WO2023044805A1 - 小区配置的确定方法及装置 - Google Patents

小区配置的确定方法及装置 Download PDF

Info

Publication number
WO2023044805A1
WO2023044805A1 PCT/CN2021/120460 CN2021120460W WO2023044805A1 WO 2023044805 A1 WO2023044805 A1 WO 2023044805A1 CN 2021120460 W CN2021120460 W CN 2021120460W WO 2023044805 A1 WO2023044805 A1 WO 2023044805A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
saving mode
cell
base station
configuration
Prior art date
Application number
PCT/CN2021/120460
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180003042.9A priority Critical patent/CN114026902A/zh
Priority to PCT/CN2021/120460 priority patent/WO2023044805A1/zh
Publication of WO2023044805A1 publication Critical patent/WO2023044805A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of mobile communication, and in particular to a method and device for determining cell configuration.
  • the present disclosure proposes a method and device for determining cell configuration, which can configure an energy-saving mode for a cell, thereby achieving the purpose of reducing energy consumption of a base station.
  • the embodiment of the first aspect of the present disclosure provides a method for determining a cell configuration, the method is executed by a base station, and the method includes: determining an energy-saving mode configuration for a cell within the coverage of the base station, wherein, using The energy consumption of the base station caused by the cells configured in the energy saving mode is lower than the energy consumption of the base station caused by the cells not configured in the energy saving mode.
  • the method further includes: sending energy-saving mode information indicating the configuration of the energy-saving mode to another base station.
  • the method further includes: sending energy saving mode information indicating the energy saving mode configuration to a user equipment UE served by the cell or a neighboring cell of the cell.
  • the sending the energy-saving mode information indicating the energy-saving mode configuration to a user equipment (User Equipment, UE) served by the cell or a neighboring cell of the cell includes: broadcasting through the system or through wireless Resource control RRC signaling sends the energy saving mode information to the UE.
  • UE User Equipment
  • the method further includes: sending energy saving mode validation information indicating that the energy saving mode configuration takes effect to a UE served by the cell or a neighboring cell of the cell.
  • the sending the energy-saving mode validation information indicating that the energy-saving mode configuration takes effect to the UE served by the cell or a neighboring cell of the cell includes: sending the energy-saving mode configuration to the UE through downlink control information DCI. Describe the energy-saving mode effective information.
  • the configuration of the energy-saving mode includes configuring any one of the following: the sending period of the synchronization signal and the PBCH block; the number of available beams; and the silent pattern.
  • the embodiment of the second aspect of the present disclosure provides a method for determining a cell configuration, the method is executed by a user equipment (User Equipment, UE), and the method includes: receiving energy-saving mode information sent by a base station, wherein the energy-saving mode The information is used to indicate the energy-saving mode configuration of the current serving cell of the UE and its adjacent cells, where the energy consumption of the base station caused by the cell configured in the energy-saving mode is lower than that caused by the cell not configured in the energy-saving mode The resulting energy consumption of the base station; and based on the energy-saving mode information, determine the configuration of the energy-saving mode of the current serving cell and its neighboring cells.
  • UE User Equipment
  • the method further includes: determining a new serving cell based on the energy-saving mode configurations of the current serving cell and its neighboring cells.
  • the receiving the energy saving mode information sent by the base station includes: receiving the energy saving mode information sent by the base station through system broadcast or through radio resource control RRC signaling.
  • the method further includes: receiving energy-saving mode validation information sent by the base station, indicating that the energy-saving mode configuration takes effect.
  • receiving the energy-saving mode validation information sent by the base station and indicating that the energy-saving mode configuration takes effect includes: receiving the energy-saving mode validation information sent by the base station through downlink control information DCI.
  • the configuration of the energy-saving mode includes configuring any one of the following: the sending period of the synchronization signal and the PBCH block; the number of available beams; and the silent pattern.
  • the embodiment of the third aspect of the present disclosure provides an apparatus for determining a cell configuration, including: a processing module configured to determine an energy-saving mode configuration for a cell within the coverage of the base station, wherein the energy-saving mode configuration is adopted The energy consumption of the base station caused by the cell is lower than the energy consumption of the base station caused by the cell not configured in the energy-saving mode.
  • the embodiment of the fourth aspect of the present disclosure provides an apparatus for determining a cell configuration, including: a transceiver module configured to receive energy-saving mode information sent by a base station, wherein the energy-saving mode information is used to indicate the current serving cell of the UE The energy-saving mode configuration of its adjacent cells, wherein the energy consumption of the base station caused by the cell configured in the energy-saving mode is lower than the energy consumption of the base station caused by the cell not configured in the energy-saving mode; and a processing module, It is configured to determine the energy saving mode configuration of the current serving cell and its neighboring cells based on the energy saving mode information.
  • the embodiment of the fifth aspect of the present disclosure provides a communication device, including: a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, configured to execute computer-executable instructions on the memory , controlling the radio signal sending and receiving of the transceiver, and realizing the method for determining the cell configuration in the embodiment of the first aspect or the embodiment of the second aspect.
  • the embodiment of the sixth aspect of the present disclosure provides a computer storage medium, wherein the computer storage medium stores computer-executable instructions; after the computer-executable instructions are executed by a processor, the above-mentioned embodiment of the first aspect or In the second aspect, the method for determining the cell configuration of the embodiment.
  • Embodiments of the present disclosure provide a method and device for determining a cell configuration.
  • a base station determines an energy-saving mode configuration for a cell within its coverage area.
  • the energy consumption of the base station caused by a cell configured in an energy-saving mode is lower than that of a cell that is not configured in an energy-saving mode.
  • the energy consumption of the base station caused by the cells configured in the mode is provided for the cell, and the purpose of reducing the energy consumption of the base station can be achieved by adopting the energy-saving mode configuration.
  • the base station sends energy-saving mode information indicating the energy-saving mode configuration of the serving cell of the user equipment and its adjacent cells to the user equipment, and the user equipment determines the energy-saving mode configuration of the serving cell and its adjacent cells based on the energy-saving mode information.
  • the device can know the ability of the serving cell and its neighboring cells to provide services for it according to the energy-saving mode configuration of the serving cell and its neighboring cells.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of an apparatus for determining a cell configuration provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an apparatus for determining a cell configuration provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of an apparatus for determining a cell configuration provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of an apparatus for determining a cell configuration provided by an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of an apparatus for determining a cell configuration provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiment of the application. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 101 and one terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 101 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), using CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • a terminal equipment (terminal) may also be called a user equipment (user equipment, UE), a mobile station (mobile station, MS), a mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the dormancy of the base station generally occurs when there is no UE in a connected state in a cell within its coverage, or during a non-scheduled time period.
  • setting the base station to sleep may prolong the period of the synchronization signal and the Physical Broadcast Channel (PBCH) block, and have a greater impact on the idle state UE. Therefore, in order to set the base station to sleep, the base station needs to judge the situation of the idle state UE , which increases the operating burden of the base station.
  • PBCH Physical Broadcast Channel
  • the present disclosure proposes a method and device for determining a cell configuration, which can provide a cell with an energy-saving mode configuration, thereby achieving the purpose of reducing energy consumption of a base station.
  • Fig. 2 shows a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure. As shown in Fig. 2, the method can be executed by the base station, and includes the following steps.
  • Step S201 determining energy-saving mode configurations for the cells within the coverage of the base station, wherein the energy consumption of the base station caused by the cells configured in the energy-saving mode is lower than the energy consumption of the base station caused by the cells not configured in the energy-saving mode.
  • energy saving mode configuration may be provided for the cell.
  • energy consumption of the base station caused by the cell is lower, but compared with the cell/base station dormancy, the cell still has the ability to provide services and avoid idle time in the cell Therefore, compared with the base station/cell dormancy in the prior art, the embodiments of the present disclosure provide the energy-saving mode configuration for the cell, avoiding the situation that the base station additionally judges the idle state UE, and will not cause the base station bring additional operational burden.
  • configuring the energy-saving mode includes configuring any of the following: a transmission period of a synchronization signal and a PBCH block (Synchronization Signal and PBCH block, SSB); the number of available beams; and a silent pattern.
  • a transmission period of a synchronization signal and a PBCH block Synchronization Signal and PBCH block, SSB
  • the number of available beams and a silent pattern.
  • the number of available beams configured in the energy-saving mode may be set to be less than the number of available beams in the non-energy-saving mode, so as to avoid energy consumption caused by too many beams.
  • the transmission period of the SSB in the energy-saving mode configuration can be set to be slightly longer than the transmission period of the SSB in the non-energy-saving mode, and at the same time avoid that the extended SSB transmission period has a greater impact on the idle state UE in the cell, Therefore, the SSB transmission can be reduced without affecting the UE in the idle state, so as to achieve the purpose of reducing energy consumption.
  • a silent pattern can be set under the energy-saving mode configuration.
  • the silent pattern indicates which locations on the resource unit are silently processed, that is, no data is transmitted at these locations. By setting the silent pattern appropriately, energy consumption can be reduced the goal of.
  • the base station determines the energy-saving mode configuration for the cells within its coverage area, wherein the energy consumption of the base station caused by the cell configured in the energy-saving mode is lower than that of a cell not configured in the energy-saving mode The resulting energy consumption of the base station. Therefore, an energy-saving mode configuration is provided for the cell, and the purpose of reducing the energy consumption of the base station can be achieved by adopting the energy-saving mode configuration. At the same time, compared with the base station/cell dormancy manner in the prior art, the method in the embodiment of the present disclosure will not bring additional operation burden to the base station.
  • Fig. 3 shows a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure. As shown in Fig. 3 , the method may be executed by a base station, and includes the following steps.
  • Step S301 determining energy-saving mode configurations for the cells within the coverage of the base station, wherein the energy consumption of the base station caused by the cells configured in the energy-saving mode is lower than the energy consumption of the base station caused by the cells not configured in the energy-saving mode.
  • the energy saving mode configuration includes configuring any of the following: the transmission period of the synchronization signal and the PBCH block; the number of available beams; and the muting pattern.
  • step S301 For the detailed description of the above step S301, reference may be made to the description of the step S201 and its related details, which will not be repeated here.
  • Step S302 sending energy-saving mode information indicating energy-saving mode configuration to another base station.
  • a base station may send energy-saving mode information indicating energy-saving mode configuration to another base station, for example, through an interface between base stations, such as an X2 interface, and another base station can learn the energy-saving mode of the relevant cell based on the energy-saving mode information configuration, so that it is more beneficial for another base station to perform corresponding operations based on the energy-saving mode configurations of these cells, for example, to perform handover between base stations.
  • a base station may send energy-saving mode information indicating the energy-saving mode configuration of related cells to another base station, and another base station can determine the energy-saving mode configuration of these cells based on the energy-saving mode information, so that more It is beneficial for another base station to perform corresponding operations based on the energy-saving mode configurations of these cells.
  • Fig. 4 shows a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure. As shown in Fig. 4 , the method may be executed by a base station, and includes the following steps.
  • Step S401 determining energy-saving mode configurations for cells within the coverage of the base station, wherein the energy consumption of the base station caused by the cells configured in the energy-saving mode is lower than the energy consumption of the base station caused by cells not configured in the energy-saving mode.
  • the energy saving mode configuration includes configuring any of the following: the transmission period of the synchronization signal and the PBCH block; the number of available beams; and the muting pattern.
  • step S401 For the detailed description of the above step S401, reference may be made to the description of the step S201 and its related details, which will not be repeated here.
  • Step S402 sending energy saving mode information indicating energy saving mode configuration to a UE served by the cell or a neighboring cell of the cell.
  • sending the energy saving mode information indicating the energy saving mode configuration to the UE served by the cell or by the neighboring cell of the cell includes broadcasting through the system or through a radio resource control (Radio Resource Control, RRC) signal order to send the energy saving mode information to the UE.
  • RRC Radio Resource Control
  • the UE by sending energy-saving mode information indicating the energy-saving mode configuration of the cell to the UE served by the cell or its neighboring cells, for example, through a system broadcast message or through RRC signaling, the UE can know its energy-saving mode information based on the energy-saving mode information.
  • the energy-saving mode configuration of the serving cell and its neighboring cells so that the UE can know the ability of the serving cell and its neighboring cells to provide services for it, which is more conducive to the UE to perform corresponding operations based on the energy-saving mode configuration of these cells, such as determining a new service Community etc.
  • the base station can send energy-saving mode information indicating the energy-saving mode configuration of the cell to UEs served by the cell or its neighboring cells, and the UE can determine the energy-saving modes of these cells based on the energy-saving mode information configuration, so that the user equipment can know the capabilities of the serving cell and its neighboring cells to provide services for it according to the energy-saving mode configuration of the serving cell and its neighboring cells.
  • Fig. 5 shows a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure. As shown in Fig. 5 , the method may be executed by a base station, and includes the following steps.
  • Step S501 determining energy-saving mode configurations for the cells within the coverage of the base station, wherein the energy consumption of the base station caused by the cells configured in the energy-saving mode is lower than the energy consumption of the base station caused by the cells not configured in the energy-saving mode.
  • the energy saving mode configuration includes configuring any of the following: the transmission period of the synchronization signal and the PBCH block; the number of available beams; and the muting pattern.
  • step S501 For a detailed description of the above step S501, reference may be made to the description of step S201 and its related details, which will not be repeated here.
  • Step S502 sending energy saving mode information indicating energy saving mode configuration to a UE served by the cell or a neighboring cell of the cell.
  • sending the energy saving mode information indicating the energy saving mode configuration to the UE served by the cell or by the neighboring cell of the cell includes broadcasting through the system or through a radio resource control (Radio Resource Control, RRC) signal order to send the energy saving mode information to the UE.
  • RRC Radio Resource Control
  • step S502 For a detailed description of the above step S502, reference may be made to the description of step S402 and its related details, which will not be repeated here.
  • the energy saving mode configuration can take effect automatically, that is, the cell automatically enters the energy saving mode configuration after the base station determines the energy saving mode configuration for the cell.
  • the configuration of the energy-saving mode does not take effect immediately, but can take effect when needed, for example, when the load of the base station is too large, etc.
  • the base station needs to notify the UE of the relevant The energy-saving mode configuration of the cell takes effect, as described in step S503 below.
  • Step S503 sending energy-saving mode validation information indicating that the configuration of the energy-saving mode takes effect to the UE served by the cell or a neighboring cell of the cell.
  • sending to the UE served by the cell or the adjacent cell of the cell the energy-saving mode validation information indicating that the energy-saving mode configuration takes effect includes sending to the UE through downlink control information (Downlink Control Information, DCI) Energy saving mode effective information.
  • DCI Downlink Control Information
  • the base station after determining that the energy-saving mode configuration is enabled in a certain cell, the base station sends the energy-saving mode validation information indicating that the energy-saving mode configuration of the cell takes effect to UEs served by the cell or its adjacent cells, for example, through the DCI
  • the energy-saving mode is carried in the effective information, so that the UE knows that the energy-saving mode configuration has been enabled in the cell, so the UE can perform related operations according to the energy-saving mode configuration of the cell.
  • the base station can send energy-saving mode validation information indicating that the energy-saving mode configuration of the cell takes effect to the UE served by the cell or its neighboring cells, and the UE can determine which cells based on the energy-saving mode validation information
  • the energy saving mode configuration is enabled, whereby the UE can perform related operations according to the enabled energy saving mode configuration.
  • Fig. 6 shows a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure. As shown in Fig. 6, the method may be executed by a UE, and includes the following steps.
  • Step S601 receiving energy-saving mode information sent by the base station, wherein the energy-saving mode information is used to indicate the energy-saving mode configuration of the UE's current serving cell and its adjacent cells, wherein the energy consumption of the base station caused by the cell configured in the energy-saving mode is low The energy consumption of the base station caused by the cells not configured in the energy-saving mode.
  • the base station can determine the energy-saving mode configuration for the cell, and the UE can receive energy-saving mode information indicating the energy-saving mode configuration of the current serving cell and its neighboring cells from the base station.
  • the energy consumption of the base station caused by the cell is lower, but compared with the cell/base station dormancy, the cell still has the ability to provide services and avoid idle time in the cell Therefore, compared with the base station/cell dormancy in the prior art, the embodiments of the present disclosure provide the energy-saving mode configuration for the cell, avoiding the situation that the base station additionally judges the idle state UE, and will not cause the base station bring additional operational burden.
  • configuring the energy-saving mode includes configuring any of the following: a transmission period of a synchronization signal and a PBCH block (Synchronization Signal and PBCH block, SSB); the number of available beams; and a silence pattern.
  • a transmission period of a synchronization signal and a PBCH block Synchronization Signal and PBCH block, SSB
  • the number of available beams and a silence pattern.
  • the number of available beams configured in the energy-saving mode may be set to be less than the number of available beams in the non-energy-saving mode, so as to avoid energy consumption caused by too many beams.
  • the transmission period of the SSB in the energy-saving mode configuration can be set to be slightly longer than the transmission period of the SSB in the non-energy-saving mode, and at the same time avoid that the extended SSB transmission period has a greater impact on the idle state UE in the cell, Therefore, the SSB transmission can be reduced without affecting the UE in the idle state, so as to achieve the purpose of reducing energy consumption.
  • a silent pattern can be set under the energy-saving mode configuration.
  • the silent pattern indicates which locations on the resource unit are silently processed, that is, no data is transmitted at these locations. By setting the silent pattern appropriately, energy consumption can be reduced the goal of.
  • receiving the energy saving mode information sent by the base station includes: receiving the energy saving mode information sent by the base station through system broadcast or through RRC signaling.
  • Step S602 based on the energy saving mode information, determine the energy saving mode configuration of the current serving cell and its neighboring cells.
  • the UE may determine the energy saving mode configuration of the current serving cell and its neighboring cells based on the received energy saving mode information.
  • the base station sends energy-saving mode information indicating the energy-saving mode configuration of the serving cell of the user equipment and its adjacent cells to the user equipment, and the user equipment determines the serving cell and its adjacent cells based on the energy-saving mode information
  • the energy saving mode configuration of the cell so that the user equipment can know the capability of the serving cell and its neighboring cells to provide services for it according to the energy saving mode configuration of the serving cell and its neighboring cells.
  • Fig. 7 shows a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure. As shown in Fig. 7, the method may be executed by the UE, and includes the following steps.
  • Step S701 receiving energy-saving mode information sent by the base station, wherein the energy-saving mode information is used to indicate the configuration of the energy-saving mode of the current serving cell of the UE and its adjacent cells, wherein the energy consumption of the base station caused by the cell configured in the energy-saving mode is low The energy consumption of the base station caused by the cells not configured in the energy-saving mode.
  • power saving mode configuration includes configuring any of: a transmission period of SSB; the number of available beams; and a muting pattern.
  • receiving the energy saving mode information sent by the base station includes: receiving the energy saving mode information sent by the base station through system broadcast or through RRC signaling.
  • step S701 For the detailed description of the above step S701, reference may be made to the description of the step S601 and its related details, which will not be repeated here.
  • Step S702 based on the energy saving mode information, determine the energy saving mode configuration of the current serving cell and its neighboring cells.
  • step S702 For a detailed description of the above step S702, reference may be made to the description of step S602 and its related details, which will not be repeated here.
  • Step S703 Determine a new serving cell based on the energy-saving mode configurations of the current serving cell and its neighboring cells.
  • the UE may consider the energy-saving mode configurations of these cells based on the existing reselection strategy, and determine New service area. For example, the UE can consider the impact of a certain cell on its business or synchronization performance when it is configured in an energy-saving mode. If it is acceptable, the UE can consider the cell as a new serving cell. Otherwise, the UE will not reselect to the district.
  • the base station sends energy-saving mode information indicating the energy-saving mode configuration of the serving cell of the user equipment and its adjacent cells to the user equipment, and the user equipment determines the serving cell and its adjacent cells based on the energy-saving mode information Energy-saving mode configuration of the cell, the user equipment determines a new serving cell according to the energy-saving mode configuration of the serving cell and its adjacent cells, so that the user equipment can still select a suitable cell when some cells are configured in the energy-saving mode.
  • Fig. 8 shows a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure. As shown in Fig. 8, the method may be executed by a UE, and includes the following steps.
  • Step S801 receiving energy-saving mode information sent by the base station, wherein the energy-saving mode information is used to indicate the configuration of the energy-saving mode of the current serving cell of the UE and its adjacent cells, wherein the energy consumption of the base station caused by the cell configured in the energy-saving mode is low The energy consumption of the base station caused by the cells not configured in the energy-saving mode.
  • power saving mode configuration includes configuring any of: a transmission period of SSB; the number of available beams; and a muting pattern.
  • receiving the energy saving mode information sent by the base station includes: receiving the energy saving mode information sent by the base station through system broadcast or through RRC signaling.
  • step S801 For a detailed description of the above step S801, reference may be made to the description of step S601 and its related details, which will not be repeated here.
  • Step S802 based on the energy saving mode information, determine the energy saving mode configuration of the current serving cell and its neighboring cells.
  • step S802 For a detailed description of the above step S802, reference may be made to the description of step S602 and its related details, which will not be repeated here.
  • the energy saving mode configuration can take effect automatically, that is, the cell automatically enters the energy saving mode configuration after the base station determines the energy saving mode configuration for the cell.
  • the UE may consider that the corresponding cell has enabled the energy saving mode configuration.
  • the energy-saving mode configuration does not take effect immediately, but can take effect when needed, for example, when the load of the base station is too large, etc. In this case, the base station needs to The UE is notified that the configuration of the energy saving mode of the relevant cell takes effect, as described in step S803 below.
  • Step S803 receiving energy-saving mode validation information from the base station indicating that the configuration of the energy-saving mode takes effect.
  • receiving the energy-saving mode validation information sent by the base station indicating that the energy-saving mode configuration takes effect includes receiving the energy-saving mode validation information sent by the base station through downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the base station after determining that the energy-saving mode configuration is enabled in a certain cell, the base station sends the energy-saving mode validation information indicating that the energy-saving mode configuration of the cell takes effect to UEs served by the cell or its adjacent cells, for example, through the DCI
  • the energy-saving mode is carried in the effective information, so that the UE knows that the energy-saving mode configuration has been enabled in the cell, so the UE can perform related operations according to the energy-saving mode configuration of the cell.
  • the base station receives the energy-saving mode validation information from the base station to the user equipment indicating that the energy-saving mode configuration of its serving cell or neighboring cells takes effect, and the UE can determine which cells to enable based on the energy-saving mode validation information The energy-saving mode configuration is enabled, so that the UE can perform related operations according to the enabled energy-saving mode configuration.
  • Fig. 9 shows a schematic flowchart of a method for determining a cell configuration according to an embodiment of the present disclosure. As shown in Fig. 9, the method may be executed by a UE, and includes the following steps.
  • Step S901 receiving energy-saving mode information sent by the base station, wherein the energy-saving mode information is used to indicate the configuration of the energy-saving mode of the current serving cell of the UE and its adjacent cells, wherein the energy consumption of the base station caused by the cell configured in the energy-saving mode is low The energy consumption of the base station caused by the cells not configured in the energy-saving mode.
  • power saving mode configuration includes configuring any of: a transmission period of SSB; the number of available beams; and a muting pattern.
  • receiving the energy saving mode information sent by the base station includes: receiving the energy saving mode information sent by the base station through system broadcast or through RRC signaling.
  • step S901 For the detailed description of the above step S901, reference may be made to the description of the step S901 and its related details, which will not be repeated here.
  • Step S902 based on the energy saving mode information, determine the energy saving mode configuration of the current serving cell and its neighboring cells.
  • step S902 For the detailed description of the above step S902, reference may be made to the description of the step S902 and its related details, which will not be repeated here.
  • Step S903 receiving energy-saving mode validation information from the base station indicating that the configuration of the energy-saving mode takes effect.
  • receiving the energy-saving mode validation information sent by the base station indicating that the energy-saving mode configuration takes effect includes receiving the energy-saving mode validation information sent by the base station through downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • step S903 For the detailed description of the above step S903, reference may be made to the description of the step S803 and its related details, which will not be repeated here.
  • Step S904 Determine a new serving cell based on the energy-saving mode configurations of the current serving cell and its neighboring cells.
  • step S904 For the detailed description of the above step S904, reference may be made to the description of the step S703 and its related details, which will not be repeated here.
  • the base station receives the energy-saving mode validation information from the base station to the user equipment indicating that the energy-saving mode configuration of its serving cell or neighboring cells takes effect, and the UE can determine which cells to enable based on the energy-saving mode validation information
  • the energy-saving mode is configured, so that the UE can determine a new serving cell according to the enabled energy-saving mode.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of the network device and the user equipment respectively.
  • the network device and the user equipment may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above functions can be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module
  • the present disclosure also provides a device for determining the cell configuration. Therefore, the implementation of the method for determining the cell configuration is also applicable to the device for determining the cell configuration provided in this embodiment, and will not be described in detail in this embodiment.
  • FIG. 10 is a schematic structural diagram of an apparatus 1000 for determining a cell configuration provided by an embodiment of the present disclosure.
  • the apparatus 1000 may include a processing module 1001, and the processing module 1001 may be configured to determine an energy-saving mode configuration for a cell within the coverage of the base station, wherein the energy-saving mode configured by the cell causes The energy consumption of the base station is lower than the energy consumption of the base station caused by the cell not adopting the energy-saving mode configuration.
  • the base station determines the energy-saving mode configuration for the cells within its coverage area, wherein the energy consumption of the base station caused by the cell configured in the energy-saving mode is lower than that of a cell not configured in the energy-saving mode The resulting energy consumption of the base station.
  • an energy-saving mode configuration is provided for the cell, and the purpose of reducing the energy consumption of the base station can be achieved by adopting the energy-saving mode configuration.
  • the method in the embodiment of the present disclosure will not bring additional operation burden to the base station.
  • the apparatus 1000 may further include a transceiver module 1002, and the transceiver module 1002 may be configured to send energy-saving mode information indicating the configuration of the energy-saving mode to another base station.
  • the transceiving module 1002 may be configured to send energy saving mode information indicating the energy saving mode configuration to a user equipment UE served by the cell or a neighboring cell of the cell.
  • the transceiving module 1002 is configured to send the energy-saving mode information to the UE through system broadcast or RRC signaling.
  • the transceiving module 1002 may be configured to send energy-saving mode validation information indicating that the energy-saving mode configuration takes effect to a UE served by the cell or a neighboring cell of the cell.
  • the transceiving module 1002 is configured to send the energy-saving mode activation information to the UE through downlink control information DCI.
  • the configuration of the energy-saving mode includes configuring any one of the following: the transmission period of the synchronization signal and the PBCH block; the number of available beams; and the silence pattern.
  • FIG. 12 is a schematic structural diagram of an apparatus 1200 for determining a cell configuration provided by an embodiment of the present disclosure.
  • the apparatus 1200 may include a transceiver module 1201 and a processing module 1202 .
  • the transceiver module 1201 may be configured to receive energy-saving mode information sent by the base station, wherein the energy-saving mode information is used to indicate the energy-saving mode configuration of the UE's current serving cell and its neighboring cells, where the energy-saving mode configuration is adopted
  • the energy consumption of the base station caused by the cell is lower than the energy consumption of the base station caused by the cell not configured in the energy-saving mode.
  • the processing module 1202 may be configured to determine energy saving mode configurations of the current serving cell and its neighboring cells based on the energy saving mode information.
  • the base station sends energy-saving mode information indicating the energy-saving mode configuration of the serving cell of the user equipment and its adjacent cells to the user equipment, and the user equipment determines the serving cell and its adjacent cells based on the energy-saving mode information
  • the energy saving mode configuration of the cell so that the user equipment can know the capability of the serving cell and its neighboring cells to provide services for it according to the energy saving mode configuration of the serving cell and its neighboring cells.
  • the transceiving module 1201 is configured to receive the energy-saving mode information sent by the base station through system broadcast or through radio resource control RRC signaling.
  • the processing module 1202 may also be configured to determine a new serving cell based on the energy-saving mode configurations of the current serving cell and its neighboring cells.
  • the transceiving module 1201 is further configured to receive energy-saving mode activation information sent by the base station, indicating that the energy-saving mode configuration takes effect.
  • the transceiving module 1201 is configured to receive the energy-saving mode activation information sent by the base station through downlink control information DCI.
  • the configuration of the energy-saving mode includes configuring any one of the following: the transmission period of the synchronization signal and the PBCH block; the number of available beams; and the silence pattern.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 provided in an embodiment of the present application.
  • the communication device 1300 may be a network device, or a user device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 1300 may include one or more processors 1301 .
  • the processor 1301 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 1300 may further include one or more memories 1302, on which a computer program 1304 may be stored, and the processor 1301 executes the computer program 1304, so that the communication device 1300 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 1302 .
  • the communication device 1300 and the memory 1302 can be set separately or integrated together.
  • the communication device 1300 may further include a transceiver 1305 and an antenna 1306 .
  • the transceiver 1305 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1305 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1300 may further include one or more interface circuits 1307 .
  • the interface circuit 1307 is used to receive code instructions and transmit them to the processor 1301 .
  • the processor 1301 runs the code instructions to enable the communication device 1300 to execute the methods described in the foregoing method embodiments.
  • the communication device 1300 is a user equipment: the processor 1301 is used to execute step S602 in FIG. 6 , S702-S703 in FIG. 7 , S802 in FIG. 8 , and S902 and S904 in FIG. 9 ; the transceiver 1305 is used to execute Step S601 in FIG. 7 , step S701 in FIG. 7 , S801 and S803 in FIG. 8 , and S901 and S903 in FIG. 9 .
  • the communication device 1300 is a network device: the processor 1301 is used to execute step S201 in FIG. 2, step S301 in FIG. 3, step S401 in FIG. 4, and step S501 in FIG. 5; the transceiver 1305 is used to execute Step S302, step S402 in FIG. 4, and S502-S503 in FIG. 5.
  • the processor 1301 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1301 may store a computer program 1303 , and the computer program 1303 runs on the processor 1301 to enable the communication device 1300 to execute the methods described in the foregoing method embodiments.
  • the computer program 1303 may be solidified in the processor 1301, and in this case, the processor 1301 may be implemented by hardware.
  • the communication device 1300 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiments), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device can be Not limited by Fig. 13 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 14 includes a processor 1401 and an interface 1402 .
  • the number of processors 1401 may be one or more, and the number of interfaces 1402 may be more than one.
  • the processor 1401 is used to execute step S602 in FIG. 6 , S702-S703 in FIG. 7 , S802 in FIG. 8 , S902 in FIG. 9 , S904:
  • the interface 1402 is used to execute step S601 in FIG. 6 , step S701 in FIG. 7 , S801 and S803 in FIG. 8 , and S901 and S903 in FIG. 9 .
  • the processor 1401 is used to execute step S201 in FIG. 2 , step S301 in FIG. 3 , step S401 in FIG. 4 , and step S501 in FIG. 5 ;
  • the interface 1402 is used to execute step S302 in FIG. 3 , step S402 in FIG. 4 and S502-S503 in FIG. 5 .
  • the chip further includes a memory 1403 for storing necessary computer programs and data.
  • the embodiment of the present application also provides a system for determining cell configuration, the system includes the communication device as the user equipment in the aforementioned embodiment of Figure 12 and the communication device as the network device in the aforementioned embodiments of Figures 10-11, or the system It includes the communication device serving as the user equipment and the communication device serving as the network device in the foregoing embodiment in FIG. 13 .
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or means for providing machine instructions and/or data to a programmable processor (for example, magnetic disks, optical disks, memories, programmable logic devices (PLDs), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN) and the Internet.
  • a computer system may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • steps may be reordered, added or deleted using the various forms of flow shown above.
  • each step described in the present disclosure may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution disclosed in the present disclosure can be achieved, no limitation is imposed herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出了一种小区配置的确定方法及装置,涉及通信领域,本申请的技术方案主要是基站为处于其覆盖范围内的小区确定节能模式配置,其中采用节能模式配置的小区所造成的基站的能耗要低于未采用节能模式配置的小区所造成的基站的能耗。由此,为小区提供了一种节能模式配置,通过采用该节能模式配置能够实现降低基站的能耗的目的。

Description

小区配置的确定方法及装置 技术领域
本公开涉及移动通信技术领域,特别涉及一种小区配置的确定方法及装置。
背景技术
随着5G网络商用的大量普及,5G网络的高功耗成为运营商大规模部署5G网络过程中的一个棘手问题。运营商迫切期望一种能够降低移动通信网络的功耗的技术方案,尤其是能够降低5G基站的能耗的技术手段。
发明内容
本公开提出了一种小区配置的确定方法及装置,能够为小区通过一种节能模式配置,从而实现降低基站能耗的目的。
本公开的第一方面实施例提供了一种小区配置的确定方法,所述方法由基站执行,所述方法包括:为处于所述基站的覆盖范围内的小区,确定节能模式配置,其中,采用所述节能模式配置的小区所造成的基站的能耗低于未采用所述节能模式配置的小区所造成的基站的能耗。
可选地,所述方法还包括:向另一基站发送指示所述节能模式配置的节能模式信息。
可选地,所述方法还包括:向由所述小区或由所述小区的相邻小区提供服务的用户设备UE发送指示所述节能模式配置的节能模式信息。
可选地,所述向由所述小区或由所述小区的相邻小区提供服务的用户设备(User Equipment,UE)发送指示所述节能模式配置的节能模式信息包括:通过系统广播或通过无线资源控制RRC信令向所述UE发送所述节能模式信息。
可选地,所述方法还包括:向由所述小区或由所述小区的相邻小区提供服务的UE发送指示所述节能模式配置生效的节能模式生效信息。
可选地,所述向由所述小区或由所述小区的相邻小区提供服务的UE发送指示所述节能模式配置生效的节能模式生效信息包括:通过下行控制信息DCI向所述UE发送所述节能模式生效信息。
可选地,所述节能模式配置包括对以下中的任意一种进行配置:同步信号和PBCH块的发送周期;可用波束数量;以及静默图案。
本公开第二方面实施例提供了一种小区配置的确定方法,所述方法由用户设备(User Equipment,UE)执行,所述方法包括:接收基站发送的节能模式信息,其中,所述节能模式信息用于指示所述UE的当前服务小区及其相邻小区的节能模式配置,其中,采用所述节能模式配置的小区所造成的基站的能耗低于未采用所述节能模式配置的小区所造成的基站的能耗;以及基于所述节能模式信息,确定所述当前服务小区及其相邻小区的节能模式配置。
可选地,所述方法还包括:基于所述当前服务小区及其相邻小区的节能模式配置,确定新的服务小区。
可选地,所述接收基站发送的节能模式信息包括:通过系统广播或通过无线资源控制RRC信令接收所述基站发送的所述节能模式信息。
可选地,所述方法还包括:接收基站发送的指示所述节能模式配置生效的节能模式生效信息。
可选地,所述接收基站发送的指示所述节能模式配置生效的节能模式生效信息包括:通过下行控制信息DCI接收所述基站发送的所述节能模式生效信息。
可选地,所述节能模式配置包括对以下中的任意一种进行配置:同步信号和PBCH块的发送周期;可用波束数量;以及静默图案。
本公开的第三方面实施例提供了一种小区配置的确定装置,包括:处理模块,用于为处于所述基站的覆盖范围内的小区,确定节能模式配置,其中,采用所述节能模式配置的小区所造成的基站的能耗低于未采用所述节能模式配置的小区所造成的基站的能耗。
本公开的第四方面实施例提供了一种小区配置的确定装置,包括:收发模块,用于接收基站发送的节能模式信息,其中,所述节能模式信息用于指示所述UE的当前服务小区及其相邻小区的节能模式配置,其中,采用所述节能模式配置的小区所造成的基站的能耗低于未采用所述节能模式配置的小区所造成的基站的能耗;以及处理模块,用于基于所述节能模式信息,确定所述当前服务小区及其相邻小区的节能模式配置。
本公开的第五方面实施例提供了一种通信设备,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现上述第一方面实施例或第二方面实施例的小区配置的确定方法。
本公开第六方面实施例提出了一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现上述第一方面实施例或第二方面实施例的小区配置的确定方法。
本公开实施例提供了一种小区配置的确定方法及装置,基站为处于其覆盖范围内的小区确定节能模式配置,其中采用节能模式配置的小区所造成的基站的能耗要低于未采用节能模式配置的小区所造成的基站的能耗。由此,为小区提供了一种节能模式配置,通过采用该节能模式配置能够实现降低基站的能耗的目的。
此外,基站向用户设备发送指示用户设备的服务小区及其相邻小区的节能模式配置的节能模式信息,用户设备基于节能模式信息确定服务小区及其相邻小区的节能模式配置,由此,用户设备能够根据服务小区及其相邻小区的节能模式配置获知服务小区及其相邻小区为其提供服务的能力。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开实施例的一种通信系统的架构示意图;
图2为根据本公开实施例的一种小区配置的确定方法的流程示意图;
图3为根据本公开实施例的一种小区配置的确定方法的流程示意图;
图4为根据本公开实施例的一种小区配置的确定方法的流程示意图;
图5为根据本公开实施例的一种小区配置的确定方法的流程示意图;
图6为根据本公开实施例的一种小区配置的确定方法的流程示意图;
图7为根据本公开实施例的一种小区配置的确定方法的流程示意图;
图8为本公开实施例提供的一种小区配置的确定装置的结构示意图;
图9为本公开实施例提供的一种小区配置的确定装置的结构示意图;
图10为本公开实施例提供的一种小区配置的确定装置的结构示意图;
图11为本公开实施例提供的一种小区配置的确定装置的结构示意图;
图12为本公开实施例提供的一种小区配置的确定装置的结构示意图;
图13为本公开实施例提供的一种通信装置的结构示意图;
图14为本公开实施例提供的一种芯片的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了更好的理解本申请实施例公开的小区配置的确定方法及装置,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备(terminal)也可以称为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
随着5G网络商用的大量普及,5G网络的高功耗成为运营商大规模部署5G网络过程中的一个棘手问题。运营商迫切期望一种能够降低移动通信网络的功耗的技术方案,尤其是能够降低5G基站的能耗的技术手段。
在现有技术中,为了节省基站的能耗,通常采用两种方式,一种更新基站的硬件设计,以实现节省能耗的目的;另一种为关闭基站内的部分模块,让基站休眠,以实现节省能耗的目的。
基站休眠一般发生在其覆盖范围内的小区中没有UE处于连接态时,或者在非调度时间段期间。但设置基站休眠,有可能会延长同步信号和物理广播信道(Physical Broadcast Channel,PBCH)块的周期,并对空闲态UE产生较大影响,从而为了设置基站休眠,基站需要判断空闲态UE的情况,这加重了基站的运行负担。
本公开提出了一种小区配置的确定方法及装置,能够为小区提供一种节能模式配置,从而实现降低基站能耗的目的。
下面结合附图对本申请所提供的小区配置的确定方法及装置进行详细地介绍。
图2示出了根据本公开实施例的一种小区配置的确定方法的流程示意图。如图2所示,该方法可由基站执行,且包括以下步骤。
步骤S201,为处于基站的覆盖范围内的小区,确定节能模式配置,其中,采用节能模式配置的小区所造成的基站的能耗低于未采用节能模式配置的小区所造成的基站的能耗。
在本实施例中,可以为小区提供节能模式配置。相比于非节能模式配置,在节能模式配置下,该小区所造成的基站的能耗更低,但相较于小区/基站休眠而言该小区仍具有提供服务能力而避免对小区内的空闲态UE产生较大影响,从而,与现有技术中的基站/小区休眠相比,本公开实施例通过为小区提供节能模式配置,避免了基站额外地判断空闲态UE的情况,不会为基站带来额外的运行负担。
在一些实施例中,节能模式配置包括对以下中的任意一种进行配置:同步信号和PBCH块(Synchronization Signal and PBCH block,SSB)的发送周期;可用波束数量;以及静默图案。
例如,可以设置在节能模式配置下的可用波束数量少于在非节能模式下的可用波束数量,从而避免过多波束所造成的能耗。
又如,可以设置在节能模式配置下的SSB的发送周期比在非节能模式下的SSB的发送周期稍长,同时避免该延长的SSB的发送周期对小区内的空闲态UE产生较大影响,从而可以在不会空闲态UE产生影响的情况下减少SSB发送,以实现降低能耗的目的。
又如,可以设置在节能模式配置下的静默图案,该静默图案指示对资源单元上哪些位置进行静默处理,即在这些位置上不传输任何数据,通过适当地设置静默图案,能够实现降低能耗的目的。
根据本公开实施例的小区配置的确定方法,基站为处于其覆盖范围内的小区确定节能模式配置,其中采用节能模式配置的小区所造成的基站的能耗要低于未采用节能模式配置的小区所造成的基站的能耗。由此,为小区提供了一种节能模式配置,通过采用该节能模 式配置能够实现降低基站的能耗的目的。同时,相较于现有技术中的基站/小区休眠的方式,本公开实施例的方法不会为基站带来额外的运行负担。
图3示出了根据本公开实施例的一种小区配置的确定方法的流程示意图,如图3所示,该方法可由基站执行,且包括以下步骤。
步骤S301,为处于基站的覆盖范围内的小区,确定节能模式配置,其中,采用节能模式配置的小区所造成的基站的能耗低于未采用节能模式配置的小区所造成的基站的能耗。
在一些实施例中,节能模式配置包括对以下中的任意一种进行配置:同步信号和PBCH块的发送周期;可用波束数量;以及静默图案。
关于上述步骤S301的详细描述,可以参考关于步骤S201及其相关细节的描述,在此不再赘诉。
步骤S302,向另一基站发送指示节能模式配置的节能模式信息。
在本实施例中,基站可以向另一基站发送指示节能模式配置的节能模式信息,例如通过基站之间的接口,如X2接口,而另一基站能够基于该节能模式信息获知相关小区的节能模式配置,从而更有利于另一基站基于这些小区的节能模式配置进行相应操作,例如进行基站间切换等。
根据本公开实施例的小区配置的确定方法,基站可以向另一基站发送指示相关小区的节能模式配置的节能模式信息,另一基站能够基于节能模式信息确定这些小区的节能模式配置,从而更有利于另一基站基于这些小区的节能模式配置进行相应操作。
图4示出了根据本公开实施例的一种小区配置的确定方法的流程示意图,如图4所示,该方法可由基站执行,且包括以下步骤。
步骤S401,为处于基站的覆盖范围内的小区,确定节能模式配置,其中,采用节能模式配置的小区所造成的基站的能耗低于未采用节能模式配置的小区所造成的基站的能耗。
在一些实施例中,节能模式配置包括对以下中的任意一种进行配置:同步信号和PBCH块的发送周期;可用波束数量;以及静默图案。
关于上述步骤S401的详细描述,可以参考关于步骤S201及其相关细节的描述,在此不再赘诉。
步骤S402,向由所述小区或由所述小区的相邻小区提供服务的UE发送指示节能模式配置的节能模式信息。
在一些实施例中,向由所述小区或由所述小区的相邻小区提供服务的UE发送指示节能模式配置的节能模式信息包括通过系统广播或通过无线资源控制(Radio Resource Control,RRC)信令向UE发送节能模式信息。
在本实施例中,通过向由小区或其相邻小区服务的UE发送指示该小区的节能模式配置的节能模式信息,例如通过系统广播消息或通过RRC信令,UE能够基于节能模式信息获知其服务小区及其相邻小区的节能模式配置,从而UE能够获知服务小区及其相邻小区为其提供服务的能力,更有利于UE基于这些小区的节能模式配置进行相应操作,例如确定新的服务小区等。
根据本公开实施例的小区配置的确定方法,基站可以向由小区或其相邻小区服务的UE发送指示该小区的节能模式配置的节能模式信息,UE能够基于节能模式信息确定这些小区的节能模式配置,由此,用户设备能够根据服务小区及其相邻小区的节能模式配置获知服务小区及其相邻小区为其提供服务的能力。
图5示出了根据本公开实施例的一种小区配置的确定方法的流程示意图,如图5所示,该方法可由基站执行,且包括以下步骤。
步骤S501,为处于基站的覆盖范围内的小区,确定节能模式配置,其中,采用节能模式配置的小区所造成的基站的能耗低于未采用节能模式配置的小区所造成的基站的能耗。
在一些实施例中,节能模式配置包括对以下中的任意一种进行配置:同步信号和PBCH块的发送周期;可用波束数量;以及静默图案。
关于上述步骤S501的详细描述,可以参考关于步骤S201及其相关细节的描述,在此不再赘诉。
步骤S502,向由所述小区或由所述小区的相邻小区提供服务的UE发送指示节能模式配置的节能模式信息。
在一些实施例中,向由所述小区或由所述小区的相邻小区提供服务的UE发送指示节能模式配置的节能模式信息包括通过系统广播或通过无线资源控制(Radio Resource Control,RRC)信令向UE发送节能模式信息。
关于上述步骤S502的详细描述,可以参考关于步骤S402及其相关细节的描述,在此不再赘诉。
可选地,基站在为小区确定了节能模式配置之后,该节能模式配置可以自动生效,即在基站为小区确定节能模式配置之后该小区自动进入节能模式配置。
可选地,基站在为小区确定了节能模式配置之后,该节能模式配置并未即时生效,而可在需要时生效,例如基站负载过大等情况下,在此情况下,基站需要通知UE相关小区的节能模式配置生效,如下步骤S503所述。
步骤S503,向由所述小区或由所述小区的相邻小区提供服务的UE发送指示节能模式配置生效的节能模式生效信息。
在一些实施例中,向由所述小区或由所述小区的相邻小区提供服务的UE发送指示节能模式配置生效的节能模式生效信息包括通过下行控制信息(Downlink Control Information,DCI)向UE发送节能模式生效信息。
在本实施例中,基站在确定某小区启用节能模式配置后,将指示该小区的节能模式配置生效的节能模式生效信息发送给由该小区或其相邻小区提供服务的UE,例如通过在DCI中携带该节能模式生效信息,从而使得UE获知该小区已经启用节能模式配置,因而UE能够根据该小区的节能模式配置执行相关操作。
根据本公开实施例的小区配置的确定方法,基站可以向由小区或其相邻小区服务的UE发送指示该小区的节能模式配置生效的节能模式生效信息,UE能够基于节能模式生效信息确定哪些小区启用了节能模式配置,由此,UE能够根据已启用的节能模式配置执行相关操作。
图6示出了根据本公开实施例的一种小区配置的确定方法的流程示意图。如图6所示,该方法可由UE执行,且包括以下步骤。
步骤S601,接收基站发送的节能模式信息,其中,节能模式信息用于指示UE的当前服务小区及其相邻小区的节能模式配置,其中,采用节能模式配置的小区所造成的基站的能耗低于未采用节能模式配置的小区所造成的基站的能耗。
在本实施例中,基站可以为小区确定节能模式配置,而UE可以从基站接收指示当前服务小区及其相邻小区的节能模式配置的节能模式信息。相比于非节能模式配置,在节能 模式配置下,该小区所造成的基站的能耗更低,但相较于小区/基站休眠而言该小区仍具有提供服务能力而避免对小区内的空闲态UE产生较大影响,从而,与现有技术中的基站/小区休眠相比,本公开实施例通过为小区提供节能模式配置,避免了基站额外地判断空闲态UE的情况,不会为基站带来额外的运行负担。
在一些实施例中,节能模式配置包括对以下中的任意一种进行配置:同步信号和PBCH块(Synchronization Signal and PBCH block,SSB)的发送周期;可用波束数量;以及静默图案。
例如,可以设置在节能模式配置下的可用波束数量少于在非节能模式下的可用波束数量,从而避免过多波束所造成的能耗。
又如,可以设置在节能模式配置下的SSB的发送周期比在非节能模式下的SSB的发送周期稍长,同时避免该延长的SSB的发送周期对小区内的空闲态UE产生较大影响,从而可以在不会空闲态UE产生影响的情况下减少SSB发送,以实现降低能耗的目的。
又如,可以设置在节能模式配置下的静默图案,该静默图案指示对资源单元上哪些位置进行静默处理,即在这些位置上不传输任何数据,通过适当地设置静默图案,能够实现降低能耗的目的。
在一些实施例中,接收基站发送的节能模式信息包括:通过系统广播或通过RRC信令接收所述基站发送的节能模式信息。
步骤S602,基于节能模式信息,确定当前服务小区及其相邻小区的节能模式配置。
在本实施例中,UE可以基于接收到的节能模式信息,确定当前服务小区及其相邻小区的节能模式配置。
根据本公开实施例的小区配置的确定方法,基站向用户设备发送指示用户设备的服务小区及其相邻小区的节能模式配置的节能模式信息,用户设备基于节能模式信息确定服务小区及其相邻小区的节能模式配置,由此,用户设备能够根据服务小区及其相邻小区的节能模式配置获知服务小区及其相邻小区为其提供服务的能力。
图7示出了根据本公开实施例的一种小区配置的确定方法的流程示意图。如图7所示,该方法可由UE执行,且包括以下步骤。
步骤S701,接收基站发送的节能模式信息,其中,节能模式信息用于指示UE的当前服务小区及其相邻小区的节能模式配置,其中,采用节能模式配置的小区所造成的基站的能耗低于未采用节能模式配置的小区所造成的基站的能耗。
在一些实施例中,节能模式配置包括对以下中的任意一种进行配置:SSB的发送周期;可用波束数量;以及静默图案。
在一些实施例中,接收基站发送的节能模式信息包括:通过系统广播或通过RRC信令接收所述基站发送的节能模式信息。
关于上述步骤S701的详细描述,可以参考关于步骤S601及其相关细节的描述,在此不再赘诉。
步骤S702,基于节能模式信息,确定当前服务小区及其相邻小区的节能模式配置。
关于上述步骤S702的详细描述,可以参考关于步骤S602及其相关细节的描述,在此不再赘诉。
步骤S703,基于当前服务小区及其相邻小区的节能模式配置,确定新的服务小区。
在本实施例中,在UE获知当前服务小区及其相邻小区的节能模式配置之后,在小区选择/重选过程中,UE可以基于已有重选策略,考虑这些小区的节能模式配置,确定新的 服务小区。例如,UE可以考虑当某小区处于节能模式配置下时对其业务的影响或同步性能的影响,如果可以接受,则UE可以考虑将该小区作为新的服务小区,反之,则UE不会重选到该小区。
根据本公开实施例的小区配置的确定方法,基站向用户设备发送指示用户设备的服务小区及其相邻小区的节能模式配置的节能模式信息,用户设备基于节能模式信息确定服务小区及其相邻小区的节能模式配置,用户设备根据服务小区及其相邻小区的节能模式配置确定新的服务小区,从而用户设备能够在有小区处于节能模式配置的情况下仍选择到合适的小区。
图8示出了根据本公开实施例的一种小区配置的确定方法的流程示意图。如图8所示,该方法可由UE执行,且包括以下步骤。
步骤S801,接收基站发送的节能模式信息,其中,节能模式信息用于指示UE的当前服务小区及其相邻小区的节能模式配置,其中,采用节能模式配置的小区所造成的基站的能耗低于未采用节能模式配置的小区所造成的基站的能耗。
在一些实施例中,节能模式配置包括对以下中的任意一种进行配置:SSB的发送周期;可用波束数量;以及静默图案。
在一些实施例中,接收基站发送的节能模式信息包括:通过系统广播或通过RRC信令接收所述基站发送的节能模式信息。
关于上述步骤S801的详细描述,可以参考关于步骤S601及其相关细节的描述,在此不再赘诉。
步骤S802,基于节能模式信息,确定当前服务小区及其相邻小区的节能模式配置。
关于上述步骤S802的详细描述,可以参考关于步骤S602及其相关细节的描述,在此不再赘诉。
在一些实施例中,基站在为小区确定了节能模式配置之后,该节能模式配置可以自动生效,即在基站为小区确定节能模式配置之后该小区自动进入节能模式配置。UE在接收到节能模式信息之后即可认为相应小区已启用节能模式配置。
在另一些实施例中,基站在为小区确定了节能模式配置之后,该节能模式配置并未即时生效,而可在需要时生效,例如基站负载过大等情况下,在此情况下,基站需要通知UE相关小区的节能模式配置生效,如下步骤S803所述。
步骤S803,接收基站发送的指示节能模式配置生效的节能模式生效信息。
在一些实施例中,接收基站发送的指示节能模式配置生效的节能模式生效信息包括通过下行控制信息(Downlink Control Information,DCI)接收基站发送的节能模式生效信息。
在本实施例中,基站在确定某小区启用节能模式配置后,将指示该小区的节能模式配置生效的节能模式生效信息发送给由该小区或其相邻小区提供服务的UE,例如通过在DCI中携带该节能模式生效信息,从而使得UE获知该小区已经启用节能模式配置,因而UE能够根据该小区的节能模式配置执行相关操作。
根据本公开实施例的小区配置的确定方法,基站向用户设备接收基站发送的指示其服务小区或相邻小区的节能模式配置生效的节能模式生效信息,UE能够基于节能模式生效信息确定哪些小区启用了节能模式配置,由此,UE能够根据已启用的节能模式配置执行相关操作。
图9示出了根据本公开实施例的一种小区配置的确定方法的流程示意图。如图9所示,该方法可由UE执行,且包括以下步骤。
步骤S901,接收基站发送的节能模式信息,其中,节能模式信息用于指示UE的当前服务小区及其相邻小区的节能模式配置,其中,采用节能模式配置的小区所造成的基站的能耗低于未采用节能模式配置的小区所造成的基站的能耗。
在一些实施例中,节能模式配置包括对以下中的任意一种进行配置:SSB的发送周期;可用波束数量;以及静默图案。
在一些实施例中,接收基站发送的节能模式信息包括:通过系统广播或通过RRC信令接收所述基站发送的节能模式信息。
关于上述步骤S901的详细描述,可以参考关于步骤S901及其相关细节的描述,在此不再赘诉。
步骤S902,基于节能模式信息,确定当前服务小区及其相邻小区的节能模式配置。
关于上述步骤S902的详细描述,可以参考关于步骤S902及其相关细节的描述,在此不再赘诉。
步骤S903,接收基站发送的指示节能模式配置生效的节能模式生效信息。
在一些实施例中,接收基站发送的指示节能模式配置生效的节能模式生效信息包括通过下行控制信息(Downlink Control Information,DCI)接收基站发送的节能模式生效信息。
关于上述步骤S903的详细描述,可以参考关于步骤S803及其相关细节的描述,在此不再赘诉。
步骤S904,基于当前服务小区及其相邻小区的节能模式配置,确定新的服务小区。
关于上述步骤S904的详细描述,可以参考关于步骤S703及其相关细节的描述,在此不再赘诉。
根据本公开实施例的小区配置的确定方法,基站向用户设备接收基站发送的指示其服务小区或相邻小区的节能模式配置生效的节能模式生效信息,UE能够基于节能模式生效信息确定哪些小区启用了节能模式配置,由此,UE能够根据已启用的节能模式确定新的服务小区。
上述本申请提供的实施例中,分别从网络设备、用户设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和用户设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行
与上述几种实施例提供的小区配置的确定方法相对应,本公开还提供一种小区配置的确定装置,由于本公开实施例提供的小区配置的确定装置与上述几种实施例提供的小区配置的确定方法相对应,因此小区配置的确定方法的实施方式也适用于本实施例提供的小区配置的确定装置,在本实施例中不再详细描述。
图10为本公开实施例提供的一种小区配置的确定装置1000的结构示意图。
如图10所示,该装置1000可以包括处理模块1001,处理模块1001可以用于为处于所述基站的覆盖范围内的小区,确定节能模式配置,其中,采用所述节能模式配置的小区所造成的基站的能耗低于未采用所述节能模式配置的小区所造成的基站的能耗。
根据本公开实施例的小区配置的确定方法,基站为处于其覆盖范围内的小区确定节能模式配置,其中采用节能模式配置的小区所造成的基站的能耗要低于未采用节能模式配置 的小区所造成的基站的能耗。由此,为小区提供了一种节能模式配置,通过采用该节能模式配置能够实现降低基站的能耗的目的。同时,相较于现有技术中的基站/小区休眠的方式,本公开实施例的方法不会为基站带来额外的运行负担。
在一些实施例中,如图11所示,该装置1000还可以包括收发模块1002,收发模块1002可以用于向另一基站发送指示所述节能模式配置的节能模式信息。
在一些实施例中,所述收发模块1002可以用于向由所述小区或由所述小区的相邻小区提供服务的用户设备UE发送指示所述节能模式配置的节能模式信息。
在一些实施例中,所述收发模块1002用于通过系统广播或通过无线资源控制RRC信令向所述UE发送所述节能模式信息。
在一些实施例中,所述收发模块1002可以用于向由所述小区或由所述小区的相邻小区提供服务的UE发送指示所述节能模式配置生效的节能模式生效信息。
在一些实施例中,所述收发模块1002用于通过下行控制信息DCI向所述UE发送所述节能模式生效信息。
在一些实施例中,所述节能模式配置包括对以下中的任意一种进行配置:同步信号和PBCH块的发送周期;可用波束数量;以及静默图案。
图12为本公开实施例提供的一种小区配置的确定装置1200的结构示意图。
如图12所示,该装置1200可以包括收发模块1201和处理模块1202。
收发模块1201可以用于接收基站发送的节能模式信息,其中,所述节能模式信息用于指示所述UE的当前服务小区及其相邻小区的节能模式配置,其中,采用所述节能模式配置的小区所造成的基站的能耗低于未采用所述节能模式配置的小区所造成的基站的能耗。
处理模块1202可以用于基于所述节能模式信息,确定所述当前服务小区及其相邻小区的节能模式配置。
根据本公开实施例的小区配置的确定方法,基站向用户设备发送指示用户设备的服务小区及其相邻小区的节能模式配置的节能模式信息,用户设备基于节能模式信息确定服务小区及其相邻小区的节能模式配置,由此,用户设备能够根据服务小区及其相邻小区的节能模式配置获知服务小区及其相邻小区为其提供服务的能力。
在一些实施例中,所述收发模块1201用于通过系统广播或通过无线资源控制RRC信令接收所述基站发送的所述节能模式信息。
在一些实施例中,所述处理模块1202还可以用于基于所述当前服务小区及其相邻小区的节能模式配置,确定新的服务小区。
在一些实施例中,所述收发模块1201还用于接收基站发送的指示所述节能模式配置生效的节能模式生效信息。
在一些实施例中,所述收发模块1201用于通过下行控制信息DCI接收所述基站发送的所述节能模式生效信息。
在一些实施例中,所述节能模式配置包括对以下中的任意一种进行配置:同步信号和PBCH块的发送周期;可用波束数量;以及静默图案。
请参见图13,图13是本申请实施例提供的一种通信装置1300的结构示意图。通信装置1300可以是网络设备,也可以是用户设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或 处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1300可以包括一个或多个处理器1301。处理器1301可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1300中还可以包括一个或多个存储器1302,其上可以存有计算机程序1304,处理器1301执行所述计算机程序1304,以使得通信装置1300执行上述方法实施例中描述的方法。可选的,所述存储器1302中还可以存储有数据。通信装置1300和存储器1302可以单独设置,也可以集成在一起。
可选的,通信装置1300还可以包括收发器1305、天线1306。收发器1305可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1305可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1300中还可以包括一个或多个接口电路1307。接口电路1307用于接收代码指令并传输至处理器1301。处理器1301运行所述代码指令以使通信装置1300执行上述方法实施例中描述的方法。
通信装置1300为用户设备:处理器1301用于执行图6中的步骤S602、图7中的S702-S703、图8中的S802、图9中的S902、S904;收发器1305用于执行图6中的步骤S601、图7中的步骤S701、图8中的S801、S803、图9中的S901、S903。
通信装置1300为网络设备:处理器1301用于执行图2中的步骤S201、图3中的步骤S301、图4中的步骤S401、图5中的步骤S501;收发器1305用于执行图3中步骤S302、图4中的步骤S402图5中的S502-S503。
在一种实现方式中,处理器1301中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1301可以存有计算机程序1303,计算机程序1303在处理器1301上运行,可使得通信装置1300执行上述方法实施例中描述的方法。计算机程序1303可能固化在处理器1301中,该种情况下,处理器1301可能由硬件实现。
在一种实现方式中,通信装置1300可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可 以不受图13的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图14所示的芯片的结构示意图。图14所示的芯片包括处理器1401和接口1402。其中,处理器1401的数量可以是一个或多个,接口1402的数量可以是多个。
对于芯片用于实现本申请实施例中用户设备的功能的情况:处理器1401用于执行图6中的步骤S602、图7中的S702-S703、图8中的S802、图9中的S902、S904;接口1402用于执行图6中的步骤S601、图7中的步骤S701、图8中的S801、S803、图9中的S901、S903。
对于芯片用于实现本申请实施例中网络设备的功能的情况:处理器1401用于执行图2中的步骤S201、图3中的步骤S301、图4中的步骤S401、图5中的步骤S501;接口1402用于执行图3中步骤S302、图4中的步骤S402图5中的S502-S503。
可选的,芯片还包括存储器1403,存储器1403用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种实现小区配置的确定系统,该系统包括前述图12实施例中作为用户设备的通信装置和前述图10-11实施例中作为网络设备的通信装置,或者,该系统包括前述图13实施例中作为用户设备的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另 一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
此外,应该理解,本申请所述的各种实施例可以单独实施,也可以在方案允许的情况下与其他实施例组合实施。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种小区配置的确定方法,其特征在于,所述方法由基站执行,所述方法包括:
    为处于所述基站的覆盖范围内的小区,确定节能模式配置,其中,采用所述节能模式配置的小区所造成的基站的能耗低于未采用所述节能模式配置的小区所造成的基站的能耗。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    向另一基站发送指示所述节能模式配置的节能模式信息。
  3. 如权利要求1所述的方法,其特征在于,还包括:
    向由所述小区或由所述小区的相邻小区提供服务的用户设备UE发送指示所述节能模式配置的节能模式信息。
  4. 如权利要求3所述的方法,其特征在于,所述向由所述小区或由所述小区的相邻小区提供服务的用户设备UE发送指示所述节能模式配置的节能模式信息包括:
    通过系统广播或通过无线资源控制RRC信令向所述UE发送所述节能模式信息。
  5. 如权利要求3或4所述的方法,其特征在于,还包括:
    向由所述小区或由所述小区的相邻小区提供服务的UE发送指示所述节能模式配置生效的节能模式生效信息。
  6. 如权利要求5所述的方法,其特征在于,所述向由所述小区或由所述小区的相邻小区提供服务的UE发送指示所述节能模式配置生效的节能模式生效信息包括:
    通过下行控制信息DCI向所述UE发送所述节能模式生效信息。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述节能模式配置包括对以下中的任意一种进行配置:
    同步信号和PBCH块的发送周期;
    可用波束数量;以及
    静默图案。
  8. 一种小区配置的确定方法,其特征在于,所述方法由用户设备UE执行,所述方法包括:
    接收基站发送的节能模式信息,其中,所述节能模式信息用于指示所述UE的当前服务小区及其相邻小区的节能模式配置,其中,采用所述节能模式配置的小区所造成的基站的能耗低于未采用所述节能模式配置的小区所造成的基站的能耗;以及
    基于所述节能模式信息,确定所述当前服务小区及其相邻小区的节能模式配置。
  9. 如权利要求8所述的方法,其特征在于,所述接收基站发送的节能模式信息包括:
    通过系统广播或通过无线资源控制RRC信令接收所述基站发送的所述节能模式信息。
  10. 如权利要求8所述的方法,其特征在于,还包括:
    基于所述当前服务小区及其相邻小区的节能模式配置,确定新的服务小区。
  11. 如权利要求8-10中任一项所述的方法,其特征在于,还包括:
    接收基站发送的指示所述节能模式配置生效的节能模式生效信息。
  12. 如权利要求11所述的方法,其特征在于,所述接收基站发送的指示所述节能模式配置生效的节能模式生效信息包括:
    通过下行控制信息DCI接收所述基站发送的所述节能模式生效信息。
  13. 如权利要求8-12中任一项所述的方法,其特征在于,所述节能模式配置包括对以下中的任意一种进行配置:
    同步信号和PBCH块的发送周期;
    可用波束的数量;以及
    静默图案。
  14. 一种小区配置的确定装置,其特征在于,包括:
    处理模块,用于为处于所述基站的覆盖范围内的小区,确定节能模式配置,其中,采用所述节能模式配置的小区所造成的基站的能耗低于未采用所述节能模式配置的小区所造成的基站的能耗。
  15. 一种小区配置的确定装置,其特征在于,包括:
    收发模块,用于接收基站发送的节能模式信息,其中,所述节能模式信息用于指示所述UE的当前服务小区及其相邻小区的节能模式配置,其中,采用所述节能模式配置的小区所造成的基站的能耗低于未采用所述节能模式配置的小区所造成的基站的能耗;以及
    处理模块,用于基于所述节能模式信息,确定所述当前服务小区及其相邻小区的节能模式配置。
  16. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1-7任一项所述的方法。
  17. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求8-13任一项所述的方法。
  18. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-7任一项所述的方法。
  19. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求8-13任一项所述的方法。
PCT/CN2021/120460 2021-09-24 2021-09-24 小区配置的确定方法及装置 WO2023044805A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180003042.9A CN114026902A (zh) 2021-09-24 2021-09-24 小区配置的确定方法及装置
PCT/CN2021/120460 WO2023044805A1 (zh) 2021-09-24 2021-09-24 小区配置的确定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/120460 WO2023044805A1 (zh) 2021-09-24 2021-09-24 小区配置的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2023044805A1 true WO2023044805A1 (zh) 2023-03-30

Family

ID=80069978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120460 WO2023044805A1 (zh) 2021-09-24 2021-09-24 小区配置的确定方法及装置

Country Status (2)

Country Link
CN (1) CN114026902A (zh)
WO (1) WO2023044805A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024035979A1 (en) * 2022-08-10 2024-02-15 Qualcomm Incorporated Network operation time interval indication

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216105A1 (en) * 2022-05-10 2023-11-16 Lenovo (Beijing) Limited Access to energy saving network
CN117119478A (zh) * 2022-05-16 2023-11-24 维沃移动通信有限公司 信号发送条件确定方法、ssb周期控制方法、装置、终端和网络侧设备
WO2024065318A1 (zh) * 2022-09-28 2024-04-04 深圳传音控股股份有限公司 处理方法、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102821445A (zh) * 2009-03-12 2012-12-12 华为技术有限公司 基站节能的方法和设备
US20160192262A1 (en) * 2013-08-09 2016-06-30 Kyocera Corporation Communications system radio coverage reconfiguration based on available capacity of a compensation cell
CN110971373A (zh) * 2018-09-29 2020-04-07 电信科学技术研究院有限公司 一种节能区域的配置方法、基站、终端及核心网
CN111970752A (zh) * 2020-08-12 2020-11-20 中国联合网络通信集团有限公司 一种节能控制方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112351444B (zh) * 2019-08-09 2022-07-05 大唐移动通信设备有限公司 一种节能信号监听、发送方法、终端及网络设备
CN112469051B (zh) * 2019-09-09 2022-06-14 上海华为技术有限公司 一种运行状态调整的方法及通信设备
CN112867029A (zh) * 2019-11-28 2021-05-28 华为技术有限公司 一种测量配置方法及装置
CN112654079B (zh) * 2020-12-07 2023-02-24 中国联合网络通信集团有限公司 一种符号关断方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102821445A (zh) * 2009-03-12 2012-12-12 华为技术有限公司 基站节能的方法和设备
US20160192262A1 (en) * 2013-08-09 2016-06-30 Kyocera Corporation Communications system radio coverage reconfiguration based on available capacity of a compensation cell
CN110971373A (zh) * 2018-09-29 2020-04-07 电信科学技术研究院有限公司 一种节能区域的配置方法、基站、终端及核心网
CN111970752A (zh) * 2020-08-12 2020-11-20 中国联合网络通信集团有限公司 一种节能控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEC: "Consideration of idle UE when enter Energy Saving mode", 3GPP DRAFT; R3-112927-ES-IDLE-DISC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. San Francisco, USA; 20111114 - 20111118, 4 November 2011 (2011-11-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050566126 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024035979A1 (en) * 2022-08-10 2024-02-15 Qualcomm Incorporated Network operation time interval indication

Also Published As

Publication number Publication date
CN114026902A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2023044805A1 (zh) 小区配置的确定方法及装置
EP3592057B1 (en) Method and device for transmitting paging indicator
JP2021522750A (ja) 通信方法及び通信装置
US11638226B2 (en) Method and device for processing synchronization signal block information and communication device
WO2022233064A1 (zh) 一种释放远端终端设备的方法及其装置
WO2021249287A1 (zh) 信息传输方法、装置及存储介质
EP3138336A1 (en) Communications via multiple access points
WO2023028924A1 (zh) 参考信号的生效指示方法及装置
WO2023039852A1 (zh) 系统信息传输方法和装置
WO2023087156A1 (zh) 一种新空口和新空口侧行链路切换的方法及装置
CN114175840B (zh) 随机接入方法和装置
WO2022022673A1 (zh) 一种通信方法及装置
CN115280875A (zh) 全球导航卫星系统gnss定位测量方法及装置
EP4231670A1 (en) Communication method and apparatus
CN114731675A (zh) 初始带宽部分配置方法及装置、初始带宽部分切换方法及装置
WO2023283843A1 (zh) 终端设备的控制方法及装置
WO2023010431A1 (zh) 通信方法、装置和存储介质
WO2023283840A1 (zh) 用于确定波束测量上报方式的方法及装置
WO2023010429A1 (zh) 一种带宽部分的同步方法及其装置
WO2024011633A1 (zh) 异步通信方法、装置、通信设备及存储介质
WO2023130321A1 (zh) 一种数据压缩方法和装置
WO2023123474A1 (zh) 一种非地面网络中无随机接入信道切换的方法及其装置
WO2023142085A1 (zh) 寻呼触发方法及装置
WO2023155206A1 (zh) 联合信道估计的最大持续时间的上报方法及其装置
WO2023159505A1 (zh) 波束管理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21957929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE