WO2023010431A1 - 通信方法、装置和存储介质 - Google Patents

通信方法、装置和存储介质 Download PDF

Info

Publication number
WO2023010431A1
WO2023010431A1 PCT/CN2021/110950 CN2021110950W WO2023010431A1 WO 2023010431 A1 WO2023010431 A1 WO 2023010431A1 CN 2021110950 W CN2021110950 W CN 2021110950W WO 2023010431 A1 WO2023010431 A1 WO 2023010431A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
tcistate
pdschs
pdcch
tcistates
Prior art date
Application number
PCT/CN2021/110950
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/110950 priority Critical patent/WO2023010431A1/zh
Priority to CN202180002329.XA priority patent/CN113767695A/zh
Priority to EP21952323.0A priority patent/EP4383876A1/en
Publication of WO2023010431A1 publication Critical patent/WO2023010431A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the technical field of communication, and in particular, to a communication method, device and storage medium.
  • the network device configures the corresponding relationship between TCI (transmission configuration indicator, transmission configuration indicator) status and RS (reference signal, reference signal) for the terminal device through RRC (radio resource control, radio resource control) signaling.
  • TCI transmission configuration indicator, transmission configuration indicator
  • RS reference signal
  • RRC radio resource control, radio resource control
  • Rel-16 discusses the transmission of Multi-TRP (multiple TRP (transmission reception point, transmission reception point)) PDSCH (physical downlink shared channel, physical downlink shared channel), and the network device indicates two TCI state (state) for When PDSCH is sent multiple times, there is a mapping relationship between the two TCI states and the time domain resources used to send PDSCH multiple times. And for the transmission of PDCCH (physical downlink control channel, physical downlink control channel), there is also a mapping relationship between the two TCI states and the time domain resources used to send the PDCCH multiple times.
  • Multi-TRP multiple TRP (transmission reception point, transmission reception point)
  • PDSCH physical downlink shared channel, physical downlink shared channel
  • PDCCH physical downlink control channel
  • PDCCH and PDSCH may overlap in the time domain. At this time, the network device and the terminal device cannot keep the TCI state consistent. This is a technical problem that needs to be solved urgently.
  • Embodiments of the present disclosure provide a communication method, device, and storage medium.
  • determine the TCI state of receiving PDSCH so that the TCI state of receiving PDCCH Consistent with the TCI state of the received PDSCH, thereby improving beam-based transmission performance.
  • an embodiment of the present disclosure provides a communication method, the method is executed by a terminal device, and includes: receiving configuration information of a network device, the configuration information including time domain information of multiple physical downlink control channels (PDCCHs) and information for receiving The M transmission configurations of the plurality of PDCCHs indicate the status TCI state, where M is an integer greater than 0; the configuration information also includes time domain resource information of a plurality of physical downlink shared channels PDSCH and the time domain resource information used to receive the plurality of PDSCHs N TCIstates, where N is an integer greater than 0; in a case where time domain resources occupied by at least one PDCCH and at least one PDSCH overlap, determine to receive the TCI state of the PDSCH.
  • PDCCHs physical downlink control channels
  • the terminal device receives the configuration information of the network device, and the configuration information includes time domain information of multiple physical downlink control channels PDCCH and M transmission configuration indication states TCI state for receiving multiple PDCCHs, where M is greater than An integer of 0; the configuration information also includes time-domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates for receiving multiple PDSCHs, where N is an integer greater than 0; occupied by at least one PDCCH and at least one PDSCH When the time domain resources overlap, determine the TCI state for receiving the PDSCH. In this way, the TCI state of the received PDCCH can be kept consistent with the TCI state of the received PDSCH, thereby improving beam-based transmission performance.
  • the configuration information includes time domain information of multiple physical downlink control channels PDCCH and M transmission configuration indication states TCI state for receiving multiple PDCCHs, where M is greater than An integer of 0; the configuration information also includes time-domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates for receiving multiple
  • the time domain resources occupied by the at least one PDCCH and the at least one PDSCH overlap, including: the i-th PDCCH among the multiple PDCCHs and the i-th PDCCH among the multiple PDSCHs Time domain resources occupied by h PDSCHs overlap, where i is an integer greater than 0, and h is an integer greater than 0.
  • the time domain resource occupied by the i-th PDCCH among the multiple PDCCHs and the h-th PDSCH among the multiple PDSCHs overlaps, including at least one of the following:
  • the transmission mode is a time division multiplexing intra-slot TDM method in a time slot, and the transmission mode of the multiple PDSCHs is an intra-slot TDM method;
  • the transmission mode of the multiple PDCCHs is an intra-slot TDM method, and the multiple PDSCHs
  • the transmission method is time division multiplexing inter-slot TDM method between time slots;
  • the transmission method of the multiple PDCCHs is the inter-slot TDM method, and the transmission method of the multiple PDSCHs is the inter-slot TDM method;
  • the multiple The transmission method of PDCCH is single frequency network SFN or frequency division multiplexing FDM method, the transmission method of the multiple PDSCHs is SFN or space division multiplexing SDM or FDM method; and the multiple PDCCHs are SFN or
  • the determining to receive the TCI state of the PDSCH includes: the h-th PDSCH uses the TCI state corresponding to the i-th PDCCH.
  • the M TCI states are identical to the N TCI states one by one.
  • the value of N is 2, the multiple PDSCHs include two PDSCHs, and the PDSCHs other than the hth PDSCH use the one corresponding to the ith PDCCH in the N TCI states TCI state with different TCI state.
  • the value of N is 2, and the multiple PDSCHs include L PDSCHs, where L is an even number greater than 2; according to the mapping rule of the TCI state, determine the receiving of the PDSCH TCI state; wherein, the mapping rule of the TCI state is cyclic mapping or sequential mapping.
  • the method further includes: when the mapping rule of the TCI state is cyclic Mapping, when h is an odd number, the odd-numbered PDSCH uses the TCI state corresponding to the i-th PDCCH , the even-numbered PDSCH uses a TCI state different from the TCI state corresponding to the i-th PDCCH among the N TCI states; or when h is an even number, the even-numbered PDSCH uses the i-th PDCCH corresponding to The odd-numbered PDSCH uses a different TCI state from the TCI state corresponding to the i-th PDCCH among the N TCI states.
  • the method further includes: when the mapping rule of the TCI state is sequential Mapping, the 4j+1 and 4j+2 PDSCHs use the i-th PDCCH corresponding TCI state, the 4j+3 and 4j+4 PDSCHs use a TCI state different from the TCI state corresponding to the i-th PDCCH among the N TCI states, where j is an integer greater than or equal to 0; or, The first L/2 PDSCHs use the TCI state corresponding to the i-th PDCCH, and the last L/2 PDSCHs use a different TCI state from the TCI state corresponding to the i-th PDCCH among the N TCI states .
  • the M TCI states are not identical to the N TCI states.
  • the value of N is 2, the multiple PDSCHs include two PDSCHs, the first PDSCH uses the first TCI state in the N TCI states and the second PDSCH uses N The second TCI state in the TCI states; or, the first PDSCH uses the second TCI state in the N TCI states and the second PDSCH uses the first TCI state in the N TCI states.
  • the value of N is 2, and the multiple PDSCHs include L PDSCHs, where L is an even number greater than 2; according to the mapping rule of cyclic mapping or sequential mapping, it is determined to receive the The TCI state of PDSCH.
  • the method further includes: according to the mapping rule of the cyclic Mapping, the odd-numbered PDSCH uses the first TCI state in the N TCI states, and the even-numbered PDSCH uses N TCI states The second TCI state in the state; where there is no overlap with the time-domain resources occupied by the first PDSCH among the multiple PDSCHs, it remains unchanged or is postponed sequentially; or the odd-numbered PDSCH uses N In the second TCI state in the TCI state, the even-numbered PDSCH uses the first TCI state in the N TCI states; wherein, there is no overlap with the time domain resources occupied by the first PDSCH in the plurality of PDSCHs remain unchanged or be postponed successively.
  • the method further includes: according to the mapping rules of the sequential Mapping, the 4k+1 and 4k+2 use the first TCI state, and the 4k+3 and 4k+4 use The second TCI state, where k is an integer greater than or equal to 0; where there is no overlap with the time domain resources occupied by the first PDSCH in the plurality of PDSCHs remains unchanged or is postponed sequentially; or,
  • the first L/2 PDSCHs use the TCI state corresponding to the first PDCCH, and the last L/2 PDSCHs use a TCI state different from the TCI state corresponding to the second PDCCH among the N TCI states ; Wherein, those that do not overlap with the time domain resources occupied by the first PDSCH among the multiple PDSCHs remain unchanged or are postponed sequentially.
  • determining to receive the TCI state of the PDSCH includes: the terminal device does not expect the expected Both the s th PDCCH and the s+1 th PDCCH among the multiple PDCCHs overlap with time domain resources occupied by one of the PDSCHs among the multiple PDSCHs, where s is an integer greater than 0.
  • an embodiment of the present disclosure provides another communication method, which is executed by a network device, and includes: sending configuration information of a terminal device, where the configuration information includes time domain information of multiple physical downlink control channels (PDCCHs) and information for Send the M transmission configuration indication state TCI state of the plurality of PDCCHs, where M is an integer greater than 0; the configuration information also includes time domain resource information of a plurality of physical downlink shared channels PDSCH and used to transmit the plurality of N TCIstates of the PDSCH, where N is an integer greater than 0; when at least one PDCCH and at least one time domain resource occupied by the PDSCH overlap, determine to send the TCI state of the PDSCH.
  • PDCCHs physical downlink control channels
  • the time domain resources occupied by the at least one PDCCH and the at least one PDSCH overlap, including: the i-th PDCCH among the multiple PDCCHs and the i-th PDCCH among the multiple PDSCHs Time domain resources occupied by h PDSCHs overlap, where i is an integer greater than 0, and h is an integer greater than 0.
  • the time domain resource occupied by the i-th PDCCH among the multiple PDCCHs and the h-th PDSCH among the multiple PDSCHs overlaps, including at least one of the following:
  • the transmission mode is a time division multiplexing intra-slot TDM method in a time slot, and the transmission mode of the multiple PDSCHs is an intra-slot TDM method;
  • the transmission mode of the multiple PDCCHs is an intra-slot TDM method, and the multiple PDSCHs
  • the transmission method is time division multiplexing inter-slot TDM method between time slots;
  • the transmission method of the multiple PDCCHs is the inter-slot TDM method, and the transmission method of the multiple PDSCHs is the inter-slot TDM method;
  • the multiple The transmission method of PDCCH is single frequency network SFN or frequency division multiplexing FDM method, the transmission method of the plurality of PDSCHs is SFN or space division multiplexing SDM or FDM method;
  • the determining to send the TCI state of the PDSCH includes: the h-th PDSCH uses the TCI state corresponding to the i-th PDCCH.
  • the M TCI states are identical to the N TCI states one by one.
  • the value of N is 2, the multiple PDSCHs include two PDSCHs, and the PDSCHs other than the hth PDSCH use the one corresponding to the ith PDCCH in the N TCI states TCI state with different TCI state.
  • the value of N is 2, and the multiple PDSCHs include L PDSCHs, where L is an even number greater than 2; according to the mapping rule of the TCI state, determine the transmission of the PDSCH TCI state; wherein, the mapping rule of the TCI state is cyclic mapping or sequential mapping.
  • the method further includes: when the mapping rule of the TCI state is cyclic Mapping, when h is an odd number, the odd-numbered PDSCH uses the TCI state corresponding to the i-th PDCCH , the even-numbered PDSCH uses a TCI state different from the TCI state corresponding to the i-th PDCCH among the N TCI states; or when h is an even number, the even-numbered PDSCH uses the i-th PDCCH corresponding to The odd-numbered PDSCH uses a different TCI state from the TCI state corresponding to the i-th PDCCH among the N TCI states.
  • the method further includes: when the mapping rule of the TCI state is sequential Mapping, the 4j+1 and 4j+2 PDSCHs use the i-th PDCCH corresponding TCI state, the 4j+3 and 4j+4 PDSCHs use a TCI state different from the TCI state corresponding to the i-th PDCCH among the N TCI states, where j is an integer greater than or equal to 0; or, The first L/2 PDSCHs use the TCI state corresponding to the i-th PDCCH, and the last L/2 PDSCHs use a different TCI state from the TCI state corresponding to the i-th PDCCH among the N TCI states .
  • the M TCI states are not identical to the N TCI states.
  • the value of N is 2, the multiple PDSCHs include two PDSCHs, the first PDSCH uses the first TCI state in the N TCI states and the second PDSCH uses N The second TCI state in the TCI states; or, the first PDSCH uses the second TCI state in the N TCI states and the second PDSCH uses the first TCI state in the N TCI states.
  • the value of N is 2, and the multiple PDSCHs include L PDSCHs, where L is an even number greater than 2; according to the mapping rules of cyclic mapping or sequential mapping, it is determined to send the The TCI state of PDSCH.
  • the method further includes: according to the mapping rule of the cyclic Mapping, the odd-numbered PDSCH uses the first TCI state in the N TCI states, and the even-numbered PDSCH uses N TCI states The second TCI state in the state; where there is no overlap with the time-domain resources occupied by the first PDSCH among the multiple PDSCHs, it remains unchanged or is postponed sequentially; or the odd-numbered PDSCH uses N In the second TCI state in the TCI state, the even-numbered PDSCH uses the first TCI state in the N TCI states; wherein, there is no overlap with the time domain resources occupied by the first PDSCH in the plurality of PDSCHs remain unchanged or be postponed successively.
  • the method also includes:
  • the 4k+1 and 4k+2 use the first TCI state
  • the 4k+3 and 4k+4 use the second TCI state, where k is greater than or equal to 0 Integer; where there is no overlap with the time domain resource occupied by the first PDSCH among the multiple PDSCHs, it remains unchanged or is postponed sequentially; or, the first L/2 PDSCHs use the first all
  • the TCI state corresponding to the PDCCH, and the latter L/2 PDSCHs use a different TCI state from the TCI state corresponding to the second PDCCH in the N TCI states;
  • the time domain resources occupied by the PDSCHs do not overlap and remain unchanged or are postponed sequentially.
  • determining to send the TCI state of the PDSCH includes: the terminal device does not expect the expected Both the s th PDCCH and the s+1 th PDCCH among the multiple PDCCHs overlap with time domain resources occupied by one of the PDSCHs among the multiple PDSCHs, where s is an integer greater than 0.
  • the embodiment of the present disclosure provides a communication device, which has part or all of the functions of the terminal device in the method described in the first aspect above, for example, the communication device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • Said functions can be realized by hardware, and can also be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the communication device includes: a transceiver module, configured to receive configuration information of network equipment, where the configuration information includes time domain information of multiple physical downlink control channels (PDCCHs) and is used to receive the multiple PDCCHs
  • the M transmission configuration indication state TCI state wherein M is an integer greater than 0
  • the configuration information also includes time domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates for receiving the multiple PDSCHs, Wherein N is an integer greater than 0
  • a processing module configured to determine the TCI state for receiving the PDSCH in the case that the time domain resources occupied by at least one PDCCH and at least one PDSCH overlap.
  • the embodiment of the present disclosure provides another communication device, which has some or all functions of the network device in the method example described in the second aspect above, for example, the function of the communication device may have some of the functions in the present disclosure Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present disclosure alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the communication device includes: a transceiver module, configured to send configuration information of the terminal equipment, where the configuration information includes time domain information of a plurality of physical downlink control channels (PDCCHs) and a module for sending the plurality of PDCCHs.
  • the M transmission configuration indication state TCI state wherein M is an integer greater than 0; the configuration information also includes time domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates for sending the multiple PDSCHs, Wherein N is an integer greater than 0; a processing module, configured to determine the TCI state for sending the PDSCH when at least one of the PDCCH and at least one of the time domain resources occupied by the PDSCH overlap.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is an architecture diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a communication method provided by an embodiment of the present disclosure
  • Fig. 3 is a flowchart of another communication method provided by an embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another communication device provided by an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • the technical solutions provided by the embodiments of the present disclosure can be applied to various communication systems.
  • it includes but is not limited to an LTE system, a fifth-generation (5th-generation, 5G for short) system, an NR system, and a future evolution system or multiple communication fusion systems.
  • the 5G system may be a non-standalone (NSA for short) 5G system or a standalone (SA for short) 5G system.
  • FIG. 1 is a schematic structural diagram of a communication system 10 provided by an embodiment of the present disclosure.
  • the communication system 10 may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in FIG. More than one network device, two or more terminal devices.
  • the communication system 10 shown in FIG. 1 includes one network device 101 and one terminal device 102 as an example.
  • the network device 101 in the embodiment of the present disclosure is an entity on the network side for sending a signal, or receiving a signal, or sending a signal and receiving a signal.
  • the network device 101 may be a device deployed in a radio access network (radio access network, RAN for short) to provide wireless communication functions for terminal devices, for example, it may be a TRP, a base station, or various forms of control nodes (for example, a network controller, A wireless controller (for example, a wireless controller in a cloud radio access network (CRAM for short) scenario) etc.
  • the network device 101 may be various forms of macro base stations, micro base stations (also called small cells), relay stations, access points (access point, AP for short), etc., and may also be an antenna panel of a base station.
  • the control node may be connected to multiple base stations, and configure resources for multiple terminal devices covered by the multiple base stations.
  • the names of the equipment with base station functions may be different.
  • it can be called an evolved base station (evolved NodeB, eNB or eNodeB for short) in an LTE system, and it can be called a next generation node base station (gNB for short) in a 5G system or an NR system.
  • eNB evolved NodeB
  • gNB next generation node base station
  • the specific name is not limited.
  • the network device 101 may also be the network device 101 in a future evolving public land mobile network (PLMN for short).
  • PLMN public land mobile network
  • the network device 101 may include a centralized unit (centralized unit, CU for short) and a distributed unit (Distributed Unit, DU for short).
  • the network device 101 may also include an active antenna unit (active antenna unit, AAU for short).
  • the CU implements part of the functions of the network device 101
