WO2023106675A1 - 배터리 압력 측정 센서 및 이를 포함하는 배터리 압력 측정 장치 - Google Patents

배터리 압력 측정 센서 및 이를 포함하는 배터리 압력 측정 장치 Download PDF

Info

Publication number
WO2023106675A1
WO2023106675A1 PCT/KR2022/018131 KR2022018131W WO2023106675A1 WO 2023106675 A1 WO2023106675 A1 WO 2023106675A1 KR 2022018131 W KR2022018131 W KR 2022018131W WO 2023106675 A1 WO2023106675 A1 WO 2023106675A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
variable resistance
resistance
pressure measuring
swelling
Prior art date
Application number
PCT/KR2022/018131
Other languages
English (en)
French (fr)
Inventor
이기영
고동완
김두열
배혜윤
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/279,146 priority Critical patent/US20240142322A1/en
Priority to EP22904508.3A priority patent/EP4286816A4/en
Priority to CN202280021510.XA priority patent/CN116997780A/zh
Priority to JP2023551782A priority patent/JP2024513152A/ja
Publication of WO2023106675A1 publication Critical patent/WO2023106675A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L2019/0053Pressure sensors associated with other sensors, e.g. for measuring acceleration, temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pressure measuring sensor and a battery pressure measuring device including the same, and more particularly, to a sensor capable of measuring the pressure of a battery and a battery pressure measuring device including the same.
  • a method of configuring a battery module by connecting a plurality of battery cells in series/parallel, and configuring a battery pack by adding one or more battery modules and other components is common.
  • Such a battery pack can be mainly used as an energy source for electric vehicles.
  • the battery module may include battery cells compressed with a constant pressure.
  • the battery cells when the battery cells are repeatedly charged and discharged, the battery cells may swell.
  • swelling means that a battery cell swells due to charging and discharging. If the swelling of the battery cell becomes severe, the battery cell may be vented or the battery cell may push the module frame and/or the battery pack case, thereby damaging the module frame and/or the battery pack case.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a battery pressure measurement sensor capable of precisely determining the swelling state of a battery cell and a battery pressure measurement device including the same.
  • a battery pressure sensor includes a substrate; a plurality of variable resistance units provided at a plurality of positions on the substrate in consideration of swelling characteristics of the battery and configured to change resistance values within a corresponding resistance range according to pressure applied to each of the plurality of variable resistance units; and a plurality of sensing lines configured to be connected to each of the plurality of variable resistance units.
  • the plurality of variable resistance units may be configured to be provided on the substrate at a first position in which the preset risk of swelling of the battery is set to be relatively low and in a second position in which the preset risk is set to be relatively high.
  • the first position may be configured as a position corresponding to a preset central part among the entire parts of the substrate.
  • the second position may be configured as a position corresponding to a peripheral part excluding the central part among the entire parts of the substrate.
  • the resistance value when the pressure is not applied, the resistance value is set as a reference resistance value, and a resistance range of a resistance value according to the pressure of the variable resistance unit provided at the first position is a first resistance range.
  • a resistance range of a resistance value according to the pressure of the variable resistance unit provided at the second position may be configured as a second resistance range.
  • the lower limit of the first resistance range may be set to be greater than or equal to the upper limit of the second resistance range.
  • An upper limit value of the first resistance range may be a resistance value at which the battery state may be determined to be a pre-set swelling occurrence state.
  • a lower limit value of the first resistance range and an upper limit value of the second resistance range may be resistance values at which the state of the battery may be determined to be a preset swelling warning state.
  • a lower limit value of the second resistance range may be a resistance value at which the state of the battery may be determined to be a preset swelling risk state.
  • the plurality of sensing lines may be configured such that a wire length of a sensing line connected to the variable resistance unit provided at the first position is longer than a wire length of a sensing line connected to the variable resistance unit provided at the second position.
  • the plurality of variable resistance units may be configured such that a size of the variable resistance unit provided at the first position is greater than a size of the variable resistance unit provided at the second position.
  • the plurality of variable resistance units may be configured such that the number of variable resistance units provided at the first position is smaller than the number of variable resistance units provided at the second position.
  • a battery pressure measuring device includes a battery pressure measuring sensor according to an aspect of the present invention; an upper plate and a lower plate configured to allow the battery to be interposed therebetween; and a fixing part configured to fix the upper plate and the lower plate.
  • the battery pressure measuring sensor may be configured to be located on at least one of an upper surface and a lower surface of the battery.
  • a battery pressure measuring device is connected to the plurality of sensing lines to measure a resistance value of each of the plurality of variable resistance units, and a swelling state of the battery based on the measured resistance values. It may further include a control unit configured to determine.
  • the control unit may be configured to detect a location where the swelling occurs in the battery based on the plurality of measured resistance values.
  • a battery pressure measuring device may further include a charging/discharging unit configured to charge and discharge the battery.
  • the control unit may be configured to determine the swelling state of the battery during charging and discharging of the battery.
  • the battery pressure measuring device may further include a protection plate provided between the battery pressure measuring sensor and the battery and configured to be fixed together with the upper plate and the lower plate through the fixing part.
  • a battery pack according to another aspect of the present invention may include the battery pressure measuring sensor according to one aspect of the present invention.
  • the swelling state of the battery may be accurately determined by measuring resistance values of the plurality of variable resistance units, respectively.
  • FIG. 1 is a diagram schematically illustrating a battery pressure measuring sensor according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically illustrating a substrate included in a battery pressure measurement sensor according to an embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a variable resistance unit and a sensing line included in a battery pressure measurement sensor according to an embodiment of the present invention.
  • FIG. 4 is a diagram schematically illustrating a first embodiment of a battery pressure measuring sensor according to an embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating a second embodiment of a battery pressure measuring sensor according to an embodiment of the present invention.
  • FIG. 6 is a diagram schematically illustrating a third embodiment of a battery pressure measurement sensor according to an embodiment of the present invention.
  • FIG. 7 is a diagram schematically illustrating a battery pressure measuring device according to another embodiment of the present invention.
  • FIG. 8 is a diagram schematically illustrating an embodiment in which a battery pressure measurement sensor is attached to a battery according to an embodiment of the present invention.
  • FIG. 9 is a diagram schematically illustrating an upper plate, a lower plate, and a fixing part included in a battery pressure measuring device according to another embodiment of the present invention.
  • FIGS. 10 and 11 are diagrams schematically showing a first embodiment of a battery pressure measuring device according to another embodiment of the present invention.
  • FIG. 12 is a diagram schematically illustrating a second embodiment of a battery pressure measuring device according to another embodiment of the present invention.
  • FIG. 13 is a diagram schematically illustrating an exemplary configuration of a battery pressure measuring device according to another embodiment of the present invention.
  • FIG. 1 is a diagram schematically illustrating a battery pressure measuring sensor 100 according to an embodiment of the present invention.
  • the battery pressure measurement sensor 100 may include a substrate 110 , a variable resistance unit 120 and a sensing line 130 .
  • the substrate 110 may be an insulating substrate configured in a plate shape to which a plurality of variable resistance units 120 and a plurality of sensing lines 130 may be attached.
  • the board 110 may be a printed circuit board.
  • the substrate 110 may be a flexible printed circuit (FPC).
  • FIG 2 is a schematic diagram of a substrate 110 included in the battery pressure measurement sensor 100 according to an embodiment of the present invention.
  • the substrate 110 may have a rectangular shape corresponding to the shape of a battery. Also, the substrate 110 may be previously divided into a central portion and a peripheral portion in consideration of swelling characteristics of the battery, and the plurality of variable resistance units 120 may be provided in the central portion or the peripheral portion of the substrate 110 .
  • the battery means an independent cell having a negative terminal and a positive terminal and being physically separable.
  • a lithium ion battery or a lithium polymer battery may be considered a battery.
  • the battery may be a cylindrical type, a pouch type or a prismatic type.
  • the battery may be of a pouch type.
  • the plurality of variable resistance units 120 may be provided at a plurality of locations on the substrate 110 in consideration of swelling characteristics of the battery.
  • variable resistance units 120 there are a plurality of variable resistance units 120 , and the plurality of variable resistance units 120 may be provided at various locations on the substrate 110 .
  • the plurality of variable resistance units 120 are positioned at the first position 110a, which is set to have a relatively low level of risk when swelling of the battery occurs on the board 110, and to a position that has a relatively high level of risk. It may be configured to be provided at the set second position 110b.
  • the first position 110a may be configured as a position corresponding to a preset central part among the entire parts of the substrate 110 .
  • the second position 110b may be configured as a position corresponding to the peripheral part excluding the central part from the entire part of the substrate 110 . That is, when the substrate 110 and the battery are in contact, the first position 110a of the substrate 110 may correspond to the central portion of the battery. Also, when the substrate 110 and the battery are in contact, the second position 110b of the substrate 110 may correspond to a peripheral portion in which an electrode lead of the battery may be included.
  • some of the plurality of variable resistance units 120 may be attached to the first position 110a corresponding to the central portion of the substrate 110 .
  • the rest of the plurality of variable resistance units 120 may be attached to the second position 110b corresponding to the periphery of the substrate 110 .
  • the plurality of variable resistance units 120 may be configured such that a resistance value is changed within a corresponding resistance range according to a pressure applied to each of the variable resistance units 120 .
  • the plurality of sensing lines 130 may be configured to be connected to each of the plurality of variable resistance units 120 .
  • FIG 3 is a diagram schematically illustrating a variable resistance unit 120 and a sensing line 130 included in the battery pressure measuring sensor 100 according to an embodiment of the present invention.
  • a sensing line 130 may be connected to one end and the other end of the variable resistance unit 120 .
  • the resistance value of the variable resistance unit 120 may be changed within a resistance range corresponding to the variable resistance unit 120 through the current flowing through the variable resistance unit 120 and the sensing line 130 .
  • the current applied from the sensing line 130 connected to one end of the variable resistance unit 120 passes through the variable resistance unit 120 and is sensed connected to the other end of the variable resistance unit 120. may be output to line 130. Also, when the current passes through the variable resistance unit 120, the resistance value of the variable resistance unit 120 may be changed within a corresponding resistance range according to the pressure applied to the variable resistance unit 120.
  • the battery pressure measuring sensor 100 measures the pressure applied to the substrate 110 through the variable resistance unit 120 and the sensing line 130 attached to various positions of the substrate 110. can be measured For example, when pressure is applied to the substrate 110 attached to the battery due to swelling of the battery, the resistance value of the variable resistance unit 120 provided at the location where the pressure is applied may be changed. Accordingly, the battery pressure measuring sensor 100 has the advantage of not only being able to determine whether the battery is swelling, but also being usefully used to detect the location where swelling of the battery has occurred.
  • the plurality of variable resistance units 120 may be configured such that resistance values are set as reference resistance values when pressure is not applied.
  • the resistance value of the plurality of variable resistance units 120 is It may be a reference resistance value.
  • the resistance value when no external pressure is applied to the plurality of variable resistance units 120, the resistance value may be set to a reference resistance value set close to 0 ⁇ .
  • the plurality of variable resistance units 120 may have a resistance value of 0 ⁇ when external pressure is not applied.
  • the reference resistance value may be preset to 0 ⁇ .
  • the resistance range of the resistance value according to the pressure of the variable resistance unit 120 provided at the first position 110a of the substrate 110 is the first resistance range
  • the resistance range at the second position 110b of the substrate 110 The resistance range of the resistance value according to the pressure of the provided variable resistance unit 120 may be configured as the second resistance range.
  • the lower limit of the first resistance range may be set to be greater than or equal to the upper limit of the second resistance range. That is, all resistance values belonging to the first resistance range may be greater than or equal to all resistance values belonging to the second resistance range.
  • the first resistance range may be 50000 ⁇ or less and 10000 ⁇ or more.
  • the second resistance range may be 10000 ⁇ or less and 1000 ⁇ or more.
  • the lower limit value (10000 ⁇ ) of the first resistance range and the upper limit value (10000 ⁇ ) of the second resistance range may be the same. Accordingly, all resistance values belonging to the first resistance range may be greater than or equal to all resistance values belonging to the second resistance range.
  • the resistance value of the variable resistance unit 120 may decrease. That is, the strength of the applied pressure and the resistance value of the variable resistance unit 120 may be in inverse proportion to each other.
  • the resistance value of the variable resistance unit 120 included in the first position 110a is included in the second position 110b. may be greater than the resistance value of the variable resistance unit 120.
  • the battery pressure sensor 100 sets the resistance value of the variable resistance unit 120 differently according to the position attached to the substrate 110, so that the battery in contact with the substrate 110 There is an advantage of being able to more accurately detect the swelling position of .
  • the resistance value of each of the plurality of variable resistance units 120 can be changed, whether or not swelling of the battery has occurred can be more accurately determined. there is.
  • the central portion of the battery swells first, and the peripheral portion including electrodes of the battery may swell later than the central portion. This phenomenon is because more positive and negative active materials are concentrated in the center of the battery than in the periphery of the battery, so that an electrochemical reaction occurs more actively.
  • an upper case and a lower case of the battery may be sealed at the periphery of the battery, and electrode leads may be connected to the periphery of the battery. Therefore, when swelling of the battery occurs, the central portion of the battery may swell earlier than the peripheral portion of the battery.
  • the resistance value of the variable resistance unit 120 provided at the first position 110a of the substrate 110 corresponding to the central portion of the battery is within the first resistance range, it is determined that swelling has occurred in the battery. It can be.
  • the upper limit of the first resistance range is a resistance value at which the battery state may be determined to be a preset swelling occurrence state. That is, when the resistance value of the variable resistance unit 120 is equal to the upper limit of the first resistance range, the battery may be in a state in which swelling has occurred but the preset risk level is low. This is because, as described above, the pressure applied to the variable resistance unit 120 and the resistance value of the variable resistance unit 120 are in inverse proportion to each other. That is, when the resistance value of at least one of the plurality of variable resistance units 120 provided at the first position 110a of the substrate 110 is equal to the upper limit of the first resistance range, the battery state is determined with a relatively low risk. It may be determined that the swelling occurs.
  • the sealed upper and lower cases are vented so that electrolyte or the like may leak out of the battery.
  • the risk of swelling of the battery may be higher than that of the swelling state.
  • the lower limit value of the first resistance range and the upper limit value of the second resistance range are resistance values at which the battery state may be determined to be a preset swelling warning state. That is, the resistance value of at least one of the plurality of variable resistance units 120 provided at the first position 110a of the substrate 110 is equal to the lower limit of the first resistance range or a plurality of variable resistors provided at the second position 110b.
  • the battery state may be swelling and the preset risk level may be an intermediate state. That is, the battery state may be determined as a swelling warning state in which the danger level is higher than the danger level of the swelling occurrence state.
