WO2023105964A1 - 極低温冷凍機の分解方法 - Google Patents

極低温冷凍機の分解方法 Download PDF

Info

Publication number
WO2023105964A1
WO2023105964A1 PCT/JP2022/039683 JP2022039683W WO2023105964A1 WO 2023105964 A1 WO2023105964 A1 WO 2023105964A1 JP 2022039683 W JP2022039683 W JP 2022039683W WO 2023105964 A1 WO2023105964 A1 WO 2023105964A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
scotch yoke
displacer
refrigerator
shaft
Prior art date
Application number
PCT/JP2022/039683
Other languages
English (en)
French (fr)
Inventor
太祐 白石
陽治 水野
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2023105964A1 publication Critical patent/WO2023105964A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Definitions

  • the present invention relates to a method for disassembling a cryogenic refrigerator.
  • a drive motor a scotch yoke that converts the rotation of the drive motor into a linear reciprocating motion
  • a housing that accommodates the scotch yoke in which the drive motor is attached
  • a scotch yoke that guides the linear reciprocating motion of the scotch yoke and regulates tilting around the rotation axis.
  • Cryogenic refrigerators are known which include guides provided in the housing to allow the cooling to occur.
  • the guide may gradually wear out due to sliding with the scotch yoke.
  • the scotch yoke is made of a metal material and the guide is made of a synthetic resin material, the wear of the guide is likely to progress. As wear progresses, the guide becomes less able to fulfill its role.
  • One exemplary object of some aspects of the present invention is to provide a method of disassembling a cryogenic refrigerator to replace a scotch yoke guide.
  • a method for disassembling a cryogenic refrigerator includes a housing having a lower opening, a lower cover closing the lower opening, a scotch yoke shaft housed in the housing and extending out of the housing through the lower cover, and a scotch yoke shaft removably provided in the housing. and a scotch yoke guide for guiding axial movement of the scotch yoke shaft.
  • the method includes removing the lower cover from the housing and removing the scotch yoke guide out of the housing through the lower opening.
  • FIG. 1 is a diagram schematically showing a cryogenic refrigerator according to an embodiment
  • FIG. 1 is a diagram schematically showing a cryogenic refrigerator according to an embodiment
  • FIG. 1 is a diagram schematically showing a cryogenic refrigerator according to an embodiment
  • FIG. 4 is a diagram schematically showing an exploded perspective view of the essential parts of the motion conversion mechanism of the cold head according to the embodiment
  • 6(a) and 6(b) are diagrams schematically showing a scotch yoke guide according to an embodiment. It is a figure which shows roughly the disassembly method of the cryogenic refrigerator which concerns on embodiment. It is a figure which shows roughly the disassembly method of the cryogenic refrigerator which concerns on embodiment.
  • FIG. 1 to 3 are diagrams schematically showing a cryogenic refrigerator 10 according to an embodiment.
  • FIG. 1 shows the appearance of the cold head of the cryogenic refrigerator 10
  • FIG. 2 shows the internal structure of the cold part of the cold head.
  • FIG. 3 shows the internal structure of the drive section of the cold head.
  • the cryogenic refrigerator 10 is typically installed in a vacuum vessel (not shown) such that the low temperature section is located inside the vacuum vessel and the driving section is located outside the vacuum vessel in an ambient environment (eg, room temperature and atmospheric pressure environment).
  • Cryogenic refrigerator 10 is illustratively a two-stage Gifford-McMahon (GM) refrigerator.
  • GM Gifford-McMahon
  • the cryogenic refrigerator 10 includes a compressor 12 and an expander 14.
  • the compressor 12 is configured to recover the working gas of the cryogenic refrigerator 10 from the expander 14 , pressurize the recovered working gas, and supply the working gas to the expander 14 again.
  • Compressor 12 and expander 14 form a refrigeration cycle for cryogenic refrigerator 10, which enables cryogenic refrigerator 10 to provide the desired cryogenic cooling.
  • Expander 14 is often referred to as a coldhead.
  • the working gas also referred to as a refrigerant gas, is typically helium gas, although other suitable gases may be used.
  • the direction of flow of the working gas is indicated by arrows in FIG.
  • the pressure of the working gas supplied from the compressor 12 to the expander 14 and the pressure of the working gas recovered from the expander 14 to the compressor 12 are both significantly higher than the atmospheric pressure, and are the first high pressure and the first high pressure, respectively. It can be called a second high voltage.
  • the first high pressure and the second high pressure are also simply referred to as high pressure and low pressure, respectively.
  • the high pressure is eg 2-3 MPa.
  • the low pressure is for example 0.5-1.5 MPa, for example about 0.8 MPa.
  • the direction of flow of the working gas is indicated by arrows.
  • the expander 14 includes a refrigerator cylinder 16 , a displacer assembly (hereinafter also simply referred to as displacer) 18 , and a refrigerator housing (hereinafter also simply referred to as housing) 20 .
  • the refrigerator cylinder 16 guides the linear reciprocating motion of the displacer 18 and forms expansion chambers (32, 34) between itself and the displacer 18 as expansion spaces for the working gas.
  • the refrigerator cylinder 16 is fixed to a refrigerator housing 20 , thereby forming a housing for the expander 14 and forming an airtight space within the refrigerator cylinder 16 to accommodate the displacer 18 .
  • the side near the top dead center of the axial reciprocating movement of the displacer is referred to as "up”, and the side near the bottom dead center is referred to as “bottom”.
  • the top dead center is the position of the displacer where the volume of the expansion space is maximum
  • the bottom dead center is the position of the displacer where the volume of the expansion space is minimum.
  • a temperature gradient is generated in which the temperature decreases from the upper side to the lower side in the axial direction, so the upper side can be called the high temperature side and the lower side can be called the low temperature side.
  • the refrigerator cylinder 16 has a first cylinder 16a and a second cylinder 16b.
  • the first cylinder 16a and the second cylinder 16b are, for example, cylindrical members, and the second cylinder 16b has a smaller diameter than the first cylinder 16a.
  • the first cylinder 16a and the second cylinder 16b are arranged coaxially, and the lower end of the first cylinder 16a is rigidly connected to the upper end of the second cylinder 16b.
  • the displacer assembly 18 includes a first displacer 18a and a second displacer 18b that are connected to each other and move together.
  • the first displacer 18a and the second displacer 18b are, for example, cylindrical members, and the second displacer 18b has a smaller diameter than the first displacer 18a.
  • the first displacer 18a and the second displacer 18b are arranged coaxially.
  • the first displacer 18a is housed in the first cylinder 16a, and the second displacer 18b is housed in the second cylinder 16b.
  • the first displacer 18a is axially reciprocable along the first cylinder 16a, and the second displacer 18b is axially reciprocable along the second cylinder 16b.
  • the first displacer 18a accommodates the first regenerator 26.
  • the first regenerator 26 is formed by filling the cylindrical main body of the first displacer 18a with a metal mesh such as copper or other suitable first regenerator material.
  • the upper and lower lid portions of the first displacer 18a may be provided as members separate from the main body portion of the first displacer 18a, and the upper and lower lid portions of the first displacer 18a may be fastened, welded, or otherwise applied as appropriate. It may be fixed to the body by means whereby the first regenerator material is housed in the first displacer 18a.
  • the second displacer 18b accommodates a second regenerator 28.
  • the cylindrical main body of the second displacer 18b is filled with a non-magnetic regenerator material such as bismuth, a magnetic regenerator material such as HoCu2 , or any other suitable second regenerator material. formed by The second cold storage material may be shaped into granules.
  • the upper and lower lid portions of the second displacer 18b may be provided as members separate from the main body portion of the second displacer 18b, and the lower lid portion of the upper and lower lid portions of the second displacer 18b may be fastened, welded, or otherwise applied. It may be fixed to the body by means whereby the second regenerator material is housed in the second displacer 18b.