  • the DU implements part of the functions of the network device 101 .
  • the CU is responsible for processing non-real-time protocols and services, and realizes functions of radio resource control (RRC for short) and packet data convergence protocol (PDCP for short) layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of radio link control (radio link control, RLC for short), media access control (media access control, MAC for short) and physical (PHY for short).
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this framework, high-level signaling, such as RRC layer signaling or PDCP layer signaling, can also be It is considered to be sent by DU, or sent by DU+AAU.
  • the network device 101 may be a device including one or more of a CU node, a DU node, and an AAU node.
  • CUs may be divided into network devices 101 in the RAN, or CUs may be divided into network devices 101 in a core network (core network, CN for short), which is not limited here.
  • the terminal device 102 in the embodiment of the present disclosure is an entity on the user side for receiving a signal, or sending a signal, or receiving a signal and sending a signal.
  • the terminal device 102 is configured to provide users with one or more of voice services and data connectivity services.
  • the terminal device 102 may also be called user equipment (user equipment, UE for short), terminal, access terminal, subscriber unit, subscriber station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal device 102 may be a mobile station (mobile station, referred to as MS), a subscriber unit (subscriber unit), a drone, an Internet of things (Internet of things, referred to as IoT) device, a wireless local area network (wireless local area networks, referred to as WLAN) Station (station, referred to as ST), cellular phone (cellular phone), smart phone (smart phone), cordless phone, wireless data card, tablet computer, session initiation protocol (session initiation protocol, referred to as SIP) phone, wireless local loop (wireless local loop, referred to as WLL) station, personal digital assistant (referred to as PDA) equipment, laptop computer (laptop computer), machine type communication (machine type communication, referred to as MTC) terminal, with wireless communication function Handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices (may also be referred to as wearable smart devices).
  • the terminal device 102 may also be a terminal device in a next-generation communication system, for example, a
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable & low latency communication
  • Scenarios such as Internet of Vehicles and massive machine type communication (mMTC for short).
  • the network architecture and business scenarios described in the embodiments of the present disclosure are for more clearly illustrating the technical solutions of the embodiments of the present disclosure, and do not constitute limitations on the technical solutions provided by the embodiments of the present disclosure. Those skilled in the art can know that with the evolution of network architecture and the emergence of new service scenarios, the technical solutions provided by the embodiments of the present disclosure are also applicable to similar technical problems.
  • Rel-16 discusses the transmission of PDSCH for Multi-TRP (Multiple Transmission and Reception Point, multiple transmission and receiving nodes).
  • the network device indicates that two TCI states are used for multiple transmissions of PDSCH, and two TCI states are used for multiple transmissions. There is a mapping relationship among PDSCH resources.
  • the transmission method of PDSCH is TDM (time division multiplexing, time division multiplexing) method
  • TDM time division multiplexing, time division multiplexing
  • the transmission method of PDSCH is time division multiplexing intra-slot TDM method in the time slot: PDSCH is only transmitted twice, and the PDSCH in the front position in the time domain uses the first TCI state; the PDSCH in the rear position in the time domain uses the first TCI state The second TCI state.
  • the transmission method of PDSCH is time division multiplexing inter-slot TDM method between time slots: PDSCH is only transmitted twice, and the PDSCH at the front position in the time domain uses the first TCI state; the PDSCH at the rear position in the time domain uses the first TCI state The second TCI state. If the number of PDSCH transmissions exceeds two, the following two methods are included: cyclic mapping and sequential mapping.
  • cyclic mapping the first PDSCH in the time domain position uses the first TCI state, the second PDSCH in the time domain position uses the second TCI state; then the third PDSCH in the time domain position uses The first TCI state, the fourth PDSCH in the time domain position uses the second TCI state, and proceeds sequentially.
  • Sequential mapping the first and second PDSCHs in the time domain position use the first TCI state, the third and fourth PDSCHs in the time domain position use the second TCI state, and the fifth in the time domain position
  • the first and sixth PDSCHs use the first TCI state, and the seventh and eighth PDSCHs in the time domain position use the second TCI state, in order.
  • the mapping mode between multiple PDCCHs and two TCI states can be the same as the mapping mode between multiple PDSCHs and two TCI states.
  • the first PDCCH in the time domain position uses the first TCI state
  • the second PDCCH in the time domain position uses the second TCI state, and proceeds sequentially.
  • embodiments of the present disclosure provide a communication method, device, and storage medium to determine the TCI state of each PDSCH when the PDCCH and PDSCH overlap in the time domain, so that the network device and the terminal device maintain the consistency of the TCI state and improve Beam-based transmission performance.
  • FIG. 2 is a flowchart of a communication method provided by an embodiment of the present disclosure.
  • the method is performed by a terminal device, and the method may include but not limited to the following steps:
  • the configuration information includes the time domain information of multiple physical downlink control channels PDCCH and M transmission configuration indication states TCI state for receiving multiple PDCCHs, where M is an integer greater than 0; the configuration information It also includes time-domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates for receiving multiple PDSCHs, where N is an integer greater than 0.
  • the time domain resources occupied by at least one PDCCH and at least one PDSCH overlap including: the time domain resources occupied by one PDCCH and one PDSCH overlap; or the time domain resources occupied by one PDCCH and multiple PDSCHs overlap. ; or, the time domain resources occupied by multiple PDCCHs and one PDSCH overlap; or, the time domain resources occupied by multiple PDCCHs and multiple PDSCHs overlap, etc.; where there are two or more than two.
  • the terminal device may need to use two TCI states to receive the same PDSCH, and the time of TCI state switching may cause reception interruption, Alternatively, end-devices may not be able to support reception using more than two TCI states, affecting beam-based transmission performance.
  • the TCI state of receiving the PDSCH is determined, so that the TCI state of the network device sending the PDSCH and the terminal device receiving the TCI of the PDSCH The state remains consistent, thereby improving the performance of beam-based transmission.
  • the terminal device receives the configuration information of the network device, the configuration information includes time domain information of multiple physical downlink control channels PDCCH and M transmission configuration indication states TCI state for receiving multiple PDCCHs, where M is An integer greater than 0; the configuration information also includes time domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates for receiving multiple PDSCHs, where N is an integer greater than 0; at least one PDCCH and at least one PDSCH When the occupied time domain resources overlap, determine the TCI state for receiving the PDSCH. In this way, the TCI state of the received PDCCH can be kept consistent with the TCI state of the received PDSCH, thereby improving beam-based transmission performance.
  • the time domain resources occupied by at least one PDCCH and at least one PDSCH overlap, including: the time domain resources occupied by the i-th PDCCH among the multiple PDCCHs and the h-th PDSCH among the multiple PDSCHs overlap , where i is an integer greater than 0, and h is an integer greater than 0.
  • time domain resources occupied by the first PDCCH among the multiple PDCCHs and the first PDSCH among the multiple PDSCHs overlap.
  • time domain resources occupied by the second PDCCH among the multiple PDCCHs and the first PDSCH among the multiple PDSCHs overlap.
  • the time domain resource occupied by the i-th PDCCH among the multiple PDCCHs and the h-th PDSCH among the multiple PDSCHs overlaps, including: the transmission mode of the multiple PDCCHs is time division multiplexing intra- The slot TDM method, the transmission method of multiple PDSCHs is the intra-slot TDM method; or, the transmission method of multiple PDCCHs is the intra-slot TDM method, and the transmission method of multiple PDSCHs is the inter-slot time division multiplexing inter-slot TDM method or, the transmission mode of multiple PDCCHs is an inter-slot TDM method, and the transmission mode of multiple PDSCHs is an inter-slot TDM method; or, the transmission mode of multiple PDCCHs is a single frequency network SFN or frequency division multiplexing FDM method, The transmission mode of multiple PDSCHs is SFN or space division multiplexing SDM or FDM method; or, multiple PDCCHs are transmitted by SFN or FDM method, and multiple
  • the i-th PDCCH among the multiple PDCCHs overlaps with the time-domain resource occupied by the h-th PDSCH among the multiple PDSCHs, including: multiple PDCCHs can be two PDCCHs, and i is an integer greater than 0 and less than or equal to 2 ;
  • the multiple PDSCHs may be two PDSCHs, h is an integer greater than 0 and less than or equal to 2; or the multiple PDSCHs may be more than two.
  • the multiple PDCCHs are two PDCCHs
  • the multiple PDSCHs are two PDSCHs.
  • the transmission mode of the two PDCCHs is the time division multiplexing intra-slot TDM method in the time slot, and the transmission mode of the two PDSCHs is the intra-slot TDM method; or, the transmission mode of the two PDCCHs is the intra-slot TDM method, and the two The transmission method of one PDSCH is the time division multiplexing inter-slot TDM method between time slots; or, the transmission method of two PDCCHs is the inter-slot TDM method, and the transmission method of two PDSCHs is the inter-slot TDM method; or, two The transmission method of PDCCH is single frequency network SFN or frequency division multiplexing FDM method, and the transmission method of two PDSCHs is SFN or space division multiplexing SDM or FDM method; or, the two PDCCHs are SFN or FDM method, and the two PDSCHs are Time division multiplexing TDM method.
  • determining the TCI state for receiving the PDSCH includes: using the TCI state corresponding to the i-th PDCCH for the h-th PDSCH.
  • the h-th PDSCH uses the TCI state corresponding to the i-th PDCCH ; Where i is an integer greater than 0, h is an integer greater than 0. In this way, the TCI state of the PDSCH sent by the network device can be consistent with the TCI state of the PDSCH received by the terminal device, thereby improving beam-based transmission performance.
  • the M TCI states are identical to the N TCI states one by one.
  • PDCCH#1 needs to use the first TCI state
  • PDCCH#2 needs to use the second TCI state
  • PDSCH#1 needs to use the third TCI state
  • PDSCH#2 needs to use the fourth TCI state.
  • Unified TCI state means that the first TCI state is the same as the third TCI state, the second TCI state is the same as the fourth TCI state; or the first TCI state is the same as the fourth TCI state, and the second TCI state is the same as the third TCI state.
  • PDCCH#1 and PDSCH#1 use the same TCI state
  • PDCCH#2 and PDSCH#2 use the same TCI state
  • PDCCH#1 and PDSCH#2 use the same TCI state
  • PDCCH#2 and PDSCH# 1 using the same TCI state. All of the above situations can be called "the M TCI states are the same as the N TCI states one by one".
  • the M TCI states and the N TCI states are the same one by one, so that the TCI state receiving the PDCCH is the same as the TCI state receiving the PDSCH One is the same, keep the same.
  • the value of N is 2, the multiple PDSCHs include two PDSCHs, and the PDSCHs other than the h-th PDSCH use a TCI state different from the TCI state corresponding to the i-th PDCCH among the N TCI states.
  • the PDSCHs other than the h-th PDSCH use two TCI states A TCI state different from the TCI state corresponding to the i-th PDCCH.
  • the second PDSCH uses the TCI state that is different from the TCI state corresponding to the i-th PDCCH among the two TCI states. Therefore, compared with the previous method, the correspondence between the PDCCH and the TCI state has changed. Opposite change.
  • multiple PDCCHs include 2 PDCCHs, the first PDCCH uses TCI state#1, and the second PDCCH uses TCI state#2; multiple PDSCHs include 2 PDSCHs.
  • the first PDSCH Use TCI state#1, and the second PDSCH uses TCI state#2.
  • the value of N is 2, and multiple PDSCHs include L PDSCHs, wherein L is an even number greater than 2; according to the mapping rule of TCI state, determine the TCI state of receiving PDSCH; wherein, the mapping rule of TCI state It is cyclic Mapping or sequential Mapping.
  • the time domain resources occupied by the i-th PDCCH among the multiple PDCCHs and the h-th PDSCH among the L PDSCHs overlap (where i is an integer greater than 0, and h is an integer greater than 0).
  • the value of N is 2, and the multiple PDSCHs include L PDSCHs, where L is an even number greater than 2; the TCI state for receiving the PDSCH is determined according to the mapping rule of the TCI state.
  • mapping rule of TCI state is cyclic mapping or sequential mapping.
  • the mapping rule of the TCI state is cyclic Mapping
  • the odd-numbered PDSCH uses the TCI state corresponding to the i-th PDCCH
  • the even-numbered PDSCH uses the TCI state corresponding to the i-th PDCCH in the N TCI states.
  • the mapping rule of TCI state is cyclic Mapping, and h is 1
  • the first PDSCH uses the TCI state corresponding to the i-th PDCCH;
  • the third PDSCH uses the TCI state corresponding to the i-th PDCCH, and
  • the fourth PDSCH uses the different TCI state of the TCI state corresponding to the i-th PDCCH among the N TCI states;
  • mapping rule of the TCI state is cyclic Mapping
  • the h-th PDSCH is an odd number of PDSCHs and an even number of PDSCHs
  • different rules when receiving the TCI state of the PDSCH can be determined.
  • the TCI state of the PDSCH sent by the network device is consistent with the TCI state of the PDSCH received by the terminal device, thereby improving the beam-based transmission performance.
  • the 4j+1 and 4j+2 PDSCHs use the TCI state corresponding to the i-th PDCCH, and the 4j+3 and 4j+4
  • the PDSCH uses a TCI state different from the TCI state corresponding to the i-th PDCCH among the N TCI states, where j is an integer greater than or equal to 0; or, the first L/2 PDSCHs use the TCI state corresponding to the i-th PDCCH, and the latter
  • the L/2 PDSCHs use different TCI states of the TCI states corresponding to the i-th PDCCH among the N TCI states.
  • the i-th PDCCH among the multiple PDCCHs overlaps with the time-domain resources occupied by the first PDSCH among the multiple PDSCHs, and the TCI state for receiving the PDSCH is determined.
  • the first and second PDSCH use the TCI state corresponding to the i-th PDCCH
  • the third and fourth PDSCH use the TCI state different from the TCI state corresponding to the i-th PDCCH among the N TCI states
  • the fifth The sixth PDSCH uses the TCI state corresponding to the i-th PDCCH
  • the seventh and eighth PDSCH use the TCI state that is different from the TCI state corresponding to the i-th PDCCH among the N TCI states, and proceed according to this rule.
  • the M TCI states are not identical to the N TCI states one by one.
  • the value of N is 2, the multiple PDSCHs include two PDSCHs, the first PDSCH uses the first TCI state in the N TCI states and the second PDSCH uses the second TCI in the N TCI states state; or, the first PDSCH uses the second TCI state in the N TCI states and the second PDSCH uses the first TCI state in the N TCI states.
  • the first PDSCH uses the first TCI state of the two TCI states and the second PDSCH uses the second TCI of the two TCI states state; or, the first PDSCH uses the second TCI state of the 2 TCI states and the second PDSCH uses the first TCI state of the 2 TCI states.
  • the first PDSCH uses the first TCI state of the two TCI states
  • the second PDSCH uses the second TCI state of the two TCI states
  • the first PDSCH uses the same TCI state as the i-th PDCCH
  • the second PDSCH remains unchanged, or uses the second of the two TCI states TCI state
  • the second PDSCH uses the first TCI state of the two TCI states, which is calculated according to the first time.
  • multiple PDCCHs include 2 PDCCHs, the first PDCCH uses TCI state#1, and the second PDCCH uses TCI state#2; multiple PDSCHs include 2 PDSCHs, and the TCI state corresponding to multiple PDSCHs is TCI state #3 and TCI state #4.
  • the first PDSCH needs to use the same TCI state#2 as the second PDCCH, and the second The first PDSCH uses TCI state#4, that is, regardless of whether the first PDSCH uses TCI state#3; or the second PDSCH uses TCI state#3, that is, the second PDSCH does not use TCI state#3 because the first PDSCH does not use TCI state#3 PDSCH starts from TCI state#3.
  • the value of N is 2, and the multiple PDSCHs include L PDSCHs, where L is an even number greater than 2; according to the mapping rule of cyclic mapping or sequential mapping, determine the TCI state for receiving the PDSCH.
  • the odd-numbered PDSCH uses the first TCI state in the N TCI states, and the even-numbered PDSCH uses the second TCI state in the N TCI states; wherein, with multiple The time-domain resources occupied by the first PDSCH in the PDSCH do not overlap and remain unchanged or postponed in sequence; or the odd-numbered PDSCH uses the second TCI state in the N TCI states, and the even-numbered PDSCH uses N TCI states
  • multiple PDCCHs include 2 PDCCHs, the first PDCCH uses TCI state#1, and the second PDCCH uses TCI state#2; multiple PDSCHs include 4 PDSCHs, and the TCI state corresponding to multiple PDSCHs is TCI state #3 and TCI state #4.
  • the first PDSCH needs to use the same TCI state#2 as the second PDCCH, and the second The first PDSCH uses TCI state#4, that is, regardless of whether the first PDSCH uses TCI state#3, the third PDSCH uses TCI state#3, and the fourth PDSCH uses TCI state#4; or the second PDSCH uses TCI state#3 means that because the first PDSCH does not use TCI state#3, the second PDSCH starts from TCI state#3, the third PDSCH uses TCI state#4, and the fourth PDSCH uses TCI state#3.
  • the 4k+1 and 4k+2 use the first TCI state
  • the 4k+3 and 4k+4 use the second TCI state, where k is Integer greater than or equal to 0; where there is no overlap with the time domain resource occupied by the first PDSCH among multiple PDSCHs, it remains unchanged or is postponed sequentially; or, the first L/2 PDSCHs use the first PDCCH
  • the last L/2 PDSCHs use a TCI state different from the TCI state corresponding to the second PDCCH among the N TCI states; among them, the time domain resources occupied by the first PDSCH among the multiple PDSCHs are different Those that overlap remain unchanged or are postponed sequentially.
  • multiple PDCCHs include 2 PDCCHs, the first PDCCH uses TCI state#1, and the second PDCCH uses TCI state#2; multiple PDSCHs include 4 PDSCHs, and the TCI state corresponding to multiple PDSCHs is TCI state #3 and TCI state #4.
  • the first PDSCH needs to use the same TCI state#2 as the second PDCCH, and the second The first PDSCH uses TCI state#3, the third PDSCH and the fourth PDSCH use TCI state#4; or the second PDSCH and the third PDSCH use TCI state#3 because the first PDSCH does not use TCI state# 3 So the second PDSCH starts from TCI state#3, and the fourth PDSCH uses TCI state#4.
  • determining the TCI state for receiving the PDSCH includes: the terminal device does not expect the sth PDCCH and the sth PDCCH among the multiple PDCCHs Each of the s+1 PDCCHs overlaps with a time-domain resource occupied by one of the multiple PDSCHs, where s is an integer greater than 0.
  • FIG. 3 is a flowchart of another communication method provided by an embodiment of the present disclosure.
  • the method is performed by a network device, and the method may include but not limited to the following steps:
  • S10 Send configuration information of the terminal device, the configuration information includes time domain information of multiple physical downlink control channels PDCCH and M transmission configuration indication state TCI state for sending multiple PDCCHs, where M is an integer greater than 0; configuration information It also includes time-domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates for sending multiple PDSCHs, where N is an integer greater than 0.
  • S20 In a case where time domain resources occupied by at least one PDCCH and at least one PDSCH overlap, determine a TCI state for sending the PDSCH.