  • the lower limit of the second resistance range is a resistance value at which the battery state can be determined to be in a preset danger state of swelling. That is, when the resistance value of at least one of the plurality of variable resistance units 120 provided at the second position 110b of the substrate 110 is equal to the lower limit of the second resistance range, the state of the battery is the highest risk state. As a result, the possibility of fire or explosion may be very high. Accordingly, the state of the battery may be determined to be a swelling risk state having the highest risk.
  • the battery pressure measuring sensor 100 differently sets a resistance range to which the resistance value of the variable resistance unit 120 belongs according to a position attached to the substrate 110, It has the advantage of being able to subdivide and determine the state of swelling according to the degree of risk at the time of swelling.
  • the state of the battery is divided into a swelling occurrence state, a swelling warning state, and a swelling risk state.
  • FIG. 4 is a diagram schematically illustrating a first embodiment of a battery pressure measuring sensor 100 according to an embodiment of the present invention.
  • the wiring length of the sensing line 130 connected to the variable resistance unit 120 provided at the first position 110a is the variable resistance unit 120 provided at the second position 110b. It may be configured to be longer than the wiring length of the sensing line 130 connected to .
  • variable resistance unit 120 As described with reference to FIG. 3 , current is applied to the variable resistance unit 120 through the sensing line 130 connected to one end of the variable resistance unit 120, and the current passing through the variable resistance unit 120 is variable. It may be output through the sensing line 130 connected to the other end of the resistance unit 120 . Therefore, as the sum of the total lengths of the sensing lines 130 increases, the resistance value of the variable resistance unit 120 when pressure is applied may increase.
  • the wiring length of the sensing line 130 connected to the variable resistance unit 120 provided at the first position 110a of the substrate 110 is the variable resistance unit 120 provided at the second position 110b of the substrate 110.
  • the variable resistance unit 120 provided at the first position 110a of the substrate 110 may respond more sensitively to applied pressure than the variable resistance unit 120 provided at the second position 110b. . That is, even when a small pressure is applied to the variable resistance unit 120 provided at the first position 110a, it may have a high resistance value.
  • the substrate 110 may include a plurality of variable resistance units 120a to 120h and a plurality of sensing lines 130a to 130h.
  • the third variable resistance unit 120 , the fourth variable resistance unit 120 , the fifth variable resistance unit 120 , and the sixth variable resistance unit 120 may be included in the first position 110a.
  • the first variable resistance unit 120 , the second variable resistance unit 120 , the seventh variable resistance unit 120 , and the eighth variable resistance unit 120 may be included in the second position 110b.
  • the lengths of the sensing lines 130c, 130d, 130e, and 130f connected to the plurality of variable resistance units 120c, 120d, 120e, and 120f included in the first position 110a may not significantly differ. Assume that they are similar to Similarly, it is assumed that the lengths of the sensing lines 130a, 130b, 130g, and 130h connected to the plurality of variable resistance units 120a, 120b, 120g, and 120h included in the second position 110b are similar enough to not significantly differ. .
  • the resistance values of the plurality of variable resistance units 120c, 120d, 120e, and 120f included in the first position 110a may belong to the first resistance range (eg, 50000 ⁇ or less and 10000 ⁇ or more), and the second position ( Resistance values of the plurality of variable resistance units 120a, 120b, 120g, and 120h included in 110b) may belong to the second resistance range (eg, 10000 ⁇ or less and 1000 ⁇ or more).
  • the state of the battery in contact with the substrate 110 is said to be in a swelling state.
  • the substrate 110 may be determined as a swelling warning state.
  • the state of the battery in contact with the substrate 110 is at risk of swelling. state can be judged.
  • the sensing line 130 connected to the variable resistance unit 120 depends on the position of the variable resistance unit 120 attached to the substrate 110.
  • FIG. 5 is a diagram schematically illustrating a second embodiment of a battery pressure measuring sensor 100 according to an embodiment of the present invention.
  • the plurality of variable resistance units 120 may be configured so that the size of the variable resistance unit 120 provided at the first position 110a is greater than the size of the variable resistance unit 120 provided at the second position 110b.
  • variable resistance unit 120 As the size of the variable resistance unit 120 increases, a resistance value of the variable resistance unit 120 when pressure is applied may increase. This is because the variable resistance unit 120 can respond more sensitively to applied pressure as its size increases. Therefore, the size of the variable resistance unit 120 included in the first position 110a of the substrate 110 may be greater than the size of the variable resistance unit 120 included in the second position 110b of the substrate 110. there is.
  • the size of the plurality of variable resistors 120c, 120d, 120e, and 120f included in the first position 110a is the size of the plurality of variable resistors included in the second position 110b ( 120a, 120b, 120g, and 120h).
  • the resistance values of the plurality of variable resistance units 120c, 120d, 120e, and 120f included in the first position 110a may belong to the first resistance range (eg, 50000 ⁇ or less and 10000 ⁇ or more)
  • the second position Resistance values of the plurality of variable resistance units 120a, 120b, 120g, and 120h included in 110b
  • the second resistance range eg, 10000 ⁇ or less and 1000 ⁇ or more.
  • the battery pressure measuring sensor 100 configures the size of the variable resistance unit 120 differently according to the position of the variable resistance unit 120 attached to the substrate 110, so that the battery pressure There is an advantage in that it can sensitively detect whether or not swelling has occurred and can specifically detect the location of swelling of the battery.
  • FIG. 6 is a diagram schematically illustrating a third embodiment of a battery pressure measurement sensor 100 according to an embodiment of the present invention.
  • the plurality of variable resistance units 120 may be configured so that the number of variable resistance units 120 provided at the first position 110a is less than the number of variable resistance units 120 provided at the second position 110b.
  • the second position 110b of the substrate 110 may correspond to the periphery of the battery.
  • the periphery of the battery which may include electrode leads of the battery, swells due to swelling, the battery is vented and there is a risk of fire or explosion. Therefore, it is important for accident prevention to accurately determine whether swelling has occurred in the periphery of the battery rather than the central portion of the battery.
  • a plurality of variable resistance units 120c, 120d, 120e, and 120f may be included in the first position 110a of the substrate 110, and the second position 110b of the substrate 110 may be included.
  • ) may include a plurality of variable resistance units 120a, 120b, 120g, 120h, 120i, 120j, 120k, and 120l.
  • the battery pressure measuring sensor 100 configures the number of variable resistance units 120 to be different according to the position of the substrate 110, so that the swelling generated in the periphery of the battery is prevented. It has the advantage of being able to detect precisely.
  • the first embodiment in which the wiring length of the sensing line 130 connected to the variable resistance unit 120 is different
  • the second embodiment in which the size of the variable resistance unit 120 is different
  • the number of variable resistance units 120 are different.
  • the third embodiment which is different from each other, has been described. However, it should be noted that the first to third embodiments may be combined with each other in a complementary manner.
  • FIG. 7 is a diagram schematically illustrating a battery pressure measuring device 200 according to another embodiment of the present invention.
  • the battery pressure measuring device 200 may include a battery pressure measuring sensor 100 , an upper plate 210 , a lower plate 220 and a fixing part 230 .
  • a battery pressure measuring sensor 100 may include a battery pressure measuring sensor 100 , an upper plate 210 , a lower plate 220 and a fixing part 230 .
  • the battery pressure measurement sensor 100 has been described above, a detailed description thereof will be omitted.
  • the battery pressure measurement sensor 100 may be configured to be located on at least one of the upper and lower surfaces of the battery.
  • FIG. 8 is a diagram schematically illustrating an embodiment in which a battery pressure measuring sensor 100 according to an embodiment of the present invention is attached to a battery B. Referring to FIG.
  • the battery B may be a pouch type battery cell including a positive terminal PE and a negative terminal NE.
  • the positive terminal (PE) and the negative terminal (NE) are provided together at one end of the battery (B), but in another embodiment, the positive terminal (PE) and the negative terminal (NE) are of the battery (B). It may be provided at one end and the other end, respectively.
  • the battery pressure measuring sensor 100 may be attached to the upper surface of the battery B. Specifically, a plurality of variable resistance units 120 and a plurality of sensing lines 130 may be attached to the upper surface of the substrate 110 . Also, the lower surface of the substrate 110 may be attached to the upper surface of the battery B.
  • the upper plate 210 and the lower plate 220 may be configured such that the battery B may be interposed therebetween.
  • the lower surface of the upper plate 210 and the upper surface of the lower plate 220 may be positioned to face each other.
  • the battery B may be interposed between the upper plate 210 and the lower plate 220 . That is, the upper plate 210 may be positioned on the upper side of the battery B, and the lower plate 220 may be positioned on the lower side of the battery B.
  • the fixing part 230 may be configured to fix the upper plate 210 and the lower plate 220 .
  • the fixing part 230 is configured to pass through the upper plate 210 and the lower plate 220 to fix the upper plate 210 and the lower plate 220 .
  • the upper plate 210 and/or the lower plate 220 may be moved along the fixing part 230 so that the distance between the upper plate 210 and the lower plate 220 may be adjusted.
  • FIG. 9 is a diagram schematically illustrating an upper plate 210, a lower plate 220, and a fixing part 230 included in a battery pressure measuring device 200 according to another embodiment of the present invention.
  • a plurality of fixing parts 230 may be provided.
  • the fixing part 230 may pass through the upper plate 210 and the lower plate 220 to fix the upper plate 210 and the lower plate 220 .
  • the fixing part 230 may be configured to pass through the corner portions of the upper plate 210 and the lower plate 220.
  • FIG 10 and 11 are views schematically showing a first embodiment of a battery pressure measuring device 200 according to another embodiment of the present invention.
  • a battery pressure measuring sensor 100 may be attached to the upper surface of the battery B. Also, the lower plate 220 may be positioned below the battery B, and the upper plate 210 may be positioned above the battery B. That is, the battery B and the battery pressure measuring sensor 100 may be interposed between the upper plate 210 and the lower plate 220, and the upper plate 210 and the lower plate 220 may be fixed by the fixing part 230. . Therefore, when swelling of the battery B occurs, since pressure is applied toward the substrate 110, the resistance value of the variable resistance unit 120 attached to the substrate 110 can be changed within a corresponding resistance range. .
  • FIG. 12 is a diagram schematically illustrating a second embodiment of a battery pressure measuring device 200 according to another embodiment of the present invention.
  • the battery pressure measuring device 200 may further include a protection plate 240 .
  • the protection plate 240 may be provided between the battery pressure measurement sensor 100 and the battery B, and be fixed together with the upper plate 210 and the lower plate 220 through the fixing part 230 .
  • the battery pressure measuring device 200 may further include a protection plate 240 interposed between the battery B and the battery pressure measuring sensor 100 .
  • the protective plate 240 may be positioned on the upper surface of the battery B.
  • the battery pressure measurement sensor 100 may be located on the upper surface of the protection plate 240 .
  • the battery B, the protection plate 240 and the battery pressure measurement sensor 100 may be interposed and fixed between the upper plate 210 and the lower plate 220 .
  • the battery pressure measuring device 200 further includes a protection plate 240, thereby preventing damage to the battery B during the battery pressure measurement process. .
  • FIG. 13 is a diagram schematically illustrating an exemplary configuration of a battery pressure measuring device 200 according to another embodiment of the present invention.
  • the battery pressure measuring device 200 may further include a control unit 250 and a charging/discharging unit 260 .
  • the charging/discharging unit 260 may be configured to charge and discharge the battery B.
  • the charging/discharging unit 260 may be electrically connected to the positive terminal PE and the negative terminal NE of the battery B. Also, the charging/discharging unit 260 may charge/discharge the battery B based on the charge/discharge signal received from the control unit 250 .
  • the controller 250 may be configured to determine the swelling state of the battery B during charging and discharging of the battery B.
  • control unit 250 is connected to the plurality of sensing lines 130 to measure resistance values of each of the plurality of variable resistance units 120, and performs swelling of the battery B based on the measured resistance values. It can be configured to determine status.
  • the controller 250 may be connected to the plurality of sensing lines 130a to 130h and measure the resistance of each of the plurality of variable resistance units 120a to 120h.
  • the controller 250 may be connected to the plurality of sensing lines 130a to 130l and measure the resistance of each of the plurality of variable resistance parts 120a to 120l.
  • the controller 250 may be connected to the battery pressure measurement sensor 100 .
  • the controller 250 may be connected to each sensing line 130 included in the battery pressure measurement sensor 100 .
  • the controller 250 may determine the swelling state of the battery B using each sensing line 130 .
  • control unit 250 outputs a predetermined current to the sensing line 130 connected to one end of the variable resistance unit 120 and applies the current from the sensing line 130 connected to the other end of the variable resistance unit 120. Then, the control unit 250 can calculate the resistance value of the variable resistance unit 120 using the output current to the sensing line 130 and the input current from the sensing line 130 .
  • the controller 250 may determine the swelling state of the battery B based on the plurality of resistance values calculated.
  • the charging/discharging unit 260 may be connected to the positive terminal PE and the negative terminal NE of the battery B.
  • the battery pressure measuring sensor 100 attached to the battery B and the control unit 250 may be connected.
  • the plurality of sensing lines 130 included in the battery pressure measuring sensor 100 and the control unit 250 may be connected.
  • the controller 250 may determine that the state of the battery B is a swelling occurrence state.
  • the resistance value of at least one of the plurality of variable resistance units 120 included in the battery pressure measuring sensor 100 is the lower limit of the first resistance range (eg, 10000 ⁇ ) or the second resistance If it is equal to the upper limit of the range (eg, 10000 ⁇ ), the controller 250 may determine that the battery B is in a swelling warning state.
  • the control unit 250 may determine that the state of the battery B is a swelling risk state.
  • the battery pressure measuring device 200 specifically determines the swelling state of the battery B based on the resistance values of the variable resistance units 120 provided at a plurality of positions on the substrate 110. There are advantages to doing so.
  • controller 250 may be configured to detect a location where swelling occurs in the battery B based on the plurality of measured resistance values.
  • control unit 250 may measure the resistance of each of the plurality of variable resistance units 120 provided on the substrate 110 . Accordingly, the controller 250 may detect not only the swelling state of the battery B, but also the location where the swelling of the battery B occurs.
  • the controller 250 when the resistance values of the fourth variable resistance unit 120d and the sixth variable resistance unit 120f are equal to the upper limit value (eg, 50000 ⁇ ) of the first resistance range, the controller 250
  • the state of the battery B may be determined as a swelling occurrence state, and the swelling occurrence position may be determined as a position corresponding to the fourth variable resistance unit 120d and the sixth variable resistance unit 120f.
  • control unit 250 provided in the battery pressure measuring device 200 includes a processor known in the art, an application-specific integrated circuit (ASIC), other chipsets, logic circuits, Registers, communication modems, data processing devices, etc. may optionally be included.
  • ASIC application-specific integrated circuit
  • the controller 250 may be implemented as a set of program modules.
  • the program module may be stored in the memory and executed by the controller 250 .
  • the memory may be inside or outside the control unit 250, and may be connected to the control unit 250 by various well-known means.
  • the battery pressure measuring sensor 100 according to the present invention may be provided in a battery pack. That is, the battery pack according to the present invention may include the above-described battery pressure measuring sensor 100, one or more battery cells, and a battery management system (BMS). In addition, the battery pack may further include electrical components (relays, fuses, etc.) and cases.
  • BMS battery management system
  • the battery pressure measuring sensor 100 may be attached to each battery cell. Also, a plurality of battery cells to which the battery pressure measuring sensor 100 is attached may be included in the battery pack.
  • the BMS may be connected to each of the plurality of battery pressure measurement sensors 100 to detect a swelling state and a swelling occurrence position of each of the plurality of battery cells.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명의 일 실시예에 따른 배터리 압력 측정 센서는 기판; 상기 기판에서 배터리의 스웰링 특성을 고려한 복수의 위치에 구비되고, 각각에 가해지는 압력에 따라 저항값이 대응되는 저항 범위 내에서 변경되도록 구성된 복수의 가변 저항부; 및 상기 복수의 가변 저항부 각각에 연결되도록 구성된 복수의 센싱 라인을 포함한다.

Description

배터리 압력 측정 센서 및 이를 포함하는 배터리 압력 측정 장치
본 출원은 2021년 12월 06일 자로 출원된 한국 특허 출원번호 제10-2021-0173277호에 대한 우선권주장출원으로서, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
본 발명은 배터리 압력 측정 센서 및 이를 포함하는 배터리 압력 측정 장치에 관한 것으로서, 보다 상세하게는, 배터리의 압력을 측정할 수 있는 센서와 이를 포함하는 배터리 압력 측정 장치에 관한 것이다.
최근, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 전기 자동차, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 배터리에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 배터리로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 배터리 등이 있는데, 이 중에서 리튬 배터리는 니켈 계열의 배터리에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높은 장점으로 각광을 받고 있다.
일반적으로, 복수의 배터리 셀을 직렬/병렬로 연결하여 배터리 모듈로 구성하고, 하나 이상의 배터리 모듈과 기타 구성 요소를 추가하여 배터리 팩을 구성하는 방법이 일반적이다. 이러한 배터리 팩은 주로 전기 자동차의 에너지원으로서 사용될 수 있다.
예컨대, 배터리 모듈은 일정한 압력으로 압착된 배터리 셀을 포함할 수 있다. 이 경우, 배터리 셀들의 충방전이 거듭되면 배터리 셀이 스웰링(Swelling)될 수 있다. 여기서, 스웰링이란 충방전에 의해 배터리 셀이 부풀어 오르는 것을 의미한다. 배터리 셀이 스웰링이 심해지면, 배터리 셀이 벤팅(Venting)되거나, 배터리 셀이 모듈 프레임 및/또는 배터리 팩 케이스를 밀어내서 모듈 프레임 및/또는 배터리 팩 케이스가 손상될 우려가 있다.
따라서, 배터리 셀의 스웰링이 심해지기 전에 배터리 셀의 압력을 측정하여 스웰링 상태에 대응되는 적절한 조치를 취함으로써, 배터리 셀, 배터리 모듈 및 배터리 팩의 안정성을 확보할 수 있는 기술의 개발이 필요하다.
본 발명은, 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 배터리 셀의 스웰링 상태를 정밀하게 판단할 수 있는 배터리 압력 측정 센서 및 이를 포함하는 배터리 압력 측정 장치를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
본 발명의 일 측면에 따른 배터리 압력 측정 센서는 기판; 상기 기판에서 배터리의 스웰링 특성을 고려한 복수의 위치에 구비되고, 각각에 가해지는 압력에 따라 저항값이 대응되는 저항 범위 내에서 변경되도록 구성된 복수의 가변 저항부; 및 상기 복수의 가변 저항부 각각에 연결되도록 구성된 복수의 센싱 라인을 포함할 수 있다.
상기 복수의 가변 저항부는, 상기 기판에서, 상기 배터리의 스웰링 발생 시의 미리 설정된 위험도가 상대적으로 낮은 것으로 설정된 제1 위치와 상기 미리 설정된 위험도가 상대적으로 높은 것으로 설정된 제2 위치에 구비되도록 구성될 수 있다.
상기 제1 위치는, 상기 기판의 전체 부분 중에서 미리 설정된 중앙부에 대응되는 위치로 구성될 수 있다.
상기 제2 위치는, 상기 기판의 전체 부분 중에서 상기 중앙부를 제외한 주변부에 대응되는 위치로 구성될 수 있다.
상기 복수의 가변 저항부는, 상기 압력이 가해지지 않은 경우 상기 저항값이 기준 저항값으로 설정되고, 상기 제1 위치에 구비되는 가변 저항부의 상기 압력에 따른 저항값의 저항 범위는 제1 저항 범위이며, 상기 제2 위치에 구비되는 가변 저항부의 상기 압력에 따른 저항값의 저항 범위는 제2 저항 범위로 구성될 수 있다.
상기 제1 저항 범위의 하한값은 상기 제2 저항 범위의 상한값 이상으로 설정되도록 구성될 수 있다.
상기 제1 저항 범위의 상한값은, 상기 배터리의 상태가 미리 설정된 스웰링 발생 상태로 판단될 수 있는 저항값일 수 있다.
상기 제1 저항 범위의 하한값 및 상기 제2 저항 범위의 상한값은, 상기 배터리의 상태가 미리 설정된 스웰링 경고 상태로 판단될 수 있는 저항값일 수 있다.
상기 제2 저항 범위의 하한값은, 상기 배터리의 상태가 미리 설정된 스웰링 위험 상태로 판단될 수 있는 저항값일 수 있다.
상기 복수의 센싱 라인은, 상기 제1 위치에 구비된 가변 저항부에 연결된 센싱 라인의 배선 길이가 상기 제2 위치에 구비된 가변 저항부에 연결된 센싱 라인의 배선 길이보다 길도록 구성될 수 있다.
상기 복수의 가변 저항부는, 상기 제1 위치에 구비되는 가변 저항부의 크기가 상기 제2 위치에 구비되는 가변 저항부의 크기보다 크도록 구성될 수 있다.
상기 복수의 가변 저항부는, 상기 제1 위치에 구비되는 가변 저항부의 개수가 상기 제2 위치에 구비되는 가변 저항부의 개수보다 적도록 구성될 수 있다.
본 발명의 다른 측면에 따른 배터리 압력 측정 장치는 본 발명의 일 측면에 따른 배터리 압력 측정 센서; 상기 배터리가 개재될 수 있도록 구성된 상판 및 하판; 및 상기 상판 및 상기 하판을 고정시키도록 구성된 고정부를 포함할 수 있다.
상기 배터리 압력 측정 센서는, 상기 배터리의 상면 및 하면 중 적어도 하나에 위치하도록 구성될 수 있다.
본 발명의 또 다른 측면에 따른 배터리 압력 측정 장치는 상기 복수의 센싱 라인과 연결되어 상기 복수의 가변 저항부 각각의 저항값을 측정하고, 측정된 복수의 저항값에 기반하여 상기 배터리의 스웰링 상태를 판단하도록 구성된 제어부를 더 포함할 수 있다.
상기 제어부는, 상기 측정된 복수의 저항값에 기반하여 상기 배터리에서 상기 스웰링이 발생된 위치를 검출하도록 구성될 수 있다.
본 발명의 또 다른 측면에 따른 배터리 압력 측정 장치는 상기 배터리를 충전 및 방전시킬 수 있도록 구성된 충방전부를 더 포함할 수 있다.
상기 제어부는, 상기 배터리의 충방전 과정에서 상기 배터리의 상기 스웰링 상태를 판단하도록 구성될 수 있다.
본 발명의 또 다른 측면에 따른 배터리 압력 측정 장치는 상기 배터리 압력 측정 센서와 상기 배터리 사이에 구비되고, 상기 고정부를 통해 상기 상판 및 상기 하판과 함께 고정되도록 구성된 보호 플레이트를 더 포함할 수 있다.
본 발명의 또 다른 측면에 따른 배터리 팩은 본 발명의 일 측면에 따른 배터리 압력 측정 센서를 포함할 수 있다.
본 발명의 일 측면에 따르면, 복수의 가변 저항부의 저항값을 각각 측정함으로써, 배터리의 스웰링 상태를 정밀하게 판단할 수 있다.
또한, 본 발명의 일 측면에 따르면, 해당 배터리에서 스웰링이 발생된 부분을 구체적으로 검출할 수 있는 장점이 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 명세서에 첨부되는 다음의 도면들은 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 일 실시예에 따른 배터리 압력 측정 센서를 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 배터리 압력 측정 센서에 포함된 기판을 개략적으로 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 배터리 압력 측정 센서에 포함된 가변 저항부 및 센싱 라인을 개략적으로 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 배터리 압력 측정 센서의 제1 실시예를 개략적으로 도시한 도면이다.
도 5는 본 발명의 일 실시예에 따른 배터리 압력 측정 센서의 제2 실시예를 개략적으로 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 배터리 압력 측정 센서의 제3 실시예를 개략적으로 도시한 도면이다.
도 7은 본 발명의 다른 실시예에 따른 배터리 압력 측정 장치를 개략적으로 도시한 도면이다.
도 8은 본 발명의 일 실시예에 따른 배터리 압력 측정 센서가 배터리에 부착된 실시예를 개략적으로 도시한 도면이다.
도 9는 본 발명의 다른 실시예에 따른 배터리 압력 측정 장치에 포함된 상판, 하판 및 고정부를 개략적으로 도시한 도면이다.
도 10 및 도 11은 본 발명의 다른 실시예에 따른 배터리 압력 측정 장치의 제1 실시예를 개략적으로 도시한 도면이다.
도 12는 본 발명의 다른 실시예에 따른 배터리 압력 측정 장치의 제2 실시예를 개략적으로 도시한 도면이다.
도 13은 본 발명의 다른 실시예에 따른 배터리 압력 측정 장치의 예시적 구성을 개략적으로 도시한 도면이다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한, 본 발명을 설명함에 있어 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
제1, 제2 등과 같이 서수를 포함하는 용어들은, 다양한 구성요소들 중 어느 하나를 나머지와 구별하는 목적으로 사용되는 것이고, 그러한 용어들에 의해 구성요소들을 한정하기 위해 사용되는 것은 아니다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
덧붙여, 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)를 개략적으로 도시한 도면이다.
도 1을 참조하면, 배터리 압력 측정 센서(100)는 기판(110), 가변 저항부(120) 및 센싱 라인(130)을 포함할 수 있다.
기판(110)은 복수의 가변 저항부(120)와 복수의 센싱 라인(130)이 부착될 수 있는 판상의 형태로 구성된 절연 기판일 수 있다. 예컨대, 기판(110)은 회로 기판(Printed circuit)일 수 있다. 바람직하게, 기판(110)은 FPC(Flexible printed circuit)일 수 있다.
도 2는 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)에 포함된 기판(110)을 개략적으로 도시한 도면이다.
예컨대, 도 2를 참조하면, 기판(110)은 배터리의 모양에 대응되는 사각형 형태로 구성될 수 있다. 그리고, 기판(110)은 배터리의 스웰링 특성을 고려하여 중앙부와 주변부로 미리 구분될 수 있고, 복수의 가변 저항부(120)는 기판(110)의 중앙부 또는 주변부에 구비될 수 있다.
여기서, 배터리는 음극 단자와 양극 단자를 구비하며, 물리적으로 분리 가능한 하나의 독립된 셀을 의미한다. 일 예로, 리튬 이온 전지 또는 리튬 폴리머 전지가 배터리로 간주될 수 있다. 또한, 배터리는 원통형 타입, 파우치형 타입 또는 각형 타입일 수 있다. 바람직하게, 배터리는 파우치형 타입일 수 있다.
복수의 가변 저항부(120)는 기판(110)에서 배터리의 스웰링 특성을 고려한 복수의 위치에 구비되도록 구성될 수 있다.
구체적으로, 가변 저항부(120)는 복수이고, 복수의 가변 저항부(120)는 기판(110)의 여러 위치에 구비될 수 있다.
보다 구체적으로, 복수의 가변 저항부(120)는, 기판(110)에서 배터리의 스웰링 발생 시의 미리 설정된 위험도가 상대적으로 낮은 것으로 설정된 제1 위치(110a)와 미리 설정된 위험도가 상대적으로 높은 것으로 설정된 제2 위치(110b)에 구비되도록 구성될 수 있다. 여기서, 제1 위치(110a)는 기판(110)의 전체 부분 중에서 미리 설정된 중앙부에 대응되는 위치로 구성될 수 있다. 그리고, 제2 위치(110b)는 기판(110)의 전체 부분 중에서 중앙부를 제외한 주변부에 대응되는 위치로 구성될 수 있다. 즉, 기판(110)과 배터리가 접촉되는 경우, 기판(110)의 제1 위치(110a)는 배터리의 중앙부에 대응될 수 있다. 그리고, 기판(110)과 배터리가 접촉되는 경우, 기판(110)의 제2 위치(110b)는 배터리의 전극 리드가 포함될 수 있는 주변부에 대응될 수 있다.
예컨대, 도 2의 실시예에서, 기판(110)의 중앙부에 해당하는 제1 위치(110a)에 복수의 가변 저항부(120) 중 일부가 부착될 수 있다. 또한, 기판(110)의 주변부에 해당하는 제2 위치(110b)에 복수의 가변 저항부(120) 중 나머지가 부착될 수 있다.
복수의 가변 저항부(120)는 각각에 가해지는 압력에 따라 저항값이 대응되는 저항 범위 내에서 변경되도록 구성될 수 있다. 복수의 센싱 라인(130)은 복수의 가변 저항부(120) 각각에 연결되도록 구성될 수 있다.
도 3은 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)에 포함된 가변 저항부(120) 및 센싱 라인(130)을 개략적으로 도시한 도면이다.
도 3을 참조하면, 가변 저항부(120)의 일단과 타단에 센싱 라인(130)이 연결될 수 있다. 그리고, 가변 저항부(120)와 센싱 라인(130)에 흐르는 전류를 통해 가변 저항부(120)의 저항값이 가변 저항부(120)에 대응되는 저항 범위 내에서 변경될 수 있다.
구체적으로, 도 3의 실시예에서, 가변 저항부(120)의 일단에 연결된 센싱 라인(130)으로부터 인가되는 전류는 가변 저항부(120)를 통과하여 가변 저항부(120)의 타단에 연결된 센싱 라인(130)으로 출력될 수 있다. 그리고, 전류가 가변 저항부(120)를 통과할 때, 가변 저항부(120)에 압력에 따라 가변 저항부(120)의 저항값이 대응되는 저항 범위 내에서 변경될 수 있다.
본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)는 기판(110)의 여러 위치에 부착된 가변 저항부(120) 및 센싱 라인(130)을 통해, 기판(110)에 가해지는 압력을 측정할 수 있다. 예컨대, 배터리의 스웰링에 의해 배터리에 부착된 기판(110)에 압력이 가해지는 경우, 압력이 가해지는 위치에 구비된 가변 저항부(120)의 저항값이 변경될 수 있다. 따라서, 배터리 압력 측정 센서(100)는 배터리의 스웰링 여부를 판단하는데 이용될 수 있을 뿐만 아니라, 배터리의 스웰링이 발생된 위치를 검출하는 데에도 유용하게 이용될 수 있는 장점이 있다.
복수의 가변 저항부(120)는, 압력이 가해지지 않은 경우 저항값이 기준 저항값으로 설정되도록 구성될 수 있다.
구체적으로, 복수의 가변 저항부(120)가 부착된 기판(110)의 위치에 압력이 가해지지 않은 경우, 복수의 가변 저항부(120)의 저항값은 기판(110)에서의 위치에 관계없이 기준 저항값일 수 있다.
예컨대, 복수의 가변 저항부(120)는, 외부 압력이 가해지지 않는 경우에는 저항값이 0Ω에 가깝게 설정된 기준 저항값으로 설정될 수 있다. 바람직하게, 복수의 가변 저항부(120)는 외부 압력이 가해지지 않은 경우, 저항값이 0Ω일 수 있다. 이 경우, 기준 저항값은 0Ω으로 미리 설정될 수 있다.
또한, 기판(110)의 제1 위치(110a)에 구비되는 가변 저항부(120)의 압력에 따른 저항값의 저항 범위는 제1 저항 범위이고, 기판(110)의 제2 위치(110b)에 구비되는 가변 저항부(120)의 압력에 따른 저항값의 저항 범위는 제2 저항 범위로 구성될 수 있다.
또한, 제1 저항 범위의 하한값은 제2 저항 범위의 상한값 이상으로 설정되도록 구성될 수 있다. 즉, 제1 저항 범위에 속하는 모든 저항값은 제2 저항 범위에 속하는 모든 저항값 이상일 수 있다.
예컨대, 제1 저항 범위는 50000Ω 이하 10000Ω 이상일 수 있다. 그리고, 제2 저항 범위는 10000Ω 이하 1000Ω 이상일 수 있다. 이 경우, 제1 저항 범위의 하한값(10000Ω)과 제2 저항 범위의 상한값(10000Ω)은 동일할 수 있다. 따라서, 제1 저항 범위에 속하는 모든 저항값은 제2 저항 범위에 속하는 모든 저항값 이상일 수 있다.
여기서, 기판(110) 및 가변 저항부(120)에 가해지는 압력이 클수록 가변 저항부(120)의 저항값은 작아질 수 있다. 즉, 가해지는 압력의 세기와 가변 저항부(120)의 저항값은 서로 반비례할 수 있다.
도 2를 참조하면, 배터리의 스웰링에 의해 기판(110)에 압력이 가해지는 경우, 제1 위치(110a)에 포함되는 가변 저항부(120)의 저항값은 제2 위치(110b)에 포함되는 가변 저항부(120)의 저항값보다 클 수 있다.
즉, 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)는 가변 저항부(120)의 저항값을 기판(110)에 부착된 위치에 따라 다르게 설정함으로써, 기판(110)과 접촉된 배터리의 스웰링 위치를 보다 정확하게 검출할 수 있는 장점이 있다. 또한, 배터리의 스웰링에 의한 압력이 기판(110)에 가해지는 경우, 복수의 가변 저항부(120) 각각의 저항값이 변경될 수 있기 때문에, 배터리의 스웰링 발생 유무가 보다 정확하게 판단될 수 있다.
일반적으로, 배터리에 스웰링이 발생되는 경우, 배터리의 중앙부가 먼저 부풀고, 배터리의 전극이 포함되는 주변부는 중앙부보다 나중에 부풀 수 있다. 이러한 현상은 배터리의 중앙부에 배터리의 주변부보다 많은 양극 활물질과 음극 활물질이 밀집되어 있어서, 전기화학 반응이 더 활발하게 일어나기 때문이다. 또한, 배터리의 주변부에서 배터리의 상부 케이스와 하부 케이스가 실링되고, 배터리의 주변부에 전극 리드가 연결될 수 있다. 따라서, 배터리의 스웰링이 발생된 경우, 배터리의 중앙부는 배터리의 주변부보다 먼저 부풀 수 있다.
이러한 이유로, 배터리의 중앙부에 대응되는 기판(110)의 제1 위치(110a)에 구비된 가변 저항부(120)의 저항값이 제1 저항 범위 내에 포함되는 경우, 배터리에 스웰링이 발생되었다고 판단될 수 있다.
구체적으로, 제1 저항 범위의 상한값은 배터리의 상태가 미리 설정된 스웰링 발생 상태로 판단될 수 있는 저항값이다. 즉, 가변 저항부(120)의 저항값이 제1 저항 범위의 상한값과 동일한 경우, 배터리의 상태는 스웰링이 발생하였지만 미리 설정된 위험도는 낮은 상태일 수 있다. 이는, 앞서 설명한 바와 같이, 가변 저항부(120)에 가해지는 압력과 가변 저항부(120)의 저항값은 서로 반비례하기 때문이다. 즉, 기판(110)의 제1 위치(110a)에 구비된 복수의 가변 저항부(120) 중 적어도 하나의 저항값이 제1 저항 범위의 상한값과 동일한 경우, 배터리의 상태를 위험도가 상대적으로 낮은 스웰링 발생 상태로 판단될 수 있다.
다음으로, 배터리의 중앙부가 더욱 부풀거나 배터리의 주변부가 부풀면, 실링된 상부 케이스와 하부 케이스가 벤팅되어 전해액 등이 배터리 밖으로 새어나올 수 있다. 이 경우, 배터리에 화재나 폭발이 발생될 수 있기 때문에, 배터리의 스웰링 발생 시의 위험도는 스웰링 발생 상태보다 높을 수 있다.
구체적으로, 제1 저항 범위의 하한값 및 제2 저항 범위의 상한값은, 배터리의 상태가 미리 설정된 스웰링 경고 상태로 판단될 수 있는 저항값이다. 즉, 기판(110)의 제1 위치(110a)에 구비된 복수의 가변 저항부(120) 중 적어도 하나의 저항값이 제1 저항 범위의 하한값과 동일하거나 제2 위치(110b)에 구비된 복수의 가변 저항부(120) 중 적어도 하나의 저항값이 제2 저항 범위의 상한값과 동일한 경우, 배터리의 상태는 스웰링이 발생되었고 미리 설정된 위험도는 중간 상태일 수 있다. 즉, 배터리의 상태는 위험도가 스웰링 발생 상태의 위험도보다 높은 스웰링 경고 상태로 판단될 수 있다.
마지막으로, 제2 저항 범위의 하한값은, 배터리의 상태가 미리 설정된 스웰링 위험 상태로 판단될 수 있는 저항값이다. 즉, 기판(110)의 제2 위치(110b)에 구비된 복수의 가변 저항부(120) 중 적어도 하나의 저항값이 제2 저항 범위의 하한값과 동일한 경우, 배터리의 상태는 위험도가 가장 높은 상태로서 화재나 폭발의 가능성이 매우 높은 상태일 수 있다. 따라서, 배터리의 상태는 위험도가 가장 높은 스웰링 위험 상태로 판단될 수 있다.
즉, 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)는 기판(110)에 부착되는 위치에 따라 가변 저항부(120)의 저항값이 속할 수 있는 저항 범위를 상이하게 설정함으로써, 배터리의 상태를 스웰링 발생 시의 위험도에 따라 세분화하여 판단할 수 있는 장점이 있다. 다만, 이상의 실시예에서는, 배터리의 상태를 스웰링 발생 상태, 스웰링 경고 상태 및 스웰링 위험 상태로 구분하였으나, 배터리의 상태는 더욱 세분화된 위험도에 따라 보다 다양하게 구분될 수 있음을 유의한다.
이하에서는 도 4 내지 도 6을 참조하여, 배터리 압력 측정 센서(100)에 대한 다양한 실시예를 설명한다.
도 4는 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)의 제1 실시예를 개략적으로 도시한 도면이다.
복수의 센싱 라인(130)은, 제1 위치(110a)에 구비된 가변 저항부(120)에 연결된 센싱 라인(130)의 배선 길이가 제2 위치(110b)에 구비된 가변 저항부(120)에 연결된 센싱 라인(130)의 배선 길이보다 길도록 구성될 수 있다.
도 3을 참조하여 설명한 바와 같이, 가변 저항부(120)의 일단에 연결된 센싱 라인(130)을 통해 가변 저항부(120)로 전류가 인가되고, 가변 저항부(120)를 통과한 전류는 가변 저항부(120)의 타단에 연결된 센싱 라인(130)을 통해 출력될 수 있다. 따라서, 센싱 라인(130)의 총 길이의 합이 커질수록 압력이 가해지는 경우의 가변 저항부(120)의 저항값이 커질 수 있다.
기판(110)의 제1 위치(110a)에 구비된 가변 저항부(120)에 연결된 센싱 라인(130)의 배선 길이는 기판(110)의 제2 위치(110b)에 구비된 가변 저항부(120)에 연결된 센싱 라인(130)의 배선 길이보다 길게 구성될 수 있다. 구체적으로, 기판(110)의 제1 위치(110a)에 구비된 가변 저항부(120)는 제2 위치(110b)에 구비된 가변 저항부(120)보다 가해지는 압력에 민감하게 반응할 수 있다. 즉, 제1 위치(110a)에 구비된 가변 저항부(120)에 작은 압력이 가해지더라도 높은 저항값을 가질 수 있다.
도 4를 참조하면, 기판(110)에는 복수의 가변 저항부(120a 내지 120h)와 복수의 센싱 라인(130a 내지 130h)이 구비될 수 있다. 구체적으로, 제1 위치(110a)에는 제3 가변 저항부(120), 제4 가변 저항부(120), 제5 가변 저항부(120) 및 제6 가변 저항부(120)가 포함될 수 있다. 그리고, 제2 위치(110b)에는 제1 가변 저항부(120), 제2 가변 저항부(120), 제7 가변 저항부(120) 및 제8 가변 저항부(120)가 포함될 수 있다.
도 4의 실시예에서, 제1 위치(110a)에 포함된 복수의 가변 저항부(120c, 120d, 120e 및 120f)에 연결된 센싱 라인(130c, 130d, 130e 및 130f)의 길이는 유의미하게 차이나지 않을 정도로 비슷하다고 가정한다. 마찬가지로, 제2 위치(110b)에 포함된 복수의 가변 저항부(120a, 120b, 120g 및 120h)에 연결된 센싱 라인(130a, 130b, 130g 및 130h)의 길이는 유의미하게 차이나지 않을 정도로 비슷하다고 가정한다. 따라서, 제1 위치(110a)에 포함된 복수의 가변 저항부(120c, 120d, 120e 및 120f)의 저항값은 제1 저항 범위(예컨대, 50000Ω 이하 10000Ω 이상)에 속할 수 있고, 제2 위치(110b)에 포함된 복수의 가변 저항부(120a, 120b, 120g 및 120h)의 저항값은 제2 저항 범위(예컨대, 10000Ω 이하 1000Ω 이상)에 속할 수 있다.
예컨대, 복수의 가변 저항부(120a 내지 120h) 중 적어도 하나의 저항값이 제1 저항 범위의 상한값(예컨대, 50000Ω)과 동일하면, 기판(110)에 접촉된 배터리의 상태가 스웰링 발생 상태라고 판단될 수 있다.
다른 예로, 복수의 가변 저항부(120a 내지 120h) 중 적어도 하나의 저항값이 제1 저항 범위의 하한값(예컨대, 10000Ω) 또는 제2 저항 범위의 상한값(예컨대, 10000Ω)과 동일하면, 기판(110)에 접촉된 배터리의 상태가 스웰링 경고 상태라고 판단될 수 있다.
또 다른 예로, 복수의 가변 저항부(120a 내지 120h) 중 적어도 하나의 저항값이 제2 저항 범위의 하한값(예컨대, 1000Ω)과 동일하면, 기판(110)에 접촉된 배터리의 상태가 스웰링 위험 상태라고 판단될 수 있다.
즉, 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)는 기판(110)에 부착된 가변 저항부(120)의 위치에 따라 가변 저항부(120)에 연결되는 센싱 라인(130)의 배선 길이를 다르게 구성함으로써, 배터리의 스웰링 발생 여부를 민감하게 검출하고, 배터리의 스웰링 발생 위치를 구체적으로 검출할 수 있는 장점이 있다.
도 5는 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)의 제2 실시예를 개략적으로 도시한 도면이다.
복수의 가변 저항부(120)는, 제1 위치(110a)에 구비되는 가변 저항부(120)의 크기가 제2 위치(110b)에 구비되는 가변 저항부(120)의 크기보다 크도록 구성될 수 있다.
구체적으로, 가변 저항부(120)의 크기가 커질수록 압력이 가해지는 경우의 가변 저항부(120)의 저항값이 커질 수 있다. 이는, 가변 저항부(120)는 크기가 커질수록 가해지는 압력에 더욱 민감하게 반응할 수 있기 때문이다. 따라서, 기판(110)의 제1 위치(110a)에 포함된 가변 저항부(120)의 크기는 기판(110)의 제2 위치(110b)에 포함된 가변 저항부(120)의 크기보다 클 수 있다.
예컨대, 도 5의 실시예에서, 제1 위치(110a)에 포함된 복수의 가변 저항부(120c, 120d, 120e 및 120f)의 크기는 제2 위치(110b)에 포함된 복수의 가변 저항부(120a, 120b, 120g 및 120h)의 크기보다 클 수 있다. 따라서, 제1 위치(110a)에 포함된 복수의 가변 저항부(120c, 120d, 120e 및 120f)의 저항값은 제1 저항 범위(예컨대, 50000Ω 이하 10000Ω 이상)에 속할 수 있고, 제2 위치(110b)에 포함된 복수의 가변 저항부(120a, 120b, 120g 및 120h)의 저항값은 제2 저항 범위(예컨대, 10000Ω 이하 1000Ω 이상)에 속할 수 있다.
즉, 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)는 기판(110)에 부착된 가변 저항부(120)의 위치에 따라 가변 저항부(120)의 크기를 다르게 구성함으로써, 배터리의 스웰링 발생 여부를 민감하게 검출하고, 배터리의 스웰링 발생 위치를 구체적으로 검출할 수 있는 장점이 있다.
도 6은 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)의 제3 실시예를 개략적으로 도시한 도면이다.
복수의 가변 저항부(120)는, 제1 위치(110a)에 구비되는 가변 저항부(120)의 개수가 제2 위치(110b)에 구비되는 가변 저항부(120)의 개수보다 적도록 구성될 수 있다.
구체적으로, 기판(110)의 제2 위치(110b)는 배터리의 주변부에 대응될 수 있다. 앞서 설명한 바와 같이, 배터리의 전극 리드가 포함될 수 있는 배터리의 주변부가 스웰링에 의해 부풀게 되면, 배터리가 벤팅되어 화재나 폭발의 위험이 있다. 따라서, 배터리의 중앙부보다 배터리의 주변부에서 스웰링이 발생되었는지를 정밀하게 판단하는 것이 사고 예방을 위해 중요하다.
예컨대, 도 6의 실시예에서, 기판(110)의 제1 위치(110a)에는 복수의 가변 저항부(120c, 120d, 120e 및 120f)가 포함될 수 있고, 기판(110)의 제2 위치(110b)에는 복수의 가변 저항부(120a, 120b, 120g, 120h, 120i, 120j, 120k 및 120l)가 포함될 수 있다.
즉, 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)는 기판(110)의 위치에 따라 가변 저항부(120)의 개수가 상이하게 구성함으로써, 배터리의 주변부에서 발생되는 스웰링을 보다 정밀하게 검출할 수 있는 장점이 있다.
이상에서는, 가변 저항부(120)에 연결되는 센싱 라인(130)의 배선 길이가 상이한 제1 실시예, 가변 저항부(120)의 크기가 상이한 제2 실시예 및 가변 저항부(120)의 개수가 상이한 제3 실시예를 각각 설명하였다. 다만, 제1 내지 제3 실시예는 상호 보완적으로 서로 조합될 수 있음을 유의한다.
도 7은 본 발명의 다른 실시예에 따른 배터리 압력 측정 장치(200)를 개략적으로 도시한 도면이다.
도 7을 참조하면, 배터리 압력 측정 장치(200)는 배터리 압력 측정 센서(100), 상판(210), 하판(220) 및 고정부(230)를 포함할 수 있다. 여기서, 배터리 압력 측정 센서(100)는 앞서 설명하였으므로, 이에 대한 자세한 설명은 생략한다.
배터리 압력 측정 센서(100)는, 배터리의 상면 및 하면 중 적어도 하나에 위치하도록 구성될 수 있다.
도 8은 본 발명의 일 실시예에 따른 배터리 압력 측정 센서(100)가 배터리(B)에 부착된 실시예를 개략적으로 도시한 도면이다.
예컨대, 도 8의 실시예를 참조하면, 배터리(B)는 양극 단자(PE)와 음극 단자(NE)를 포함하는 파우치형 타입의 배터리 셀일 수 있다. 도 8의 실시예에서는 양극 단자(PE)와 음극 단자(NE)가 배터리(B)의 일단에 함께 구비되었으나, 다른 실시예에서는 양극 단자(PE) 및 음극 단자(NE)가 배터리(B)의 일단과 타단에 각각 구비될 수도 있다.
배터리 압력 측정 센서(100)는 배터리(B)의 상면에 부착될 수 있다. 구체적으로, 기판(110)의 상면에 복수의 가변 저항부(120) 및 복수의 센싱 라인(130)이 부착될 수 있다. 그리고, 배터리(B)의 상면에 기판(110)의 하면이 부착될 수 있다.
상판(210) 및 하판(220)은 배터리(B)가 개재될 수 있도록 구성될 수 있다.
예컨대, 상판(210)의 하면과 하판(220)의 상면은 서로 대면하도록 위치할 수 있다. 그리고, 상판(210)과 하판(220) 사이에 배터리(B)가 개재될 수 있다. 즉, 상판(210)은 배터리(B)의 상면 측에 위치하고, 하판(220)은 배터리(B)의 하면 측에 위치할 수 있다.
고정부(230)는 상판(210) 및 하판(220)을 고정시키도록 구성될 수 있다. 구체적으로 고정부(230)는 상판(210)과 하판(220)을 관통하도록 구성되어 상판(210)과 하판(220)을 고정시킬 수 있다. 또한, 바람직하게, 고정부(230)를 따라 상판(210) 및/또는 하판(220)이 이동하여, 상판(210)과 하판(220) 사이의 간격이 조절될 수 있다.
도 9는 본 발명의 다른 실시예에 따른 배터리 압력 측정 장치(200)에 포함된 상판(210), 하판(220) 및 고정부(230)를 개략적으로 도시한 도면이다.
예컨대, 도 9의 실시예에서, 고정부(230)는 복수 구비될 수 있다. 그리고, 고정부(230)는 상판(210)과 하판(220)을 관통하여, 상판(210)과 하판(220)을 고정시킬 수 있다. 바람직하게, 상판(210)과 하판(220)의 흔들림을 최소화하기 위해, 고정부(230)는 상판(210)과 하판(220)의 모서리 부분을 관통하도록 구성될 수 있다.
도 10 및 도 11은 본 발명의 다른 실시예에 따른 배터리 압력 측정 장치(200)의 제1 실시예를 개략적으로 도시한 도면이다.
도 10 및 도 11을 참조하면, 배터리(B)의 상면에 배터리 압력 측정 센서(100)가 부착될 수 있다. 그리고, 배터리(B)의 하부에 하판(220)이 위치하고, 배터리(B)의 상부에 상판(210)이 위치할 수 있다. 즉, 상판(210)과 하판(220) 사이에 배터리(B) 및 배터리 압력 측정 센서(100)가 개재되고, 상판(210)과 하판(220)은 고정부(230)에 의해 고정될 수 있다. 따라서, 배터리(B)의 스웰링이 발생하면 기판(110) 측으로 압력이 가해지기 때문에, 기판(110)에 부착된 가변 저항부(120)의 저항값이 대응되는 저항 범위 내에서 변경될 수 있다.
도 12는 본 발명의 다른 실시예에 따른 배터리 압력 측정 장치(200)의 제2 실시예를 개략적으로 도시한 도면이다.
도 12를 참조하면, 배터리 압력 측정 장치(200)는 보호 플레이트(240)를 더 포함할 수 있다.
보호 플레이트(240)는 배터리 압력 측정 센서(100)와 배터리(B) 사이에 구비되고, 고정부(230)를 통해 상판(210) 및 하판(220)과 함께 고정되도록 구성될 수 있다.
배터리 압력 측정 센서(100)만으로 배터리(B)의 면압을 측정하는 경우에는, 배터리(B)의 본체에 배터리 압력 측정 센서(100)의 형상으로 인한 자국이 발생될 수 있다. 이렇게 발생된 자국으로 인해 배터리(B) 내부의 전해액이 불균형하게 퍼지게 되어 배터리(B)의 성능 저하가 초래될 수 있다.
따라서, 배터리 압력 측정 장치(200)는 배터리(B)와 배터리 압력 측정 센서(100) 사이에 개재되는 보호 플레이트(240)를 더 포함할 수 있다.
예컨대, 도 12의 실시예에서, 배터리(B)의 상면에는 보호 플레이트(240)가 위치할 수 있다. 그리고, 보호 플레이트(240)의 상면에 배터리 압력 측정 센서(100)가 위치할 수 있다. 배터리(B), 보호 플레이트(240) 및 배터리 압력 측정 센서(100)는 상판(210)과 하판(220) 사이에 개재되어 고정될 수 있다.
즉, 본 발명의 일 실시예에 따른 배터리 압력 측정 장치(200)는 보호 플레이트(240)를 더 포함함으로써, 배터리 압력 측정 과정에서 배터리(B)에 손상이 가해지는 것을 방지할 수 있는 장점이 있다.
도 13은 본 발명의 다른 실시예에 따른 배터리 압력 측정 장치(200)의 예시적 구성을 개략적으로 도시한 도면이다.
배터리 압력 측정 장치(200)는 제어부(250) 및 충방전부(260)를 더 포함할 수 있다.
충방전부(260)는 배터리(B)를 충전 및 방전시킬 수 있도록 구성될 수 있다.
예컨대, 도 13의 실시예에서, 충방전부(260)는 배터리(B)의 양극 단자(PE) 및 음극 단자(NE)와 전기적으로 연결될 수 있다. 그리고, 충방전부(260)는 제어부(250)로부터 수신한 충방전 신호에 기반하여 배터리(B)를 충방전시킬 수 있다.
제어부(250)는, 배터리(B)의 충방전 과정에서 배터리(B)의 스웰링 상태를 판단하도록 구성될 수 있다.
구체적으로, 제어부(250)는 복수의 센싱 라인(130)과 연결되어 복수의 가변 저항부(120) 각각의 저항값을 측정하고, 측정된 복수의 저항값에 기반하여 배터리(B)의 스웰링 상태를 판단하도록 구성될 수 있다. 예컨대, 도 4 및 도 5의 실시예에서, 제어부(250)는 복수의 센싱 라인(130a 내지 130h)과 연결되고, 복수의 가변 저항부(120a 내지 120h) 각각의 저항값을 측정할 수 있다. 그리고, 도 6의 실시예에서, 제어부(250)는 복수의 센싱 라인(130a 내지 130l)과 연결되고, 복수의 가변 저항부(120a 내지 120l) 각각의 저항값을 측정할 수 있다.
예컨대, 도 13의 실시예에서, 제어부(250)는 배터리 압력 측정 센서(100)와 연결될 수 있다. 바람직하게, 제어부(250)는 배터리 압력 측정 센서(100)에 포함된 각각의 센싱 라인(130)과 연결될 수 있다. 그리고, 제어부(250)는 각각의 센싱 라인(130)을 이용하여 배터리(B)의 스웰링 상태를 판단할 수 있다.
구체적으로, 제어부(250)는 가변 저항부(120)의 일단에 연결된 센싱 라인(130)으로 소정의 전류를 출력하고, 가변 저항부(120)의 타단에 연결된 센싱 라인(130)으로부터 전류를 인가받을 수 있다 그리고, 제어부(250)는 센싱 라인(130)으로의 출력 전류와 센싱 라인(130)으로부터의 입력 전류를 이용하여, 가변 저항부(120)의 저항값을 산출할 수 있다. 제어부(250)는 산출한 복수의 저항값에 기반하여 배터리(B)의 스웰링 상태를 판단할 수 있다.
즉, 도 11 및 도 12의 실시예에서, 배터리(B)의 양극 단자(PE) 및 음극 단자(NE)에 충방전부(260)가 연결될 수 있다. 그리고, 배터리(B)에 부착된 배터리 압력 측정 센서(100)와 제어부(250)가 연결될 수 있다. 바람직하게, 배터리 압력 측정 센서(100)에 포함된 복수의 센싱 라인(130)과 제어부(250)가 연결될 수 있다.
예컨대, 도 13의 실시예에서, 배터리 압력 측정 센서(100)에 포함된 복수의 가변 저항부(120) 중 적어도 하나의 저항값이 제1 저항 범위의 상한값(예컨대, 50000Ω)과 동일하면, 제어부(250)는 배터리(B)의 상태가 스웰링 발생 상태라고 판단할 수 있다.
다른 예로, 도 13의 실시예에서, 배터리 압력 측정 센서(100)에 포함된 복수의 가변 저항부(120) 중 적어도 하나의 저항값이 제1 저항 범위의 하한값(예컨대, 10000Ω) 또는 제2 저항 범위의 상한값(예컨대, 10000Ω)과 동일하면, 제어부(250)는 배터리(B)의 상태가 스웰링 경고 상태라고 판단할 수 있다.
또 다른 예로, 도 13의 실시예에서, 배터리 압력 측정 센서(100)에 포함된 복수의 가변 저항부(120) 중 적어도 하나의 저항값이 제2 저항 범위의 하한값(예컨대, 1000Ω)과 동일하면, 제어부(250)는 배터리(B)의 상태가 스웰링 위험 상태라고 판단할 수 있다.
본 발명의 일 실시예에 따른 배터리 압력 측정 장치(200)는 기판(110) 상의 복수의 위치에 구비된 가변 저항부(120)의 저항값을 토대로 배터리(B)의 스웰링 상태를 구체적으로 판단할 수 있는 장점이 있다.
또한, 제어부(250)는 측정된 복수의 저항값에 기반하여 배터리(B)에서 스웰링이 발생된 위치를 검출하도록 구성될 수 있다.
구체적으로, 제어부(250)는 기판(110)에 구비된 복수의 가변 저항부(120) 각각의 저항값을 측정할 수 있다. 따라서, 제어부(250)는 배터리(B)의 스웰링 상태뿐만 아니라, 배터리(B)의 스웰링이 발생된 위치를 검출할 수도 있다.
예컨대, 도 5의 실시예에서, 제4 가변 저항부(120d) 및 제6 가변 저항부(120f)의 저항값이 제1 저항 범위의 상한값(예컨대, 50000Ω)과 동일하면, 제어부(250)는 배터리(B)의 상태를 스웰링 발생 상태로 판단하고, 스웰링 발생 위치를 제4 가변 저항부(120d) 및 제6 가변 저항부(120f)에 대응되는 위치로 결정할 수 있다.
한편, 배터리 압력 측정 장치(200)에 구비된 제어부(250)는 본 발명에서 수행되는 다양한 제어 로직들을 실행하기 위해 당업계에 알려진 프로세서, ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 레지스터, 통신 모뎀, 데이터 처리 장치 등을 선택적으로 포함할 수 있다. 또한, 상기 제어 로직이 소프트웨어로 구현될 때, 상기 제어부(250)는 프로그램 모듈의 집합으로 구현될 수 있다. 이때, 프로그램 모듈은 메모리에 저장되고, 제어부(250)에 의해 실행될 수 있다. 상기 메모리는 제어부(250) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 제어부(250)와 연결될 수 있다.
또한, 본 발명에 따른 배터리 압력 측정 센서(100)는, 배터리 팩에 구비될 수 있다. 즉, 본 발명에 따른 배터리 팩은, 상술한 배터리 압력 측정 센서(100), 하나 이상의 배터리 셀 및 BMS(Battery management system)를 포함할 수 있다. 또한, 배터리 팩은, 전장품(릴레이, 퓨즈 등) 및 케이스 등을 더 포함할 수 있다.
예컨대, 배터리 압력 측정 센서(100)는 각각의 배터리 셀마다 부착될 수 있다. 그리고, 배터리 압력 측정 센서(100)가 부착된 복수의 배터리 셀이 배터리 팩에 포함될 수 있다.
BMS는 복수의 배터리 압력 측정 센서(100) 각각과 연결되어, 복수의 배터리 셀 각각의 스웰링 상태 및 스웰링 발생 위치를 검출할 수 있다.
따라서, 배터리 팩에 포함된 배터리 셀 각각의 상태가 보다 정밀하게 진단됨으로써, 배터리 팩의 화재나 폭발 등 다양한 사고가 미연에 방지될 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
또한, 이상에서 설명한 본 발명은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니라, 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수 있다.
(부호의 설명)
100: 배터리 압력 측정 센서
110: 기판
110a: 제1 위치
110b: 제2 위치
120: 가변 저항부
130: 센싱 라인
200: 배터리 압력 측정 장치
210: 상판
220: 하판
230: 고정부
240: 보호 플레이트
250: 제어부
260: 충방전부

Claims (14)

  1. 기판;
    상기 기판에서 배터리의 스웰링 특성을 고려한 복수의 위치에 구비되고, 각각에 가해지는 압력에 따라 저항값이 대응되는 저항 범위 내에서 변경되도록 구성된 복수의 가변 저항부; 및
    상기 복수의 가변 저항부 각각에 연결되도록 구성된 복수의 센싱 라인을 포함하는 것을 특징으로 하는 배터리 압력 측정 센서.
  2. 제1항에 있어서,
    상기 복수의 가변 저항부는,
    상기 기판에서, 상기 배터리의 스웰링 발생 시의 미리 설정된 위험도가 상대적으로 낮은 것으로 설정된 제1 위치와 상기 미리 설정된 위험도가 상대적으로 높은 것으로 설정된 제2 위치에 구비되도록 구성된 것을 특징으로 하는 배터리 압력 측정 센서.
  3. 제2항에 있어서,
    상기 제1 위치는, 상기 기판의 전체 부분 중에서 미리 설정된 중앙부에 대응되는 위치로 구성되고,
    상기 제2 위치는, 상기 기판의 전체 부분 중에서 상기 중앙부를 제외한 주변부에 대응되는 위치로 구성된 것을 특징으로 하는 배터리 압력 측정 센서.
  4. 제2항에 있어서,
    상기 복수의 가변 저항부는,
    상기 압력이 가해지지 않은 경우 상기 저항값이 기준 저항값으로 설정되고, 상기 제1 위치에 구비되는 가변 저항부의 상기 압력에 따른 저항값의 저항 범위는 제1 저항 범위이며, 상기 제2 위치에 구비되는 가변 저항부의 상기 압력에 따른 저항값의 저항 범위는 제2 저항 범위로 구성되고,
    상기 제1 저항 범위의 하한값은 상기 제2 저항 범위의 상한값 이상으로 설정되도록 구성된 것을 특징으로 하는 배터리 압력 측정 센서.
  5. 제4항에 있어서,
    상기 제1 저항 범위의 상한값은, 상기 배터리의 상태가 미리 설정된 스웰링 발생 상태로 판단될 수 있는 저항값이고,
    상기 제1 저항 범위의 하한값 및 상기 제2 저항 범위의 상한값은, 상기 배터리의 상태가 미리 설정된 스웰링 경고 상태로 판단될 수 있는 저항값이며,
    상기 제2 저항 범위의 하한값은, 상기 배터리의 상태가 미리 설정된 스웰링 위험 상태로 판단될 수 있는 저항값인 것을 특징으로 하는 배터리 압력 측정 장치.
  6. 제4항에 있어서,
    상기 복수의 센싱 라인은,
    상기 제1 위치에 구비된 가변 저항부에 연결된 센싱 라인의 배선 길이가 상기 제2 위치에 구비된 가변 저항부에 연결된 센싱 라인의 배선 길이보다 길도록 구성된 것을 특징으로 하는 배터리 압력 측정 센서.
  7. 제4항에 있어서,
    상기 복수의 가변 저항부는,
    상기 제1 위치에 구비되는 가변 저항부의 크기가 상기 제2 위치에 구비되는 가변 저항부의 크기보다 크도록 구성된 것을 특징으로 하는 배터리 압력 측정 센서.
  8. 제4항에 있어서,
    상기 복수의 가변 저항부는,
    상기 제1 위치에 구비되는 가변 저항부의 개수가 상기 제2 위치에 구비되는 가변 저항부의 개수보다 적도록 구성된 것을 특징으로 하는 배터리 압력 측정 센서.
  9. 제1항 내지 제8항 중 어느 한 항에 따른 배터리 압력 측정 센서;
    상기 배터리가 개재될 수 있도록 구성된 상판 및 하판; 및
    상기 상판 및 상기 하판을 고정시키도록 구성된 고정부를 포함하고,
    상기 배터리 압력 측정 센서는, 상기 배터리의 상면 및 하면 중 적어도 하나에 위치하도록 구성된 것을 특징으로 하는 배터리 압력 측정 장치.
  10. 제9항에 있어서,
    상기 복수의 센싱 라인과 연결되어 상기 복수의 가변 저항부 각각의 저항값을 측정하고, 측정된 복수의 저항값에 기반하여 상기 배터리의 스웰링 상태를 판단하도록 구성된 제어부를 더 포함하는 것을 특징으로 배터리 압력 측정 장치.
  11. 제10항에 있어서,
    상기 제어부는,
    상기 측정된 복수의 저항값에 기반하여 상기 배터리에서 상기 스웰링이 발생된 위치를 검출하도록 구성된 것을 특징으로 하는 배터리 압력 측정 장치.
  12. 제10항에 있어서,
    상기 배터리를 충전 및 방전시킬 수 있도록 구성된 충방전부를 더 포함하고,
    상기 제어부는, 상기 배터리의 충방전 과정에서 상기 배터리의 상기 스웰링 상태를 판단하도록 구성된 것을 특징으로 하는 배터리 압력 측정 장치.
  13. 제9항에 있어서,
    상기 배터리 압력 측정 센서와 상기 배터리 사이에 구비되고, 상기 고정부를 통해 상기 상판 및 상기 하판과 함께 고정되도록 구성된 보호 플레이트를 더 포함하는 것을 특징으로 하는 배터리 압력 측정 장치.
  14. 제1항 내지 제8항 중 어느 한 항에 따른 배터리 압력 측정 센서를 포함하는 배터리 팩.
PCT/KR2022/018131 2021-12-06 2022-11-16 배터리 압력 측정 센서 및 이를 포함하는 배터리 압력 측정 장치 WO2023106675A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/279,146 US20240142322A1 (en) 2021-12-06 2022-11-16 Battery Pressure Measuring Sensor and Battery Pressure Measuring Apparatus Including the Same
EP22904508.3A EP4286816A4 (en) 2021-12-06 2022-11-16 BATTERY PRESSURE SENSOR AND DEVICE FOR MEASURING THE PRESSURE OF A BATTERY
CN202280021510.XA CN116997780A (zh) 2021-12-06 2022-11-16 电池压力测量传感器和含其的电池压力测量设备
JP2023551782A JP2024513152A (ja) 2021-12-06 2022-11-16 バッテリー圧力測定センサー及びこれを含むバッテリー圧力測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0173277 2021-12-06
KR1020210173277A KR20230085008A (ko) 2021-12-06 2021-12-06 배터리 압력 측정 센서 및 이를 포함하는 배터리 압력 측정 장치

Publications (1)

Publication Number Publication Date
WO2023106675A1 true WO2023106675A1 (ko) 2023-06-15

Family

ID=86730730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018131 WO2023106675A1 (ko) 2021-12-06 2022-11-16 배터리 압력 측정 센서 및 이를 포함하는 배터리 압력 측정 장치

Country Status (6)

Country Link
US (1) US20240142322A1 (ko)
EP (1) EP4286816A4 (ko)
JP (1) JP2024513152A (ko)
KR (1) KR20230085008A (ko)
CN (1) CN116997780A (ko)
WO (1) WO2023106675A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102703526B1 (ko) * 2023-11-07 2024-09-04 부산대학교 산학협력단 압력 측정 모듈 및 이를 이용한 압력 분포 측정 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170042082A (ko) * 2015-10-08 2017-04-18 에스케이이노베이션 주식회사 배터리 셀 압력 측정 장치
KR20180111314A (ko) * 2017-03-31 2018-10-11 삼성전자주식회사 배터리 장치, 배터리 모니터링 장치 및 방법
KR20190106539A (ko) * 2018-03-09 2019-09-18 주식회사 엘지화학 이차 전지 상태 검출 장치
KR102152572B1 (ko) * 2019-03-22 2020-09-07 영남대학교 산학협력단 이차 전지의 팽창 센싱 시스템
KR102175734B1 (ko) * 2018-01-24 2020-11-06 주식회사 아모그린텍 배터리 압력 감지 센서 및 이를 구비한 단말기
KR20210117829A (ko) * 2020-03-20 2021-09-29 주식회사 엘지에너지솔루션 배터리 스웰링 검사 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008618B2 (ja) * 2018-08-28 2022-01-25 ミネベアミツミ株式会社 電池パック
KR102242968B1 (ko) * 2019-09-19 2021-04-21 주식회사 아이디피 배터리의 이상징후 또는 열화 모니터링을 위한 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170042082A (ko) * 2015-10-08 2017-04-18 에스케이이노베이션 주식회사 배터리 셀 압력 측정 장치
KR20180111314A (ko) * 2017-03-31 2018-10-11 삼성전자주식회사 배터리 장치, 배터리 모니터링 장치 및 방법
KR102175734B1 (ko) * 2018-01-24 2020-11-06 주식회사 아모그린텍 배터리 압력 감지 센서 및 이를 구비한 단말기
KR20190106539A (ko) * 2018-03-09 2019-09-18 주식회사 엘지화학 이차 전지 상태 검출 장치
KR102152572B1 (ko) * 2019-03-22 2020-09-07 영남대학교 산학협력단 이차 전지의 팽창 센싱 시스템
KR20210117829A (ko) * 2020-03-20 2021-09-29 주식회사 엘지에너지솔루션 배터리 스웰링 검사 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4286816A4

Also Published As

Publication number Publication date
JP2024513152A (ja) 2024-03-22
US20240142322A1 (en) 2024-05-02
EP4286816A4 (en) 2024-09-25
CN116997780A (zh) 2023-11-03
KR20230085008A (ko) 2023-06-13
EP4286816A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2017142385A1 (ko) 스위치 부품의 고장 진단 장치 및 방법
WO2013055026A1 (ko) 배터리 보호회로의 패키지 모듈
WO2022098096A1 (ko) 배터리 진단 장치 및 방법
WO2021107655A1 (ko) 배터리 상태 진단 장치 및 방법
WO2021246654A1 (ko) 배터리 스웰링 검사 장치 및 방법
WO2023106675A1 (ko) 배터리 압력 측정 센서 및 이를 포함하는 배터리 압력 측정 장치
WO2020145768A1 (ko) 배터리 팩 진단 장치
WO2022154498A1 (ko) 배터리 뱅크 전력 제어 장치 및 방법
WO2021045417A1 (ko) 절연 저항 측정 회로 진단 장치 및 방법
WO2021230639A1 (ko) 충전 심도 설정 장치 및 방법
WO2022145822A1 (ko) 배터리 관리 장치 및 방법
WO2022158948A2 (ko) 배터리 관리 장치 및 방법
WO2022215962A1 (ko) 배터리 진단 장치 및 방법
WO2022055264A1 (ko) 배터리 관리 장치 및 방법
WO2022025440A1 (ko) 압력 측정 유닛 및 배터리 검사 장치
WO2022075709A1 (ko) 배터리 관리 장치 및 방법
WO2022145998A1 (ko) 배터리 진단 장치 및 방법
WO2022010197A1 (ko) 진단 정보 생성 장치 및 방법 및 이를 포함하는 진단 시스템
WO2020149557A1 (ko) 배터리 관리 장치 및 방법
WO2021066357A1 (ko) 배터리 관리 장치
WO2020111899A1 (ko) 스위치 제어 장치 및 방법
WO2021137642A1 (ko) 배터리 관리 장치 및 방법
WO2022080835A1 (ko) 배터리 진단 장치 및 방법
WO2020005025A1 (ko) 전류 센서 진단 장치 및 방법
WO2022203322A1 (ko) 배터리 분류 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551782

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18279146

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 22904508.3

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022904508

Country of ref document: EP

Effective date: 20230830

WWE Wipo information: entry into national phase

Ref document number: 202280021510.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202317066716

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE