WO2023106501A1 - 생분해성 폴리올레핀 섬유 및 이의 제조방법 - Google Patents

생분해성 폴리올레핀 섬유 및 이의 제조방법 Download PDF

Info

Publication number
WO2023106501A1
WO2023106501A1 PCT/KR2021/019401 KR2021019401W WO2023106501A1 WO 2023106501 A1 WO2023106501 A1 WO 2023106501A1 KR 2021019401 W KR2021019401 W KR 2021019401W WO 2023106501 A1 WO2023106501 A1 WO 2023106501A1
Authority
WO
WIPO (PCT)
Prior art keywords
biodegradable
fiber
polyolefin
fibers
polyolefin fibers
Prior art date
Application number
PCT/KR2021/019401
Other languages
English (en)
French (fr)
Inventor
황보철
유종성
김영수
Original Assignee
코오롱화이버주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱화이버주식회사 filed Critical 코오롱화이버주식회사
Priority to EP21967374.6A priority Critical patent/EP4296408A1/en
Priority to MX2023011565A priority patent/MX2023011565A/es
Publication of WO2023106501A1 publication Critical patent/WO2023106501A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties

Definitions

  • the present invention relates to biodegradable polyolefin fibers and a method for producing the same.
  • Synthetic fibers widely used until now include polyester, polyolefin, and polyamide fibers. These fibers not only have high strength and high elasticity, but also have the advantage of being able to impart new properties to fibers through a change in cross-sectional shape during spinning because they can be produced by melt spinning, but synthetic fibers as described above are non-degradable and do not naturally decompose. Since it is a material, it cannot be landfilled and is often treated by incineration. However, when these synthetic fibers are incinerated, many harmful substances are released and harmful gases are generated, destroying the natural environment. In many countries, the use of these biodegradable polymers is legally mandated.
  • biodegradable polymers such as starch-based polymers, cellulose acetate, polyhydroxy butylate, polylactide, polycaprolactone, and polybutylene succinate have been commercialized and sold.
  • Sexual polyolefins have not yet secured physical properties capable of producing fibers, and are thus being manufactured only for injection-molded products.
  • the problem to be solved by the present invention is to have biodegradable properties with raw materials (resin) and biodegradable additives when manufacturing olefin fibers, and improve initial biodegradation performance and physical properties of existing olefin fibers at the same time through specific spinning and stretching conditions when manufacturing fibers It is to provide a satisfactory biodegradable polyolefin fiber.
  • the present invention provides a biodegradable polyolefin fiber comprising a core made of polyolefin and an oxide layer formed on the outside of the core.
  • the fiber may include the polyolefin and the oxidative biodegradable additive in an amount of 95 to 99.5:0.5 to 5% by weight.
  • the oxide layer may include an oxidative biodegradable additive.
  • the oxidatively biodegradable additive may be at least one selected from the group consisting of iron, manganese, copper, cobalt, and cesium compounds.
  • the fiber is drawn at a draw ratio of 1.5 or less, and the melt index may be 20 to 50.
  • the fiber may have a tensile strength of 1.8 to 4.0 g/d and an elongation of 300 to 500%.
  • the fiber may have a radioactive rating of S or A as measured by the following measurement method.
  • Radiation Level Emissary that occurs for 1 hour per 16 positions of radiation
  • the present invention comprises preparing a melt by melting polyolefin and an oxidatively biodegradable additive, spinning the melt at a temperature of 250 to 310 ° C. at a speed of about 900 to 1,500 m / min to produce a filament , Cooling the spun filaments and drawing the cooled filaments at a draw ratio of 1.5 or less, providing a method for producing biodegradable polyolefin fibers.
  • An oxide layer is formed on the surface of the filament spun in the cooling step, the temperature of the cooling region is 14 to 18 ° C, and the cooling air velocity may be 1.0 to 3.0 m / sec.
  • polyolefin fibers having biodegradable properties can be provided by preparing fibers by mixing raw materials and biodegradable additives under specific conditions.
  • FIG. 1 shows a cross section of a biodegradable polyolefin fiber according to an embodiment of the present invention.
  • Figure 2 shows a method for producing biodegradable polyolefin fibers according to another embodiment of the present invention.
  • the present invention provides a biodegradable polyolefin fiber comprising a core made of polyolefin and an oxide layer formed on the outside of the core.
  • FIG. 1 shows a cross section of a biodegradable polyolefin fiber according to an embodiment of the present invention.
  • the present invention provides a biodegradable polyolefin fiber including a core and an oxide layer surrounding the outside of the core according to one embodiment.
  • the core may include polyolefin as a main component and an oxidative biodegradable additive as a minor component.
  • the core may have a circular shape, or may have a triangular or polygonal shape.
  • the biodegradable polyolefin fibers may include polyolefin and oxidative biodegradable additives in an amount of 95 to 99.5:0.5 to 5% by weight, specifically, 98 to 99:1 to 2% by weight.
  • the content of the oxidatively biodegradable additive is less than 0.5% by weight or greater than 5% by weight, the balance between the polyolefin and the oxidatively biodegradable additive is unbalanced, so that biodegradable properties cannot be exhibited. Specifically, if it is less than 0.5% by weight, biodegradable properties cannot be exhibited, and if it exceeds 5% by weight, there is a problem in that spinnability and tensile strength of fibers are lowered.
  • the polyolefin used in the present invention includes high-density polyethylene, linear low-density polyethylene, low-density polyethylene, propylene (a homogeneous propylene), ethylene-propylene copolymer, ethylene-propylenebutene-1 copolymer, polybutene-1, polyhexene-1, It may be polyoctene-1, poly-4-methylpentene-1, polymethylpentene, 1,2-polybutadiene, 1,4-polybutadiene, or a mixed resin thereof, preferably polypropylene.
  • the polypropylene may have a melt index (MI) of 10 to 30 at a temperature of 230 °C and a load of 2.16 kg.
  • MI melt index
  • the polypropylene may have a melting point of 130 to 170 ° C, and a specific gravity of 0.88 to 0.95 It may be, and if the polypropylene is out of the melt index, melting point and specific gravity as described above, spinnability may be reduced, and the above range is preferable.
  • the fiber may have a core-shell shape.
  • the oxidative biodegradable additive may be a transition metal compound, specifically, may be at least one selected from the group consisting of iron, manganese, copper, cobalt, and cesium compounds, More Specifically, it may be iron, and in the case of iron, it is non-toxic compared to copper and has a better decomposition rate than manganese.
  • the decomposition rate can be adjusted according to exposure to heat and light.
  • the fiber may be drawn at a draw ratio of 1.5 or less, specifically, may be drawn at a draw ratio of 1.3 or less.
  • the oxidized layer formed on the fiber is non-uniform or partially destroyed, resulting in deterioration in biodegradation characteristics and a problem of thread breakage. That is, the fiber may exhibit biodegradable characteristics by forming an oxide layer on the outer surface of the fiber after spinning.
  • the oxide layer can be kept uniform and can be prevented from being destroyed.
  • the melt index (MI) of the biodegradable polyolefin fiber may be 20 to 50, specifically 35 to 45.
  • melt index of the fiber exceeds 50, there is a problem in that the molecular weight is reduced and the strength is lowered after manufacturing the fiber or nonwoven fabric, and the above range is preferable.
  • the tensile strength of the fiber according to the present invention may be 1.8 to 4.0 g / d, and the elongation may be 300 to 500%.
  • the nonwoven fabric In the manufacturing process, there are problems in that the bonding force is weakened when thermally bonded with a calender after forming the web, and the nonwoven fabric becomes stiff and the strength of the nonwoven fabric decreases during bonding by raising the calender temperature, so the above range is preferable.
  • the biodegradable polyolefin fiber according to the present invention may have a radioactive rating of S or A as measured by the following measurement method.
  • Radiation rating Evaluates the number of troubles such as trimming and drop that occur during one hour per 16 positions of radiation by classifying them into S-D, where S is 0 times, A is 1 time, B is 2 times, and C is 3-4 times times, D is judged to be 5 times or more.
  • the biodegradable polyolefin fiber according to the present invention may be composed of a core containing polyolefin and an oxidative biodegradable additive and an oxide layer formed by the oxidative biodegradable additive, and is stretched at a draw ratio of 1.5 or less to prevent non-uniformity or destruction of the oxide layer. By preventing it, it is possible to improve the biodegradation properties .
  • biodegradable polyolefin fiber of the present invention may be a single fiber, and the length of the short fiber may be 1 to 100 mm, and may be used in various forms such as air through, thermal point bond, spunlace, needle punch, and airlaid nonwoven fabric. It can be made of fibers or non-woven fabrics with biodegradable properties.
  • biodegradable polyolefin fiber of the present invention may be a long fiber, and may be used as a fabric to which biodegradability is imparted when the long fiber is manufactured.
  • Figure 2 shows a method for producing biodegradable polyolefin fibers according to another embodiment of the present invention.
  • the present invention provides a method for producing biodegradable polypropylene fibers according to another embodiment.
  • preparing a melt by melting polyolefin and an oxidatively biodegradable additive S100
  • preparing a filament by spinning the melt at a temperature of 250 to 310 ° C. at a speed of 500 to 1,500 m / min S200
  • Cooling the spun filaments S300
  • drawing the cooled filaments at a draw ratio of 1.0 to 1.5 (S400).
  • a melt may be prepared by mixing and melting the polyolefin and the oxidative biodegradable additive in an amount of 98 to 99.5:0.5 to 2% by weight.
  • the content of the oxidative biodegradable additive is less than 0.5% by weight or more than 5% by weight, the balance of the two components may be reduced due to cutting, and the formation of an oxidized layer may not occur, resulting in biodegradation. There is a problem.
  • the melting temperature may be 250 to 310 °C, specifically 270 to 290 °C.
  • the melting temperature is less than 250 ° C, the polyolefin is not completely melted and it is not easy to mix with the oxidative biodegradable additive.
  • the time for preparing the melt is not limited as long as the polyolefin and the oxidatively biodegradable additive are sufficiently mixed.
  • a step (S200) of producing a filament by spinning the melt is a step (S200) of producing a filament by spinning the melt.
  • the spinning may be performed at a speed of 500 to 1,500 m/min at a temperature of 250 to 310 °C, and specifically at a speed of 1,100 to 1300 m/min at a temperature of 260 to 300 °C.
  • the melt flowability of the polymer is lowered, thereby reducing the radiation, and there is a problem that the oxide surface layer is not formed, and if it exceeds 310 ° C, the polymer is decomposed and the oxide layer is non-uniform. There is a problem of being formed or not being formed, so the above range is preferable.
  • the spinning speed is less than 500 m / min, there is a problem in that the cooling is delayed during fiber formation and the spinnability is lowered, and if it exceeds 1,500 m / min, the formation time of the oxide surface layer is insufficient, so that the oxide layer is not formed, and the spinnability There is a problem of this decrease, and the above range is preferable.
  • the shape of the fiber may be determined according to the spinneret. That is, the shape of the fiber may be determined according to the shape of the spinning hole formed in the spinneret.
  • the cooling step (S300) may be performed at a temperature of 14 to 18 °C and a cooling air speed of 1.0 to 3.0 m/sec.
  • a cooling temperature and speed are out of the above range, there is a problem in that the radioactivity is poor and the formation of the oxide layer is non-uniform, and thus the biodegradation characteristics are deteriorated, and the above range is preferable.
  • An oxide layer is formed on the surface of the fiber through the cooling step (S300).
  • the stretching step (S400) may further include heating the filament on which the oxide layer is formed, and the heating temperature and method are not limited.
  • stretching may be performed at a stretching ratio of 1.5 or less, and specifically, stretching may be performed at a stretching ratio of 1.3 or less.
  • the present invention can provide a polyolefin fiber with improved initial biodegradation rate by forming an oxide layer on the outer surface of the fiber through an oxidative biodegradable additive and specific spinning conditions.
  • a melt was prepared by melting 99% by weight of polypropylene having a melt index (MI) of 10 at a temperature of 230 °C and a load of 2.16kg and 1% by weight of an oxidative biodegradable additive (iron).
  • MI melt index
  • iron oxidative biodegradable additive
  • the molten material was then spun at a temperature of 282 ° C. at a speed of 1,200 m / min to prepare a filament, and then cooled under specific conditions to form an oxide layer.
  • the filament on which the oxide layer was formed was heated to a specific temperature and then drawn at a draw ratio of 1.3 to prepare a fiber having biodegradable properties.
  • the temperature of the cooling area was 16 ° C and the cooling air velocity was 2 m / sec.
  • fibers having biodegradable properties were prepared using 99.5 wt% of polypropylene resin and 0.5 wt% of oxidative biodegradation additive instead of 99 wt% of polypropylene resin and 1 wt% of oxidative biodegradation additive.
  • Fibers having biodegradable properties were prepared in the same manner as in Example 1, except that 95% by weight of the polypropylene resin and 5% by weight of the oxidatively biodegradable additive were used instead of 99% by weight of the polypropylene resin and 1% by weight of the oxidatively biodegradable additive.
  • Example 2 It was carried out in the same manner as in Example 1, but the cooling temperature was set at a temperature of 18 ° C. to prepare a fiber having biodegradable properties.
  • Example 2 It was carried out in the same manner as in Example 1, but the cooling temperature was set at a temperature of 14 ° C. to prepare a fiber having biodegradable properties.
  • Fibers were prepared in the same manner as in Example 1, but with the draw ratio set to 1.5.
  • Fibers were prepared in the same manner as in Example 1, but using 100% by weight of polypropylene.
  • Fibers were prepared in the same manner as in Example 1, but using 99.9% by weight of polypropylene and 0.1% by weight of an oxidative biodegradable agent.
  • Fibers were prepared in the same manner as in Example 1, but using 90% by weight of polypropylene and 10% by weight of an oxidative biodegradable agent.
  • Oxidative biodegradation analysis was performed as follows, and the results are shown in Table 1.
  • Step 1 UV treatment (ASTM5208 standard: 340 nm, 076 W/m 2 nm), elongation retention rate (less than 5%), molecular weight evaluation (less than 5,000)
  • Radiation rating Evaluate the number of troubles such as trimming and drop that occur per hour per 16 positions of radiation by classifying them into S-D (S: 0 times, A: 1 time, B: 2 times, C: 3-4 times, D : 5 times or more)

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)

Abstract

본 발명은 일 실시예에 따라 폴리올레핀으로 구성된 코어 및 상기 코어의 외부에 형성된 산화층을 포함하는, 생분해성 폴리올레핀 섬유를 제공한다. 본 발명에 따르면, 원료와 생분해 첨가제를 특정 조건으로 배합하여 섬유를 제조함으로써, 생분해 특성을 갖는 폴리올레핀 섬유를 제공할 수 있다. 또한, 섬유의 표면에 산화층을 형성시켜, 초기 산화 생분해 속도를 향상되고, 생분해 시간이 단축된 폴리올레핀 섬유를 제공할 수 있다.

Description

생분해성 폴리올레핀 섬유 및 이의 제조방법
본 발명은 생분해성 폴리올레핀 섬유 및 이의 제조방법에 관한 것이다.
종래까지 널리 사용되는 합성섬유로는 폴리에스테르, 폴리올레핀, 폴리아마이드 섬유를 들 수 있다. 이들 섬유는 고강도 고탄성 일뿐 아니라, 용융방사법에 의해 제조가능하기 때문에 방사시 단면형태의 변화를 통해 새로운 특성을 섬유에 부여할 수 있는 장점을 갖고 있으나, 상기와 같은 합성섬유는 자연분해되지 않는 난분해성 소재이기 때문에 매립할 수 없고 소각하여 처리하는 경우가 많으나 이러한 합성섬유를 소각할 때에는 많은 유해물질이 방출되고 유해가스가 발생되어 자연환경을 파괴하고 있어서, 이에 대한 규제방안이 실시되거나 도입단계에 있으며 많은 나라에서는 이러한 생분해성 고분자의 사용을 법적으로 의무화 하고 있다.
따라서, 최근에는 폐기 합성섬유에 의한 환경오염 문제가 사회적으로 큰 문제로 대두되면서 최근에는 완전분해가 가능한 생분해성 고분자 수지에 대한 연구가 활발히 진행되고 있으며, 전세계적으로 많은 관심을 불러일으키고 있다. 특히, 토양 매립지 이용의 한계와 재활용의 문제가 심각하게 대두되면서 일정기간 사용 후 폐기시 스스로 분해되는 분해성 수지의 개발이 활발히 전개되고 있다.
현재까지 생분해성 고분자에 대한 활발한 연구의 결과로 전분계 고분자, 셀룰로오즈 아세테이트, 폴리하이드록시 부틸레이트, 폴리락타이드, 폴리카프로락톤, 폴리부틸렌숙시네이트 등의 생분해성 고분자가 상업화되어 시판되고 있으나 생분해성 폴리올레핀은 아직까지 섬유를 제조할 수 있는 물성이 확보되지 못하여 사출 성형품용으로만 제조되고 있는 실정이다.
따라서, 합성섬유의 고유의 물성을 유지하면서 생분해가 가능한 폴리올레핀계 섬유의 개발이 시급한 실정이다.
본 발명이 해결하고자 하는 과제는 올레핀계 섬유 제조시 원료(수지)와 생분해성 첨가제로 생분해 특성을 가지며, 섬유 제조시 특정 방사, 연신 조건을 통해 초기 생분해 성능 개선과 기존 올레핀계 섬유에 물성을 동시에 만족하는 생분해성 폴리올레핀 섬유를 제공하는 것이다.
본 발명은 일 실시예에 따라 폴리올레핀으로 구성된 코어 및 상기 코어의 외부에 형성된 산화층을 포함하는, 생분해성 폴리올레핀 섬유를 제공한다.
상기 섬유는, 상기 폴리올레핀 및 산화 생분해성 첨가제를 95~99.5:0.5~5 중량%로 포함할 수 있다.
상기 산화층은, 산화 생분해성 첨가제를 포함할 수 있다.
상기 산화 생분해성 첨가제는 철, 망간, 구리, 코발트 및 세슘 화합물로 이루어진 군 중 선택된 1 종 이상일 수 있다.
상기 섬유는, 1.5 이하의 연신비로 연신된 것이고, 용융지수는 20~50일 수 있다.
상기 섬유는, 인장강도가 1.8~4.0 g/d이고, 신율이 300~500 %일 수 있다.
상기 섬유는 하기 측정방법으로 측정한 방사성의 등급이 S 또는 A일 수 있다.
<측정방법>
방사성 등급: 방사 16position당 한 시간 동안 발생하는 사절,
Drop 등 Trouble 횟수를 S~D로 구분하여 평가
(S: 0회, A: 1회, B: 2회, C: 3~4회, D: 5회 이상)
본 발명은 다른 실시예에 따라 폴리올레핀 및 산화 생분해성 첨가제를 용융시켜 용융물을 제조하는 단계, 상기 용융물을 250~310℃의 온도에서 약 900~1,500 m/min의 속도로 방사하여 필라멘트를 제조하는 단계, 상기 방사된 필라멘트를 냉각시키는 단계 및 상기 냉각된 필라멘트를 1.5 이하의 연신비로 연신하는 단계를 포함하는, 생분해성 폴리올레핀 섬유의 제조방법을 제공한다.
상기 냉각시키는 단계에서 방사된 필라멘트 표면에 산화층이 형성되고, 냉각영역의 온도는 14~18℃이고, 냉각 에어 풍속은 1.0~3.0 m/초일 수 있다.
본 발명에 따르면, 원료와 생분해 첨가제를 특정 조건으로 배합하여 섬유를 제조함으로써, 생분해 특성을 갖는 폴리올레핀 섬유를 제공할 수 있다.
또한, 섬유의 표면에 산화층을 형성시켜, 초기 산화 생분해 속도를 향상되고, 생분해 시간이 단축된 폴리올레핀 섬유를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 생분해성 폴리올레핀 섬유의 단면을 나타낸 것이다.
도 2는 본 발명의 다른 실시예에 따른 생분해성 폴리올레핀 섬유의 제조방법을 나타낸 것이다.
본 발명은 일 실시예에 따라 폴리올레핀으로 구성된 코어 및 상기 코어의 외부에 형성된 산화층을 포함하는, 생분해성 폴리올레핀 섬유를 제공한다.
이하 본 발명의 바람직한 일실시예를 상세히 설명하기로 한다. 우선, 본 발명을 설명함에 있어, 관련된 공지기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 모호하지 않게 하기 위하여 생략한다.
본 명세서에서 사용되는 정도의 용어 '약', '실질적으로' 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
도 1은 본 발명의 일 실시예에 따른 생분해성 폴리올레핀 섬유의 단면을 나타낸 것이다.
도 1을 참조하면, 본 발명은 일 실시예에 따라 코어와 상기 코어의 외부를 둘러싼 산화층을 포함하는 생분해성 폴리올레핀 섬유를 제공한다.
상기 코어는 폴리올레핀을 주성분으로 산화 생분해성 첨가제를 부성분으로 포함할 수 있다.
상기 코어는 원형의 형태일 수 있으며, 삼각형 또는 다각형의 형태일 수 있다.
상기 생분해성 폴리올레핀 섬유는 폴리올레핀 및 산화 생분해성 첨가제를 95~99.5:0.5~5 중량%로 포함할 수 있으며, 구체적으로는 98~99:1~2 중량%로 포함할 수 있다.
상기 산화 생분해성 첨가제의 함량이 0.5 중량% 미만 또는 5 중량%를 초과하는 경우 폴리올레핀과 산화 생분해성 첨가제 간의 밸런스가 맞지 않아 생분해 특성을 발휘하지 못하는 문제점이 있다. 구체적으로, 0.5 중량% 미만이면, 생분해 특성을 발휘하지 못하고, 5 중량%를 초과하면 방사성 및 섬유의 인장강도가 저하되는 문제점이 있다.
본 발명에서 사용되는 상기 폴리올레핀은 고밀도 폴리에틸렌, 직쇄형 저밀도 폴리에틸렌, 저밀도 폴리에틸렌, 프로필렌(프로필렌 단독 집합체), 에틸렌-프로필렌 공중합체, 에틸렌프로필렌부텐-1 공중합체, 폴리부텐-1, 폴리헥센-1, 폴리옥텐-1, 폴리 4-메틸펜텐-1, 폴리메틸펜텐, 1,2-폴리부타디엔, 1,4-폴리부타디엔, 이들의 혼합수지일 수 있으며, 바람직하게는 폴리프로필렌일 수 있다.
상기 폴리프로필렌은 온도가 230 ℃, 2.16kg 하중에서의 용융지수(MI)가 10~30일 수 있다.
상기 폴리프로필렌은 용융점이 130~170 ℃일 수 있고, 비중은 0.88~0.95 일 수 있으며, 상기 폴리프로필렌이 상기와 같은 용융지수, 용융점 및 비중을 벗어나는 경우, 방사성이 저하될 수 있어, 상기 범위가 바람직하다.
상기 산화층이 코어의 외면에 형성됨으로써, 상기 섬유는 코어-쉘 형태를 갖을 수 있다.
상기 산화 생분해성 첨가제는 전이 금속 화합물일 수 있으며, 구체적으로, 철, 망간, 구리, 코발트 및 세슘 화합물로 이루어진 군 중 선택된 1 종 이상일 수 있으며, 더욱 구체적으로 철일 수 있으며, 상기 철의 경우 구리에 비하여 무독성이며, 망간에 비하여 더 우수한 분해속도를 갖는다.
상기 전이 금속 화합물의 경우 열 및 광에 대한 노출에 따라 분해 속도를 조정할 수 있다.
또한, 상기 섬유는 1.5 이하의 연신비로 연신된 것일 수 있으며, 구체적으로 1.3이하의 연신비로 연신된 것일 수 있다.
상기 연신비가 1.5를 초과하면, 섬유에 형성된 산화층의 불균일 또는 일부 파괴되어 생분해 특성이 저하되며, 사절현상 현상이 발생하는 문제점이 있다. 즉, 상기 섬유는 방사 후 섬유의 외면에 산화층을 형성시킴으로써, 생분해 특성을 발휘할 수 있다.
또한, 1.5 이하의 연신비로 연신함으로써, 산화층을 균일하게 유지할 수 있고, 파괴되는 것을 방지할 수 있다.
상기 생분해성 폴리올레핀 섬유의 용융지수(MI)는 20~50일 수 있으며, 구체적으로 35~45일 수 있다.
상기 섬유의 용융지수가 50을 초과하면 분자량이 감소하여 섬유 또는 부직포 제조 후 강도가 저하되는 문제점이 있어, 상기한 범위가 바람직하다.
상기 범위의 용융지수로 섬유가 제조되었을 때 본 발명에 따른 섬유의 인장강도는 1.8~4.0 g/d일 수 있으며, 신율이 300~500 %일 수 있다.
상기 섬유의 인장강도가 1.8 g/de 미만이고, 신율이 500 %를 초과하면, 부직포 제조시 웹 형성 불균일 및 부직포 강도가 저하되는 문제점이 있고, 4.0 g/d를 초과하고, 200 % 미만이면 부직포 제조 공정시 웹 형성 후 캘린더로 열적 결합시 결합력이 약해지고, 캘린더 온도를 상승시켜서 결합시에 부직포가 뻣뻣해지고 부직포 강도가 저하되는 문제점이 있어, 상기 범위가 바람직하다.
본 발명에 따른 생분해성 폴리올레핀 섬유는 하기 측정방법으로 측정한 방사성의 등급이 S 또는 A일 수 있다.
[측정방법]
방사성 등급: 방사 16 position당 한 시간동안 발생하는 사절, Drop 등 Trouble 횟수를 S~D로 구분하여 평가하고, 이때, S는 0회, A는 1회, B는 2회, C는 3~4회, D는 5회 이상인 것으로 판단한다.
이와 같이 본 발명에 따른 생분해성 폴리올레핀 섬유는 폴리올레핀 및 산화 생분해성 첨가제를 포함하는 코어 및 산화 생분해성 첨가제에 의해 형성된 산화층으로 구성될 수 있으며, 1.5 이하의 연신비로 연신됨으로써, 산화층의 불균일 또는 파괴를 방지하여, 생분해 특성을 향상시킬 수 있다.
또한, 본 발명의 생분해성 폴리올레핀 섬유는 단섬유일 수 있으며, 상기 단섬유의 길이는 1~100 mm일 수 있고, 에어스루, 서멀포인트본드, 스펀레이스, 니들펀치, 에어레이드 부직포 등 다양한 형태의 생분해 특성을 갖는 섬유 또는 부직포로 제조될 수 있다.
또한, 본 발명의 생분해성 폴리올레핀 섬유는 장섬유일 수 있으며, 장섬유로 제조 시 생분해성이 부여된 원단으로 사용될 수 있다.
도 2는 본 발명의 다른 실시예에 따른 생분해성 폴리올레핀 섬유의 제조방법을 나타낸 것이다.
도 2를 참조하면, 본 발명은 다른 실시예에 따라 생분해성 폴리프로필렌 섬유의 제조방법을 제공한다.
구체적으로, 폴리올레핀 및 산화 생분해성 첨가제를 용융시켜 용융물을 제조하는 단계(S100), 상기 용융물을 250~310℃의 온도에서 500~1,500 m/min의 속도로 방사하여 필라멘트를 제조하는 단계(S200), 상기 방사된 필라멘트를 냉각시키는 단계(S300) 및 상기 냉각된 필라멘트를 1.0~1.5의 연신비로 연신하는 단계(S400)를 포함하는 생분해성 폴리올레핀 섬유의 제조방법을 제공한다.
먼저, 용융물을 제조하는 단계(S100)는, 상기 폴리올레핀 및 산화 생분해성 첨가제를 98~99.5:0.5~2 중량%로 혼합하고 용융시켜 용융물을 제조할 수 있다.
상기 산화 생분해성 첨가제의 함량이 0.5 중량% 미만 또는 5 중량%를 초과하는 경우 두 성분의 밸런스가 맞지 않아 절사 발생에 따라 방사성이 저하될 수 있고, 산화층의 형성이 이루어지지 않아 생분해를 발현하지 못하는 문제점이 있다.
상기 용융물의 제조시 용융온도는 250~310 ℃일 수 있으며, 구체적으로는 270~290 ℃일 수 있다.
상기 용융온도가 250 ℃ 미만이면, 폴리올레핀이 완전히 용융되지 않아 산화 생분해성 첨가제와 혼합이 용이하지 않으며, 310 ℃를 초과하면 폴리올레핀의 고분자 분해가 시작되는 문제점이 있어, 상기 범위가 바람직하다.
상기 용융물을 제조하는 시간은 상기 폴리올레핀 및 산화 생분해성 첨가제가 충분히 혼합되는 시간이라면 제한하지 않는다.
다음으로, 상기 용융물을 방사하여 필라멘트를 제조하는 단계(S200)이다.
상기 방사는, 250~310 ℃의 온도에서 500~1,500 m/min의 속도로 수행될 수 있으며, 구체적으로 260~300 ℃의 온도에서 1,100~1300 m/min의 속도로 수행될 수 있다.
상기 방사온도가 250 ℃ 미만이면, 고분자의 용융 흐름성이 낮아지고, 이로 인해 방사성 저하되며, 산화 표면층의 형성되지 않는 문제점이 있고, 310 ℃를 초과하면, 고분자의 분해가 시작되어 산화층이 불균일하게 형성되거나, 형성되지 않는 문제점이 있어, 상기 범위가 바람직하다.
또한, 상기 방사속도가 500 m/min 미만이면, 섬유 형성시 냉각이 지연되어 방사성이 저하되는 문제점이 있고, 1,500 m/min를 초과하면 산화표층의 형성시간이 부족하여 산화층이 형성되지 않으며, 방사성이 저하되는 문제점이 있어, 상기한 범위가 바람직하다.
또한, 상기 필라멘트를 제조하는 단계(S200)에서 방사구금의 따라 섬유의 형태가 결정될 수 있다. 즉, 방사구금에 형성된 방사홀의 형태에 따라 섬유의 형태가 결정될 수 있다.
다음으로, 상기 방사된 필라멘트를 냉각시키는 단계(S300)이다.
상기 냉각시키는 단계(S300)는 14~18 ℃의 온도에서 냉각에어속도는 1.0~3.0 m/초의 동안 수행할 수 있다. 상기 냉각 온도 및 속도가 상기 범위를 벗어나는 경우 방사성이 불량하고 또한 산화층의 형성이 불균일 함으로써, 생분해 특성이 저하 시키는 문제점이 있어, 상기한 범위가 바람직하다.
상기 냉각시키는 단계(S300)를 통해 섬유의 표면에 산화층을 형성된다.
상기 필라멘트를 제조하는 단계(S200)와 냉각시키는 단계(S300)를 종합하여 살펴보면, 250~310 ℃의 온도에서 500~1,500 m/min의 속도로 방사하여 필라멘트를 제조한 후 방사시 냉각은 14~18 ℃의 온도, 냉각에어 속도는 1.0~3.0 m/초로 냉각됨으로써, 산화층이 형성되고 방사성을 확보할 수 있다.
마지막으로, 상기 산화층이 형성된 필라멘트를 1.5 이하의 연신비로 연신하는 단계(S400)이다.
상기 연신하는 단계(S400)는 산화층이 형성된 필라멘트를 가열하는 단계를 더 포함할 수 있으며, 상기 가열시 온도, 방법 등은 제한하지 않는다.
상기 연신하는 단계(S400)는 1.5 이하의 연신비로 연신할 수 있으며, 구체적으로 1.3이하의 연신비로 연신할 수 있다.
상기 연신비가 1.5를 초과하면, 섬유에 형성된 산화층이 불균일하게 되거나 파괴되며, 생분해 특성이 저하되는 문제점이 있다.
즉, 본 발명은 산화 생분해성 첨가제 및 특정 방사 조건을 통해 섬유의 외면에 산화층을 형성시켜 초기 생분해 속도가 향상된 폴리올레핀 섬유를 제공할 수 있다.
이하, 본 발명에 따른 구체적인 실시예를 들어 설명한다.
실시예 1
먼저, 온도가 230 ℃, 2.16kg 하중에서의 용융지수(MI)가 10인 폴리프로필렌 99 중량% 및 산화 생분해성 첨가제(철)를 1 중량%를 용융시켜 융융물을 제조하였다.
다음으로, 상기 융융물을 다음으로, 282 ℃의 온도에서 1,200 m/min의 속도로 방사하여 필라멘트를 제조한 후 특정 조건에서 냉각하여 산화층을 형성시켰다.
마지막으로, 산화층이 형성된 필라멘트를 특정 온도로 가열한 후 1.3의 연신비로 연신하여 생분해 특성을 갖는 섬유를 제조하였다.
이때, 필라멘트를 방사 후 냉각영역의 온도는 16℃ 및 냉각 에어 풍속 2 m/초에서 수행하였다.
실시예 2
실시예 1과 동일하게 실시하되, 폴리프로필렌 수지 99 중량% 및 산화 생분해 첨가제 1 중량% 대신에 폴리프로필렌 수지 99.5 중량% 및 산화 생분해 첨가제 0.5 중량%를 이용하여 생분해 특성을 갖는 섬유를 제조하였다.
실시예 3
실시예 1과 동일하게 실시하되, 폴리프로필렌 수지 99 중량% 및 산화 생분해 첨가제 1 중량% 대신에 폴리프로필렌 수지 95 중량% 및 산화 생분해 첨가제 5 중량%를 이용하여 생분해 특성을 갖는 섬유를 제조하였다.
실시예 4
실시예 1과 동일하게 실시하되, 500 m/min의 방사속도로 생분해 특성을 갖는 섬유를 제조하였다.
실시예 5
실시예 1과 동일하게 실시하되, 1,500 m/min의 방사속도로 생분해 특성을 갖는 섬유를 제조하였다.
실시예 6
실시예 1과 동일하게 실시하되, 냉각온도를 18 ℃의 온도에서 설정하여 생분해 특성을 갖는 섬유를 제조하였다.
실시예 7
실시예 1과 동일하게 실시하되, 냉각온도를 14 ℃의 온도에서 설정하여 생분해 특성을 갖는 섬유를 제조하였다.
실시예 8
실시예 1과 동일하게 실시하되, 연신비를 1.5로 설정하여 섬유를 제조하였다.
비교예 1
실시예 1 과 동일하게 실시하되, 폴리프로필렌 100 중량%를 이용하여 섬유를 제조하였다.
비교예 2
실시예 1 과 동일하게 실시하되, 폴리프로필렌 99.9 중량% 및 산화 생분해제 0.1 중량%를 이용하여 섬유를 제조하였다.
비교예 3
실시예 1 과 동일하게 실시하되, 폴리프로필렌 90 중량% 및 산화 생분해제 10 중량%를 이용하여 섬유를 제조하였다.
비교예 4
실시예 4와 동일하게 실시하되, 300 m/min의 방사속도로 섬유를 제조하였다.
비교예 5
실시예 4와 동일하게 실시하되, 1,800 m/min의 방사속도로 섬유를 제조하였다.
비교예 6
실시예 1과 동일하게 실시하되, 냉각온도를 10 ℃ 였으며, 냉각 에어 풍속은 2m/초로 수행하여 섬유를 제조하였다.
비교예 7
실시예 1과 동일하게 실시하되, 냉각온도를 20 ℃ 였으며, 냉각 에어 풍속은 4m/초로 수행하여 섬유를 제조하였다.
실험예 1: 산화 생분해 특성 분석
실시예 1 내지 8, 비교예 1 내지 7에 따라 제조된 섬유의 분해특성을 분석하였다.
산화 생분해 분석은 하기와 같이 실시하였으며, 그 결과를 표 1에 나타내었다.
1단계 UV 처리(ASTM5208규격:340nm, 076W/m2nm), 신율 유지율(5%이하), 분자량 평가(5,000 이하)
Figure PCTKR2021019401-appb-T000001
상기 표 1에서 확인할 수 있듯이, 실시예 1 내지 8은 모두 산화 생분해 분석에서 5% 이하의 신율을 유지하면서도 파단이 일어나는 것을 확인할 수 있다. 이에 반하여 비교예 1 및 2는 외관 변화가 없었으며, 신율이 큰 폭으로 상승한 것을 확인할 수 있다. 또한, 이외의 비교예들은 산화생분제가 포함되어 있어, 생분해가 일어나나, 하기에서 분석되는 방사 특성 및 인강강도 및 신율 등에 문제가 있는 것을 확인할 수 있다.
실험예 2: 방사 특성 분석
실시예 1 내지 8 및 비교예 1 내지 7의 방사성을 하기 측정방법을 통해 측정하였고, 이에 대한 결과를 하기 표 2에 기재하였다.
[측정방법]
방사성 등급: 방사 16position당 한 시간동안 발생하는 사절, Drop 등 Trouble 횟수를 S~D로 구분하여 평가함(S: 0회, A: 1회, B: 2회, C: 3~4회, D: 5회 이상)
Figure PCTKR2021019401-appb-T000002
상기 표 2를 참조하면, 10 중량%의 산화 생분해제를 포함하는 비교예 3의 경우 방사성이 저하되는 것을 확인할 수 있으며, 비교예 1 및 2의 경우 산화 생분해제의 함량이 낮아 방사성은 저하되지 않는 것을 확인할 수 있다. 방사속도가 300 m/min 및 1,800 m/min인 비교예 4 및 5 역시 방사성이 저하되는 것을 확인할 수 있으며, 특히 냉각온도 및 방사속도가 본 발명의 범위를 벗어나는 비교예 6 및 7의 경우 방사성이 더 좋지 않은 것을 확인할 수 있다. 이에 반해 본 발명에 따른 실시예 1 내지 8의 경우 방사성이 모두 우수한 것을 확인할 수 있다.
실험예 3: 인장강도 및 신율 분석
실시예 1 내지 8, 비교예 1 내지 7에 따라 제조된 섬유의 인장강도 및 신율을 분석하였다.
하기의 표 3은 그 결과를 나타낸 것이다.
Figure PCTKR2021019401-appb-T000003
상기 표 3을 참조하면, 산화 생분해제가 무첨가 또는 소량 첨가된 비교예 1 및 2는 인장강도 및 신율 좋은 반면, 산화 생분해제가 다량 포함된 비교예 3의 경우 인장강도 및 신율이 저하되는 문제점이 있었으며, 특히 냉각온도 및 방사속도가 본 발명의 범위를 벗어나는 비교예 6 및 7의 경우 인장강도 및 신율을 측정하지 못할 정도의 좋지 못한 특성을 나타내었다. 이에 반해 본 발명에 따른 실시예 1 내지 8의 경우 방사성이 모두 우수한 것을 확인할 수 있다.

Claims (9)

  1. 폴리올레핀으로 구성된 코어 및
    상기 코어의 외부에 형성된 산화층을 포함하는,
    생분해성 폴리올레핀 섬유.
  2. 제1항에 있어서,
    상기 섬유는,
    상기 폴리올레핀 및 산화 생분해성 첨가제를
    95~99.5:0.5~5 중량%로 포함하는 것인,
    생분해성 폴리올레핀 섬유.
  3. 제1항에 있어서,
    상기 산화층은,
    산화 생분해성 첨가제를 포함하는,
    생분해성 폴리올레핀 섬유.
  4. 제3항에 있어서,
    상기 산화 생분해성 첨가제는 철, 망간, 구리, 코발트 및 세슘 화합물로 이루어진 군 중 선택된 1 종 이상인,
    생분해성 폴리올레핀 섬유.
  5. 제1항에 있어서,
    상기 섬유는,
    1.5 이하의 연신비로 연신된 것이고,
    용융지수는 20~50인,
    생분해성 폴리올레핀 섬유.
  6. 제1항에 있어서,
    상기 섬유는,
    인장강도가 1.8~4.0 g/d이고,
    신율이 300~500%인,
    생분해성 폴리올레핀 섬유.
  7. 제1항에 있어서,
    상기 섬유는 하기 측정방법으로 측정한 방사성의 등급이 S 또는 A인
    생분해성 폴리올레핀 섬유.
    <측정방법>
    방사성 등급: 방사 16position당 한 시간 동안 발생하는 사절,
    Drop 등 Trouble 횟수를 S~D로 구분하여 평가
    (S: 0회, A: 1회, B: 2회, C: 3~4회, D: 5회 이상)
  8. 폴리올레핀 및 산화 생분해성 첨가제를 용융시켜 용융물을 제조하는 단계,
    상기 용융물을 250~310℃의 온도에서 약 500~1,500 m/min의 속도로 방사하여 필라멘트를 제조하는 단계,
    상기 방사된 필라멘트를 냉각시키는 단계 및
    상기 냉각된 필라멘트를 1.5 이하의 연신비로 연신하는 단계를 포함하는,
    생분해성 폴리올레핀 섬유의 제조방법.
  9. 제8항에 있어서,
    상기 냉각시키는 단계에서 방사된 필라멘트 표면에 산화층이 형성되고,
    냉각영역의 온도는 14~18℃이고, 냉각 에어 풍속은 1.0~3.0 m/초인,
    생분해성 폴리올레핀 섬유의 제조방법.
PCT/KR2021/019401 2021-12-10 2021-12-20 생분해성 폴리올레핀 섬유 및 이의 제조방법 WO2023106501A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21967374.6A EP4296408A1 (en) 2021-12-10 2021-12-20 Biodegradable polyolefin fiber and method for manufacturing same
MX2023011565A MX2023011565A (es) 2021-12-10 2021-12-20 Fibra de poliolefina biodegradable y metodo para fabricar la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210177014A KR102458266B1 (ko) 2021-12-10 2021-12-10 생분해성 폴리올레핀 섬유 및 이의 제조방법
KR10-2021-0177014 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023106501A1 true WO2023106501A1 (ko) 2023-06-15

Family

ID=83806000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019401 WO2023106501A1 (ko) 2021-12-10 2021-12-20 생분해성 폴리올레핀 섬유 및 이의 제조방법

Country Status (4)

Country Link
EP (1) EP4296408A1 (ko)
KR (1) KR102458266B1 (ko)
MX (1) MX2023011565A (ko)
WO (1) WO2023106501A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102695347B1 (ko) * 2022-12-29 2024-08-14 케이에이에프 주식회사 생분해성 폴리올레핀 섬유 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080032604A (ko) * 2006-10-10 2008-04-15 (주)동국가연 의류용 폴리프로필렌 필라멘트의 제조방법 및 장치
KR20100097486A (ko) * 2009-02-26 2010-09-03 코오롱글로텍주식회사 생분해성 섬유 및 이의 제조방법, 이로부터 제조된 부직포
KR20150134470A (ko) * 2014-05-21 2015-12-02 주식회사 휴비스 산화생분해성을 갖는 열접착형 복합섬유 및 그 제조방법
KR102007974B1 (ko) * 2018-08-24 2019-08-06 전인성 산화생분해 재활용성 방수 코팅 종이
KR20200068527A (ko) * 2018-01-29 2020-06-15 유에이치티 유니테크 컴퍼니 리미티드 산화 섬유 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101780482B1 (ko) 2015-11-06 2017-09-25 주식회사 휴비스 소취 생분해성 섬유
EP3737782A1 (en) * 2018-01-02 2020-11-18 PrimaLoft, Inc. Biodegradation-enhanced synthetic fiber and methods of making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080032604A (ko) * 2006-10-10 2008-04-15 (주)동국가연 의류용 폴리프로필렌 필라멘트의 제조방법 및 장치
KR20100097486A (ko) * 2009-02-26 2010-09-03 코오롱글로텍주식회사 생분해성 섬유 및 이의 제조방법, 이로부터 제조된 부직포
KR20150134470A (ko) * 2014-05-21 2015-12-02 주식회사 휴비스 산화생분해성을 갖는 열접착형 복합섬유 및 그 제조방법
KR20200068527A (ko) * 2018-01-29 2020-06-15 유에이치티 유니테크 컴퍼니 리미티드 산화 섬유 제조 방법
KR102007974B1 (ko) * 2018-08-24 2019-08-06 전인성 산화생분해 재활용성 방수 코팅 종이

Also Published As

Publication number Publication date
EP4296408A1 (en) 2023-12-27
KR102458266B9 (ko) 2023-03-23
MX2023011565A (es) 2023-10-09
KR102458266B1 (ko) 2022-10-24

Similar Documents

Publication Publication Date Title
WO2023106501A1 (ko) 생분해성 폴리올레핀 섬유 및 이의 제조방법
WO2018139899A1 (ko) 가스센서용 섬유웹, 이의 제조방법 및 이를 포함하는 가스센서
WO2015053464A1 (ko) 생분해성 수지 컴파운드 및 생분해성 포장재
WO2010098514A1 (ko) 생분해성 섬유 및 이의 제조방법, 이로부터 제조된 부직포
WO2015160027A1 (ko) 친환경 단섬유 부직포 및 그 제조방법
WO2021145599A1 (ko) 가죽 방적사용 가죽 섬유
WO2011122880A2 (ko) 열수축성 폴리에스테르계 단층 필름
WO2018124832A1 (ko) 라이오셀 섬유, 이를 포함하는 부직 섬유 집합체 및 이를 포함하는 마스크팩 시트
WO2020004732A1 (ko) 열접착성 섬유용 폴리에스테르 조성물, 이를 통해 구현된 열접착성 복합섬유및 부직포
CN113480751B (zh) 一种海岛纤维用可熔纺聚乙烯醇母粒及其制备方法
WO2022019625A1 (ko) 바인더 섬유용 코폴리에스테르 수지, 이의 제조방법 및 이를 포함하는 바인더 섬유
WO2024143692A1 (ko) 생분해성 폴리올레핀 섬유 및 이의 제조방법
WO2021071250A1 (ko) 열접착성 섬유 및 이를 포함하는 자동차 내외장재용 섬유집합체
WO2023127989A1 (ko) 생분해성 복합섬유 및 이의 제조방법
WO2016003189A1 (ko) 부직포 바인더용 열접착형 복합섬유
WO2019050376A1 (ko) 압축성형체용 복합섬유 및 이의 제조방법
WO2023033518A1 (ko) 생분해성 섬유용 조성물, 및 이를 이용하여 제조된 생분해성 섬유
WO2018008969A1 (ko) 출력 속도가 향상된 3차원 프린터 필라멘트용 폴리유산 조성물
WO2020145699A1 (ko) 폴리알킬렌카보네이트계 수지, 이의 제조방법 및 이로부터 제조된 성형품
WO2023106796A1 (ko) 원착 폴리에틸렌 원사 및 이를 포함하는 기능성 원단
WO2020130451A1 (ko) 생분해성 수지 컴파운드 및 이의 제조방법
WO2021132767A1 (ko) 냉감성 원단과 이를 위한 폴리에틸렌 원사 및 폴리에틸렌 원사 제조방법
WO2023090913A1 (ko) 부직포, 부직포의 제조방법 및 물품
WO2022146004A1 (ko) 심초형 스펀본드 부직포 및 그 제조 방법
WO2024071589A1 (ko) 저수축성 및 고벌키성을 가지는 열접착성 시스-코어형 복합섬유, 이의 제조방법 및 이를 포함하는 위생재용 부직포

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967374

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021967374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/011565

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2021967374

Country of ref document: EP

Effective date: 20230919

NENP Non-entry into the national phase

Ref country code: DE