  • the time domain resources occupied by at least one PDCCH and at least one PDSCH overlap including: the time domain resources occupied by one PDCCH and one PDSCH overlap; or the time domain resources occupied by one PDCCH and multiple PDSCHs overlap. ; or, there is overlap in the time domain resources occupied by multiple PDCCHs and one PDSCH; or, there is overlap in the time domain resources occupied by multiple PDCCHs and multiple PDSCHs, etc., there are two or more.
  • the terminal device may need to use two TCI states to receive the same PDSCH, and the time of TCI state switching may cause reception interruption, Alternatively, end-devices may not be able to support reception using more than two TCI states, affecting beam-based transmission performance.
  • the TCI state for sending the PDSCH is determined, so that the TCI state for sending the PDSCH by the network device and the TCI for receiving the PDSCH by the terminal device The state remains consistent, thereby improving the performance of beam-based transmission.
  • the network device sends the configuration information of the terminal device, and the configuration information includes time domain information of multiple physical downlink control channels PDCCH and M transmission configuration indication states TCI state for sending multiple PDCCHs, where M is An integer greater than 0; the configuration information also includes time domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates used to send multiple PDSCHs, where N is an integer greater than 0; at least one PDCCH and at least one PDSCH When the occupied time domain resources overlap, determine the TCI state for sending the PDSCH. In this way, the TCI state of the PDSCH sent by the network device can be consistent with the TCI state of the PDSCH received by the terminal device, thereby improving beam-based transmission performance.
  • the configuration information includes time domain information of multiple physical downlink control channels PDCCH and M transmission configuration indication states TCI state for sending multiple PDCCHs, where M is An integer greater than 0; the configuration information also includes time domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates used
  • the time domain resources occupied by at least one PDCCH and at least one PDSCH overlap, including: the time domain resources occupied by the i-th PDCCH among the multiple PDCCHs and the h-th PDSCH among the multiple PDSCHs overlap , where i is an integer greater than 0, and h is an integer greater than 0.
  • time domain resources occupied by the first PDCCH among the multiple PDCCHs and the first PDSCH among the multiple PDSCHs overlap.
  • time domain resources occupied by the second PDCCH among the multiple PDCCHs and the first PDSCH among the multiple PDSCHs overlap.
  • the time domain resource occupied by the i-th PDCCH among the multiple PDCCHs and the h-th PDSCH among the multiple PDSCHs overlaps, including: the transmission mode of the multiple PDCCHs is time division multiplexing intra- The slot TDM method, the transmission method of multiple PDSCHs is the intra-slot TDM method; or, the transmission method of multiple PDCCHs is the intra-slot TDM method, and the transmission method of multiple PDSCHs is the inter-slot time division multiplexing inter-slot TDM method or, the transmission mode of multiple PDCCHs is an inter-slot TDM method, and the transmission mode of multiple PDSCHs is an inter-slot TDM method; or, the transmission mode of multiple PDCCHs is a single frequency network SFN or frequency division multiplexing FDM method, The transmission mode of multiple PDSCHs is SFN or space division multiplexing SDM or FDM method; or, multiple PDCCHs are transmitted by SFN or FDM method, and multiple
  • the i-th PDCCH among the multiple PDCCHs overlaps with the time-domain resource occupied by the h-th PDSCH among the multiple PDSCHs, including: multiple PDCCHs can be two PDCCHs, and i is an integer greater than 0 and less than or equal to 2 ;
  • the multiple PDSCHs may be two PDSCHs, h is an integer greater than 0 and less than or equal to 2; or the multiple PDSCHs may be more than two.
  • the multiple PDCCHs are two PDCCHs
  • the multiple PDSCHs are two PDSCHs.
  • the transmission mode of the two PDCCHs is the intra-slot time division multiplexing intra-slotTDM method
  • the transmission mode of the two PDSCHs is the intra-slotTDM method
  • the transmission mode of the two PDCCHs is the intra-slotTDM method
  • the transmission mode of the two PDSCHs is the intra-slotTDM method.
  • the transmission mode is inter-slot time division multiplexing inter-slotTDM method; or, the transmission mode of two PDCCHs is inter-slotTDM method, and the transmission mode of two PDSCHs is inter-slotTDM method; or, the transmission mode of two PDCCHs is single Frequency network SFN or frequency division multiplexing FDM method, the transmission mode of two PDSCHs is SFN or space division multiplexing SDM or FDM method; or, two PDCCHs are SFN or FDM method, and two PDSCHs are time division multiplexing TDM method.
  • determining the TCIstate for sending the PDSCH includes: using the TCIstate corresponding to the i-th PDCCH for the h-th PDSCH.
  • the h-th PDSCH uses the TCIstate corresponding to the i-th PDCCH; Wherein, i is an integer greater than 0, and h is an integer greater than 0. In this way, the TCIstate of the PDSCH sent by the network device can be consistent with the TCIstate of the PDSCH received by the terminal device, thereby improving beam-based transmission performance.
  • the M TCIstates are identical to the N TCIstates one by one.
  • PDCCH#1 needs to use the first TCI state
  • PDCCH#2 needs to use the second TCI state
  • PDSCH#1 needs to use the third TCI state
  • PDSCH#2 needs to use the fourth TCI state.
  • Unified TCI state means that the first TCI state is the same as the third TCI state, the second TCI state is the same as the fourth TCI state; or the first TCI state is the same as the fourth TCI state, and the second TCI state is the same as the third TCI state.
  • PDCCH#1 and PDSCH#1 use the same TCI state
  • PDCCH#2 and PDSCH#2 use the same TCI state
  • PDCCH#1 and PDSCH#2 use the same TCI state
  • PDCCH#2 and PDSCH# 1 using the same TCI state. All of the above situations can be called "the M TCI states are the same as the N TCI states one by one".
  • the M TCIstates are the same as the N TCIstates one by one, so that the terminal equipment receives the TCIstate of the PDCCH and receives the TCIstate of the PDSCH one by one. be consistent.
  • the value of N is 2, the multiple PDSCHs include two PDSCHs, and the PDSCHs other than the h-th PDSCH use a TCIstate different from the TCIstate corresponding to the i-th PDCCH among the N TCIstates.
  • the PDSCHs other than the h-th PDSCH use the The TCIstate corresponding to the i-th PDCCH is different from the TCIstate.
  • the second PDSCH uses a TCIstate different from the TCIstate corresponding to the i-th PDCCH among the two TCIstates. Therefore, compared with the previous method, the corresponding relationship between the PDCCH and the TCIstate changes oppositely.
  • multiple PDCCHs include 2 PDCCHs, the first PDCCH uses TCI state#1, and the second PDCCH uses TCI state#2; multiple PDSCHs include 2 PDSCHs.
  • the first PDSCH Use TCI state#1, and the second PDSCH uses TCI state#2.
  • the value of N is 2, and multiple PDSCHs include L PDSCHs, wherein L is an even number greater than 2; according to the mapping rule of TCIstate, determine the TCIstate for sending the PDSCH; wherein, the mapping rule of TCIstate is cyclic mapping cyclicMapping or sequentialMapping sequentialMapping.
  • the time domain resources occupied by the i-th PDCCH among the multiple PDCCHs and the h-th PDSCH among the L PDSCHs overlap (where i is an integer greater than 0, and h is an integer greater than 0).
  • the value of N is 2, and the multiple PDSCHs include L PDSCHs, where L is an even number greater than 2; the TCIstate for sending the PDSCH is determined according to the mapping rule of the TCIstate.
  • mapping rule of TCIstate is cyclicMapping or sequentialMapping.
  • the mapping rule of TCIstate is cyclicMapping
  • the odd-numbered PDSCH uses the TCIstate corresponding to the i-th PDCCH
  • the even-numbered PDSCH uses N TCIstates corresponding to the i-th PDCCH or when h is an even number
  • the even-numbered PDSCH uses the TCIstate corresponding to the i-th PDCCH
  • the odd-numbered PDSCH uses a different TCIstate from the TCIstate corresponding to the i-th PDCCH among the N TCIstates.
  • the mapping rule of TCIstate is cyclicMapping and h is 1
  • the first PDSCH uses the TCIstate corresponding to the i-th PDCCH
  • the second PDSCH uses the TCIstate corresponding to the i-th PDCCH among the N TCIstates
  • the third PDSCH uses the TCIstate corresponding to the i-th PDCCH
  • the fourth PDSCH uses a different TCIstate from the N TCIstates corresponding to the i-th PDCCH; proceed according to this rule.
  • mapping rule of the TCIstate is cyclicMapping
  • the h-th PDSCH is an odd number of PDSCHs and an even number of PDSCHs
  • different rules for determining the TCIstate of the PDSCH can be used to enable the network device to send
  • the TCIstate of the PDSCH is consistent with the TCIstate of the terminal equipment receiving the PDSCH, thereby improving beam-based transmission performance.
  • the 4j+1 and 4j+2 PDSCHs use the TCIstate corresponding to the i-th PDCCH
  • the 4j+3 and 4j+4 PDSCHs use N
  • the TCIstate corresponding to the i-th PDCCH is different from the TCIstate corresponding to the i-th PDCCH, where j is an integer greater than or equal to 0; or, the first L/2 PDSCHs use the TCIstate corresponding to the i-th PDCCH, and the last L/2 PDSCHs use N
  • Different TCI states of the TCI state corresponding to the i-th PDCCH in the TCI state are possible.
  • the time domain resource occupied by the i-th PDCCH among the multiple PDCCHs overlaps with the first PDSCH among the multiple PDSCHs, and the TCIstate for receiving the PDSCH is determined.
  • the first and second PDSCHs use the TCIstate corresponding to the i-th PDCCH
  • the third and fourth PDSCHs use the TCIstate that is different from the TCIstate corresponding to the i-th PDCCH among the N TCIstates
  • the fifth and sixth The PDSCH uses the TCIstate corresponding to the i-th PDCCH
  • the seventh and eighth PDSCHs use the TCIstate different from the TCIstate corresponding to the i-th PDCCH among the N TCIstates, according to this rule.
  • determine the TCIstate for sending the PDSCH In order to solve the overlap of time domain resources occupied by the i-th PDCCH among the multiple PDCCHs and the first PDSCH among the multiple PDSCHs, determine the TCIstate for sending the
  • the M TCIstates are not identical to the N TCIstates.
  • the value of N is 2, the multiple PDSCHs include two PDSCHs, the first PDSCH uses the first TCIstate in the N TCIstates and the second PDSCH uses the second TCIstate in the N TCIstates; or, The first PDSCH uses the second TCIstate among the N TCIstates, and the second PDSCH uses the first TCIstate among the N TCIstates.
  • the first PDSCH uses the first TCIstate of the two TCIstates and the second PDSCH uses the second TCIstate of the two TCIstates; or, the first One PDSCH uses the second TCIstate of the two TCIstates and the second PDSCH uses the first TCIstate of the two TCIstates.
  • the first PDSCH uses the first TCIstate of the 2 TCIstates and the second PDSCH uses the second TCIstate of the 2 TCIstates
  • the first PDSCH uses the same TCIstate as the i-th PDCCH
  • the second PDSCH remains unchanged, or uses the second TCIstate of the two TCIstates
  • the second PDSCH uses the first TCIstate among the two TCIstates, and calculates according to the first time.
  • multiple PDCCHs include 2 PDCCHs, the first PDCCH uses TCI state#1, and the second PDCCH uses TCI state#2; multiple PDSCHs include 2 PDSCHs, and the TCI state corresponding to multiple PDSCHs is TCI state# 3 and TCI state #4.
  • the first PDSCH needs to use the same TCI state#2 as the second PDCCH, and the second The first PDSCH uses TCI state#4, that is, regardless of whether the first PDSCH uses TCI state#3; or the second PDSCH uses TCI state#3, that is, the second PDSCH does not use TCI state#3 because the first PDSCH does not use TCI state#3 PDSCH starts from TCI state#3.
  • the value of N is 2, and the multiple PDSCHs include L PDSCHs, where L is an even number greater than 2; according to the mapping rule of cyclicMapping or sequentialMapping, determine the TCIstate for sending the PDSCH.
  • the odd-numbered PDSCH uses the first TCIstate in the N TCIstates, and the even-numbered PDSCH uses the second TCIstate in the N TCIstates;
  • the time-domain resources occupied by PDSCHs do not overlap and remain unchanged or postponed in sequence; or the odd-numbered PDSCH uses the second TCIstate in the N TCIstates, and the even-numbered PDSCH uses the first TCIstate in the N TCIstates; where , which do not overlap with the time domain resources occupied by the first PDSCH among the multiple PDSCHs remain unchanged or are sequentially postponed.
  • multiple PDCCHs include 2 PDCCHs, the first PDCCH uses TCI state#1, and the second PDCCH uses TCI state#2; multiple PDSCHs include 4 PDSCHs, and the TCI state corresponding to multiple PDSCHs is TCI state# 3 and TCI state #4.
  • the first PDSCH needs to use the same TCI state#2 as the second PDCCH, and the second The first PDSCH uses TCI state#4, that is, regardless of whether the first PDSCH uses TCI state#3, the third PDSCH uses TCI state#3, and the fourth PDSCH uses TCI state#4; or the second PDSCH uses TCI state#3 means that because the first PDSCH does not use TCI state#3, the second PDSCH starts from TCI state#3, the third PDSCH uses TCI state#4, and the fourth PDSCH uses TCI state#3.
  • the 4k+1 and 4k+2 use the first TCIstate
  • the 4k+3 and 4k+4 use the second TCIstate, where k is greater than or equal to Integer of 0; where there is no overlap with the time domain resource occupied by the first PDSCH among multiple PDSCHs, it remains unchanged or postponed sequentially; or, the first L/2 PDSCHs use the TCIstate corresponding to the first PDCCH , the last L/2 PDSCHs use a different TCIstate from the TCIstate corresponding to the second PDCCH among the N TCIstates; wherein, the time domain resources occupied by the first PDSCH among the multiple PDSCHs do not overlap and remain unchanged or Postponed successively.
  • multiple PDCCHs include 2 PDCCHs, the first PDCCH uses TCI state#1, and the second PDCCH uses TCI state#2; multiple PDSCHs include 4 PDSCHs, and the TCI state corresponding to multiple PDSCHs is TCI state# 3 and TCI state #4.
  • the first PDSCH needs to use the same TCI state#2 as the second PDCCH, and the second The first PDSCH uses TCI state#3, the third PDSCH and the fourth PDSCH use TCI state#4; or the second PDSCH and the third PDSCH use TCI state#3 because the first PDSCH does not use TCI state# 3 So the second PDSCH starts from TCI state#3, and the fourth PDSCH uses TCI state#4.
  • determining the TCIstate for sending the PDSCH includes: the terminal device does not expect the sth PDCCH and the sth PDCCH among the multiple PDCCHs Each of the +1 PDCCHs overlaps with a time-domain resource occupied by one of the multiple PDSCHs, where s is an integer greater than 0.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of the network device and the first terminal device respectively.
  • the network device and the first terminal device may include a hardware structure and a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module .
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 4 is a schematic structural diagram of a communication device 70 provided by an embodiment of the present disclosure.
  • the communication device 70 shown in FIG. 4 may include a transceiver module 701 and a processing module 702 .
  • the transceiver module 701 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 701 can realize the sending function and/or the receiving function.
  • the communication device 70 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device 70 may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device 70 is a terminal device: a transceiver module, configured to receive configuration information of network devices, the configuration information includes time domain information of multiple physical downlink control channels PDCCH and M transmission configuration indication states TCIstate for receiving multiple PDCCHs, where M is an integer greater than 0; the configuration information also includes time-domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates for receiving multiple PDSCHs, where N is an integer greater than 0; the processing module is used for In a case where time domain resources occupied by at least one PDCCH and at least one PDSCH overlap, determine a TCIstate for receiving the PDSCH.
  • the communication device 70 is a network device: a transceiver module, configured to send configuration information of the terminal device, the configuration information includes time domain information of multiple physical downlink control channels PDCCH and M transmission configuration indication states TCIstate for sending multiple PDCCHs, where M is an integer greater than 0; the configuration information also includes time-domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates for sending multiple PDSCHs, where N is an integer greater than 0; the processing module is used for at least When the time domain resources occupied by one PDCCH and at least one PDSCH overlap, determine the TCIstate for sending the PDSCH.
  • the configuration information includes time domain information of multiple physical downlink control channels PDCCH and M transmission configuration indication states TCIstate for sending multiple PDCCHs, where M is an integer greater than 0
  • the configuration information also includes time-domain resource information of multiple physical downlink shared channels PDSCH and N TCIstates for sending multiple PDSCHs, where N is an integer greater than 0
  • the processing module is used
  • FIG. 5 is a schematic structural diagram of another communication device 1000 provided by an embodiment of the present disclosure.
  • the communication device 1000 may be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • the communication device 1000 may include one or more processors 1001 .
  • the processor 1001 may be a general purpose processor or a special purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 1000 may further include one or more memories 1002, on which a computer program 1004 may be stored, and the memory 1002 executes the computer program 1004, so that the communication device 1000 executes the methods described in the foregoing method embodiments .
  • data may also be stored in the memory 1002 .
  • the communication device 1000 and the memory 1002 can be set separately or integrated together.
  • the communication device 1000 may further include a transceiver 1005 and an antenna 1006 .
  • the transceiver 1005 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to realize a transceiver function.
  • the transceiver 1005 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1000 may further include one or more interface circuits 1007 .
  • the interface circuit 1007 is used to receive code instructions and transmit them to the processor 1001 .
  • the processor 1001 runs the code instructions to enable the communication device 1000 to execute the methods described in the foregoing method embodiments.
  • the communication device 1000 is a terminal device: the transceiver 1005 is used to execute S1 in FIG. 2 .
  • the processor 1001 is configured to execute S2 in FIG. 2 .
  • the communication device 1000 is a network device: the transceiver 1005 is used to execute S10 in FIG. 3 .
  • the processor 1001 is configured to execute S20 in FIG. 3 .
  • the processor 1001 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1001 may store a computer program 1003, and the computer program 1003 runs on the processor 1001 to enable the communication device 1000 to execute the methods described in the foregoing method embodiments.
  • the computer program 1003 may be solidified in the processor 1001, and in this case, the processor 1001 may be implemented by hardware.
  • the communication device 1000 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards (printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a terminal device (such as the terminal device in the foregoing method embodiments), but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be changed from that shown in Figure 5. limit.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • FIG. 6 is a structural diagram of a chip provided in an embodiment of the present disclosure.
  • the chip 1100 includes a processor 1101 and an interface 1103 .
  • the number of processors 1101 may be one or more, and the number of interfaces 1103 may be more than one.
  • Interface 1103 configured to receive code instructions and transmit them to the processor.
  • the processor 1101 is configured to run code instructions to execute the communication methods described in some of the above embodiments.
  • Interface 1103 configured to receive code instructions and transmit them to the processor.
  • the processor 1101 is configured to run code instructions to execute the communication methods described in some of the above embodiments.
  • the chip 1100 also includes a memory 1102 for storing necessary computer programs and data.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • “A and/or B” includes the following three combinations: A only, B only, and a combination of A and B.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种通信方法、装置和存储介质,该方法包括:终端设备接收网络设备的配置信息,配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于接收多个PDCCH的M个传输配置指示状态TCIstate,其中M为大于0的整数;配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于接收多个PDSCH的N个TCIstate,其中N为大于0的整数;在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定接收PDSCH的TCIstate。通过实施本公开实施例,可以使接收PDCCH的TCIstate与接收PDSCH的TCIstate保持一致,从而提高基于波束的传输性能。

Description

通信方法、装置和存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种通信方法、装置和存储介质。
背景技术
在NR(New Radio,新无线)中,高频信道衰减较快,为了保证覆盖范围,需要使用基于beam(波束)的发送和接收。
目前对于基于波束的接收,网络设备通过RRC(radio resource control,无线资源控制)信令为终端设备配置TCI(transmission configuration indicator,传输配置指示)状态和RS(reference signal,参考信号)的对应关系,从而告知用户终端设备接收时需要使用的波束。
Rel-16讨论了Multi-TRP(多个TRP(transmission reception point,传输接收点))的PDSCH(physical downlink shared channel,物理下行共享信道)的发送,网络设备指示两个TCI state(状态)用于多次发送PDSCH,两个TCI state与用于多次发送PDSCH的时域资源之间存在映射关系。并且对于PDCCH(physical downlink control channel,物理下行控制信道)的传输,两个TCI state与用于多次发送PDCCH的时域资源之间也存在映射关系。
当PDCCH和PDSCH都配置了重复发送时,PDCCH和PDSCH可能会在时域上重叠,此时,网络设备和终端设备无法保持TCI state一致,这是亟需解决的技术问题。
发明内容
本公开实施例提供一种通信方法、装置和存储介质,通过在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定接收PDSCH的TCI state,以使接收PDCCH的TCI state与接收PDSCH的TCI state保持一致,从而提高基于波束的传输性能。
第一方面,本公开实施例提供一种通信方法,该方法由终端设备执行,包括:接收网络设备的配置信息,所述配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于接收所述多个PDCCH的M个传输配置指示状态TCI state,其中M为大于0的整数;所述配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于接收所述多个PDSCH的N个TCIstate,其中N为大于0的整数;在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定接收所述PDSCH的所述TCI state。
在该技术方案中,终端设备接收网络设备的配置信息,配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于接收多个PDCCH的M个传输配置指示状态TCI state,其中M为大于0的整数;配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于接收多个PDSCH的N个TCIstate,其中N为大于0的整数;在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定接收PDSCH的TCI state。通过这种方式,可以使接收PDCCH的TCI state与接收PDSCH的TCI state保持一致,从而提高基于波束的传输性能。
在一些实施例中,所述至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠,包括:所述多个PDCCH中的第i个PDCCH与所述多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,其中i为大于0的整数,h为大于0的整数。
在一些实施例中,所述多个PDCCH中的第i个PDCCH与所述多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,包括以下的至少一种:所述多个PDCCH的传输方式为时隙内时分复用intra-slot TDM方法,所述多个PDSCH的传输方式为intra-slot TDM方法;所述多个PDCCH的传输方式为intra-slot TDM方法,所述多个PDSCH的传输方式为时隙间时分复用inter-slot TDM方法;所述多个PDCCH的传输方式为inter-slot TDM方法,所述多个PDSCH的传输方式为inter-slot TDM方法;所述多个PDCCH的传输方式为单频网SFN或频分复用FDM方法,所述多个PDSCH的传输方式为SFN或空分复用SDM或FDM方法;以及所述多个PDCCH为SFN或FDM方法,所述多个PDSCH为时分复用TDM方法。
在一些实施例中,所述确定接收所述PDSCH的所述TCI state,包括:第h个所述PDSCH使用第i个所述PDCCH对应的TCI state。
在一些实施例中,所述M个TCI state与所述N个TCI state一一相同。
在一些实施例中,所述N的值为2,所述多个PDSCH包括两个PDSCH,第h个所述PDSCH以外的所述PDSCH使用N个TCI state中与第i个所述PDCCH对应的TCI state不同的TCI state。
在一些实施例中,所述N的值为2,所述多个PDSCH包括L个PDSCH,其中L为大于2的偶数;根据所述TCI state的映射规则,来确定接收所述PDSCH的所述TCI state;其中,所述TCI state的映射规则为循环映射cyclic Mapping或者顺序映射sequentical Mapping。
在一些实施例中,所述方法,还包括:在所述TCI state的映射规则为cyclic Mapping的情况下,h为奇数时,第奇数个所述PDSCH使用第i个所述PDCCH对应的TCI state,第偶数个所述PDSCH使用N个TCI state中与第i个所述PDCCH对应的TCI state的不同的TCI state;或h为偶数时,第偶数个所述PDSCH使用第i个所述PDCCH对应的TCI state,第奇数个所述PDSCH使用N个TCI state中与第i个所述PDCCH对应的TCI state的不同的TCI state。
在一些实施例中,所述方法,还包括:在所述TCI state的映射规则为sequentical Mapping的情况下,第4j+1和第4j+2个所述PDSCH使用第i个所述PDCCH对应的TCI state,第4j+3和第4j+4个所述PDSCH使用N个TCI state中与第i个所述PDCCH对应的TCI state不同的TCI state,其中j为大于或等于0的整数;或者,前L/2个所述PDSCH使用第i个所述PDCCH对应的TCI state,后L/2个所述PDSCH使用N个TCI state中与第i个所述PDCCH对应的TCI state的不同的TCI state。
在一些实施例中,所述M个TCI state与所述N个TCI state非一一相同。
在一些实施例中,所述N的值为2,所述多个PDSCH包括两个PDSCH,第一个所述PDSCH使用N个TCI state中第一个TCI state和第二个所述PDSCH使用N个TCI state中第二个TCI state;或者,第一个所述PDSCH使用N个TCI state中第二个TCI state和第二个所述PDSCH使用N个TCI state中第一个TCI state。
在一些实施例中,所述N的值为2,所述多个PDSCH包括L个PDSCH,其中L为大于2的偶数;根据循环映射cyclic Mapping或者顺序映射sequentical Mapping的映射规则,确定接收所述PDSCH的所述TCI state。
在一些实施例中,所述方法,还包括:根据所述cyclic Mapping的映射规则,第奇数个所述PDSCH使用N个TCI state中第一个TCI state,第偶数个所述PDSCH使用N个TCI state中第二个TCI state;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;或第奇数个所述PDSCH使用N个TCI state中第二个TCI state,第偶数个所述PDSCH使用N个 TCI state中第一个TCI state;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
在一些实施例中,所述方法,还包括:根据所述sequentical Mapping的映射规则,第4k+1和第4k+2个使用第一个TCI state,第4k+3和第4k+4个使用第二个TCI state,其中k为大于或等于0的整数;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;或者,前L/2个所述PDSCH使用第一个所述PDCCH对应的TCI state,后L/2个所述PDSCH使用N个TCI state中与第二个所述PDCCH对应的TCI state的不同的TCI state;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
在一些实施例中,所述在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定接收所述PDSCH的所述TCI state,包括:终端设备不期待所述多个PDCCH中的第s个PDCCH和第s+1个PDCCH均与所述多个PDSCH中的其中一个PDSCH占用的时域资源存在重叠,其中s为大于0的整数。
第二方面,本公开实施例提供另一种通信方法,该方法由网络设备执行,包括:发送终端设备的配置信息,所述配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于发送所述多个PDCCH的M个传输配置指示状态TCI state,其中M为大于0的整数;所述配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于发送所述多个PDSCH的N个TCIstate,其中N为大于0的整数;在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定发送所述PDSCH的所述TCI state。
在一些实施例中,所述至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠,包括:所述多个PDCCH中的第i个PDCCH与所述多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,其中i为大于0的整数,h为大于0的整数。
在一些实施例中,所述多个PDCCH中的第i个PDCCH与所述多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,包括以下的至少一种:所述多个PDCCH的传输方式为时隙内时分复用intra-slot TDM方法,所述多个PDSCH的传输方式为intra-slot TDM方法;所述多个PDCCH的传输方式为intra-slot TDM方法,所述多个PDSCH的传输方式为时隙间时分复用inter-slot TDM方法;所述多个PDCCH的传输方式为inter-slot TDM方法,所述多个PDSCH的传输方式为inter-slot TDM方法;所述多个PDCCH的传输方式为单频网SFN或频分复用FDM方法,所述多个PDSCH的传输方式为SFN或空分复用SDM或FDM方法;所述多个PDCCH为SFN或FDM方法,所述多个PDSCH为时分复用TDM方法。
在一些实施例中,所述确定发送所述PDSCH的所述TCI state,包括:第h个所述PDSCH使用第i个所述PDCCH对应的TCI state。
在一些实施例中,所述M个TCI state与所述N个TCI state一一相同。
在一些实施例中,所述N的值为2,所述多个PDSCH包括两个PDSCH,第h个所述PDSCH以外的所述PDSCH使用N个TCI state中与第i个所述PDCCH对应的TCI state不同的TCI state。
在一些实施例中,所述N的值为2,所述多个PDSCH包括L个PDSCH,其中L为大于2的偶数;根据所述TCI state的映射规则,来确定发送所述PDSCH的所述TCI state;其中,所述TCI state的映射规则为循环映射cyclic Mapping或者顺序映射sequentical Mapping。
在一些实施例中,所述方法,还包括:在所述TCI state的映射规则为cyclic Mapping的情况下,h 为奇数时,第奇数个所述PDSCH使用第i个所述PDCCH对应的TCI state,第偶数个所述PDSCH使用N个TCI state中与第i个所述PDCCH对应的TCI state的不同的TCI state;或h为偶数时,第偶数个所述PDSCH使用第i个所述PDCCH对应的TCI state,第奇数个所述PDSCH使用N个TCI state中与第i个所述PDCCH对应的TCI state的不同的TCI state。
在一些实施例中,所述方法,还包括:在所述TCI state的映射规则为sequentical Mapping的情况下,第4j+1和第4j+2个所述PDSCH使用第i个所述PDCCH对应的TCI state,第4j+3和第4j+4个所述PDSCH使用N个TCI state中与第i个所述PDCCH对应的TCI state不同的TCI state,其中j为大于或等于0的整数;或者,前L/2个所述PDSCH使用第i个所述PDCCH对应的TCI state,后L/2个所述PDSCH使用N个TCI state中与第i个所述PDCCH对应的TCI state的不同的TCI state。
在一些实施例中,所述M个TCI state与所述N个TCI state非一一相同。
在一些实施例中,所述N的值为2,所述多个PDSCH包括两个PDSCH,第一个所述PDSCH使用N个TCI state中第一个TCI state和第二个所述PDSCH使用N个TCI state中第二个TCI state;或者,第一个所述PDSCH使用N个TCI state中第二个TCI state和第二个所述PDSCH使用N个TCI state中第一个TCI state。
在一些实施例中,所述N的值为2,所述多个PDSCH包括L个PDSCH,其中L为大于2的偶数;根据循环映射cyclic Mapping或者顺序映射sequentical Mapping的映射规则,确定发送所述PDSCH的所述TCI state。
在一些实施例中,所述方法,还包括:根据所述cyclic Mapping的映射规则,第奇数个所述PDSCH使用N个TCI state中第一个TCI state,第偶数个所述PDSCH使用N个TCI state中第二个TCI state;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;或第奇数个所述PDSCH使用N个TCI state中第二个TCI state,第偶数个所述PDSCH使用N个TCI state中第一个TCI state;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
在一些实施例中,所述方法,还包括:
根据所述sequentical Mapping的映射规则,第4k+1和第4k+2个使用第一个TCI state,第4k+3和第4k+4个使用第二个TCI state,其中k为大于或等于0的整数;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;或者,前L/2个所述PDSCH使用第一个所述PDCCH对应的TCI state,后L/2个所述PDSCH使用N个TCI state中与第二个所述PDCCH对应的TCI state的不同的TCI state;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
在一些实施例中,所述在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定发送所述PDSCH的所述TCI state,包括:终端设备不期待所述多个PDCCH中的第s个PDCCH和第s+1个PDCCH均与所述多个PDSCH中的其中一个PDSCH占用的时域资源存在重叠,其中s为大于0的整数。
第三方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的 软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,所述通信装置包括:收发模块,用于接收网络设备的配置信息,所述配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于接收所述多个PDCCH的M个传输配置指示状态TCI state,其中M为大于0的整数;所述配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于接收所述多个PDSCH的N个TCIstate,其中N为大于0的整数;处理模块,用于在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定接收所述PDSCH的所述TCI state。
第四方面,本公开实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
在一种实现方式中,所述通信装置包括:收发模块,用于发送终端设备的配置信息,所述配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于发送所述多个PDCCH的M个传输配置指示状态TCI state,其中M为大于0的整数;所述配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于发送所述多个PDSCH的N个TCIstate,其中N为大于0的整数;处理模块,用于在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定发送所述PDSCH的所述TCI state。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收 代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构图;
图2是本公开实施例提供的一种通信方法的流程图;
图3是本公开实施例提供的另一种通信方法的流程图;
图4是本公开实施例提供的一种通信装置的结构示意图;
图5是本公开实施例提供的另一种通信装置的结构示意图;
图6是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
本公开实施例提供的技术方案可以应用于各种通信系统。例如,包括但不限于LTE系统、第五代(5th-generation,简称5G)系统、NR系统,以及未来演进系统或者多种通信融合系统。其中,5G系统可以为非独立组网(non-standalone,简称NSA)的5G系统或独立组网(standalone,简称SA)的5G系统。
为了更好的理解本公开实施例公开的一种通信方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统10的架构示意图。该通信系统10可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统10以包括一个网络设备101和一个终端设备102为例。
本公开实施例中的网络设备101是网络侧的一种用于发送信号,或者,接收信号,或者,发送信号和接收信号的实体。网络设备101可以为部署在无线接入网(radio access network,简称RAN)中为终端设备提供无线通信功能的装置,例如可以为TRP、基站、各种形式的控制节点(例如,网络控制器、无线控制器(例如,云无线接入网络(cloud radio access network,简称CRAM)场景下的无线控制器))等。具体的,网络设备101可以为各种形式的宏基站,微基站(也称为小站),中继站,接入点(access point,简称AP)等,也可以为基站的天线面板。所述控制节点可以连接多个基站,并为所述多个基站覆盖下的多个终端设备配置资源。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,LTE系统中可以称为演进型基站(evolved NodeB,简称eNB或eNodeB),5G系统或NR系统中可以称为下一代基站节点(next generation node base station,简称gNB),本公开对基站的具体名称不作限定。网络设备101还可以是未来演进的公共陆地移动网络(public land mobile network,简称PLMN)中的网络设备101等。
在一些部署中,网络设备101可以包括集中式单元(centralized unit,简称CU)和分布式单元(Distributed Unit,简称DU)。网络设备101还可以包括有源天线单元(activeantenna unit,简称AAU)。CU实现网络设备101的部分功能,DU实现网络设备101的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,简称RRC),分组数据汇聚层协议(packet data convergence protocol,简称PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,简称RLC)、媒体接入控制(media access control,简称MAC)和物理(physical,简称PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PDCP层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备101可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,CU可以划分为RAN中的网络设备101,也可以将CU划分为核心网(core network,简称CN)中的网络设备101,在此不做限制。
本公开实施例中的终端设备102是用户侧的一种用于接收信号,或者,发送信号,或者,接收信号和发送信号的实体。终端设备102用于向用户提供语音服务和数据连通性服务中的一种或多种。终端设备102还可以称为用户设备(user equipment,简称UE)、终端、接入终端、用户单元、用户站、移动 站、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端设备102可以是移动站(mobile station,简称MS)、用户单元(subscriber unit)、无人机、物联网(Internet of things,简称IoT)设备、无线局域网(wireless local area networks,简称WLAN)中的站点(station,简称ST)、蜂窝电话(cellular phone),智能电话(smart phone)、无绳电话、无线数据卡、平板型电脑、会话启动协议(session initiationprotocol,简称SIP)电话、无线本地环路(wireless local loop,简称WLL)站、个人数字处理(personal digital assistant,简称PDA)设备、膝上型电脑(laptop computer)、机器类型通信(machine type communication,简称MTC)终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备(也可以称为穿戴式智能设备)。终端设备102还可以为下一代通信系统中的终端设备,例如,5G系统中的终端设备或者未来演进的PLMN中的终端设备,NR系统中的终端设备等。
本公开实施例提供的技术方案可以应用于多种通信场景。例如,机器对机器(machine to machine,简称M2M)、宏微通信、增强型移动宽带(enhanced mobile broadband,简称eMBB)、超高可靠超低时延通信(ultra-reliable&low latency communication,简称URLLC)、车联网以及海量物联网通信(massive machine type communication,简称mMTC)等场景。
本公开实施例描述的网络架构以及业务场景是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定。本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的通信方法及其装置进行详细地介绍。
在NR中,特别是通信频段在frequency range 2(6GHz以上)时,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于beam(波束)的发送和接收。目前,对于基于beam的接收,网络设备通过信令指示准共址QCL(Quasi Co-location)type D的TCI(transmission configuration indicator,传输配置指示)state(状态),以告知终端设备接收时需要使用的beam。
Rel-16讨论了Multi-TRP(Multiple Transmission and Reception Point,多个传输接收节点)的PDSCH的发送,网络设备指示两个TCI state用于多次发送PDSCH,两个TCI state与用于多次发送PDSCH的资源之间存在映射关系。
在PDSCH的传输方式为TDM(time division multiplexing,时分复用)方法的情况下,两个TCI state与用于多次发送PDSCH的资源之间存在映射关系可以如下:
在PDSCH的传输方式为时隙内时分复用intra-slot TDM方法:PDSCH只传输两次,在时域位置上靠前的PDSCH使用第一个TCI state;在时域位置上靠后的PDSCH使用第二个TCI state。
在PDSCH的传输方式为时隙间时分复用inter-slot TDM方法:PDSCH只传输两次,在时域位置上靠前的PDSCH使用第一个TCI state;在时域位置上靠后的PDSCH使用第二个TCI state。若PDSCH传输次数超过两次,包含如下两种方式:循环映射和顺序映射。
其中,循环映射:时域位置上的第一个PDSCH使用第一个TCI state,在时域位置上的第二个PDSCH使用第二个TCI state;之后在时域位置上的第三个PDSCH使用第一个TCI state,在时域位置上的第四个PDSCH使用第二个TCI state,依次进行。
顺序映射:时域位置上的第一个和第二个PDSCH使用第一个TCI state,时域位置上的第三个和第四个PDSCH使用第二个TCI state,时域位置上的第五个和第六个PDSCH使用第一个TCI state,时域 位置上的第七个和第八个PDSCH使用第二个TCI state,依次进行。
对于PDCCH的传输,当PDCCH的传输方式也使用TDM的传输方式时,多个PDCCH与两个TCI state的映射方式与多个PDSCH与两个TCI state的映射方式可以相同。例如:时域位置上的第一个PDCCH使用第一个TCI state,时域位置上的第二个PDCCH使用第二个TCI state,依次进行。
而对于网络设备指示两个TCI state(状态)用于多次发送PDSCH,两个TCI state与用于多次发送PDSCH的时域资源之间存在映射关系。并且对于PDCCH(physical downlink control channel,物理下行控制信道)的传输,两个TCI state与用于多次发送PDCCH的时域资源之间也存在映射关系。当PDCCH和PDSCH都配置了重复发送时,PDCCH和PDSCH可能会在时域上重叠,若时域重叠时,按照之前的映射关系使得PDCCH和PDSCH的TCI state不同时,网络设备和终端设备如果没有统一的规则将无法保持TCI state一致,这是亟需解决的技术问题。
基于此,本公开实施例提供一种通信方法、装置和存储介质,以在PDCCH和PDSCH在时域上重叠时,确定各个PDSCH的TCI state,使得网络设备和终端设备保持TCI state的一致,提高基于波束的传输性能。
请参见图2,图2是本公开实施例提供的一种通信方法的流程图。
如图2所示,该方法由终端设备执行,该方法可以包括但不限于如下步骤:
S1:接收网络设备的配置信息,配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于接收多个PDCCH的M个传输配置指示状态TCI state,其中M为大于0的整数;配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于接收多个PDSCH的N个TCIstate,其中N为大于0的整数。
S2:在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定接收PDSCH的TCI state。
其中,至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠,包括:一个PDCCH和一个PDSCH所占用的时域资源存在重叠;或者,一个PDCCH和多个PDSCH所占用的时域资源存在重叠;或者,多个PDCCH和一个PDSCH所占用的时域资源存在重叠;或者,多个PDCCH和多个PDSCH所占用的时域资源存在重叠等;其中多个为两个或两个以上。
可以理解的是,在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,终端设备可能需要使用两个TCI state接收同一个PDSCH,可能TCI state切换的时间会导致接收中断,或者,终端设备可能无法支持使用多于两个TCI state进行接收,从而会影响基于波束的传输性能。
本公开实施例中,通过在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定接收PDSCH的TCI state,以使网络设备发送PDSCH的TCI state与终端设备接收PDSCH的TCI state保持一致,从而提高基于波束的传输性能。
通过实施本公开实施例,终端设备接收网络设备的配置信息,配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于接收多个PDCCH的M个传输配置指示状态TCI state,其中M为大于0的整数;配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于接收多个PDSCH的N个TCIstate,其中N为大于0的整数;在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定接收PDSCH的TCI state。通过这种方式,可以使接收PDCCH的TCI state与接收PDSCH的TCI state保持一致,从而提高基于波束的传输性能。
在一些实施例中,至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠,包括:多个PDCCH中的第i个PDCCH与多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,其中i为大于0的整数,h为大于0的整数。
示例性实施例中,在i为1,h为1的情况下,多个PDCCH中的第1个PDCCH与多个PDSCH中的第1个PDSCH占用的时域资源存在重叠。
又一示例性实施例中,在i为2,h为1的情况下,多个PDCCH中的第2个PDCCH与多个PDSCH中的第1个PDSCH占用的时域资源存在重叠。
在一些实施例中,多个PDCCH中的第i个PDCCH与多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,包括:多个PDCCH的传输方式为时隙内时分复用intra-slot TDM方法,多个PDSCH的传输方式为intra-slot TDM方法;或者,多个PDCCH的传输方式为intra-slot TDM方法,多个PDSCH的传输方式为时隙间时分复用inter-slot TDM方法;或者,多个PDCCH的传输方式为inter-slot TDM方法,多个PDSCH的传输方式为inter-slot TDM方法;或者,多个PDCCH的传输方式为单频网SFN或频分复用FDM方法,多个PDSCH的传输方式为SFN或空分复用SDM或FDM方法;或者,多个PDCCH为SFN或FDM方法,多个PDSCH为时分复用TDM方法。
其中,多个PDCCH中的第i个PDCCH与多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,包括:多个PDCCH可以为两个PDCCH,i为大于0小于或者等于2的整数;多个PDSCH可以为两个PDSCH,h为大于0小于或者等于2的整数;或者多个PDSCH可以为多于两个。
示例性实施例中,多个PDCCH为两个PDCCH,多个PDSCH为两个PDSCH。
其中,两个PDCCH的传输方式为时隙内时分复用intra-slot TDM方法,两个PDSCH的传输方式为intra-slot TDM方法;或者,两个PDCCH的传输方式为intra-slot TDM方法,两个PDSCH的传输方式为时隙间时分复用inter-slot TDM方法;或者,两个PDCCH的传输方式为inter-slot TDM方法,两个PDSCH的传输方式为inter-slot TDM方法;或者,两个PDCCH的传输方式为单频网SFN或频分复用FDM方法,两个PDSCH的传输方式为SFN或空分复用SDM或FDM方法;或者,两个PDCCH为SFN或FDM方法,两个PDSCH为时分复用TDM方法。
在一些实施例中,确定接收PDSCH的TCI state,包括:第h个PDSCH使用第i个PDCCH对应的TCI state。
本公开实施例中,在多个PDCCH中的第i个PDCCH与多个PDSCH中的第h个PDSCH占用的时域资源存在重叠的情况下,第h个PDSCH使用第i个PDCCH对应的TCI state;其中i为大于0的整数,h为大于0的整数。通过这样的方式,可以使网络设备发送PDSCH的TCI state与终端设备接收PDSCH的TCI state保持一致,从而提高基于波束的传输性能。
在一些实施例中,M个TCI state与N个TCI state一一相同。举例来说:PDCCH#1需要使用第一TCI state,PDCCH#2需要使用第二TCI state,PDSCH#1需要使用第三TCI state,PDSCH#2需要使用第四TCI state。Unified TCI state是指第一TCI state与第三TCI state一样,第二TCI state与第四TCI state一样;或第一TCI state与第四TCI state一样,第二TCI state与第三TCI state一样。也就是说:PDCCH#1和PDSCH#1使用相同的TCI state,PDCCH#2和PDSCH#2使用相同的TCI state;或PDCCH#1和PDSCH#2使用相同的TCI state,PDCCH#2和PDSCH#1使用相同的TCI state。上述这些情况,都可以称为“M个TCI state与N个TCI state一一相同”。
可以理解的是,多个PDCCH的M个TCI state和多个PDSCH的N个TCI state中,M个TCI state与N个TCI state一一相同,从而接收PDCCH的TCI state与接收PDSCH的TCI state一一相同,保持一致。
在一些实施例中,N的值为2,多个PDSCH包括两个PDSCH,第h个PDSCH以外的PDSCH使用N个TCI state中与第i个PDCCH对应的TCI state不同的TCI state。
本公开实施例中,在多个PDCCH中的第i个PDCCH与两个PDSCH中的第h个PDSCH占用的时域资源存在重叠的情况下,第h个PDSCH以外的PDSCH使用两个TCI state中与第i个PDCCH对应的TCI state不同的TCI state。
在h为1的情况下,第2个PDSCH使用两个TCI state中与第i个PDCCH对应的TCI state不同的TCI state,从而,与之前的方法相比,PDCCH与TCI state的对应关系发生了相反的变化。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含2个PDSCH,按照传统的映射关系,第一个PDSCH使用TCI state#1,第二个PDSCH使用TCI state#2。但是由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以基于本发明,第一个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第二个PDSCH则使用TCI state#1。
在一些实施例中,N的值为2,多个PDSCH包括L个PDSCH,其中L为大于2的偶数;根据TCI state的映射规则,来确定接收PDSCH的TCI state;其中,TCI state的映射规则为循环映射cyclic Mapping或者顺序映射sequentical Mapping。
本公开实施例中,多个PDCCH中的第i个PDCCH与L个PDSCH中的第h个PDSCH占用的时域资源存在重叠(其中i为大于0的整数,h为大于0的整数)的情况下,N的值为2,多个PDSCH包括L个PDSCH,其中L为大于2的偶数;根据TCI state的映射规则,来确定接收PDSCH的TCI state。
具体的,TCI state的映射规则为循环映射cyclic Mapping或者顺序映射sequentical Mapping。
在一些实施例中,在TCI state的映射规则为cyclic Mapping的情况下,h为奇数时,第奇数个PDSCH使用第i个PDCCH对应的TCI state,第偶数个PDSCH使用N个TCI state中与第i个PDCCH对应的TCI state的不同的TCI state;或h为偶数时,第偶数个PDSCH使用第i个PDCCH对应的TCI state,第奇数个PDSCH使用N个TCI state中与第i个PDCCH对应的TCI state的不同的TCI state。
其中,在TCI state的映射规则为cyclic Mapping的情况下,h为1的情况下,第一个PDSCH使用第i个PDCCH对应的TCI state;第二个PDSCH使用N个TCI state中与第i个PDCCH对应的TCI state的不同的TCI state;第三个PDSCH使用第i个PDCCH对应的TCI state,第四个PDSCH使用N个TCI state中与第i个PDCCH对应的TCI state的不同的TCI state;依照此规律进行。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含4个PDSCH,由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以第一个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第二个PDSCH则使用TCI state#1,第三个PDSCH使用TCI state#2,第四个PDSCH使用TCI state#1。
本公开实施例中,在TCI state的映射规则为cyclic Mapping的情况下,分别对第h个PDSCH为奇数个PDSCH和偶数个PDSCH的情况下,确定接收PDSCH的TCI state时的不同规则,能够使网络设备发送PDSCH的TCI state与终端设备接收PDSCH的TCI state保持一致,从而提高基于波束的传输性 能。
在一些实施例中,在TCI state的映射规则为sequentical Mapping的情况下,第4j+1和第4j+2个PDSCH使用第i个PDCCH对应的TCI state,第4j+3和第4j+4个PDSCH使用N个TCI state中与第i个PDCCH对应的TCI state不同的TCI state,其中j为大于或等于0的整数;或者,前L/2个PDSCH使用第i个PDCCH对应的TCI state,后L/2个PDSCH使用N个TCI state中与第i个PDCCH对应的TCI state的不同的TCI state。
其中,针对h取值为1的情况下,多个PDCCH中的第i个PDCCH与多个PDSCH中的第1个PDSCH占用的时域资源存在重叠,确定接收PDSCH的TCI state。采用第一个和第二个PDSCH使用第i个PDCCH对应的TCI state,第三个和第四个PDSCH使用N个TCI state中与第i个PDCCH对应的TCI state不同的TCI state,第五个和第六个PDSCH使用第i个PDCCH对应的TCI state,第七个和第八个PDSCH使用N个TCI state中与第i个PDCCH对应的TCI state不同的TCI state,依此规律进行。以解决多个PDCCH中的第i个PDCCH与多个PDSCH中的第1个PDSCH占用的时域资源存在重叠,确定接收PDSCH的TCI state。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含4个PDSCH,由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以第一个PDSCH和第二个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第三个PDSCH和第四个PDSCH则使用TCI state#1。
在另一些实施例中,M个TCI state与N个TCI state非一一相同。
在一些实施例中,N的值为2,多个PDSCH包括两个PDSCH,第一个PDSCH使用N个TCI state中第一个TCI state和第二个PDSCH使用N个TCI state中第二个TCI state;或者,第一个PDSCH使用N个TCI state中第二个TCI state和第二个PDSCH使用N个TCI state中第一个TCI state。
其中,在M个TCI state与N个TCI state非一一相同的情况下,第一个PDSCH使用2个TCI state中第一个TCI state和第二个PDSCH使用2个TCI state中第二个TCI state;或者,第一个PDSCH使用2个TCI state中第二个TCI state和第二个PDSCH使用2个TCI state中第一个TCI state。
本公开实施例中,原本在第一个PDSCH使用2个TCI state中的第一个TCI state,第二个PDSCH使用2个TCI state中的第二个TCI state的情况下,由于第一个PDSCH与第i个PDCCH所占用的时域资源存在重叠,所以,第一个PDSCH使用与第i个PDCCH相同的TCI state,而第二个PDSCH保持不变,还是使用2个TCI state中第二个TCI state,或者第二个PDSCH使用2个TCI state中第一个TCI state,按照第一次来算。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含2个PDSCH,多个PDSCH对应的TCI state为TCI state#3和TCI state#4。由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以第一个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第二个PDSCH则使用TCI state#4即不管第一个PDSCH是否是使用了TCI state#3;或第二个PDSCH则使用TCI state#3即由于第一个PDSCH没有使用TCI state#3所以第二个PDSCH从TCI state#3开始。
在一些实施例中,N的值为2,多个PDSCH包括L个PDSCH,其中L为大于2的偶数;根据循环映射cyclic Mapping或者顺序映射sequentical Mapping的映射规则,确定接收PDSCH的TCI state。
在一些实施例中,根据cyclic Mapping的映射规则,第奇数个PDSCH使用N个TCI state中第一个TCI state,第偶数个PDSCH使用N个TCI state中第二个TCI state;其中,与多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;或第奇数个PDSCH使用N个TCI state中第二个TCI state,第偶数个PDSCH使用N个TCI state中第一个TCI state;其中,与多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含4个PDSCH,多个PDSCH对应的TCI state为TCI state#3和TCI state#4。由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以第一个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第二个PDSCH则使用TCI state#4即不管第一个PDSCH是否是使用了TCI state#3,第三个PDSCH使用TCI state#3,第四个PDSCH使用TCI state#4;或第二个PDSCH则使用TCI state#3即由于第一个PDSCH没有使用TCI state#3所以第二个PDSCH从TCI state#3开始,第三个PDSCH使用TCI state#4,第四个PDSCH使用TCI state#3。
在一些实施例中,根据sequentical Mapping的映射规则,第4k+1和第4k+2个使用第一个TCI state,第4k+3和第4k+4个使用第二个TCI state,其中k为大于或等于0的整数;其中,与多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;或者,前L/2个PDSCH使用第一个PDCCH对应的TCI state,后L/2个PDSCH使用N个TCI state中与第二个PDCCH对应的TCI state的不同的TCI state;其中,与多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含4个PDSCH,多个PDSCH对应的TCI state为TCI state#3和TCI state#4。由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以第一个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第二个PDSCH则使用TCI state#3,第三个PDSCH和第四个PDSCH使用TCI state#4;或第二个PDSCH和第三个PDSCH使用TCI state#3即由于第一个PDSCH没有使用TCI state#3所以第二个PDSCH从TCI state#3开始,第四个PDSCH使用TCI state#4。
在一些实施例中,在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定接收PDSCH的TCI state,包括:终端设备不期待多个PDCCH中的第s个PDCCH和第s+1个PDCCH均与多个PDSCH中的其中一个PDSCH占用的时域资源存在重叠,其中s为大于0的整数。
请参见图3,图3是本公开实施例提供的另一种通信方法的流程图。
如图3所示,该方法由网络设备执行,该方法可以包括但不限于如下步骤:
S10:发送终端设备的配置信息,配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于发送多个PDCCH的M个传输配置指示状态TCI state,其中M为大于0的整数;配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于发送多个PDSCH的N个TCIstate,其中N为大于0的整数。
S20:在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定发送PDSCH的TCI state。
其中,至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠,包括:一个PDCCH和一个PDSCH所占用的时域资源存在重叠;或者,一个PDCCH和多个PDSCH所占用的时域资源存在 重叠;或者,多个PDCCH和一个PDSCH所占用的时域资源存在重叠;或者,多个PDCCH和多个PDSCH所占用的时域资源存在重叠等,多个为两个或两个以上。
可以理解的是,在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,终端设备可能需要使用两个TCI state接收同一个PDSCH,可能TCI state切换的时间会导致接收中断,或者,终端设备可能无法支持使用多于两个TCI state进行接收,从而会影响基于波束的传输性能。
本公开实施例中,通过在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定发送PDSCH的TCI state,以使网络设备发送PDSCH的TCI state与终端设备接收PDSCH的TCI state保持一致,从而提高基于波束的传输性能。
通过实施本公开实施例,网络设备发送终端设备的配置信息,配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于发送多个PDCCH的M个传输配置指示状态TCI state,其中M为大于0的整数;配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于发送多个PDSCH的N个TCIstate,其中N为大于0的整数;在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定发送PDSCH的TCI state。通过这种方式,可以使网络设备发送PDSCH的TCI state与终端设备接收PDSCH的TCI state保持一致,从而提高基于波束的传输性能。
在一些实施例中,至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠,包括:多个PDCCH中的第i个PDCCH与多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,其中i为大于0的整数,h为大于0的整数。
示例性实施例中,在i为1,h为1的情况下,多个PDCCH中的第1个PDCCH与多个PDSCH中的第1个PDSCH占用的时域资源存在重叠。
又一示例性实施例中,在i为2,h为1的情况下,多个PDCCH中的第2个PDCCH与多个PDSCH中的第1个PDSCH占用的时域资源存在重叠。
在一些实施例中,多个PDCCH中的第i个PDCCH与多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,包括:多个PDCCH的传输方式为时隙内时分复用intra-slot TDM方法,多个PDSCH的传输方式为intra-slot TDM方法;或者,多个PDCCH的传输方式为intra-slot TDM方法,多个PDSCH的传输方式为时隙间时分复用inter-slot TDM方法;或者,多个PDCCH的传输方式为inter-slot TDM方法,多个PDSCH的传输方式为inter-slot TDM方法;或者,多个PDCCH的传输方式为单频网SFN或频分复用FDM方法,多个PDSCH的传输方式为SFN或空分复用SDM或FDM方法;或者,多个PDCCH为SFN或FDM方法,多个PDSCH为时分复用TDM方法。
其中,多个PDCCH中的第i个PDCCH与多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,包括:多个PDCCH可以为两个PDCCH,i为大于0小于或者等于2的整数;多个PDSCH可以为两个PDSCH,h为大于0小于或者等于2的整数;或者多个PDSCH可以为多于两个。
示例性实施例中,多个PDCCH为两个PDCCH,多个PDSCH为两个PDSCH。
其中,两个PDCCH的传输方式为时隙内时分复用intra-slotTDM方法,两个PDSCH的传输方式为intra-slotTDM方法;或者,两个PDCCH的传输方式为intra-slotTDM方法,两个PDSCH的传输方式为时隙间时分复用inter-slotTDM方法;或者,两个PDCCH的传输方式为inter-slotTDM方法,两个PDSCH的传输方式为inter-slotTDM方法;或者,两个PDCCH的传输方式为单频网SFN或频分复用FDM方法,两个PDSCH的传输方式为SFN或空分复用SDM或FDM方法;或者,两个PDCCH为SFN或FDM 方法,两个PDSCH为时分复用TDM方法。
在一些实施例中,确定发送PDSCH的TCIstate,包括:第h个PDSCH使用第i个PDCCH对应的TCIstate。
本公开实施例中,在多个PDCCH中的第i个PDCCH与多个PDSCH中的第h个PDSCH占用的时域资源存在重叠的情况下,第h个PDSCH使用第i个PDCCH对应的TCIstate;其中i为大于0的整数,h为大于0的整数。通过这样的方式,可以使网络设备发送PDSCH的TCIstate与终端设备接收PDSCH的TCIstate保持一致,从而提高基于波束的传输性能。
在一些实施例中,M个TCIstate与N个TCIstate一一相同。举例来说:PDCCH#1需要使用第一TCI state,PDCCH#2需要使用第二TCI state,PDSCH#1需要使用第三TCI state,PDSCH#2需要使用第四TCI state。Unified TCI state是指第一TCI state与第三TCI state一样,第二TCI state与第四TCI state一样;或第一TCI state与第四TCI state一样,第二TCI state与第三TCI state一样。也就是说:PDCCH#1和PDSCH#1使用相同的TCI state,PDCCH#2和PDSCH#2使用相同的TCI state;或PDCCH#1和PDSCH#2使用相同的TCI state,PDCCH#2和PDSCH#1使用相同的TCI state。上述这些情况,都可以称为“M个TCI state与N个TCI state一一相同”。
可以理解的是,多个PDCCH的M个TCIstate和多个PDSCH的N个TCI state中,M个TCIstate与N个TCIstate一一相同,从而终端设备接收PDCCH的TCIstate与接收PDSCH的TCIstate一一相同,保持一致。
在一些实施例中,N的值为2,多个PDSCH包括两个PDSCH,第h个PDSCH以外的PDSCH使用N个TCIstate中与第i个PDCCH对应的TCIstate不同的TCIstate。
本公开实施例中,在多个PDCCH中的第i个PDCCH与两个PDSCH中的第h个PDSCH占用的时域资源存在重叠的情况下,第h个PDSCH以外的PDSCH使用两个TCIstate中与第i个PDCCH对应的TCIstate不同的TCIstate。
在h为1的情况下,第2个PDSCH使用两个TCIstate中与第i个PDCCH对应的TCIstate不同的TCIstate,从而,与之前的方法相比,PDCCH与TCIstate的对应关系发生了相反的变化。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含2个PDSCH,按照传统的映射关系,第一个PDSCH使用TCI state#1,第二个PDSCH使用TCI state#2。但是由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以基于本发明,第一个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第二个PDSCH则使用TCI state#1。
在一些实施例中,N的值为2,多个PDSCH包括L个PDSCH,其中L为大于2的偶数;根据TCIstate的映射规则,来确定发送PDSCH的TCIstate;其中,TCIstate的映射规则为循环映射cyclicMapping或者顺序映射sequenticalMapping。
本公开实施例中,多个PDCCH中的第i个PDCCH与L个PDSCH中的第h个PDSCH占用的时域资源存在重叠(其中i为大于0的整数,h为大于0的整数)的情况下,N的值为2,多个PDSCH包括L个PDSCH,其中L为大于2的偶数;根据TCIstate的映射规则,来确定发送PDSCH的TCIstate。
具体的,TCIstate的映射规则为循环映射cyclicMapping或者顺序映射sequenticalMapping。
在一些实施例中,在TCIstate的映射规则为cyclicMapping的情况下,h为奇数时,第奇数个PDSCH 使用第i个PDCCH对应的TCIstate,第偶数个PDSCH使用N个TCIstate中与第i个PDCCH对应的TCIstate的不同的TCIstate;或h为偶数时,第偶数个PDSCH使用第i个PDCCH对应的TCIstate,第奇数个PDSCH使用N个TCIstate中与第i个PDCCH对应的TCIstate的不同的TCIstate。
其中,在TCIstate的映射规则为cyclicMapping的情况下,h为1的情况下,第一个PDSCH使用第i个PDCCH对应的TCIstate;第二个PDSCH使用N个TCIstate中与第i个PDCCH对应的TCIstate的不同的TCIstate;第三个PDSCH使用第i个PDCCH对应的TCIstate,第四个PDSCH使用N个TCIstate中与第i个PDCCH对应的TCIstate的不同的TCIstate;依照此规律进行。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含4个PDSCH,由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以第一个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第二个PDSCH则使用TCI state#1,第三个PDSCH使用TCI state#2,第四个PDSCH使用TCI state#1。
本公开实施例中,在TCIstate的映射规则为cyclicMapping的情况下,分别对第h个PDSCH为奇数个PDSCH和偶数个PDSCH的情况下,确定发送PDSCH的TCIstate时的不同规则,能够使网络设备发送PDSCH的TCIstate与终端设备接收PDSCH的TCIstate保持一致,从而提高基于波束的传输性能。
在一些实施例中,在TCIstate的映射规则为sequenticalMapping的情况下,第4j+1和第4j+2个PDSCH使用第i个PDCCH对应的TCIstate,第4j+3和第4j+4个PDSCH使用N个TCIstate中与第i个PDCCH对应的TCIstate不同的TCIstate,其中j为大于或等于0的整数;或者,前L/2个PDSCH使用第i个PDCCH对应的TCIstate,后L/2个PDSCH使用N个TCIstate中与第i个PDCCH对应的TCIstate的不同的TCI state。
其中,针对h取值为1的情况下,多个PDCCH中的第i个PDCCH与多个PDSCH中的第1个PDSCH占用的时域资源存在重叠,确定接收PDSCH的TCIstate。采用第一个和第二个PDSCH使用第i个PDCCH对应的TCIstate,第三个和第四个PDSCH使用N个TCIstate中与第i个PDCCH对应的TCIstate不同的TCIstate,第五个和第六个PDSCH使用第i个PDCCH对应的TCIstate,第七个和第八个PDSCH使用N个TCIstate中与第i个PDCCH对应的TCIstate不同的TCIstate,依此规律进行。以解决多个PDCCH中的第i个PDCCH与多个PDSCH中的第1个PDSCH占用的时域资源存在重叠,确定发送PDSCH的TCIstate。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含4个PDSCH,由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以第一个PDSCH和第二个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第三个PDSCH和第四个PDSCH则使用TCI state#1。
在一些实施例中,M个TCIstate与N个TCIstate非一一相同。
在一些实施例中,N的值为2,多个PDSCH包括两个PDSCH,第一个PDSCH使用N个TCIstate中第一个TCIstate和第二个PDSCH使用N个TCIstate中第二个TCIstate;或者,第一个PDSCH使用N个TCIstate中第二个TCIstate和第二个PDSCH使用N个TCIstate中第一个TCIstate。
其中,在M个TCIstate与N个TCIstate非一一相同的情况下,第一个PDSCH使用2个TCIstate中第一个TCIstate和第二个PDSCH使用2个TCIstate中第二个TCIstate;或者,第一个PDSCH使用2 个TCIstate中第二个TCIstate和第二个PDSCH使用2个TCIstate中第一个TCIstate。
本公开实施例中,原本在第一个PDSCH使用2个TCIstate中的第一个TCIstate,第二个PDSCH使用2个TCIstate中的第二个TCIstate的情况下,由于第一个PDSCH与第i个PDCCH所占用的时域资源存在重叠,所以,第一个PDSCH使用与第i个PDCCH相同的TCIstate,而第二个PDSCH保持不变,还是使用2个TCIstate中第二个TCIstate,或者第二个PDSCH使用2个TCIstate中第一个TCIstate,按照第一次来算。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含2个PDSCH,多个PDSCH对应的TCIstate为TCI state#3和TCI state#4。由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以第一个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第二个PDSCH则使用TCI state#4即不管第一个PDSCH是否是使用了TCI state#3;或第二个PDSCH则使用TCI state#3即由于第一个PDSCH没有使用TCI state#3所以第二个PDSCH从TCI state#3开始。
在一些实施例中,N的值为2,多个PDSCH包括L个PDSCH,其中L为大于2的偶数;根据循环映射cyclicMapping或者顺序映射sequenticalMapping的映射规则,确定发送PDSCH的TCIstate。
在一些实施例中,根据cyclicMapping的映射规则,第奇数个PDSCH使用N个TCIstate中第一个TCIstate,第偶数个PDSCH使用N个TCIstate中第二个TCIstate;其中,与多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;或第奇数个PDSCH使用N个TCIstate中第二个TCIstate,第偶数个PDSCH使用N个TCIstate中第一个TCIstate;其中,与多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含4个PDSCH,多个PDSCH对应的TCIstate为TCI state#3和TCI state#4。由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以第一个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第二个PDSCH则使用TCI state#4即不管第一个PDSCH是否是使用了TCI state#3,第三个PDSCH使用TCI state#3,第四个PDSCH使用TCI state#4;或第二个PDSCH则使用TCI state#3即由于第一个PDSCH没有使用TCI state#3所以第二个PDSCH从TCI state#3开始,第三个PDSCH使用TCI state#4,第四个PDSCH使用TCI state#3。
在一些实施例中,根据sequenticalMapping的映射规则,第4k+1和第4k+2个使用第一个TCIstate,第4k+3和第4k+4个使用第二个TCIstate,其中k为大于或等于0的整数;其中,与多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;或者,前L/2个PDSCH使用第一个PDCCH对应的TCIstate,后L/2个PDSCH使用N个TCIstate中与第二个PDCCH对应的TCIstate的不同的TCIstate;其中,与多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
示例性地,多个PDCCH包含2个PDCCH,第一个PDCCH使用TCI state#1,第二个PDCCH使用TCI state#2;多个PDSCH包含4个PDSCH,多个PDSCH对应的TCIstate为TCI state#3和TCI state#4。由于第二(即h=2)个PDCCH和第一(即i=1)个PDSCH在时域存在重叠,所以第一个PDSCH需要使用与第二个PDCCH相同的TCI state#2,而第二个PDSCH则使用TCI state#3,第三个PDSCH和第四个PDSCH使用TCI state#4;或第二个PDSCH和第三个PDSCH使用TCI state#3即由于第一个PDSCH 没有使用TCI state#3所以第二个PDSCH从TCI state#3开始,第四个PDSCH使用TCI state#4。
在一些实施例中,在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定发送PDSCH的TCIstate,包括:终端设备不期待多个PDCCH中的第s个PDCCH和第s+1个PDCCH均与多个PDSCH中的其中一个PDSCH占用的时域资源存在重叠,其中s为大于0的整数。
上述本公开提供的实施例中,分别从网络设备、第一终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络设备和第一终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图4,为本公开实施例提供的一种通信装置70的结构示意图。图4所示的通信装置70可包括收发模块701和处理模块702。收发模块701可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块701可以实现发送功能和/或接收功能。
通信装置70可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置70可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置70为终端设备:收发模块,用于接收网络设备的配置信息,配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于接收多个PDCCH的M个传输配置指示状态TCIstate,其中M为大于0的整数;所述配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于接收多个PDSCH的N个TCIstate,其中N为大于0的整数;处理模块,用于在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定接收PDSCH的TCIstate。
通信装置70为网络设备:收发模块,用于发送终端设备的配置信息,配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于发送多个PDCCH的M个传输配置指示状态TCIstate,其中M为大于0的整数;配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于发送多个PDSCH的N个TCIstate,其中N为大于0的整数;处理模块,用于在至少一个PDCCH和至少一个PDSCH所占用的时域资源存在重叠的情况下,确定发送PDSCH的TCIstate。
请参见图5,图5是本公开实施例提供的另一种通信装置1000的结构示意图。
通信装置1000可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1000可以包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1000中还可以包括一个或多个存储器1002,其上可以存有计算机程序1004,存储器1002执行所述计算机程序1004,以使得通信装置1000执行上述方法实施例中描述的方法。可选的,所述存储器1002中还可以存储有数据。通信装置1000和存储器1002可以单独设置,也可以集成在一起。
可选的,通信装置1000还可以包括收发器1005、天线1006。收发器1005可以称为收发单元、收 发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1000中还可以包括一个或多个接口电路1007。接口电路1007用于接收代码指令并传输至处理器1001。处理器1001运行所述代码指令以使通信装置1000执行上述方法实施例中描述的方法。
通信装置1000为终端设备:收发器1005用于执行图2中的S1。处理器1001用于执行图2中的S2。
通信装置1000为网络设备:收发器1005用于执行图3中的S10。处理器1001用于执行图3中的S20。
在一种实现方式中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1001可以存有计算机程序1003,计算机程序1003在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integratedcircuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图5的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,请参见图6,为本公开实施例中提供的一种芯片的结构图。
如图6所示,芯片1100包括处理器1101和接口1103。其中,处理器1101的数量可以是一个或多个,接口1103的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1103,用于接收代码指令并传输至所述处理器。
处理器1101,用于运行代码指令以执行如上面一些实施例所述的通信方法。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1103,用于接收代码指令并传输至所述处理器。
处理器1101,用于运行代码指令以执行如上面一些实施例所述的通信方法。
可选的,芯片1100还包括存储器1102,存储器1102用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一些实施例(someembodiments)”、“示例性实施例(exemplaryembodiments)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (38)

  1. 一种通信方法,其特征在于,所述方法由终端设备执行,所述方法,包括:
    接收网络设备的配置信息,所述配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于接收所述多个PDCCH的M个传输配置指示状态TCIstate,其中M为大于0的整数;所述配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于接收所述多个PDSCH的N个TCIstate,其中N为大于0的整数;
    在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定接收所述PDSCH的所述TCIstate。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠,包括:
    所述多个PDCCH中的第i个PDCCH与所述多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,其中i为大于0的整数,h为大于0的整数。
  3. 根据权利要求2所述的方法,其特征在于,所述多个PDCCH中的第i个PDCCH与所述多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,包括以下的至少一种:
    所述多个PDCCH的传输方式为时隙内时分复用intra-slotTDM方法,所述多个PDSCH的传输方式为intra-slotTDM方法;
    所述多个PDCCH的传输方式为intra-slot TDM方法,所述多个PDSCH的传输方式为时隙间时分复用inter-slot TDM方法;
    所述多个PDCCH的传输方式为inter-slotTDM方法,所述多个PDSCH的传输方式为inter-slotTDM方法;
    所述多个PDCCH的传输方式为单频网SFN或频分复用FDM方法,所述多个PDSCH的传输方式为SFN或空分复用SDM或FDM方法;以及
    所述多个PDCCH为SFN或FDM方法,所述多个PDSCH为时分复用TDM方法。
  4. 根据权利要求2或3所述的方法,其特征在于,所述确定接收所述PDSCH的所述TCIstate,包括:
    第h个所述PDSCH使用第i个所述PDCCH对应的TCIstate。
  5. 根据权利要求4所述的方法,其特征在于,所述M个TCIstate与所述N个TCIstate一一相同。
  6. 根据权利要求5所述的方法,其特征在于,所述N的值为2,所述多个PDSCH包括两个PDSCH,第h个所述PDSCH以外的所述PDSCH使用N个TCIstate中与第i个所述PDCCH对应的TCIstate不同的TCIstate。
  7. 根据权利要求5所述的方法,其特征在于,所述N的值为2,所述多个PDSCH包括L个PDSCH,其中L为大于2的偶数;
    根据所述TCIstate的映射规则,来确定接收所述PDSCH的所述TCIstate;其中,所述TCIstate的映射规则为循环映射cyclicMapping或者顺序映射sequenticalMapping。
  8. 根据权利要求7所述的方法,其特征在于,所述方法,还包括:
    在所述TCIstate的映射规则为cyclicMapping的情况下,h为奇数时,第奇数个所述PDSCH使用第i个所述PDCCH对应的TCIstate,第偶数个所述PDSCH使用N个TCIstate中与第i个所述PDCCH对应的TCIstate的不同的TCIstate;
    或h为偶数时,第偶数个所述PDSCH使用第i个所述PDCCH对应的TCIstate,第奇数个所述PDSCH使用N个TCIstate中与第i个所述PDCCH对应的TCIstate的不同的TCIstate。
  9. 根据权利要求7所述的方法,其特征在于,所述方法,还包括:
    在所述TCIstate的映射规则为sequenticalMapping的情况下,第4j+1和第4j+2个所述PDSCH使用第i个所述PDCCH对应的TCIstate,第4j+3和第4j+4个所述PDSCH使用N个TCIstate中与第i个所述PDCCH对应的TCIstate不同的TCIstate,其中j为大于或等于0的整数;
    或者,前L/2个所述PDSCH使用第i个所述PDCCH对应的TCIstate,后L/2个所述PDSCH使用N个TCIstate中与第i个所述PDCCH对应的TCIstate的不同的TCI state。
  10. 根据权利要求4所述的方法,其特征在于,所述M个TCIstate与所述N个TCIstate非一一相同。
  11. 根据权利要求10所述的方法,其特征在于,所述N的值为2,所述多个PDSCH包括两个PDSCH,第一个所述PDSCH使用N个TCIstate中第一个TCIstate和第二个所述PDSCH使用N个TCIstate中第二个TCIstate;
    或者,第一个所述PDSCH使用N个TCIstate中第二个TCIstate和第二个所述PDSCH使用N个TCIstate中第一个TCIstate。
  12. 根据权利要求10所述的方法,其特征在于,所述N的值为2,所述多个PDSCH包括L个PDSCH,其中L为大于2的偶数;
    根据循环映射cyclicMapping或者顺序映射sequenticalMapping的映射规则,确定接收所述PDSCH的所述TCIstate。
  13. 根据权利要求12所述的方法,其特征在于,所述方法,还包括:
    根据所述cyclicMapping的映射规则,第奇数个所述PDSCH使用N个TCIstate中第一个TCIstate,第偶数个所述PDSCH使用N个TCIstate中第二个TCIstate;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;
    或第奇数个所述PDSCH使用N个TCIstate中第二个TCIstate,第偶数个所述PDSCH使用N个TCIstate中第一个TCIstate;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
  14. 根据权利要求12所述的方法,其特征在于,所述方法,还包括:
    根据所述sequenticalMapping的映射规则,第4k+1和第4k+2个使用第一个TCIstate,第4k+3和第4k+4个使用第二个TCIstate,其中k为大于或等于0的整数;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;
    或者,前L/2个所述PDSCH使用第一个所述PDCCH对应的TCIstate,后L/2个所述PDSCH使用N个TCIstate中与第二个所述PDCCH对应的TCIstate的不同的TCIstate;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
  15. 根据权利要求1所述的方法,其特征在于,所述在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定接收所述PDSCH的所述TCIstate,包括:
    终端设备不期待所述多个PDCCH中的第s个PDCCH和第s+1个PDCCH均与所述多个PDSCH中的其中一个PDSCH占用的时域资源存在重叠,其中s为大于0的整数。
  16. 一种通信方法,其特征在于,所述方法由网络设备执行,所述方法,包括:
    发送终端设备的配置信息,所述配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于发送所述多个PDCCH的M个传输配置指示状态TCIstate,其中M为大于0的整数;所述配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于发送所述多个PDSCH的N个TCIstate,其中N为大于0的整数;
    在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定发送所述PDSCH的所述TCIstate。
  17. 根据权利要求16所述的方法,其特征在于,所述至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠,包括:
    所述多个PDCCH中的第i个PDCCH与所述多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,其中i为大于0的整数,h为大于0的整数。
  18. 根据权利要求17所述的方法,其特征在于,所述多个PDCCH中的第i个PDCCH与所述多个PDSCH中的第h个PDSCH占用的时域资源存在重叠,包括以下的至少一种:
    所述多个PDCCH的传输方式为时隙内时分复用intra-slotTDM方法,所述多个PDSCH的传输方式为intra-slotTDM方法;
    所述多个PDCCH的传输方式为intra-slot TDM方法,所述多个PDSCH的传输方式为时隙间时分复用inter-slot TDM方法;
    所述多个PDCCH的传输方式为inter-slotTDM方法,所述多个PDSCH的传输方式为inter-slotTDM 方法;
    所述多个PDCCH的传输方式为单频网SFN或频分复用FDM方法,所述多个PDSCH的传输方式为SFN或空分复用SDM或FDM方法;
    所述多个PDCCH为SFN或FDM方法,所述多个PDSCH为时分复用TDM方法。
  19. 根据权利要求17或18所述的方法,其特征在于,所述确定发送所述PDSCH的所述TCIstate,包括:
    第h个所述PDSCH使用第i个所述PDCCH对应的TCIstate。
  20. 根据权利要求19所述的方法,其特征在于,所述M个TCIstate与所述N个TCIstate一一相同。
  21. 根据权利要求20所述的方法,其特征在于,所述N的值为2,所述多个PDSCH包括两个PDSCH,第h个所述PDSCH以外的所述PDSCH使用N个TCIstate中与第i个所述PDCCH对应的TCIstate不同的TCIstate。
  22. 根据权利要求20所述的方法,其特征在于,所述N的值为2,所述多个PDSCH包括L个PDSCH,其中L为大于2的偶数;
    根据所述TCIstate的映射规则,来确定发送所述PDSCH的所述TCIstate;其中,所述TCIstate的映射规则为循环映射cyclicMapping或者顺序映射sequenticalMapping。
  23. 根据权利要求22所述的方法,其特征在于,所述方法,还包括:
    在所述TCIstate的映射规则为cyclicMapping的情况下,h为奇数时,第奇数个所述PDSCH使用第i个所述PDCCH对应的TCIstate,第偶数个所述PDSCH使用N个TCIstate中与第i个所述PDCCH对应的TCIstate的不同的TCIstate;或h为偶数时,第偶数个所述PDSCH使用第i个所述PDCCH对应的TCIstate,第奇数个所述PDSCH使用N个TCIstate中与第i个所述PDCCH对应的TCIstate的不同的TCIstate。
  24. 根据权利要求22所述的方法,其特征在于,所述方法,还包括:
    在所述TCIstate的映射规则为sequenticalMapping的情况下,第4j+1和第4j+2个所述PDSCH使用第i个所述PDCCH对应的TCIstate,第4j+3和第4j+4个所述PDSCH使用N个TCIstate中与第i个所述PDCCH对应的TCIstate不同的TCIstate,其中j为大于或等于0的整数;
    或者,前L/2个所述PDSCH使用第i个所述PDCCH对应的TCIstate,后L/2个所述PDSCH使用N个TCIstate中与第i个所述PDCCH对应的TCIstate的不同的TCI state。
  25. 根据权利要求19所述的方法,其特征在于,所述M个TCIstate与所述N个TCIstate非一一相同。
  26. 根据权利要求25所述的方法,其特征在于,所述N的值为2,所述多个PDSCH包括两个PDSCH,第一个所述PDSCH使用N个TCIstate中第一个TCIstate和第二个所述PDSCH使用N个TCIstate中第二个TCIstate;
    或者,第一个所述PDSCH使用N个TCIstate中第二个TCIstate和第二个所述PDSCH使用N个TCIstate中第一个TCIstate。
  27. 根据权利要求25所述的方法,其特征在于,所述N的值为2,所述多个PDSCH包括L个PDSCH,其中L为大于2的偶数;
    根据循环映射cyclicMapping或者顺序映射sequenticalMapping的映射规则,确定发送所述PDSCH的所述TCIstate。
  28. 根据权利要求27所述的方法,其特征在于,所述方法,还包括:
    根据所述cyclicMapping的映射规则,第奇数个所述PDSCH使用N个TCIstate中第一个TCIstate,第偶数个所述PDSCH使用N个TCIstate中第二个TCIstate;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;
    或第奇数个所述PDSCH使用N个TCIstate中第二个TCIstate,第偶数个所述PDSCH使用N个TCIstate中第一个TCIstate;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
  29. 根据权利要求27所述的方法,其特征在于,所述方法,还包括:
    根据所述sequenticalMapping的映射规则,第4k+1和第4k+2个使用第一个TCIstate,第4k+3和第4k+4个使用第二个TCIstate,其中k为大于或等于0的整数;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延;
    或者,前L/2个所述PDSCH使用第一个所述PDCCH对应的TCIstate,后L/2个所述PDSCH使用N个TCIstate中与第二个所述PDCCH对应的TCIstate的不同的TCIstate;其中,与所述多个PDSCH中的第一个PDSCH占用的时域资源不存在重叠的保持不变或者依次往后顺延。
  30. 根据权利要求16所述的方法,其特征在于,所述在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定发送所述PDSCH的所述TCIstate,包括:
    终端设备不期待所述多个PDCCH中的第s个PDCCH和第s+1个PDCCH均与所述多个PDSCH中的其中一个PDSCH占用的时域资源存在重叠,其中s为大于0的整数。
  31. 一种通信装置,其特征在于,包括:
    收发模块,用于接收网络设备的配置信息,所述配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于接收所述多个PDCCH的M个传输配置指示状态TCIstate,其中M为大于0的整数;所述配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于接收所述多个PDSCH的N个TCIstate,其中N为大于0的整数;
    处理模块,用于在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定接收所述PDSCH的所述TCIstate。
  32. 一种通信装置,其特征在于,包括:
    收发模块,用于发送终端设备的配置信息,所述配置信息包括多个物理下行控制信道PDCCH的时域信息以及用于发送所述多个PDCCH的M个传输配置指示状态TCIstate,其中M为大于0的整数;所述配置信息还包括多个物理下行共享信道PDSCH的时域资源信息以及用于发送所述多个PDSCH的N个TCIstate,其中N为大于0的整数;
    处理模块,用于在至少一个所述PDCCH和至少一个所述PDSCH所占用的时域资源存在重叠的情况下,确定发送所述PDSCH的所述TCIstate。
  33. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至15中任一项所述的方法。
  34. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求16至30中任一项所述的方法。
  35. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至15中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求16至30中任一项所述的方法。
  37. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至15中任一项所述的方法被实现。
  38. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求16至30中任一项所述的方法被实现。
PCT/CN2021/110950 2021-08-05 2021-08-05 通信方法、装置和存储介质 WO2023010431A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/110950 WO2023010431A1 (zh) 2021-08-05 2021-08-05 通信方法、装置和存储介质
CN202180002329.XA CN113767695A (zh) 2021-08-05 2021-08-05 通信方法、装置和存储介质
EP21952323.0A EP4383876A1 (en) 2021-08-05 2021-08-05 Communication method and apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110950 WO2023010431A1 (zh) 2021-08-05 2021-08-05 通信方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2023010431A1 true WO2023010431A1 (zh) 2023-02-09

Family

ID=78784881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110950 WO2023010431A1 (zh) 2021-08-05 2021-08-05 通信方法、装置和存储介质

Country Status (3)

Country Link
EP (1) EP4383876A1 (zh)
CN (1) CN113767695A (zh)
WO (1) WO2023010431A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190253904A1 (en) * 2018-02-09 2019-08-15 Mediatek Inc. Downlink channel reception in wireless communication system
CN110959304A (zh) * 2018-05-17 2020-04-03 Lg电子株式会社 在无线通信系统中确定终端的发送配置指示符的方法和使用其的装置
CN110972171A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 波束失败恢复请求传输方法、终端设备及网络设备
CN111082912A (zh) * 2019-10-12 2020-04-28 中兴通讯股份有限公司 信息确定方法及装置、电子装置和存储介质
CN112189374A (zh) * 2018-05-24 2021-01-05 三星电子株式会社 无线通信系统中利用波束成形的通信方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111148260B (zh) * 2018-11-02 2022-05-13 华为技术有限公司 发送和接收数据的方法以及通信装置
CN111200871B (zh) * 2018-11-16 2022-02-18 华为技术有限公司 接收数据的方法和通信装置
WO2021051392A1 (zh) * 2019-09-20 2021-03-25 富士通株式会社 优先级确定方法以及装置
WO2021062634A1 (zh) * 2019-09-30 2021-04-08 华为技术有限公司 物理下行共享信道传输方法及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190253904A1 (en) * 2018-02-09 2019-08-15 Mediatek Inc. Downlink channel reception in wireless communication system
CN110959304A (zh) * 2018-05-17 2020-04-03 Lg电子株式会社 在无线通信系统中确定终端的发送配置指示符的方法和使用其的装置
CN112189374A (zh) * 2018-05-24 2021-01-05 三星电子株式会社 无线通信系统中利用波束成形的通信方法和装置
CN110972171A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 波束失败恢复请求传输方法、终端设备及网络设备
CN111082912A (zh) * 2019-10-12 2020-04-28 中兴通讯股份有限公司 信息确定方法及装置、电子装置和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Draft CR on multi-TRP/panel transmission", 3GPP DRAFT; R1-2100617, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971088 *
QUALCOMM INCORPORATED: "On NR mobility enhancements", 3GPP DRAFT; R1-1911136 ON NR MOBILITY ENHANCEMENTS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 5 October 2019 (2019-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051808859 *

Also Published As

Publication number Publication date
EP4383876A1 (en) 2024-06-12
CN113767695A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2023044805A1 (zh) 小区配置的确定方法及装置
WO2022213294A1 (zh) 一种时域资源分配的方法及装置
AU2022287633A1 (en) Communication apparatus, method and computer program
WO2023151065A1 (zh) 初始带宽部分配置方法及装置、初始带宽部分切换方法及装置
WO2023150988A1 (zh) 一种位置信息的上报方法及其装置
WO2023010431A1 (zh) 通信方法、装置和存储介质
WO2022063277A1 (zh) 波束查找方法及装置
WO2023164951A1 (zh) 一种智能中继时分复用图样的确定方法及其装置
WO2023283841A1 (zh) 波束测量上报激活方法及装置
WO2023010288A1 (zh) 资源选择方法、装置和存储介质
CN115191145A (zh) 一种多prach传输方法及其装置
WO2023015457A1 (zh) 传输增强的方法和装置
WO2023279306A1 (zh) 频带分组方法及装置
WO2023155206A1 (zh) 联合信道估计的最大持续时间的上报方法及其装置
WO2023130321A1 (zh) 一种数据压缩方法和装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
CN113016160B (zh) 一种通信方法及装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2023131296A1 (zh) 一种配置方法及其装置
WO2024036519A1 (zh) 一种侧行链路pdcp复用的激活方法及装置
WO2024026700A1 (zh) 资源选择方法及装置
WO2023050393A1 (zh) 一种随机接入响应窗口的确定方法及其装置
US20240196399A1 (en) Monitoring method and terminal
WO2023123476A1 (zh) 一种时域资源传输位置的确定方法和装置
WO2022257054A1 (zh) 信息获取方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18681012

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952323

Country of ref document: EP

Effective date: 20240305