  • the displacer 18 forms an upper chamber 30 , a first expansion chamber 32 and a second expansion chamber 34 inside the refrigerator cylinder 16 .
  • Expander 14 includes a first cooling stage 33 and a second cooling stage 35 for heat exchange with the desired object or medium to be cooled by cryogenic refrigerator 10 .
  • An upper chamber 30 is formed between the upper lid portion of the first displacer 18a and the upper portion of the first cylinder 16a.
  • the first expansion chamber 32 is formed between the lower lid portion of the first displacer 18 a and the first cooling stage 33 .
  • a second expansion chamber 34 is formed between the lower lid portion of the second displacer 18 b and the second cooling stage 35 .
  • the first cooling stage 33 is fixed to the bottom of the first cylinder 16a so as to surround the first expansion chamber 32
  • the second cooling stage 35 is fixed to the bottom of the second cylinder 16b so as to surround the second expansion chamber 34. It is
  • the first regenerator 26 is connected to the upper chamber 30 through a working gas flow path 36a formed in the upper lid of the first displacer 18a, and is connected to the upper chamber 30 through a working gas flow path 36b formed in the lower lid of the first displacer 18a. 1 expansion chamber 32 .
  • the second regenerator 28 is connected to the first regenerator 26 through a working gas flow path 36c formed from the lower lid portion of the first displacer 18a to the upper lid portion of the second displacer 18b. Also, the second regenerator 28 is connected to the second expansion chamber 34 through a working gas flow path 36d formed in the lower lid portion of the second displacer 18b.
  • the working gas flow between the first expansion chamber 32, the second expansion chamber 34 and the upper chamber 30 is not the clearance between the refrigerator cylinder 16 and the displacer 18, but rather the first regenerator 26, the second regenerator 28.
  • a first seal 38a and a second seal 38b may be provided in order to guide the A first seal 38a may be attached to the top lid of the first displacer 18a so as to be positioned between the first displacer 18a and the first cylinder 16a.
  • a second seal 38b may be attached to the upper lid portion of the second displacer 18b so as to be positioned between the second displacer 18b and the second cylinder 16b.
  • the refrigerator housing 20 includes a housing body 22 having a lower opening 21 and a lower cover 24 closing the lower opening 21.
  • a lower opening 21 is formed in the lower surface of the housing body 22 .
  • a housing interior volume 20a formed by housing body 22 and lower cover 24 may be connected to the low pressure side of compressor 12 and maintained at a low pressure, as shown.
  • the lower cover 24 separates the housing internal volume 20a from the displacer accommodation space (upper chamber 30) in the refrigerator cylinder 16.
  • the lower cover 24 has a disk-like shape as a whole, and more specifically has an upper large-diameter portion and a lower small-diameter portion.
  • a first seal member 25a is provided between the lower cover 24 and the refrigerator cylinder 16 to keep the inner volume of the refrigerator cylinder 16 airtight, and a second seal member 25b seals the housing inner volume 20a. It is provided between the lower cover 24 and the housing body 22 for retention.
  • the first sealing member 25a may be attached to the small diameter portion of the lower cover 24 and the second sealing member 25b may be attached to the large diameter portion of the lower cover 24.
  • the lower cover 24 is detachably fitted into the lower opening 21, and the upper flange portion of the refrigerator cylinder 16 is fastened to the housing body 22 with fastening members such as bolts.
  • the lower cover 24 is sandwiched between the housing body 22 and the upper flange portion of the refrigerator cylinder 16 .
  • the lower cover 24 is not fixed to the housing body 22 by fastening.
  • a structure in which the housing main body 22 and the lower cover 24 are fastened with fastening members such as bolts may be employed.
  • the expander 14 also includes an expander motor 40 , a rotary valve 42 and a motion conversion mechanism 43 .
  • the expander motor 40 is attached to the refrigerator housing 20 , more specifically to the side surface of the housing body 22 .
  • a sealing member (not shown) may be provided on the mounting surface between the expander motor 40 and the housing body 22 in order to keep the housing internal volume 20a airtight.
  • the rotary valve 42 and the motion conversion mechanism 43 are housed in the refrigerator housing 20 .
  • the expander motor 40 is provided in the expander 14 as a drive source for the displacer 18 and the rotary valve 42 .
  • the expander motor 40 may be an appropriate electric motor, configured to rotate the motor shaft 40a at a constant rotational speed, or may be capable of variably controlling the rotational speed of the motor shaft 40a.
  • the rotary valve 42 alternately connects the high pressure side and the low pressure side of the compressor 12 to the refrigerator cylinder 16 (i.e., the upper chamber 30, the first expansion chamber 32 and the second expansion chamber 34), and the intake air of the refrigerator cylinder 16. and exhaust are periodically switched.
  • the rotary valve 42 includes a valve rotor 42a and a valve stator 42b, and the valve rotor 42a is in contact with the valve stator 42b so as to rotate while sliding against the valve stator 42b.
  • a valve rotor 42a is rotatably supported with respect to the housing main body 22, and a valve stator 42b is non-rotatably supported with respect to the housing main body 22.
  • An elastic body such as a spring may be interposed between the valve stator 42b and the housing body 22 for pressing the valve stator 42b toward the valve rotor 42a in the direction of the rotation axis of the valve rotor 42a.
  • the refrigerator housing 20 is formed with a housing internal flow path 20 b that connects the rotary valve 42 to the upper chamber 30 .
  • Valve internal passages are formed to alternately connect to the high pressure side and housing internal volume 20a.
  • Various known forms can be adopted for the valve internal channel and will not be described in detail here.
  • the motion conversion mechanism 43 is configured to connect the expander motor 40 to the rotary valve 42 and the displacer 18 so as to transmit the rotation of the motor rotating shaft 40a to the rotary valve 42 and convert it into linear reciprocating motion of the displacer 18. ing.
  • An example of the motion converting mechanism 43 will be described later.
  • One rotation of the motor rotary shaft 40a causes one reciprocation of the displacer 18 via the motion conversion mechanism 43, thereby periodically changing the volume of the expansion space for the working gas.
  • one rotation of the motor rotating shaft 40a causes one rotation of the rotary valve 42 via the motion conversion mechanism 43, thereby periodically changing the pressure in the expansion space of the working gas.
  • the first cooling stage 33 can be cooled to a first cooling temperature
  • the second cooling stage 35 can be cooled to a second cooling temperature lower than the first cooling temperature.
  • the first cooling temperature may be in the range of about 10K to about 100K, or in the range of about 20K to about 40K, for example.
  • the second cooling temperature may be, for example, about 20K or less, or about 10K or less, or in the range of about 1K to about 4K.
  • FIG. 4 is a diagram schematically showing an exploded perspective view of the cold head drive section of the cryogenic refrigerator 10 according to the embodiment.
  • FIG. 5 is a diagram schematically showing an exploded perspective view of a main part of the motion converting mechanism 43 of the cold head according to the embodiment. Exemplary forms of the motion conversion mechanism 43 are described with reference to FIGS. 3-5.
  • the motion conversion mechanism 43 is a scotch yoke in this embodiment, and includes a crank 44 having a crank pin 44a, a scotch yoke shaft 45, and a crank pin bearing 46.
  • the scotch yoke shaft 45 includes a scotch yoke plate 45a, an upper rod 45b and a lower rod 45c.
  • the scotch yoke shaft 45 may be made of a metal material such as stainless steel.
  • the crank 44 is fixed to the motor rotating shaft 40a.
  • the crank pin 44a extends parallel to the motor rotation shaft 40a at a position eccentric from the motor rotation shaft 40a.
  • the crank pin 44a extends from the crank 44 toward the opposite side of the crank 44 from the motor rotation shaft 40a.
  • the scotch yoke plate 45a is a rectangular plate member having a horizontally long window 47. As shown in FIG. The oblong window 47 extends axially and in a direction perpendicular to the motor rotation axis 40a. A crankpin bearing 46 is rotatably arranged in the oblong window 47 . Crankpin bearing 46 may be, for example, a roller bearing. An engagement hole 46a that engages with the crankpin 44a is formed in the center of the crankpin bearing 46, and the crankpin 44a passes through the engagement hole 46a.
  • a valve rotor 42a of a rotary valve 42 is arranged with its center axis aligned with the motor rotation shaft 40a. is fixed to the valve rotor 42a.
  • the upper rod 45b extends upward from the center of the upper frame of the scotch yoke plate 45a
  • the lower rod 45c extends downward from the center of the lower frame of the scotch yoke plate 45a, and these rods are arranged coaxially.
  • the scotch yoke plate 45a and the upper rod 45b are accommodated in the refrigerator housing 20, and the lower rod 45c penetrates the lower cover 24 and extends outside the refrigerator housing 20.
  • the tip of the lower rod 45 c is connected to the displacer 18 inside the refrigerator cylinder 16 .
  • a first sliding bearing 48a is provided between the upper rod 45b and the housing body 22, and a second sliding bearing 48b is provided between the lower rod 45c and the lower cover 24.
  • the housing body 22 has a recess in its upper portion for receiving the upper rod 45b, and the first slide bearing 48a is arranged in this recess to axially slidably support the upper rod 45b.
  • the lower cover 24 has a through hole in the center, and the second slide bearing 48b is arranged in this through hole to axially slidably support the lower rod 45c.
  • the second sliding bearing 48b is provided with a seal such as a slipper seal or a clearance seal, and is airtight, so that the housing inner volume 20a is isolated from the upper chamber 30. As shown in FIG. There is no direct gas communication between housing interior volume 20 a and upper chamber 30 .
  • a collar portion 50 is fixed by a fixing pin 49 to the tip of the lower rod 45c connected to the displacer 18.
  • the collar portion 50 is a short cylindrical member into which the tip of the displacer assembly 18 is inserted.
  • a through hole is formed in the tip of the lower rod 45c and the collar portion 50 in a direction orthogonal to the axial direction, and the collar portion 50 is fixed to the lower rod 45c by fitting a fixing pin 49 into the through hole.
  • the first displacer 18a has a lid portion 52a and a body portion 52b.
  • the lid portion 52a is an upper lid of the first displacer 18a and has a disk-like shape.
  • the lid portion 52a is made of a metal material or other material such as an alumite-treated aluminum alloy.
  • the body portion 52b has a cylindrical shape and has a regenerator therein.
  • the body portion 52b is made of a synthetic resin material or other material, and may be made of a phenolic resin such as Bakelite, for example.
  • the above-described working gas flow path 36a is formed axially through the lid portion 52a and the upper end portion of the main body portion 52b.
  • the first seal 38a described above may be sandwiched between the outermost peripheral portions of the lid portion 52a and the main body portion 52b.
  • the lid portion 52a and the main body portion 52b are fixed to each other using fastening members such as bolts, or by other methods such as adhesion.
  • a through hole for receiving the tip of the lower rod 45c and the collar portion 50 is formed in the central portion of the lid portion 52a.
  • the collar portion 50 has a collar portion extending radially outward at its lower end portion. It is connected to the displacer 18a. The displacer 18 is thus attached to the scotch yoke shaft 45 .
  • FIGS. 6(a) and 6(b) are diagrams schematically showing the scotch yoke guide 54 according to the embodiment.
  • 6(a) schematically shows a cross section of the housing body 22 along the AA cross section shown in FIG. 3, and
  • FIG. 3(b) shows a part of the BB cross section shown in FIG. 6(a). is schematically shown.
  • a scotch yoke guide 54 is provided as shown.
  • the scotch yoke guide 54 is configured to guide the axial movement of the scotch yoke shaft 45 and to restrict the rotation of the scotch yoke shaft 45 around the axis.
  • the scotch yoke guide 54 has a plurality of (two in this example) pins 54 a and 54 b each extending in the axial direction of the scotch yoke shaft 45 .
  • the pins 54a and 54b have a columnar shape and may be made of a synthetic resin material having excellent abrasion resistance such as fluorine-based resin or other material.
  • the housing body 22 has a plurality of (two in this example) pin insertion holes 56 into which the plurality of pins 54a and 54b are respectively detachably inserted. Therefore, the scotch yoke guide 54 is detachably provided inside the refrigerator housing 20 . As will be described later, the scotch yoke shaft 45 and scotch yoke guide 54 can be removed from the housing body 22 through the lower opening 21 of the housing body 22 .
  • the scotch yoke guide 54 is arranged at a different position from the lower rod 45c with respect to the direction of the motor rotation shaft 40a that drives the axial movement of the scotch yoke shaft 45, and is adjacent to the scotch yoke plate 45a.
  • the scotch yoke guide 54 is displaced toward the motor rotation shaft 40a with respect to the scotch yoke plate 45a and the lower rod 45c, but may be arranged on the rotary valve 42 side.
  • each pin 54a of the scotch yoke guide 54 is in contact with a side surface 58 of the scotch yoke plate 45a in which the laterally long window 47 is formed.
  • One pin 54a contacts the side surface 58 at the right frame portion of the scotch yoke plate 45a, and the other pin 54a contacts the side surface 58 at the left frame portion of the scotch yoke plate 45a.
  • the scotch yoke guide 54 can guide the axial movement of the scotch yoke plate 45a on the side surface of each pin 54a. Further, the scotch yoke guide 54 can restrict rotation of the scotch yoke shaft 45 around the axis by the pin 54a.
  • FIG. 7 and 8 are diagrams schematically showing a method of disassembling the cryogenic refrigerator 10 according to the embodiment.
  • expander motor 40 is removed from refrigerator housing 20 (S10).
  • the fastening member that fixes the expander motor 40 to the refrigerator housing 20 is removed, and the expander motor 40 is removed from the side surface of the housing body 22 .
  • Crank 44 may also be removed along with expander motor 40 .
  • the high-pressure pipe and the low-pressure pipe attached to the refrigerator housing 20 are also removed.
  • the fixation of the refrigerator housing 20 and the refrigerator cylinder 16 is released (S11).
  • the housing body 22 is attached to the refrigerator cylinder 16 by the fastening member, and the refrigerator housing 20 is removed from the refrigerator cylinder 16 by removing the fastening member.
  • the refrigerator housing 20 is pulled up from the refrigerator cylinder 16 .
  • the displacer 18 can be pulled out from the refrigerator cylinder 16 together with the refrigerator housing 20 .
  • the displacer 18 is removed from the scotch yoke shaft 45 (S12).
  • the fixing between the lid portion 52a and the body portion 52b of the first displacer 18a is released, and the body portion 52b is removed from the lid portion 52a.
  • the fixing pin 49 and the collar portion 50 are removed from the lower rod 45c of the scotch yoke shaft 45, and the lid portion 52a is also removed (S13).
  • displacer 18 is removed from scotch yoke shaft 45 prior to removal of lower cover 24 from refrigerator housing 20 .
  • the lower cover 24 is removed from the refrigerator housing 20 (S13).
  • the second seal member 25b is removed from the housing body 22 (S14).
  • FIG. 8 is shown upside down (that is, the lower opening 21 faces upward).
  • the second seal member 25b is sandwiched between the lower cover 24 and the housing body 22 and arranged in the lower opening 21, as described above.
  • the second sealing member 25b is taken out from the lower opening 21 opened again by removing the lower cover 24 from the housing body 22 .
  • the scotch yoke shaft 45 is pulled out of the refrigerator housing 20 through the lower opening 21 (S15).
  • the work space for removing the scotch yoke guide 54 can be widened in the refrigerator housing 20.
  • the scotch yoke guide 54 is taken out of the refrigerator housing 20 through the lower opening 21 .
  • one pin 54a is pulled out of the refrigerator housing 20 through the lower opening 21 (S16), and then the other pin 54b is also pulled out of the refrigerator housing 20 through the lower opening 21 (S17).
  • the present invention can be used in the field of decomposition methods for cryogenic refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Refrigerator Housings (AREA)

Abstract

極低温冷凍機の分解方法であって、極低温冷凍機は、下部開口(21)を有するハウジング(20)と、下部開口(21)を塞ぐ下部カバーと、ハウジング(20)に収容され、下部カバーを貫通してハウジング(20)外に延出するスコッチヨーク軸(45)と、ハウジング(20)内に取り外し可能に設けられ、スコッチヨーク軸(45)の軸方向移動をガイドするスコッチヨークガイド(54)とを備えており、本方法は、ハウジング(20)から下部カバーを取り外すことと、スコッチヨークガイド(54)を下部開口(21)からハウジング(20)の外に取り出すことと、を備える。

Description

極低温冷凍機の分解方法
 本発明は、極低温冷凍機の分解方法に関する。
 駆動モーターと、駆動モーターの回転を直線往復動に変換するスコッチヨークと、駆動モーターが取り付けられ、スコッチヨークを収容するハウジングと、スコッチヨークの直線往復動をガイドするとともに回転軸まわりの傾動を規制するようにハウジングに設けられたガイドとを備える極低温冷凍機が知られている。
特開2015-55374号公報
 極低温冷凍機が現場で長年使用されるなかで、ガイドはスコッチヨークとの摺動により徐々に摩耗しうる。とくに、スコッチヨークが金属材料で形成され、ガイドが合成樹脂材料で形成される場合には、ガイドの摩耗が進みやすい。摩耗の進行により、ガイドはその役割を果たしがたくなる。
 本発明のある態様の例示的な目的のひとつは、スコッチヨークガイドを交換するための極低温冷凍機の分解方法を提供することにある。
 本発明のある態様によると、極低温冷凍機の分解方法が提供される。極低温冷凍機は、下部開口を有するハウジングと、下部開口を塞ぐ下部カバーと、ハウジングに収容され、下部カバーを貫通してハウジング外に延出するスコッチヨーク軸と、ハウジング内に取り外し可能に設けられ、スコッチヨーク軸の軸方向移動をガイドするスコッチヨークガイドとを備える。本方法は、ハウジングから下部カバーを取り外すことと、スコッチヨークガイドを下部開口からハウジングの外に取り出すことと、を備える。
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
 本発明によれば、スコッチヨークガイドを交換するための極低温冷凍機の分解方法を提供することができる。
実施の形態に係る極低温冷凍機を概略的に示す図である。 実施の形態に係る極低温冷凍機を概略的に示す図である。 実施の形態に係る極低温冷凍機を概略的に示す図である。 実施の形態に係る極低温冷凍機のコールドヘッド駆動部の分解斜視図を概略的に示す図である。 実施の形態に係るコールドヘッドの運動変換機構の要部の分解斜視図を概略的に示す図である。 図6(a)および図6(b)は、実施の形態に係り、スコッチヨークガイドを概略的に示す図である。 実施の形態に係る極低温冷凍機の分解方法を概略的に示す図である。 実施の形態に係る極低温冷凍機の分解方法を概略的に示す図である。
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。説明および図面において同一または同等の構成要素、部材、処理には同一の符号を付し、重複する説明は適宜省略する。図示される各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。実施の形態は例示であり、本発明の範囲を何ら限定するものではない。実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。
 図1から図3は、実施の形態に係る極低温冷凍機10を概略的に示す図である。図1には極低温冷凍機10のコールドヘッドの外観が示され、図2にはコールドヘッドの低温部の内部構造が示される。図3にはコールドヘッドの駆動部の内部構造が示される。極低温冷凍機10は通例、図示しない真空容器に、低温部が真空容器内に配置され駆動部が真空容器外の周囲環境(例えば室温大気圧環境)に配置されるようにして設置される。極低温冷凍機10は、一例として、二段式のギフォード・マクマホン(Gifford-McMahon;GM)冷凍機である。
 極低温冷凍機10は、圧縮機12と、膨張機14とを備える。圧縮機12は、極低温冷凍機10の作動ガスを膨張機14から回収し、回収した作動ガスを昇圧して、再び作動ガスを膨張機14に供給するよう構成されている。圧縮機12と膨張機14により極低温冷凍機10の冷凍サイクルが構成され、それにより極低温冷凍機10は所望の極低温冷却を提供することができる。膨張機14は、コールドヘッドともしばしば称される。作動ガスは、冷媒ガスとも称され、通例はヘリウムガスであるが、適切な他のガスが用いられてもよい。理解のために、作動ガスの流れる方向を図1に矢印で示す。
 なお、一般に、圧縮機12から膨張機14に供給される作動ガスの圧力と、膨張機14から圧縮機12に回収される作動ガスの圧力は、ともに大気圧よりかなり高く、それぞれ第1高圧及び第2高圧と呼ぶことができる。説明の便宜上、第1高圧及び第2高圧はそれぞれ単に高圧及び低圧とも呼ばれる。典型的には、高圧は例えば2~3MPaである。低圧は例えば0.5~1.5MPaであり、例えば約0.8MPaである。理解のために、作動ガスの流れる方向を矢印で示す。
 膨張機14は、冷凍機シリンダ16と、ディスプレーサ組立体(以下では単にディスプレーサと呼ぶこともある)18と、冷凍機ハウジング(以下、単にハウジングとも呼ぶ)20とを備える。冷凍機シリンダ16は、ディスプレーサ18の直線往復運動をガイドするとともに、ディスプレーサ18との間に作動ガスの膨張空間としての膨張室(32、34)を形成する。冷凍機シリンダ16は冷凍機ハウジング20に固定され、それにより、膨張機14の筐体が構成され、ディスプレーサ18を収容する気密空間が冷凍機シリンダ16内に形成される。
 本書では、極低温冷凍機10の構成要素間の位置関係を説明するために、便宜上、ディスプレーサの軸方向往復動の上死点に近い側を「上」、下死点に近い側を「下」と表記することとする。上死点は膨張空間の容積が最大となるディスプレーサの位置であり、下死点は膨張空間の容積が最小となるディスプレーサの位置である。極低温冷凍機10の運転時には軸方向上方から下方へと温度が下がる温度勾配が生じるので、上側を高温側、下側を低温側と呼ぶこともできる。
 冷凍機シリンダ16は、第1シリンダ16a、第2シリンダ16bを有する。第1シリンダ16aと第2シリンダ16bは、一例として、円筒形状を有する部材であり、第2シリンダ16bが第1シリンダ16aよりも小径である。第1シリンダ16aと第2シリンダ16bは同軸に配置され、第1シリンダ16aの下端が第2シリンダ16bの上端に剛に連結されている。
 ディスプレーサ組立体18は、互いに連結された第1ディスプレーサ18aと第2ディスプレーサ18bを備え、これらは一体に移動する。第1ディスプレーサ18aと第2ディスプレーサ18bは、一例として、円筒形状を有する部材であり、第2ディスプレーサ18bが第1ディスプレーサ18aよりも小径である。第1ディスプレーサ18aと第2ディスプレーサ18bは同軸に配置されている。
 第1ディスプレーサ18aは、第1シリンダ16aに収容され、第2ディスプレーサ18bは、第2シリンダ16bに収容されている。第1ディスプレーサ18aは、第1シリンダ16aに沿って軸方向に往復移動可能であり、第2ディスプレーサ18bは、第2シリンダ16bに沿って軸方向に往復移動可能である。
 図2に示されるように、第1ディスプレーサ18aは、第1蓄冷器26を収容する。第1蓄冷器26は、第1ディスプレーサ18aの筒状の本体部の中に、例えば銅などの金網またはその他適宜の第1蓄冷材を充填することによって形成されている。第1ディスプレーサ18aの上蓋部および下蓋部は第1ディスプレーサ18aの本体部とは別の部材として提供されてもよく、第1ディスプレーサ18aの上蓋部および下蓋部は、締結、溶接など適宜の手段で本体に固定され、それにより第1蓄冷材が第1ディスプレーサ18aに収容されてもよい。
 同様に、第2ディスプレーサ18bは、第2蓄冷器28を収容する。第2蓄冷器28は、第2ディスプレーサ18bの筒状の本体部の中に、例えばビスマスなどの非磁性蓄冷材、HoCuなどの磁性蓄冷材、またはその他適宜の第2蓄冷材を充填することによって形成されている。第2蓄冷材は粒状に成形されていてもよい。第2ディスプレーサ18bの上蓋部および下蓋部は第2ディスプレーサ18bの本体部とは別の部材として提供されてもよく、第2ディスプレーサ18bの上蓋部の下蓋部は、締結、溶接など適宜の手段で本体に固定され、それにより第2蓄冷材が第2ディスプレーサ18bに収容されてもよい。
 ディスプレーサ18は、上部室30、第1膨張室32、第2膨張室34を冷凍機シリンダ16の内部に形成する。極低温冷凍機10によって冷却すべき所望の物体または媒体との熱交換のために、膨張機14は、第1冷却ステージ33と第2冷却ステージ35を備える。上部室30は、第1ディスプレーサ18aの上蓋部と第1シリンダ16aの上部との間に形成される。第1膨張室32は、第1ディスプレーサ18aの下蓋部と第1冷却ステージ33との間に形成される。第2膨張室34は、第2ディスプレーサ18bの下蓋部と第2冷却ステージ35との間に形成される。第1冷却ステージ33は、第1膨張室32を取り囲むように第1シリンダ16aの下部に固着され、第2冷却ステージ35は、第2膨張室34を取り囲むように第2シリンダ16bの下部に固着されている。
 第1蓄冷器26は、第1ディスプレーサ18aの上蓋部に形成された作動ガス流路36aを通じて上部室30に接続され、第1ディスプレーサ18aの下蓋部に形成された作動ガス流路36bを通じて第1膨張室32に接続されている。第2蓄冷器28は、第1ディスプレーサ18aの下蓋部から第2ディスプレーサ18bの上蓋部へと形成された作動ガス流路36cを通じて第1蓄冷器26に接続されている。また、第2蓄冷器28は、第2ディスプレーサ18bの下蓋部に形成された作動ガス流路36dを通じて第2膨張室34に接続されている。
 第1膨張室32、第2膨張室34と上部室30との間の作動ガス流れが、冷凍機シリンダ16とディスプレーサ18との間のクリアランスではなく、第1蓄冷器26、第2蓄冷器28に導かれるようにするために、第1シール38a、第2シール38bが設けられていてもよい。第1シール38aは、第1ディスプレーサ18aと第1シリンダ16aとの間に配置されるように第1ディスプレーサ18aの上蓋部に装着されてもよい。第2シール38bは、第2ディスプレーサ18bと第2シリンダ16bとの間に配置されるように第2ディスプレーサ18bの上蓋部に装着されてもよい。
 図3に示されるように、冷凍機ハウジング20は、下部開口21を有するハウジング本体22と、下部開口21を塞ぐ下部カバー24とを備える。下部開口21は、ハウジング本体22の下面に形成されている。ハウジング本体22と下部カバー24によって形成されるハウジング内部容積20aは、図示されるように、圧縮機12の低圧側に接続され、低圧に維持されてもよい。
 下部カバー24は、ハウジング内部容積20aと冷凍機シリンダ16内のディスプレーサ収容空間(上部室30)とを仕切る。下部カバー24は全体として円板状の形状を有し、より具体的には、上側の大径部と下側の小径部とを有する。第1シール部材25aが冷凍機シリンダ16の内部容積の気密性を保持するために下部カバー24と冷凍機シリンダ16との間に設けられ、第2シール部材25bがハウジング内部容積20aの気密性を保持するために下部カバー24とハウジング本体22との間に設けられている。図示されるように、第1シール部材25aは、下部カバー24の小径部に装着され、第2シール部材25bは、下部カバー24の大径部に装着されていてもよい。
 下部カバー24は下部開口21に取り外し可能に嵌め込まれ、冷凍機シリンダ16の上部フランジ部がハウジング本体22にボルト等の締結部材により締結される。こうして、下部カバー24は、ハウジング本体22と冷凍機シリンダ16の上部フランジ部との間に挟み込まれている。下部カバー24は、ハウジング本体22に対し締結による固定はされていない。ただし、ハウジング本体22と下部カバー24がボルト等の締結部材により締結した構造が採用されてもよい。
 また、膨張機14は、膨張機モータ40と、ロータリーバルブ42と、運動変換機構43とを備える。膨張機モータ40は、冷凍機ハウジング20に、より具体的にはハウジング本体22の側面に取り付けられている。ハウジング内部容積20aの気密性を保持するために、膨張機モータ40とハウジング本体22との取付面には、図示しないシール部材が設けられてもよい。ロータリーバルブ42と運動変換機構43は、冷凍機ハウジング20に収容されている。
 膨張機モータ40は、ディスプレーサ18およびロータリーバルブ42の駆動源として膨張機14に設けられている。膨張機モータ40は、適宜の電気モータであってもよく、モータ回転軸40aを一定の回転速度で回転させるように構成され、またはモータ回転軸40aの回転速度を可変に制御可能としてもよい。
 ロータリーバルブ42は、圧縮機12の高圧側と低圧側を交互に冷凍機シリンダ16(つまり、上部室30、第1膨張室32および第2膨張室34)に接続し、冷凍機シリンダ16の吸気と排気とを周期的に切り替えるように構成されている。
 ロータリーバルブ42は、バルブロータ42aとバルブステータ42bを備え、バルブロータ42aは、バルブステータ42bに対し摺動しながら回転するようにバルブステータ42bと接触している。バルブロータ42aがハウジング本体22に対し回転可能に支持され、バルブステータ42bがハウジング本体22に対し回転不能に支持されている。バルブステータ42bとハウジング本体22との間には、バルブロータ42aの回転軸の方向にバルブステータ42bをバルブロータ42aに向かって押し付けるためのスプリングなどの弾性体が介在してもよい。
 冷凍機ハウジング20にはロータリーバルブ42を上部室30に接続するハウジング内部流路20bが形成されており、ロータリーバルブ42のバルブロータ42aとバルブステータ42bにはハウジング内部流路20bを圧縮機12の高圧側とハウジング内部容積20aに交互に接続するようにバルブ内部流路が形成されている。バルブ内部流路にはさまざまな公知の形態を採用することができ、ここでは詳述しない。
 運動変換機構43は、モータ回転軸40aの回転をロータリーバルブ42に伝達するとともにディスプレーサ18の直線往復動に変換するように、膨張機モータ40をロータリーバルブ42とディスプレーサ18に連結するように構成されている。運動変換機構43の一例は後述する。モータ回転軸40aの一回転が運動変換機構43を介してディスプレーサ18の一往復をもたらし、それにより作動ガスの膨張空間の容積が周期的に変化する。同時に、モータ回転軸40aの一回転が運動変換機構43を介してロータリーバルブ42の一回転をもたらし、それにより作動ガスの膨張空間の圧力が周期的に変化する。
 このようにして、同期した容積変動と圧力変動が膨張空間にもたらされ、極低温冷凍機10の冷凍サイクルが構成され、それにより極低温冷凍機10は所望の極低温冷却を提供することができる。第1冷却ステージ33は、第1冷却温度に冷却され、第2冷却ステージ35は、第1冷却温度より低い第2冷却温度に冷却されることができる。第1冷却温度は、例えば、約10K~約100Kの範囲、または約20K~約40Kの範囲にあってもよい。第2冷却温度は、例えば、約20K以下、または約10K以下、または約1K~約4Kの範囲にあってもよい。
 図4は、実施の形態に係る極低温冷凍機10のコールドヘッド駆動部の分解斜視図を概略的に示す図である。図5は、実施の形態に係るコールドヘッドの運動変換機構43の要部の分解斜視図を概略的に示す図である。図3から図5を参照して、運動変換機構43の例示的な形態を述べる。
 運動変換機構43は、この実施の形態ではスコッチヨークであり、クランクピン44aを有するクランク44と、スコッチヨーク軸45と、クランクピン軸受46とを備える。スコッチヨーク軸45は、スコッチヨーク板45aと、上部ロッド45bと、下部ロッド45cとを備える。スコッチヨーク軸45は、例えばステンレス鋼など金属材料で形成されてもよい。
 クランク44は、モータ回転軸40aに固定される。クランクピン44aは、モータ回転軸40aから偏心した位置でモータ回転軸40aと平行に延在する。クランクピン44aは、クランク44に対してモータ回転軸40aとは反対側に向かってクランク44から延出している。
 スコッチヨーク板45aは、横長窓47を有する矩形の板状部材である。横長窓47は、軸方向およびモータ回転軸40aに垂直な方向に延在する。この横長窓47にクランクピン軸受46が転動可能に配置される。クランクピン軸受46は例えば、ころ軸受であってもよい。クランクピン軸受46の中心には、クランクピン44aと係合する係合孔46aが形成されており、クランクピン44aが係合孔46aを貫通する。
 スコッチヨーク板45aに対してクランク44と反対側には、ロータリーバルブ42のバルブロータ42aがその中心軸をモータ回転軸40aと一致させて配置されており、係合孔46aを貫通したクランクピン44aの先端はバルブロータ42aに固定される。
 上部ロッド45bは、スコッチヨーク板45aの上枠中央から上方に延出し、下部ロッド45cは、スコッチヨーク板45aの下枠中央から下方に延出し、これらロッドは同軸に配置されている。スコッチヨーク板45aと上部ロッド45bは冷凍機ハウジング20に収容され、下部ロッド45cは下部カバー24を貫通して冷凍機ハウジング20外に延出している。下部ロッド45cの先端は冷凍機シリンダ16内でディスプレーサ18に連結されている。
 第1摺動軸受48aが上部ロッド45bとハウジング本体22との間に設けられ、第2摺動軸受48bが下部ロッド45cと下部カバー24との間に設けられている。ハウジング本体22はその上部に上部ロッド45bを受け入れる凹部を有しており、第1摺動軸受48aはこの凹部に配置され、上部ロッド45bを軸方向に摺動可能に支持する。下部カバー24は中心部に貫通穴を有しており、第2摺動軸受48bはこの貫通穴に配置され、下部ロッド45cを軸方向に摺動可能に支持する。第2摺動軸受48bには、例えばスリッパーシールやクリアランスシールといったシール部が設けられ、気密に構成されており、そのためハウジング内部容積20aは上部室30から隔離されている。ハウジング内部容積20aと上部室30との直接のガス流通はない。
 ディスプレーサ18に連結される下部ロッド45cの先端には、固定ピン49によりカラー部50が固定されている。カラー部50は、ディスプレーサ組立体18の先端が挿し込まれる短筒状の部材である。下部ロッド45cの先端およびカラー部50には、軸方向に直交する方向に貫通穴が形成され、この貫通穴に固定ピン49が嵌め込まれることでカラー部50が下部ロッド45cと固定される。
 第1ディスプレーサ18aは、蓋部52aと本体部52bを有する。蓋部52aは、第1ディスプレーサ18aの上蓋であり、円板状の形状を有する。蓋部52aは、例えばアルマイト処理されたアルミニウム合金など、金属材料またはその他の材料で形成される。本体部52bは、円筒状の形状を有し、その内部に蓄冷器を有する。本体部52bは、合成樹脂材料またはその他の材料で形成され、例えばベークライトなどのフェノール樹脂で形成されてもよい。蓋部52aと本体部52bの上端部とを軸方向に貫通して上述の作動ガス流路36aが形成されている。上述の第1シール38aは、蓋部52aと本体部52bそれぞれの最外周部でこれらの間に挟み込まれてもよい。蓋部52aと本体部52bは、例えばボルトなどの締結部材を用いて、または例えば接着など他の方法により、互いに固定される。
 蓋部52aの中心部には、下部ロッド45cの先端およびカラー部50を受け入れる貫通穴が形成されている。カラー部50はその下端部に径方向外側に広がる鍔部を有し、この鍔部が第1ディスプレーサ18aの蓋部52aと本体部52bに挟み込まれることで下部ロッド45cおよびカラー部50が第1ディスプレーサ18aに連結される。このようにして、ディスプレーサ18は、スコッチヨーク軸45に取り付けられる。
 したがって、膨張機モータ40が駆動されモータ回転軸40aが回転すると、クランクピン44aと係合したクランクピン軸受46は、円を描くように回転する。このときクランクピン軸受46は、スコッチヨーク板45aの横長窓47を往復移動し、それとともにスコッチヨーク軸45およびディスプレーサ18が軸方向に往復運動する。このようにして、膨張機モータ40は、スコッチヨーク軸45の軸方向移動を駆動する。
 図6(a)および図6(b)は、実施の形態に係り、スコッチヨークガイド54を概略的に示す図である。図6(a)には、図3に示すA-A断面によるハウジング本体22の断面を概略的に示し、図3(b)には、図6(a)に示すB-B断面の一部を概略的に示す。
 この実施の形態では、図示されるように、スコッチヨークガイド54が設けられている。スコッチヨークガイド54は、スコッチヨーク軸45の軸方向移動をガイドするとともに、スコッチヨーク軸45の軸まわり回転を規制するように構成されている。
 スコッチヨークガイド54は、複数(この例では2本)のピン54a、54bを備え、各ピン54aがスコッチヨーク軸45の軸方向に延在する。ピン54a、54bは、円柱状の形状を有し、例えば、フッ素系樹脂などの耐摩耗性に優れる合成樹脂材料またはその他の材料で形成されてもよい。ハウジング本体22は、複数のピン54a、54bがそれぞれ取り外し可能に挿し込まれる複数(この例では2つ)のピン挿入穴56を有する。よって、スコッチヨークガイド54は、冷凍機ハウジング20内に取り外し可能に設けられている。後述のように、スコッチヨーク軸45およびスコッチヨークガイド54は、ハウジング本体22の下部開口21を通じてハウジング本体22から取り出すことができる。
 スコッチヨークガイド54は、スコッチヨーク軸45の軸方向移動を駆動するモータ回転軸40aの方向に関して下部ロッド45cと異なる位置に配置されるとともに、スコッチヨーク板45aに隣接している。この実施の形態では、スコッチヨークガイド54は、スコッチヨーク板45aおよび下部ロッド45cに対してモータ回転軸40a側にずれて配置されるが、ロータリーバルブ42側に配置されてもよい。
 スコッチヨークガイド54の各ピン54aの円筒状の側面が、横長窓47が形成されたスコッチヨーク板45aの側面58に接触している。一方のピン54aがスコッチヨーク板45aの右枠部で側面58に接触し、他方のピン54aがスコッチヨーク板45aの左枠部で側面58に接触している。
 したがって、スコッチヨークガイド54は、各ピン54aの側面でスコッチヨーク板45aの軸方向移動をガイドすることができる。また、スコッチヨークガイド54は、ピン54aによりスコッチヨーク軸45の軸まわり回転を規制することができる。
 図7および図8は、実施の形態に係る極低温冷凍機10の分解方法を概略的に示す図である。まず、図7に示されるように、膨張機モータ40が冷凍機ハウジング20から取り外される(S10)。膨張機モータ40を冷凍機ハウジング20に固定する締結部材が取り外され、膨張機モータ40がハウジング本体22の側面から取り外される。膨張機モータ40と共にクランク44も取り外されてもよい。あわせて、冷凍機ハウジング20に取り付けられている高圧配管と低圧配管も取り外される。
 続いて、冷凍機ハウジング20と冷凍機シリンダ16の固定が解除される(S11)。上述のようにハウジング本体22は締結部材により冷凍機シリンダ16に取り付けられており、締結部材を取り外すことにより冷凍機ハウジング20が冷凍機シリンダ16から取り外される。その後、冷凍機ハウジング20が冷凍機シリンダ16から引き上げられる。それにより、冷凍機ハウジング20と共にディスプレーサ18を冷凍機シリンダ16から引き抜くことができる。
 次に、スコッチヨーク軸45からディスプレーサ18が取り外される(S12)。第1ディスプレーサ18aの蓋部52aと本体部52bの固定が解除され、本体部52bが蓋部52aから取り外される。さらに、スコッチヨーク軸45の下部ロッド45cから固定ピン49およびカラー部50が取り外され、蓋部52aも取り外される(S13)。このようにして、冷凍機ハウジング20から下部カバー24を取り外す前に、ディスプレーサ18がスコッチヨーク軸45から取り外される。そして、冷凍機ハウジング20から下部カバー24が取り外される(S13)。
 図8に示されるように、第2シール部材25bがハウジング本体22から取り外される(S14)。なお理解を容易にするために、図8では、上下逆に(つまり下部開口21を上方に向けて)図示している。第2シール部材25bは上述のように、下部カバー24とハウジング本体22の間に挟み込まれて下部開口21内に配置されている。下部カバー24がハウジング本体22から取り外されることによって再び開放された下部開口21から第2シール部材25bが取り出される。
 続いて、スコッチヨーク軸45が下部開口21から冷凍機ハウジング20の外に引き抜かれる(S15)。スコッチヨークガイド54を取り出す前にスコッチヨーク軸45を取り出すことにより、スコッチヨークガイド54を取り外すための作業スペースを冷凍機ハウジング20内で広くとることができる。
 そして、スコッチヨークガイド54が下部開口21から冷凍機ハウジング20の外に取り出される。まず、一方のピン54aが下部開口21を通じて冷凍機ハウジング20の外に取り出され(S16)、次に、他方のピン54bも下部開口21を通じて冷凍機ハウジング20の外に取り出される(S17)。
 こうしてピン54a、54bを取り外した後、新品のピン54a、54bが取り付けられる。その後、上述とは逆の順序で膨張機14を再び組み立てられる。このようにして、摩耗したスコッチヨークガイド54を新品と交換することができる。これにより、スコッチヨーク軸45の軸まわりの回転を確実に防ぐことができる。
 実施の形態にもとづき、具体的な語句を用いて本発明を説明したが、実施の形態は、本発明の原理、応用の一側面を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を逸脱しない範囲において、多くの変形例や配置の変更が認められる。
 本発明は、極低温冷凍機の分解方法の分野における利用が可能である。
 10 極低温冷凍機、 21 下部開口、 24 下部カバー、 40a モータ回転軸、 45 スコッチヨーク軸、 45a スコッチヨーク板、 54 スコッチヨークガイド、 54a ピン、 56 ピン挿入穴。

Claims (8)

  1.  極低温冷凍機の分解方法であって、前記極低温冷凍機は、下部開口を有するハウジングと、前記下部開口を塞ぐ下部カバーと、前記ハウジングに収容され、前記下部カバーを貫通して前記ハウジング外に延出するスコッチヨーク軸と、前記ハウジング内に取り外し可能に設けられ、前記スコッチヨーク軸の軸方向移動をガイドするスコッチヨークガイドとを備えており、前記方法は、
     前記ハウジングから前記下部カバーを取り外すことと、
     前記スコッチヨークガイドを前記下部開口から前記ハウジングの外に取り出すことと、を備えることを特徴とする方法。
  2.  前記スコッチヨークガイドは、前記スコッチヨーク軸の軸まわり回転を規制するように構成されていることを特徴とする請求項1に記載の方法。
  3.  前記スコッチヨーク軸は、前記ハウジングに収容されるスコッチヨーク板と、前記スコッチヨーク板から前記下部カバーを貫通して前記ハウジング外に延出するロッドとを備え、
     前記スコッチヨークガイドは、前記スコッチヨーク軸の軸方向移動を駆動するモータ回転軸の方向に関して前記ロッドと異なる位置に配置されるとともに、前記スコッチヨーク板に隣接していることを特徴とする請求項1または2に記載の方法。
  4.  前記スコッチヨークガイドは、前記スコッチヨーク軸の軸方向に延在する複数のピンを備え、前記ハウジングは、前記複数のピンがそれぞれ取り外し可能に挿し込まれる複数のピン挿入穴を有することを特徴とする請求項1から3のいずれかに記載の方法。
  5.  前記スコッチヨークガイドを取り出す前に、前記スコッチヨーク軸を前記下部開口から前記ハウジングの外に引き抜くことをさらに備えることを特徴とする請求項1から4のいずれかに記載の方法。
  6.  前記極低温冷凍機は、前記スコッチヨーク軸に取り付けられたディスプレーサを備え、
     前記ハウジングから前記下部カバーを取り外す前に、前記スコッチヨーク軸から前記ディスプレーサを取り外すことをさらに備えることを特徴とする請求項1から5のいずれかに記載の方法。
  7.  前記極低温冷凍機は、前記ハウジングに固定され、前記ディスプレーサを収容するシリンダを備え、
     前記ハウジングと前記シリンダの固定を解除することと、
     前記ハウジングと共に前記ディスプレーサを前記シリンダから引き抜くことと、を備えることを特徴とする請求項6に記載の方法。
  8.  前記極低温冷凍機は、前記ハウジングに取り付けられ、前記スコッチヨーク軸の軸方向移動を駆動するモータを備え、
     前記ハウジングから前記モータを取り外すことをさらに備えることを特徴とする請求項1から7のいずれかに記載の方法。
PCT/JP2022/039683 2021-12-09 2022-10-25 極低温冷凍機の分解方法 WO2023105964A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021200279A JP2023085949A (ja) 2021-12-09 2021-12-09 極低温冷凍機の分解方法
JP2021-200279 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023105964A1 true WO2023105964A1 (ja) 2023-06-15

Family

ID=86730128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039683 WO2023105964A1 (ja) 2021-12-09 2022-10-25 極低温冷凍機の分解方法

Country Status (2)

Country Link
JP (1) JP2023085949A (ja)
WO (1) WO2023105964A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432302B2 (ja) * 1981-03-30 1992-05-28
WO2011129317A1 (ja) * 2010-04-14 2011-10-20 住友重機械工業株式会社 極低温冷凍機
JP2015055374A (ja) 2013-09-10 2015-03-23 住友重機械工業株式会社 極低温冷凍機
JP2017142036A (ja) * 2016-02-12 2017-08-17 アイシン精機株式会社 Gm冷凍機
JP2019095090A (ja) * 2017-11-20 2019-06-20 住友重機械工業株式会社 極低温冷凍機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432302B2 (ja) * 1981-03-30 1992-05-28
WO2011129317A1 (ja) * 2010-04-14 2011-10-20 住友重機械工業株式会社 極低温冷凍機
JP2015055374A (ja) 2013-09-10 2015-03-23 住友重機械工業株式会社 極低温冷凍機
JP2017142036A (ja) * 2016-02-12 2017-08-17 アイシン精機株式会社 Gm冷凍機
JP2019095090A (ja) * 2017-11-20 2019-06-20 住友重機械工業株式会社 極低温冷凍機

Also Published As

Publication number Publication date
TW202323742A (zh) 2023-06-16
JP2023085949A (ja) 2023-06-21

Similar Documents

Publication Publication Date Title
TWI473956B (zh) Cooler type freezer
US11221079B2 (en) Cryocooler and rotary valve unit for cryocooler
US9657970B2 (en) Cryogenic refrigerator
JP6214498B2 (ja) 極低温冷凍機
JP2012057920A (ja) クライオポンプ及び極低温冷凍機
JP6117090B2 (ja) 極低温冷凍機
US9759455B2 (en) Cryogenic refrigerator
JP2015055374A (ja) 極低温冷凍機
US10520226B2 (en) Cryocooler
WO2023105964A1 (ja) 極低温冷凍機の分解方法
JP2017120162A (ja) 極低温冷凍機およびロータリバルブ機構
WO2019188170A1 (ja) 極低温冷凍機
JP2007205608A (ja) 蓄冷器式冷凍機
TWI839961B (zh) 極低溫冷凍機之分解方法
CN118251576A (zh) 超低温制冷机的分解方法
JP2016057025A (ja) 極低温冷凍機
JP2017215095A (ja) 極低温冷凍機
JP2017215094A (ja) 極低温冷凍機
WO2023149130A1 (ja) ギフォード・マクマホン(gm)冷凍機の第1段ディスプレーサ、第1段ディスプレーサ組立体、およびギフォード・マクマホン冷凍機
WO2011105684A2 (ko) 극저온 냉동기의 디스플레이서 밸브
US11754184B2 (en) Cryocooler and sealing component
US11725854B2 (en) Cryocooler
JP6532392B2 (ja) 極低温冷凍機
JP2017207275A (ja) 極低温冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903896

Country of ref document: EP

Kind code of ref document: A1