WO2023015457A1 - 传输增强的方法和装置 - Google Patents

传输增强的方法和装置 Download PDF

Info

Publication number
WO2023015457A1
WO2023015457A1 PCT/CN2021/111892 CN2021111892W WO2023015457A1 WO 2023015457 A1 WO2023015457 A1 WO 2023015457A1 CN 2021111892 W CN2021111892 W CN 2021111892W WO 2023015457 A1 WO2023015457 A1 WO 2023015457A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transmission
predefined
signal
uplink transmission
Prior art date
Application number
PCT/CN2021/111892
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/111892 priority Critical patent/WO2023015457A1/zh
Priority to CN202180002449.XA priority patent/CN115956372A/zh
Publication of WO2023015457A1 publication Critical patent/WO2023015457A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the technical field of communications, and in particular to a transmission enhancement method and device.
  • Non-terrestrial network Non-Territorial Network, referred to as: NTN
  • NTN Non-Territorial Network
  • 3GPP Third Generation Partnership Project, third-generation cooperation
  • Partner Program is under discussion on the 5G (5th Generation Mobile Communication Technology, fifth generation mobile communication technology) standard.
  • the report TR38.811 conducted research on the deployment scenarios of NTN networks and the channel model of NTN networks, and TR38.821 (Rel- 16)
  • the report conducts research on NTN-based next-generation radio access network (NG-RAN) architecture, and defines and evaluates solutions for network architectures where NTN networks and 5G networks converge.
  • NG-RAN next-generation radio access network
  • NTN can be used as a supplement to the terrestrial network (5G network), providing continuous services for M2M (machine-to-machine)/IoT (Internet of Things) equipment and mobility platform users (such as: sea, high-speed rail), making the reliability of 5G network Enhanced, or by directly providing broadcast or multicast services to user equipment at the edge of the network, the scalability of the 5G network is enhanced; it can also be operated independently to provide unique services for remote areas, isolated islands, etc., making network services ubiquitous .
  • 5G network providing continuous services for M2M (machine-to-machine)/IoT (Internet of Things) equipment and mobility platform users (such as: sea, high-speed rail), making the reliability of 5G network Enhanced, or by directly providing broadcast or multicast services to user equipment at the edge of the network, the scalability of the 5G network is enhanced; it can also be operated independently to provide unique services for remote areas, isolated islands, etc., making network services ubiquitous .
  • the embodiment of the present application provides a transmission enhancement method and device thereof, which can be applied to a non-terrestrial network (NTN) communication system, and provides a coverage enhancement solution applied to a satellite communication system, which can effectively improve the coverage in the satellite communication scenario. Coverage performance to ensure the reliability of business transmission.
  • NTN non-terrestrial network
  • the embodiment of the present application provides a transmission enhancement method, the method is applied to a terminal device, and the method includes:
  • determining transmission parameters for uplink transmission based on detected preset information wherein the preset information includes a predefined signal sent by the network device, or a downlink control signal sent by the network device information;
  • the terminal device when the terminal device judges that the uplink transmission fails, it can determine the transmission parameters for the uplink transmission based on the detected preset information, and perform the uplink transmission based on the determined transmission parameters, which can effectively improve the performance of satellite communication scenarios. Coverage performance to ensure the reliability of business transmission.
  • the determining the transmission parameters for uplink transmission based on the detected preset information includes: periodically detecting a predefined signal sent by a network device; in response to the detected predefined signal, based on The mapping relationship between the signal and the uplink transmission parameter determines the transmission parameter of the uplink transmission corresponding to the predefined signal.
  • the detecting the predefined signal sent by the network device includes: according to the signal feature information and/or the transmission time-frequency resource location information of the predefined signal known in advance, selecting the predefined signal from the predefined signal set The predefined signal sent by the network device is detected.
  • the signal feature information and/or transmission time-frequency resource location information are respectively predefined; or, the signal feature information and/or transmission time-frequency resource location information are respectively the network
  • the device is configured to the terminal device through signaling.
  • the method further includes: stopping detecting the predefined signal after judging that the upload transmission is successful.
  • the determining the transmission parameters for uplink transmission based on the detected preset information includes: detecting downlink control information based on configuration information; and determining the transmission parameters for uplink transmission based on the downlink control information .
  • the configuration information includes at least one of the following:
  • the pilot information of the downlink control information The pilot information of the downlink control information; the DCI type of the downlink control information for detecting the downlink control information; the detection times; the resource position;
  • the downlink control information includes indication information of transmission parameters or personal location information.
  • the method further includes: after judging that the uplink transmission is successful, stopping the detection of the downlink control information.
  • the uplink transmission failure includes at least any of the following:
  • the response signal for the uplink transmission is not received within the predefined time; the preconfigured downlink control information is not received within the predefined time; the preconfigured downlink control information is not received within the predefined time
  • the failure to receive the response signal for the uplink transmission within the predefined time includes: not receiving the PRACH signal for the physical random access channel within the predefined time The random access response RAR signal; or, the feedback information for the preset transmission is not received within the predefined time; the preset transmission sends the second data for the terminal device.
  • the predefined time is given in the protocol; or, the predefined time is notified by the network device to the terminal device in advance through signaling; wherein, The signaling at least includes any one of high-layer signaling, medium access control layer signaling, and physical layer signaling.
  • the embodiment of the present application provides another transmission enhancement method, the method is applied to a network device, and the method includes: sending a predefined signal to the terminal device; or sending configuration information to the terminal device.
  • the method further includes: respectively configuring signal characteristic information and/or transmission time-frequency resource location information of the predefined signal for the terminal device through signaling.
  • the configuration information includes at least one of the following:
  • the pilot information of the downlink control information The pilot information of the downlink control information; the DCI type of the downlink control information for detecting the downlink control information; the detection times; the resource position;
  • the embodiment of this application provides a communication device, which has some or all functions of the terminal equipment in the method described in the first aspect above, for example, the functions of the communication device may have part or all of the functions in this application.
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present application.
  • the functions described above can be realized by hardware, and can also be realized by executing corresponding software by hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the embodiment of the present application provides another communication device, which can implement some or all of the functions of the network equipment in the method example described in the second aspect above, for example, the functions of the communication device can have some of the functions in this application Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present application alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a flow chart of a transmission enhancement method provided in an embodiment of the present application.
  • FIG. 3 is a flow chart of another transmission enhancement method provided by the embodiment of the present application.
  • FIG. 4 is a flow chart of another transmission enhancement method provided in the embodiment of the present application.
  • FIG. 5 is a flow chart of another transmission enhancement method provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • eMBB enhanced Mobile Broad Band, enhanced mobile broadband
  • URLLC Ultra Reliable Low Latency Communication, Ultra Reliable Low Latency Communication
  • mMTC massive Machine Type Communication, large-scale machine type communication
  • Satellite communication refers to the communication carried out by radio communication equipment on the ground using satellites as relays.
  • the satellite communication system consists of a satellite part and a ground part.
  • the characteristics of satellite communication are: the communication range is large; as long as it is within the range covered by the radio waves emitted by the satellite, communication can be carried out from any two points; it is not easily affected by land disasters (high reliability).
  • satellite communication can have the following benefits:
  • Extended coverage For areas where the current cellular communication system cannot cover or has high coverage costs, such as oceans, deserts, remote mountainous areas, etc., satellite communication can be used to solve communication problems;
  • the delay of service transmission can be reduced through satellite communication.
  • Non-terrestrial network (NTN) communication especially satellite communication
  • NTN Non-terrestrial network
  • 5G new air interface for 'non-terrestrial network' the report TR38.811 (Rel-15) conducted research on the deployment scenarios of NTN networks and the channel model of NTN networks, and TR38.821 (Rel- 16)
  • TR38.811 The report conducts research on the NTN-based NG-RAN architecture, and defines and evaluates the solution for the network architecture where the NTN network and 5G network are integrated.
  • NTN can be used as a supplement to the terrestrial network (5G network) to provide continuous services for M2M/IoT devices and mobility platform users (such as: sea, high-speed rail), so that the reliability of the 5G network can be enhanced, or directly connected to the edge of the network
  • the user equipment provides broadcast or multicast services, which enhances the scalability of the 5G network; it can also be operated independently to provide unique services for remote areas, isolated islands, etc., making network services ubiquitous. Whether it is a satellite-ground integrated NTN or a stand-alone NTN, compared with a typical 5G network, it will have a greater impact on performance such as coverage, user bandwidth, system capacity, service reliability or availability, energy consumption, and connection density. It can provide users with a more reliable and consistent service experience, reduce the cost of network deployment for operators, and connect the air, sky, earth, and sea multi-dimensional spaces to form an integrated ubiquitous network pattern.
  • the transmission reliability of some channels is limited, especially for some uplink channels.
  • the problem can be solved by introducing pre-alert (warning) paging (paging) transmission.
  • the terminal still cannot guarantee the reliability of uplink transmission.
  • this application proposes a transmission enhancement method, communication device and storage medium, and provides a coverage enhancement scheme applied to satellite communication systems, which can effectively improve coverage performance in satellite communication scenarios and ensure reliable service transmission sex.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiment of the application. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 101 and one terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 101 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), using CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a flow chart of a transmission enhancement method provided by an embodiment of the present application. It should be noted that the transmission enhancement method in the embodiment of the present application can be applied to a terminal device. As shown in FIG. 2 , the transmission enhancement method may include but not limited to the following steps.
  • Step 201 in response to uplink transmission failure, determine transmission parameters for uplink transmission based on detected preset information.
  • the preset information includes a predefined signal sent by the network device, or downlink control information sent by the network device.
  • the basis for the terminal device to judge the failure of the uplink transmission may be a predefined criterion, for example, no response signal for the uplink transmission is received within the predefined time, or, within the predefined time No pre-configured downlink control information, data or pilot information has been received within the time period.
  • the uplink transmission failure includes at least any one of the following A) to D):
  • a response signal for uplink transmission is not received within a predefined time
  • the failure to receive the response signal for the uplink transmission within the predefined time may include: not receiving the response signal for the PRACH (PhysicalRandomAccessChannel, Physical Random Access Channel) signal within the predefined time RAR (Random Access Response, random access response) signal; or, the feedback information for the preset transmission is not received within a predefined time; the preset transmission sends the second data for the terminal device.
  • PRACH PhysicalRandomAccessChannel, Physical Random Access Channel
  • RAR Random Access Response, random access response
  • the terminal device determines that the uplink transmission fails.
  • the terminal device determines that the uplink transmission fails.
  • the terminal device may determine that the uplink transmission fails.
  • the terminal device may determine that the uplink transmission fails.
  • Pre-configured pilot information is not received within a predefined time.
  • the terminal device may determine that the uplink transmission fails.
  • the predefined time may be given in the protocol.
  • the predefined time is predetermined in the protocol, and the terminal device can obtain the predefined time from the protocol, so as to judge whether an uplink transmission failure occurs based on the predefined time.
  • the predefined time may be notified by the network device to the terminal device in advance through signaling; wherein the signaling at least includes high-level signaling, medium access control layer signaling and physical layer signaling any of the.
  • a network device such as a base station
  • high-level signaling such as a system message
  • MAC medium access control
  • the terminal device can determine the transmission parameters of the uplink transmission in the following two ways: one way is to periodically detect the predefined signal sent by the network device to determine the transmission parameters of the uplink transmission Parameters: The detection of the predefined signal sent by the network device may be periodic detection, or in another way, the downlink control information may be detected based on the configuration information sent by the network device, so as to determine the transmission parameters of the uplink transmission.
  • the determined transmission parameters may include but not limited to repetition times, transmission resources, transmission beams, power information, and the like.
  • Step 202 perform uplink transmission based on the determined transmission parameters.
  • the terminal device may perform uplink transmission based on the determined transmission parameters.
  • the transmission parameters for the uplink transmission can be determined based on the detected preset information, and the uplink transmission can be performed based on the determined transmission parameters, which can effectively improve the coverage in the satellite communication scenario Performance, to ensure the reliability of business transmission.
  • FIG. 3 is a flow chart of another transmission enhancement method provided in the embodiment of the present application. It should be noted that the transmission enhancement method in the embodiment of the present application can be applied to a terminal device. As shown in FIG. 3 , the transmission enhancement method in this embodiment of the present application may include but not limited to the following steps.
  • Step 301 in response to failure of uplink transmission, periodically detect a predefined signal sent by a network device.
  • the basis for the terminal device to judge the failure of the uplink transmission may be a predefined criterion, for example, no response signal for the uplink transmission is received within the predefined time, or, within the predefined time No pre-configured downlink control information, data or pilot information has been received within the time period.
  • the uplink transmission failure includes at least any one of the following A) to D):
  • a response signal for uplink transmission is not received within a predefined time
  • the failure to receive the response signal for the uplink transmission within the predefined time may include: not receiving the response signal for the PRACH (PhysicalRandomAccessChannel, Physical Random Access Channel) signal within the predefined time RAR (Random Access Response, random access response) signal; or, the feedback information for the preset transmission is not received within a predefined time; the preset transmission sends the second data for the terminal device.
  • PRACH PhysicalRandomAccessChannel, Physical Random Access Channel
  • RAR Random Access Response, random access response
  • the terminal device determines that the uplink transmission fails.
  • the terminal device determines that the uplink transmission fails.
  • the terminal device may determine that the uplink transmission fails.
  • the terminal device may determine that the uplink transmission fails.
  • Pre-configured pilot information is not received within a predefined time.
  • the terminal device may determine that the uplink transmission fails.
  • the predefined time may be given in the protocol.
  • the predefined time is predetermined in the protocol, and the terminal device can obtain the predefined time from the protocol, so as to judge whether an uplink transmission failure occurs based on the predefined time.
  • the predefined time may be notified by the network device to the terminal device in advance through signaling; wherein the signaling at least includes high-level signaling, medium access control layer signaling and physical layer signaling any of the.
  • a network device such as a base station
  • high-level signaling such as a system message
  • MAC medium access control
  • the terminal device after judging that the uplink transmission fails, the terminal device starts to periodically detect the predefined signal sent by the network device.
  • the predefined signal may be one of the predefined signal sets, and each of the predefined signal sets A signal has a mapping relationship with uplink transmission parameters.
  • the terminal device may detect the predefined signal sent by the network device from the predefined signal set according to the signal feature information and/or transmission time-frequency resource location information of the predefined signal known in advance. For example, in order for a terminal device to accurately detect a predefined signal, the terminal device needs to know the signal characteristic information (such as a signal sequence) of the predefined signal in advance, and detect from the predefined signal set according to the signal characteristic information of the predefined signal. Outgoing predefined signals sent by network devices.
  • the signal characteristic information such as a signal sequence
  • the terminal device needs to know the transmission time-frequency resource location information of the predefined signal in advance, and detect the predefined signal sent by the network device from the predefined signal set according to the transmission time-frequency resource location information of the predefined signal.
  • the terminal device needs to know the signal characteristic information of the predefined signal and the location information of the transmission time-frequency resource in advance, and according to the signal characteristic information of the predefined signal and the location information of the transmission time-frequency resource, detect the signal sent by the network device from the predefined signal set. Predefined signals.
  • the above transmission time-frequency resource location information can be understood as the transmission location of the signal, and the transmission time-frequency resource location information may include but not limited to period, offset value, frequency domain resource location, etc. one or more information.
  • the signal characteristic information of the predefined signal and/or the transmission time-frequency resource location information may be predefined; or, the signal characteristic information of the predefined signal and/or the transmission time-frequency resource location information may also be a network device (such as The base station) is configured to the terminal equipment through signaling.
  • mapping relationship between the signal characteristic information of the above-mentioned predefined signal and the uplink transmission may also be predefined, or it may also be configured by the network device to the terminal device through signaling. .
  • Step 302 In response to the detected predefined signal, based on the mapping relationship between the signal and the uplink transmission parameter, determine the transmission parameter of the uplink transmission corresponding to the predefined signal.
  • the terminal device may determine the transmission parameter of the uplink transmission corresponding to the predefined signal sent by the network device based on the mapping relationship between the signal and the uplink transmission parameter.
  • the mapping relationship may be predefined, or may also be configured by the network device to the terminal device through signaling.
  • the determined transmission parameters may include but not limited to repetition times, transmission resources, transmission beams, power information, and the like.
  • Step 303 perform uplink transmission based on the determined transmission parameters.
  • the terminal device may perform uplink transmission based on the determined transmission parameters.
  • the transmission enhancement method in the embodiment of the present application may further include step 304 .
  • step 304 stop detecting the predefined signal after judging that the uploading transmission is successful.
  • the terminal device stops detecting the predefined signal sent by the network device after judging that the upload transmission is successful.
  • the basis for the terminal device to judge the success of the uplink transmission may be that the feedback information for the uplink transmission is received within a predefined time or other predefined criteria. For example, if the terminal device receives a response signal for uplink transmission within a predefined time, the terminal device determines that the uplink transmission is successful, and may stop detecting the predefined signal sent by the network device. For another example, when the terminal device receives the transmission of pre-configured downlink control information within a predefined time, the terminal device determines that the upload and transmission is successful, and may stop detecting the predefined signal sent by the network device.
  • the terminal device when the terminal device receives the pre-configured data within a predefined time, the terminal device judges that the upload and transmission is successful, and may stop detecting the predefined signal sent by the network device. For another example, if the terminal device receives the pre-configured pilot information within a predefined time, the terminal device determines that the upload and transmission is successful, and may stop detecting the predefined signal sent by the network device.
  • the predefined time may be given in the protocol.
  • the predefined time may also be notified by the network device to the terminal device in advance through signaling; wherein the signaling at least includes any one of high-level signaling, media access control layer signaling, and physical layer signaling .
  • a network device such as a base station notifies the terminal device in advance through high-level signaling (such as a system message), medium access control (MAC) layer signaling or physical layer signaling, so that the terminal device obtains the predefined time, so as to determine whether an uplink transmission failure occurs based on the predefined time.
  • high-level signaling such as a system message
  • MAC medium access control
  • the terminal device can periodically detect the predefined signal sent by the network device, and after detecting the predefined signal sent by the network device, based on the signal and the uplink transmission parameter The mapping relationship between them, so that the terminal device can perform uplink transmission based on the determined transmission parameters. It can be seen that the application provides a coverage enhancement solution applied to a satellite communication system, which can effectively improve the coverage performance in a satellite communication scenario and ensure the reliability of service transmission.
  • FIG. 4 is a flow chart of another transmission enhancement method provided by the embodiment of the present application. It should be noted that the transmission enhancement method in the embodiment of the present application can be applied to a terminal device. As shown in FIG. 4 , the transmission enhancement method in this embodiment of the present application may include but not limited to the following steps.
  • Step 401 in response to uplink transmission failure, detect downlink control information based on configuration information.
  • the basis for the terminal device to judge the failure of the uplink transmission may be a predefined criterion, for example, no response signal for the uplink transmission is received within the predefined time, or, within the predefined time No pre-configured downlink control information, data or pilot information has been received within the time period.
  • the uplink transmission failure includes at least any one of the following A) to D):
  • a response signal for uplink transmission is not received within a predefined time
  • the failure to receive the response signal for the uplink transmission within the predefined time may include: not receiving the response signal for the PRACH (PhysicalRandomAccessChannel, Physical Random Access Channel) signal within the predefined time RAR (Random Access Response, random access response) signal; or, the feedback information for the preset transmission is not received within a predefined time; the preset transmission sends the second data for the terminal device.
  • PRACH PhysicalRandomAccessChannel, Physical Random Access Channel
  • RAR Random Access Response, random access response
  • the terminal device determines that the uplink transmission fails.
  • the terminal device determines that the uplink transmission fails.
  • the terminal device may determine that the uplink transmission fails.
  • the terminal device may determine that the uplink transmission fails.
  • Pre-configured pilot information is not received within a predefined time.
  • the terminal device may determine that the uplink transmission fails.
  • the predefined time may be given in the protocol.
  • the predefined time is predetermined in the protocol, and the terminal device can obtain the predefined time from the protocol, so as to judge whether an uplink transmission failure occurs based on the predefined time.
  • the predefined time may be notified by the network device to the terminal device in advance through signaling; wherein the signaling at least includes high-level signaling, medium access control layer signaling and physical layer signaling any of the.
  • a network device such as a base station
  • high-level signaling such as a system message
  • MAC medium access control
  • the terminal device may detect the downlink control information based on the configuration information.
  • the configuration information may be predefined, or the configuration information may also be notified by the network device to the terminal device through signaling.
  • the configuration information may include at least one of the following: pilot information of downlink control information; DCI type of downlink control information for detection of downlink control information; detection times; resource location; aggregation level .
  • the configuration information may include the pilot information of the downlink control information; the DCI type of the detected downlink control information, the number of times of detection, the resource location, the degree of aggregation and other information.
  • Step 402 Determine transmission parameters for uplink transmission based on the downlink control information.
  • the downlink control information may include transmission parameter adjustment downlink control information, or may include information such as personal location information adjustment downlink control information.
  • the downlink control information may include indication information of transmission parameters or personal location information.
  • the downlink control information may include transmission parameter indication information, so that the terminal device can determine the transmission parameter for upload transmission according to the indication information.
  • the downlink control information may include the indication information of personal location information, so that the terminal device can determine the transmission parameters for upload transmission according to the indication information, for example, the terminal device can adjust the personal location information according to the personal location indication information.
  • the determined transmission parameters may include but not limited to repetition times, transmission resources, transmission beams, power information, and the like.
  • Step 403 perform uplink transmission based on the determined transmission parameters.
  • the terminal device may perform uplink transmission based on the determined transmission parameters. For example, the terminal device can correspondingly adjust the transmission parameters of the uplink transmission based on the downlink control information.
  • the transmission enhancement method in the embodiment of the present application may further include step 404 .
  • step 404 stop detecting the downlink control information after judging that the uplink transmission is successful. That is to say, the terminal device stops detecting the downlink control information sent by the network device after judging that the upload transmission is successful.
  • the basis for the terminal device to judge the success of the uplink transmission may be that the feedback information for the uplink transmission is received within a predefined time or other predefined criteria. For example, if the terminal device receives a response signal for the uplink transmission within a predefined time, the terminal device determines that the uplink transmission is successful, and may stop detecting the downlink control information. For another example, if the terminal device receives the transmission of pre-configured downlink control information within a predefined time, the terminal device determines that the upload and transmission is successful, and may stop detecting the downlink control information.
  • the terminal device when the terminal device receives the pre-configured data within a predefined time, the terminal device judges that the upload and transmission is successful, and may stop detecting the downlink control information. For another example, if the terminal device receives the pre-configured pilot information within a predefined time, the terminal device determines that the uplink transmission is successful, and may stop detecting the downlink control information.
  • the predefined time may be given in the protocol.
  • the predefined time may also be notified by the network device to the terminal device in advance through signaling; wherein the signaling at least includes any one of high-level signaling, media access control layer signaling, and physical layer signaling .
  • a network device such as a base station notifies the terminal device in advance through high-level signaling (such as a system message), medium access control (MAC) layer signaling or physical layer signaling, so that the terminal device obtains the predefined time, so as to determine whether an uplink transmission failure occurs based on the predefined time.
  • high-level signaling such as a system message
  • MAC medium access control
  • the terminal device can detect the downlink control information based on the configuration information, and determine the transmission parameters for uplink transmission based on the downlink control information, so that the terminal device can be based on the determined
  • the transfer parameter performs an uplink transfer. It can be seen that the application provides a coverage enhancement solution applied to a satellite communication system, which can effectively improve the coverage performance in a satellite communication scenario and ensure the reliability of service transmission.
  • FIG. 5 is a flowchart of another transmission enhancement method provided by an embodiment of the present application. It should be noted that the transmission enhancement method in the embodiment of the present application can be applied to network devices. As shown in FIG. 5 , the transmission enhancement method may include but not limited to the following steps.
  • Step 501 sending a predefined signal to the terminal device, or sending configuration information to the terminal device.
  • the network device may send a predefined signal to the network device.
  • the terminal device determines that the upload transmission fails, it can periodically detect the predefined signal sent by the network device, and after detecting the predefined signal, based on the mapping relationship between the signal and the uplink transmission parameters, determine the transmission parameters for uplink transmission, so as to perform uplink transmission based on the determined transmission parameters.
  • the determined transmission parameters may include but not limited to repetition times, transmission resources, transmission beams, power information, and the like.
  • the basis for the terminal device to judge the failure of the uplink transmission may be a predefined criterion, for example, no response signal for the uplink transmission is received within the predefined time, or, within the predefined time No pre-configured downlink control information, data or pilot information has been received within the time period.
  • the uplink transmission failure includes at least any one of the following A) to D):
  • a response signal for uplink transmission is not received within a predefined time
  • the failure to receive the response signal for the uplink transmission within the predefined time may include: not receiving the response signal for the PRACH (PhysicalRandomAccessChannel, Physical Random Access Channel) signal within the predefined time RAR (Random Access Response, random access response) signal; or, the feedback information for the preset transmission is not received within a predefined time; the preset transmission sends the second data for the terminal device.
  • PRACH PhysicalRandomAccessChannel, Physical Random Access Channel
  • RAR Random Access Response, random access response
  • the terminal device determines that the uplink transmission fails.
  • the terminal device determines that the uplink transmission fails.
  • the terminal device may determine that the uplink transmission fails.
  • the terminal device may determine that the uplink transmission fails.
  • Pre-configured pilot information is not received within a predefined time.
  • the terminal device may determine that the uplink transmission fails.
  • the predefined time may be given in the protocol.
  • the predefined time is predetermined in the protocol, and the terminal device can obtain the predefined time from the protocol, so as to judge whether an uplink transmission failure occurs based on the predefined time.
  • the predefined time may be notified by the network device to the terminal device in advance through signaling; wherein the signaling at least includes high-level signaling, medium access control layer signaling and physical layer signaling any of the.
  • a network device such as a base station
  • high-level signaling such as a system message
  • MAC medium access control
  • the terminal device after judging that the uplink transmission fails, the terminal device starts to periodically detect the predefined signal sent by the network device.
  • the predefined signal may be one of the predefined signal sets, and each of the predefined signal sets A signal has a mapping relationship with uplink transmission parameters.
  • the terminal device may detect the predefined signal sent by the network device from the predefined signal set according to the signal feature information and/or transmission time-frequency resource location information of the predefined signal known in advance. For example, in order for a terminal device to accurately detect a predefined signal, the terminal device needs to know the signal characteristic information (such as a signal sequence) of the predefined signal in advance, and detect from the predefined signal set according to the signal characteristic information of the predefined signal. Outgoing predefined signals sent by network devices.
  • the signal characteristic information such as a signal sequence
  • the terminal device needs to know the transmission time-frequency resource location information of the predefined signal in advance, and detect the predefined signal sent by the network device from the predefined signal set according to the transmission time-frequency resource location information of the predefined signal.
  • the terminal device needs to know the signal characteristic information of the predefined signal and the location information of the transmission time-frequency resource in advance, and according to the signal characteristic information of the predefined signal and the location information of the transmission time-frequency resource, detect the signal sent by the network device from the predefined signal set. Predefined signals.
  • the above transmission time-frequency resource location information can be understood as the transmission location of the signal, and the transmission time-frequency resource location information may include but not limited to period, offset value, frequency domain resource location, etc. one or more information.
  • the signal characteristic information of the predefined signal and/or the transmission time-frequency resource location information may be predefined; or, the signal characteristic information of the predefined signal and/or the transmission time-frequency resource location information may also be a network device (such as The base station) is configured to the terminal equipment through signaling.
  • mapping relationship between the signal characteristic information of the above-mentioned predefined signal and the uplink transmission may also be predefined, or it may also be configured by the network device to the terminal device through signaling. .
  • the network device may send configuration information to the terminal device. After judging that uplink transmission fails, the terminal device detects downlink control information based on configuration information sent by the network device, and determines transmission parameters for uplink transmission based on the downlink control information, so as to perform uplink transmission based on the determined transmission parameters.
  • the basis for the terminal device to judge the failure of the uplink transmission may be a predefined criterion, for example, no response signal for the uplink transmission is received within the predefined time, or, within the predefined time No pre-configured downlink control information, data or pilot information has been received within the time period.
  • the uplink transmission failure includes at least any one of the following A) to D):
  • a response signal for uplink transmission is not received within a predefined time
  • the failure to receive the response signal for the uplink transmission within the predefined time may include: not receiving the response signal for the PRACH (PhysicalRandomAccessChannel, Physical Random Access Channel) signal within the predefined time RAR (Random Access Response, random access response) signal; or, the feedback information for the preset transmission is not received within a predefined time; the preset transmission sends the second data for the terminal device.
  • PRACH PhysicalRandomAccessChannel, Physical Random Access Channel
  • RAR Random Access Response, random access response
  • the terminal device determines that the uplink transmission fails.
  • the terminal device determines that the uplink transmission fails.
  • the terminal device may determine that the uplink transmission fails.
  • the terminal device may determine that the uplink transmission fails.
  • Pre-configured pilot information is not received within a predefined time.
  • the terminal device may determine that the uplink transmission fails.
  • the predefined time may be given in the protocol.
  • the predefined time is predetermined in the protocol, and the terminal device can obtain the predefined time from the protocol, so as to judge whether an uplink transmission failure occurs based on the predefined time.
  • the predefined time may be notified by the network device to the terminal device in advance through signaling; wherein the signaling at least includes high-level signaling, medium access control layer signaling and physical layer signaling any of the.
  • a network device such as a base station
  • high-level signaling such as a system message
  • MAC medium access control
  • the terminal device may detect the downlink control information based on the configuration information.
  • the configuration information may be predefined, or the configuration information may also be notified by the network device to the terminal device through signaling.
  • the configuration information may include at least one of the following: pilot information of downlink control information; DCI type of downlink control information for detection of downlink control information; detection times; resource location; aggregation level .
  • the configuration information may include the pilot information of the downlink control information; the DCI type of the detected downlink control information, the number of times of detection, the resource location, the degree of aggregation and other information.
  • the downlink control information may include transmission parameter adjustment downlink control information, or may include information such as personal location information adjustment downlink control information.
  • the downlink control information may include indication information of transmission parameters or personal location information.
  • the downlink control information may include transmission parameter indication information, so that the terminal device can determine the transmission parameter for upload transmission according to the indication information.
  • the downlink control information may include the indication information of personal location information, so that the terminal device can determine the transmission parameters for upload transmission according to the indication information, for example, the terminal device can adjust the personal location information according to the personal location indication information.
  • the determined transmission parameters may include but not limited to repetition times, transmission resources, transmission beams, power information, and the like.
  • the network device sends a predefined signal to the terminal device, or sends configuration information to the terminal device, so that the terminal device can determine the configuration information for uplink transmission based on detecting the predefined signal or configuration information sent by the network device.
  • the transmission parameter may enable the terminal device to perform uplink transmission based on the determined transmission parameter.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of the terminal device and the network device respectively.
  • the network device and the terminal device may include a hardware structure and a software module, and realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 6 is a schematic structural diagram of a communication device 60 provided in an embodiment of the present application.
  • the communication device 60 shown in FIG. 6 may include a transceiver module 601 and a processing module 602 .
  • the transceiver module 601 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 601 can realize the sending function and/or the receiving function.
  • the communication device 60 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device 60 may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device 60 is a terminal device: in the embodiment of the present application, the processing module 602 is configured to determine transmission parameters for uplink transmission based on detected preset information in response to uplink transmission failure, and perform uplink transmission based on the determined transmission parameters ; Wherein, the preset information includes a predefined signal sent by the network device, or downlink control information sent by the network device.
  • the processing module 602 is configured to: periodically detect a predefined signal sent by a network device; in response to the detected predefined signal, determine a signal related to the predefined signal based on the mapping relationship between the signal and the uplink transmission parameter. Corresponding transmission parameters for uplink transmission.
  • the processing module 602 is configured to: detect the predefined signal sent by the network device from the predefined signal set according to the signal feature information and/or transmission time-frequency resource location information of the predefined signal known in advance .
  • the signal characteristic information and/or the transmission time-frequency resource location information are respectively predefined; or, the signal characteristic information and/or the transmission time-frequency resource location information are respectively configured to the terminal equipment.
  • the processing module 602 is further configured to: stop detecting the predefined signal after judging that the upload and transmission are successful.
  • the processing module 602 is configured to: detect downlink control information based on the configuration information; and determine transmission parameters for uplink transmission based on the downlink control information.
  • the configuration information includes at least one of the following:
  • Pilot information of downlink control information DCI type of downlink control information for detection of downlink control information; number of times of detection; resource location; aggregation level.
  • the downlink control information includes indication information of transmission parameters or personal location information.
  • the processing module is further configured to: stop detecting the downlink control information after judging that the uplink transmission is successful.
  • the uplink transmission failure includes at least any of the following:
  • the response signal for uplink transmission is not received within the predefined time; the pre-configured downlink control information is not received within the predefined time; the pre-configured first data is not received within the predefined time; within the predefined time The pre-configured pilot message was not received within the defined time.
  • the failure to receive a response signal for uplink transmission within a predefined time includes:
  • the random access response RAR signal for the physical random access channel PRACH signal is not received within the predefined time; or, the feedback information for the preset transmission is not received within the predefined time; the preset transmission is the terminal device
  • the second data is sent.
  • the predefined time is given in the protocol; or, the predefined time is notified by the network device to the terminal device in advance through signaling; wherein, the signaling at least includes high-level signaling, Any one of medium access control layer signaling and physical layer signaling.
  • the communication device 60 is a network device: in the embodiment of the present application, the transceiver module 601 is configured to send a predefined signal to the terminal device, or send configuration information to the terminal device.
  • the processing module 602 is configured to respectively configure the signal characteristic information of the predefined signal and/or transmit the time-frequency resource location information for the terminal device through signaling.
  • the configuration information includes at least one of the following: pilot information of downlink control information; DCI type of downlink control information for detection of downlink control information; number of times of detection; resource location; aggregation level.
  • FIG. 7 is a schematic structural diagram of another communication device 70 provided in an embodiment of the present application.
  • the communication device 70 may be a network device, may also be a terminal device, may also be a chip, a chip system, or a processor that supports the network device to implement the above method, or may be a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 70 may include one or more processors 701 .
  • the processor 701 may be a general-purpose processor or a special-purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 70 may further include one or more memories 702, on which a computer program 704 may be stored, and the processor 701 executes the computer program 704, so that the communication device 70 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 702 .
  • the communication device 70 and the memory 702 can be set separately or integrated together.
  • the communication device 70 may further include a transceiver 705 and an antenna 706 .
  • the transceiver 705 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 705 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 70 may further include one or more interface circuits 707 .
  • the interface circuit 707 is used to receive code instructions and transmit them to the processor 701 .
  • the processor 701 executes the code instructions to enable the communication device 70 to execute the methods described in the foregoing method embodiments.
  • the communication device 70 is a terminal device: the processor 701 is used to execute steps 201 and 202 in FIG. 2; execute steps 301, 302, 303 and 304 in FIG. 3; execute steps 401 and 402 in FIG. 4 , step 403 and step 404.
  • the communication device 70 is a network device: the transceiver 705 is used to execute step 501 in FIG. 5 .
  • the processor 701 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 701 may store a computer program 703 , and the computer program 703 runs on the processor 701 to enable the communication device 70 to execute the methods described in the foregoing method embodiments.
  • the computer program 703 may be solidified in the processor 701, and in this case, the processor 701 may be implemented by hardware.
  • the communication device 70 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiments), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device can be Not limited by Figure 7.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the embodiment of the present application also provides a system for determining the duration of the side link.
  • the system includes the communication device as the terminal device and the communication device as the network device in the aforementioned embodiment in FIG.
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种传输增强的方法及其装置,可以应用于非地面网络(NTN)通信系统中,该方法包括:终端设备响应于上行传输失败,基于检测到的预设信息确定用于上行传输的传输参数;其中,所述预设信息包括所述网络设备发送的预定义信号,或者,所述网络设备发送的下行控制信息;基于确定的所述传输参数执行上行传输。通过实施本申请实施例,可以有效提高卫星通信场景下的覆盖性能,保证业务传输的可靠性。

Description

传输增强的方法和装置 技术领域
本申请涉及通信技术领域,尤其涉及一种传输增强的方法和装置。
背景技术
非地面网络(Non-Territorial Network,简称:NTN)中通信,尤其是卫星通信,因为具有广覆盖、强灾害抵抗能力和大容量的特性,已被纳入3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)有关5G(5th Generation Mobile Communication Technology,第五代移动通信技术)标准的讨论之中。在3GPP“面向‘非地面网络’中的5G新空口”研究项目中,TR38.811(Rel-15)报告对NTN网络的部署场景以及NTN网络的信道模型进行了研究,TR38.821(Rel-16)报告对基于NTN的下一代无线电接入网(NG-RAN)架构进行了研究,并定义和评估了NTN网络和5G网络相融合的网络体系架构的解决方案。NTN既可作为地面网络(5G网络)的补充,为M2M(机器对机器)/IoT(物联网)设备和移动性平台用户提供连续性服务(如:海上、高铁),使得5G网络的可靠性得到增强,或者通过直接对网络边缘的用户设备提供广播或多播服务,使得5G网络的可扩展性得到增强;也可单独操作,为偏远地区、孤岛等提供唯一服务,使得网络服务无处不在。
然而,对于NTN的系统设计中,由于空口能力受限,导致部分信道的传输可靠性受到限制,尤其是对于某些上行信道。
发明内容
本申请实施例提供一种传输增强的方法及其装置,可以应用于非地面网络(NTN)通信系统中,给出了应用于卫星通信系统的覆盖增强的方案,可以有效提高卫星通信场景下的覆盖性能,保证业务传输的可靠性。
第一方面,本申请实施例提供一种传输增强的方法,所述方法应用于终端设备,所述方法包括:
响应于上行传输失败,基于检测到的预设信息确定用于上行传输的传输参数;其中,所述预设信息包括所述网络设备发送的预定义信号,或者,所述网络设备发送的下行控制信息;
基于确定的所述传输参数执行上行传输。
在该技术方案中,通过终端设备在判断上行传输失败时,可基于检测到的预设信息确定用于上行传输的传输参数,并基于确定的传输参数执行上行传输,可以有效提高卫星通信场景下的覆盖性能,保证业务传输的可靠性。
在一种实现方式中,所述基于检测到的预设信息确定用于上行传输的传输参数,包括:周期性检测网络设备发送的预定义信号;响应于检测到的所述预定义信号,基于信号与上行传输参数之间的映射关系,确定与所述预定义信号对应的上行传输的传输参数。
在一种可能的实现方式中,所述检测网络设备发送的预定义信号,包括:根据预先获知的所述预定义信号的信号特征信息和/或传输时频资源位置信息,从预定义信号集中检测 出所述网络设备发送的所述预定义信号。
在一种可能的实现方式中,所述信号特征信息和/或传输时频资源位置信息分别是预先定义的;或者,所述信号特征信息和/或传输时频资源位置信息分别是所述网络设备通过信令配置给所述终端设备的。
在一种实现方式中,所述方法还包括:在判断上传传输成功后,停止对所述预定义信号的检测。
在一种实现方式中,所述基于检测到的预设信息确定用于上行传输的传输参数,包括:基于配置信息检测下行控制信息;基于所述下行控制信息,确定用于上行传输的传输参数。
在一种可能的实现方式中,所述配置信息包含以下至少一项:
所述下行控制信息的导频信息;检测所述下行控制信息的下行链路控制信息DCI类型;检测次数;资源位置;聚合度等级。
在一种可能的实现方式中,所述下行控制信息中包含传输参数或个人位置信息的指示信息。
在一种可能的实现方式中,所述方法还包括:在判断上传传输成功后,停止对所述下行控制信息的检测。
在一种实现方式中,所述上行传输失败至少包括以下任意一种:
在预定义的时间内未收到对于所述上行传输的响应信号;在所述预定义的时间内未收到预先配置的下行控制信息;在所述预定义的时间内未收到预先配置的第一数据;在所述预定义的时间内未收到预先配置的导频信息。
在一种可能的实现方式中,所述在预定义的时间内未收到对于所述上行传输的响应信号,包括:在所述预定义的时间内未收到对于物理随机接入信道PRACH信号的随机接入响应RAR信号;或者,在所述预定义的时间内未收到对于预设传输的反馈信息;所述预设传输为所述终端设备发送了第二数据。
在一种可能的实现方式中,所述预定义的时间是在协议中给定的;或者,所述预定义的时间是所述网络设备预先通过信令通知给所述终端设备的;其中,所述信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。
第二方面,本申请实施例提供另一种传输增强的方法,所述方法应用于网络设备,所述方法包括:向终端设备发送预定义信号;或者,向所述终端设备发送配置信息。
在一种实现方式中,所述方法还包括:通过信令为所述终端设备分别配置所述预定义信号的信号特征信息和/或传输时频资源位置信息。
在一种实现方式中,所述配置信息包含以下至少一项:
下行控制信息的导频信息;检测所述下行控制信息的下行链路控制信息DCI类型;检测次数;资源位置;聚合度等级。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通 过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装 置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十七方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种传输增强的方法的流程图;
图3为本申请实施例提供的另一种传输增强的方法的流程图;
图4为本申请实施例提供的另一种传输增强的方法的流程图;
图5是本申请实施例提供的又一种传输增强的方法的流程图;
图6是本申请实施例提供的一种通信装置的结构示意图;
图7是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。其中,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请的说明书和权利要求书中的术语“包括”以及它的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具有优势。确 切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
需要说明的是,新一代的AR(Augmented Reality,增强现实)/VR(Virtual Reality,虚拟现实),车车通信等新型互联网应用的不断涌现对于无线通信技术提出了更高的要求,驱使无线通信技术的不断演进以满足应用的需求。当下,蜂窝移动通信技术正在处于新一代技术的演进阶段。新一代技术的一个重要特点就是要支持多种业务类型的灵活配置。由于不同的业务类型对于无线通信技术有不同的要求,如eMBB(enhanced Mobile Broad Band,增强型移动宽带)业务类型主要的要求侧重在大带宽,高速率等方面;URLLC(Ultra Reliable Low Latency Communication,超可靠低延迟通信)业务类型主要的要求侧重在较高的可靠性以及低的时延方面;mMTC(massive Machine Type Communication,大规模机器式通信)业务类型主要的要求侧重在大的连接数方面。因此新一代的无线通信系统需要灵活和可配置的设计来支持多种业务类型的传输。
在无线通信技术的研究中,卫星通信被认为是未来无线通信技术发展的一个重要方面。卫星通信是指地面上的无线电通信设备利用卫星作为中继而进行的通信。卫星通信系统由卫星部分和地面部分组成。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高)。卫星通信作为目前地面的蜂窝通信系统的补充,可以有以下的好处:
1)延伸覆盖:对于目前蜂窝通信系统无法覆盖或是覆盖成本较高的地区,如海洋,沙漠,偏远山区等,可以通过卫星通信来解决通信的问题;
2)应急通信:在发生灾难如地震等的极端情况下导致蜂窝通信的基础设施不可用的条件下,使用卫星通信可以快速的建立通信连接;
3)提供行业应用:比如对于长距离传输的时延敏感业务,可以通过卫星通信的方式来降低业务传输的时延。
可以预见,在未来的无线通信系统中,卫星通信系统和陆地上的蜂窝通信系统会逐步的实现深度的融合,真正的实现万物智联。
非地面网络(NTN)通信,尤其是卫星通信,因为具有广覆盖、强灾害抵抗能力和大容量的特性,已被纳入3GPP有关5G标准的讨论之中。在3GPP“面向‘非地面网络’中的5G新空口”研究项目中,TR38.811(Rel-15)报告对NTN网络的部署场景以及NTN网络的信道模型进行了研究,TR38.821(Rel-16)报告对基于NTN的NG-RAN架构进行了研究,并定义和评估了NTN网络和5G网络相融合的网络体系架构的解决方案。NTN既可作为地面网络(5G网络)的补充,为M2M/IoT设备和移动性平台用户提供连续性服务(如:海上、高铁),使得5G网络的可靠性得到增强,或者通过直接对网络边缘的用户设备提供广播或多播服务,使得5G网络的可扩展性得到增强;也可单独操作,为偏远地区、孤岛等提供唯一服务,使得网络服务无处不在。无论是星地融合的NTN还是单独的NTN,与典型的5G网络相比,都将对覆盖范围、用户带宽、系统容量、服务可靠性或服务可用性、能耗、连接密度等性能带来较大影响,能够为用户提供更为可靠的一致性服务体验,降低运营商网络部署成本,连通空、天、地、海多维空间,形成一体化的泛在网络格局。
然而,对于NTN的系统设计中,由于空口能力受限,导致部分信道的传输可靠性受到限制,尤其是对于某些上行信道。现有方案中可以通过引入pre-alert(预警)的paging(寻 呼)传输来解决问题。然而在这种方法下,终端还是无法保证上行传输的可靠性。
为此,本申请提出了一种传输增强的方法、通信装置和存储介质,给出了应用于卫星通信系统的覆盖增强的方案,可以有效提高卫星通信场景下的覆盖性能,保证业务传输的可靠性。
为了更好的理解本申请实施例公开的一种传输增强的方法,下面首先对本申请实施例使用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可以包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的传输增强的方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种传输增强的方法的流程图。需要说明的是,本申请实施例的传输增强的方法可应用于终端设备。如图2所示,该传输增强的方法可以包括但不限于如下步骤。
步骤201,响应于上行传输失败,基于检测到的预设信息确定用于上行传输的传输参数。其中,该预设信息包括网络设备发送的预定义信号,或者,网络设备发送的下行控制信息。
需要说明的是,在本申请实施例中,终端设备判断上行传输失败的依据可以是预先定义的准则,例如,在预定义的时间内没有收到上行传输的响应信号,或者,在预定义的时间内没有收到预先配置的下行控制信息,数据或是导频信息等。在一种实现方式中,该上行传输失败至少包括以下A)至D)中任意一种:
A)在预定义的时间内未收到对于上行传输的响应信号;
在一种可能的实现方式中,该在预定义的时间内未收到对于上行传输的响应信号可包括:在预定义的时间内未收到对于PRACH(PhysicalRandomAccessChannel,物理随机接入信道)信号的RAR(Random Access Response,随机接入响应)信号;或者,在预定义的时间内未收到对于预设传输的反馈信息;预设传输为终端设备发送了第二数据。
作为一种示例,当终端设备发送了PRACH信号,终端设备在预定义的时间内没有受到RAR,终端设备判断上行传输失败。
作为另一种示例,终端设备发送过来第二数据,在预定义的时间内没有收到针对传输该第二数据的反馈信息,则终端设备判断上行传输失败。
B)在预定义的时间内未收到预先配置的下行控制信息;
作为一种示例,终端设备在预定义的时间内没有收到预先配置下行控制信息的传输,则终端设备可判定上行传输失败。
C)在预定义的时间内未收到预先配置的第一数据;
作为一种示例,终端设备在预定义的时间内未收到预先配置的第一数据,则终端设备可判定上行传输失败。
D)在预定义的时间内未收到预先配置的导频信息。
作为一种示例,终端设备在预定义的时间内未收到预先配置的导频信息,则终端设备可判定上行传输失败。
在本申请一些实施例中,该预定义的时间可以是在协议中给定的。例如,在协议中预先给定了该预定义的时间,终端设备可从该协议中获取该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
在本申请其他实施例中,该预定义的时间可以是网络设备预先通过信令通知给终端设备的;其中,该信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。例如,网络设备(如基站)预先通过高层信令(如系统消息)、媒介接入控制(MAC)层信令或物理层信令通知给终端设备,以使得终端设备从网络设备获得该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
在本申请实施例中,终端设备在判断上行传输失败后,可通过以下两种方式来确定上 行传输的传输参数:一种方式,周期性检测网络设备发送的预定义信号来确定上行传输的传输参数;所述检测网络设备发送的预定义信号可以是周期性检测,或者在或者,另一种方式,可以基于网络设备发送的配置信息检测下行控制信息,以确定上行传输的传输参数。
在一种实现方式中,确定的传输参数可包括但不限于重复次数,传输资源,传输波束,功率信息等。
步骤202,基于确定的传输参数执行上行传输。
需要说明的是,不同的上行传输可能有不同的传输参数信息。在本申请实施例中,终端设备可基于确定的传输参数执行上行传输。
通过实施本申请实施例,在判断上行传输失败时,可基于检测到的预设信息确定用于上行传输的传输参数,并基于确定的传输参数执行上行传输,可以有效提高卫星通信场景下的覆盖性能,保证业务传输的可靠性。
需要说明的是,终端设备在在判断上行传输失败后,可通过周期性检测网络设备发送的预定义信号来确定上行传输的传输参数。在一种实现方式中,图3为本申请实施例提供的另一种传输增强的方法的流程图。需要说明的是,本申请实施例的传输增强的方法可应用于终端设备。如图3所示,本申请实施例的传输增强的方法可以包括但不限于如下步骤。
步骤301,响应于上行传输失败,周期性检测网络设备发送的预定义信号。
需要说明的是,在本申请实施例中,终端设备判断上行传输失败的依据可以是预先定义的准则,例如,在预定义的时间内没有收到上行传输的响应信号,或者,在预定义的时间内没有收到预先配置的下行控制信息,数据或是导频信息等。在一种实现方式中,该上行传输失败至少包括以下A)至D)中任意一种:
A)在预定义的时间内未收到对于上行传输的响应信号;
在一种可能的实现方式中,该在预定义的时间内未收到对于上行传输的响应信号可包括:在预定义的时间内未收到对于PRACH(PhysicalRandomAccessChannel,物理随机接入信道)信号的RAR(Random Access Response,随机接入响应)信号;或者,在预定义的时间内未收到对于预设传输的反馈信息;预设传输为终端设备发送了第二数据。
作为一种示例,当终端设备发送了PRACH信号,终端设备在预定义的时间内没有受到RAR,终端设备判断上行传输失败。
作为另一种示例,终端设备发送过来第二数据,在预定义的时间内没有收到针对传输该第二数据的反馈信息,则终端设备判断上行传输失败。
B)在预定义的时间内未收到预先配置的下行控制信息;
作为一种示例,终端设备在预定义的时间内没有收到预先配置下行控制信息的传输,则终端设备可判定上行传输失败。
C)在预定义的时间内未收到预先配置的第一数据;
作为一种示例,终端设备在预定义的时间内未收到预先配置的第一数据,则终端设备可判定上行传输失败。
D)在预定义的时间内未收到预先配置的导频信息。
作为一种示例,终端设备在预定义的时间内未收到预先配置的导频信息,则终端设备 可判定上行传输失败。
在本申请一些实施例中,该预定义的时间可以是在协议中给定的。例如,在协议中预先给定了该预定义的时间,终端设备可从该协议中获取该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
在本申请其他实施例中,该预定义的时间可以是网络设备预先通过信令通知给终端设备的;其中,该信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。例如,网络设备(如基站)预先通过高层信令(如系统消息)、媒介接入控制(MAC)层信令或物理层信令通知给终端设备,以使得终端设备从网络设备获得该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
在本申请实施例中,终端设备在判断上行传输失败后,开始周期性的检测网络设备发送的预定义信号,该预定义信号可以是预定义信号集中的某一个,该预定义信号集中的每一个信号与上行传输参数有映射关系。
在本实施例中,终端设备可以根据预先获知的预定义信号的信号特征信息和/或传输时频资源位置信息,从预定义信号集中检测出网络设备发送的预定义信号。举例而言,为了使得终端设备可以准确的检测到预定义信号,终端设备需要预先获知预定义信号的信号特征信息(如信号序列),根据该预定义信号的信号特征信息从预定义信号集中检测出网络设备发送的预定义信号。
又如,终端设备需要预先获知预定义信号的传输时频资源位置信息,根据该预定义信号的传输时频资源位置信息从预定义信号集中检测出网络设备发送的预定义信号。
再如,终端设备需要预先获知预定义信号的信号特征信息和传输时频资源位置信息,根据预定义信号的信号特征信息和传输时频资源位置信息,从预定义信号集中检测出网络设备发送的预定义信号。
需要说明的是,在本申请实施例中,上述传输时频资源位置信息可理解为信号的传输位置,该传输时频资源位置信息可包括但不限于周期,偏移值,频域资源位置等中一种或多种信息。其中,预定义信号的信号特征信息和/或传输时频资源位置信息,可以是预先定义的;或者,预定义信号的信号特征信息和/或传输时频资源位置信息还可以是网络设备(如基站)通过信令配置给终端设备的。
还需要说明的是,在本申请一些实施例中,上述预定义信号的信号特征信息与上行传输的映射关系也可以是预先定义的,或者,还可以是网络设备通过信令配置给终端设备的。
步骤302,响应于检测到的预定义信号,基于信号与上行传输参数之间的映射关系,确定与预定义信号对应的上行传输的传输参数。
可选地,终端设备在检测到网络设备发送的预定义信号后,可以基于信号与上行传输参数之间的映射关系,确定与该网络设备发送的预定义信号对应的上行传输的传输参数。其中,该映射关系可以是预先定义的,或者,还可以是网络设备通过信令配置给终端设备的。
在一种实现方式中,确定的传输参数可包括但不限于重复次数,传输资源,传输波束,功率信息等。
步骤303,基于确定的传输参数执行上行传输。
需要说明的是,不同的上行传输可能有不同的传输参数信息。在本申请实施例中,终端设备可基于确定的传输参数执行上行传输。
在根据本申请一些实施例中,如图3所示,本申请实施例的传输增强的方法还可包括步骤304。其中,步骤304:在判断上传传输成功后,停止对预定义信号的检测。
可选地,终端设备在判断上传传输成功后,停止对网络设备发送的预定义信号的检测。
其中,在本申请实施例中,终端设备判断上行传输成功的依据可以是在预定义的时间内收到了对于上行传输的反馈信息或是其他预定义的准则。例如,终端设备在预定义的时间内收到了对于上行传输的响应信号,则终端设备判断上传传输成功,可以停止对网络设备发送的预定义信号的检测。又如,终端设备在预定义的时间内收到了预先配置下行控制信息的传输,则终端设备判断上传传输成功,可以停止对网络设备发送的预定义信号的检测。再如,终端设备在预定义的时间内收到了预先配置的数据,则终端设备判断上传传输成功,可以停止对网络设备发送的预定义信号的检测。又例如,终端设备在预定义的时间内收到了预先配置的导频信息,则终端设备判断上传传输成功,可以停止对网络设备发送的预定义信号的检测。
在本申请一些实施例中,该预定义的时间可以是在协议中给定的。或者,该预定义的时间还可以是网络设备预先通过信令通知给终端设备的;其中,该信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。例如,网络设备(如基站)预先通过高层信令(如系统消息)、媒介接入控制(MAC)层信令或物理层信令通知给终端设备,以使得终端设备从网络设备获得该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
通过实施本申请实施例,在终端设备判断上行传输失败后,可以通过终端设备周期性检测网络设备发送的预定义信号,并在检测到网络设备发送的预定义信号后,基于信号与上行传输参数之间的映射关系,以便终端设备可以基于确定的传输参数执行上行传输。由此可见,本申请给出应用于卫星通信系统的覆盖增强的方案,可以有效提高卫星通信场景下的覆盖性能,保证业务传输的可靠性。
需要说明的是,终端设备在在判断上行传输失败后,可以基于网络设备发送的配置信息检测下行控制信息,以确定上行传输的传输参数。图4为本申请实施例提供的另一种传输增强的方法的流程图。需要说明的是,本申请实施例的传输增强的方法可应用于终端设备。如图4所示,本申请实施例的传输增强的方法可以包括但不限于如下步骤。
步骤401,响应于上行传输失败,基于配置信息检测下行控制信息。
需要说明的是,在本申请实施例中,终端设备判断上行传输失败的依据可以是预先定义的准则,例如,在预定义的时间内没有收到上行传输的响应信号,或者,在预定义的时间内没有收到预先配置的下行控制信息,数据或是导频信息等。在一种实现方式中,该上行传输失败至少包括以下A)至D)中任意一种:
A)在预定义的时间内未收到对于上行传输的响应信号;
在一种可能的实现方式中,该在预定义的时间内未收到对于上行传输的响应信号可包括:在预定义的时间内未收到对于PRACH(PhysicalRandomAccessChannel,物理随机接入 信道)信号的RAR(Random Access Response,随机接入响应)信号;或者,在预定义的时间内未收到对于预设传输的反馈信息;预设传输为终端设备发送了第二数据。
作为一种示例,当终端设备发送了PRACH信号,终端设备在预定义的时间内没有受到RAR,终端设备判断上行传输失败。
作为另一种示例,终端设备发送过来第二数据,在预定义的时间内没有收到针对传输该第二数据的反馈信息,则终端设备判断上行传输失败。
B)在预定义的时间内未收到预先配置的下行控制信息;
作为一种示例,终端设备在预定义的时间内没有收到预先配置下行控制信息的传输,则终端设备可判定上行传输失败。
C)在预定义的时间内未收到预先配置的第一数据;
作为一种示例,终端设备在预定义的时间内未收到预先配置的第一数据,则终端设备可判定上行传输失败。
D)在预定义的时间内未收到预先配置的导频信息。
作为一种示例,终端设备在预定义的时间内未收到预先配置的导频信息,则终端设备可判定上行传输失败。
在本申请一些实施例中,该预定义的时间可以是在协议中给定的。例如,在协议中预先给定了该预定义的时间,终端设备可从该协议中获取该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
在本申请其他实施例中,该预定义的时间可以是网络设备预先通过信令通知给终端设备的;其中,该信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。例如,网络设备(如基站)预先通过高层信令(如系统消息)、媒介接入控制(MAC)层信令或物理层信令通知给终端设备,以使得终端设备从网络设备获得该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
在本申请实施例中,终端设备在判断上行传输失败后,可以基于配置信息检测下行控制信息。在一种实现方式中,该配置信息可以是预先定义的,或者,该配置信息还可以是网络设备通过信令通知给终端设备的。
在一种可能的实现方式中,该配置信息中可以包含以下至少一项:下行控制信息的导频信息;检测下行控制信息的下行链路控制信息DCI类型;检测次数;资源位置;聚合度等级。例如,配置信息中可以包含下行控制信息的导频信息;检测下行控制信息的DCI类型、检测次数、资源位置、聚合度等级等信息。
步骤402,基于下行控制信息,确定用于上行传输的传输参数。
可选地,下行控制信息中可包含传输参数调整下行控制信息,或者,可以包含个人位置信息调整下行控制信息等信息。在一种实现方式中,下行控制信息中可包含传输参数或个人位置信息的指示信息。例如,下行控制信息中可包含传输参数的指示信息,这样,终端设备可以根据该指示信息,确定上传传输的传输参数。又如,下行控制信息中可包含个人位置信息的指示信息,这样,终端设备可以根据该指示信息,确定上传传输的传输参数,比如,终端设备可以根据个人位置指示信息来调整个人的位置信息。
在一种实现方式中,确定的传输参数可包括但不限于重复次数,传输资源,传输波束, 功率信息等。
步骤403,基于确定的传输参数执行上行传输。
需要说明的是,不同的上行传输可能有不同的传输参数信息。在本申请实施例中,终端设备可基于确定的传输参数执行上行传输。例如,终端设备可基于下行控制信息,对应调整上行传输的传输参数。
在根据本申请一些实施例中,如图4所示,本申请实施例的传输增强的方法还可包括步骤404。其中,步骤404:在判断上传传输成功后,停止对下行控制信息的检测。也就是说,终端设备在判断上传传输成功后,停止对网络设备发送的下行控制信息的检测。
其中,在本申请实施例中,终端设备判断上行传输成功的依据可以是在预定义的时间内收到了对于上行传输的反馈信息或是其他预定义的准则。例如,终端设备在预定义的时间内收到了对于上行传输的响应信号,则终端设备判断上传传输成功,可以停止对下行控制信息的检测。又如,终端设备在预定义的时间内收到了预先配置下行控制信息的传输,则终端设备判断上传传输成功,可以停止对下行控制信息的检测。再如,终端设备在预定义的时间内收到了预先配置的数据,则终端设备判断上传传输成功,可以停止对下行控制信息的检测。又例如,终端设备在预定义的时间内收到了预先配置的导频信息,则终端设备判断上传传输成功,可以停止对下行控制信息的检测。
在本申请一些实施例中,该预定义的时间可以是在协议中给定的。或者,该预定义的时间还可以是网络设备预先通过信令通知给终端设备的;其中,该信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。例如,网络设备(如基站)预先通过高层信令(如系统消息)、媒介接入控制(MAC)层信令或物理层信令通知给终端设备,以使得终端设备从网络设备获得该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
通过实施本申请实施例,在终端设备判断上行传输失败后,可以通过终端设备基于配置信息检测下行控制信息,并基于下行控制信息,确定用于上行传输的传输参数,以便终端设备可以基于确定的传输参数执行上行传输。由此可见,本申请给出应用于卫星通信系统的覆盖增强的方案,可以有效提高卫星通信场景下的覆盖性能,保证业务传输的可靠性。
可以理解,上述实施例是从终端设备侧描述本申请实施例的传输增强的方法的实现方式。本申请实施例还提出了一种传输增强的方法,下面将从网络设备侧描述该传输增强的方法的实现方式。请参见图5,图5是本申请实施例提供的又一种传输增强的方法的流程图。需要说明的是,本申请实施例的传输增强的方法可应用于网络设备。如图5所示,该传输增强的方法可以包括但不限于如下步骤。
步骤501,向终端设备发送预定义信号,或者,向终端设备发送配置信息。
可选地,网络设备可向网络设备发送预定义信号。终端设备在判定上传传输失败后,可以周期性检测网络设备发送的预定义信号,并在检测到的预定义信号后,基于信号与上行传输参数之间的映射关系,确定与预定义信号对应的上行传输的传输参数,以便基于确定的传输参数执行上行传输。在一种实现方式中,确定的传输参数可包括但不限于重复次数,传输资源,传输波束,功率信息等。
需要说明的是,在本申请实施例中,终端设备判断上行传输失败的依据可以是预先定义的准则,例如,在预定义的时间内没有收到上行传输的响应信号,或者,在预定义的时间内没有收到预先配置的下行控制信息,数据或是导频信息等。在一种实现方式中,该上行传输失败至少包括以下A)至D)中任意一种:
A)在预定义的时间内未收到对于上行传输的响应信号;
在一种可能的实现方式中,该在预定义的时间内未收到对于上行传输的响应信号可包括:在预定义的时间内未收到对于PRACH(PhysicalRandomAccessChannel,物理随机接入信道)信号的RAR(Random Access Response,随机接入响应)信号;或者,在预定义的时间内未收到对于预设传输的反馈信息;预设传输为终端设备发送了第二数据。
作为一种示例,当终端设备发送了PRACH信号,终端设备在预定义的时间内没有受到RAR,终端设备判断上行传输失败。
作为另一种示例,终端设备发送过来第二数据,在预定义的时间内没有收到针对传输该第二数据的反馈信息,则终端设备判断上行传输失败。
B)在预定义的时间内未收到预先配置的下行控制信息;
作为一种示例,终端设备在预定义的时间内没有收到预先配置下行控制信息的传输,则终端设备可判定上行传输失败。
C)在预定义的时间内未收到预先配置的第一数据;
作为一种示例,终端设备在预定义的时间内未收到预先配置的第一数据,则终端设备可判定上行传输失败。
D)在预定义的时间内未收到预先配置的导频信息。
作为一种示例,终端设备在预定义的时间内未收到预先配置的导频信息,则终端设备可判定上行传输失败。
在本申请一些实施例中,该预定义的时间可以是在协议中给定的。例如,在协议中预先给定了该预定义的时间,终端设备可从该协议中获取该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
在本申请其他实施例中,该预定义的时间可以是网络设备预先通过信令通知给终端设备的;其中,该信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。例如,网络设备(如基站)预先通过高层信令(如系统消息)、媒介接入控制(MAC)层信令或物理层信令通知给终端设备,以使得终端设备从网络设备获得该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
在本申请实施例中,终端设备在判断上行传输失败后,开始周期性的检测网络设备发送的预定义信号,该预定义信号可以是预定义信号集中的某一个,该预定义信号集中的每一个信号与上行传输参数有映射关系。
在本实施例中,终端设备可以根据预先获知的预定义信号的信号特征信息和/或传输时频资源位置信息,从预定义信号集中检测出网络设备发送的预定义信号。举例而言,为了使得终端设备可以准确的检测到预定义信号,终端设备需要预先获知预定义信号的信号特征信息(如信号序列),根据该预定义信号的信号特征信息从预定义信号集中检测出网络设备发送的预定义信号。
又如,终端设备需要预先获知预定义信号的传输时频资源位置信息,根据该预定义信号的传输时频资源位置信息从预定义信号集中检测出网络设备发送的预定义信号。
再如,终端设备需要预先获知预定义信号的信号特征信息和传输时频资源位置信息,根据预定义信号的信号特征信息和传输时频资源位置信息,从预定义信号集中检测出网络设备发送的预定义信号。
需要说明的是,在本申请实施例中,上述传输时频资源位置信息可理解为信号的传输位置,该传输时频资源位置信息可包括但不限于周期,偏移值,频域资源位置等中一种或多种信息。其中,预定义信号的信号特征信息和/或传输时频资源位置信息,可以是预先定义的;或者,预定义信号的信号特征信息和/或传输时频资源位置信息还可以是网络设备(如基站)通过信令配置给终端设备的。
还需要说明的是,在本申请一些实施例中,上述预定义信号的信号特征信息与上行传输的映射关系也可以是预先定义的,或者,还可以是网络设备通过信令配置给终端设备的。
在一种实现方式中,网络设备可以向终端设备发送配置信息。终端设备在判断上行传输失败后,基于网络设备发送的配置信息检测下行控制信息,并基于下行控制信息,确定用于上行传输的传输参数,以便基于确定的传输参数执行上行传输。
需要说明的是,在本申请实施例中,终端设备判断上行传输失败的依据可以是预先定义的准则,例如,在预定义的时间内没有收到上行传输的响应信号,或者,在预定义的时间内没有收到预先配置的下行控制信息,数据或是导频信息等。在一种实现方式中,该上行传输失败至少包括以下A)至D)中任意一种:
A)在预定义的时间内未收到对于上行传输的响应信号;
在一种可能的实现方式中,该在预定义的时间内未收到对于上行传输的响应信号可包括:在预定义的时间内未收到对于PRACH(PhysicalRandomAccessChannel,物理随机接入信道)信号的RAR(Random Access Response,随机接入响应)信号;或者,在预定义的时间内未收到对于预设传输的反馈信息;预设传输为终端设备发送了第二数据。
作为一种示例,当终端设备发送了PRACH信号,终端设备在预定义的时间内没有受到RAR,终端设备判断上行传输失败。
作为另一种示例,终端设备发送过来第二数据,在预定义的时间内没有收到针对传输该第二数据的反馈信息,则终端设备判断上行传输失败。
B)在预定义的时间内未收到预先配置的下行控制信息;
作为一种示例,终端设备在预定义的时间内没有收到预先配置下行控制信息的传输,则终端设备可判定上行传输失败。
C)在预定义的时间内未收到预先配置的第一数据;
作为一种示例,终端设备在预定义的时间内未收到预先配置的第一数据,则终端设备可判定上行传输失败。
D)在预定义的时间内未收到预先配置的导频信息。
作为一种示例,终端设备在预定义的时间内未收到预先配置的导频信息,则终端设备可判定上行传输失败。
在本申请一些实施例中,该预定义的时间可以是在协议中给定的。例如,在协议中预 先给定了该预定义的时间,终端设备可从该协议中获取该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
在本申请其他实施例中,该预定义的时间可以是网络设备预先通过信令通知给终端设备的;其中,该信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。例如,网络设备(如基站)预先通过高层信令(如系统消息)、媒介接入控制(MAC)层信令或物理层信令通知给终端设备,以使得终端设备从网络设备获得该预定义的时间,以便基于该预定义的时间来判断是否发生上行传输失败。
在本申请实施例中,终端设备在判断上行传输失败后,可以基于配置信息检测下行控制信息。在一种实现方式中,该配置信息可以是预先定义的,或者,该配置信息还可以是网络设备通过信令通知给终端设备的。
在一种可能的实现方式中,该配置信息中可以包含以下至少一项:下行控制信息的导频信息;检测下行控制信息的下行链路控制信息DCI类型;检测次数;资源位置;聚合度等级。例如,配置信息中可以包含下行控制信息的导频信息;检测下行控制信息的DCI类型、检测次数、资源位置、聚合度等级等信息。
可选地,下行控制信息中可包含传输参数调整下行控制信息,或者,可以包含个人位置信息调整下行控制信息等信息。在一种实现方式中,下行控制信息中可包含传输参数或个人位置信息的指示信息。例如,下行控制信息中可包含传输参数的指示信息,这样,终端设备可以根据该指示信息,确定上传传输的传输参数。又如,下行控制信息中可包含个人位置信息的指示信息,这样,终端设备可以根据该指示信息,确定上传传输的传输参数,比如,终端设备可以根据个人位置指示信息来调整个人的位置信息。
在一种实现方式中,确定的传输参数可包括但不限于重复次数,传输资源,传输波束,功率信息等。
通过实施本申请实施例,通过网络设备向终端设备发送预定义信号,或者,向终端设备发送配置信息,以便终端设备基于检测网络设备发送的预定义信号或配置信息,确定出用于上行传输的传输参数,可以使得终端设备基于确定的传输参数执行上行传输。由此可见,本申请给出应用于卫星通信系统的覆盖增强的方案,可以有效提高卫星通信场景下的覆盖性能,保证业务传输的可靠性。
上述本申请提供的实施例中,分别从终端设备、网络设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图6,为本申请实施例提供的一种通信装置60的结构示意图。图6所示的通信装置60可包括收发模块601和处理模块602。收发模块601可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块601可以实现发送功能和/或接收功能。
通信装置60可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备 匹配使用的装置。或者,通信装置60可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置60为终端设备:在本申请实施例中,处理模块602用于响应于上行传输失败,基于检测到的预设信息确定用于上行传输的传输参数,并基于确定的传输参数执行上行传输;其中,预设信息包括网络设备发送的预定义信号,或者,网络设备发送的下行控制信息。
在一种实现方式中,处理模块602用于:周期性检测网络设备发送的预定义信号;响应于检测到的预定义信号,基于信号与上行传输参数之间的映射关系,确定与预定义信号对应的上行传输的传输参数。
在一种可能的实现方式中,处理模块602用于:根据预先获知的预定义信号的信号特征信息和/或传输时频资源位置信息,从预定义信号集中检测出网络设备发送的预定义信号。
在一种可能的实现方式中,信号特征信息和/或传输时频资源位置信息分别是预先定义的;或者,信号特征信息和/或传输时频资源位置信息分别是网络设备通过信令配置给终端设备的。
在一种实现方式中,处理模块602还用于:在判断上传传输成功后,停止对预定义信号的检测。
在一种实现方式中,处理模块602用于:基于配置信息检测下行控制信息;基于下行控制信息,确定用于上行传输的传输参数。
在一种可能的实现方式中,配置信息包含以下至少一项:
下行控制信息的导频信息;检测下行控制信息的下行链路控制信息DCI类型;检测次数;资源位置;聚合度等级。
在一种可能的实现方式中,下行控制信息中包含传输参数或个人位置信息的指示信息。
在一种可能的实现方式中,处理模块还用于:在判断上传传输成功后,停止对下行控制信息的检测。
在一种可能的实现方式中,上行传输失败至少包括以下任意一种:
在预定义的时间内未收到对于上行传输的响应信号;在预定义的时间内未收到预先配置的下行控制信息;在预定义的时间内未收到预先配置的第一数据;在预定义的时间内未收到预先配置的导频信息。
在一种可能的实现方式中,在预定义的时间内未收到对于上行传输的响应信号,包括:
在预定义的时间内未收到对于物理随机接入信道PRACH信号的随机接入响应RAR信号;或者,在预定义的时间内未收到对于预设传输的反馈信息;预设传输为终端设备发送了第二数据。
在一种可能的实现方式中,预定义的时间是在协议中给定的;或者,预定义的时间是网络设备预先通过信令通知给终端设备的;其中,信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。
通信装置60为网络设备:在本申请实施例中,收发模块601用于向终端设备发送预定义信号,或者,向终端设备发送配置信息。
在一种实现方式中,处理模块602用于通过信令为终端设备分别配置预定义信号的信 号特征信息和/或传输时频资源位置信息。
在一种可能的实现方式中,配置信息包含以下至少一项:下行控制信息的导频信息;检测下行控制信息的下行链路控制信息DCI类型;检测次数;资源位置;聚合度等级。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参见图7,图7是本申请实施例提供的另一种通信装置70的结构示意图。通信装置70可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置70可以包括一个或多个处理器701。处理器701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置70中还可以包括一个或多个存储器702,其上可以存有计算机程序704,处理器701执行所述计算机程序704,以使得通信装置70执行上述方法实施例中描述的方法。可选的,所述存储器702中还可以存储有数据。通信装置70和存储器702可以单独设置,也可以集成在一起。
可选的,通信装置70还可以包括收发器705、天线706。收发器705可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器705可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置70中还可以包括一个或多个接口电路707。接口电路707用于接收代码指令并传输至处理器701。处理器701运行所述代码指令以使通信装置70执行上述方法实施例中描述的方法。
通信装置70为终端设备:处理器701用于执行图2中的步骤201和步骤202;执行图3中的步骤301、步骤302、步骤303和步骤304;执行图4中的步骤401、步骤402、步骤403和步骤404。
通信装置70为网络设备:收发器705用于执行图5中的步骤501。
在一种实现方式中,处理器701中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器701可以存有计算机程序703,计算机程序703在处理器701上运行,可使得通信装置70执行上述方法实施例中描述的方法。计算机程序703可能固化在处理器701中,该种情况下,处理器701可能由硬件实现。
在一种实现方式中,通信装置70可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图7的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种确定侧链路时长的系统,该系统包括前述图6实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图7实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中, 或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (36)

  1. 一种传输增强的方法,其特征在于,所述方法应用于终端设备,所述方法包括:
    响应于上行传输失败,基于检测到的预设信息确定用于上行传输的传输参数;其中,所述预设信息包括所述网络设备发送的预定义信号,或者,所述预设信息包括所述网络设备发送的下行控制信息;
    基于确定的所述传输参数执行上行传输。
  2. 根据权利要求1所述的方法,其特征在于,所述基于检测到的预设信息确定用于上行传输的传输参数,包括:
    周期性检测网络设备发送的预定义信号;
    响应于检测到的所述预定义信号,基于信号与上行传输参数之间的映射关系,确定与所述预定义信号对应的上行传输的传输参数。
  3. 根据权利要求2所述的方法,其特征在于,所述检测网络设备发送的预定义信号,包括:
    根据预先获知的所述预定义信号的信号特征信息和/或传输时频资源位置信息,从预定义信号集中检测出所述网络设备发送的所述预定义信号。
  4. 根据权利要求3所述的方法,其特征在于,所述信号特征信息和/或传输时频资源位置信息分别是预先定义的;或者,所述信号特征信息和/或传输时频资源位置信息分别是所述网络设备通过信令配置给所述终端设备的。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,所述方法还包括:
    在判断上传传输成功后,停止对所述预定义信号的检测。
  6. 根据权利要求1所述的方法,其特征在于,所述基于检测到的预设信息确定用于上行传输的传输参数,包括:
    基于配置信息检测下行控制信息;
    基于所述下行控制信息,确定用于上行传输的传输参数。
  7. 根据权利要求6所述的方法,其特征在于,所述配置信息包含以下至少一项:
    所述下行控制信息的导频信息;
    检测所述下行控制信息的下行链路控制信息DCI类型;
    检测次数;
    资源位置;
    聚合度等级。
  8. 根据权利要求6或7所述的方法,其特征在于,所述下行控制信息中包含传输参数或个人位置信息的指示信息。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,还包括:
    在判断上传传输成功后,停止对所述下行控制信息的检测。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述上行传输失败至少包括以下任意一种:
    在预定义的时间内未收到对于所述上行传输的响应信号;
    在所述预定义的时间内未收到预先配置的下行控制信息;
    在所述预定义的时间内未收到预先配置的第一数据;
    在所述预定义的时间内未收到预先配置的导频信息。
  11. 根据权利要求10所述的方法,其特征在于,所述在预定义的时间内未收到对于所述上行传输的响应信号,包括:
    在所述预定义的时间内未收到对于物理随机接入信道PRACH信号的随机接入响应RAR信号;或者,
    在所述预定义的时间内未收到对于预设传输的反馈信息;所述预设传输为所述终端设备发送了第二数据。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述预定义的时间是在协议中给定的;
    或者,所述预定义的时间是所述网络设备预先通过信令通知给所述终端设备的;其中,所述信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。
  13. 一种传输增强的方法,其特征在于,所述方法应用于网络设备,所述方法包括:
    向终端设备发送预定义信号;或者,
    向所述终端设备发送配置信息。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    通过信令为所述终端设备分别配置所述预定义信号的信号特征信息和/或传输时频资源位置信息。
  15. 根据权利要求13所述的方法,其特征在于,所述配置信息包含以下至少一项:
    下行控制信息的导频信息;
    检测所述下行控制信息的下行链路控制信息DCI类型;
    检测次数;
    资源位置;
    聚合度等级。
  16. 一种通信装置,其特征在于,包括:
    处理模块,所述处理模块用于响应于上行传输失败,基于检测到的预设信息确定用于上行传输的传输参数,并基于确定的所述传输参数执行上行传输;其中,所述预设信息包括所述网络设备发送的预定义信号,或者,所述预设信息包括所述网络设备发送的下行控制信息。
  17. 根据权利要求16所述的通信装置,其特征在于,所述处理模块用于:
    周期性检测网络设备发送的预定义信号;
    响应于检测到的所述预定义信号,基于信号与上行传输参数之间的映射关系,确定与所述预定义信号对应的上行传输的传输参数。
  18. 根据权利要求17所述的通信装置,其特征在于,所述处理模块用于:
    根据预先获知的所述预定义信号的信号特征信息和/或传输时频资源位置信息,从预定义信号集中检测出所述网络设备发送的所述预定义信号。
  19. 根据权利要求18所述的通信装置,其特征在于,所述信号特征信息和/或传输时频资源位置信息分别是预先定义的;或者,所述信号特征信息和/或传输时频资源位置信息分别是所述网络设备通过信令配置给所述终端设备的。
  20. 根据权利要求17至19中任一项所述的通信装置,其特征在于,所述处理模块还用于:
    在判断上传传输成功后,停止对所述预定义信号的检测。
  21. 根据权利要求16所述的通信装置,其特征在于,所述处理模块用于:
    基于配置信息检测下行控制信息;
    基于所述下行控制信息,确定用于上行传输的传输参数。
  22. 根据权利要求21所述的通信装置,其特征在于,所述配置信息包含以下至少一项:
    所述下行控制信息的导频信息;
    检测所述下行控制信息的下行链路控制信息DCI类型;
    检测次数;
    资源位置;
    聚合度等级。
  23. 根据权利要求21或22所述的通信装置,其特征在于,所述下行控制信息中包含传输参数或个人位置信息的指示信息。
  24. 根据权利要求21至23中任一项所述的通信装置,其特征在于,所述处理模块还用于:
    在判断上传传输成功后,停止对所述下行控制信息的检测。
  25. 根据权利要求16至24中任一项所述的通信装置,其特征在于,所述上行传输失败至少包括以下任意一种:
    在预定义的时间内未收到对于所述上行传输的响应信号;
    在所述预定义的时间内未收到预先配置的下行控制信息;
    在所述预定义的时间内未收到预先配置的第一数据;
    在所述预定义的时间内未收到预先配置的导频信息。
  26. 根据权利要求25所述的通信装置,其特征在于,所述在预定义的时间内未收到对于所述上行传输的响应信号,包括:
    在所述预定义的时间内未收到对于物理随机接入信道PRACH信号的随机接入响应RAR信号;或者,
    在所述预定义的时间内未收到对于预设传输的反馈信息;所述预设传输为所述终端设备发送了第二数据。
  27. 根据权利要求25或26所述的通信装置,其特征在于,
    所述预定义的时间是在协议中给定的;
    或者,所述预定义的时间是所述网络设备预先通过信令通知给所述终端设备的;其中,所述信令至少包括高层信令、媒介接入控制层信令和物理层信令中的任意一种。
  28. 一种通信装置,其特征在于,包括:
    收发模块,所述收发模块用于向终端设备发送预定义信号,或者,向所述终端设备发送配置信息。
  29. 根据权利要求28所述的通信装置,其特征在于,还包括:
    处理模块,所述处理模块用于通过信令为所述终端设备分别配置所述预定义信号的信号特征信息和/或传输时频资源位置信息。
  30. 根据权利要求28所述的通信装置,其特征在于,所述配置信息包含以下至少一项:
    下行控制信息的导频信息;
    检测所述下行控制信息的下行链路控制信息DCI类型;
    检测次数;
    资源位置;
    聚合度等级。
  31. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至12中任一项所述的方法。
  32. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求13至15中任一项所述的方法。
  33. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至12中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求13至15中任一项所述的方法。
  35. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至12中任一项所述的方法被实现。
  36. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求13至15中任一项所述的方法被实现。
PCT/CN2021/111892 2021-08-10 2021-08-10 传输增强的方法和装置 WO2023015457A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/111892 WO2023015457A1 (zh) 2021-08-10 2021-08-10 传输增强的方法和装置
CN202180002449.XA CN115956372A (zh) 2021-08-10 2021-08-10 传输增强的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111892 WO2023015457A1 (zh) 2021-08-10 2021-08-10 传输增强的方法和装置

Publications (1)

Publication Number Publication Date
WO2023015457A1 true WO2023015457A1 (zh) 2023-02-16

Family

ID=85200389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111892 WO2023015457A1 (zh) 2021-08-10 2021-08-10 传输增强的方法和装置

Country Status (2)

Country Link
CN (1) CN115956372A (zh)
WO (1) WO2023015457A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146506A2 (en) * 2019-01-08 2020-07-16 Apple Inc. Random access procedure for nr based satellite communication
CN112543463A (zh) * 2019-09-23 2021-03-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113141597A (zh) * 2020-01-20 2021-07-20 上海朗帛通信技术有限公司 一种用于不连续接收的无线通信的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020146506A2 (en) * 2019-01-08 2020-07-16 Apple Inc. Random access procedure for nr based satellite communication
CN112543463A (zh) * 2019-09-23 2021-03-23 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113141597A (zh) * 2020-01-20 2021-07-20 上海朗帛通信技术有限公司 一种用于不连续接收的无线通信的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Connected mode aspects for NTN", 3GPP DRAFT; R2-2103751, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20210412 - 20210420, 1 April 2021 (2021-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051992233 *
HUAWEI, HISILICON: "Discussion on Mobility for NTN NB-IoT", 3GPP DRAFT; R2-2103510, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210412 - 20210420, 1 April 2021 (2021-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051992116 *

Also Published As

Publication number Publication date
CN115956372A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
WO2023130322A1 (zh) 确定共享信道占用时间的方法及其装置
US11259362B2 (en) Method for repeatedly transmitting data and device
WO2023133736A1 (zh) 一种确定先听后说失败的方法及装置
WO2023039852A1 (zh) 系统信息传输方法和装置
WO2023102743A1 (zh) 接入控制方法及装置
WO2023150988A1 (zh) 一种位置信息的上报方法及其装置
WO2023015457A1 (zh) 传输增强的方法和装置
WO2023283841A1 (zh) 波束测量上报激活方法及装置
WO2022120519A1 (zh) 部分带宽处理方法及装置
CN116406021A (zh) 随机接入方法和装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2024036519A1 (zh) 一种侧行链路pdcp复用的激活方法及装置
WO2023142085A1 (zh) 寻呼触发方法及装置
WO2023130321A1 (zh) 一种数据压缩方法和装置
WO2023010429A1 (zh) 一种带宽部分的同步方法及其装置
WO2022266926A1 (zh) 一种定时关系调整方法及其装置
WO2024060143A1 (zh) 一种上报方法/装置/设备及存储介质
WO2023035202A1 (zh) 一种跟踪参考信号周期的确定方法及其装置
WO2023010431A1 (zh) 通信方法、装置和存储介质
WO2023050393A1 (zh) 一种随机接入响应窗口的确定方法及其装置
WO2023123474A1 (zh) 一种非地面网络中无随机接入信道切换的方法及其装置
WO2024011546A1 (zh) 数据传输配置方法和装置
CN115191145B (zh) 一种多prach传输方法及其装置
WO2024016137A1 (zh) 一种预编码信息的接收发送方法及其装置
EP4319323A1 (en) Method and apparatus for determining power parameter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE