WO2023108312A1 - 一种柔性锌-空气电池凝胶电解质及其制备方法和应用 - Google Patents

一种柔性锌-空气电池凝胶电解质及其制备方法和应用 Download PDF

Info

Publication number
WO2023108312A1
WO2023108312A1 PCT/CN2021/137333 CN2021137333W WO2023108312A1 WO 2023108312 A1 WO2023108312 A1 WO 2023108312A1 CN 2021137333 W CN2021137333 W CN 2021137333W WO 2023108312 A1 WO2023108312 A1 WO 2023108312A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
gel electrolyte
flexible
air battery
electrolyte
Prior art date
Application number
PCT/CN2021/137333
Other languages
English (en)
French (fr)
Inventor
孙洪岩
陈桥
常煜
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2021/137333 priority Critical patent/WO2023108312A1/zh
Publication of WO2023108312A1 publication Critical patent/WO2023108312A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of zinc-air batteries, and in particular relates to a flexible zinc-air battery gel electrolyte and its preparation method and application.
  • the electrolyte of most all-solid-state zinc-air batteries is an alkaline organic gel electrolyte, and the principle is to wrap an alkaline aqueous solution in an organic gel.
  • the zinc-air battery is a semi-open system, acid gases such as CO 2 in the air can directly contact and react with the organic gel electrolyte, resulting in a decrease in its conductivity and a decrease in battery performance; at the same time, the organic gel electrolyte and the metal zinc electrode A reaction will occur, and the alkaline aqueous solution in the electrolyte will be left for a long time or during work, which will cause the electrolyte to lose water and dry up, and the battery will be deformed, which will seriously affect the capacity and life of the battery; moreover, when the alkaline electrolyte is applied to wearable electronic devices, it will cause serious damage to the human body.
  • the present invention aims at the above problems, and provides a flexible zinc-air battery gel electrolyte to solve the problems of existing alkaline electrolytes that affect battery life, capacity and safety due to electrolyte leakage and strong corrosion.
  • Another object of the present invention is to provide a method for preparing the above-mentioned flexible zinc-air battery gel electrolyte.
  • the third object of the present invention is to provide the application of the above-mentioned flexible zinc-air battery gel electrolyte, by replacing the traditional alkaline electrolyte with a neutral gel electrolyte, it is used in a flexible zinc-air battery, and the gel electrolyte is cheap.
  • a flexible zinc-air battery gel electrolyte comprising the following components in parts by mass:
  • crosslinking agent is any one of polyethylene glycol diacrylate and N,N-methylenebisacrylamide.
  • the viscous long-chain polymer is any one of polyethylene oxide, polyvinyl alcohol, and cellulose.
  • the electrolyte is at least one of lithium triflate, ammonium chloride, potassium chloride, potassium nitrate, and salts containing zinc ions.
  • the salt containing zinc ions may be at least one of zinc trifluoromethanesulfonate, zinc chloride, zinc acetate, etc., but is not limited to the above-mentioned several.
  • the photoinitiator is any one of 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, 2-hydroxyl-2-methyl-1-phenyl-1-acetone .
  • Another aspect of the present invention provides a method for preparing the above-mentioned flexible zinc-air gel battery electrolyte, comprising the following steps:
  • the mixing method in S3 is ultrasonic, and the mixing time is 10-15 minutes.
  • the curing method is ultraviolet light irradiation, and the curing time is 1.5-3 minutes.
  • the third aspect of the present invention provides the application of the above-mentioned flexible zinc-air battery gel electrolyte or the flexible zinc-air battery gel electrolyte prepared by the above-mentioned preparation method as an electrolyte in a zinc-air battery.
  • the zinc-air battery includes a zinc anode layer, an air cathode layer and a gel electrolyte layer, and the gel electrolyte layer is arranged between the air cathode layer and the zinc anode layer to form a sandwich structure battery ;
  • the air cathode layer includes a flexible conductive substrate, at least the surface of the flexible conductive substrate in contact with the gel electrolyte layer is coated with a catalyst layer; and/or the zinc anode layer is zinc foil.
  • the flexible conductive matrix in the air cathode layer is flexible
  • the zinc anode layer is flexible with thin zinc foil
  • the gel electrolyte is also flexible to make the device fully flexible.
  • the catalyst contained in the catalyst layer includes any one of manganese dioxide/carbon, tricobalt tetroxide/carbon, polyaniline/carbon nanotube, and silver powder.
  • the present invention forms a gel electrolyte through acrylamide, cross-linking agent, viscous long-chain polymer, electrolyte, photoinitiator and water.
  • the gel electrolyte is neutral, less corrosive, cheap and easy to obtain, and environmentally friendly;
  • the gel electrolyte is obtained by mixing different components of the gel electrolyte in sequence and then solidifying.
  • the method is simple to operate, mild in conditions, and time-saving and convenient;
  • the present invention applies the neutral gel electrolyte to the flexible zinc-air battery, based on the high elasticity and water-locking property of the gel electrolyte, a rechargeable flexible zinc-air battery is obtained, which is different from the traditional application of liquid alkaline Compared with the zinc-air battery with electrolyte, it can be bent, and the bending has no obvious impact on the performance of the battery. It can effectively avoid the problem of electrolyte leakage during use, and the charging and discharging cycle time is long; at the same time, it is safe and environmentally friendly, and it is easy to recycle. When used in wearable electronic devices, it can avoid the potential harm to the human body that exists in traditional alkaline electrolytes.
  • Fig. 1 is a photo of the gel electrolyte in a flexible zinc-air battery gel electrolyte provided by Example 11 of the present invention
  • Fig. 2 is a comparison curve of gel adhesion when there is or is not sticky long-chain polymer in the flexible zinc-air battery gel provided by Example 11 of the present invention and Comparative Example 11;
  • Fig. 3 is a schematic structural diagram of a flexible zinc-air battery in the application of a flexible zinc-air battery gel electrolyte provided in Example 21 of the present invention
  • Fig. 4 is a structural schematic diagram of another visual angle of a flexible zinc-air battery in the application of a flexible zinc-air battery gel electrolyte provided by Example 21 of the present invention
  • Fig. 5 is a zinc-air battery cycle charge and discharge performance test curve in the application of a flexible zinc-air battery gel electrolyte provided in Example 21 of the present invention
  • Fig. 6 is a diagram of a zinc-air battery driving 20 LED lamps in the application of a flexible zinc-air battery gel electrolyte provided by Example 21 of the present invention.
  • Zinc anode layer 2. Air cathode layer; 21. Flexible conductive substrate; 22. Catalyst layer; 3. Gel electrolyte layer.
  • the term "and/or” describes the association relationship of associated objects, indicating that there may be three relationships, for example, A and/or B may mean: A exists alone, A and B exist simultaneously, and B exists alone Condition. Among them, A and B can be singular or plural.
  • the character "/" generally indicates that the contextual objects are an "or" relationship.
  • the weight of the relevant components mentioned in the description of the embodiments of the present application can not only refer to the specific content of each component, but also represent the proportional relationship between the weights of the various components.
  • the scaling up or down of the content of the fraction is within the scope disclosed in the description of the embodiments of the present application.
  • the mass in the description of the embodiments of the present application may be ⁇ g, mg, g, kg and other well-known mass units in the chemical industry.
  • an embodiment of the present invention provides a flexible zinc-air battery gel electrolyte, including the following components in parts by mass: 10-30 parts of acrylamide, 0.1-0.5 parts of a cross-linking agent, and 0.1 parts of a viscous long-chain polymer ⁇ 30 parts, 10-70 parts of electrolyte, 0.2-2 parts of photoinitiator, 100 parts of water, the acrylamide, crosslinking agent, viscous long-chain macromolecule, electrolyte, photoinitiator and water together form a gel electrolyte.
  • the crosslinking agent is polyethylene glycol diacrylate or N,N-methylenebisacrylamide
  • the viscous long-chain polymer includes but not limited to polyethylene oxide, polyvinyl alcohol, cellulose, etc.
  • the electrolyte includes But not limited to lithium trifluoromethanesulfonate, ammonium chloride, potassium chloride, potassium nitrate, salts containing zinc ions
  • salts containing zinc ions include but not limited to zinc trifluoromethanesulfonate, zinc chloride, Zinc acetate, etc.
  • photoinitiators include but not limited to 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, 2-hydroxy-2-methyl-1-phenyl-1-propanone.
  • Another embodiment also provides a method for preparing the above-mentioned flexible zinc-air battery gel electrolyte.
  • the specific steps are: S1, mix acrylamide, cross-linking agent, viscous long-chain polymer with water according to the proportion, stir and dissolve, and obtain a mixed solution; S2, add the electrolyte to the mixed solution of S1, stir until completely dissolved to obtain a hydrogel; S3, mix the photoinitiator with the hydrogel of S2, disperse it evenly by ultrasonic, inject it into the mold, and use ultraviolet light Photocuring to obtain a flexible zinc-air battery gel electrolyte.
  • the third embodiment also provides the above-mentioned flexible zinc-air battery gel electrolyte or the application of the flexible zinc-air battery gel electrolyte obtained by the above-mentioned preparation method in a zinc-air battery.
  • the zinc-air battery includes a zinc anode layer 1, an air A cathode layer 2 and a gel electrolyte layer 3, the gel electrolyte layer 3 is arranged between the air cathode layer 2 and the zinc anode layer 1 to form a sandwich structure battery;
  • the air cathode layer 2 includes a flexible conductive substrate 21, at least the surface of the flexible conductive substrate 21 in contact with the gel electrolyte layer 3 is coated with a catalyst layer 22; and/or the zinc anode layer 1 is Zinc foil; the catalyst contained in the catalyst layer 22 includes any one of manganese dioxide/carbon, tricobalt tetroxide/carbon, polyaniline/carbon nanotube, and silver powder.
  • the electrodes at both ends use thin sheet zinc foil as the anode of the reaction layer, and the catalyst slurry such as manganese dioxide/carbon, tricobalt tetroxide/carbon, polyaniline/carbon nanotube, silver powder is coated on the conductive cloth, conductive paper, etc.
  • the catalytic layer that is, the air cathode
  • the polymer hydrogel with high flexibility and water retention is used as the intermediate electrolyte gel.
  • the flexible zinc- Air battery the device is fully flexible.
  • This embodiment provides a flexible zinc-air battery gel electrolyte, including the following components in parts by mass:
  • This embodiment also provides a preparation method for the above-mentioned gel electrolyte, including the following steps:
  • composition and preparation method of the flexible zinc-air battery gel electrolyte in this comparative example are basically the same as those in Example 11. The difference is that the flexible zinc-air battery gel electrolyte in this comparative example does not add viscous long-chain polymers Ethylene oxide.
  • the present invention has carried out adhesion test to the hydrogel electrolyte of embodiment 11 and comparative example 11, as shown in Figure 2, the hydrogel electrolyte gel adhesion of comparative example 11 is reduced with respect to the sample of embodiment 11 Double, it is not conducive to the interface between the electrode and the gel.
  • This embodiment provides an application of a flexible zinc-air battery gel electrolyte, that is, the flexible zinc-air gel electrolyte of Example 11 is applied to a zinc-air battery, as shown in FIG. 3 .
  • the electrode is prepared first, that is, a 0.08 mm thick zinc foil is used as the zinc anode layer 1 of the reaction layer; the Co 3 O 4 /C slurry is used as the catalyst layer 22 to coat the flexible conductive substrate 21 and the One side of the conductive cloth is used as the air cathode layer 2 after drying.
  • the device was prepared, as shown in Figure 3 and Figure 4, specifically, the electrode and the gel electrolyte layer obtained in Example 11 were directly stacked and assembled into a sandwich structure flexible battery.
  • the present invention conducts a performance test on the obtained flexible battery, that is, uses a multimeter and a blue electric test system to conduct an electrical performance test on the flexible battery in Example 21 at room temperature:
  • the flexible battery obtained in Example 21 has better performance. As shown in Figure 5, as the power supply performance, the open circuit voltage of the flexible battery is about 1.0V and the short circuit current density is about 35mA/cm 2 , and it can be charged and discharged for about 120 hours. As shown in Figure 6, three strings in series can drive 20 LED lights at the same time, and the brightness of the LEDs will not change when bent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种柔性锌-空气电池凝胶电解质及其制备方法和应用,该凝胶电解质包括以下质量份数的组分:丙烯酰胺10~30份,交联剂0.1~0.5份,粘性长链高分子0.1~30份,电解质10~70份,光引发剂0.2~2份,水100份,丙烯酰胺、交联剂、粘性长链高分子、电解质、光引发剂和水共同形成凝胶电解质。本发明通过互穿网络结构体系设计,添加长链粘性高分子,调控水凝胶材料的柔弹性,得到具有柔弹性和粘性且偏中性的紫外光固化水凝胶电解质,将其应用于柔性锌-空气电池后,有效解决了传统碱性电解质由于电解液泄露、腐蚀性强而影响电池寿命、容量和安全性的问题。

Description

一种柔性锌-空气电池凝胶电解质及其制备方法和应用 技术领域
本发明属于锌-空气电池技术领域,具体涉及一种柔性锌-空气电池凝胶电解质及其制备方法和应用。
背景技术
作为柔性电子器件的动力源,柔性、高效的能量存储设备是各类器件的核心组件之一,生产可靠安全的柔性储能设备十分必要。当前,只有薄膜锂电池(厚度<1mm)商业化并用于卡式和可穿戴设备;但是,由于锂电池材料对空气和湿度敏感,高阻隔封装会严重影响其体积效率和柔韧性,且其电解液不具有生物相容性,并不是可穿戴电子产品动力源的最佳候选者之一。
相比之下,金属锌由于具有环境友好、低成本、比金属锂稳定性高、原材料丰富便于存储等天然优势,柔性的锌基电池被认为是替代用于可穿戴电子设备的柔性锂电池的最有效方法之一。其中,锌-空气电池池因其低廉的成本、环境友好性和较高的理论能量密度被认为是极具发展潜力的新型储能器件之一。但传统的含水电解质存在不能保持稳定形状和有效隔离电极以防止短路等问题,不能满足柔性锌-空气电池的商业化要求。为了兼具柔性和安全性,基于聚合物凝胶的框架和官能团提供相对良好的机械性能,聚合物胶凝剂与相应的含水电解质组成的聚合物凝胶电解质已经被研究并用于柔性的锌基电池中。
目前,大部分全固态锌空气电池的电解质为碱性有机凝胶电解质,其原理是将碱性水溶液包裹在有机凝胶中。但是由于锌-空气电池为半开放系统, 空气中的CO 2等酸性气体可以直接与有机凝胶电解质接触并反应导致其电导率下降,使电池性能降低;同时,有机凝胶电解质与金属锌电极会发生反应,电解质中的碱性水溶液长期放置或工作中会造成电解质失水干涸,电池变形,严重影响电池的容量和寿命;而且,碱性电解质被应用于可穿戴电子设备时,对人体构成潜在的危险,最终导致锌-空气电池商业化仍具有不可忽视的挑战。因此,开发中性电解质的全固态锌-空气电池能够规避这些潜在的危险,将其应用于可穿戴电子设备领域具有更为广阔的市场前景。
发明内容
有鉴于此,本发明针对上述问题,提供一种柔性锌-空气电池凝胶电解质,以解决现有的碱性电解质由于电解液泄露、腐蚀性强而影响电池寿命、容量和安全性的问题。
本发明的另一目的是提供上述柔性锌-空气电池凝胶电解质的制备方法。
本发明的第三个目的是提供上述柔性锌-空气电池凝胶电解质的应用,通过将偏中性的凝胶电解质替代传统碱性电解质,用于柔性锌-空气电池中,基于凝胶电解质廉价易取、腐蚀性小、可避免电解液泄露等优点,以使柔性锌-空气电池用于可穿戴电子设备。
本发明所采用的技术方案是:
一种柔性锌-空气电池凝胶电解质,包括以下质量份数的组分:
丙烯酰胺10~30份,交联剂0.1~0.5份,粘性长链高分子0.1~30份,电解质10~70份,光引发剂0.2~2份,水100份,所述丙烯酰胺、交联剂、粘性长链高分子、电解质、光引发剂和水共同形成凝胶电解质。
进一步地,所述交联剂为聚乙二醇二丙烯酸脂、N,N-亚甲基双丙烯酰胺 中的任意一种。
进一步地,所述粘性长链高分子为聚环氧乙烷、聚乙烯醇、纤维素中的任意一种。
进一步地,所述电解质为三氟甲磺酸锂、氯化铵、氯化钾、硝酸钾、含锌离子的盐类中的至少一种。
其中,所述含锌离子的盐类可以为三氟甲磺酸锌、氯化锌、醋酸锌等至少一种,但并不限定为上述几种。
进一步地,所述光引发剂为2,4,6-三甲基苯甲酰基-二苯基氧化膦、2-羟基-2-甲基-1-苯基-1-丙酮中的任意一种。
本发明另一方面,提供了上述柔性锌-空气凝胶电池电解质的制备方法,包括以下步骤:
S1,按照配比将丙烯酰胺、交联剂、粘性长链高分子与水混合,搅拌溶解,得到混合溶液;
S2,将电解质加入所述S1的混合溶液中,搅拌至完全溶解得到水凝胶;
S3,将光引发剂与所述S2的水凝胶混合后注入模具,固化得到柔性锌-空气电池凝胶电解质。
进一步地,所述S3中混合方式为超声,混合时间为10~15min,所述固化方式为紫外光照射,所述固化时间为1.5~3min。
本发明第三方面,提供了上述柔性锌-空气电池凝胶电解质或者上述制备方法制备得到的柔性锌-空气电池凝胶电解质作为电解质在锌-空气电池中的应用。
进一步地,所述锌-空气电池包括锌阳极层、空气阴极层和凝胶电解质层,所述凝胶电解质层设置于所述空气阴极层和所述锌阳极层之间,以形成 三明治结构电池;
所述空气阴极层包括柔性导电基体,至少在所述柔性导电基体的与所述凝胶电解质层接触的表面上涂设有催化剂层;和/或所述锌阳极层为锌箔。
这样,空气阴极层中的柔性导电基体具备柔性,锌阳极层采用薄片锌箔具备柔性,凝胶电解质也具备柔性,以使器件具备全柔性。
进一步地,所述催化剂层所含的催化剂包括二氧化锰/碳、四氧化三钴/碳、聚苯胺/碳纳米管、银粉的任意一种。
本发明的有益效果是:
1、本发明通过丙烯酰胺、交联剂、粘性长链高分子、电解质、光引发剂和水共同形成凝胶电解质,该凝胶电解质偏中性,腐蚀性小,廉价易得,环境友好;同时,通过互穿网络结构体系设计,添加长链粘性高分子,调控水凝胶材料的柔弹性,得到具有柔弹性和粘性的紫外光固化水凝胶电解质;
2、本发明通过将凝胶电解质的不同组分按顺序混合后进行固化,得到凝胶电解质,该方法操作简单,条件温和,省时便捷;
3、本发明通过将偏中性的凝胶电解质应用到柔性锌-空气电池中,基于凝胶电解质的高弹性和锁水性,得到可充电的柔性锌-空气电池,与传统应用液态碱性电解质的锌-空气电池相比,可弯折,弯折对电池性能无明显影响,使用过程中能够有效避免电解液泄露的问题,可充放电循环时间长;同时安全环保,便于回收处理,用于可穿戴电子设备时能够避免传统碱性电解质存在的对人体的潜在危害。
附图说明
图1为本发明实施例11提供的一种柔性锌-空气电池凝胶电解质中凝胶电解质照片;
图2为本发明实施例11和对比例11提供的一种柔性锌-空气电池凝胶中有无粘性长链高分子时凝胶粘附力对比曲线图;
图3为本发明实施例21提供的一种柔性锌-空气电池凝胶电解质的应用中的柔性锌-空气电池的结构示意图;
图4为本发明实施例21提供的一种柔性锌-空气电池凝胶电解质的应用中的柔性锌-空气电池另一视觉角度的结构示意图;
图5为本发明实施例21提供的一种柔性锌-空气电池凝胶电解质的应用中的锌-空气电池循环充放电性能测试曲线;
图6为本发明实施例21提供的一种柔性锌-空气电池凝胶电解质的应用中的锌-空气电池驱动20颗LED灯图。
图中:1、锌阳极层;2、空气阴极层;21、柔性导电基体;22、催化剂层;3、凝胶电解质层。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以 上。本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中的质量可以是μg、mg、g、kg等化工领域公知的质量单位。
一方面,本发明实施例提供了一种柔性锌-空气电池凝胶电解质,包括以下质量份数的组分:丙烯酰胺10~30份,交联剂0.1~0.5份,粘性长链高分子0.1~30份,电解质10~70份,光引发剂0.2~2份,水100份,所述丙烯酰胺、交联剂、粘性长链高分子、电解质、光引发剂和水共同形成凝胶电解质。
其中,交联剂为聚乙二醇二丙烯酸脂或N,N-亚甲基双丙烯酰胺,粘性长链高分子包括但不限于聚环氧乙烷、聚乙烯醇、纤维素等,电解质包括但不限于三氟甲磺酸锂、氯化铵、氯化钾、硝酸钾、含锌离子的盐类中,含锌离子的盐类包括但不限于三氟甲磺酸锌、氯化锌、醋酸锌等,光引发剂包括但不限于2,4,6-三甲基苯甲酰基-二苯基氧化膦、2-羟基-2-甲基-1-苯基-1-丙酮。这样,基于紫外光固化水凝胶制备方法省时便捷的特点,合成环境友好的高柔弹性和锁水性的聚合物水凝胶作为中间电解质凝胶。
另一实施例还提供上述柔性锌-空气电池凝胶电解质的制备方法,具体步骤为:S1,按照配比将丙烯酰胺、交联剂、粘性长链高分子与水混合,搅拌溶解,得到混合溶液;S2,将电解质加入所述S1的混合溶液中,搅拌至完全溶解得到水凝胶;S3,将光引发剂与所述S2的水凝胶混合后,超声分散均匀,注入模具,采用紫外光固化得到柔性锌-空气电池凝胶电解质。
第三实施例还提供上述柔性锌-空气电池凝胶电解质或者上述制备方法 得到的柔性锌-空气电池凝胶电解质在锌-空气电池中的应用,该锌-空气电池包括锌阳极层1、空气阴极层2和凝胶电解质层3,所述凝胶电解质层3设置于所述空气阴极层2和所述锌阳极层1之间,形成三明治结构电池;
其中,空气阴极层2包括柔性导电基体21,至少在所述柔性导电基体21的与所述凝胶电解质层3接触的表面上涂设有催化剂层22;和/或所述锌阳极层1为锌箔;所述催化剂层22所含的催化剂包括二氧化锰/碳、四氧化三钴/碳、聚苯胺/碳纳米管、银粉的任意一种。
这样,两端电极分别采用薄片锌箔作为反应层阳极,使用涂布法将二氧化锰/碳、四氧化三钴/碳、聚苯胺/碳纳米管、银粉等催化剂浆料涂覆在导电布、导电纸等柔性导电基底一侧作为催化层,即空气阴极,采用高柔弹性和锁水性的聚合物水凝胶作为中间电解质凝胶,如图3所示,采用层层堆叠的方式构建柔性锌-空气电池,器件具有全柔性。
以下通过多个实施例来举例说明上述技术方案。
1.凝胶电解质及其制备方法实施例
实施例11
本实施例提供了一种柔性锌-空气电池凝胶电解质,包括以下质量份数的组分:
丙烯酰胺15份,交联剂即聚乙二醇二丙烯酸脂0.5份,粘性长链高分子即聚环氧乙烷2份,电解质即30份的三氟甲磺酸锂和30份三氟甲磺酸锌,光引发剂即2-羟基-2-甲基-1-苯基-1-丙酮(1173)0.5份,水为100份,所述丙烯酰胺、交联剂、粘性长链高分子、电解质、光引发剂和水共同形成凝胶电解质。
本实施例还提供上述凝胶电解质的制备方法,包括以下步骤:
S1,将质量分数15份的丙烯酰胺、0.5份的聚乙二醇二丙烯酸脂、2份的聚环氧乙烷加入水中搅拌溶解形成混合溶液;
S2,将30份的三氟甲磺酸锂和30份三氟甲磺酸锌加入所述S1的混合溶液中,搅拌至完全溶解得到水凝胶;
S3,将0.5份的2-羟基-2-甲基-1-苯基-1-丙酮(1173)加入所述S2的水凝胶中,超声10分钟,倒入深度约为1mm的模具,通过紫外灯曝光2分钟,如图1所示,形成偏中性固态水凝胶电解质层。
对比例11
本对比例与实施例11中柔性锌-空气电池凝胶电解质的组分和制备方法基本相当,不同的是,本对比例的柔性锌-空气电池凝胶电解质不加入粘性长链高分子即聚环氧乙烷。
本发明对实施例11和对比例11的水凝胶电解质进行了粘附力测试,如图2所示,对比例11的水凝胶电解质凝胶粘附力相对于实施例11的样品减小一倍,不利于电极与凝胶的界面结合。
2.凝胶电解质的应用即柔性锌-空气电池实施例
实施例21
本实施例提供一种柔性锌-空气电池凝胶电解质的应用,即将实施例11的柔性锌-空气凝胶电解质应用于锌-空气电池,如图3所示。
本实施例先进行电极的制备,即采用0.08mm厚的锌箔作为反应层锌阳极层1;采用涂布法将Co 3O 4/C浆料作为催化剂层22涂覆在柔性导电基体21及导电布一侧,干燥后作为空气阴极层2。
然后进行器件的制备,如图3和图4所示,具体为将电极和实施例11得到的凝胶电解质层直接叠加组装成三明治结构柔性电池。
本发明对得到的柔性电池进行了性能测试,即使用万用表及蓝电测试系统对实施例21的柔性电池进行了在室温环境下电性能测试:
实施例21得到的柔性电池性能较好。如图5所示,作为供电性能,柔性电池的开路电压约1.0V和短路电流密度约35mA/cm 2,可循环充放电约120小时。如图6所示,三条串联可同时驱动20颗LED灯,并且弯曲时LED的亮度不会改变。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种柔性锌-空气电池凝胶电解质,其特征在于,包括以下质量份数的组分:
    丙烯酰胺10~30份,交联剂0.1~0.5份,粘性长链高分子0.1~30份,电解质10~70份,光引发剂0.2~2份,水100份,所述丙烯酰胺、交联剂、粘性长链高分子、电解质、光引发剂和水共同形成凝胶电解质。
  2. 根据权利要求1所述的一种柔性锌-空气电池凝胶电解质,其特征在于,所述交联剂为聚乙二醇二丙烯酸脂、N,N-亚甲基双丙烯酰胺中的任意一种。
  3. 根据权利要求1所述的一种柔性锌-空气电池凝胶电解质,其特征在于,所述粘性长链高分子为聚环氧乙烷、聚乙烯醇、纤维素中的任意一种。
  4. 根据权利要求1所述的一种柔性锌-空气电池凝胶电解质,其特征在于,所述电解质为三氟甲磺酸锂、氯化铵、氯化钾、硝酸钾、含锌离子的盐类中的至少一种。
  5. 根据权利要求1所述的一种柔性锌-空气电池凝胶电解质,其特征在于,所述光引发剂为2,4,6-三甲基苯甲酰基-二苯基氧化膦、2-羟基-2-甲基-1-苯基-1-丙酮中的至少一种。
  6. 根据权利要求1所述的一种柔性锌-空气凝胶电池电解质的制备方法,其特征在于,包括以下步骤:
    S1,按照配比将丙烯酰胺、交联剂、粘性长链高分子与水混合,搅拌溶解,得到混合溶液;
    S2,将电解质加入所述S1的混合溶液中,搅拌至完全溶解得到水凝胶;
    S3,将光引发剂与所述S2的水凝胶混合后注入模具,固化得到柔性锌-空气电池凝胶电解质。
  7. 根据权利要求6所述的一种柔性锌-空气凝胶电池电解质的制备方法,其特征在于,所述S3中混合方式为超声,混合时间为10~15min,所述固化方式为紫外光照射,所述固化时间为1.5~3min。
  8. 根据权利要求1~5任一项所述的一种柔性锌-空气电池凝胶电解质或者根据权利要求6或7所述的制备方法制备得到的柔性锌-空气电池凝胶电解质的应用,其特征在于,所述柔性锌-空气电池凝胶电解质用于锌-空气电池中作为电池的电解质。
  9. 根据权利要求8所述的柔性锌-空气电池凝胶电解质的应用,其特征在于,所述锌-空气电池包括锌阳极层(1)、空气阴极层(2)和凝胶电解质层(3),所述凝胶电解质层(3)设置于所述空气阴极层(2)和所述锌阳极层(1)之间;
    所述空气阴极层(2)包括柔性导电基体(21),至少在所述柔性导电基体(21)的与所述凝胶电解质层(3)接触的表面上涂设有催化剂层(22);和/或所述锌阳极层(1)为锌箔。
  10. 根据权利要求9所述的柔性锌-空气电池凝胶电解质的应用,其特征在于,所述催化剂层(22)所含的催化剂包括二氧化锰/碳、四氧化三钴/碳、聚苯胺/碳纳米管、银粉的任意一种。
PCT/CN2021/137333 2021-12-13 2021-12-13 一种柔性锌-空气电池凝胶电解质及其制备方法和应用 WO2023108312A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137333 WO2023108312A1 (zh) 2021-12-13 2021-12-13 一种柔性锌-空气电池凝胶电解质及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137333 WO2023108312A1 (zh) 2021-12-13 2021-12-13 一种柔性锌-空气电池凝胶电解质及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023108312A1 true WO2023108312A1 (zh) 2023-06-22

Family

ID=86775223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137333 WO2023108312A1 (zh) 2021-12-13 2021-12-13 一种柔性锌-空气电池凝胶电解质及其制备方法和应用

Country Status (1)

Country Link
WO (1) WO2023108312A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030228522A1 (en) * 2002-06-03 2003-12-11 Ming-Chi Institute Of Technology Method for preparing solid-state polymer zinc-air battery
CN110336081A (zh) * 2019-06-27 2019-10-15 武汉工程大学 一种锌离子电池的凝胶电解质及其制备方法与应用
CN111525185A (zh) * 2020-03-30 2020-08-11 东华大学 一种柔性锌离子电池聚合物电解质及其制备和应用
CN111916761A (zh) * 2020-05-27 2020-11-10 天津大学 一种基于泡沫基金属电极的柔性可拉伸锌空气电池及制备
CN112615086A (zh) * 2020-12-08 2021-04-06 中国科学院深圳先进技术研究院 柔性压力传感器和聚合物水凝胶电解质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030228522A1 (en) * 2002-06-03 2003-12-11 Ming-Chi Institute Of Technology Method for preparing solid-state polymer zinc-air battery
CN110336081A (zh) * 2019-06-27 2019-10-15 武汉工程大学 一种锌离子电池的凝胶电解质及其制备方法与应用
CN111525185A (zh) * 2020-03-30 2020-08-11 东华大学 一种柔性锌离子电池聚合物电解质及其制备和应用
CN111916761A (zh) * 2020-05-27 2020-11-10 天津大学 一种基于泡沫基金属电极的柔性可拉伸锌空气电池及制备
CN112615086A (zh) * 2020-12-08 2021-04-06 中国科学院深圳先进技术研究院 柔性压力传感器和聚合物水凝胶电解质

Similar Documents

Publication Publication Date Title
CN114430084A (zh) 一种柔性锌-空气电池凝胶电解质及其制备方法和应用
CN101562078B (zh) 超级电容器的制备方法
CN112574659B (zh) 一种锂二次电池电极片保护层及其制备方法
CN106981374B (zh) 功能化氧化石墨烯修饰聚合物凝胶电解质及其制备方法和应用
CN112886100B (zh) 一种高韧性凝胶电解质和具有牢固界面的全固态锌空气电池的制备方法
Yang et al. Three-electrode flexible zinc-nickel battery with black phosphorus modified polymer electrolyte
WO2023109400A1 (zh) 极片、电芯及电池
CN104716301A (zh) 一种锂硫电池的正极极片及其制造方法
CN114853942B (zh) 用于锌锰电池的水凝胶电解质及其制备方法、锌锰电池及其制备方法
CN114464880B (zh) 一种自修复复合固态锂离子电池电解质及其制备方法
CN109037666A (zh) 金属氢化物石墨烯电池以及石墨烯电池
CN116314684A (zh) 一种改性预锂化硅负极材料的制备方法、负极浆料的制备方法和电池
JP3635302B2 (ja) 二次電池
CN117080449B (zh) 一种电池用自修复粘结剂及其制备方法
WO2023108312A1 (zh) 一种柔性锌-空气电池凝胶电解质及其制备方法和应用
CN204315664U (zh) 一种铝硫电池用石墨烯/有机硫/聚苯胺复合材料正极
CN116693761B (zh) 凝胶电解质前驱体、水凝胶膜、凝胶电解质、钠锌混合离子电池及其制备方法
CN112397718A (zh) 一种自愈合锂离子电池硅基负极材料及其制备方法
CN117154204A (zh) 一种高钠离子选择性阻燃复合凝胶电解质的制备及应用
CN116404246A (zh) 一种自组装碳化钛掺杂聚合物固态电解质及其制备和应用
CN115010941B (zh) 一种离子型共价有机框架纳米片保护层电沉积制备方法和应用
CN113921793B (zh) 一种无机复合水凝胶电解质膜及其制备和在水系锌离子电池中的应用
CN115472836A (zh) 两性离子聚合物作粘结剂的无负极锌金属电池
CN113471526B (zh) 一种多层结构复合电解质、固态锂电池
CN115188945A (zh) 一种包覆型正极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE