WO2023106651A1 - 유도 가열 장치 - Google Patents
유도 가열 장치 Download PDFInfo
- Publication number
- WO2023106651A1 WO2023106651A1 PCT/KR2022/017483 KR2022017483W WO2023106651A1 WO 2023106651 A1 WO2023106651 A1 WO 2023106651A1 KR 2022017483 W KR2022017483 W KR 2022017483W WO 2023106651 A1 WO2023106651 A1 WO 2023106651A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency
- coil
- heating
- control state
- driving
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 418
- 230000006698 induction Effects 0.000 claims description 58
- 230000001052 transient effect Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 5
- 238000010411 cooking Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000024121 nodulation Effects 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
- H05B6/062—Control, e.g. of temperature, of power for cooking plates or the like
- H05B6/065—Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B1/00—Details of electric heating devices
- H05B1/02—Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
- H05B1/0227—Applications
- H05B1/0252—Domestic applications
- H05B1/0258—For cooking
- H05B1/0261—For cooking of food
- H05B1/0266—Cooktops
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/04—Sources of current
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/06—Control, e.g. of temperature, of power
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/10—Induction heating apparatus, other than furnaces, for specific applications
- H05B6/12—Cooking devices
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/02—Induction heating
- H05B6/36—Coil arrangements
- H05B6/44—Coil arrangements having more than one coil or coil segment
Definitions
- the present disclosure relates to an induction heating device for induction heating an object to be heated.
- An induction heating device is used, for example, in an induction heating (IH) type cooker that heats an object to be heated, such as a cooking pot.
- IH induction heating
- Japanese Unexamined Patent Publication No. 2021-103674 discloses an induction heating device having a plurality of heating coils in order to simultaneously induction heat a plurality of objects to be heated.
- the resonance curves of the two objects to be heated are different from each other. Therefore, when the difference between the driving frequencies of the two heating coils becomes a certain frequency difference (for example, around 10 kHz) as a result of adjusting the thermal power of the two heating coils, respectively, noise due to the frequency difference may occur. When noise occurs, the noise can be eliminated by adjusting the thermal power to change the frequency difference, but in this case, it is difficult to control each heating coil to a desired thermal power.
- a certain frequency difference for example, around 10 kHz
- the present invention has been made to solve the above-mentioned problems at once, and the main problem is to adjust the heating power of each object to be heated to a desired size while eliminating noise generated when a plurality of objects to be heated are simultaneously heated. is to do
- the induction heating device may include at least two heating coils, at least two inverter devices, and a control unit. At least two heating coils induction heat the object to be heated. At least two inverter devices are installed corresponding to each of the at least two heating coils. At least two inverter devices supply power to the corresponding heating coils. The controller controls the at least two inverter devices.
- the control unit compares driving frequencies that are frequencies of power supplied to the at least two heating coils.
- a heating coil with a high drive frequency is called a high-frequency side coil
- a heating coil with a low drive frequency is called a low-frequency side coil.
- the controller may change the driving frequency of the high-frequency side coil to the driving frequency of the low-frequency side coil.
- the controller may control the inverter device corresponding to the low-frequency coil in a first control state.
- the controller may control the inverter device corresponding to the high-frequency side coil in a second control state different from the first control state.
- the control unit supplies power of an initial frequency higher than the predetermined driving frequency to all of the at least two heating coils. After that, the control unit may control the at least two inverter devices to lower the frequency of power supplied to both of the at least two heating coils until the output of one of the heating coils matches the target output. .
- FIG. 1 is a schematic configuration diagram of an induction heating apparatus according to an embodiment of the present disclosure.
- FIG. 2 is a flowchart showing an embodiment of a control operation of an induction heating apparatus by a controller.
- FIG. 3 is a diagram for explaining an embodiment of a first control state.
- FIG. 4 is a graph showing an example of a range of change in driving frequency of a heating coil.
- 5 is a diagram for explaining an embodiment of a second control state.
- FIG. 6 is a diagram for explaining an embodiment of a third control state.
- FIG. 7 is a graph illustrating an example of a change in a control state over time.
- FIG. 8 is a graph illustrating an example of a change in an on-duty ratio and a frequency with time according to a control operation.
- FIG. 9 is a flowchart illustrating an embodiment of a control operation of an induction heating apparatus by a controller.
- 10 is a diagram for explaining the relationship between a resonance curve and noise.
- FIG. 11 is a diagram showing an example of a relationship between a driving frequency of a heating coil and a frequency at a peak of a resonance curve.
- FIG. 12 is a flowchart showing an embodiment of a control operation of an induction heating apparatus by a controller.
- FIG. 13 is a graph showing a change in driving frequency over time in a control operation according to an embodiment of the present disclosure shown in FIG. 12 .
- FIG. 14 is a graph showing a change over time in output (power) in the control method according to an embodiment of the present disclosure shown in FIG. 12 .
- 15 is a graph for explaining generation of frequency noise in a process of equalizing driving frequencies of power supplied to two heating coils.
- the present disclosure relates to an induction heating device capable of adjusting the thermal power of each heating coil to a desired level while eliminating noise generated when a plurality of heating coils are simultaneously driven.
- 1 is a schematic configuration diagram of an induction heating apparatus 100 according to an embodiment of the present disclosure.
- the induction heating apparatus 100 according to the present embodiment can be used, for example, in an induction heating (IH) cooker or the like, and induction heats an object to be heated such as a cooking pot.
- IH induction heating
- an induction heating apparatus 100 includes a plurality of heating coils 1 for induction heating an object to be heated, and a plurality of inverter devices 2 for supplying power to the plurality of heating coils 1, A controller 3 for controlling the plurality of inverter devices 2 may be provided.
- the induction heating device 100 includes an LC parallel resonance circuit 4 including a resonant capacitor connected in series to a heating coil 1 and a resonant coil element connected in parallel to the resonant capacitor, and a current supplied to an inverter device 2
- a current detector (I) for detecting and a voltage detector (V) for detecting the voltage supplied from commercial power to the inverter device (2).
- the heating coil 1 is installed under a top plate (not shown) on which a cooking pot or the like is placed and induction-heats the cooking pot with the top plate interposed therebetween.
- the induction heating apparatus 100 according to an embodiment of the present disclosure shown in FIG. 1 includes two heating coils 1, that is, a first heating coil 1A and a second heating coil 1B, but the heating coil
- the number of (1) is not limited to this, and the number of heating coils 1 may be at least two. Accordingly, the number of heating coils 1 may be three or more.
- the inverter device 2 may include an inverter circuit 21 for supplying a high-frequency current to the heating coil 1 and a drive circuit 22 for driving the inverter circuit 21 .
- the inverter circuit 21 converts electric power supplied from a commercial power supply into high-frequency electric power and supplies it to the heating coil 1 .
- a half-bridge inverter circuit 21 using a switching element SW is applied.
- the inverter circuit 21 may be implemented by various electric circuits capable of supplying high-frequency power to the heating coil 1 .
- the inverter circuit 21 may be implemented in a full bridge manner.
- the driving circuit 22 operates the switching element SW of the inverter circuit 21 .
- the driving circuit 22 turns ON/OFF the switching element SW based on a control signal from a control device 3 described later.
- the number of inverter devices 2 may be equal to the number of heating coils 2 .
- the number of inverter devices 2 may be at least two.
- the inverter device 2 includes first and second inverter devices 2A and 2B respectively corresponding to the first and second heating coils 1A and 1B.
- the controller 3 controls the inverter device 2 to heat the object to be heated with a desired thermal power.
- the controller 3 controls the driving frequency, which is the frequency of the high-frequency power supplied from the inverter device 2 to the heating coil 1.
- the controller 3 may include a plurality of individual controllers 31 that respectively control the plurality of inverter devices 2 and a main controller 32 that collectively controls the plurality of individual controllers 31. .
- the controller 3 may include at least one processor and memory.
- the processor may include a central processing unit (CPU). There may be one processor or two or more.
- each of the plurality of individual controllers 31 and the main controller 32 may include a processor.
- the memory may store an application program for controlling the induction heating device 100 and/or an electronic device employing the induction heating device 100, for example, a cooker. Various control factors necessary for controlling the induction heating device 100 and/or an electronic device employing the induction heating device 100, such as a driving frequency, may be stored in the memory.
- the processor may execute an application program to control components of the induction heating device 100 and/or an electronic device employing the induction heating device 100 .
- a plurality of individual control units 31 and a main control unit 32, and lower units constituting them, for example, a power calculation unit 311 described later, an inverter control unit 312, a power command unit 321, and a control state command unit 322 may be a functional block implemented by an application program executed in a processor, and may be a combination of functional blocks and hardware suitable for implementing the functions of the functional blocks.
- the individual controller 31 calculates the actual power (actual output) supplied to the heating coil 1 based on the detected current and the detected voltage detected by the current detector I and the voltage detector V.
- a unit 311 and an inverter control unit 312 that controls the inverter device 2 so that the actual power approaches the target power (target output) may be provided.
- the main control unit 32 may include an operation controller operated by a user.
- the main control unit 32 sets the power corresponding to the heating power of the heating coil 1 set by the user as a target power and outputs it to the inverter control unit 312, and the control by the power command unit 321 and the inverter control unit 312
- a control state command unit 322 for switching states may be provided.
- the individual control unit 31 controlling the first inverter device 2A is referred to as a first control unit 3A
- the individual control unit 31 controlling the second inverter device 2B is referred to as a second control unit 31. It is called the control unit 3B.
- FIG. 2 is a flowchart showing an embodiment of a control operation of the induction heating apparatus 100 by the controller 3. An embodiment of a control operation of the controller 3 will be described with reference to FIG. 2 .
- the case where the 1st burner corresponding to the 1st heating coil 1A is started first, and then the 2nd burner corresponding to the 2nd heating coil 1B is started is demonstrated exemplarily.
- the power command unit 321 of the main control unit 32 transmits target power (eg, wattage), which is a target output corresponding to the thermal power of each burner, to the first control unit 3A and the second control unit 3B. instruct each Based on the instructions from the main control unit 32, the first control unit 3A adjusts the driving frequency of the electric power supplied from the first inverter device 2A to the first heating coil 1A (S1). The second controller 3B adjusts the drive frequency of the electric power supplied from the second inverter device 2B to the second heating coil 1B based on the instruction from the main controller 32 (S2).
- target power eg, wattage
- the first control unit 3A controls the driving frequency of the first inverter device 2A through the inverter control unit 312 so that the actual power calculated by the power calculation unit 311 is equal to the target power.
- the second control unit 3B controls the driving frequency of the second inverter device 2B through the inverter control unit 312 so that the actual power calculated by the power calculation unit 311 is equal to the target power.
- the first control section 3A and the second control section 3B control the first and second inverter devices 2A and 2B in a predetermined first control state, respectively, and the first heating coil 1A.
- the driving frequency Freq A of ) and the driving frequency Freq B of the second heating coil 1B are different from each other.
- the first control state is a control state of turning on/off the switching element SW constituting the inverter device 2 at a fixed duty ratio.
- the first control state shown in FIG. 3 may be implemented by pulse-frequency modulation (PFM) control with an on-duty ratio fixed to 50%.
- PFM pulse-frequency modulation
- the fixed duty ratio is not limited to 50%.
- Various fixed duty ratios in which the duty ratio of the high-side switching element SW and the duty ratio of the low-side switching element SW maintain an interpolation relationship may be applied to the first control state.
- the duty ratio of the high-side switching element SW may be 60%, and the duty ratio of the low-side switching element SW may be 40%.
- the first control state is not limited to PFM control.
- the first control state may be implemented by pulse-width nodulation (PWM) control.
- PWM pulse-width nodulation
- the control state command unit 322 of the main control unit 32 obtains the driving frequency Freq A of the first heating coil 1A and the driving frequency Freq B of the second heating coil 1B, and calculates them. Compare (S3).
- the control state command unit 322 instructs the inverter control unit 312 that controls the high-frequency side coil to change the drive frequency of the high-frequency side coil to the drive frequency of the low-frequency side coil (S4, S5).
- the drive frequency of the 1st heating coil 1A and the 2nd heating coil 1B becomes the same (this drive frequency is hereafter called a 1st drive frequency).
- the control state command unit 322 is the second control unit (3B) Instructs the inverter controller 312 to change the driving frequency of the second heating coil 1B, which is a high-frequency coil, to Freq A, which is the same as the driving frequency of the first heating coil 1A, which is a low-frequency coil. Accordingly, both the first heating coil 2A and the second heating coil 2B are operated based on Freq A.
- the control state command unit 322 is the first control unit (3A) Instructs the inverter controller 312 to change the driving frequency of the first heating coil 1A, which is a high-frequency coil, to Freq B, which is the same as the driving frequency of the second heating coil 1B, which is a low-frequency coil. Accordingly, both the first heating coil 1A and the second heating coil 1B are operated based on Freq B.
- the driving frequency of the high-frequency side coil is the frequency of the peak of the resonance curve (the frequency indicated by an asterisk in FIG. 4) can be lower than Then, there is a possibility that the switching element SW may be damaged by hard switching. As shown in FIG. 11, the same problem applies to an induction heating device having three heating coils.
- the adjustable range of the driving frequency of the first heating coil 1A is heated by the second heating coil 1B. higher than the frequency of the apex of the water's resonance curve.
- the adjustable range of the drive frequency of the 2nd heating coil 1B is higher than the frequency of the apex of the resonance curve of the heating target object heated by the 1st heating coil 1A.
- This condition can be implemented by adjusting the number of turns of the first and second heating coils 1A and 1B and/or the capacitance of the resonant capacitor. That is, the number of turns of the first and second heating coils 1A and 1B and the capacitance of the resonant capacitor are determined to satisfy the above conditions.
- the drive frequency of the high-frequency side coil is the initial drive frequency (frequency (Freq A) of step S1 or step S2
- the frequency (Freq B) is lowered to the first driving frequency.
- the heating coil 1 is driven with a driving frequency higher than the frequency of the apex of the resonance curve. As the driving frequency of the heating coil 1 approaches the frequency of the apex of the resonance curve, the thermal power of the heating coil 1 increases.
- the drive frequency of the high-frequency side coil When the drive frequency of the high-frequency side coil is changed to that of the low-frequency side coil and the drive frequency is lowered to the first drive frequency, the drive frequency of the high-frequency side heating coil approaches the frequency of the apex of the resonance curve, and the thermal power of the high-frequency side coil increases. greater than desired firepower. Therefore, control for reducing the thermal power of the high-frequency side coil is required. On the other hand, since the driving frequency of the low-frequency side heating coil does not change, the thermal power of the low-frequency side heating coil does not change.
- the controller 3 maintains the control of the inverter device 2 corresponding to the low-frequency coil in a first control state, while controlling the inverter device 2 corresponding to the high-frequency coil in a different state from the first control state.
- 2 Convert to control state (S4, S5). For example, if the driving frequency (Freq B) of the second heating coil (1B) is greater than the driving frequency (Freq A) of the first heating coil (1A), the control unit 3 is the second heating coil, which is a high-frequency side coil.
- the driving frequency of (1B) is changed to Freq A, which is the same as the driving frequency of the first heating coil 1A, which is a low-frequency side coil.
- the controller 3 maintains the control state of the first inverter device 2A corresponding to the first coil 1A, which is a low-frequency coil, in the first control state, and corresponds to the second coil 1B, which is a high-frequency coil.
- the control state of the second inverter device 2B to be used is switched to a second control state different from the first control state.
- the control unit 3 is a high-frequency side coil, the first heating coil ( The driving frequency of 1A) is changed to Freq B, which is the same as the driving frequency of the second heating coil 1B, which is a low-frequency side coil.
- the controller 3 maintains the control state of the second inverter device 2B corresponding to the second coil 1B, which is a low-frequency coil, in the first control state, and corresponds to the first coil 1A, which is a high-frequency coil.
- the control state of the first inverter device 2A to be used is switched to a second control state different from the first control state.
- the second control state is a control state in which the switching element SW of the inverter device 2 is turned on/off with a variable duty ratio.
- the second control state is an asymmetric control state in which the on-duty ratio of the high-side switching element SW is different from the on-duty ratio of the low-side switching element SW.
- the inverter control unit 312 compares the actual power supplied to the high-frequency side coil with the target power corresponding to the target thermal power, so that the actual power matches the target power, that is, the high-frequency side coil.
- the on-duty ratio of the high-side switching element SW may be lowered so that the output of the side coil matches the target output.
- the on-duty ratio of the high-side switching element SW may be changed within a range of 30% or more and less than 50%.
- the on-duty ratio of the low-side switching element SW is obtained by subtracting the on-duty ratio of the high-side switching element SW from 100%. If the on-duty ratio of the high-side switching element SW is lower than 30%, for example, there is a possibility that the switching element SW may be broken.
- the lower limit of the on-duty ratio that may cause failure of the switching element SW is not limited to 30% and may vary depending on the configuration of the induction heating device 100 .
- the thermal power of the burner corresponding to each of the first heating coil 1A and the second heating coil 1B can be adjusted to a desired level.
- the control state command unit 322 issues a command to the inverter control unit 312 of the individual control unit 31 corresponding to the high-frequency side coil to control the inverter device 2 corresponding to the high-frequency side coil as the second control. state to the third control state.
- the third control state is a control state different from the second control state.
- the control unit 3 is the second heating coil, which is a high-frequency side coil.
- the driving frequency of (1B) is changed to Freq A, which is the same as the driving frequency of the first heating coil 1A, which is a low-frequency side coil.
- the controller 3 maintains the control state of the first inverter device 2A corresponding to the first coil 1A, which is a low-frequency coil, in the first control state, and corresponds to the second coil 1B, which is a high-frequency coil.
- the control state of the second inverter device 2B to be used is switched to a second control state different from the first control state.
- the control state command unit 322 of the main control unit 32 sends the second heating coil
- An instruction is given to the inverter control section 312 of the second control section 3B to switch the control of the second inverter device 2B corresponding to (1B) from the second control state to the third control state.
- the control unit 3 is a high-frequency side coil, the first heating coil ( The driving frequency of 1A) is changed to Freq B, which is the same as the driving frequency of the second heating coil 1B, which is a low-frequency side coil.
- the controller 3 maintains the control state of the second inverter device 2B corresponding to the second coil 1B, which is a low-frequency coil, in the first control state, and corresponds to the first coil 1A, which is a high-frequency coil.
- the control state of the first inverter device 2A to be used is switched to a second control state different from the first control state.
- the control state command unit 322 of the main control unit 32 sends the first heating coil
- An instruction is given to the inverter control section 312 of the first control section 3A to switch the control of the first inverter device 2A corresponding to (1A) from the second control state to the third control state.
- the driving frequency of the high-frequency side coil is switched to the above-described first driving frequency and a second driving frequency obtained by adding a predetermined frequency to the first driving frequency at a predetermined cycle.
- the third control state is a state in which the driving frequency of the high-frequency side coil is time-divisionally controlled with a first driving frequency that is a driving frequency of the low-frequency side coil and a second driving frequency higher than the first driving frequency.
- the driving frequency of the high-frequency side coil is switched from the first driving frequency to the second driving frequency in the third control state, since the driving frequency of the low-frequency side coil remains the same as the first driving frequency, the driving frequency of the high-frequency side coil and the low-frequency side coil The driving frequencies of are different from each other.
- the difference in driving frequency of the two heating coils 1A and 1B for induction heating the pot A and the pot B may be generated due to the frequency difference.
- the difference between the driving frequency of the high-frequency side coil and the driving frequency of the low-frequency side coil is, for example, about 10 kHz, noise may be generated due to the frequency difference.
- the difference between the driving frequency of the high-frequency side coil and the driving frequency of the low-frequency side coil may be set to 15 kHz or more.
- the inverter control unit 312 may change the ratio between the driving time of the first driving frequency and the driving time of the second driving frequency included in one cycle.
- the driving time of the second driving frequency may be extended so that the actual power of the high-frequency coil coincides with the target power, in other words, the output of the high-frequency coil coincides with the target output.
- the output of the high-frequency side coil may match the target output. Therefore, the thermal power of the burner corresponding to each of the first heating coil 1A and the second heating coil 1B can be adjusted to a desired level.
- the driving time by the second driving frequency may become very long.
- the difference between the driving frequency of the low-frequency side coil and the driving frequency of the high-frequency side coil increases, the level of noise generated even when the first and second heating coils 1A and 1B are driven at different driving frequencies. It can become a level that is difficult to recognize as this noise. Therefore, when the ratio of the driving time at the second driving frequency to the driving time at the first driving frequency exceeds the threshold value, the control state command unit 322 controls the first and second control units 3A and 3B.
- a command is issued to each inverter controller 312, and the control state by the first and second inverter devices 2A and 2B is the third control state, the first heating coil 1A and the second heating coil 1B to be converted into a control state in which the ? is driven at different driving frequencies.
- the control state after switching is the first control state described above. Therefore, each of the switching element SW constituting the first inverter device 2A and the switching element SW constituting the second inverter device 2B is pulse-frequency conversion (PFM) controlled at the same fixed duty ratio as each other. .
- PFM pulse-frequency conversion
- FIG. 7 is a graph illustrating an example of a change in a control state over time.
- the drive frequency of either the first heating coil 1A or the second heating coil 1B is controlled by the first control state and the first heating coil
- the driving frequency of the other of (1A) or the second heating coil (1B) is controlled by the first to third control states.
- 8 is a graph illustrating an example of a change in an on-duty ratio and a frequency with time according to a control operation.
- the induction heating apparatus 100 since the drive frequency of the high-frequency side coil is matched to the drive frequency of the low-frequency side coil, generation of noise due to a frequency difference can be reduced or prevented. Furthermore, since the control state of the inverter device 2 corresponding to the high-frequency side coil is switched to the second control state or the third control state different from the first control state of the inverter device 2 corresponding to the low-frequency side coil, , It is possible to adjust the thermal power of each of the first and second heating coils 1A and 1B to a desired size.
- the control operation of the induction heating device 100 by the controller 3 is not limited to the above-described embodiment.
- 9 is a flowchart illustrating an embodiment of a control operation of the induction heating apparatus 100 by the controller 3.
- the magnitude relation of the drive frequency of the some heating coil 1 may be reversed by the change of the thermal power of some burner.
- the control unit 3 may perform a control operation shown in the flowchart shown in FIG. 9 .
- the control unit 3 changes the driving frequency of the low-frequency coil to the driving frequency of the other heating coil 1 when the driving frequency of the other heating coil 1 is lower than the driving frequency of the low-frequency coil. and switch the control state of the inverter device 2 corresponding to the low-frequency side coil to the second control state, and switch the inverter device 2 corresponding to the other heating coil 1 to the first control state.
- the other heating coil 1 may be a high frequency side coil, or may be a heating coil 1 different from the high frequency side coil.
- steps S1 to S5 of matching the driving frequency of the high-frequency side coil to the driving frequency of the low-frequency side coil are described above with reference to FIGS. 2 to 8. same as one bar
- the low-frequency side coil is controlled in the first control state. In this state, when the thermal power of the burner of the low-frequency side coil is lowered, the driving frequency of the low-frequency side coil is increased, and accordingly, the on-duty ratio of the switching element (SW) corresponding to the high-frequency side coil is increased (S6, S7).
- SW switching element
- step S4 the second heating coil 1B, which is a low-frequency side coil, is controlled to a first control state, and the first heating coil 1A, which is a high-frequency side coil, is controlled to a second control state.
- the driving frequency of the first and second heating coils 1A and 1B is Freq B.
- the thermal power of the second heating coil 1B which is a low-frequency side coil
- the driving frequency of the second heating coil 1B increases. This is because the driving frequency of the heating coil 1 is higher than the frequency of the apex of the resonance curve, and the heating power of the heating coil 1 decreases as the driving frequency moves away from the frequency of the peak of the resonance curve.
- step S5 the first heating coil 1A, which is a low-frequency side coil, is controlled in a first control state, and the second heating coil 1B, which is a high-frequency side coil, is controlled in a second control state.
- the driving frequency of the first and second heating coils 1A and 1B is Freq A.
- the thermal power of the first heating coil 1A, which is the low-frequency side coil is lowered, the driving frequency of the first heating coil 1A increases, and the second heating coil 1B corresponding to the second heating coil 1B, which is the high-frequency side coil.
- the on-duty ratio of the switching element SW of the inverter device 2B increases.
- the controller 3 determines whether the on-duty ratio of the switching element SW corresponding to the high-frequency side coil has reached 50% (S8, S9).
- the controller 3 reverses the definitions of the high-frequency side coil and the low-frequency side coil. That is, when the on-duty ratio of the switching element SW corresponding to the high-frequency side coil reaches 50%, the control unit 3 controls the heating coil 1, which has been controlled as the high-frequency side coil until then, as the low-frequency side coil. At the same time as switching to , heating coil 1 controlled as a low-frequency side coil until then is switched to control as a high-frequency side coil (S4, S5).
- step S4 the second heating coil 1B, which is a low-frequency side coil, is controlled to a first control state, and the first heating coil 1A, which is a high-frequency side coil, is controlled to a second control state.
- the driving frequency of the first and second heating coils 1A and 1B is Freq B.
- the thermal power of the second heating coil 1B which is a low-frequency side coil
- the driving frequency of the second heating coil 1B increases. This is because the driving frequency of the heating coil 1 is higher than the frequency of the apex of the resonance curve, and the heating power of the heating coil 1 decreases as the driving frequency moves away from the frequency of the peak of the resonance curve.
- the control unit (3) converts the second heating coil (1B) to the high-frequency side coil, the first heating coil (1A) is changed to a low-frequency side coil, and a control operation is performed accordingly.
- step S5 the first heating coil 1A, which is a low-frequency side coil, is controlled in a first control state, and the second heating coil 1B, which is a high-frequency side coil, is controlled in a second control state.
- the driving frequency of the first and second heating coils 1A and 1B is Freq A.
- the thermal power of the first heating coil 1A, which is the low-frequency side coil is lowered, the driving frequency of the first heating coil 1A increases, and the second heating coil 1B corresponding to the second heating coil 1B, which is the high-frequency side coil.
- the on-duty ratio (Duty B) of the switching element SW of the inverter device 2B increases.
- the controller (3) turns the first heating coil (1A) into a high-frequency side coil, and the second heating coil (1B) is changed to a low-frequency side coil, and a control operation is performed accordingly.
- the thermal power of each burner can be adjusted to a desired level while eliminating noise.
- the present disclosure is to provide an induction heating device capable of adjusting the heating power of each object to be heated to a desired level while eliminating noise that may occur when a plurality of objects to be heated are simultaneously heated.
- An induction heating device includes at least two heating coils for induction heating an object to be heated; at least two inverter devices installed corresponding to each of the at least two heating coils and supplying electric power to the corresponding heating coils; A controller for controlling the at least two inverter devices.
- the control unit compares driving frequencies, which are frequencies of electric power supplied to the at least two heating coils, and among the at least two heating coils, a heating coil having a high driving frequency is a high-frequency side coil and a heating coil having a low driving frequency is a low-frequency heating coil.
- the drive frequency of the high-frequency side coil is changed to the drive frequency of the low-frequency side coil, and the inverter device corresponding to the low-frequency side coil is controlled by a first control state, corresponding to the high-frequency side coil.
- the inverter device to be controlled by a second control state different from the first control state.
- the thermal power of each of the two heating coils can be adjusted to a desired size.
- the first control state may be a control state of turning on/off the corresponding switching element of the inverter device at a fixed duty ratio.
- the second control state may be a control state of turning on/off the corresponding switching element of the inverter device with a variable duty ratio. According to this, since the switching element is turned on/off with a variable duty ratio in the second control state, the thermal power of the high-frequency coil can be adjusted to a desired level by changing the duty ratio.
- the second control state may be an asymmetric control state in which an on-duty ratio of a high-side switching element of the inverter device and an on-duty ratio of a low-side switching element of the inverter device are different from each other.
- an on-duty ratio of the high-side switching element of the inverter device may be greater than or equal to 30% and less than 50%. According to this, it is possible to reduce or eliminate the risk of failure of the switching element.
- the control unit when the output of the high-frequency side coil does not reach a target output in the second control state, controls the inverter device corresponding to the high-frequency side coil from the second control state. It is possible to switch to a third control state different from the second control state. According to this, even when the thermal power of the high-frequency side coil cannot be adjusted to a desired level by changing the duty ratio in the second control state, desired thermal power can be obtained by switching from the second control state to the third control state.
- the third control state is a state in which the driving frequency of the high-frequency side coil is time-divisionally controlled to a first driving frequency that is a driving frequency of the low-frequency side coil and a second driving frequency higher than the first driving frequency.
- a difference between the first driving frequency and the second driving frequency may be greater than or equal to 15 kHz.
- the driving frequency of the high-frequency side coil is switched from the first driving frequency to the second driving frequency in the third control state, a frequency difference with that of the low-frequency side coil occurs.
- the driving time by the second driving frequency may become very long.
- the frequency difference between the driving frequency of the low-frequency side coil and the driving frequency of the high-frequency side coil is very large, so that it is difficult to recognize as noise even if the two heating coils are driven at different driving frequencies.
- the control unit A control state of the at least two inverter devices may be switched to a control state in which the at least two heating coils are driven at different driving frequencies.
- the switched control state of the at least two inverter devices may be the first control state.
- at least two inverter devices may be controlled by pulse-frequency modulation with the same fixed duty ratio. Accordingly, it is possible to reduce or prevent the generation of noise due to the frequency difference while adjusting the thermal power of both the low-frequency side coil and the high-frequency side coil to a desired level.
- the control unit sets the driving frequency of the low-frequency side coil to the other
- the driving frequency of the heating coil is changed, the control state of the inverter device corresponding to the low-frequency side coil is switched to the second control state, and the control state of the inverter device corresponding to the other heating coil is changed to the first control state. state can be switched.
- the controller may, among the at least two heating coils, The heating coil corresponding to the high frequency side coil may be changed to a low frequency side coil, and the heating coil corresponding to the low frequency side coil among the at least two heating coils may be changed to a high frequency side coil.
- the control unit switches the control state of the inverter device corresponding to the heating coil changed to the high-frequency side coil to the second control state, and controls the inverter device corresponding to the heating coil changed to the low-frequency side coil.
- a state may be switched to the first control state.
- the adjustable range of the driving frequency of each of the at least two heating coils may be higher than the peak frequency of the resonance curve of the object to be heated by each heating coil. Accordingly, damage to the switching element due to hard switching can be reduced or prevented.
- control operation by the controller 3 is not limited to the above-described embodiments. Further embodiments of the control operation are described below.
- the control part 3 first matches the driving frequency of the electric power supplied to the 1st heating coil 1A and the driving frequency of the electric power supplied to the 2nd heating coil 1B, and then, the 1st The driving frequency can be continuously lowered until the output of either of the heating coil 1A and the second heating coil 1B matches the target output (hereinafter, this state is referred to as a transient state).
- the control part 3 can match the output of the other of the 1st heating coil 1A and the 2nd heating coil 1B with a target output (this state is hereafter called a steady state).
- FIGS. 3, 4, and 12 are flowchart showing an embodiment of a control operation of the induction heating apparatus 100 by the controller 3.
- a control state in a transient state will first be described with reference to FIGS. 3, 4, and 12, and then a control state in a steady state will be described with reference to FIGS. 5 and 6.
- the control state in the transient state will be described.
- the first burner corresponding to the first heating coil 1A is activated.
- Power of a predetermined driving frequency is supplied to the first heating coil 1A, and the actual output (actual power) of the first heating coil 1A is controlled to a target output (target power) (S11).
- target power target power
- the control state command section 322 switches the first control section 3A and the second control section 3B to a control state in the transient state (hereinafter referred to as a first control state).
- target power eg, wattage
- the first controller 3A controls the first inverter device 2A to adjust the drive frequency of the electric power supplied to the first heating coil 1A to the first control state.
- the 2nd control part 3B controls the 2nd inverter device 2B to adjust the drive frequency of the electric power supplied to the 2nd heating coil 1B to a 1st control state.
- the 1st control state is control which turns on/off the switching element SW of inverter device 2 with a fixed duty ratio.
- the first control state shown in FIG. 3 may be implemented by pulse-frequency modulation (PFM) control in which the on-duty ratio is fixed to, for example, 50%. (Pulse Frequency Modulation) Control am.
- PFM pulse-frequency modulation
- the fixed duty ratio is not limited to 50%.
- Various fixed duty ratios in which the duty ratio of the high-side switching element SW and the duty ratio of the low-side switching element SW maintain an interpolation relationship may be applied to the first control state.
- the duty ratio of the high-side switching element SW may be 60%, and the duty ratio of the low-side switching element SW may be 40%.
- the first control state is not limited to PFM control.
- the first control state may be implemented by pulse-width nodulation (PWM) control.
- PWM pulse-width nodulation
- control state command unit 322 controls the inverter corresponding to the first heating coil 1A so that the driving frequency of the electric power supplied to the first heating coil 1A becomes a predetermined initial frequency. 312). In addition, the control state command unit 322 controls the inverter corresponding to the second heating coil 1B so that the driving frequency of the electric power supplied to the second heating coil 1B becomes the same initial frequency. (312) is commanded (S13).
- the initial frequency is a frequency that is even slightly higher than the driving frequency of the electric power being supplied to the first heating coil 1A before the second burner is started.
- the initial frequency is a driving frequency of electric power supplied to the heating coil 1 when the off-state heating coil 1 is switched to an on-state, and is a preset frequency set in advance.
- the reference frequency may be the maximum driving frequency of the driving frequency of electric power that can be supplied to the heating coil (1).
- the inverter control unit 312 of each of the first control unit 3A and the second control unit 3B sets the driving frequency of the first heating coil 1A and the driving frequency of the second heating coil 1B to the above-mentioned initial frequency.
- the inverter device 2 is controlled to continuously or stepwise lower from (S4). More specifically, the power calculation unit 311 of each of the first control unit 3A and the second control unit 3B calculates the actual output of the first heating coil 1A and the second heating coil 1B.
- the first control unit 3A and the second control unit 3B operate the first heating coil 1A until the actual output of either one of the first heating coil 1A and the second heating coil 1B becomes a target output.
- Inverter device 2 is controlled to continuously lower the driving frequency of the second heating coil 1B and the driving frequency of the second heating coil 1B.
- the difference in target thermal power is small, there may be cases where the actual output of the heating coil having the larger target thermal power matches the target output first depending on the size and material of the object to be heated, such as a pot used.
- the side whose actual output first matches a target output is called a high-frequency side coil, and the other side is called a low-frequency side coil.
- the inverter control unit 312 compares the actual output of the high-frequency side coil with the target output until the actual output of the high-frequency side coil matches the target output, and the driving frequency of the first heating coil 1A and the second heating coil ( Inverter device 2 is controlled to lower while synchronizing the drive frequency of 1B) (S14, S15).
- the drive frequency of the 1st heating coil 1A and the drive frequency of the 2nd heating coil 1B do not necessarily need to be synchronized, and may be slightly shifted and lowered. However, the difference between the driving frequency of the first heating coil 1A and the driving frequency of the second heating coil 1B is prevented from becoming a frequency difference that causes noise.
- the shift between the drive frequency of the first heating coil 1A and the drive frequency of the second heating coil 1B must be at least a shift smaller than the frequency difference that causes noise.
- step S15 the actual output and the target output of the first heating coil 1A At the same time as the comparison, the actual output of the second heating coil 1B and the target output are compared. And it can be seen that the side that reaches the target output first is the high-frequency side coil.
- the drive frequency of the high-frequency side coil and the drive frequency of the low-frequency side coil become the same (hereinafter, this drive frequency is referred to as a transient frequency), and the actual output of the high-frequency side coil matches the target output. (If "Yes" in S15).
- the controller 3 controls both the drive frequency of the first heating coil and the drive frequency of the second heating coil until the actual output of the low-frequency side coil matches the target output.
- Inverter device 2 is controlled so as to continue lowering (S16, S17).
- the drive frequency of the high-frequency side coil is set to the frequency of the low-frequency side coil.
- the drive frequency of the high-frequency side coil can be lower than the frequency of the peak of the resonance curve (the frequency indicated by an asterisk in Fig. 4). There is a risk of destruction of the switching element SW due to hard switching.
- the adjustable range of the driving frequency of the first heating coil 1A is the frequency of the apex of the resonance curve of the object to be heated by the second heating coil 1B.
- Each heating coil 1 so that the adjustable range of the drive frequency of the second heating coil 1B is higher than the frequency of the apex of the resonance curve of the object to be heated by the first heating coil 1A.
- the number of turns and the resonance capacitor are adjusted.
- the drive frequency of the high-frequency side coil and the drive frequency of the low-frequency side coil become the same (hereinafter, this drive frequency is referred to as the first drive frequency), and the actual output of the low-frequency side coil Matches this target output (if "Yes” in S17).
- the drive frequency of the 1st heating coil 1A and the 2nd heating coil 1B is made the same by the control of the above-mentioned transient state, the drive frequency of the high-frequency side coil is the transient frequency when it becomes "YES" in S15. is lowered to the first driving frequency at As a result, since the thermal power of the high-frequency side coil is greater than the desired thermal power, control for reducing the thermal power of the high-frequency side coil is required.
- the controller 3 maintains the control of the inverter device 2 corresponding to the low-frequency coil in a first control state, while controlling the inverter device 2 corresponding to the high-frequency coil in a different state from the first control state.
- 2 Switch to control state.
- the second control state is control for turning on/off the switching element SW constituting the inverter device 2 with a variable duty ratio, and the on-duty ratio of the high-side switching element SW This is a control that makes the on-duty ratio of the low-side switching element (SW) different (asymmetric).
- the inverter control unit 312 compares the actual power supplied to the high-frequency side coil with the target power corresponding to the target thermal power, so that the actual power matches the target power, that is, the high-frequency side coil.
- the on-duty ratio of the high-side switching element SW may be lowered so that the output of the side coil matches the target output.
- the on-duty ratio of the high-side switching element SW may be changed within a range of 30% or more and less than 50%.
- the on-duty ratio of the low-side switching element SW is obtained by subtracting the on-duty ratio of the high-side switching element SW from 100%. If the on-duty ratio of the high-side switching element SW is lower than 30%, for example, there is a possibility that the switching element SW may be broken.
- the lower limit of the on-duty ratio that may cause failure of the switching element SW is not limited to 30% and may vary depending on the configuration of the induction heating device 100 .
- the control state command unit 322 issues a command to the inverter control unit 312 of the individual control unit 31 corresponding to the high-frequency side coil to control the inverter device 2 corresponding to the high-frequency side coil as the second control. state to the third control state.
- the third control state is a control state different from the second control state.
- the third control state is control for switching the driving frequency of the high-frequency side coil to the first driving frequency described above and the second driving frequency obtained by adding the first driving frequency to the predetermined frequency at predetermined cycles. .
- the third control state when the driving frequency of the high-frequency side coil is switched from the first driving frequency to the second driving frequency, since the driving frequency of the low-frequency side coil remains the same as the first driving frequency, there is a frequency difference between the driving frequencies of both coils. will arise If the difference between the driving frequency of the high-frequency side coil and the driving frequency of the low-frequency side coil is, for example, about 10 kHz, noise may be generated due to this frequency difference. Considering this point, the difference between the driving frequency of the high-frequency side coil and the driving frequency of the low-frequency side coil may be set to 15 kHz or more.
- the inverter control unit 312 may change the ratio between the driving time of the first driving frequency and the driving time of the second driving frequency included in one cycle.
- the driving time of the second driving frequency may be extended so that the actual power of the high-frequency coil coincides with the target power, in other words, the output of the high-frequency coil coincides with the target output.
- the output of the high-frequency side coil may match the target output. Therefore, the thermal power of the burner corresponding to each of the first heating coil 1A and the second heating coil 1B can be adjusted to a desired level.
- the driving time by the second driving frequency may become very long.
- the control state command unit 322 controls the first and second control units 3A and 3B.
- a command is issued to each inverter controller 312, and the control state by the first and second inverter devices 2A and 2B is the third control state, the first heating coil 1A and the second heating coil 1B to be converted into a control state in which the ? is driven at different driving frequencies.
- the control state after switching is the first control state described above. Therefore, each of the switching element SW constituting the first inverter device 2A and the switching element SW constituting the second inverter device 2B is pulse-frequency conversion (PFM) controlled at the same fixed duty ratio as each other. .
- PFM pulse-frequency conversion
- FIG. 13 is a graph showing a change over time in a driving frequency in the control method shown in FIG. 12 according to an embodiment of the present disclosure.
- FIG. 14 is a graph showing a change over time in output (power) in the control method according to an embodiment of the present disclosure shown in FIG. 12 .
- 15 is a graph for explaining the generation of frequency noise in the process of equalizing the driving frequency of power supplied to two heating coils. Referring to FIG.
- the first and second heating coils Since power of the same initial frequency is supplied to 1A) (1B) and the driving frequency of the power supplied to the first and second heating coils 1A and 1B is lowered from the initial frequency while synchronizing with each other, the first and second heating Since a frequency difference does not occur in the power supplied to the coils 1A and 1B, generation of noise due to a frequency difference as shown in FIG. 15 can be prevented.
- the control state of the inverter device 2 corresponding to the high-frequency side coil is switched to a second control state or a third control state different from the first control state of the inverter device 2 corresponding to the low-frequency side coil. Therefore, as a result, as shown in FIG. 8, it is possible to adjust the thermal power of each of the first and second heating coils 1A and 1B to a desired size.
- the control operation is not limited to the foregoing embodiments.
- the control state of the high-frequency side coil is switched from the first control state to the second control state, but the actual output of the high-frequency side coil is switched.
- the control state of the low-frequency side coil may be switched from the first control state to the second control state.
- the first control state may be, for example, a control state in which the fixed duty ratio of the high side is set lower than 50% (eg, 30%, etc.)
- the second control state is a control state in which the variable duty ratio of the high side is set.
- the control state of the low-frequency coil may be switched to the third control state.
- the third control state may be a control state in which the driving frequency of the low-frequency side coil is switched to a first driving frequency that is a driving frequency of the high-frequency side coil and a second driving frequency obtained by subtracting a predetermined frequency from the first driving frequency at a predetermined cycle.
- the present disclosure provides an induction heating device capable of reducing or preventing the occurrence of noise due to a frequency difference in the process of matching the driving frequencies of two heating coils.
- An induction heating device includes at least two heating coils for induction heating an object to be heated; at least two inverter devices installed corresponding to each of the at least two heating coils and supplying electric power to the corresponding heating coils; and a controller for controlling the at least two inverter devices.
- the control unit Supplying power of an initial frequency higher than the predetermined driving frequency to all of the at least two heating coils, and then supplying power to all of the at least two heating coils until the output of one of the heating coils matches the target output Control the at least two inverter devices to lower the frequency of power.
- an induction heating device power of a predetermined initial frequency is supplied to two heating coils at the start of a transient state in which power is supplied to another heating coil while power is being supplied to one heating coil.
- power of a predetermined initial frequency is supplied to two heating coils at the start of a transient state in which power is supplied to another heating coil while power is being supplied to one heating coil.
- control unit lowers the frequency of the power supplied to both of the at least two heating coils until the output of the one heating coil matches the target output, and then the output of the other heating coil
- the inverter device may be controlled to continue lowering the frequency of power supplied to the at least two heating coils until it matches a target output.
- a form in which the output of the other heating coil matches the target output can be considered by changing the duty ratio, for example, while maintaining the driving frequency at that time. .
- the frequency when the output of the other heating coil coincides with the target output is obtained after the output of one heating coil has previously reached the target output, and in that state, one Adjusting the output of the heating coil to the target output again becomes a control in the direction of reducing the output, so the complexity of the control can be avoided.
- the frequency when the output of the other heating coil coincides with the target output is obtained after the output of one heating coil has previously reached the target output, and in that state, one Adjusting the output of the heating coil to the target output again becomes a control in the direction of reducing the output, so the complexity of the control can be avoided.
- the control unit continues to lower the frequency of the power supplied to the at least two heating coils until the output of the other heating coil matches the target output, and then the frequency corresponding to the one heating coil. It is possible to control the inverter device by a control state different from that of the inverter device corresponding to the other heating coil. According to this, in the transient state until the output of the other heating coil matches the target output, the control state in which the on-duty ratio is fixed, and in the normal state thereafter, only the power supplied to the other heating coil is asymmetric on-duty Since it is only necessary to switch to controlled control, the control operation (control program) can be simplified.
- control unit controls the inverter device to lower the frequency of the power supplied to the at least two heating coils from the initial frequency while synchronizing the frequency of the power supplied to the at least two heating coils when lowering the frequency of the power supplied to the at least two heating coils.
- the initial frequency may be a default frequency of power supplied to a corresponding heating coil when a heating coil in an off state is switched to an on state among the at least two heating coils. According to this, the above effects can be implemented without complicating the control program.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Induction Heating Cooking Devices (AREA)
- General Induction Heating (AREA)
Abstract
개시된 유도 가열 장치는 피가열물을 유도 가열하는 적어도 2개의 가열 코일(1)과, 가열 코일(1) 각각에 대응하여 설치되고, 그 대응하는 가열 코일에 전력을 공급하는 적어도 2개의 인버터 장치(2)와, 적어도 2개의 인버터 장치(2)를 제어하는 제어부(3)를 구비한다.제어부(3)는 적어도 2개의 가열 코일(1)에 공급되는 전력의 주파수인 구동 주파수를 비교하여, 구동 주파수가 높은 고주파수측 코일의 구동 주파수를, 구동 주파수가 낮은 저주파수측 코일의 구동 주파수로 변경한다. 또한, 제어부(3)는 저주파수측 코일에 대응하는 인버터 장치를 제1 제어 상태에 의해 제어하고, 고주파수측 코일에 대응하는 인버터 장치를 제1 제어 상태와는 다른 제2 제어 상태에 의해 제어한다.
Description
본 개시는 피가열물을 유도 가열하는 유도 가열 장치에 관한 것이다.
유도 가열 장치는 예를 들면 조리용 냄비 등의 피가열물을 가열하는 IH(induction heating)방식 조리기 등에 이용되고 있다. 일본 특개 2021-103674호 공보에는 복수의 피가열물을 동시에 유도 가열할 수 있도록 하기 위해 복수의 가열 코일을 구비하는 유도 가열 장치가 개시되어 있다.
2개의 가열 코일을 동시에 구동하는 경우, 도 10에 도시한 것처럼, 2개의 피가열물의 공진 커브들이 서로 다르다. 따라서 2개의 가열 코일의 화력을 각각 조정한 결과, 2개의 가열 코일의 구동 주파수의 차이가 어느 주파수 차이(예를 들면 10kHz 전후)가 되면, 그 주파수 차이에 의한 노이즈가 발생할 수 있다. 노이즈가 발생한 경우, 화력을 조정하여 주파수 차이를 바꾸면 노이즈를 해소할 수는 있지만, 이 경우에는 각각의 가열 코일을 원하는 화력으로 제어하기 어렵다.
그래서 본 발명은, 상술한 문제를 한꺼번에 해결하기 위해 이루어진 것이며, 복수의 피가열물을 동시에 가열할 경우에 생기는 노이즈를 해소하면서도 각각의 피가열물의 화력을 원하는 크기로 조정할 수 있도록 하는 것을 주된 과제로 하는 것이다.
유도 가열 장치는, 적어도 2개의 가열 코일, 적어도 2개의 인버터 장치, 및 제어부를 구비할 수 있다. 적어도 2개의 가열 코일은 피가열물을 유도 가열한다. 적어도 2개의 인버터 장치는 적어도 2개의 가열 코일 각각에 대응하여 설치된다. 적어도 2개의 인버터 장치는 대응하는 가열 코일에 전력을 공급한다. 제어부는 상기 적어도 2개의 인버터 장치를 제어한다.
본 개시의 일 측면에 따르면, 제어부는 상기 적어도 2개의 가열 코일에 공급되는 전력의 주파수인 구동 주파수를 비교한다. 적어도 두 개의 가열 코일 중에서 구동 주파수가 높은 가열 코일을 고주파수측 코일, 구동 주파수가 낮은 가열코일을 저주파수측 코일이라 한다. 제어부는 상기 고주파수측 코일의 구동 주파수를 저주파수측 코일의 구동 주파수로 변경할 수 있다. 제어부는 상기 저주파수측 코일에 대응하는 상기 인버터 장치를 제1제어 상태에 의해 제어할 수 있다. 제어부는 상기 고주파수측 코일에 대응하는 상기 인버터 장치를 상기 제1제어 상태와는 다른 제2제어 상태에 의해 제어할 수 있다.
본 개시의 일 측면에 따르면, 상기 적어도 2개의 가열 코일 중 한쪽의 가열 코일에 소정의 구동 주파수의 전력이 공급되고 있는 상태에서, 상기 적어도 2개의 가열 코일 중 한 다른쪽의 가열 코일에 전력이 공급되기 시작할 수 있다. 상기 제어부는 상기 적어도 2개의 가열 코일 모두에 상기 소정의 구동 주파수보다 높은 초동 주파수의 전력을 공급한다. 그 후에, 상기 제어부는, 한쪽의 상기 가열 코일의 출력이 목표 출력에 일치할 때까지, 상기 적어도 2개의 가열 코일 모두에 공급하는 전력의 주파수를 낮추도록 상기 적어도 2개의 인버터 장치를 제어할 수 있다.
도 1은 본 개시의 일 실시예에 따른 유도 가열 장치의 개략적인 구성도이다.
도 2는 제어부에 의한 유도 가열 장치의 제어 동작의 일 실시예를 보여주는 흐름도이다.
도 3은 제1 제어 상태의 일 실시예를 설명하기 위한 도면이다.
도4 는 가열 코일의 구동 주파수의 변경 범위의 일 실시예를 도시한 그래프이다.
도 5는 제2 제어 상태의 일 실시예를 설명하기 위한 도면이다.
도 6은 제3 제어 상태의 일 실시예를 설명하기 위한 도면이다.
도 7은 제어 상태의 경시적인 변화의 일 실시예를 도시한 그래프이다.
도 8은 제어 동작에 따른 온 듀티비와 주파수의 경시적인 변화의 일 실시예를 도시한 그래프이다.
도 9는 제어부에 의한 유도 가열 장치의 제어 동작의 일 실시예를 도시한 흐름도이다.
도 10은 공진 커브와 노이즈와의 관계를 설명하기 위한 도면이다.
도 11은 가열 코일의 구동 주파수와 공진 커브의 정점의 주파수와의 관계의 일 실시예를 보여주는 도면이다.
도 12는 제어부에 의한 유도 가열 장치의 제어 동작의 일 실시예를 보여주는 흐름도이다.
도 13은 도 12에 도시된 본 개시의 일 실시예에 따른 제어 동작에서 구동 주파수의 경시적인 변화를 보여주는 그래프이다.
도 14는 도 12에 도시된 본 개시의 일 실시예에 따른 제어 방법에서 출력(전력)의 경시적인 변화를 보여주는 그래프이다.
도 15는 두 가열 코일에 공급되는 전력의 구동 주파수를 동일하게 맞추는 과정에서 주파수 노이즈의 발생을 설명하기 위한 그래프이다.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
이하에 본 개시에 관한 유도 가열 장치의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 개시는 복수의 가열 코일을 동시에 구동하는 경우에 생기는 노이즈를 해소하면서도 각각의 가열 코일의 화력을 원하는 크기로 조정할 수 있는 유도 가열 장치에 관한 것이다. 도 1은 본 개시의 일 실시예에 따른 유도 가열 장치(100)의 개략적인 구성도이다. 본 실시 형태에 관한 유도 가열 장치(100)은, 예를 들면 IH(induction heating) 방식의 조리기 등에 이용될 수 있으며, 조리용 냄비 등의 피가열물을 유도 가열한다.
도 1을 참조하면, 유도 가열 장치(100)은 피가열물을 유도 가열하는 복수의 가열 코일(1)과, 복수의 가열 코일(1)에 전력을 공급하는 복수의 인버터 장치(2)와, 복수의 인버터 장치(2)를 제어하는 제어부(3)을 구비할 수 있다. 유도 가열 장치(100)은 가열 코일(1)에 직렬 접속된 공진 콘덴서 및 해당 공진 콘덴서에 병렬 접속된 공진 코일 요소를 포함하는 LC병렬 공진 회로(4)와, 인버터 장치(2)에 공급되는 전류를 검출하는 전류 검출부(I)와, 상용 전원에서 인버터 장치(2)로 공급되는 전압을 검출하는 전압 검출부(V)를 구비한다.
가열 코일(1)은, 조리용 냄비 등이 놓이는 탑 플레이트(top plate)(미도시) 아래에 설치되며 탑 플레이트를 사이에 두고 조리용 냄비를 유도 가열한다. 도 1에 도시된 본 개시의 일 실시예에 따른 유도 가열 장치(100)는 2개의 가열 코일(1), 즉 제1 가열 코일(1A)와 제2가열 코일(1B)을 구비하나, 가열 코일(1)의 수는 이에 한정되지 않으며, 가열 코일(1)의 수는 적어도 2개이면 된다. 따라서, 가열 코일(1)의 수는 3개 이상일 수도 있다.
인버터 장치(2)는, 가열 코일(1)에 고주파 전류를 공급하는 인버터 회로(21)과, 인버터 회로(21)을 구동하는 구동 회로(22)를 포함할 수 있다. 인버터 회로(21)은, 상용 전원에서 공급되는 전력을 고주파 전력으로 변환하여 가열 코일(1)에 공급한다. 본 실시예에는 스위칭 소자(SW)를 이용하는 하프 브릿지 방식의 인버터 회로(21)가 적용된다. 인버터 회로(21)는 가열 코일(1)에 고주파 전력을 공급할 수 있는 다양한 전기 회로에 의하여 구현될 수 있다. 예를 들면 인버터 회로(21)는 풀 브릿지 방식으로 구현될 수도 있다. 구동 회로(22)는 인버터 회로(21)의 스위칭 소자(SW)를 동작시킨다. 구동 회로(22)는 후술하는 제어 기기(3)으로부터의 제어 신호에 기초하여 스위칭 소자(SW)를 온(ON)/오프(OFF)시킨다. 인버터 장치(2)의 수는 가열 코일(2)의 수와 동일할 수 있다. 예를 들어, 인버터 장치(2)는 적어도 2개일 수 있다. 본 실시예에서, 인버터 장치(2)는 제1, 제2가열 코일(1A)(1B)에 각각 대응되는 제1, 제2인버터 장치(2A)(2B)를 구비한다.
제어부(3)는 피가열물을 원하는 화력으로 가열하도록 인버터 장치(2)를 제어한다. 제어부(3)는 인버터 장치(2)에서 가열 코일(1)로 공급되는 고주파 전력의 주파수인 구동 주파수를 제어한다. 본 실시예에서 제어부(3)는 복수의 인버터 장치(2)를 각각 제어하는 복수의 개별 제어부(31)와, 복수의 개별 제어부(31)를 통괄 제어하는 메인 제어부(32)를 구비할 수 있다.
제어부(3)는 적어도 하나의 프로세서와, 메모리를 포함할 수 있다. 프로세서는 중앙 처리 장치(CPU: central process unit)을 포함할 수 있다. 프로세서는 하나일 수 있으며, 둘 이상일 수도 있다. 예를 들어, 복수의 개별 제어부(31)와 메인 제어부(32) 각각이 프로세서를 구비할 수도 있다. 메모리에는 유도 가열 장치(100) 및/또는 유도 가열 장치(100)를 채용한 전자 기기, 예를 들어 조리기를 제어하기 위한 응용 프로그램이 저장될 수 잇다. 메모리에는 구동 주파수 등, 유도 가열 장치(100) 및/또는 유도 가열 장치(100)를 채용한 전자 기기의 제어에 필요한 다양한 제어 인자들이 저장될 수 있다. 프로세서는 응용 프로그램을 실행하여 유도 가열 장치(100) 및/또는 유도 가열 장치(100)를 채용한 전자 기기의 구성 요로들을 제어할 수 있다. 복수의 개별 제어부(31)와 메인 제어부(32)와, 이들을 구성하는 하부 유닛, 예를 들어 후술하는 전력 산출부(311), 인버터 제어부(312), 전력 명령부(321), 제어 상태 명령부(322) 등은 프로세서에서 실행되는 응용 프로그램에 의하여 구현되는 기능 블록일 수 있으며, 기능 블록과 기능 블록의 기능을 구현하기에 적합한 하드웨어가 조합된 형태일 수 있다.
개별 제어부(31)은, 전류 검출부(I)와 전압 검출부(V)에 의해 검출되는 검출 전류 및 검출 전압에 기초하여, 가열 코일(1)에 공급되는 실제 전력(실제 출력)을 산출하는 전력 산출부(311)와, 실제 전력이 목표 전력(목표 출력)에 가까워지도록 인버터 장치(2)를 제어하는 인버터 제어부(312)를 구비할 수 있다. 메인 제어부(32)는 사용자에 의해 조작되는 조작 콘트롤러(operation controller)를 포함할 수 있다. 메인 제어부(32)는 사용자가 설정한 가열 코일(1)의 화력에 대응하는 전력을 목표 전력으로 하여 인버터 제어부(312)에 출력하는 전력 명령부(321)와, 인버터 제어부(312)에 의한 제어 상태를 전환하는 제어 상태 명령부(322)를 구비할 수 있다. 이하에서 구별이 필요한 경우, 제1인버터 장치(2A)를 제어하는 개별 제어부(31)을 제1제어부(3A)로 칭하고, 제2인버터 장치(2B)를 제어하는 개별 제어부(31)을 제2제어부(3B)로 칭한다.
도 2는 제어부(3)에 의한 유도 가열 장치(100)의 제어 동작의 일 실시예를 보여주는 흐름도이다. 도 2를 참조하여 제어부(3)의 제어 동작의 일 실시예에 대해 설명한다. 여기에서는, 제1 가열 코일(1A)에 대응하는 제1 버너가 먼저 기동되고, 다음으로 제2 가열 코일(1B)에 대응하는 제2 버너가 기동되는 경우에 대해 예시적으로 설명한다.
우선, 메인 제어부(32)의 전력 명령부(321)가, 각 버너의 화력에 대응하는 목표 출력인 목표 전력(예를 들면, 와트수)을 제1제어부(3A)와 제2제어부(3B) 각각에 지시한다. 메인 제어부(32)로부터의 지시에 기초하여, 제1제어부(3A)는 제1인버터 장치(2A)에서 제1 가열 코일(1A)로 공급되는 전력의 구동 주파수를 조정한다(S1). 제2제어부(3B)는, 메인 제어부(32)로부터의 지시에 기초하여 제2인버터 장치(2B)에서 제2가열 코일(1B)로 공급되는 전력의 구동 주파수를 조정한다(S2).
구체적으로는, 제1제어부(3A)는 전력 산출부(311)에서 산출된 실제 전력이 목표 전력과 같아지도록 인버터 제어부(312)를 통하여 제1인버터 장치(2A)의 구동 주파수를 제어한다. 제2제어부(3B)는 전력 산출부(311)에서 산출된 실제 전력이 목표 전력과 같아지도록 인버터 제어부(312)를 통하여 제2인버터 장치(2B)의 구동 주파수를 제어한다. 이 시점에서는, 제1제어부(3A)와 제2 제어부(3B)는, 미리 정해진 제1제어 상태로 제1, 제2인버터 장치(2A)(2B)를 각각 제어하며, 제1가열 코일(1A)의 구동 주파수(Freq A)와 제2가열 코일(1B)의 구동 주파수(Freq B)는 서로 다르다.
도 3은 제1 제어 상태의 일 실시예를 설명하기 위한 도면이다. 도 3을 참고하면, 제1제어 상태는 인버터 장치(2)를 구성하는 스위칭 소자(SW)를 고정 듀티비로 온/오프시키는 제어 상태이다. 예시적으로 도 3에 도시된 제1제어 상태는 온 듀티비를 50%로 고정한 펄스-주파수 변조(PFM: pulse-frequency modulation) 제어에 의하여 구현될 수 있다. 제1 제어 상태에서 고정 듀티비는 50%로 한정되지 않는다. 제1제어 상태에는 하이 사이드(high side)의 스위칭 소자(SW)의 듀티비와 로우 사이드(low side)의 스위칭 소자(SW)의 듀티비가 보간 관계를 유지하는 다양한 고정 듀티비가 적용될 수 있다. 예를 들면 하이 사이드의 스위칭 소자(SW)의 듀티비를 60%, 로우 사이드의 스위칭 소자(SW)의 듀티비를 40%로 할 수 있다. 제1제어 상태는 PFM 제어에 한정되지 않는다. 예를 들어, 제1제어 상태는 펄스-폭 변조(PWM: pulse-width nodulation) 제어에 의하여 구현될 수도 있다.
다음으로, 메인 제어부(32)의 제어 상태 명령부(322)는 제1가열 코일(1A)의 구동 주파수(Freq A)와 제2가열 코일(1B)의 구동 주파수(freq B)를 취득하여 이들을 비교한다(S3). 이하에서는, 제1가열 코일(1A)과 제2가열 코일(1B) 중 구동 주파수가 높은 쪽을 고주파수측 코일로 칭하고, 구동 주파수가 낮은 쪽을 저주파수측 코일로 칭한다. 제어 상태 명령부(322)는, 고주파수측 코일의 구동 주파수를 저주파수측 코일의 구동 주파수로 변경하도록 고주파수측 코일을 제어하는 인버터 제어부(312)에 지령한다(S4, S5). 이로써 제1 가열 코일(1A) 및 제2 가열 코일(1B)의 구동 주파수는 동일해진다(이하, 이 구동 주파수를 제1 구동 주파수라고 한다).
예를 들어, 제2가열 코일(1B)의 구동 주파수(freq B)가 제1가열 코일(1A)의 구동 주파수(Freq A)보다 크다면, 제어 상태 명령부(322)는 제2제어부(3B)의 인버터 제어부(312)에 고주파수측 코일인 제2가열 코일(1B)의 구동 주파수를 저주파수측 코일인 제1가열 코일(1A)의 구동 주파수와 동일한 Freq A로 변경하도록 지시한다. 이에 의하여, 제1가열 코일(2A)과 제2가열 코일(2B)는 모두 Freq A를 기준으로 하여 동작된다. 반면에, 제2가열 코일(1B)의 구동 주파수(freq B)가 제1가열 코일(1A)의 구동 주파수(Freq A)보다 작다면, 제어 상태 명령부(322)는 제1제어부(3A)의 인버터 제어부(312)에 고주파수측 코일인 제1가열 코일(1A)의 구동 주파수를 저주파수측 코일인 제2가열 코일(1B)의 구동 주파수와 동일한 Freq B로 변경하도록 지시한다. 이에 의하여, 제1가열 코일(1A)과 제2가열 코일(1B)는 모두 Freq B를 기준으로 하여 동작된다.
도 4는 가열 코일의 구동 주파수의 변경 범위의 일 실시예를 도시한 그래프이다. 제1 가열 코일(1A)과 제2 가열 코일(1B)의 구동 주파수의 조정 가능한 범위가 도 4의 좌측에 도시된 바와 같이 분산되어 있으면, 고주파수측 코일(예를 들어 제1가열 코일(1A))의 구동 주파수를 저주파수측 코일(예를 들어 제2가열 코일(2B))의 구동 주파수에 맞추는 경우, 고주파수측 코일의 구동 주파수가 공진 커브의 정점의 주파수(도 4에서 별표로 표시한 주파수)보다 낮아질 수 있다. 그러면 하드 스위칭에 의하여 스위칭 소자(SW)가 손상될 가능성이 있다. 이와 같은 문제는 도 11에 도시된 바와 같이 3개의 가열 코일을 갖는 유도 가열 장치에서도 마찬가지이다.
본 실시예의 유도 가열 장치(100)에 따르면, 도 4의 우측에 도시된 바와 같이, 제1 가열 코일(1A)의 구동 주파수의 조정 가능한 범위가 제2 가열 코일(1B)에 의해 가열되는 피가열물의 공진 커브의 정점의 주파수보다 높다. 또한, 또한 제2 가열 코일(1B)의 구동 주파수의 조정 가능한 범위가 제1 가열 코일(1A)에 의해 가열되는 피가열물의 공진 커브의 정점의 주파수보다 높다. 이러한 조건은 제1, 제2가열 코일(1A)(1B)의 권수 및/또는 공진 캐패시터의 용량을 조정함으로써 구현될 수 있다. 즉, 제1, 제2가열 코일(1A)(1B)의 권수와 공진 캐패시터의 용량은 전술한 조건을 만족하도록 결정된다.
이와 같이 하여 제1 가열 코일(1A) 및 제2 가열 코일(1B)의 구동 주파수를 동일하게 하면, 고주파수측 코일의 구동 주파수는 초기의 구동 주파수(단계 S1의 주파수(Freq A) 또는 단계 S2의 주파수(Freq B))에서 제1 구동 주파수로 낮아진다. 가열 코일(1)은 공진 커브의 정점의 주파수보다 높은 구동 주파수로 구동된다. 가열 코일(1)의 구동 주파수가 공진 커브의 정점의 주파수에 가까워질수록 가열 코일(1)의 화력이 커진다. 고주파수측 코일의 구동 주파수를 저주파수측 코일의 구동 주파수로 변경하여 구동 주파수가 제1구동 주파수로 낮아지면, 고주파수측 가열 코일의 구동 주파수가 공진 커브의 정점의 주파수에 가까워져서 고주파수측 코일의 화력이 원하는 화력보다 커진다. 따라서 고주파수측 코일의 화력을 떨어뜨리기 위한 제어가 필요하다. 반면에 저주파수측 가열 코일의 구동 주파수는 변하지 않으므로 저주파수측 가열 코일의 화력은 변하지 않는다.
제어부(3)는, 저주파수측 코일에 대응하는 인버터 장치(2)의 제어를 제1 제어 상태로 유지하면서, 고주파수측 코일에 대응하는 인버터 장치(2)의 제어를 제1 제어 상태와는 다른 제2 제어 상태로 전환시킨다 (S4, S5). 예를 들어, 제2가열 코일(1B)의 구동 주파수(Freq B)가 제1가열 코일(1A)의 구동 주파수(Freq A)보다 크다면, 제어부(3)는 고주파수측 코일인 제2가열 코일(1B)의 구동 주파수를 저주파수측 코일인 제1가열 코일(1A)의 구동 주파수와 동일한 Freq A로 변경한다. 그리고 제어부(3)는 저주파수측 코일인 제1코일(1A)에 대응되는 제1인버터 장치(2A)의 제어 상태는 제1제어 상태로 유지하고, 고주파수측 코일인 제2코일(1B)에 대응되는 제2인버터 장치(2B)의 제어 상태를 제1제어 상태와는 다른 제2제어 상태로 전환시킨다. 반면에, 제2가열 코일(1B)의 구동 주파수(freq B)가 제1가열 코일(1A)의 구동 주파수(Freq A)보다 크다면, 제어부(3)는 고주파수측 코일인 제1가열 코일(1A)의 구동 주파수를 저주파수측 코일인 제2가열 코일(1B)의 구동 주파수와 동일한 Freq B로 변경한다. 그리고 제어부(3)는 저주파수측 코일인 제2코일(1B)에 대응되는 제2인버터 장치(2B)의 제어 상태는 제1제어 상태로 유지하고, 고주파수측 코일인 제1코일(1A)에 대응되는 제1인버터 장치(2A)의 제어 상태를 제1제어 상태와는 다른 제2제어 상태로 전환시킨다.
도 5는 제2 제어 상태의 일 실시예를 설명하기 위한 도면이다. 도 5를 참조하면, 제2 제어 상태는 인버터 장치(2)의 스위칭 소자(SW)를 가변 듀티비로 온/오프시키는 제어 상태이다. 제2제어 상태는 하이 사이드의 스위칭 소자(SW)의 온 듀티비와 로우 사이드의 스위칭 소자(SW)의 온 듀티비를 다르게 하는 비대칭 제어 상태이다. 예를 들어, 제2 제어 상태에서는, 인버터 제어부(312)가 고주파수측 코일에 공급되고 있는 실제 전력과 목표 화력에 대응하는 목표 전력을 비교하고, 실제 전력이 목표 전력과 일치하도록, 다시 말하면, 고주파수측 코일의 출력과 목표 출력이 일치하도록 하이 사이드의 스위칭 소자(SW)의 온 듀티비를 낮출 수 있다.
일 실시예로서, 하이 사이드의 스위칭 소자(SW)의 온 듀티비를 30% 이상 50% 미만의 범위 내에서 변경할 수 있다. 로우 사이드의 스위칭 소자(SW)의 온 듀티비는 100%에서 하이 사이드의 스위칭 소자(SW)의 온 듀티비를 뺀 값이 된다. 하이 사이드의 스위칭 소자(SW)의 온 듀티비가, 예를 들면 30%보다 낮으면, 스위칭 소자(SW)의 고장이 발생될 우려가 있다. 스위칭 소자(SW)의 고장을 초래할 수 있는 온 듀티비의 하한치는 30%로 한정되지 않으며 유도 가열 장치(100)의 구성에 따라 달라질 수 있다.
이와 같이, 하이 사이드의 스위칭 소자(SW)의 온 듀티비를 낮추어 고주파수측 코일의 실제 전력을 목표 전력과 일치시키면, 고주파수측 코일의 출력이 목표 출력과 일치될 수 있다. 따라서 제1가열 코일(1A)과 제2가열 코일(1B) 각각에 대응하는 버너의 화력이 원하는 크기로 조정될 수 있다.
한편, 하이 사이드의 스위칭 소자(SW)의 온 듀티비를 변경 가능한 범위의 하한(여기에서는, 30%)까지 낮추었음에도 불구하고, 고주파수측 코일의 실제 전력이 목표 전력에 도달하지 않는 경우, 즉, 고주파수측 코일의 출력이 목표 출력에 도달하지 않은 경우, 고주파수측 코일에 대응하는 버너의 화력이 원하는 크기로 조정되지 않게 될 수 있다. 이 경우, 제어 상태 명령부(322)는 고주파수측 코일에 대응되는 개별 제어부(31)의 인버터 제어부(312)에 지령을 내려, 고주파수측 코일에 대응하는 인버터 장치(2)의 제어를 제2제어 상태에서 제3제어 상태로 전환한다. 제3제어 상태는 제2제어 상태와는 다른 제어 상태이다.
예를 들어, 제2가열 코일(1B)의 구동 주파수(Freq B)가 제1가열 코일(1A)의 구동 주파수(Freq A)보다 크다면, 제어부(3)는 고주파수측 코일인 제2가열 코일(1B)의 구동 주파수를 저주파수측 코일인 제1가열 코일(1A)의 구동 주파수와 동일한 Freq A로 변경한다. 그리고 제어부(3)는 저주파수측 코일인 제1코일(1A)에 대응되는 제1인버터 장치(2A)의 제어 상태는 제1제어 상태로 유지하고, 고주파수측 코일인 제2코일(1B)에 대응되는 제2인버터 장치(2B)의 제어 상태를 제1제어 상태와는 다른 제2제어 상태로 전환시킨다. 제2제어 상태에 따른 제어에 의하여 고주파수측 코일인 제2가열 코일(1B)의 실제 전력이 목표 전력에 도달되지 않은 경우, 메인 제어부(32)의 제어 상태 명령부(322)는 제2가열 코일(1B)에 대응되는 제2인버터 장치(2B)의 제어를 제2제어 상태에서 제3제어 상태로 전환시키도록 제2제어부(3B)의 인버터 제어부(312)에 지령을 내린다.
반면에, 제2가열 코일(1B)의 구동 주파수(Freq B)가 제1가열 코일(1A)의 구동 주파수(Freq A)보다 크다면, 제어부(3)는 고주파수측 코일인 제1가열 코일(1A)의 구동 주파수를 저주파수측 코일인 제2가열 코일(1B)의 구동 주파수와 동일한 Freq B로 변경한다. 그리고 제어부(3)는 저주파수측 코일인 제2코일(1B)에 대응되는 제2인버터 장치(2B)의 제어 상태는 제1제어 상태로 유지하고, 고주파수측 코일인 제1코일(1A)에 대응되는 제1인버터 장치(2A)의 제어 상태를 제1제어 상태와는 다른 제2제어 상태로 전환시킨다. 제2제어 상태에 따른 제어에 의하여 고주파수측 코일인 제1가열 코일(1A)의 실제 전력이 목표 전력에 도달되지 않은 경우, 메인 제어부(32)의 제어 상태 명령부(322)는 제1가열 코일(1A)에 대응되는 제1인버터 장치(2A)의 제어를 제2제어 상태에서 제3제어 상태로 전환시키도록 제1제어부(3A)의 인버터 제어부(312)에 지령을 내린다.
도 6은 제3제어 상태의 일 실시예를 설명하기 위한 도면이다. 도 6을 참조하면, 일 실시예에 따른 제3 제어 상태는 고주파수측 코일의 구동 주파수를, 상술한 제1구동 주파수와, 제1구동 주파수에 소정 주파수를 합한 제2구동 주파수로 소정의 주기로 전환하는 제어 상태이다. 즉, 제3제어 상태는 고주파수측 코일의 구동 주파수를 저주파수측 코일의 구동 주파수인 제1 구동 주파수와, 제1구동 주파수보다 높은 제2 구동 주파수로 시분할 제어하는 상태이다. 제3 제어 상태에서 고주파수측 코일의 구동 주파수가 제1 구동 주파수에서 제2 구동 주파수로 전환된 경우, 저주파수측 코일의 구동 주파수는 제1 구동 주파수 그대로이므로, 고주파수측 코일의 구동 주파수와 저주파수측 코일의 구동 주파수가 서로 달라진다.
도 10은 공진 커브와 노이즈와의 관계를 설명하기 위한 도면이다. 도 10을 참조하면, 두 피가열물, 예를 들어 냄비A와 냄비B의 공진 커브가 서로 다르기 때문에, 냄비A와 냄비B를 유도가열하는 두 가열 코일(1A)(1B)의 구동 주파수의 차이가 어느 정도가 되면 그 주파수 차이에 의한 노이즈가 발생될 수 있다. 예를 들어, 고주파수측 코일의 구동 주파수와 저주파수측 코일의 구동 주파수의 차이가 예를 들면 10kHz 정도이면, 이 주파수 차이에 의한 노이즈가 발생될 수 있다. 이러한 점을 감안하여, 고주파수측 코일의 구동 주파수와 저주파수측 코일의 구동 주파수의 차이는 15kHz 이상으로 설정될 수 있다.
일 실시예에 따른 제3 제어 상태에서, 인버터 제어부(312)는 1주기에 포함되는 제1구동 주파수의 구동 시간과 제2구동 주파수의 구동 시간과의 비율을 변경할 수 있다. 예를 들어, 고주파수측 코일의 실제 전력이 목표 전력과 일치하도록, 바꾸어 말하면, 고주파수측 코일의 출력과 목표 출력이 일치하도록 제2구동 주파수의 구동 시간을 연장시킬 수 있다. 이와 같이, 제2구동 주파수의 구동 시간을 연장시켜 고주파수측 코일의 실제 전력이 목표 전력과 일치된 경우, 고주파수측 코일의 출력이 목표 출력과 일치될 수 있다. 따라서, 제1가열 코일(1A)과 제2가열 코일(1B) 각각에 대응하는 버너의 화력이 원하는 크기로 조정될 수 있다.
제3 제어 상태에서, 고주파수측 코일의 실제 출력을 목표 출력에 근접시키려고 한 결과, 제2구동 주파수에 의한 구동 시간이 매우 길어질 수 있다. 이 경우에는, 저주파수측 코일의 구동 주파수와 고주파수측 코일의 구동 주파수와의 차이가 커지므로, 제1, 제2가열 코일(1A)(1B)를 서로 다른 구동 주파수로 구동시켜도 발생되는 노이즈의 레벨이 노이즈로서 인식되기 어려운 레벨이 될 수 있다. 따라서, 제1구동 주파수에서의 구동 시간에 대한 제2구동 주파수에서의 구동 시간의 비율이 문턱값을 초과하는 경우, 제어 상태 명령부(322)는 제1, 제2제어부(3A)(3B) 각각의 인버터 제어부(312)에 지령을 내려, 제1, 제2인버터 장치(2A)(2B)에 의한 제어 상태가 제3제어 상태에서 제1가열 코일(1A)과 제2가열 코일(1B)를 서로 다른 구동 주파수로 구동시키는 제어 상태로 전환시키도록 한다. 이때, 전환된 후의 제어 상태는, 전술한 제1 제어 상태이다. 따라서, 제1인버터 장치(2A)를 구성하는 스위칭 소자(SW)와, 제2인버터 장치(2B)를 구성하는 스위칭 소자(SW) 각각이 서로 같은 고정 듀티비로 펄스-주파수 변환(PFM) 제어된다.
도 7은 제어 상태의 경시적인 변화의 일 실시예를 도시한 그래프이다. 전술한 제어 동작에 의해, 도 7에 도시한 것처럼, 제1가열 코일(1A) 또는 제2가열 코일(1B) 중 어느 한쪽의 구동 주파수가, 제1제어 상태에 의해 제어됨과 동시에 제1가열 코일(1A) 또는 제2가열 코일(1B) 중 다른쪽의 구동 주파수는 제1 내지 제3제어 상태에 의해 제어되게 된다. 도 8은 제어 동작에 따른 온 듀티비와 주파수의 경시적인 변화의 일 실시예를 도시한 그래프이다. 전술한 제어 동작에 따른 제어 상태의 변화의 결과, 도 8에 도시한 것처럼, 스위칭 소자(SW)의 온 듀티비가 변동하면서 제1가열 코일(1A)의 구동 주파수와 제2가열 코일(1B)의 구동 주파수가 동기됨과 동시에, 제1가열 코일(1A)과 제2가열 코일(1B) 각각에 대응하는 버너의 화력이 원하는 크기로 조정된다.
이와 같이 구성한 유도 가열 장치(100)에 의하면, 고주파수측 코일의 구동 주파수를 저주파수측 코일의 구동 주파수에 맞추기 때문에 주파수 차이에 의한 노이즈의 발생을 저감 내지 방지할 수 있다. 게다가, 고주파수측 코일에 대응하는 인버터 장치(2)의 제어 상태를, 저주파수측 코일에 대응하는 인버터 장치(2)의 제1제어 상태와는 다른 제2제어 상태 혹은 제3제어 상태로 전환하기 때문에, 제1, 제2가열 코일(1A)(1B) 각각의 화력을 원하는 크기로 조정할 수 있게 된다.
제어부(3)에 의한 유도 가열 장치(100)의 제어 동작은 전술한 실시예에 한정되지 않는다. 도 9는 제어부(3)에 의한 유도 가열 장치(100)의 제어 동작의 일 실시예를 도시한 흐름도이다. 예를 들면, 복수의 버너의 화력의 변경에 의해, 복수의 가열 코일(1)의 구동 주파수의 대소 관계가 역전되는 경우가 있다. 이러한 경우에도, 노이즈를 해소하면서 각각의 가열 코일(1)에 의한 화력을 원하는 크기로 조정할 수 있도록 하기 위해, 제어부(3)는 도 9에 도시한 흐름도와 같은 제어 동작을 수행할 수 있다.
제어부(3)는 저주파수측 코일이 아닌 다른 가열 코일(1)의 구동 주파수가 저주파수측 코일의 구동 주파수보다 낮아진 경우에, 저주파수측 코일의 구동 주파수를 해당 다른 가열 코일(1)의 구동 주파수로 변경하고, 저주파수측 코일에 대응하는 인버터 장치(2)의 제어 상태를 제2제어 상태로 전환하고, 다른 가열 코일(1)에 대응하는 인버터 장치(2)를 제1제어 상태로 전환할 수 있다. 다른 가열 코일(1)은 고주파측 코일일 수 있으며, 고주파측 코일과도 다른 가열 코일(1)일 수도 있다.
제어부(3)의 제어 동작을 보다 상세히 설명하면, 도 9에 도시한 것처럼, 고주파수측 코일의 구동 주파수를 저주파수측 코일의 구동 주파수에 맞추는 단계 S1 ~ 단계 S5까지는 도 2 내지 도 8을 참조하여 전술한 바와 동일하다. 이하에서, 예시적으로 단계 S4와 단계 S5에서 고주파수측 코일에 대응하는 인버터 장치(2)가 제2제어 상태로 제어되고 있는 경우에 대해 설명한다. 저주파수측 코일은 제1제어 상태로 제어되고 있다. 이 상태에서 저주파수측 코일의 버너의 화력을 떨어뜨리면, 저주파수측 코일의 구동 주파수가 높아지고, 이에 수반하여 고주파수측 코일에 대응하는 스위칭 소자(SW)의 온 듀티비가 증대된다(S6, S7).
예를 들어, 단계 S4에서 저주파수측 코일인 제2가열 코일(1B)이 제1제어 상태로 제어되고, 고주파수측 코일인 제1가열 코일(1A)가 제2제어 상태로 제어된다. 제1, 제2가열 코일(1A)(1B)의 구동 주파수는 Freq B이다. 이 경우에 저주파수측 코일인 제2가열 코일(1B)의 화력을 떨어트리면, 제2가열 코일(1B)의 구동 주파수가 올라간다. 이는, 가열 코일(1)의 구동 주파수는 공진 커브의 정점의 주파수보다 높은 주파수이고, 구동 주파수가 공진 커브의 정점의 주파수로부터 멀어질수록 가열 코일(1)의 화력이 낮아지기 때문이다. 또한, 저주파수측 코일인 제2가열 코일(1B)의 화력을 떨어트리면, 고주파수측 코일인 제1가열 코일(1A)에 대응하는 제1인버터 장치(2A)의 스위칭 소자(SW)의 온 듀티비가 커진다.
예를 들어, 단계 S5에서 저주파수측 코일인 제1가열 코일(1A)이 제1제어 상태로 제어되고, 고주파수측 코일인 제2가열 코일(1B)가 제2제어 상태로 제어된다. 제1, 제2가열 코일(1A)(1B)의 구동 주파수는 Freq A이다. 이 경우에 저주파수측 코일인 제1가열 코일(1A)의 화력을 떨어트리면, 제1가열 코일(1A)의 구동 주파수가 올라가고, 고주파수측 코일인 제2가열 코일(1B)에 대응하는 제2인버터 장치(2B)의 스위칭 소자(SW)의 온 듀티비가 커진다.
저주파수측 코일의 구동 주파수가 고주파수측 코일의 구동 주파수에 도달하면, 고주파수측 코일의 구동 주파수의 온 듀티비가 50%에 도달하게 된다. 제어부(3)는, 도 9에 도시한 것처럼, 고주파수측 코일에 대응하는 스위칭 소자(SW)의 온 듀티비가 50%에 도달했는지 여부를 판단한다(S8, S9). 고주파수측 코일에 대응하는 스위칭 소자(SW)의 온 듀티비가 50%에 도달한 경우에, 제어부(3)는 고주파수측 코일과 저주파수측 코일의 정의를 역전시킨다. 즉, 고주파수측 코일에 대응하는 스위칭 소자(SW)의 온 듀티비가 50%에 도달한 경우, 제어부(3)는, 그때까지 고주파수측 코일로서 제어하고 있던 가열 코일(1)을 저주파수측 코일로서의 제어로 전환함과 동시에, 그때까지 저주파수측 코일로서 제어하고 있던 가열 코일(1)을 고주파수측 코일로서의 제어로 전환한다(S4, S5).
예를 들어, 단계 S4에서 저주파수측 코일인 제2가열 코일(1B)이 제1제어 상태로 제어되고, 고주파수측 코일인 제1가열 코일(1A)가 제2제어 상태로 제어된다. 제1, 제2가열 코일(1A)(1B)의 구동 주파수는 Freq B이다. 이 경우에 단계 S6과 같이 저주파수측 코일인 제2가열 코일(1B)의 화력을 떨어트리면, 제2가열 코일(1B)의 구동 주파수가 올라간다. 이는, 가열 코일(1)의 구동 주파수는 공진 커브의 정점의 주파수보다 높은 주파수이고, 구동 주파수가 공진 커브의 정점의 주파수로부터 멀어질수록 가열 코일(1)의 화력이 낮아지기 때문이다. 또한, 저주파수측 코일인 제2가열 코일(1B)의 화력을 떨어트리면, 고주파수측 코일인 제1가열 코일(1A)에 대응하는 제1인버터 장치(2A)의 스위칭 소자(SW)의 온 듀티비(Duty A)가 커진다. 제1인버터 장치(2A)의 스위칭 소자(SW)의 온 듀티비(Duty A)가 50%에 도달되면, 제어부(3)는 제2가열 코일(1B)을 고주파수측 코일로, 제1가열 코일(1A)를 저주파수측 코일로 변경하고, 그에 맞추어 제어 동작을 수행한다.
예를 들어, 단계 S5에서 저주파수측 코일인 제1가열 코일(1A)이 제1제어 상태로 제어되고, 고주파수측 코일인 제2가열 코일(1B)가 제2제어 상태로 제어된다. 제1, 제2가열 코일(1A)(1B)의 구동 주파수는 Freq A이다. 이 경우에 저주파수측 코일인 제1가열 코일(1A)의 화력을 떨어트리면, 제1가열 코일(1A)의 구동 주파수가 올라가고, 고주파수측 코일인 제2가열 코일(1B)에 대응하는 제2인버터 장치(2B)의 스위칭 소자(SW)의 온 듀티비(Duty B)가 커진다. 제2인버터 장치(2B)의 스위칭 소자(SW)의 온 듀티비(Duty B)가 50%에 도달되면, 제어부(3)는 제1가열 코일(1A)을 고주파수측 코일로, 제2가열 코일(1B)를 저주파수측 코일로 변경하고, 그에 맞추어 제어 동작을 수행한다.
이와 같은 구성에 의하여, 복수의 가열 코일(1)에서 목표 화력을 실현하는 구동 주파수의 대소 관계가 역전된 경우에도, 노이즈를 해소하면서 각각의 버너의 화력을 원하는 크기로 조정할 수 있다.
본 개시는 복수의 피가열물을 동시에 가열할 경우에 발생할 수 있는 노이즈를 해소하면서도 각각의 피가열물의 화력을 원하는 크기로 조정할 수 있는 유도 가열 장치를 제공하기 위한 것이다.
본 개시의 일 측면에 따른 유도 가열 장치는, 피가열물을 유도 가열하는 적어도 2개의 가열 코일; 상기 적어도 2개의 가열 코일 각각에 대응하여 설치되고 대응하는 가열 코일에 전력을 공급하는 적어도 2개의 인버터 장치; 상기 적어도 2개의 인버터 장치를 제어하는 제어부;를 한다. 상기 제어부는, 상기 적어도 2개의 가열 코일에 공급되는 전력의 주파수인 구동 주파수를 비교하고, 상기 적어도 두 개의 가열 코일 중에서 상기 구동 주파수가 높은 가열 코일을 고주파수측 코일, 구동 주파수가 낮은 가열코일을 저주파수측 코일이라 할 때, 상기 고주파수측 코일의 구동 주파수를 저주파수측 코일의 구동 주파수로 변경하고, 상기 저주파수측 코일에 대응하는 상기 인버터 장치를 제1제어 상태에 의해 제어하고, 상기 고주파수측 코일에 대응하는 상기 인버터 장치를 상기 제1제어 상태와는 다른 제2제어 상태에 의해 제어한다. 이와 같이 구성된 유도 가열 장치에 의하면, 고주파수측 코일의 구동 주파수를 저주파수측 코일의 구동 주파수에 맞추기 때문에, 주파수 차이에 의한 노이즈의 발생을 막을 수 있다. 또한, 고주파수측 코일에 대응하는 인버터 장치의 제어 상태와 저주파수측 코일에 대응하는 인버터 장치의 제어 상태를 다르게 하기 때문에 두 개의 가열 코일 각각의 화력을 원하는 크기로 조정할 수 있게 된다.
일 실시예로서, 상기 제1제어 상태는 대응되는 상기 인버터 장치의 스위칭 소자를 고정 듀티비로 온/오프시키는 제어 상태일 수 있다. 일 실시예로서, 상기 제2제어 상태는 대응되는 상기 인버터 장치의 스위칭 소자를 가변 듀티비로 온/오프시키는 제어 상태일 수 있다. 이에 의하면, 제2제어 상태에서 스위칭 소자를 가변 듀티비로 온/오프하기 때문에 이 듀티비를 변경함으로써 고주파측 코일의 화력을 원하는 크기로 조정할 수 있다.
일 실시예로서, 상기 제2제어 상태는 상기 인버터 장치의 하이 사이드 스위칭 소자의 온 듀티비와 상기 인버터 장치의 로우 사이드 스위칭 소자의 온 듀티비가 서로 다른 비대칭 제어 상태일 수 있다. 일 실시예로서, 상기 인버터 장치의 상기 하이 사이드 스위칭 소자의 온 듀티비는 30% 이상 50% 미만일 수 있다. 이에 의하면, 스위칭 소자의 고장 위험을 저감하거나 제거할 수 있다.
일 실시예로서, 상기 제어부는, 상기 제2제어 상태에서 상기 고주파수측 코일의 출력이 목표 출력에 도달하지 않는 경우에, 상기 고주파수측 코일에 대응하는 상기 인버터 장치의 제어를 상기 제2 제어 상태로부터 상기 제2제어 상태와는 다른 제3제어 상태로 전환할 수 있다. 이에 따르면, 제2제어 상태에서의 듀티비의 변경으로는 고주파수측 코일의 화력을 원하는 크기로 조정할 수 없는 경우라 하도라도 제2제어 상태에서 제3제어 상태로 전환함으로써 원하는 화력을 얻을 수 있다.
일 실시예로서, 상기 제3제어 상태는 상기 고주파수측 코일의 구동 주파수를 상기 저주파수측 코일의 구동 주파수인 제1구동 주파수와, 상기 제1구동 주파수보다 높은 제2구동 주파수로 시분할 제어하는 상태일 수 있다. 일 실시예로서, 상기 제1구동 주파수와 상기 제2구동 주파수의 차이는 15kHz 이상일 수 있다. 제3제어 상태에서 고주파수측 코일의 구동 주파수가 제1 구동 주파수에서 제2 구동 주파수로 전환된 경우, 저주파수측 코일과의 주파수 차이가 발생한다. 제1, 제2구동 주파수의 차이를 15kHz 이상으로 함으로써, 화력을 원하는 크기로 조정할 수 있도록 하면서도 주파수 차이로 인한 노이즈가 노이즈로서 인식되지 않도록 할 수 있다.
제3제어 상태에서 고주파수측 코일의 출력을 목표 출력에 근접시키려고 한 결과 제2 구동 주파수에 의한 구동 시간이 매우 길어질 수 있다. 이 경우에 저주파수측 코일의 구동 주파수와 고주파수측 코일의 구동 주파수와의 주파수 차이가 매우 커서 2개의 가열 코일을 서로 다른 구동 주파수로 구동시켜도 노이즈로서 인식되기 어렵다. 이러한 점을 감안한 일 실시예로서, 상기 제3제어 상태에서 상기 제1구동 주파수에서의 구동 시간에 대한 상기 제2구동 주파수에서의 구동 시간의 비율이 문턱값을 초과한 경우에, 상기 제어부는 상기 적어도 두 개의 인버터 장치의 제어 상태를 상기 적어도 2개의 가열 코일을 서로 다른 구동 주파수로 구동시키는 제어 상태로 전환할 수 있다. 일 실시예로서, 상기 적어도 두 개의 인버터 장치의 전환된 제어 상태는 상기 제1제어 상태일 수 있다. 일 실시예로서, 상기 전환된 제어 상태에서, 적어도 두 개의 인버터 장치는 서로 같은 고정 듀티비로 펄스-주파수 변조 제어될 수 있다. 이에 의하여, 저주파수측 코일 및 고주파수측 코일 양쪽의 화력을 원하는 크기로 조정하면서 이러한 주파수 차이에 의한 노이즈의 발생을 저감 내지 방지할 수 있다.
일 실시예로서, 상기 적어도 2개의 가열 코일 중에서 상기 저주파수측 코일이 아닌 다른 가열 코일의 구동 주파수가 상기 저주파수측 코일의 구동 주파수보다 낮아진 경우, 상기 제어부는, 상기 저주파수측 코일의 구동 주파수를 상기 다른 가열 코일의 구동 주파수로 변경하고, 상기 저주파수측 코일에 대응하는 상기 인버터 장치의 제어 상태를 상기 제2제어 상태로 전환하고, 상기 다른 가열 코일에 대응하는 상기 인버터 장치의 제어 상태를 상기 제1제어 상태로 전환할 수 있다. 이에 의하여, 복수의 가열 코일에 의한 화력이 조정되는 과정에서 복수의 가열 코일의 구동 주파수의 대소 관계가 역전되는 경우에도, 상술한 제어 동작에 의한 작용 효과, 즉 복수의 피가열물을 동시에 가열하는 경우에 발생하는 노이즈를 해소하면서 각각의 가열 코일에 의한 화력을 원하는 크기로 조정할 수 있다는 작용 효과를 얻을 수 있다.
일 실시예로서, 상기 고주파수측 코일이 상기 제2제어 상태로 제어되고 있을 때에 상기 고주파수측 코일에 대응하는 스위칭 소자의 온 듀티비가 50%에 도달하면, 상기 제어부는, 상기 적어도 두 개의 가열 코일 중에서 상기 고주파수측 코일에 해당되던 가열 코일을 저주파수측 코일로, 상기 적어도 두 개의 가열 코일 중에서 상기 저주파수측 코일에 해당되던 가열 코일을 고주파수측 코일로 변경할 수 있다. 일 실시예로서, 상기 제어부는, 고주파수측 코일로 변경된 가열 코일에 대응하는 상기 인버터 장치의 제어 상태를 상기 제2제어 상태로 전환하고, 저주파수측 코일로 변경된 가열 코일에 대응하는 상기 인버터 장치의 제어 상태를 상기 제1제어 상태로 전환할 수 있다.
일 실시예로서, 상기 적어도 2개의 가열 코일 각각의 구동 주파수의 조정 가능한 범위가, 각각의 가열 코일에 의해 가열되는 피가열물의 공진 커브의 정점의 주파수보다 높을 수 있다. 이에 의하여, 하드 스위칭에 의한 스위칭 소자의 손상을 저감 내지 방지할 수 있다.
제어부(3)에 의한 제어 동작은 전술한 실시예들에 한정되지 않는다. 이하에서 제어 동작의 추가적인 실시예들을 설명한다. 예를 들어, 제어부(3)는, 우선, 제1 가열 코일(1A)에 공급하는 전력의 구동 주파수와 제2 가열 코일(1B)에 공급하는 전력의 구동 주파수를 일치시키고, 그 후, 제1 가열 코일(1A)과 제2 가열 코일(1B) 중 어느 한쪽의 출력이 목표 출력과 일치할 때까지 구동 주파수를 계속 낮출 수 있다(이하, 이 상태를 과도 상태라고 한다). 다음으로, 제어부(3)는 제1 가열 코일(1A)과 제2 가열 코일(1B) 중 다른 쪽의 출력을 목표 출력에 일치시킬 수 있다(이하, 이 상태를 정상 상태라고 한다).
도 12는 제어부(3)에 의한 유도 가열 장치(100)의 제어 동작의 일 실시예를 보여주는 흐름도이다. 이하에서는, 우선 과도 상태에서의 제어 상태에 대해 도 3, 도 4, 및 도 12를 참조하여 설명한 후, 정상 상태에서의 제어 상태에 대해 도 5와 도 6을 참조하여 설명한다.
먼저, 과도 상태에서의 제어 상태에 대하여 설명한다. 도 12에 도시된 바와 같이, 제1 가열 코일(1A)에 대응하는 제1 버너가 기동된다. 제1 가열 코일(1A)에 소정의 구동 주파수의 전력이 공급되고, 제1 가열 코일(1A)의 실제 출력(실제 전력)이 목표 출력(목표 전력)으로 제어된다(S11). 이 상태에서 제2 가열 코일(1B)에 대응하는 제2 버너가 기동되어 제2 가열 코일(1B)에 전력을 공급하기 시작하는 경우(S12)에 대해 설명한다.
메인 제어부(32)의 전력 명령부(321)가, 제2 버너의 화력에 대응하는 목표 출력인 목표 전력(예를 들면, 와트수)을 제2 제어부(3B)에 지시하면, 그것을 계기로, 제어 상태 명령부(322)가 제1 제어부(3A) 및 제2 제어부(3B)를 과도 상태에서의 제어 상태(이하, 제1 제어 상태라고 한다)로 전환시킨다.
이로써, 제1 제어부(3A)는 제1 가열 코일(1A)에 공급되는 전력의 구동 주파수를 제1 제어 상태로 조정하도록 제1 인버터 장치(2A)를 제어한다. 제2 제어부(3B)는 제2 가열 코일(1B)에 공급되는 전력의 구동 주파수를 제1 제어 상태로 조정하도록 제2 인버터 장치(2B)를 제어한다.
제1 제어 상태는, 도 3에 도시한 것처럼, 인버터 장치(2)의 스위칭 소자(SW)를 고정 듀티비로 온/오프하는 제어다. 예시적으로 도 3에 도시된 제1제어 상태는 온 듀티비를 예를 들어 50%로 고정한 펄스-주파수 변조(PFM: pulse-frequency modulation) 제어에 의하여 구현될 수 있다.(펄스 주파수 변조) 제어이다. 제1 제어 상태에서 고정 듀티비는 50%로 한정되지 않는다. 제1제어 상태에는 하이 사이드(high side)의 스위칭 소자(SW)의 듀티비와 로우 사이드(low side)의 스위칭 소자(SW)의 듀티비가 보간 관계를 유지하는 다양한 고정 듀티비가 적용될 수 있다. 예를 들면 하이 사이드의 스위칭 소자(SW)의 듀티비를 60%, 로우 사이드의 스위칭 소자(SW)의 듀티비를 40%로 할 수 있다. 제1제어 상태는 PFM 제어에 한정되지 않는다. 예를 들어, 제1제어 상태는 펄스-폭 변조(PWM: pulse-width nodulation) 제어에 의하여 구현될 수도 있다.
보다 구체적으로 설명하면, 제어 상태 명령부(322)는, 제1 가열 코일(1A)에 공급되는 전력의 구동 주파수가 소정의 초동 주파수가 되도록, 제1 가열 코일(1A)에 대응하는 인버터 제어부(312)에 명령한다.또한, 제어 상태 명령부(322)는, 제2 가열 코일(1B)에 공급되는 전력의 구동 주파수가 동일한 초동 주파수가 되도록, 제2 가열 코일(1B)에 대응하는 인버터 제어부(312)에 명령한다(S13).
초동 주파수는 제2 버너가 기동되기 전에 제1 가열 코일(1A)에 공급되고 있는 전력의 구동 주파수보다는 조금이라도 높은 주파수이다. 예시적으로, 초동 주파수는, 오프 상태에 있는 가열 코일(1)을 온 상태로 전환하는 경우에, 해당 가열 코일(1)에 공급되는 전력의 구동 주파수이며, 미리 설정되어 있는 기정 주파수이다. 예시적으로, 기정 주파수는 가열 코일(1)에 공급될 수 있는 전력의 구동 주파수의 최대 구동 주파수일 수 있다.
그 후, 제1제어부(3A)와 제2제어부(3B) 각각의 인버터 제어부(312)는 제1 가열 코일(1A)의 구동 주파수와 제2 가열 코일(1B)의 구동 주파수를 상술한 초동 주파수로부터 연속적 또는 단계적으로 낮추도록 인버터 장치(2)를 제어한다(S4). 보다 구체적으로 설명하면, 제1 제어부(3A)와 제2 제어부(3B) 각각의 전력 산출부(311)는 제1 가열 코일(1A)과 제2 가열 코일(1B)의 실제 출력을 산출한다. 제1제어부(3A)와 제2제어부(3B)는 제1 가열 코일(1A)과 제2 가열 코일(1B) 중 어느 한 쪽의 실제 출력이 목표 출력이 될 때까지 제1 가열 코일(1A)의 구동 주파수와 제2 가열 코일(1B)의 구동 주파수를 계속 낮추도록 추도록 인버터 장치(2)를 제어한다.
이와 같이 구동 주파수를 계속 낮춤으로써, 기본적으로는 제1 가열 코일(1A)과 제2 가열 코일(1B) 중 목표 화력이 작은 쪽의 가열 코일의 실제 출력이 먼저 목표 출력에 일치하게 된다. 단, 목표 화력의 차이가 작아서, 이용되는 냄비 등 피가열물의 크기나 재질에 따라서는, 목표 화력이 큰 쪽의 가열 코일의 실제 출력이 먼저 목표 출력에 일치하는 경우도 있을 수 있다. 이하에서는, 제1 가열 코일(1A)과 제2 가열 코일(1B) 중 실제 출력이 먼저 목표 출력에 일치하는 쪽을 고주파수측 코일이라고 칭하고, 다른 한쪽을 저주파수측 코일이라고 칭한다.
인버터 제어부(312)는, 고주파수측 코일의 실제 출력과 목표 출력을 비교하면서 고주파수측 코일의 실제 출력이 목표 출력에 일치할 때까지, 제1 가열 코일(1A)의 구동 주파수와 제2 가열 코일(1B)의 구동 주파수를 동기시키면서 저하시키도록 인버터 장치(2)를 제어한다(S14, S15). 제1 가열 코일(1A)의 구동 주파수와 제2 가열 코일(1B)의 구동 주파수는 반드시 동기될 필요는 없으며, 약간 어긋나게 저하시킬 수도 있다. 다만, 제1 가열 코일(1A)의 구동 주파수와 제2 가열 코일(1B)의 구동 주파수의 어긋남이 노이즈를 발생시키는 주파수 차이가 되지 않도록 한다. 제1 가열 코일(1A)의 구동 주파수와 제2 가열 코일(1B)의 구동 주파수의 어긋남은 적어도 노이즈를 발생시키는 주파수 차이보다 작은 어긋남이어야 한다.
아울러 실제로는, 제1 가열 코일(1A)과 제2 가열 코일(1B) 중 어느 쪽이 고주파수측 코일인지는 알 수 없으며, 단계 S15에서는, 제1 가열 코일(1A)의 실제 출력과 목표 출력을 비교함과 동시에 제2 가열 코일(1B)의 실제 출력과 목표 출력을 비교한다. 그리고 먼저 목표 출력에 도달한 쪽이 고주파수측 코일이라는 것을 알 수 있다. 이로써, 고주파수측 코일의 구동 주파수와 저주파수측 코일의 구동 주파수가 동일해짐과 동시에(이하, 이 구동 주파수를 과도시(過渡時) 주파수라고 한다), 고주파수측 코일의 실제 출력이 목표 출력에 일치한다(S15에서 "예"가 된 경우).
제어부(3)는 고주파수측 코일의 실제 출력이 목표 출력에 일치한 후, 저주파수측 코일의 실제 출력이 목표 출력에 일치할 때까지, 제1 가열 코일의 구동 주파수와 제2 가열 코일 구동 주파수 양쪽을 계속 더 낮추도록 인버터 장치(2)를 제어한다(S16, S17).
여기서, 제1 가열 코일(1A)과 제2 가열 코일(1B)의 구동 주파수의 조정 가능한 범위가 도 4의 좌측에 도시한 것처럼 분산되어 있으면, 고주파수측 코일의 구동 주파수를 저주파수측 코일의 주파수에 맞춘 경우, 고주파수측 코일의 구동 주파수가 공진 커브의 정점의 주파수(도 4에서 별표로 표시한 주파수)보다 낮아질 수 있다. 그러먼 하드 스위칭에 의한 스위칭 소자(SW)의 파괴 우려가 있다.
이러한 점을 감안하여, 도 4의 우측에 도시한 것처럼, 제1 가열 코일(1A)의 구동 주파수의 조정 가능한 범위가 제2 가열 코일(1B)에 의해 가열되는 피가열물의 공진 커브의 정점의 주파수보다 높고, 또한 제2 가열 코일(1B)의 구동 주파수의 조정 가능한 범위가 제1 가열 코일(1A)에 의해 가열되는 피가열물의 공진 커브의 정점의 주파수보다 높도록, 각각의 가열 코일(1)의 권수나 공진 캐패시터가 조정되어 있다.
이상 설명한 과도 상태에서의 제어 상태에 의해, 고주파수측 코일의 구동 주파수와 저주파수측 코일의 구동 주파수가 동일해짐과 동시에(이하, 이 구동 주파수를 제1 구동 주파수라고 한다), 저주파수측 코일의 실제 출력이 목표 출력에 일치한다(S17에서 "예"가 된 경우).
다음으로, 정상 상태에서의 제어 상태에 대해 설명한다. 상술한 과도 상태의 제어에 의해 제1 가열 코일(1A)과 제2 가열 코일(1B)의 구동 주파수를 동일하게 하면, 고주파수측 코일의 구동 주파수는 S15에서 "예"가 된 경우의 과도시 주파수에서 제1 구동 주파수로 낮아진다. 이로써, 고주파수측 코일의 화력은 원하는 화력보다 커지기 때문에 고주파수측 코일의 화력을 떨어뜨리기 위한 제어가 필요하다.
제어부(3)는, 저주파수측 코일에 대응하는 인버터 장치(2)의 제어를 제1 제어 상태로 유지하면서, 고주파수측 코일에 대응하는 인버터 장치(2)의 제어를 제1 제어 상태와는 다른 제2 제어 상태로 전환한다. 제2 제어 상태는, 도 5에 도시한 것처럼, 인버터 장치(2)를 구성하는 스위칭 소자(SW)를 가변 듀티비로 온/오프하는 제어이며, 하이 사이드의 스위칭 소자(SW)의 온 듀티비와 로우 사이드의 스위칭 소자(SW)의 온 듀티비를 다르게 하는(비대칭) 제어이다.
예를 들어, 제2 제어 상태에서는, 인버터 제어부(312)가 고주파수측 코일에 공급되고 있는 실제 전력과 목표 화력에 대응하는 목표 전력을 비교하고, 실제 전력이 목표 전력과 일치하도록, 다시 말하면, 고주파수측 코일의 출력과 목표 출력이 일치하도록 하이 사이드의 스위칭 소자(SW)의 온 듀티비를 낮출 수 있다.
일 실시예로서, 하이 사이드의 스위칭 소자(SW)의 온 듀티비를 30% 이상 50% 미만의 범위 내에서 변경할 수 있다. 로우 사이드의 스위칭 소자(SW)의 온 듀티비는 100%에서 하이 사이드의 스위칭 소자(SW)의 온 듀티비를 뺀 값이 된다. 하이 사이드의 스위칭 소자(SW)의 온 듀티비가, 예를 들면 30%보다 낮으면, 스위칭 소자(SW)의 고장이 발생될 우려가 있다. 스위칭 소자(SW)의 고장을 초래할 수 있는 온 듀티비의 하한치는 30%로 한정되지 않으며 유도 가열 장치(100)의 구성에 따라 달라질 수 있다.
이와 같이, 하이 사이드의 스위칭 소자(SW)의 온 듀티비를 낮추어 고주파수측 코일의 실제 전력이 목표 전력과 일치한 경우, 고주파수측 코일의 출력이 목표 출력과 일치한다. 이로써 제1 가열 코일(1A)과 제2 가열 코일(1B) 각각에 대응하는 버너의 화력이 원하는 크기로 조정되게 된다.
한편, 하이 사이드의 스위칭 소자(SW)의 온 듀티비를 변경 가능한 범위의 하한(여기에서는, 30%)까지 낮추었음에도 불구하고, 고주파수측 코일의 실제 전력이 목표 전력에 도달하지 않는 경우, 즉, 고주파수측 코일의 출력이 목표 출력에 도달하지 않은 경우, 고주파수측 코일에 대응하는 버너의 화력이 원하는 크기로 조정되지 않게 될 수 있다. 이 경우, 제어 상태 명령부(322)는 고주파수측 코일에 대응되는 개별 제어부(31)의 인버터 제어부(312)에 지령을 내려, 고주파수측 코일에 대응하는 인버터 장치(2)의 제어를 제2제어 상태에서 제3제어 상태로 전환한다. 제3제어 상태는 제2제어 상태와는 다른 제어 상태이다.
제3 제어 상태는, 도 6에 도시한 것처럼, 고주파수측 코일의 구동 주파수를, 상술한 제1 구동 주파수와 이 제1 구동 주파수에 소정 주파수를 합한 제2 구동 주파수로 소정의 주기로 전환하는 제어이다. 제3 제어 상태에서, 고주파수측 코일의 구동 주파수가 제1 구동 주파수에서 제2 구동 주파수로 전환된 경우, 저주파수측 코일의 구동 주파수는 제1 구동 주파수 그대로이므로 양쪽의 코일의 구동 주파수에 주파수 차이가 생기게 된다. 고주파수측 코일의 구동 주파수와 저주파수측 코일의 구동 주파수의 차이가 예를 들면 10kHz 정도이면, 이 주파수 차이에 의한 노이즈가 발생될 수 있다. 이러한 점을 감안하여, 고주파수측 코일의 구동 주파수와 저주파수측 코일의 구동 주파수의 차이는 15kHz 이상으로 설정될 수 있다.
일 실시예에 따른 제3 제어 상태에서, 인버터 제어부(312)는 1주기에 포함되는 제1구동 주파수의 구동 시간과 제2구동 주파수의 구동 시간과의 비율을 변경할 수 있다. 예를 들어, 고주파수측 코일의 실제 전력이 목표 전력과 일치하도록, 바꾸어 말하면, 고주파수측 코일의 출력과 목표 출력이 일치하도록 제2구동 주파수의 구동 시간을 연장시킬 수 있다. 이와 같이, 제2구동 주파수의 구동 시간을 연장시켜 고주파수측 코일의 실제 전력이 목표 전력과 일치된 경우, 고주파수측 코일의 출력이 목표 출력과 일치될 수 있다. 따라서, 제1가열 코일(1A)과 제2가열 코일(1B) 각각에 대응하는 버너의 화력이 원하는 크기로 조정될 수 있다.
제3 제어 상태에서, 고주파수측 코일의 실제 출력을 목표 출력에 근접시키려고 한 결과, 제2구동 주파수에 의한 구동 시간이 매우 길어질 수 있다. 이 경우에는, 저주파수측 코일의 구동 주파수와 고주파수측 코일의 구동 주파수와의 차이가 커지므로, 제1, 제2가열 코일(1A)(1B)를 서로 다른 구동 주파수로 구동시켜도 발생되는 노이즈의 레벨이 노이즈로서 인식되기 어려운 레벨이 될 수 있다. 따라서, 제1구동 주파수에서의 구동 시간에 대한 제2구동 주파수에서의 구동 시간의 비율이 문턱값을 초과하는 경우, 제어 상태 명령부(322)는 제1, 제2제어부(3A)(3B) 각각의 인버터 제어부(312)에 지령을 내려, 제1, 제2인버터 장치(2A)(2B)에 의한 제어 상태가 제3제어 상태에서 제1가열 코일(1A)과 제2가열 코일(1B)를 서로 다른 구동 주파수로 구동시키는 제어 상태로 전환시키도록 한다. 이때, 전환된 후의 제어 상태는, 전술한 제1 제어 상태이다. 따라서, 제1인버터 장치(2A)를 구성하는 스위칭 소자(SW)와, 제2인버터 장치(2B)를 구성하는 스위칭 소자(SW) 각각이 서로 같은 고정 듀티비로 펄스-주파수 변환(PFM) 제어된다.
도 13은 도 12에 도시된 본 개시의 일 실시예에 따른 제어 방법에서 구동 주파수의 경시적인 변화를 보여주는 그래프이다. 도 14는 도 12에 도시된 본 개시의 일 실시예에 따른 제어 방법에서 출력(전력)의 경시적인 변화를 보여주는 그래프이다. 도 15는 두 가열 코일에 공급되는 전력의 구동 주파수를 동일하게 맞추는 과정에서 주파수 노이즈의 발생을 설명하기 위한 그래프이다.도 13을 참조하면, 과도 상태의 스타트 시점에서 제1, 제2가열 코일(1A)(1B)에 동일한 초동 주파수의 전력을 공급하고, 제1, 제2가열 코일(1A)(1B)에 공급되는 전력의 구동 주파수를 서로 동기시키면서 초동 주파수로부터 낮추기 때문에 제1, 제2가열 코일(1A)(1B)에 공급되는 전력에 주파수 차이가 생기지 않아 도 15에서 보여주는 바와 같은 주파수 차이에 의한 노이즈의 발생이 방지될 수 있다. 또한 정상 상태에서는, 고주파수측 코일에 대응하는 인버터 장치(2)의 제어 상태를 저주파수측 코일에 대응하는 인버터 장치(2)의 제1 제어 상태와는 다른 제2 제어 상태 혹은 제3 제어 상태로 전환하기 때문에, 결과적으로 도 8에 도시된 바와 같이 제1, 제2 가열 코일(1A)(1B) 각각의 화력을 원하는 크기로 조정할 수 있게 된다.
제어 동작은 전술한 실시예들에 한정되지 않는다. 예를 들면, 전술한 제어 동작의 실시예에서는 저주파수측 코일의 실제 출력이 목표 출력에 일치한 후 고주파수측 코일의 제어 상태를 제1 제어 상태에서 제2 제어 상태로 전환하나, 고주파수측 코일의 실제 출력이 목표 출력에 일치한 후, 저주파수측 코일의 제어 상태를 제1 제어 상태에서 제2 제어 상태로 전환할 수도 있다. 이 경우, 제1 제어 상태는 예를 들면 하이 사이드의 고정 듀티비를 50%보다 낮게(예를 들면 30% 등) 설정하는 제어 상태일 수 있으며, 제2 제어 상태는 하이 사이드의 가변 듀티비를 제1 제어 상태의 고정 듀티비에서 50%를 향해 서서히 상승시키는 제어 상태일 수 있다. 또, 제2 제어 상태에서 저주파수측 코일의 실제 출력이 목표 출력에 도달하지 않는 경우에 저주파수측 코일의 제어 상태는 제3제어 상태로 전환될 수 있다. 이때 제3 제어 상태는 저주파수측 코일의 구동 주파수를 고주파수측 코일의 구동 주파수인 제1 구동 주파수와 이 제1 구동 주파수에서 소정 주파수를 뺀 제2 구동 주파수로 소정의 주기로 전환하는 제어 상태일 수 있다.
본 개시는 2개의 가열 코일의 구동 주파수를 일치시켜가는 과정에서 주파수 차이로 인한 노이즈의 발생을 저감 내지 방지할 수 있는 유도 가열 장치를 제공한다.
본 개시의 일 측면에 따른 유도 가열 장치는, 피가열물을 유도 가열하는 적어도 2개의 가열 코일; 상기 적어도 2개의 가열 코일 각각에 대응하여 설치되고 대응하는 가열 코일에 전력을 공급하는 적어도 2개의 인버터 장치; 상기 적어도 2개의 인버터 장치를 제어하는 제어부;를 포함한다. 상기 적어도 2개의 가열 코일 중 한쪽의 가열 코일에 소정의 구동 주파수의 전력이 공급되고 있는 상태에서, 상기 적어도 2개의 가열 코일 중 한 다른쪽의 가열 코일에 전력이 공급되기 시작하는 경우, 상기 제어부는 상기 적어도 2개의 가열 코일 모두에 상기 소정의 구동 주파수보다 높은 초동 주파수의 전력을 공급하고, 그 후 한쪽의 상기 가열 코일의 출력이 목표 출력에 일치할 때까지 상기 적어도 2개의 가열 코일 모두에 공급하는 전력의 주파수를 낮추도록 상기 적어도 2개의 인버터 장치를 제어한다.
이와 같은 유도 가열 장치에 의하면, 어느 한 가열 코일에 전력이 공급되고 있는 상태에서 다른 가열 코일에 전력을 공급하기 시작하는 과도 상태의 스타트 시점에서 두 가열 코일에 소정의 초동 주파수의 전력을 공급한다. 그리고, 두 가열 코일에 공급되는 전력의 구동 주파수를 서로 동기시키면서 초동 주파수로부터 낮춤으로써 구동 주파수의 차이로 인한 과도 상태에서의 노이즈의 발생을 막을 수 있다.
일 실시예로서, 상기 제어부는, 상기 한쪽의 가열 코일의 출력이 목표 출력에 일치할 때까지 상기 적어도 2개의 가열 코일 모두에 공급하는 전력의 주파수를 낮춘 후, 상기 다른쪽의 가열 코일의 출력이 목표 출력에 일치할 때까지 상기 적어도 2개의 가열 코일에 공급하는 전력의 주파수를 계속 더 낮추도록 상기 인버터 장치를 제어할 수 있다. 한쪽 가열 코일의 출력이 목표 출력과 일치한 후의 제어 상태로서, 그 시점에서의 구동 주파수를 유지하면서 예를 들면 듀티비를 변경하여 다른쪽 가열 코일의 출력을 목표 출력과 일치시키는 형태를 생각할 수 있다. 그러나 가열 대상이 되는 냄비 등의 조리 기구에 따라서는, 다른쪽 가열 코일의 출력을 목표 출력에 일치시키기 위해 듀티비를 어느 정도 변경하면 좋은지를 예측하기 어려울 수 있다. 또한, 구동 주파수를 유지한 상태에서 듀티비를 늘린다고 해도 다른쪽의 가열 코일의 출력이 목표 출력에 도달한다고 확신하기 어려울 수 있다. 그 결과, 다른쪽 가열 코일의 출력이 목표 출력에 도달하지 않으면, 그 후의 제어가 복잡해질 수 있다. 이와 달리, 본 개시의 일 실시예에 따르면, 다른쪽 가열 코일의 출력이 목표 출력에 일치했을 때의 주파수는, 그 이전에 한쪽 가열 코일의 출력이 목표 출력이 된 후에 얻어진 것이며, 그 상태에서 한쪽 가열 코일의 출력을 다시 목표 출력에 맞추는 것은 출력을 줄이는 방향의 제어가 되므로, 그 제어의 복잡화를 피할 수 있다. 이로써, 두 가열 코일의 출력을 보다 확실하게 목표 출력으로 제어할 수 있게 된다.
일 실시예로서, 상기 제어부는 상기 다른쪽의 가열 코일의 출력이 목표 출력에 일치할 때까지 상기 적어도 2개의 가열 코일에 공급하는 전력의 주파수를 계속 낮춘 후, 상기 한쪽의 가열 코일에 대응하는 상기 인버터 장치를 상기 다른쪽의 가열 코일에 대응하는 상기 인버터 장치와는 다른 제어 상태에 의해 제어할 수 있다. 이에 따르면, 다른쪽 가열 코일의 출력이 목표 출력에 일치할 때까지의 과도 상태에서는 온 듀티비를 고정시킨 제어 상태로 하면서, 그 후의 정상 상태에서는 다른쪽 가열 코일에 공급하는 전력만 비대칭인 온 듀티비로 한 제어로 전환하면 되므로 제어 동작(제어 프로그램)의 간소화를 꾀할 수 있다.
일 실시예로서, 상기 제어부는 상기 적어도 2개의 가열 코일에 공급하는 전력의 주파수를 낮출 때에 상기 적어도 2개의 가열 코일에 공급하는 전력의 주파수를 동기시키면서 상기 초동 주파수로부터 낮추도록 상기 인버터 장치를 제어할 수 있다. 이에 의하면, 과도 상태에서의 노이즈를 보다 확실하게 막을 수 있다.
일 실시예로서, 상기 초동 주파수는 상기 적어도 2개의 가열 코일 중에서 오프 상태에 있는 가열 코일을 온 상태로 전환하는 경우에 해당 가열 코일에 공급되는 전력의 기정 주파수일 수 있다. 이에 의하면, 제어 프로그램을 복잡하게 하지 않고 전술한 효과들이 구현될 수 있다.
이상과 같이 본 개시의 유도 가열 장치에 대하여 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다.
Claims (15)
- 피가열물을 유도 가열하는 적어도 2개의 가열 코일(1);상기 적어도 2개의 가열 코일 각각에 대응하여 설치되고 대응하는 가열 코일에 전력을 공급하는 적어도 2개의 인버터 장치(2);상기 적어도 2개의 인버터 장치를 제어하는 제어부(3);를 포함하며,상기 제어부는,상기 적어도 2개의 가열 코일에 공급되는 전력의 주파수인 구동 주파수를 비교하고,상기 적어도 두 개의 가열 코일 중에서 상기 구동 주파수가 높은 가열 코일을 고주파수측 코일, 구동 주파수가 낮은 가열코일을 저주파수측 코일이라 할 때, 상기 고주파수측 코일의 구동 주파수를 저주파수측 코일의 구동 주파수로 변경하고,상기 저주파수측 코일에 대응하는 상기 인버터 장치를 제1제어 상태에 의해 제어하고, 상기 고주파수측 코일에 대응하는 상기 인버터 장치를 상기 제1제어 상태와는 다른 제2제어 상태에 의해 제어하는 것을 특징으로 하는 유도 가열 장치.
- 제1항에 있어서,상기 제1제어 상태는 대응되는 상기 인버터 장치의 스위칭 소자(SW)를 고정 듀티비로 온/오프시키는 제어 상태이며,상기 제2제어 상태는 대응되는 상기 인버터 장치의 스위칭 소자를 가변 듀티비로 온/오프시키는 제어 상태인 유도 가열 장치.
- 제1항 또는 제2항에 있어서,상기 제2제어 상태는 상기 인버터 장치의 하이 사이드 스위칭 소자의 온 듀티비와 상기 인버터 장치의 로우 사이드 스위칭 소자의 온 듀티비가 서로 다른 비대칭 제어 상태인 유도 가열 장치.
- 제1항 내지 제3항 중 어느 한 항에 있어서,상기 제어부는, 상기 제2제어 상태에서 상기 고주파수측 코일의 출력이 목표 출력에 도달하지 않는 경우에, 상기 고주파수측 코일에 대응하는 상기 인버터 장치의 제어를 상기 제2 제어 상태로부터 상기 제2제어 상태와는 다른 제3제어 상태로 전환하며,상기 제3제어 상태는 상기 고주파수측 코일의 구동 주파수를 상기 저주파수측 코일의 구동 주파수인 제1구동 주파수와, 상기 제1구동 주파수보다 높은 제2구동 주파수로 시분할 제어하는 상태인 유도 가열 장치.
- 제4항에 있어서,상기 제1구동 주파수와 상기 제2구동 주파수의 차이는 15kHz 이상인 유도 가열 장치.
- 제4항 또는 제5항에 있어서,상기 제3제어 상태에서, 상기 제1구동 주파수에서의 구동 시간에 대한 상기 제2구동 주파수에서의 구동 시간의 비율이 문턱값을 초과한 경우에,상기 제어부는 상기 적어도 두 개의 인버터 장치의 제어 상태를 상기 적어도 2개의 가열 코일을 서로 다른 구동 주파수로 구동시키는 제어 상태로 전환하는 유도 가열 장치.
- 제1항 내지 제6항 중 어느 한 항에 있어서,상기 적어도 2개의 가열 코일 중에서 상기 저주파수측 코일이 아닌 다른 가열 코일의 구동 주파수가 상기 저주파수측 코일의 구동 주파수보다 낮아진 경우,상기 제어부는,상기 저주파수측 코일의 구동 주파수를 상기 다른 가열 코일의 구동 주파수로 변경하고,상기 저주파수측 코일에 대응하는 상기 인버터 장치의 제어 상태를 상기 제2제어 상태로 전환하고,상기 다른 가열 코일에 대응하는 상기 인버터 장치의 제어 상태를 상기 제1제어 상태로 전환하는 유도 가열 장치.
- 제1항 내지 제6항 중 어느 한 항에 있어서상기 고주파수측 코일이 상기 제2제어 상태로 제어되고 있을 때에 상기 고주파수측 코일에 대응하는 스위칭 소자의 온 듀티비가 50%에 도달하면,상기 제어부는,상기 적어도 두 개의 가열 코일 중에서 상기 고주파수측 코일에 해당되던 가열 코일을 저주파수측 코일로, 상기 적어도 두 개의 가열 코일 중에서 상기 저주파수측 코일에 해당되던 가열 코일을 고주파수측 코일로 변경하는 유도 가열 장치.
- 제8항에 있어서상기 제어부는,고주파수측 코일로 변경된 가열 코일에 대응하는 상기 인버터 장치의 제어 상태를 상기 제2제어 상태로 전환하고,저주파수측 코일로 변경된 가열 코일에 대응하는 상기 인버터 장치의 제어 상태를 상기 제1제어 상태로 전환하는 유도 가열 장치.
- 제1항 내지 제9항 중 어느 한 항에 있어서,상기 적어도 2개의 가열 코일 각각의 구동 주파수의 조정 가능한 범위가, 각각의 가열 코일에 의해 가열되는 피가열물의 공진 커브의 정점의 주파수보다 높은 유도 가열 장치.
- 피가열물을 유도 가열하는 적어도 2개의 가열 코일(1);상기 적어도 2개의 가열 코일 각각에 대응하여 설치되고 대응하는 가열 코일에 전력을 공급하는 적어도 2개의 인버터 장치(2);상기 적어도 2개의 인버터 장치를 제어하는 제어부(3);를 포함하며,상기 적어도 2개의 가열 코일 중 한쪽의 가열 코일에 소정의 구동 주파수의 전력이 공급되고 있는 상태에서, 상기 적어도 2개의 가열 코일 중 한 다른쪽의 가열 코일에 전력이 공급되기 시작하는 경우,상기 제어부는 상기 적어도 2개의 가열 코일 모두에 상기 소정의 구동 주파수보다 높은 초동 주파수의 전력을 공급하고, 그 후 한쪽의 상기 가열 코일의 출력이 목표 출력에 일치할 때까지 상기 적어도 2개의 가열 코일 모두에 공급하는 전력의 주파수를 낮추도록 상기 적어도 2개의 인버터 장치를 제어하는 유도 가열 장치.
- 제11항에 있어서,상기 제어부는, 상기 한쪽의 가열 코일의 출력이 목표 출력에 일치할 때까지 상기 적어도 2개의 가열 코일 모두에 공급하는 전력의 주파수를 낮춘 후, 상기 다른쪽의 가열 코일의 출력이 목표 출력에 일치할 때까지 상기 적어도 2개의 가열 코일에 공급하는 전력의 주파수를 계속 더 낮추도록 상기 인버터 장치를 제어하는 유도 가열 장치.
- 제12항에 있어서,상기 제어부는 상기 다른쪽의 가열 코일의 출력이 목표 출력에 일치할 때까지 상기 적어도 2개의 가열 코일에 공급하는 전력의 주파수를 계속 낮춘 후, 상기 한쪽의 가열 코일에 대응하는 상기 인버터 장치를 상기 다른쪽의 가열 코일에 대응하는 상기 인버터 장치와는 다른 제어 상태에 의해 제어하는 유도 가열 장치.
- 제11항 내지 제13항 중 어느 한 항에 있어서,상기 제어부는 상기 적어도 2개의 가열 코일에 공급하는 전력의 주파수를 낮출 때에 상기 적어도 2개의 가열 코일에 공급하는 전력의 주파수를 동기시키면서 상기 초동 주파수로부터 낮추도록 상기 인버터 장치를 제어하는 유도 가열 장치.
- 제11항 내지 제14항 중 어느 한 항에 있어서,상기 초동 주파수는 상기 적어도 2개의 가열 코일 중에서 오프 상태에 있는 가열 코일을 온 상태로 전환하는 경우에 해당 가열 코일에 공급되는 전력의 기정 주파수인 유도 가열 장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22904484.7A EP4395457A1 (en) | 2021-12-08 | 2022-11-08 | Induction-heating apparatus |
US18/626,329 US20240276608A1 (en) | 2021-12-08 | 2024-04-04 | Induction-heating apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021199557A JP2023085075A (ja) | 2021-12-08 | 2021-12-08 | 誘導加熱装置 |
JP2021-199557 | 2021-12-08 | ||
JP2022165333A JP2024058160A (ja) | 2022-10-14 | 2022-10-14 | 誘導加熱装置 |
JP2022-165333 | 2022-10-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/626,329 Continuation US20240276608A1 (en) | 2021-12-08 | 2024-04-04 | Induction-heating apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023106651A1 true WO2023106651A1 (ko) | 2023-06-15 |
Family
ID=86730738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/017483 WO2023106651A1 (ko) | 2021-12-08 | 2022-11-08 | 유도 가열 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240276608A1 (ko) |
EP (1) | EP4395457A1 (ko) |
WO (1) | WO2023106651A1 (ko) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102142411B1 (ko) * | 2019-01-31 | 2020-08-07 | (주)쿠첸 | 주파수 간섭에 의한 소음을 감소시킨 조리 기기 |
KR102211947B1 (ko) * | 2014-05-30 | 2021-02-05 | 삼성전자주식회사 | 조리 장치 및 그 제어 방법 |
KR20210038948A (ko) * | 2018-08-30 | 2021-04-08 | 엘지전자 주식회사 | 유도 가열 장치 및 유도 가열 장치의 제어 방법 |
JP2021103674A (ja) | 2019-12-25 | 2021-07-15 | アイリスオーヤマ株式会社 | 誘導加熱調理器 |
KR20210093140A (ko) * | 2020-01-16 | 2021-07-27 | 삼성전자주식회사 | 유도 가열 장치 및 그 제어 방법 |
KR20210135853A (ko) * | 2020-05-06 | 2021-11-16 | 엘지전자 주식회사 | 유도 가열 장치 및 유도 가열 장치의 제어 방법 |
-
2022
- 2022-11-08 WO PCT/KR2022/017483 patent/WO2023106651A1/ko active Application Filing
- 2022-11-08 EP EP22904484.7A patent/EP4395457A1/en active Pending
-
2024
- 2024-04-04 US US18/626,329 patent/US20240276608A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102211947B1 (ko) * | 2014-05-30 | 2021-02-05 | 삼성전자주식회사 | 조리 장치 및 그 제어 방법 |
KR20210038948A (ko) * | 2018-08-30 | 2021-04-08 | 엘지전자 주식회사 | 유도 가열 장치 및 유도 가열 장치의 제어 방법 |
KR102142411B1 (ko) * | 2019-01-31 | 2020-08-07 | (주)쿠첸 | 주파수 간섭에 의한 소음을 감소시킨 조리 기기 |
JP2021103674A (ja) | 2019-12-25 | 2021-07-15 | アイリスオーヤマ株式会社 | 誘導加熱調理器 |
KR20210093140A (ko) * | 2020-01-16 | 2021-07-27 | 삼성전자주식회사 | 유도 가열 장치 및 그 제어 방법 |
KR20210135853A (ko) * | 2020-05-06 | 2021-11-16 | 엘지전자 주식회사 | 유도 가열 장치 및 유도 가열 장치의 제어 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP4395457A1 (en) | 2024-07-03 |
US20240276608A1 (en) | 2024-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016089032A1 (ko) | 모터 구동 장치, 이를 포함하는 공기조화기 및 그의 제어방법 | |
EP0427709B1 (en) | Power control circuit | |
WO2019074246A1 (ko) | 유도 가열 장치 | |
WO2003079738A1 (en) | Energy-saving dimming apparatus | |
US5825133A (en) | Resonant inverter for hot cathode fluorescent lamps | |
WO2019135491A1 (ko) | 간섭 소음 제거 및 출력 제어 기능이 개선된 유도 가열 장치 | |
WO2021045402A1 (ko) | 유도 가열 장치 | |
US20240172352A1 (en) | Multi-Output Dimming Power Supply with Switchable Output Modes and its Use Method | |
WO2023106651A1 (ko) | 유도 가열 장치 | |
WO2022108339A1 (ko) | Thd 및 emi가 개선된 조명 제어장치용 스마트 컨버터 및 이를 포함하는 조명 제어장치 | |
WO2016060319A1 (ko) | 무효 전력 보상 장치 및 무효 전력 보상 방법 | |
JPH05166579A (ja) | 誘導加熱調理器 | |
JPH04218289A (ja) | 負荷の電力制御方法および装置 | |
WO2021210848A1 (ko) | 공진형 컨버터의 보호 회로 및 그의 동작 방법 | |
WO2020046052A1 (en) | Induction heating device and method of controlling the same | |
KR20120036182A (ko) | 전자식 디밍 안정기 | |
US6936974B2 (en) | Half-bridge inverter for asymmetrical loads | |
WO2020101117A1 (ko) | 공기조화기 및 그의 동작 방법 | |
US6414289B1 (en) | Wall-mounted microwave oven and method for controlling the same | |
KR20020071616A (ko) | 인버터 시스템 | |
WO2020046070A1 (ko) | 유도 가열 장치 및 유도 가열 장치의 제어 방법 | |
US6385068B2 (en) | Circuit device | |
AU2001252159B2 (en) | Electronic transformer | |
KR102117432B1 (ko) | 전자레인지 회로, 전자레인지 회로의 제어 방법 및 제어 장치와 전자레인지 | |
KR20080074429A (ko) | 벅컨버터형 고효율 소형 딤머 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22904484 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022904484 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022904484 Country of ref document: EP Effective date: 20240325 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |