一接收机支持的接收天线数为2,则第一指示信息指示2。示例性的,可以通过2比特信息指示具体的接收天线数量,例如00可以表示第一接收机支持的接收天线数为1,01可以表示第一接收机支持的接收天线数为2,10可以表示第一接收机支持的接收天线数为4。
除上述示例中的指示方式外,还可以其它方式指示第一接收机支持的接收天线数量。下面,将介绍两种情况,可以通过指示两个接收机接收天线数量的关系的方式指示第一接收机的天线数量。
情况一:第一指示信息指示第一接收机和第二接收机的接收天线数相同。
结合上述示例,具体介绍第一指示信息指示第一接收机和第二接收机的接收天线数相同的指示方式。例如,该第一接收机是终端设备的唤醒接收机,第二接收机是终端设备的主接收机。在这种情况下,终端设备在执行步骤410前可以预先通知第二接收机的接收天线数量,步骤410直接通过第一指示信息指示第一接收机和第二接收机的接收天线数相同,基站即根据预先获知的第二接收机的接收天线数量和第一指示信息,确定出第一接收机的接收天线数量。应理解,该预先通知也可以是在步骤410之后的。此外,基站也可以通过其它方式获知第二接收机的接收天线数量,在这种情况下,终端设备就可以不通知基站第二接收机的接收天线数量,从而进一步节省信令开销。通知第二接收机接收天线数量的方式可以参考上述实施例,在此不再赘述。
情况二:第一指示信息指示第一接收机和第二接收机的接收天线数不同。
在这种情况下,一种可能的实现方式是,终端设备向网络设备发送第二指示信息,第二指示信息指示第一接收机支持的接收天线数。步骤410通过第一指示信息指示第一接收机和第二接收机的接收天线数不同,基站即根据第一指示信息和第二指示信息,确定出第一接收机的接收天线数量。应理解,终端设备向网络设备发送第二指示信息也可以是在发送第一指示信息之前。具体的,该第二指示信息指示的接收天线数的确定方式可以参考指示第一接收机的接收天线数量的相关实施例,在此不再赘述。
另一种可能的实现方式是,步骤410通过第一指示信息指示第一接收机和第二接收机的接收天线数不同,基站可以根据第一指示信息和预设规则,确定出第一接收机的接收天线数。
一种实施方式是,终端设备在执行步骤410前可以预先通知第二接收机的接收天线数量,例如通知第二接收机的接收天线数为4,则第一接收机可能支持的天线数为{1,2,3,4}中的一个。示例性的,预设规则为“如果第一接收机和第二接收机的接收天线数不同, 则第一接收机的接收天线数为第二接收机的接收天线数的二分之一”,则步骤410通过第一指示信息指示第一接收机和第二接收机的接收天线数不同,基站即根据预先获知的第二接收机的接收天线数和第一指示信息以及预设规则,确定出第一接收机的接收天线数为2。示例性的,预设规则为“如果第一接收机和第二接收机的接收天线数不同,则第一接收机的接收天线数为小于第二接收机的接收天线数的最大可支持的接收天线数”,则步骤410通过第一指示信息指示第一接收机和第二接收机的接收天线数不同,基站即根据预先获知的第二接收机的接收天线数和第一指示信息以及预设规则,确定出第一接收机的接收天线数为3。应理解,该预先通知也可以是在步骤410之后的。此外,基站也可以通过其它方式获知第二接收机的接收天线数量,在这种情况下,终端设备就可以不通知基站第二接收机的接收天线数量,从而进一步节省信令开销。通知第二接收机接收天线数量的方式可以参考上述实施例,在此不再赘述。
另一种实施方式是,预设第一接收机和第二接收机的接收天线数不同时,第一接收机的接收天线数为某个具体的数值。示例性的,预设规则为“如果第一接收机和第二接收机的接收天线数不同,则第一接收机的接收天线数为2”,则步骤410通过第一指示信息指示第一接收机和第二接收机的接收天线数不同,基站即根据第一指示信息和预设规则,确定出第一接收机的接收天线数为2。
结合情况一和情况二,第一指示信息可以通过1个比特位指示第一接收机和第二接收机的接收天线数是否相同。若相同,则可以直接执行情况一的实施方式,在这种情况下终端可以不发送上述第二指示信息;若不同则执行情况二的实施方式,或直接指示第一接收机的接收天线数。采用该种设计,可以节省终端设备进行上报的信令开销,具体来说,第一接收机和第二接收机的接收天线数相同的情况下,终端可以不上报第二指示信息,仅通过上述1个比特位上报第一接收机支持的接收天线数。
可选的,第二指示信息指示第一接收机支持的接收天线数为1、2或4中的一个。
可选的,第一指示信息指示第一接收机支持的接收天线数为1、2或4中的一个。
示例性的,终端设备通过第一指示信息或第二指示信息指示以下几种状态值:唤醒接收机支持的接收天线数和主接收机相同,唤醒接收机支持的接收天线数为1,唤醒接收机支持的接收天线数为2,唤醒接收机支持的接收天线数为4。在这种情况下,第一指示信息或第二指示信息可以通过2比特信息指示具体的接收天线数量,例如00可以表示第一接收机支持的接收天线数为1,01可以表示第一接收机支持的接收天线数为2,10可以表示第一接收机支持的接收天线数为4。
可选的,第一指示信息指示第一接收机支持的频带信息,其中,第一接收机支持的接收天线数和第一接收机支持的频带信息存在关联关系。
示例性的,终端设备通过第一指示信息指示唤醒接收机支持的频带信息。根据频带信息和唤醒接收机支持的接收天线数的关联关系,可以向网络设备通知终端设备的唤醒接收机支持的接收天线数。例如,约定唤醒接收机工作在某些频带下,唤醒接收机支持的接收天线数的最小值为2。约定唤醒接收机工作在另一些频带下,唤醒接收机支持的接收天线数的最小值为4。
关于第一接收机支持的接收天线数和第一接收机支持的频带信息存在的关联关系,示例而非限定的,第一接收机支持的频带为NR工作频带中的n7,n38,n41,n48,n77,n78,n79中的至少一个频带时,第一接收机支持的接收天线数最大为4,第一接收支持的频带为NR 工作频带中除n7,n38,n41,n48,n77,n78,n79之外频带中的至少一个频带时,第一接收机支持的接收天线数最大为2。应理解,不同频带工作频带也可以对应第一接收机支持的接收天线数的最小值。可选的,第一指示信息指示第二接收机支持的接收天线数;第一接收机支持的接收天线数和第二接收机支持的接收天线数相同。
示例性的,终端设备通过第一指示信息指示终端设备的主接收机支持的接收天线数。基站即根据第一指示信息和终端设备的唤醒接收机和终端设备的主接收机的接收天线数相同,确定出唤醒接收机的接收天线数量。例如,终端设备通过指示信息指示主接收机的接收天线数为2,则基站确定唤醒接收机支持的接收天线也为2。
可选的,第一指示信息可以承载于随机接入过程中的上行传输中,也可以承载于连接态的上行传输中。
例如,指示信息可以承载于Msg3,或者,指示信息可以承载于信元UERadioPagingInformation中,或指示信息可以承载于信元UERadioAccessCapabilityInformation中,或指示信息可以承载于信元UEAssistanceInformation中。
可选的,终端设备上报第一指示信息时,终端设备的RRC状态可以是空闲态,或者,非活动态,或者,连接态。
S420,网络设备接收第一指示信息,根据第一指示信息确定第一接收机支持的接收天线数量信息。
具体的,该第一接收机可以是终端设备的唤醒接收机,也可以是终端设备的主接收机。第一指示信息指示的接收天线数的确定方式可以参考上述实施例,在此不再赘述。
根据上面示例,若第一接收机是终端设备的主接收机,相应的,第一指示信息指示第一接收机支持的接收天线数量信息可以是指示终端的主接收机支持的接收天线数。第一指示信息还可以进一步同时指示终端的唤醒接收机支持的接收天线数。
同样的,若第一接收机是终端设备的唤醒接收机,相应的,第一指示信息指示第一接收机支持的接收天线数量信息可以是指示终端的唤醒接收机支持的接收天线数。
可选地,网络设备将终端设备发送的第一指示信息转发给核心网。例如,对于NR系统,核心网网元可以为接入和移动性管理功能(AMF,access and mobility management function)或其它网元,例如可以是LTE网络中的移动性管理实体(mobility management entity,MME),或是未来通信技术中的具有移动性管理功能的网元等。
在这种情况下,后续核心网向网络设备发送寻呼消息或者唤醒数据时,可以携带该第一指示信息。
可选的,第一指示信息指示第一接收机支持的接收天线数。这里的天线数可以是指具体的接收天线数量。
示例性的,第一指示信息指示4,则网络设备确定终端设备的第一接收机支持的接收天线数为4;第一指示信息指示2,则终端设备确定的第一接收机支持的接收天线数为2。示例性的,可以通过2比特信息指示具体的接收天线数量,例如00可以表示第一接收机支持的接收天线数为1,01可以表示第一接收机支持的接收天线数为2,10可以表示第一接收机支持的接收天线数为4。
除上述示例中的指示方式外,还可以其它方式指示第一接收机支持的接收天线数量。下面介绍两种情况,可以通过指示两个接收机接收天线数量的关系的方式指示第一接收机 的天线数量。
情况一:第一指示信息指示第一接收机和第二接收机的接收天线数相同。
结合上述示例,具体介绍第一指示信息指示第一接收机和第二接收机的接收天线数相同的指示方式。例如,该第一接收机是终端设备的唤醒接收机,第二接收机是终端设备的主接收机。在这种情况下,网络设备在执行步骤410前可以预先获知第二接收机的接收天线数量,步骤410直接通过第一指示信息确定第一接收机和第二接收机的接收天线数相同,基站即根据预先获知的第二接收机的接收天线数量和第一指示信息,确定出第一接收机的接收天线数量。应理解,该预先通知也可以是在步骤410之后的。此外,基站可以通过终端设备的通知获知第二接收机的接收天线数,也可以通过其它方式获知第二接收机的接收天线数量,在这种情况下,终端设备就可以不通知基站第二接收机的接收天线数量。通知第二接收机接收天线数量的方式可以参考上述实施例,在此不再赘述。
情况二:第一指示信息指示第一接收机和第二接收机的接收天线数不同。
在这种情况下,一种可能的实现方式是,网络设备接收终端设备发送的第二指示信息,第二指示信息指示第一接收机支持的接收天线数。步骤410通过第一指示信息指示第一接收机和第二接收机的接收天线数不同,基站即根据第一指示信息和第二指示信息,确定出第一接收机的接收天线数量。应理解,终端设备向网络设备发送第二指示信息也可以是在发送第一指示信息之前。具体的,该第二指示信息指示的接收天线数的确定方式可以参考上述实施例,在此不再赘述。
另一种可能的实现方式是,步骤410通过第一指示信息指示第一接收机和第二接收机的接收天线数不同,基站即根据第一指示信息和预设规则,确定出第一接收机的接收天线数。
一种实施方式是,终端设备在执行步骤410前可以预先通知第二接收机的接收天线数量,例如通知第二接收机的接收天线数为4,则第一接收机可能支持的天线数为{1,2,3,4}中的一个。示例性的,预设规则为“如果第一接收机和第二接收机的接收天线数不同,则第一接收机的接收天线数为第二接收机的接收天线数的二分之一”,则步骤410通过第一指示信息指示第一接收机和第二接收机的接收天线数不同,基站即根据预先获知的第二接收机的接收天线数和第一指示信息以及预设规则,确定出第一接收机的接收天线数为2。示例性的,预设规则为“如果第一接收机和第二接收机的接收天线数不同,则第一接收机的接收天线数为小于第二接收机的接收天线数的最大可支持的接收天线数”,则步骤410通过第一指示信息指示第一接收机和第二接收机的接收天线数不同,基站即根据预先获知的第二接收机的接收天线数和第一指示信息以及预设规则,确定出第一接收机的接收天线数为3。应理解,该预先通知也可以是在步骤410之后的。此外,基站也可以通过其它方式获知第二接收机的接收天线数量,在这种情况下,终端设备就可以不通知基站第二接收机的接收天线数量。通知第二接收机接收天线数量的方式可以参考上述实施例,在此不再赘述。
另一种实施方式是,预设第一接收机和第二接收机的接收天线数不同时,第一接收机的接收天线数为某个具体的数值。示例性的,预设规则为“如果第一接收机和第二接收机的接收天线数不同,则第一接收机的接收天线数为2”,则步骤410通过第一指示信息指示第一接收机和第二接收机的接收天线数不同,基站即根据第一指示信息和预设规则,确定出第一接收机的接收天线数为2。
结合情况一和情况二,第一指示信息可以通过1个比特位指示第一接收机和第二接收机的接收天线数是否相同。若相同,则可以直接执行情况一的实施方式,在这种情况下终端可以不发送上述第二指示信息;若不同则执行情况二的实施方式,或直接指示第一接收机的接收天线数。采用该种设计,可以节省终端设备进行上报的信令开销,具体来说,第一接收机和第二接收机的接收天线数相同的情况下,终端可以不上报第二指示信息,仅通过上述1个比特位上报第一接收机支持的接收天线数。
可选的,第二指示信息指示第一接收机支持的接收天线数为1、2或4中的一个。
可选的,第一指示信息指示第一接收机支持的接收天线数为1、2或4中的一个。
示例性的,网络设备通过接收的第一指示信息确定以下几种状态值:唤醒接收机支持的接收天线数和主接收机相同,唤醒接收机支持的接收天线数为1,唤醒接收机支持的接收天线数为2,唤醒接收机支持的接收天线数为4。在这种情况下,第一指示信息或第二指示信息可以通过2比特信息指示具体的接收天线数量,例如00可以表示第一接收机支持的接收天线数为1,01可以表示第一接收机支持的接收天线数为2,10可以表示第一接收机支持的接收天线数为4。
可选的,第一指示信息指示第一接收机支持的频带信息,其中,第一接收机支持的接收天线数和第一接收机支持的频带信息存在关联关系。
示例性的,网络设备通过接收第一指示信息确定唤醒接收机支持的频带信息。根据频带信息和唤醒接收机支持的接收天线数的关联关系,可以确定终端设备的唤醒接收机支持的接收天线数。例如,约定唤醒接收机工作在某些频带下,唤醒接收机支持的接收天线数的最小值为2。约定唤醒接收机工作在另一些频带下,唤醒接收机支持的接收天线数的最小值为4。
关于第一接收机支持的接收天线数和第一接收机支持的频带信息存在的关联关系,示例而非限定的,第一接收机支持的频带为NR工作频带中的n7,n38,n41,n48,n77,n78,n79中的至少一个频带时,第一接收机支持的接收天线数最大为4,第一接收支持的频带为NR工作频带中除n7,n38,n41,n48,n77,n78,n79之外频带中的至少一个频带时,第一接收机支持的接收天线数最大为2。可选的,第一指示信息指示第二接收机支持的接收天线数;第一接收机支持的接收天线数和第二接收机支持的接收天线数相同。
可选的,第一指示信息指示第二接收机支持的接收天线数;第一接收机支持的接收天线数和第二接收机支持的接收天线数相同。
示例性的,网络设备通过第一指示信息确定终端设备的主接收机支持的接收天线数,基站即根据第一指示信息和终端设备的唤醒接收机和终端设备的主接收机的接收天线数相同,确定出唤醒接收机的接收天线数量。例如,网络设备通过第一指示信息确定主接收机的接收天线数为2,则基站确定唤醒接收机支持的接收天线也为2。
可选的,第一指示信息可以承载于随机接入过程中的上行传输中,也可以承载于连接态的上行传输中。
例如,指示信息可以承载于Msg3,或者,指示信息可以承载于信元UERadioPagingInformation中,或指示信息可以承载于信元UERadioAccessCapabilityInformation中,或指示信息可以承载于信元UEAssistanceInformation中。
可选的,网络设备接收第一指示信息时,终端设备的RRC状态可以是空闲态,或者, 非活动态,或者,连接态。
S430,根据第一指示信息,网络设备向终端设备发送唤醒信号。
在这种情况下,网络设备可以根据终端设备的唤醒接收机支持的接收天线数,自适应调整唤醒数据的传输参数,比如码率,重复次数,带宽,传输块大小等。
S440,终端设备使用第一接收机接收网络设备发送的唤醒信号。
S450,网络设备发送配置信息,该配置信息用于终端设备进入第一状态或第二状态。
可以理解,步骤S450是可选的,未在图4中示出。
可以理解,网络设备可以通过RRC信令发送配置信息,也可以通过MAC层控制元素(MAC control element,MAC CE)发送配置信息,也可以通过下行控制信息(downlink control information,DCI)发送配置信息,本申请不予限制。
具体的,第一状态下,终端设备通过主接收机和网络设备进行通信;第二状态下,终端设备通过唤醒接收机接收网络设备发送的唤醒信号。可选地,第一状态和第二状态可以对应不同的RRC状态,例如第二状态可以为RRC_IDLE,RRC_INACTIVE和RRC_CONNECTED之外的一种新的RRC状态。可选地,第一状态和第二状态可以对应不同的功率状态,例如第二状态下终端设备的功耗要低于第一状态下终端设备的功耗。可以理解,步骤S450中的进入,可以是终端设备根据配置信息进入第一状态或第二状态,也可以是终端设备在第一状态和第二状态之间的切换,本申请不对具体的切换操作进行限制。可以理解,终端设备在接收配置信息之前已经处于第一状态或第二状态,本申请的配置信息用于改变终端设备所处的状态。
关于配置信息,下面将介绍几种配置方式。为方便理解,下面将以第一接收机为唤醒接收机为例进行阐述。
方式一:配置信息为第一阈值。
具体的,网络设备配置的第一阈值可以是RSRP门限,该RSRP门限可以是针对唤醒接收机支持的接收天线数为1进行设置的。
方式二:配置信息为多个候选阈值,其中,不同的候选阈值与唤醒接收机可能支持的不同的接收天线数存在关联关系。
具体的,网络设备配置多个RSRP门限,不同的RSRP门限对应不同的唤醒接收机支持的接收天线数。示例性的,表2示出了网络配置的RSRP门限与唤醒接收机支持的接收天线数的对应关系。
表2网络配置的RSRP门限示例
方式三:配置信息为一个候选阈值以及一个或多个偏置信息;候选阈值与唤醒接收机 可能支持的一个接收天线数存在关联关系;不同的偏置信息与唤醒接收机可能支持的不同的接收天线数存在关联关系。采用该方式,可以进一步优化信令开销。
具体的,网络设备配置的一个候选阈值可以是RSRP门限,该RSRP门限可以是针对唤醒接收机支持的接收天线数为1进行设置的。对于其它的唤醒接收机支持的接收天线数,网络配置多个偏置信息,不同的偏置信息对应不同的唤醒接收机支持的接收天线数。在这种情况下,对于其它唤醒接收机支持的接收天线数(例如2,4),即可以根据该配置的候选门限和偏置信息确定出对应的RSRP门限。示例性的,表3示出了网络配置的候选RSRP门限以及偏置信息与唤醒接收机支持的接收天线数的对应关系。
表3网络配置的RSRP门限以及偏置信息示例
S460,终端设备接收配置信息;处于第一状态的终端设备根据配置信息进入第二状态。
可以理解,步骤S460是可选的,未在图4中示出。
可以理解,终端设备可以通过接收RRC信令确定配置信息,也可以通过接收MAC CE确定配置信息,也可以通过接收DCI确定配置信息,本申请不予限制。
具体的,第一状态下,终端设备通过主接收机和网络设备进行通信;第二状态下,终端设备通过唤醒接收机接收网络设备发送的唤醒信号。可以理解,终端设备可以根据配置信息从第一状态进入第二状态,也可以根据配置信息从第二状态进入第一状态。具体的关于第一状态和第二状态的内容可以参考上述实施例中的相关描述。
关于配置信息,下面将介绍几种配置方式。为方便理解,下面将以第一接收机为唤醒接收机为例进行阐述。
方式一:配置信息为第一阈值。
具体的,终端设备接收的配置信息为第一阈值,该阈值可以是RSRP门限,该RSRP门限可以是针对唤醒接收机支持的接收天线数为1进行设置的。
方式二:配置信息为多个候选阈值,其中,不同的候选阈值与唤醒接收机可能支持的不同的接收天线数存在关联关系;终端设备根据唤醒接收机支持的接收天线数从多个候选阈值中确定第一阈值。
具体的,终端设备接收的配置信息为多个RSRP门限,不同的RSRP门限对应不同的唤醒接收机支持的接收天线数。终端设备根据自身唤醒接收机支持的接收天线数确定一个RSRP门限,该RSRP门限为第一阈值。示例性的,表2示出了网络配置的RSRP门限与唤醒接收机支持的接收天线数的对应关系。如表2所示,终端设备接收网络设备发送的配置信息,终端设备的唤醒接收机支持的接收天线数为1,则终端设备确定第一阈值为-80dBm;终端设备的唤醒接收机支持的接收天线数为2,则终端设备确定第一阈值为 -83dBm。
方式三:配置信息为一个候选阈值以及一个或多个偏置信息;候选阈值与唤醒接收机可能支持的一个接收天线数存在关联关系;不同的偏置信息与唤醒接收机可能支持的不同的接收天线数存在关联关系;终端设备根据唤醒接收机支持的接收天线数从一个或多个偏置信息中确定第一偏置信息;终端设备结合候选阈值和第一偏置信息确定第一阈值。
具体的,终端设备接收的配置信息为一个候选阈值以及一个或多个偏置信息。该候选阈值可以是RSRP门限,该RSRP门限可以是针对唤醒接收机支持的接收天线数为1进行设置的。一个或多个限偏置信息中,不同的偏置信息对应不同的唤醒接收机支持的接收天线数。终端设备根据自身唤醒接收机支持的接收天线数确定一个偏置信息,结合候选阈值,确定一个RSRP门限,该RSRP门限为第一阈值。示例性的,表3示出了网络配置的候选RSRP门限以及偏置信息与唤醒接收机支持的接收天线数的对应关系。如表3所示,终端设备接收网络设备发送的配置信息,终端设备的唤醒接收机支持的接收天线数为2,则终端设备确定偏置信息为-3dBm,结合候选阈值-80dBm,确定第一阈值为-83dBm;终端设备的唤醒接收机支持的接收天线数为4,则终端设备确定偏置信息为-6dBm,结合候选阈值-80dBm,确定第一阈值为-86dBm。
可选的,第二接收机或第一接收机基于第一参考信号进行测量,并获得测量结果;测量结果与第一阈值满足第一关系;终端设备从第一状态进入第二状态。
在一种可能的设计中,终端设备基于主接收机的测量结果改变所处状态。
可以理解,主接收机基于SSB进行测量,也可以基于其他信号进行测量,本申请不予限制。
可以理解,测量结果与第一阈值满足第一关系,可以是测量结果大于或大于等于第一阈值,也可以是测量结果小于或小于等于第一阈值。示例性的,主接收机根据SSB测量的结果小于等于第一阈值确定的RSRP门限,终端设备使用唤醒接收机接收唤醒信号;主接收机根据SSB测量的结果大于第一阈值确定的RSRP门限,终端设备使用主接收机与网络设备保持连接。测量结果与第一阈值满足第一关系也可以是满足其它预设或预配置的其它第一关系。
在一种可能的设计中,终端设备基于唤醒接收机的测量结果改变所处状态。
可以理解,唤醒接收机基于周期性发送的参考信号进行测量,也可以基于其他信号进行测量,本申请不予限制。
可以理解,测量结果与第一阈值满足第一关系,可以是测量结果大于或大于等于第一阈值,也可以是测量结果小于或小于等于第一阈值。示例性的,唤醒接收机根据参考信号测量的结果小于等于第一阈值确定的RSRP门限,终端设备使用唤醒接收机接收唤醒信号;唤醒接收机根据参考信号测量的结果大于第一阈值确定的RSRP门限,终端设备使用主接收机与网络设备保持连接。
可以理解,步骤S450至步骤S460可以作为一个单独的实施例,本申请在此不再赘述。
作为一个扩展的实施方式,上述第一接收机和第二接收机可以替换为终端设备所处的不同状态。例如,第一接收机的接收天线数量可以是所述终端设备处于上述第二状态时对应的接收天线数量,第二接收机的接收天线数量可以是所述终端设备处于上述第一状态时对应的接收天线数量。可以理解,上述唤醒接收机和主接收机也可以替换为终端设备所处的不同状态。例如,唤醒接收机的接收天线数量可以是所述终端设备处于上述第二状态时 对应的接收天线数量,主接收机的接收天线数量可以是所述终端设备处于上述第一状态时对应的接收天线数量。可以理解,上述唤醒接收机接收唤醒信号可以替换为终端设备接收唤醒信号,上述主接收机与网络设备保持连接可以替换为终端设备与网络设备保持连接。
可选地,第一状态和第二状态可以对应不同的RRC状态,例如第二状态可以为RRC_IDLE,RRC_INACTIVE和RRC_CONNECTED之外的一种新的RRC状态。可选地,第一状态和第二状态可以对应不同的功率状态,例如第二状态下终端设备的功耗要低于第一状态下终端设备的功耗。
与上述步骤类似的,一种实施方式可以是:
终端设备向网络设备发送第一指示信息,所述第一指示信息用于指示所述终端设备处于第二状态时对应的接收天线数量信息;所述终端设备接收所述网络设备发送的唤醒信号。
网络设备接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备处于第二状态时对应的接收天线数量信息;根据所述第一指示信息,所述网络设备向所述终端设备发送唤醒信号。
一种终端设备,包括:处理单元,用于确定第一指示信息,所述第一指示信息用于指示所述终端设备处于第二状态时对应的接收天线数量信息;收发单元,用于向网络设备发送第一指示信息;所述收发单元还用于,接收所述网络设备发送的唤醒信号。
一种网络设备,包括:收发单元,用于接收终端设备发送的第一指示信息;处理单元,用于根据所述第一指示信息确定所述终端设备处于第二状态时对应的接收天线数量信息;所述收发单元还用于,根据所述终端设备处于第二状态时对应的接收天线数量信息,向所述终端设备发送唤醒信号。
可以理解,上述实施例中如图4的步骤S410至步骤S460均可以做同样的等效替换,其中的相关内容的解释、及有益效果均可参考上文提供的对应的方法和装置实施例,此处不再赘述。
本申请实施例提出了一种通信设备500,该通信设备可以应用于图4方法实施例中的终端设备,也可以是实现图4实施例中方法的部件,例如一种芯片。如图5所示,出示了本申请实施例的一种通信设备500的示意性框图。该通信设备500包括:
处理单元510,用于确定第一指示信息,所述第一指示信息用于指示所述终端设备的第一接收机的接收天线数量信息;
收发单元520,用于向网络设备发送第一指示信息;
所述收发单元520还用于,使用所述第一接收机接收所述网络设备发送的唤醒信号。
本申请实施例中,收发单元在执行发送步骤时可以为发送单元,在执行接收步骤时可以为接收单元,另外,收发单元可以由收发器代替,发送单元可以由发送器代替,接收单元可以由接收器代替。
可选的,所述第一指示信息指示所述第一接收机支持的接收天线数。
可选的,所述第一指示信息指示所述第一接收机和第二接收机的接收天线数相同。
可选的,所述第一指示信息指示所述第一接收机和所述第二接收机的接收天线数不同。
可选的,所述收发单元520还用于,向所述网络设备发送第二指示信息,所述第二指示信息指示所述第一接收机支持的接收天线数。
可选的,所述第一指示信息指示所述第一接收机支持的接收天线数为1、2或4中的一个。
可选的,所述第一指示信息指示所述第一接收机支持的频带信息,其中,所述第一接收机支持的接收天线数和所述第一接收机支持的频带信息存在关联关系。
可选的,所述第一指示信息指示所述第二接收机支持的接收天线数;所述第一接收机支持的接收天线数和所述第二接收机支持的接收天线数相同。
可选的,所述收发单元520还用于,接收配置信息;所述处理单元510还用于,根据所述配置信息使处于第一状态的所述终端设备进入第二状态。
可选的,所述配置信息为第一阈值。
可选的,所述配置信息为多个候选阈值,其中,不同的候选阈值与所述第一接收机可能支持的不同的接收天线数存在关联关系;所述处理单元510还用于,根据所述第一接收机支持的接收天线数从所述多个候选阈值中确定所述第一阈值。
可选的,所述配置信息为一个候选阈值以及一个或多个偏置信息;所述候选阈值与所述第一接收机可能支持的一个接收天线数存在关联关系;所述不同的偏置信息与所述第一接收机可能支持的不同的接收天线数存在关联关系;所述处理单元510还用于,根据所述第一接收机支持的接收天线数从所述一个或多个偏置信息中确定第一偏置信息;所述处理单元510还用于,结合所述候选阈值和所述第一偏置信息确定所述第一阈值。
可选的,所述收发单元520还用于,使用所述第一接收机或所述第二接收机接收第一参考信号;所述处理单元510还用于,基于第一参考信号进行测量,并获得测量结果;所述测量结果与所述第一阈值满足第一关系;所述处理单元510还用于,使处于第一状态的所述终端设备进入第二状态。
应理解,图5所示的通信设备500能够实现上述方法实施例中涉及网络设备的各个过程。通信设备500中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本申请实施例提出了另一种通信设备600,该通信设备可以应用于图4方法实施例中的网络设备,也可以是实现图4实施例中方法的部件,例如一种芯片。如图6所示,出示了本申请实施例的一种通信设备600的示意性框图。该通信设备600包括:
收发单元610,用于接收终端设备发送的第一指示信息;
处理单元620,用于根据所述第一指示信息确定所述终端设备的第一接收机的接收天线数量信息;
所述收发单元610还用于,根据所述第一接收机的接收天线数量信息,向所述终端设备发送唤醒信号。
可选的,所述收发单元610还用于,将所述第一指示信息发送给核心网。
可选的,所述第一指示信息指示所述第一接收机支持的接收天线数。
可选的,所述第一指示信息指示所述第一接收机和第二接收机的接收天线数相同。
可选的,所述第一指示信息指示所述第一接收机和所述第二接收机的接收天线数不同。
可选的,所述收发单元610还用于,接收所述终端设备发送的第二指示信息,所述第 二指示信息指示所述第一接收机支持的接收天线数。
可选的,所述第一指示信息指示所述第一接收机支持的接收天线数为1、2或4中的一个。
可选的,所述第一指示信息指示所述第一接收机支持的频带信息,其中,所述第一接收机支持的接收天线数和所述第一接收机支持的频带信息存在关联关系。
可选的,所述第一指示信息指示所述第二接收机支持的接收天线数;所述第一接收机支持的接收天线数和所述第二接收机支持的接收天线数相同。
可选的,所述收发单元610还用于,向所述终端设备发送配置信息;所述配置信息用于所述终端设备进入第一状态或第二状态。
可选的,所述配置信息为第一阈值。
可选的,所述配置信息为多个候选阈值,其中,不同的候选阈值与所述第一接收机可能支持的不同的接收天线数存在关联关系。
可选的,所述配置信息为一个候选阈值以及一个或多个偏置信息;所述候选阈值与所述第一接收机可能支持的一个接收天线数存在关联关系;所述不同的偏置信息与所述第一接收机可能支持的不同的接收天线数存在关联关系。
应理解,图6所示的通信设备600能够实现上述方法实施例中涉及网络设备的各个过程。通信设备600中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
本申请实施例提出了一种通信装置700,如图7所示,出示了本申请实施例的另一种通信装置的示意性框图。该通信装置700包括处理器710,所述处理器710与至少一个存储器720耦合,所述处理器710用于读取所述至少一个存储器720所存储的计算机程序,以执行本申请实施例中任意可能的实现方式中的方法。
上述的处理器710可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
上述的存储器720可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部 高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例提供了一种通信芯片,包括处理器和通信接口,所述处理器用于读取指令或计算机程序以执行本申请实施例中的方法。
本申请实施例提供了一种通信系统800,包括本申请实施例提供的通信的方法中的终端设备810和网络设备820。如图8所示,出示了本申请实施例的一种通信系统800的示意性框图。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现本申请实施例中的方法的计算机程序。当该计算机程序在计算机上运行时,使得该计算机可以实现上述方法实施例中的方法。
本申请实施例还提供了一种计算机程序产品,当其在计算机上运行时,使得该计算机执行本申请实施例中的方法。
可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解,在本申请中,“当…时”、“若”以及“如果”均指在某种客观情况下装置会做出相应的处理,并非是限定时间,且也不要求装置实现时一定要有判断的动作,也不意味着存在其它限定。
本领域技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。本申请中的编号(也可被称为索引)的具体取值、数量的具体取值、以及位置仅作为示意的目的,并不是唯一的表示形式,也并不用来限制本申请实施例的范围。本申请中涉及的第一个、第二个等各种数字编号也仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
另外,本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中至少一个,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。所述权利要求的保护范围为准。

Claims (57)

  1. 一种通信方法,其特征在于,包括:
    终端设备向网络设备发送第一指示信息,所述第一指示信息用于指示所述终端设备的第一接收机的接收天线数量信息;
    所述终端设备使用所述第一接收机接收所述网络设备发送的唤醒信号。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一指示信息指示所述第一接收机支持的接收天线数。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第一指示信息指示所述第一接收机和第二接收机的接收天线数相同。
  4. 根据权利要求1所述的方法,其特征在于,
    所述第一指示信息指示所述第一接收机和所述第二接收机的接收天线数不同。
  5. 根据权利要求1或4所述的方法,其特征在于,
    所述终端设备向所述网络设备发送第二指示信息,所述第二指示信息指示所述第一接收机支持的接收天线数。
  6. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述第一指示信息指示所述第一接收机支持的接收天线数为1、2或4中的一个。
  7. 根据权利要求1所述的方法,其特征在于,
    所述第一指示信息指示所述第一接收机支持的频带信息,其中,所述第一接收机支持的接收天线数和所述第一接收机支持的频带信息存在关联关系。
  8. 根据权利要求1所述的方法,其特征在于,包括:
    所述第一指示信息指示所述第二接收机支持的接收天线数;
    所述第一接收机支持的接收天线数和所述第二接收机支持的接收天线数相同。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收配置信息;
    处于第一状态的所述终端设备根据所述配置信息进入第二状态。
  10. 根据权利要求9所述的方法,其特征在于,
    所述配置信息为第一阈值。
  11. 根据权利要求9所述的方法,其特征在于,包括:
    所述配置信息为多个候选阈值,其中,不同的候选阈值与所述第一接收机可能支持的不同的接收天线数存在关联关系;
    所述终端设备根据所述第一接收机支持的接收天线数从所述多个候选阈值中确定所述第一阈值。
  12. 根据权利要求9所述的方法,其特征在于,包括:
    所述配置信息为一个候选阈值以及一个或多个偏置信息;
    所述候选阈值与所述第一接收机可能支持的一个接收天线数存在关联关系;
    所述不同的偏置信息与所述第一接收机可能支持的不同的接收天线数存在关联关系;
    所述终端设备根据所述第一接收机支持的接收天线数从所述一个或多个偏置信息中确定第一偏置信息;
    所述终端设备结合所述候选阈值和所述第一偏置信息确定所述第一阈值。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,包括:
    所述第二接收机或所述第一接收机基于第一参考信号进行测量,并获得测量结果;
    所述测量结果与所述第一阈值满足第一关系;
    所述终端设备从所述第一状态进入所述第二状态。
  14. 一种通信方法,其特征在于,包括:
    网络设备接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备的第一接收机的接收天线数量信息;
    根据所述第一指示信息,所述网络设备向所述终端设备发送唤醒信号。
  15. 根据权利要求14所述的方法,其特征在于,
    所述网络设备将所述第一指示信息发送给核心网。
  16. 根据权利要求14或15所述的方法,其特征在于,
    所述第一指示信息指示所述第一接收机支持的接收天线数。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,
    所述第一指示信息指示所述第一接收机和第二接收机的接收天线数相同。
  18. 根据权利要求14或15所述的方法,其特征在于,
    所述第一指示信息指示所述第一接收机和所述第二接收机的接收天线数不同。
  19. 根据权利要求14或15或18所述的方法,其特征在于,
    所述网络设备接收所述终端设备发送的第二指示信息,所述第二指示信息指示所述第一接收机支持的接收天线数。
  20. 根据权利要求14至17中任一项所述的方法,其特征在于,
    所述第一指示信息指示所述第一接收机支持的接收天线数为1、2或4中的一个。
  21. 根据权利要求14或15所述的方法,其特征在于,
    所述第一指示信息指示所述第一接收机支持的频带信息,其中,所述第一接收机支持的接收天线数和所述第一接收机支持的频带信息存在关联关系。
  22. 根据权利要求14或15所述的方法,其特征在于,包括:
    所述第一指示信息指示所述第二接收机支持的接收天线数;
    所述第一接收机支持的接收天线数和所述第二接收机支持的接收天线数相同。
  23. 根据权利要求14至22中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送配置信息;
    所述配置信息用于所述终端设备进入第一状态或第二状态。
  24. 根据权利要求23所述的方法,其特征在于,
    所述配置信息为第一阈值。
  25. 根据权利要求23所述的方法,其特征在于,
    所述配置信息为多个候选阈值,其中,不同的候选阈值与所述第一接收机可能支持的不同的接收天线数存在关联关系。
  26. 根据权利要求23所述的方法,其特征在于,包括:
    所述配置信息为一个候选阈值以及一个或多个偏置信息;
    所述候选阈值与所述第一接收机可能支持的一个接收天线数存在关联关系;
    所述不同的偏置信息与所述第一接收机可能支持的不同的接收天线数存在关联关系。
  27. 一种终端设备,其特征在于,包括:
    处理单元,用于确定第一指示信息,所述第一指示信息用于指示所述终端设备的第一接收机的接收天线数量信息;
    收发单元,用于向网络设备发送第一指示信息;
    所述收发单元还用于,使用所述第一接收机接收所述网络设备发送的唤醒信号。
  28. 根据权利要求27所述的设备,其特征在于,
    所述第一指示信息指示所述第一接收机支持的接收天线数。
  29. 根据权利要求27或28所述的设备,其特征在于,
    所述第一指示信息指示所述第一接收机和第二接收机的接收天线数相同。
  30. 根据权利要求27所述的设备,其特征在于,
    所述第一指示信息指示所述第一接收机和所述第二接收机的接收天线数不同。
  31. 根据权利要求27或30所述的设备,其特征在于,
    所述收发单元还用于,向所述网络设备发送第二指示信息,所述第二指示信息指示所述第一接收机支持的接收天线数。
  32. 根据权利要求27至29中任一项所述的设备,其特征在于,
    所述第一指示信息指示所述第一接收机支持的接收天线数为1、2或4中的一个。
  33. 根据权利要求27所述的设备,其特征在于,
    所述第一指示信息指示所述第一接收机支持的频带信息,其中,所述第一接收机支持的接收天线数和所述第一接收机支持的频带信息存在关联关系。
  34. 根据权利要求27所述的设备,其特征在于,包括:
    所述第一指示信息指示所述第二接收机支持的接收天线数;
    所述第一接收机支持的接收天线数和所述第二接收机支持的接收天线数相同。
  35. 根据权利要求27至34中任一项所述的设备,其特征在于,包括:
    所述收发单元还用于,接收配置信息;
    所述处理单元还用于,根据所述配置信息使处于第一状态的所述终端设备进入第二状态。
  36. 根据权利要求35所述的设备,其特征在于,
    所述配置信息为第一阈值。
  37. 根据权利要求35所述的设备,其特征在于,包括:
    所述配置信息为多个候选阈值,其中,不同的候选阈值与所述第一接收机可能支持的不同的接收天线数存在关联关系;
    所述处理单元还用于,根据所述第一接收机支持的接收天线数从所述多个候选阈值中确定所述第一阈值。
  38. 根据权利要求35所述的设备,其特征在于,包括:
    所述配置信息为一个候选阈值以及一个或多个偏置信息;
    所述候选阈值与所述第一接收机可能支持的一个接收天线数存在关联关系;
    所述不同的偏置信息与所述第一接收机可能支持的不同的接收天线数存在关联关系;
    所述处理单元还用于,根据所述第一接收机支持的接收天线数从所述一个或多个偏置信息中确定第一偏置信息;
    所述处理单元还用于,结合所述候选阈值和所述第一偏置信息确定所述第一阈值。
  39. 根据权利要求36至38中任一项所述的设备,其特征在于,包括:
    所述收发单元还用于,使用所述第一接收机或所述第二接收机接收第一参考信号;
    所述处理单元还用于,基于第一参考信号进行测量,并获得测量结果;
    所述测量结果与所述第一阈值满足第一关系;
    所述处理单元还用于,使处于第一状态的所述终端设备进入第二状态。
  40. 一种网络设备,其特征在于,包括:
    收发单元,用于接收终端设备发送的第一指示信息;
    处理单元,用于根据所述第一指示信息确定所述终端设备的第一接收机的接收天线数量信息;
    所述收发单元还用于,根据所述第一接收机的接收天线数量信息,向所述终端设备发送唤醒信号。
  41. 根据权利要求40所述的设备,其特征在于,
    所述收发单元还用于,将所述第一指示信息发送给核心网。
  42. 根据权利要求40或41所述的设备,其特征在于,
    所述第一指示信息指示所述第一接收机支持的接收天线数。
  43. 根据权利要求40至42中任一项所述的设备,其特征在于,
    所述第一指示信息指示所述第一接收机和第二接收机的接收天线数相同。
  44. 根据权利要求40或41所述的设备,其特征在于,
    所述第一指示信息指示所述第一接收机和所述第二接收机的接收天线数不同。
  45. 根据权利要求40或41或44所述的设备,其特征在于,
    所述收发单元还用于,接收所述终端设备发送的第二指示信息,所述第二指示信息指示所述第一接收机支持的接收天线数。
  46. 根据权利要求40至43中任一项所述的设备,其特征在于,
    所述第一指示信息指示所述第一接收机支持的接收天线数为1、2或4中的一个。
  47. 根据权利要求40或41所述的设备,其特征在于,
    所述第一指示信息指示所述第一接收机支持的频带信息,其中,所述第一接收机支持的接收天线数和所述第一接收机支持的频带信息存在关联关系。
  48. 根据权利要求40或41所述的设备,其特征在于,包括:
    所述第一指示信息指示所述第二接收机支持的接收天线数;
    所述第一接收机支持的接收天线数和所述第二接收机支持的接收天线数相同。
  49. 根据权利要求40至48中任一项所述的设备,其特征在于,包括:
    所述收发单元还用于,向所述终端设备发送配置信息;
    所述配置信息用于所述终端设备进入第一状态或第二状态。
  50. 根据权利要求49所述的设备,其特征在于,
    所述配置信息为第一阈值。
  51. 根据权利要求49所述的设备,其特征在于,
    所述配置信息为多个候选阈值,其中,不同的候选阈值与所述第一接收机可能支持的不同的接收天线数存在关联关系。
  52. 根据权利要求49所述的设备,其特征在于,包括:
    所述配置信息为一个候选阈值以及一个或多个偏置信息;
    所述候选阈值与所述第一接收机可能支持的一个接收天线数存在关联关系;
    所述不同的偏置信息与所述第一接收机可能支持的不同的接收天线数存在关联关系。
  53. 一种通信装置,其特征在于,包括处理器,所述处理器与至少一个存储器耦合,所述处理器用于读取所述至少一个存储器所存储的计算机程序,以执行如权利要求1至13中任意一项所述的方法,或执行如权利要求14至26中任意一项所述的方法。
  54. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至13中任意一项所述的方法,或者使得所述计算机执行如权利要求14至26中任意一项所述的方法。
  55. 一种计算机程序产品,当其在计算机上运行时,使得该计算机执行如权利要求1至13中任意一项所述的方法,或者使得所述计算机执行如权利要求14至26中任意一项所述的方法。
  56. 一种芯片,其特征在于,包括处理器和通信接口,所述处理器用于读取指令或计算机程序以执行如权利要求1至13中任意一项所述的方法,或者使得所述计算机执行如权利要求14至26中任意一项所述的方法。
  57. 一种通信系统,其特征在于,包括如权利要求27至39中任意一项所述的终端设备,以及包括如权利要求40至52中任意一项所述的网络设备。
PCT/CN2023/116299 2022-09-30 2023-08-31 一种通信方法、装置及系统 WO2024066909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211230950.4 2022-09-30
CN202211230950.4A CN117812678A (zh) 2022-09-30 2022-09-30 一种通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2024066909A1 true WO2024066909A1 (zh) 2024-04-04

Family

ID=90427541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116299 WO2024066909A1 (zh) 2022-09-30 2023-08-31 一种通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN117812678A (zh)
WO (1) WO2024066909A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009431A (ja) * 2012-09-27 2013-01-10 Advanced Telecommunication Research Institute International 端末装置、それと無線通信を行う無線基地局およびそれらを用いた無線通信システム
CN111669807A (zh) * 2019-03-06 2020-09-15 亚德诺半导体国际无限责任公司 车载系统的射频唤醒
US20210089040A1 (en) * 2016-02-29 2021-03-25 AI Incorporated Obstacle recognition method for autonomous robots
CN112655249A (zh) * 2018-09-13 2021-04-13 高通股份有限公司 用于支持用于功率节省的多种功率和频谱高效模式的方法和装置
CN114208257A (zh) * 2019-08-15 2022-03-18 瑞典爱立信有限公司 自适应wus传输

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009431A (ja) * 2012-09-27 2013-01-10 Advanced Telecommunication Research Institute International 端末装置、それと無線通信を行う無線基地局およびそれらを用いた無線通信システム
US20210089040A1 (en) * 2016-02-29 2021-03-25 AI Incorporated Obstacle recognition method for autonomous robots
CN112655249A (zh) * 2018-09-13 2021-04-13 高通股份有限公司 用于支持用于功率节省的多种功率和频谱高效模式的方法和装置
CN111669807A (zh) * 2019-03-06 2020-09-15 亚德诺半导体国际无限责任公司 车载系统的射频唤醒
CN114208257A (zh) * 2019-08-15 2022-03-18 瑞典爱立信有限公司 自适应wus传输

Also Published As

Publication number Publication date
CN117812678A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
JP7420812B2 (ja) 不連続受信中の起動シグナリングを容易にするための方法および装置
US20210392582A1 (en) Reference Signal Receiving Method, Reference Signal Sending Method, and Apparatus
US11032770B2 (en) Wake-up-radio discovery frame
WO2020029890A1 (zh) 接收参考信号的方法和通信设备
US20220361284A1 (en) Communication method and apparatus
WO2020087292A1 (zh) 无线通信方法、终端设备和网络设备
WO2021062730A1 (zh) 无线通信方法和装置
WO2019238007A1 (zh) 检测波束的方法和装置
CN113747577B (zh) 通信方法及装置
US11425727B2 (en) Techniques for reporting user equipment (UE) panel-related information
US20220338183A1 (en) Method and Apparatus for Transmitting Initial Access Configuration Information
CN114424630B (zh) 一种寻呼消息的检测方法、装置及通信设备
WO2021128022A1 (zh) 无线通信方法、终端设备和网络设备
US20240015699A1 (en) Paging method and apparatus
CN114337969B (zh) 无线通信方法、终端设备和网络设备
WO2020063398A1 (zh) 指示信息通信方法及装置
WO2024066909A1 (zh) 一种通信方法、装置及系统
WO2023241288A1 (zh) 一种唤醒信号传输方法及通信系统
WO2022237540A1 (zh) 信息指示、获取方法及装置
WO2024120176A1 (zh) 一种通信方法、装置及系统
WO2023164904A1 (zh) 一种传输测量配置信息的方法、装置及可读存储介质
WO2021244580A1 (zh) 一种测量配置方法及通信装置
US20240236822A9 (en) Cell access method, communication apparatus, and computer storage medium
US20240137849A1 (en) Cell access method, communication apparatus, and computer storage medium
WO2024051391A1 (zh) 一种通信的方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870149

Country of ref document: EP

Kind code of ref document: A1