WO2023106280A1 - 組成物及びその製造方法 - Google Patents

組成物及びその製造方法 Download PDF

Info

Publication number
WO2023106280A1
WO2023106280A1 PCT/JP2022/044835 JP2022044835W WO2023106280A1 WO 2023106280 A1 WO2023106280 A1 WO 2023106280A1 JP 2022044835 W JP2022044835 W JP 2022044835W WO 2023106280 A1 WO2023106280 A1 WO 2023106280A1
Authority
WO
WIPO (PCT)
Prior art keywords
ions
composition
silver
aqueous solution
strontium
Prior art date
Application number
PCT/JP2022/044835
Other languages
English (en)
French (fr)
Inventor
土谷和愛
白倉義法
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2023106280A1 publication Critical patent/WO2023106280A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • C01B39/08Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis the aluminium atoms being wholly replaced
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/12Processing by absorption; by adsorption; by ion-exchange

Definitions

  • the present disclosure relates to compositions and methods for producing the same, and in particular to compositions of crystalline silicotitanate.
  • the compositions of the present disclosure are useful, for example, in applications such as treatment of harmful ions in polluted water, seawater, and groundwater.
  • Crystalline silicotitanate is known as an adsorbent that can remove harmful ions from aqueous solutions.
  • Patent Document 1 discloses crystalline silicotitanate as an ion exchanger for removing radioactive substances in seawater and a method for producing the same.
  • crystalline silicotitanate containing niobium is disclosed. This crystalline silicotitanate is intended to adsorb and remove radioactive cesium and radioactive strontium.
  • silver-containing zeolites are known for the purpose of adsorbing and removing iodine, but materials having such simultaneous adsorption are not known.
  • Patent Document 2 discloses crystalline silicotitanate CST-2 as an adsorbent for an aqueous solution containing only cesium.
  • Patent Document 3 discloses silicotitanic acid as an adsorbent for an aqueous solution containing cesium and strontium.
  • Patent Document 4 discloses a crystalline silicotitanate composition containing a cytinakite structure, which has particularly high strontium selectivity as an adsorbent for an aqueous solution containing cesium and strontium.
  • the present disclosure provides a composition comprising silver and crystalline silicotitanate capable of simultaneous adsorption of iodide ions in addition to the conventional adsorption of cesium ions and strontium ions, and/or a method for producing the same. be.
  • composition containing silver and crystalline silicotitanate is capable of simultaneous adsorption of cesium ions, strontium ions and iodide ions.
  • the present invention is as described in the claims, and the gist of the present disclosure is as follows.
  • [1] A composition containing silver and crystalline silicotitanate.
  • [2] The composition according to [1], wherein the crystalline silicotitanate has a sitinakite structure.
  • [3] The composition according to [1] or [2], wherein the silver content is 0.3% by mass or more and 20% by mass or less.
  • [4] The composition according to any one of [1] to [3] above, wherein at least part of the silver is located at ion-exchange sites of the crystalline silicotitanate.
  • metal element is niobium.
  • molar ratio of the amount of the metal element to the amount of titanium contained in the composition is 0.01 or more and 1.2 or less.
  • iodine distribution coefficient represented by the following formula (1) is 10,000 mL/g or more.
  • Kd (C.-C)/C ⁇ V/m (1)
  • Kd Partition coefficient of iodine [mL/g]
  • C. 1: metal ion concentration [ppm] in iodine-containing aqueous solution before adsorption treatment
  • V 1000: Volume of iodine-containing aqueous solution [mL]
  • m 0.05: mass of adsorbent [g] [9]
  • a molded article containing the composition according to any one of [1] to [8].
  • An adsorbent for cesium ions, strontium ions and iodide ions containing the composition according to any one of [1] to [8].
  • a method for adsorbing cesium ions, strontium ions and iodide ions comprising the step of contacting the adsorbent according to [11] or [12] with an aqueous solution containing cesium ions, strontium ions and iodide ions.
  • the present disclosure provides a composition comprising silver and crystalline silicotitanate capable of simultaneously adsorbing iodide ions in addition to the conventional adsorption of cesium ions and strontium ions, and/or a method for producing the same. be able to.
  • FIG. 10 is a diagram showing the results of column distribution evaluation in Example 5; 4 is a diagram showing the results of column flow evaluation of Comparative Example 1.
  • FIG. FIG. 10 is a diagram showing the results of column distribution evaluation in Comparative Example 2; 1 is a diagram showing an XRD pattern of Example 1.
  • FIG. 10 is a diagram showing an XRD pattern of Comparative Example 3;
  • FIG. 10 is a diagram showing an XRD pattern of Comparative Example 4;
  • “Silicotitanate” is a composite oxide having a structure consisting of a repeating network of titanium (Ti) and silicon (Si) via oxygen ( O ) . 4 ⁇ nH 2 O (where A represents at least one alkali metal element of sodium (Na) and potassium (K)).
  • “Crystalline silicotitanate” is a silicotitanate having a crystalline XRD peak in its powder X-ray diffraction (hereinafter also referred to as "XRD”) pattern.
  • silicotitanates those that do not have a crystalline XRD peak are "amorphous silicotitanates”.
  • XRD patterns include those obtained from XRD measurements under the following conditions.
  • general analysis software eg, SmartLab Studio II, manufactured by Rigaku
  • the cesium ions, strontium ions, and iodide ions in this embodiment may contain radioactive cesium, radioactive strontium, and radioactive iodine, respectively, and may be radioactive cesium, radioactive strontium, and radioactive iodine.
  • “Simultaneous adsorption” does not have multiple operations (so-called multi-step method) for sequentially adsorbing individual ions from a medium containing two or more types of ions, but in one operation (so-called single-step method) It is to adsorb two or more types of ions of interest from the medium.
  • the simultaneous adsorption of cesium ions, strontium ions and iodide ions is a single adsorption operation, such as contacting the adsorbent with a solution containing these three ions to adsorb cesium ions, strontium ions and iodide ions. to adsorb two or more target ions.
  • the composition of the present embodiment is a composition containing silver and crystalline silicotitanate, and may be a composition consisting of silver and crystalline silicotitanate.
  • cesium ions, strontium ions and iodide ions can be adsorbed simultaneously and selectively with respect to other ions.
  • the crystalline silicotitanate contained in the composition of the present embodiment preferably has a sitinakite structure in order to further enhance the adsorption properties of strontium ions and cesium ions.
  • composition of the present embodiment contains silver (Ag) for the effect of adsorbing iodide ions.
  • the silver content of the composition of the present embodiment is 0.3% by mass or more, 0.4% by mass or more, or 1.5% by mass or more with respect to the mass of the crystalline silicotitanate, and 20% by mass Below, it may be 10% by mass or less or 5% by mass or less.
  • the range of silver content is 0.3% by mass to 20% by mass, 0.4% by mass to 10% by mass, 0.5% by mass to 10% by mass, and 1.5% by mass to 10% by mass. Below, or 1.5 mass % or more and 5 mass % or less can be exemplified.
  • Standard content is the mass ratio of silver [% by mass], and is an ICP emission spectroscopic analysis method using a general ICP-AES device (for example, device name: OPTIMA3000DV, manufactured by PERKIN-ELMER). can be obtained by
  • the composition of the present embodiment has a molar ratio of silver content to titanium content in the composition (hereinafter also referred to as “Ag/Ti ratio”) of 0.005 or more, 0.01 or more, or 0 0.5 or more, and 0.6 or less, 0.3 or less, or 0.2 or less can be exemplified.
  • the Ag/Ti ratio is preferably 0.005 or more and 0.6 or less, more preferably 0.006 or more and 0.6 or less, still more preferably 0.01 or more and 0.3 or less, and 0.05 or more and 0.25 or less. Even more preferred.
  • the composition of the present embodiment preferably contains silver in the crystalline silicotitanate, and the crystalline silicotitanate carries at least part of the silver. condition is preferred.
  • “Silver-containing state” means that the crystalline silicotitanate contains silver
  • “silver-supporting state” means that the crystalline silicotitanate contains silver as a skeleton atom (hereinafter referred to as “T atom”), that is, a state in which silver does not exist as a T atom, preferably silver does not exist as a T atom, and at least the surface and pores of the crystalline silicotitanate means any of the states contained in
  • the silver may be in the form of an oxide such as silver oxide, or in the form of an insoluble salt such as silver chloride. good.
  • silver when contained in the pores, it may be contained as silver ions as long as it is ion-exchanged with sodium ions, which are ion-exchangeable cations in the crystalline silicotitanate. All you have to do is
  • the silver contained in the composition of the present embodiment is preferably contained at least as silver ions, that is, at least part of it is preferably present at the ion exchange sites of the crystalline silicotitanate.
  • composition of the present embodiment contains one or more metal elements (hereinafter referred to as (Also referred to as "additional metal”).), preferably contains one or more metal elements selected from the group of niobium, vanadium, manganese and iron, and more preferably contains niobium. .
  • all or part of the additive metal is substituted with Si in the crystalline silicotitanate, that is, all or part of the additive metal is contained as T atoms of the crystalline silicotitanate.
  • the additive metal is preferably niobium because the adsorption performance of cesium ions and strontium ions tends to be higher.
  • the composition of the present embodiment contains an additive metal, and the content of the additive metal is the molar ratio of the content of the additive metal to the content of titanium in the crystalline silicotitanate (hereinafter, “metal/Ti ratio” Also referred to as ), it is preferably 0 or more and 1.5 or less, 0.01 or more and 1.5 or less, or 0.1 or more and 1.5 or less. When the metal/Ti ratio is within this range, the generation of by-products is reduced, and the adsorption performance is likely to be improved.
  • the metal/Ti molar ratio is 0.01 to 1.2, 0.01 to 1.0, 0.1 to 1.0, 0.3 to 1.0, or 0.3 to 0.8 The following are more preferable.
  • the composition of the present embodiment preferably has a cesium ion distribution coefficient (hereinafter also referred to as “Kd”) of 100,000 mL/g or more, more preferably 200,000 mL/g or more. ,000,000 mL/g or more is particularly preferred.
  • Kd cesium ion distribution coefficient
  • the upper limit of the Kd of cesium ions is not particularly limited, it can be exemplified to be 2,000,000 mL/g or less, and the range is 100,000 mL/g or more and 2,000,000 mL/g or less, 200, 000 mL/g or more and 2,000,000 mL/g or less, or 1,000,000 mL/g or more and 2,000,000 mL/g or less can be exemplified.
  • the Kd of strontium ions is preferably 10,000 mL/g or more, more preferably 20,000 mL/g or more.
  • the upper limit of the Kd of strontium ions is not particularly limited, but can be exemplified by 2,000,000 mL/g or less, and the range is 100,000 mL/g or more and 2,000,000 mL/g or less, or 200,000 mL/g or more and 2,000,000 mL/g or less can be exemplified.
  • the Kd of iodide ions is preferably 10,000 mL/g or more, more preferably 20,000 mL/g or more.
  • the upper limit of the Kd of iodide ions is not particularly limited, but can be exemplified by 2,000,000 mL/g or less, and the range is 100,000 mL/g or more and 2,000,000 mL/g or less, or , 200,000 mL/g or more and 2,000,000 mL/g or less.
  • Kd is determined by adsorption treatment of metal ions from an aqueous solution containing one or more selected from the group of strontium ions, cesium ions and iodide ions (hereinafter referred to as "metal ion-containing aqueous solution") using an adsorbent. It is a value that indicates the adsorption characteristics of the adsorbent at the time, and can be obtained from the following formula (1).
  • metal ions are cesium ions, strontium ions, or iodide ions.
  • Kd (C.-C)/C ⁇ V/m (1)
  • Kd Partition coefficient [mL/g]
  • C. Metal ion concentration in metal ion-containing aqueous solution before adsorption treatment [ppm]
  • C Metal ion concentration [ppm] in the measurement solution at adsorption equilibrium
  • V Volume of aqueous solution containing metal ions [mL]
  • m Mass of adsorbent [g]
  • the strontium ion, cesium ion and iodide ion concentrations may be measured by the following method.
  • an aqueous solution containing the following composition was prepared to contain strontium ions, cesium ions and iodide ions. It is an aqueous solution containing metal ions.
  • 0.05 g of the composition of the present embodiment is added to 1000 mL of the metal ion-containing aqueous solution, and the mixture is stirred and mixed at 25° C. and 800 rpm for 24 hours or longer. As a pretreatment, the composition is heated in the air at 100° C. for 1 hour. After mixing, the composition is separated from the metal ion-containing aqueous solution by filtration, and the recovered metal ion-containing aqueous solution is diluted 5 times to obtain a measurement solution.
  • the concentrations of strontium ions, cesium ions, and iodide ions in the measurement solution obtained by ICP emission spectrometry using a general ICP-AES device are measured, and the adsorption equilibrium
  • the metal ion concentration [mass ppm] in the measurement solution at that time may be used.
  • the metal ion-containing aqueous solution may contain a reducing agent including one or more salts selected from the group consisting of oxalates, formates, erythorbates, ascorbates and hydrazine salts.
  • the molar ratio of the silicon content to the titanium content of the crystalline silicotitanate (hereinafter, also referred to as the “Si/Ti ratio”) is ) is 0.4 or more or 0.8 or more, and may be 2.5 or less or 1.5 or less.
  • Si/Ti ratio is 0.4 to 2.0, 0.6 to 1.5, 0.8 to 1.2, 0.8 to 1.1, or 1.0 to 1.2 Any of the following is acceptable.
  • the lower the Si/Ti ratio the greater the content of alkali metals that can be ion-exchanged with silver, and the greater the adsorption of strontium ions, cesium ions, and iodide ions. However, if the Si/Ti ratio is too low, by-products such as titanates that do not have ion-exchangeability tend to be generated.
  • the composition of the present embodiment may contain sodium, and the molar ratio of the sodium content to the titanium content of the crystalline silicotitanate (hereinafter also referred to as "Na/Ti ratio") is 0.1. 0.3 or more, and 1.0 or less, 0.8 or less, or 0.6 or less.
  • the Na/Ti ratio is preferably 0.1 to 1.0, 0.2 to 0.8, 0.4 to 0.8, or 0.4 to 0.7.
  • the composition of the present embodiment is an adsorbent that adsorbs one or more selected from the group of strontium ions, cesium ions and iodide ions in an aqueous solution containing metal ions, and further adsorbs strontium ions, cesium ions and iodide ions. It can be used as a simultaneous adsorbent for
  • the composition of the present embodiment is used in a method for simultaneous adsorption of cesium ions, strontium ions and iodide ions, which comprises contacting an adsorbent containing the composition with an aqueous solution containing cesium ions, strontium ions and iodide ions. can do.
  • the temperature of the metal ion-containing aqueous solution is preferably 0°C or higher and 50°C or lower, more preferably 10°C or higher and 30°C or lower, and even more preferably 20°C or higher and 30°C or lower.
  • the metal ion-containing aqueous solution may be an aqueous solution containing at least cesium, strontium and iodine, and may contain the following metal ions.
  • aqueous solution containing metal ions examples include seawater and simulated seawater. Seawater containing one or more selected from the group of cesium ions, strontium ions and iodide ions is preferred, and seawater containing cesium ions, strontium ions and iodide ions is more preferred.
  • Iodine in an aqueous solution is usually present as iodide ions (I ⁇ ) and iodate ions (IO 3 ⁇ ).
  • I ⁇ iodide ions
  • IO 3 ⁇ iodate ions
  • iodate ions have a weak interaction with silver and are difficult to adsorb. Therefore, it is preferable to reduce iodate ions to iodide ions by reduction treatment.
  • metal ion-containing aqueous solution containing iodine, partly or entirely of iodate ions it is preferable to subject the metal ion-containing aqueous solution containing iodine, partly or entirely of iodate ions, to a reduction treatment.
  • the pH of the metal ion-containing aqueous solution (hereinafter also referred to as "liquid pH") is preferably 2 or more and 12 or less.
  • the liquid pH is more preferably 5 or more and 10 or less in order to avoid corrosion of equipment and to achieve both adsorption performance for strontium ions and cesium ions.
  • composition of the present embodiment can be obtained by a production method including a silver supporting step of bringing silver and crystalline silicotitanate into contact.
  • Examples of the silver loading step include a method of contacting crystalline silicotitanate with an aqueous solution containing silver (silver-containing aqueous solution), and a method of mixing an insoluble salt such as silver oxide with crystalline silicotitanate.
  • one or more binders selected from the group consisting of clay, silica and alumina are added to the crystalline silicotitanate, and molded bodies such as cylindrical, spherical, and amorphous crushed products are obtained. is produced, and then the molded article is brought into contact with the silver-containing aqueous solution.
  • the crystalline silicotitanate After producing a crystalline silicotitanate, the crystalline silicotitanate, an insoluble salt such as silver oxide, and one or more binders selected from the group consisting of clay, silica and alumina are added to form a cylindrical or spherical shape. , a method for producing a molded product such as an amorphous crushed product, and the like can be used.
  • the crystalline silicotitanate to be subjected to the silver loading step preferably has the following molar composition.
  • a method for producing a crystalline silicotitanate for example, an inorganic titanium compound, an inorganic silicon compound, water, and a gelation step of mixing an alkali metal hydroxide, and the resulting gel For example, it undergoes a crystallization process to crystallize.
  • a gel that is, an amorphous silicotitanate gel, which is a precursor of crystalline silicotitanate, is obtained.
  • the additive element is added by mixing the additive metal source.
  • a containing amorphous silicotitanate gel may be obtained and subjected to a crystallization process.
  • an additive metal-substituted crystalline silicotitanate may be obtained by mixing an amorphous silicotitanate gel and an additive metal source and crystallizing.
  • any compound containing the additive metal can be used, including carbonates, nitrates, sulfates, oxides, niobates, silicates, titanates, and hydroxides.
  • One or more selected from the group of substances can be exemplified, preferably hydroxides.
  • One or more selected from the group of niobium hydroxide, niobium silicate (niobium silicate), niobium titanate (niobium titanate), vanadium hydroxide, manganese hydroxide and iron hydroxide can be exemplified as a specific additive metal source.
  • Niobium oxide is preferred.
  • the method for producing crystalline silicotitanate may include a washing step of washing the crystallized crystalline silicotitanate.
  • the washing method is arbitrary, a method of contacting the crystalline silicotitanate with warm pure water or a dilute hydrochloric acid aqueous solution of 0.05 mol/L or more and 0.5 mol/L or less can be exemplified.
  • the crystalline silicotitanate to be subjected to the washing step is preferably crystalline silicotitanate before being subjected to the silver supporting step in order to avoid elution of silver.
  • the composition obtained by the production method of the present embodiment is an adsorbent that adsorbs one or more selected from the group of strontium ions, cesium ions, and iodide ions in an aqueous solution containing metal ions, and further, strontium ions and cesium ions. and a simultaneous adsorbent that adsorbs iodide ions.
  • composition of the present embodiment may be used as a powder, but it can also be used as a molded body formed by mixing and kneading with a binder or the like, followed by extrusion molding, or molding into a cylindrical or spherical shape using a stirring granulator.
  • the composition of the present embodiment is used as a molded product, it is preferable to include a step of molding the composition (hereinafter also referred to as a "molding step").
  • the composition of this embodiment is molded into a desired shape.
  • the molding method in the molding step may be any method as long as a molded article having a desired shape can be obtained, for example, 1 selected from the group of tumbling granulation molding, press molding, extrusion molding, injection molding, slip casting and sheet molding. The above are mentioned.
  • a composition mixed with a binder may be molded.
  • a known zeolite binder may be used, and examples thereof include one or more selected from the group consisting of silica, alumina and clay.
  • Clays include one or more selected from the group consisting of kaolin, attapulsite, montmorillonite, bentonite, allophane and sepiolite.
  • Preferred binders include silica, especially silica sol.
  • the molded article containing the composition of the present embodiment is an adsorbent that adsorbs one or more selected from the group of strontium ions, cesium ions and iodide ions in an aqueous solution containing metal ions, as described above. It can be used as an adsorbent that adsorbs cesium ions and iodide ions.
  • a sample solution was prepared by dissolving the measurement sample in a mixed aqueous solution of hydrofluoric acid and nitric acid.
  • an ICP-AES device device name: OPTIMA3000DV, manufactured by PERKIN-ELMER
  • the content of titanium, silicon, silver, sodium and niobium is measured for the sample solution by ICP emission spectrometry (ICP-AES). bottom. From the contents of titanium, silicon, silver, sodium and niobium, the Si/Ti ratio, Ag/Ti ratio, Na/Ti ratio and Nb/Ti ratio of the sample were determined.
  • ⁇ Batch evaluation 1 Evaluation of adsorption properties of strontium ions, cesium ions and iodide ions>
  • the strontium ion, cesium ion and iodide ion concentrations were measured by the following methods. That is, using NaCl, MgCl 2 , CaCl 2 , Na 2 SO 4 , KCl, Sr standard solution, Cs standard solution and sodium iodide (NaI), an aqueous solution containing the following composition was prepared, and strontium ions, cesium ions and A metal ion-containing aqueous solution (pH: 7.0 ⁇ 1.0) containing iodide ions was prepared.
  • Ion concentrations of strontium ions, cesium ions, and iodide ions in the measurement solution obtained by ICP emission spectrometry using an ICP-AES device (device name: OPTIMA3000DV, manufactured by PERKIN-ELMER) are measured, and the adsorption equilibrium is was taken as the metal ion concentration [ppm] in the measurement solution.
  • metal ions are cesium ions, strontium ions, or iodide ions.
  • Kd (C.-C)/C ⁇ V/m (1)
  • Kd Partition coefficient [mL/g]
  • C. Metal ion concentration in metal ion-containing aqueous solution before adsorption treatment [ppm]
  • C Metal ion concentration [ppm] in the measurement solution at adsorption equilibrium
  • V Volume of metal ion-containing aqueous solution [1000 mL]
  • m Mass of adsorbent [0.05g]
  • ⁇ Batch evaluation 2 Evaluation of adsorption properties of strontium ions, cesium ions and iodide ions>
  • sodium iodide (NaI) was changed to sodium iodate (NaIO 3 ), and the resulting aqueous solution contained erythorbic acid, ascorbic acid, or sodium erythorbate in an amount 3 times the molar amount of sodium iodate. was added, and then stirred at room temperature for 3 hours to obtain
  • the pH of the metal ion-containing aqueous solution was 5.1 ⁇ 1.0.
  • strontium ion concentration, cesium ion concentration and iodide ion concentration in the metal ion-containing aqueous solution passed through were measured by ICP emission spectrometry in the same manner as above, and the breakthrough of strontium ion, cesium ion and iodide ion was measured. Curves were evaluated.
  • the BV on the horizontal axis of the breakthrough curve is an abbreviation for Bed Volume, and indicates the multiple of the liquid permeation volume to the adsorbent packed volume.
  • XRD measurement> The X-ray diffraction pattern of the sample was measured using an X-ray diffractometer (trade name: Ultima IV, manufactured by RIGAKU). The measurement conditions were as follows.
  • niobium hydroxide (Nb(OH) 5 ) powder 40 g of pure water, and a crystalline silicotitanate having a sitinakite structure as a seed crystal were added.
  • a niobium (Nb)-containing amorphous silicotitanate gel in the form of slurry having the following molar composition was obtained by adding 1% by mass to the gel and mixing.
  • Nb-substituted crystalline silicotitanate 10 times by mass of pure water, 10 times by mass of 0.15 mol / L hydrochloric acid aqueous solution, and 10 times by mass of pure water are added in this order. After washing the silicotitanate, it was recovered. The recovered Nb-substituted crystalline silicotitanate was dried at 90° C. for 16 hours in an air atmosphere. The molar composition of the dried Nb-substituted crystalline silicotitanate is shown below.
  • Nb/Ti ratio 0.68 10 g of the obtained Nb-substituted crystalline silicotitanate was mixed with 200 ml of an aqueous solution in which 1.8 g of silver nitrate (guaranteed reagent) was dissolved, and the mixture was stirred at room temperature and 40 rpm for 20 hours.
  • the silver content in the aqueous solution was 11.3% by mass with respect to the Nb-substituted crystalline silicotitanate.
  • the recovered solid content was dried at 90° C. for 16 hours in an air atmosphere to obtain a composition containing silver and Nb-substituted crystalline silicotitanate, which was used as the composition of this example. .
  • the resulting composition was a silver-containing Nb-substituted crystalline silicotitanate with a sininakite structure from its XRD pattern.
  • the XRD pattern is shown in FIG.
  • the XRD peaks of silver and silver compounds could not be confirmed, it is considered that silver is contained as silver ions in the composition of this example.
  • the silver content was 9.2% by mass, and the molar composition was as follows.
  • Example 2 A composition containing silver and crystalline silicotitanate was obtained in the same manner as in Example 1, except that an aqueous solution in which 1.0 g of silver nitrate was dissolved was used. The resulting composition was a silver-containing Nb-substituted crystalline silicotitanate with a sininakite structure from its XRD pattern. Moreover, since the XRD peaks of silver and silver compounds could not be confirmed, it is considered that silver is contained as silver ions in the composition of this example.
  • the silver content was 4.7% by mass
  • the molar composition was as follows.
  • the composition of this example had a higher Na/Ti ratio and a lower Ag/Ti ratio.
  • Sodium is contained as ions in the composition of the present example (further, the crystalline silicotitanate of the present example) other than the skeleton of the crystalline silicotitanate, particularly in the pores. Therefore, in the compositions of Examples, the crystalline silicotitanate contains silver, and it is considered that the silver is contained as silver ions in addition to the skeleton of the crystalline silicotitanate.
  • Example 3 No. 3 sodium silicate (SiO 2 : 29.1% by mass) 22 g, titanium oxysulfate aqueous solution (TiOSO 4 : 8.2% by mass) 71 g, sodium hydroxide (NaOH: 48% by mass) 63 g and pure water 41 g After mixing, the mixture was filtered and washed to obtain an amorphous silicotitanate gel having the following molar composition.
  • Nb-substituted crystalline silicotitanate having the following molar composition was prepared in the same manner as in Example 1 except that 1.8 g of niobium hydroxide (Nb(OH) 5 ) powder was mixed with the obtained amorphous silicotitanate gel. got
  • a composition containing silver and crystalline silicotitanate was obtained in the same manner as in Example 1, except that 0.15 g of silver nitrate was mixed with the obtained Nb-substituted crystalline silicotitanate, and used as the composition of this example. .
  • the resulting composition was a silver-containing Nb-substituted crystalline silicotitanate with a sininakite structure from its XRD pattern. Moreover, since the XRD peaks of silver and silver compounds could not be confirmed, it is considered that silver is contained as silver ions in the composition of this example.
  • the silver content was 0.7% by mass
  • the molar composition was as follows.
  • Example 5 A composition containing silver and crystalline silicotitanate was obtained in the same manner as in Example 1, except that the Nb-containing crystalline silicotitanate was mixed with 0.5 g of silver nitrate, and used as the composition of this example. The resulting composition was a silver-containing Nb-substituted crystalline silicotitanate with a sininakite structure from its XRD pattern. Moreover, since the XRD peaks of silver and silver compounds could not be confirmed, it is considered that silver is contained as silver ions in the composition of this example.
  • the silver content was 2.3% by mass, and the molar composition was as follows.
  • 100 g of the composition was mixed with 33 g of silica sol (SiO 2 : 30% by mass aqueous solution) as a binder and 40 g of pure water, followed by extrusion molding and drying to prepare a cylindrical molded body.
  • Comparative example 1 The Nb-substituted crystalline silicotitanate obtained in Example 1 (that is, the silver content was 0% by mass) was used as it was for the composition of this comparative example.
  • Comparative example 2 Using an aqueous solution in which 0.2 g of silver nitrate was dissolved, and instead of Nb-substituted crystalline silicotitanate, high silica zeolite (trade name: HSZ (registered trademark)-640, manufactured by Tosoh Corporation, SiO 2 /Al 2 O 3 Molar ratio: 18) A silver-containing zeolite composition was obtained in the same manner as in Example 1 except that the amount was 1.0 g, and used as the composition of this comparative example.
  • HSZ registered trademark
  • Comparative example 3 The composition of Example 2 was calcined at 600° C. for 1 hour under air circulation. The crystalline silicotitanate in the composition was amorphized to obtain a composition of the amorphized silicotitanate and silver oxide, which was used as the composition of this comparative example.
  • FIG. 5 shows the XRD pattern of the composition of this comparative example.
  • the XRD peak of crystalline silicotitanate was not confirmed, and it was confirmed that amorphous substances, decomposition products of silicotitanate, and silver oxide were contained. From this, it was confirmed that at least silicotitanate was amorphized in the composition of this comparative example.
  • Comparative example 4 The slurry-like Nb-containing amorphous silicotitanate gel obtained in Example 1 was filtered and dried at 110° C. for 16 hours in an air atmosphere to obtain an Nb-containing amorphous silicotitanate. The resulting Nb-containing amorphous silicotitanate was brought into contact with an aqueous solution of silver nitrate to obtain a composition containing silver and Nb-containing amorphous silicotitanate, which was used as the composition of this comparative example. The resulting composition was silver and Nb containing amorphous silicotitanate from its XRD pattern. The XRD pattern is shown in FIG. Since the XRD peaks of silver and silver compounds could not be confirmed, it is considered that silver is contained as silver ions in the composition of this comparative example.
  • Table 1 shows the metal composition (molar composition) and silver content of the obtained examples and comparative examples.
  • Table 2 shows the results of evaluation of strontium ion, cesium ion and iodide ion adsorption characteristics by batch evaluation 1.
  • composition of the present disclosure can efficiently treat harmful ions such as cesium ions, strontium ions, and iodide ions coexisting in seawater, groundwater, and contaminated water. Also, by removing iodine at the same time as removing cesium and strontium, the amount of adsorbent used and the amount of waste can be reduced.
  • harmful ions such as cesium ions, strontium ions, and iodide ions coexisting in seawater, groundwater, and contaminated water. Also, by removing iodine at the same time as removing cesium and strontium, the amount of adsorbent used and the amount of waste can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

従来のセシウムイオンとストロンチウムイオンの吸着に加え、ヨウ化物イオンの同時吸着を可能とした銀と結晶性シリコチタネートを含む組成物及びその製造方法の少なくともいずれか、を提供する。

Description

組成物及びその製造方法
 本開示は、組成物およびその製造方法に関し、特に結晶性シリコチタネートの組成物に関する。本開示の組成物は、例えば、汚染水、海水、地下水中の有害イオン処理等の用途に有用である。
 水溶液から有害イオンを除去できる吸着材として、結晶性シリコチタネートが知られている。
 例えば、特許文献1には海水中の放射性物質の除去用イオン交換体として結晶性シリコチタネート及びその製法が開示されている。特許文献1において、ニオブを含有した結晶性シリコチタネートが開示されている。この結晶性シリコチタネートは、放射性セシウム、放射性ストロンチウムを吸着除去することを目的としている。また、他の放射性核種としてヨウ素の吸着除去を目的とした銀含有ゼオライトが知られているが、これら同時吸着能を有する材料は知られていない。
 特許文献2では、セシウムのみを含む水溶液に対する吸着材として結晶性ケイチタン酸塩CST-2が開示されている。
 特許文献3では、セシウム及びストロンチウムを含む水溶液に対する吸着材としてケイチタン酸が開示されている。
 特許文献4では、セシウム及びストロンチウムを含む水溶液に対する吸着材として、特にストロンチウムの選択性が高い、シチナカイト構造を含む結晶性シリコチタネート組成物が開示されている。
米国特許6110378号明細書 日本国特許4919528号公報 日本国特開2013-088391号公報 日本国特許第6645203号公報
 本開示は、従来のセシウムイオンとストロンチウムイオンの吸着に加え、ヨウ化物イオンの同時吸着を可能とした銀と結晶性シリコチタネートを含む組成物及びその製造方法の少なくともいずれか、を提供するものである。
 本発明者らは、銀と結晶性シリコチタネートを含む組成物がセシウムイオンとストロンチウムイオンとヨウ化物イオンの同時吸着を可能であることを見出した。
 すなわち、本発明は特許請求の範囲の記載の通りであり、また、本開示の要旨は以下の通りである。
[1] 銀と結晶性シリコチタネートを含む組成物。
[2] 前記結晶性シリコチタネートがシチナカイト構造を有する前記[1]に記載の組成物。
[3] 前記銀の含有量が0.3質量%以上20質量%以下である前記[1]または[2]に記載の組成物。
[4] 前記銀の少なくとも一部を、前記結晶性シリコチタネートのイオン交換サイトに有する、前記[1]乃至[3]のいずれか一項に記載の組成物。
[5] ニオブ、タンタル、バナジウム、アンチモン、マンガン及び鉄の群から選ばれる1以上の金属元素を含む、前記[1]乃至[4]のいずれか一項に記載の組成物。
[6] 前記金属元素がニオブである、前記[5]に記載の組成物。
[7] 前記組成物に含まれるチタンの量に対して、前記金属元素の量のモル比が0.01以上1.2以下である、前記[5]または[6]に記載の組成物。
[8] 以下の式(1)で示されるヨウ素の分配係数が10,000mL/g以上であることを特徴とする、前記[1]乃至[7]のいずれか一項に記載の組成物。
  Kd=(C。-C)/C×V/m            (1)
   Kd    :ヨウ素の分配係数[mL/g]
   C。=1   :吸着処理前のヨウ素含有水溶液中の金属イオン濃度[ppm]
   C      :吸着平衡時のヨウ素含有水溶液中の金属イオン濃度[ppm]
   V=1000:ヨウ素含有水溶液の体積[mL]
   m=0.05:吸着材の質量[g]
[9] 結晶性シリコチタネートと銀を含有する水溶液を接触させる、前記[1]乃至[8]のいずれか一項に記載の組成物の製造方法。
[10] 前記[1]乃至[8]のいずれか一項に記載の組成物を含有する、成形体。
[11] 前記[1]乃至[8]のいずれか一項に記載の組成物を含有するセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの吸着材。
[12] 前記[1]乃至[8]のいずれか一項に記載の組成物を含有するセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの群から選ばれる1種以上の吸着材。
[13] 前記[11]または[12]に記載の吸着材とセシウムイオン、ストロンチウムイオン及びヨウ化物イオンを含む水溶液とを接触させる工程、を含むセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの吸着方法。
[14] 前記水溶液のpHが2以上12以下である、前記[13]に記載のセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの吸着方法。
[15] 前記水溶液を還元処理する工程、を含む前記[13]または[14]に記載のセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの吸着方法。
[16] 前記還元処理に使用する還元剤がシュウ酸塩、ギ酸塩、エリソルビン酸塩、アスコルビン酸塩及びヒドラジン塩の群から選ばれる1以上を含む、前記[15]に記載のセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの吸着方法。
 本開示により、従来のセシウムイオンとストロンチウムイオンの吸着に加え、ヨウ化物イオンの同時吸着することを可能とした銀と結晶性シリコチタネートを含む組成物及びその製造方法の少なくともいずれか、を提供することができる。
実施例5のカラム流通評価の結果を示した図である。 比較例1のカラム流通評価の結果を示した図である。 比較例2のカラム流通評価の結果を示した図である。 実施例1のXRDパターンを示した図である。 比較例3のXRDパターンを示した図である。 比較例4のXRDパターンを示した図である。
 以下、本開示について、その実施形態の一例を示して説明する。なお、本実施形態における用語は以下の通りである。
 「シリコチタネート」は、チタン(Ti)とケイ素(Si)とが酸素(O)を介したネットワークの繰返しからなる構造を有する複合酸化物であり、例えば、一般式ATiО・xSiO・nHO(ただし、Aはナトリウム(Na)及びカリウム(K)の少なくともいずれかのアルカリ金属元素を示す。)で表される。シリコチタネートのうち、その粉末X線回折(以下、「XRD」ともいう。)パターンにおいて、結晶性のXRDピークを有するものが「結晶性シリコチタネート」である。
 一方、シリコチタネートのうち、結晶性のXRDピークを有さないものが「非晶質シリコチタネート」である。
 本実施形態において、XRDパターンは以下の条件のXRD測定より得られるものが挙げられる。
      加速電流・電圧  : 40mA・40kV
      線源       : CuKα線(波長λ=1.5405Å)
      測定モード    : 連続スキャン
      スキャン条件   : 40°/分
      測定範囲     : 2θ=3°から43°
      検出器      : 半導体検出器
 結晶性のXRDピークは、一般的な解析ソフト(例えば、SmartLab StudioII、リガク社製)を使用したXRDパターンの解析においてピークトップの2θが特定され検出されるピークであり、半値幅が2θ=1.0°以下のXRDピークが例示できる。
 本実施形態におけるセシウムイオン、ストロンチウムイオン及びヨウ化物イオンとは、それぞれ放射性セシウム、放射性ストロンチウム及び放射性ヨウ素を含んでいてもよく、放射性セシウム、放射性ストロンチウム及び放射性ヨウ素であってもよい。
 「同時吸着」とは、2種以上のイオンを含む媒体から、個々のイオンを逐次的に吸着するための複数の操作(いわゆる多段法)を有さず、ひとつの操作(いわゆる一段法)で目的とする2種以上のイオンを該媒体から吸着することである。例えば、セシウムイオン、ストロンチウムイオン及びヨウ化物イオンの同時吸着は、吸着材とこれら3つのイオンを含有する溶液とを接触させセシウムイオン、ストロンチウムイオン及びヨウ化物イオンを吸着する操作など、ひとつの吸着操作で目的とする2以上のイオンを吸着することである。
 以下、本実施形態の組成物について説明する。
 本実施形態の組成物は、銀と結晶性シリコチタネートを含む組成物であり、銀と結晶性シリコチタネートからなる組成物であってもよい。これにより、セシウムイオン、ストロンチウムイオン及びヨウ化物イオンを同時に、かつ他のイオンに対し選択的に吸着することができる。
 本実施形態の組成物に含まれる結晶性シリコチタネートは、ストロンチウムイオン及びセシウムイオンの吸着特性をより高くするため、シチナカイト構造を有することが好ましい。
 「シチナカイト構造」とは、American Mineralogist Crystal Structure Database(http://ruff.geo.arizona.edu./AMS/amcsd.php、検索日:2021年11月11日)におけるsitinakiteに記載された粉末X線回折ピークで特定される結晶構造のことをいい、シチナカイト構造を有する結晶性シリコチタネートは、線源にCuKα線(波長λ=1.5405Å)を用いた際のXRDパターンにおいて、少なくとも、2θが11.23°±0.5°、27.52°±0.5°、14.82°±0.5°及び26.37°±0.5°のX線回折ピークを有することで特定される。
 本実施形態の組成物は、ヨウ化物イオンを吸着する効果を奏するため、銀(Ag)を含む。
 本実施形態の組成物の銀の含有量は、結晶性シリコチタネートの質量に対して0.3質量%以上、0.4質量%以上又は1.5質量%以上であり、また、20質量%以下、10質量%以下又は5質量%以下であればよい。銀の含有量の範囲は、0.3質量%以上20質量%以下、0.4質量%以上10質量%以下、0.5質量%以上10質量%以下、1.5質量%以上10質量%以下、又は、1.5質量%以上5質量%以下が例示できる。
 「銀の含有量」は銀の質量の割合[質量%]であり、また、一般的なICP-AES装置(例えば、装置名:OPTIMA3000DV、PERKIN-ELMER社製)を用いたICP発光分光分析法により求めることができる。
 本実施形態の組成物は、該組成物中のチタンの含有量に対する銀の含有量のモル比(以下「Ag/Ti比」ともいう。)が、0.005以上、0.01以上又は0.5以上であり、また、0.6以下、0.3以下又は0.2以下が例示できる。Ag/Ti比は、0.005以上0.6以下が好ましく、0.006以上0.6以下がより好ましく、0.01以上0.3以下が更に好ましく、0.05以上0.25以下が更により好ましい。
 高いヨウ化物イオンの吸着性能を発現するため、本実施形態の組成物は、結晶性シリコチタネートが銀を含有している状態が好ましく、結晶性シリコチタネートが銀の少なくとも一部を担持している状態がより好ましい。
 「銀を含有している状態」とは、結晶性シリコチタネートが銀を含むことをいい、一方、「銀を担持している状態」とは、結晶性シリコチタネートが銀を骨格原子(以下、「T原子」ともいう。)以外で含むこと、すなわち銀がT原子として存在していない状態、好ましくは銀がT原子として存在せず、なおかつ、結晶性シリコチタネートの表面及び細孔内の少なくともいずれか、に含まれている状態、を意味する。銀が結晶性シリコチタネートの表面に含まれている場合、該銀は酸化銀などの酸化物の状態、及び塩化銀など不溶性の塩の状態であってもよく、酸化物として含まれていればよい。一方、銀が細孔内に含まれている場合は、結晶性シリコチタネート中のイオン交換可能なカチオンであるナトリウムイオンとイオン交換された銀イオンの状態であればよく、銀イオンとして含まれていればよい。
 本実施形態の組成物に含まれる銀は、少なくとも銀イオンとして含まれていること、すなわち、その少なくとも一部が、結晶性シリコチタネートのイオン交換サイトに有することが好ましい。
 本実施形態の組成物は、ニオブ(Nb)、タンタル(Ta)、バナジウム(V)、アンチモン(Sb)、マンガン(Mn)及び鉄(Fe)の群から選ばれる1以上の金属元素(以下、「添加金属」ともいう。)を含有していてもよく、ニオブ、バナジウム、マンガン及び鉄の群から選ばれる1以上の金属元素を含有していることが好ましく、ニオブを含有することがより好ましい。
 添加金属は、全て又は一部が結晶性シリコチタネート中のSiと置換されていること、すなわち、添加金属の全て又は一部が結晶性シリコチタネートのT原子として含まれていること、が好ましい。
 本実施形態の組成物が添加金属を含有する場合、セシウムイオン及びストロンチウムイオンの吸着性能がより高くなりやすいことから、添加金属はニオブが好ましい。また、本実施形態の組成物は添加金属を含有し、添加金属の含有量は、結晶性シリコチタネートのチタンの含有量に対する、添加金属の含有量のモル比(以下、「金属/Ti比」ともいう。)で0以上1.5以下、0.01以上1.5以下、又は0.1以上1.5以下であることが好ましい。金属/Ti比がこの範囲にあることで、副生物の生成が低減され、吸着性能がより向上しやすい。金属/Tiモル比は0.01以上1.2以下、0.01以上1.0以下0.1以上1.0以下、0.3以上1.0以下、又は、0.3以上0.8以下であることがより好ましい。
 本実施形態の組成物は、セシウムイオンの分配係数(以下、「Kd」ともいう。)が100,000mL/g以上であることが好ましく、200,000mL/g以上であることがさらに好ましく、1,000,000mL/g以上であることが特に好ましい。セシウムイオンのKdの上限は特に限定されないが、2,000,000mL/g以下であることが例示でき、また、その範囲として、100,000mL/g以上2,000,000mL/g以下、200,000mL/g以上2,000,000mL/g以下、又は、1,000,000mL/g以上2,000,000mL/g以下が例示できる。
 本実施形態の組成物は、ストロンチウムイオンの吸着特性が高いことが好ましいため、ストロンチウムイオンのKdが10,000mL/g以上であることが好ましく、20,000mL/g以上であることがさらに好ましい。ストロンチウムイオンのKdの上限は特に限定されないが、2,000,000mL/g以下であることが例示でき、また、その範囲として、100,000mL/g以上2,000,000mL/g以下、又は、200,000mL/g以上2,000,000mL/g以下が例示できる。
 本実施形態の組成物は、ヨウ素の吸着特性が高いことが好ましいため、ヨウ化物イオンのKdが10,000mL/g以上であることが好ましく、20,000mL/g以上であることがさらに好ましい。ヨウ化物イオンのKdの上限は特に限定されないが、2,000,000mL/g以下であることが例示でき、また、その範囲として、100,000mL/g以上2,000,000mL/g以下、又は、200,000mL/g以上2,000,000mL/g以下が例示できる。
 本実施形態において、Kdは、吸着材を用いてストロンチウムイオン、セシウムイオン及びヨウ化物イオンの群から選ばれる1以上を含有する水溶液(以下、「金属イオン含有水溶液」)から金属イオンの吸着処理した際の、吸着材の吸着特性を示す値であり、以下の式(1)から求めることができる。ただし、金属イオンはセシウムイオン、ストロンチウムイオン、又はヨウ化物イオンを示す。
  Kd=(C。-C)/C×V/m            (1)
   Kd : 分配係数[mL/g]
   C。 : 吸着処理前の金属イオン含有水溶液中の金属イオン濃度[ppm]
   C  : 吸着平衡時の測定溶液中の金属イオン濃度[ppm]
   V  : 金属イオン含有水溶液の体積[mL]
   m  : 吸着材の質量[g]
 ストロンチウムイオン、セシウムイオン及びヨウ化物イオン濃度の測定は、以下の方法で測定すればよい。すなわち、NaCl、MgCl、CaCl、NaSO、KCl、Sr標準液、Cs標準液及びNaIを用い、以下の組成を含む水溶液を調製し、ストロンチウムイオン、セシウムイオン及びヨウ化物イオンを含有する金属イオン含有水溶液とする。
   Na :870質量ppm(NaCl由来)
   Mg :118質量ppm
   Ca : 41質量ppm
   Na :126質量ppm(NaSO由来)
   K  : 32質量ppm
   Na :  1質量ppm(NaI由来)
   Sr :  1質量ppm
   Cs :  1質量ppm
   I  :  1質量ppm
(ここでNaの合計の濃度は997質量ppmである)
 次いで、1000mLの金属イオン含有水溶液に対し0.05gの本実施形態の組成物を添加し、これを、25℃、800rpm、24時間以上攪拌混合する。なお、組成物は、前処理として大気中、100℃で1時間加熱する。混合後、金属イオン含有水溶液から組成物をろ過分離し、回収された金属イオン含有水溶液を5倍に希釈し、測定溶液とする。
 一般的なICP-AES装置(例えば、OPTIMA3000DV、PERKIN-ELMER社製)を用いたICP発光分光分析法により得られる測定溶液のストロンチウムイオン、セシウムイオン及びヨウ化物イオンの濃度をそれぞれ測定し、吸着平衡時の測定溶液中の金属イオン濃度[質量ppm]とすればよい。
 上記金属イオン含有水溶液は、シュウ酸塩、ギ酸塩、エリソルビン酸塩、アスコルビン酸塩及びヒドラジン塩の群から選ばれる1以上の塩、等を含む還元剤を含んでいてもよい。
 本実施形態の組成物は、セシウムイオン及びストロンチウムイオンの吸着性能を向上しやすくするため、結晶性シリコチタネートのチタンの含有量に対するシリコンの含有量のモル比(以下、「Si/Ti比」ともいう。)は、0.4以上又は0.8以上であり、また、2.5以下又は1.5以下であればよい。Si/Ti比は0.4以上2.0以下、0.6以上1.5以下、0.8以上1.2以下、0.8以上1.1以下、又は、1.0以上1.2以下であればよい。Si/Ti比が低いほど、銀とイオン交換可能なアルカリ金属の含有量が増加し、ストロンチウムイオン、セシウムイオン及びヨウ化物イオンの吸着量が多くなりやすい。ただし、Si/Ti比が低すぎると、イオン交換性を有さないチタン酸塩などの副生物が生成しやすくなる。
 本実施形態の組成物は、ナトリウムを含んでいてもよく、結晶性シリコチタネートのチタンの含有量に対するナトリウムの含有量のモル比(以下「Na/Ti比」ともいう。)が、0.1以上又は0.3以上であり、また、1.0以下、0.8以下又は0.6以下であればよい。Na/Ti比は、0.1以上1.0以下、0.2以上0.8以下、0.4以上0.8以下、又は、0.4以上0.7以下が好ましい。Na/Ti比が上記の値となる場合、本実施形態の組成物と、金属イオン含有水溶液とを接触させたとき、金属イオン含有水溶液のpHの上昇を抑制でき、その結果、ストロンチウムイオン及びセシウムイオンの吸着性能がより高くなりやすい。
 本実施形態の組成物は、金属イオン含有水溶液中のストロンチウムイオン、セシウムイオン及びヨウ化物イオンの群から選ばれる1以上を吸着する吸着材、更には、ストロンチウムイオン、セシウムイオン及びヨウ化物イオンを吸着する同時吸着材として使用することができる。
 本実施形態の組成物は、これを含む吸着材と、セシウムイオン、ストロンチウムイオン及びヨウ化物イオンを含む水溶液とを接触させる工程、を含むセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの同時吸着方法に使用することができる。
 具体的には、金属イオン含有水溶液を入れた容器に本実施形態の組成物を含む吸着材を添加混合するバッチ処理法、及び本実施形態の組成物をカラムに充填し金属含有水溶液を流通させるカラム法が挙げられる。
 このとき、金属イオン含有水溶液の温度は0℃以上50℃以下が好ましく、10℃以上30℃以下がより好ましく、20℃以上30℃以下がさらに好ましい。
 なお、金属イオン含有水溶液は、少なくともセシウム、ストロンチウム及びヨウ素を含む水溶液であればよく、以下の金属イオンを含んでいてもよい。
   Na :0.01質量ppm以上20000質量ppm以下
   Mg :0.01質量ppm以上2000質量ppm以下
   Ca :0.01質量ppm以上1000質量ppm以下
   K  :0.01質量ppm以上1000質量ppm以下
   Sr :0.01質量ppm以上100質量ppm以下
   Cs :0.01質量ppm以上100質量ppm以下
   I  :0.01質量ppm以上100質量ppm以下
 金属イオン含有水溶液としては、例えば、海水又は模擬海水、を挙げることができ、セシウムイオン、ストロンチウムイオン及びヨウ化物イオンの群から選ばれる1以上を含む海水が好ましく、セシウムイオン、ストロンチウムイオン及びヨウ化物イオンを含む海水がより好ましい。
 また、通常、水溶液中のヨウ素は、ヨウ化物イオン(I)及びヨウ素酸イオン(IO )として存在している。このうち、ヨウ素酸イオンは、銀との相互作用が弱く吸着し難いことから、還元処理によってヨウ素酸イオンをヨウ化物イオンに還元することが好ましい。
 このため、一部又は全てがヨウ素酸イオンであるヨウ素を含む金属イオン含有水溶液は、還元処理を行うことが好ましい。
 金属イオン含有水溶液のpH(以下、「液pH」ともいう。)は2以上12以下が好ましい。設備の腐食を避けるためや、ストロンチウムイオン及びセシウムイオンの吸着性能を両立する理由から、液pHは5以上10以下がより好ましい。
 一般的に、液pHが高すぎる場合、結晶性シリコチタネートのストロンチウムイオン吸着性能が低下し、液pHが低すぎる場合、結晶性シリコチタネートのセシウムイオン吸着性能が低下しやすい傾向がある。
 ヨウ素酸イオンをヨウ化物イオンの形態に還元する方法として、金属イオン含有水溶液に還元剤の添加が例示できる。使用する還元剤は、液pHを上記値にしたうえで、ヨウ素酸イオンをヨウ化物イオンに還元できる還元剤であればよく、シュウ酸塩、ギ酸塩、エリソルビン酸塩、アスコルビン酸塩及びヒドラジン塩の群から選ばれる1以上の塩を含む還元剤が挙げられる。液pHを調整しやすいことから、上記還元剤は、ギ酸ナトリウム、シュウ酸ナトリウム、エリソルビン酸、エリソルビン酸ナトリウム及びアスコルビン酸、アスコルビン酸ナトリウムの群から選ばれる1以上が好ましく、エリソルビン酸、エリソルビン酸ナトリウムがより好ましい。
 次に、本実施形態の組成物の製造方法について説明する。
 本実施形態の組成物は、銀と結晶性シリコチタネートを接触させる銀担持工程を含む製造方法により得ることができる。
 銀担持工程として、例えば結晶性シリコチタネートと、銀を含有する水溶液(銀含有水溶液)とを接触させる方法や、酸化銀などの不溶性の塩を結晶性シリコチタネートと混合する方法が挙げられる。
 また、結晶性シリコチタネート粉末を製造した後に、該結晶性シリコチタネートに、粘土、シリカ及びアルミナの群から選ばれる1以上の結合剤を加え、円柱状、球状、無定形破砕品などの成形体を製造し、その後、該成形体と銀含有水溶液とを接触させる方法が例示できる。
 さらには、結晶性シリコチタネートを製造した後、該結晶性シリコチタネートと、酸化銀などの不溶性塩と、粘土、シリカ及びアルミナの群から選ばれる1以上の結合剤とを加え、円柱状、球状、無定形破砕品などの成形体を製造する方法などを用いることができる。
 銀担持工程に供する結晶性シリコチタネートは、以下のモル組成を有していることが好ましい。
    Si/Ti比  =  0.4以上2.5以下、0.6以上1.5以下、0.8以上1.2以下、0.8以上1.1以下、又は、1.0以上1.2以下
    Na/Ti比  =  0.1以上1.2以下、0.2以上1.1以下、0.4以上1.0以下、又は、0.6以上0.9以下
    金属/Ti比  =  0以上1.2以下、0超1.2以下、0.01以上1.2以下、0.01以上1.0以下0.1以上1.0以下、0.3以上1.0以下、又は、0.3以上0.8以下
 結晶性シリコチタネートの製造方法としては、例えば、無機系チタン化合物、無機系ケイ素化合物、水、及びアルカリ金属水酸化物を混合するゲル化工程、そして得られたゲルを結晶化する結晶化工程を経ること等があげられる。
 ゲル化工程で、無機系チタン化合物、無機系ケイ素化合物、水、及びアルカリ金属水酸化物を混合することにより、ゲル、すなわち結晶性シリコチタネートの前駆体である無定形シリコチタネートゲルが得られる。
 添加金属を含む結晶性シリコチタネートを製造する場合、ゲル化工程において、無機系チタン化合物、無機系ケイ素化合物、水、及びアルカリ金属水酸化物に加え、添加金属源を混合することで添加元素を含有する無定形シリコチタネートゲルを得、これを結晶化工程に供してもよい。
 一方、結晶化工程において、無定形シリコチタネートゲルと添加金属源とを混合して結晶化することで添加金属置換結晶性シリコチタネートとしてもよい。
 ゲル化工程又は結晶化工程に供する添加金属源として、添加金属を含む化合物であればよく、炭酸化物、硝酸化物、硫酸化物、酸化物、ニオブ酸塩、ケイ酸塩、チタン酸塩及び水酸化物の群から選ばれる1以上が例示でき、好ましくは水酸化物が挙げられる。具体的な添加金属源として水酸化ニオブ、ケイ酸ニオブ(ニオブシリケート)、チタン酸ニオブ(ニオブチタネート)、水酸化バナジウム、水酸化マンガン及び水酸化鉄の群から選ばれる1以上が例示でき、水酸化ニオブが好ましい。
 結晶化工程において、添加金属源を含む無定形シリコチタネートゲルを結晶化することにより、添加金属がケイ素を置換しながら結晶性シリコチタネートが結晶化する。これにより、添加金属の一部又は全てがT原子となり、添加金属置換結晶性シリコチタネートが得られる。
 結晶性シリコチタネートの製造方法は、結晶化した結晶性シリコチタネートを洗浄する洗浄工程を含んでいてもよい。洗浄方法は任意であるが、温純水又は0.05mol/L以上0.5mol/L以下の希塩酸水溶液を結晶性シリコチタネートと接触させる方法が例示できる。ただし、洗浄工程に供する結晶性シリコチタネートは、銀の溶出を避けるため、銀担持工程に供する前の結晶性シリコチタネートであることが好ましい。
 本実施形態の製造方法により得られた組成物はそのまま金属イオン含有水溶液中のストロンチウムイオン、セシウムイオン及びヨウ化物イオンの群から選ばれる1以上を吸着する吸着材、更には、ストロンチウムイオン、セシウムイオン及びヨウ化物イオンを吸着する同時吸着材、として用いることができる。
 本実施形態の組成物は粉末として用いてもよいが、結合剤等と混合、混練した後に押出成形、又は撹拌造粒機を用いて円柱状や球状に成形した成形体として用いることもできる。
 本実施形態の組成物を成形体とする場合、組成物を成形する工程(以下、「成形工程」ともいう。)を有することが好ましい。
 成形工程は、本実施形態の組成物を成形し、所望の形状にする。成形工程における成形方法は、所望の形状の成形体が得られる方法であればよく、例えば、転動造粒成形、プレス成形、押し出し成形、射出成形、鋳込み成形及びシート成形の群から選ばれる1以上が挙げられる。
 成形工程において、本実施形態の組成物に加え、結合剤と混合した組成物を成形してもよい。結合剤は、ゼオライトの結合剤として使用される公知のものを使用すればよく、例えば、シリカ、アルミナ及び粘土の群から選ばれる1以上が挙げられる。また、粘土としてカオリン、アタパルシャイト、モンモリロナイト、ベントナイト、アロフェン及びセピオライトの群から選ばれる1以上、が挙げられる。好ましい結合剤としてシリカ、特にシリカゾルが挙げられる。
 本実施形態の組成物を含む成形体は、上記と同様に金属イオン含有水溶液中のストロンチウムイオン、セシウムイオン及びヨウ化物イオンの群から選ばれる1以上を吸着する吸着材、更には、ストロンチウムイオン、セシウムイオン及びヨウ化物イオンを吸着する吸着材として、用いることができる。
 以下、実施例により本開示をさらに具体的に説明するが、本開示はこれらに限定されるものではない。
 <組成分析>
 フッ酸と硝酸の混合水溶液に測定試料を加圧酸溶解して試料溶液を調製した。ICP-AES装置(装置名:OPTIMA3000DV、PERKIN-ELMER社製)を使用して、当該試料溶液をICP発光分光分析法(ICP-AES)でチタン、ケイ素、銀、ナトリウム及びニオブの含有量を測定した。チタン、ケイ素、銀、ナトリウム及びニオブの含有量から、試料のSi/Ti比、Ag/Ti比、Na/Ti比及びNb/Ti比を求めた。
 <バッチ評価1:ストロンチウムイオン、セシウムイオン及びヨウ化物イオン吸着特性の評価>
 ストロンチウムイオン、セシウムイオン及びヨウ化物イオン濃度の測定は、以下の方法で測定した。すなわち、NaCl、MgCl、CaCl、NaSO、KCl、Sr標準液、Cs標準液及びヨウ化ナトリウム(NaI)を用い、以下の組成を含む水溶液を調製し、ストロンチウムイオン、セシウムイオン及びヨウ化物イオンを含有する金属イオン含有水溶液(pH:7.0±1.0)とした。
   Na :870質量ppm(NaCl由来)
   Mg :118質量ppm
   Ca : 41質量ppm
   Na :126質量ppm(NaSO由来)
   K  : 32質量ppm
   Na :  1質量ppm(NaI由来)
   Sr :  1質量ppm
   Cs :  1質量ppm
   I  :  1質量ppm
(ここでNaの合計の濃度は997質量ppmである)
 次いで、1000mLの金属イオン含有水溶液に対し0.05gの測定試料を添加し、25℃、800rpm、24時間以上攪拌した。なお、測定試料は、前処理として大気中、100℃で1時間加熱した。混合後、測定溶液から組成物をろ過分離し、回収された模擬海水を5倍に希釈し、測定溶液とした。
 ICP-AES装置(装置名:OPTIMA3000DV、PERKIN-ELMER社製)を用いたICP発光分光分析法により得られる測定溶液のストロンチウムイオン、セシウムイオン及びヨウ化物イオンのイオン濃度をそれぞれ測定し、吸着平衡時の測定溶液中の金属イオン濃度[ppm]とした。
 得られたそれぞれの金属イオン濃度から、以下の式(1)から金属イオンのKdをそれぞれ求めた。ただし、金属イオンはセシウムイオン、ストロンチウムイオン、又はヨウ化物イオンを示す。
  Kd=(C。-C)/C×V/m            (1)
   Kd : 分配係数[mL/g]
   C。 : 吸着処理前の金属イオン含有水溶液中の金属イオン濃度[ppm]
   C  : 吸着平衡時の測定溶液中の金属イオン濃度[ppm]
   V  : 金属イオン含有水溶液の体積[1000mL]
   m  : 吸着材の質量[0.05g]
 <バッチ評価2:ストロンチウムイオン、セシウムイオン及びヨウ化物イオン吸着特性の評価>
 金属イオン含有水溶液の調整において、ヨウ化ナトリウム(NaI)をヨウ素酸ナトリウム(NaIO)に変更したこと、得られた水溶液にヨウ素酸ナトリウムの3倍モル量のエリソルビン酸、アスコルビン酸又はエリソルビン酸ナトリウムを加えた後、室温で3時間撹拌し金属イオン含有水溶液を得たこと以外は、上記バッチ評価1と同様の方法でバッチ評価2を行った。
 このとき、金属イオン含有水溶液のpHは5.1±1.0であった。
 <カラム流通評価:ストロンチウムイオン、セシウムイオン及びヨウ化物イオン吸着特性の評価>
 内径0.8cm、長さ20cmのガラス製カラムに測定試料を4.5ml充填し、温度25℃の前記の金属イオン含有水溶液を45ml/時間の流量でアップフロー方式で通液させた。
 通液した金属イオン含有水溶液中のストロンチウムイオン濃度、セシウムイオン濃度及びヨウ化物イオン濃度を、上記と同様の方法でICP発光分光分析法により測定し、ストロンチウムイオン、セシウムイオン及びヨウ化物イオンの破過曲線を評価した。
 破過曲線の横軸単位のBVとは、Bed Volumeの略であり、吸着材充填容積に対する通液量体積の倍数を示す。
<XRD測定>
 X線回折装置(商品名:UltimaIV、RIGAKU社製)を使用して試料のX線回折パターンを測定した。測定条件は以下のとおりとした。
  線源: CuKα線(波長λ=1.5405Å)
  スキャン条件: 毎秒0.1°
  発散スリット: 1.00deg
  散乱スリット: 1.00deg
  受光スリット: 0.30mm
  測定範囲: 2θ=5.0°~60.0°
 実施例1
 3号ケイ酸ソーダ(SiO:29.1質量%)20g、オキシ硫酸チタン水溶液(TiOSO:8.2質量%)71g、水酸化ナトリウム(NaOH:48質量%)63g及び純水41gを混合した後にろ過、洗浄を行い、以下のモル組成からなる無定形シリコチタネートゲルを得た。ただし、「HO/Ti比」はTiに対するHOのモル比である。
    Si/Ti比  =  1.37
    Na/Ti比  =  3.3
    HO/Ti比 = 11
 得られた無定形シリコチタネートゲル8.3gに、水酸化ニオブ(Nb(OH))粉末5.5gと純水40g、及び、種晶としてシチナカイト構造を有する結晶性シリコチタネートを無定形シリコチタネートゲルに対して1質量%添加、混合し以下のモル組成を有するスラリー状のニオブ(Nb)含有無定形シリコチタネートゲルを得た。
    Si/Ti比  =  1.37
    Na/Ti比  =  3.3
    Nb/Ti比  =  1.0
    HO/Ti比 = 82
 当該スラリー状のNb含有無定形シリコチタネートゲルを内容積80ccのステンレス製オートクレーブ(商品名:KH-02、HIRO COMPANY製)に充填した。これを180℃で72時間加熱してNb含有無定形シリコチタネートゲルを結晶化させて、結晶性シリコチタネート(Nb置換結晶性シリコチタネート)を合成した。
 次いで、Nb置換結晶性シリコチタネートに対し、10質量倍量の純水、10質量倍量の0.15mol/Lの塩酸水溶液、及び、10質量倍量の純水の順で、Nb置換結晶性シリコチタネートを洗浄した後、これを回収した。回収したNb置換結晶性シリコチタネートを大気雰囲気下、90℃で16時間乾燥した。乾燥後のNb置換結晶性シリコチタネートのモル組成を以下に示す。
    Si/Ti比  =  0.97
    Na/Ti比  =  0.79
    Nb/Ti比  =  0.68
 硝酸銀(特級試薬)1.8gを溶解させた水溶液200mlに、得られたNb置換結晶性シリコチタネート10gを混合し、室温、40rpmで20時間攪拌した。当該水溶液中の銀含有量は、Nb置換結晶性シリコチタネートに対し11.3質量%であった。
 次いで、当該水溶液を濾過、洗浄後、回収した固形分を大気雰囲気下、90℃で16時間乾燥し、銀とNb置換結晶性シリコチタネートを含む組成物を得、本実施例の組成物とした。得られた組成物は、そのXRDパターンから、シチナカイト構造を有する銀含有Nb置換結晶性シリコチタネートであった。当該XRDパターンを図4に示す。また、銀及び銀化合物のXRDピークが確認できなかったことから、本実施例の組成物において、銀は銀イオンとして含まれていると考えられる。
 本実施例の組成物において、銀の含有量は9.2質量%であり、そのモル組成は以下の通りであった。
    Si/Ti比  =  0.97
    Na/Ti比  =  0.49
    Nb/Ti比  =  0.66
    Ag/Ti比  =  0.21
 実施例2
 硝酸銀1.0gを溶解させた水溶液を使用したこと以外は、実施例1と同様な方法で銀と結晶性シリコチタネートを含む組成物を得、本実施例の組成物とした。得られた組成物は、そのXRDパターンから、シチナカイト構造を有する銀含有Nb置換結晶性シリコチタネートであった。また、銀及び銀化合物のXRDピークが確認できなかったことから、本実施例の組成物において、銀は銀イオンとして含まれていると考えられる。
 本実施例の組成物において、銀の含有量は4.7質量%であり、そのモル組成は以下の通りであった。
    Si/Ti比  =  0.97
    Na/Ti比  =  0.55
    Nb/Ti比  =  0.66
    Ag/Ti比  =  0.11
 実施例1と比べ、本実施例の組成物はNa/Ti比が高く、Ag/Ti比が低くなった。ナトリウムは本実施例の組成物(更には本実施例の結晶性シリコチタネート)の結晶性シリコチタネートの骨格以外、特に細孔にイオンとして含まれている。そのため、実施例の組成物は、結晶性シリコチタネートが銀を含有し、なおかつ、銀は結晶性シリコチタネートの骨格以外に銀イオンとして含まれていると考えられる。
 実施例3
 3号ケイ酸ソーダ(SiO:29.1質量%)22g、オキシ硫酸チタン硫酸水溶液(TiOSO:8.2質量%)71g、水酸化ナトリウム(NaOH:48質量%)63g及び純水41gを混合した後にろ過、洗浄を行い以下のモル組成からなる無定形シリコチタネートゲルを得た。
    Si/Ti比  =  1.49
    Na/Ti比  =  3.3
    HO/Ti比 =  12
 得られた無定形シリコチタネートゲルに水酸化ニオブ(Nb(OH))粉末1.8gを混合したこと以外は実施例1と同様の方法で、以下のモル組成からなるNb置換結晶性シリコチタネートを得た。
    Si/Ti比  =  1.08
    Na/Ti比  =  0.81
    Nb/Ti比  =  0.33
 得られたNb置換結晶性シリコチタネートに硝酸銀0.15gを混合したこと以外は、実施例1と同様な方法で銀と結晶性シリコチタネートを含む組成物を得、本実施例の組成物とした。得られた組成物は、そのXRDパターンから、シチナカイト構造を有する銀含有Nb置換結晶性シリコチタネートであった。また、銀及び銀化合物のXRDピークが確認できなかったことから、本実施例の組成物において、銀は銀イオンとして含まれていると考えられる。
 本実施例の組成物において、銀の含有量は0.7質量%であり、そのモル組成は以下の通りであった。
    Si/Ti比  =  1.08
    Na/Ti比  =  0.70
    Nb/Ti比  =  0.32
    Ag/Ti比  =  0.02
 実施例4
 硝酸銀0.1gを溶解させた水溶液を使用したこと以外は、実施例3と同様な方法で銀と結晶性シリコチタネートを含む組成物を得、本実施例の組成物とした。得られた組成物は、そのXRDパターンから、シチナカイト構造を有する銀含有Nb置換結晶性シリコチタネートであった。また、銀及び銀化合物のXRDピークが確認できなかったことから、本実施例の組成物において、銀は銀イオンとして含まれていると考えられる。
 本実施例の組成物において、銀の含有量は0.4質量%であり、そのモル組成は以下の通りであった。
    Si/Ti比  =  1.08
    Na/Ti比  =  0.75
    Nb/Ti比  =  0.32
    Ag/Ti比  =  0.01
 実施例5
 Nb含有結晶性シリコチタネートに硝酸銀0.5gを混合したこと以外は、実施例1と同様な方法で銀と結晶性シリコチタネートを含む組成物を得、本実施例の組成物とした。得られた組成物は、そのXRDパターンから、シチナカイト構造を有する銀含有Nb置換結晶性シリコチタネートであった。また、銀及び銀化合物のXRDピークが確認できなかったことから、本実施例の組成物において、銀は銀イオンとして含まれていると考えられる。
 本実施例の組成物において、銀の含有量は2.3質量%であり、そのモル組成は以下の通りであった。
    Si/Ti比  =  0.97
    Na/Ti比  =  0.61
    Nb/Ti比  =  0.65
    Ag/Ti比  =  0.05
 次いで、当該組成物100gに、結合剤としてシリカゾル(SiO:30質量%水溶液)33gと純水40g混合後、押出成形、乾燥させた円柱状の成形体を調製した。
 該成形体に対し、カラム流通評価を行った。ストロンチウムイオン、セシウムイオン及びヨウ化物イオンの破過曲線を図1に示す。
 比較例1
 実施例1で得られたNb置換結晶性シリコチタネート(すなわち、銀含有量が0質量%)を、そのまま本比較例の組成物とした。
 本比較例の組成物100gに、結合剤としてシリカゾル(SiO:30質量%水溶液)33gと純水40gを混合後、押出成形、乾燥させた円柱状の成形体を調製し、カラム流通評価を行った。ストロンチウムイオン、セシウムイオン及びヨウ化物イオンの破過曲線を図2に示す。
 比較例2
 硝酸銀0.2gを溶解させた水溶液を使用したこと、及びNb置換結晶性シリコチタネートの代わりにハイシリカゼオライト(商品名:HSZ(登録商標)-640、東ソー社製、SiO/Alモル比:18)1.0gとしたこと以外は実施例1と同様な方法で銀含有ゼオライト組成物を得、本比較例の組成物とした。
 さらに、本比較例の組成物100gに、結合剤としてシリカゾル33gと純水55gを混合後、押出成形、乾燥させた円柱状の成形体を調製し、カラム流通評価を行った。ストロンチウムイオン、セシウムイオン及びヨウ化物イオンの破過曲線を図3に示す。
 比較例3
 実施例2の組成物を空気流通下にて600℃、1時間焼成した。組成物中の結晶性シリコチタネートを非晶質化させ、非晶質化したシリコチタネートと酸化銀との組成物を得、本比較例の組成物とした。
 本比較例の組成物のXRDパターンを図5に示す。図5から明らかなように、結晶性シリコチタネートのXRDピークは確認されず、非晶質物質、シリコチタネートの分解生成物及び酸化銀を含むことが確認できた。これより、本比較例の組成物においては、少なくともシリコチタネートが非晶質化していることが確認できた。
 比較例4
 実施例1で得られたスラリー状のNb含有無定形シリコチタネートゲルをろ過し、大気雰囲気下、110℃で16時間乾燥し、Nb含有非晶質シリコチタネートを得た。得られたNb含有非晶質シリコチタネートと硝酸銀水溶液と接触させ、銀及びNb含有非晶質シリコチタネートを含む組成物を得、本比較例の組成物とした。得られた組成物は、そのXRDパターンから銀及びNb含有非晶質シリコチタネートであった。当該XRDパターンを図6に示す。銀及び銀化合物のXRDピークが確認できなかったことから、本比較例の組成物において、銀は銀イオンとして含まれていると考えられる。
 得られた実施例及び比較例について、金属組成(モル組成)、銀の含有量を表1に示す。またバッチ評価1によるストロンチウムイオン、セシウムイオン及びヨウ化物イオン吸着特性の評価を行った結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2並びに図1乃至3の結果から、実施例の銀及び結晶性シリコチタネートを含む組成物は、いずれもストロンチウムイオン、セシウムイオン及びヨウ化物イオンを同時吸着していることが分かった。また、比較例1は銀を含まないため、ヨウ化物イオンをほとんど吸着しなかった。比較例2は結晶性シリコチタネートを含まず、銀とゼオライトを含む組成物のため、ストロンチウムイオン及びセシウムイオンをほとんど吸着しなかった。比較例3及び4は非晶質シリコチタネートであったため、ストロンチウムイオン及びセシウムイオンをほとんど吸着しなかった。
 実施例1及び実施例5について、バッチ評価2によるストロンチウムイオン、セシウムイオン及びヨウ化物イオン吸着特性の評価を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、実施例の組成物は、還元剤を含有し、液pHが5.1±1.0の金属イオン含有水溶液から、セシウムイオン、ストロンチウムイオン及びヨウ化物イオンを同時吸着していることが分かった。
 本開示の組成物は、海水、地下水、汚染水に共存するセシウムイオン、ストロンチウムイオン、ヨウ化物イオンなどの有害イオンを効率よく処理できる。また、セシウム、ストロンチウムを取り除く際に同時にヨウ素を取り除くことで、使用する吸着材の使用量、廃棄量を低減することができる。
 令和3年12月8日に出願された日本国特許出願2021-199157号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本開示の明細書の開示として、取り入れる。

Claims (16)

  1.  銀と結晶性シリコチタネートを含む組成物。
  2.  前記結晶性シリコチタネートがシチナカイト構造を有する請求項1に記載の組成物。
  3.  前記銀の含有量が0.3質量%以上20質量%以下である請求項1または2に記載の組成物。
  4.  前記銀の少なくとも一部を、前記結晶性シリコチタネートのイオン交換サイトに有する、請求項1または2に記載の組成物。
  5.  ニオブ、タンタル、バナジウム、アンチモン、マンガン及び鉄の群から選ばれる1以上の金属元素を含む、請求項1または2に記載の組成物。
  6.  前記金属元素がニオブである、請求項5に記載の組成物。
  7.  前記組成物に含まれるチタンの量に対して、前記金属元素の量のモル比が0.01以上1.2以下である、請求項5に記載の組成物。
  8.  以下の式(1)で示されるヨウ素の分配係数が10,000mL/g以上であることを特徴とする、請求項1または2に記載の組成物。
      Kd=(C。-C)/C×V/m            (1)
       Kd    :ヨウ素の分配係数(mL/g)
       C。=1   :吸着処理前のヨウ素含有水溶液中の金属イオン濃度(ppm)
       C      :吸着平衡時のヨウ素含有水溶液中の金属イオン濃度(ppm)
       V=1000:ヨウ素含有水溶液の体積(mL)
       m=0.05:吸着材の質量(g)
  9.  結晶性シリコチタネートと銀を含有する水溶液を接触させる、請求項1または2に記載の組成物の製造方法。
  10.  請求項1または2に記載の組成物を含有する、成形体。
  11.  請求項1または2に記載の組成物を含有するセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの吸着材。
  12.  請求項1または2に記載の組成物を含有するセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの群から選ばれる1種以上の吸着材。
  13.  請求項11に記載の吸着材とセシウムイオン、ストロンチウムイオン及びヨウ化物イオンを含む水溶液とを接触させる工程、を含むセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの吸着方法。
  14.  前記水溶液のpHが2以上12以下である、請求項13に記載のセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの吸着方法。
  15.  前記水溶液を還元処理する工程、を含む請求項13に記載のセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの吸着方法。
  16.  前記還元処理に使用する還元剤がシュウ酸塩、ギ酸塩、エリソルビン酸塩、アスコルビン酸塩及びヒドラジン塩の群から選ばれる1以上を含む、請求項15に記載のセシウムイオン、ストロンチウムイオン及びヨウ化物イオンの吸着方法。
PCT/JP2022/044835 2021-12-08 2022-12-06 組成物及びその製造方法 WO2023106280A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-199157 2021-12-08
JP2021199157 2021-12-08

Publications (1)

Publication Number Publication Date
WO2023106280A1 true WO2023106280A1 (ja) 2023-06-15

Family

ID=86730414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044835 WO2023106280A1 (ja) 2021-12-08 2022-12-06 組成物及びその製造方法

Country Status (2)

Country Link
JP (1) JP2023085231A (ja)
WO (1) WO2023106280A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210673A (ja) * 2015-05-11 2016-12-15 東ソー株式会社 シチナカイト構造を有するシリコチタネートを含む組成物およびその製造方法
JP2021032652A (ja) * 2019-08-22 2021-03-01 株式会社荏原製作所 放射性物質汚染水の除染装置及び除染方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016210673A (ja) * 2015-05-11 2016-12-15 東ソー株式会社 シチナカイト構造を有するシリコチタネートを含む組成物およびその製造方法
JP2021032652A (ja) * 2019-08-22 2021-03-01 株式会社荏原製作所 放射性物質汚染水の除染装置及び除染方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FITZSIMMONS JONATHAN, ABRAHAM ALYSON, CATALANO DEMETRA, YOUNES ALI, CUTLER CATHY S., MEDVEDEV DMITRI: "The application of poorly crystalline silicotitanate in production of 225Ac", SCIENTIFIC REPORTS, vol. 9, no. 1, pages 11808, XP093070162, DOI: 10.1038/s41598-019-48021-7 *

Also Published As

Publication number Publication date
JP2023085231A (ja) 2023-06-20

Similar Documents

Publication Publication Date Title
JP5542669B2 (ja) Izm−2結晶固体およびその調製方法
JP6278561B2 (ja) 結晶性アルミノシリケート及びその製造方法
JP6697414B2 (ja) シチナカイト構造を有するシリコチタネートを含む組成物を用いるセシウム又はストロンチウムの少なくともいずれかの吸着方法
JP6697415B2 (ja) シチナカイト構造を有するシリコチタネートを含む組成物を用いるセシウム又はストロンチウムの少なくともいずれかの吸着方法
JP6494034B2 (ja) リンを含有するlev型結晶性アルミノシリケート、およびその製造方法、ならびにリンを含有するlev型結晶性アルミノシリケートを含む触媒
WO2017038851A1 (ja) リンを含有するcha型ゼオライトおよびその製造方法
Chitrakar et al. Cesium ion exchange on synthetic birnessite (Na0. 35MnO2· 0.6 H2O)
KR20170032435A (ko) 시티나카이트 구조를 가진 실리코티타네이트를 포함하는 조성물 및 그의 제조 방법
JP7256493B2 (ja) 微細なハイドロタルサイトを含有する吸着剤の製造方法
WO2023106280A1 (ja) 組成物及びその製造方法
EP3190087A1 (en) Method for producing crystalline silicotitanate
JP5843060B2 (ja) イオン吸着剤及びその製造方法
JP7293799B2 (ja) シリコチタネート組成物およびその製造方法
JP2004286739A (ja) 金属元素固定化方法
JP2014180602A (ja) 吸着剤及びその製造方法
JP7400421B2 (ja) 吸着剤、その製造方法及び水処理方法
JP6848329B2 (ja) ゼオライトzts−5及びその製造方法
JP6673841B2 (ja) 吸着材
JP3097928B2 (ja) 陽イオン吸着剤
EP0788459A1 (en) Aluminosilicate cation exchange compounds
JP6716192B2 (ja) 吸着剤及びその製造方法
JP7419952B2 (ja) 新規シリコチタネート組成物及びその製造方法
JP7363153B2 (ja) ゼオライト及びその製造方法
JP6779498B2 (ja) スズを含有するゼオライトおよびその製造方法
JP2021133362A (ja) 吸着剤の廃棄処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904208

Country of ref document: EP

Kind code of ref document: A1