WO2023105769A1 - エアロゾル生成装置の電源ユニット - Google Patents

エアロゾル生成装置の電源ユニット Download PDF

Info

Publication number
WO2023105769A1
WO2023105769A1 PCT/JP2021/045598 JP2021045598W WO2023105769A1 WO 2023105769 A1 WO2023105769 A1 WO 2023105769A1 JP 2021045598 W JP2021045598 W JP 2021045598W WO 2023105769 A1 WO2023105769 A1 WO 2023105769A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
power supply
supply unit
cartridge
circuit board
Prior art date
Application number
PCT/JP2021/045598
Other languages
English (en)
French (fr)
Inventor
啓司 丸橋
稔 北原
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/045598 priority Critical patent/WO2023105769A1/ja
Priority to CN202180104898.5A priority patent/CN118382373A/zh
Publication of WO2023105769A1 publication Critical patent/WO2023105769A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts

Definitions

  • the present invention relates to a power supply unit for an aerosol generator.
  • Patent document 1 includes a heater, a battery that supplies power to heat the heater, a control unit, a main PCB and a sub-PCB that are made of a hard material, and the main PCB is an aerosol
  • the sub-PCB is arranged parallel to the longitudinal direction of the aerosol-generating device, the sub-PCB is arranged perpendicular to the longitudinal direction of the aerosol-generating device, and the main PCB and the sub-PCB are connection PCBs made of a flexible material.
  • An aerosol generating device is described that is electrically coupled by a.
  • a known aerosol generator has a replaceable cartridge including an aerosol source and an atomizer for atomizing the aerosol.
  • this cartridge is repeatedly replaced, so it is necessary to establish an electrical connection between the cartridge and the power supply unit without damage.
  • An object of the present invention is to provide a power supply unit for an aerosol generator with improved durability.
  • the power supply unit of the aerosol generating device includes a power source, a first cartridge holding section to which a first cartridge including an aerosol source and an atomizer can be inserted and removed, and discharge from the power source to the atomizer.
  • a controller configured to be controllable; a first rigid circuit board on which the controller is mounted; and a second rigid circuit connectable to the atomizer of the first cartridge inserted into the first cartridge holding portion. and a flexible circuit board capable of connecting the first rigid circuit board and the second rigid circuit board.
  • FIG. 1 is a perspective view of an aerosol generator 200;
  • FIG. 2 is another perspective view of the aerosol generator 200.
  • FIG. 2 is an exploded perspective view of the aerosol generator 200.
  • FIG. It is a left view of internal unit 2A. It is a right side view of 2 A of internal units. It is a perspective view which shows the structure of the heating part 60 of internal unit 2A, and the circuit part 70.
  • FIG. 2 is a diagram showing a surface 201 of a main board 20;
  • FIG. 3 is a diagram showing a back surface 202 of the main substrate 20;
  • FIG. 2 is a diagram showing a schematic configuration of a circuit provided on a main substrate 20;
  • FIG. 10 is a circuit diagram showing electronic components related to operation in a heating mode extracted from the circuit shown in FIG.
  • FIG. 10 is a circuit diagram showing electronic components extracted from the circuit shown in FIG. 9 and related to heating control of the seat heater HTR and the liquid heater, drive control of the vibration motor 13, and drive control of the LED 21D;
  • FIG. 10 is a circuit diagram showing electronic components related to restarting of the MCU 6 extracted from the circuit shown in FIG. 9;
  • FIG. 4 is a front view of the main FPC 23 as seen from the left side when the main FPC 23 is unfolded so that the thickness direction matches the left-right direction;
  • FIG. 4 is a front view of the main FPC 23 as seen from the right side when the main FPC 23 is unfolded so that the thickness direction coincides with the left-right direction;
  • 15 is an enlarged view of a range AR shown in FIG. 14;
  • FIG. 1 The power supply unit of the aerosol generator, which is one embodiment of the present invention, will be described below.
  • an aerosol generator equipped with a power supply unit of this embodiment will be described with reference to FIGS. 1 to 8.
  • FIG. 1 An aerosol generator equipped with a power supply unit of this embodiment will be described with reference to FIGS. 1 to 8.
  • FIG. 1 An aerosol generator equipped with a power supply unit of this embodiment will be described with reference to FIGS. 1 to 8.
  • the aerosol generator 200 is a device for generating flavored aerosol without combustion and inhaling the generated aerosol.
  • the aerosol generator 200 preferably has a size that fits in the hand, and has, for example, a rounded rectangular parallelepiped shape as shown in FIGS. 1 and 2 .
  • the shape of the aerosol generating device 200 is not limited to this, and may be a rod shape, an egg shape, or the like.
  • the vertical direction, the front-rear direction, and the left-right direction are referred to in descending order of length.
  • front, rear, left, right, upper, and lower are defined as shown in FIGS. is denoted as R, upward as U, and downward as D.
  • the aerosol generator 200 includes a power supply unit 100, a first cartridge 110, and a second cartridge 120.
  • the first cartridge 110 and the second cartridge 120 are detachable from the power supply unit 100 .
  • the first cartridge 110 and the second cartridge 120 are each replaceable.
  • the power supply unit 100 includes an internal unit 2A and a case 3a, and at least part of the internal unit 2A is housed in the case 3a.
  • the case 3a is composed of a first case 3A and a second case 3B that are detachable in the left-right direction (thickness direction), and the first case 3A and the second case 3B are assembled in the left-right direction (thickness direction).
  • the front surface, rear surface, left surface, and right surface of the power supply unit 100 are formed.
  • the first case 3A is supported on the left surface of a chassis 50, which will be described later, included in the internal unit 2A
  • the second case 3B is supported on the right surface of the chassis 50.
  • a capsule holder 4A is provided on the upper surface of the power supply unit 100 in front.
  • the capsule holder 4A is provided with an opening 4a that opens upward.
  • the capsule holder 4A is configured such that the second cartridge 120 can be inserted through the opening 4a.
  • a mouthpiece 130 is detachably provided on the second cartridge 120 .
  • the upper surface of the power supply unit 100 is formed by an OLED (Organic Light-Emitting Diode) cover 5a arranged behind the opening 4a, and the lower surface of the power supply unit 100 is a lower cover provided with the charging terminal 1. 8a and a pivotable lower lid 7a.
  • OLED Organic Light-Emitting Diode
  • an inclined surface that slopes downward toward the rear is provided.
  • the inclined surface is provided with an operation section that can be operated by the user.
  • the operation unit of the present embodiment is a button type switch BT, but may be configured by a touch panel or the like.
  • the operation unit is used to activate/shutdown/operate a later-described MCU (Micro Controller Unit) 6 and various sensors, reflecting the user's intention of use.
  • MCU Micro Controller Unit
  • the charging terminal 1 accessible from the lower cover 8a is configured to be electrically connectable to an external power supply (not shown) capable of supplying the power supply unit 100 with power for charging the power supply ba included in the battery pack BP.
  • the charging terminal 1 is, for example, a receptacle into which a mating plug can be inserted.
  • a receptacle into which various USB terminals or the like can be inserted can be used.
  • the charging terminal 1 is a USB Type-C receptacle.
  • the charging terminal 1 may include, for example, a power receiving coil and be configured to be capable of contactlessly receiving power transmitted from an external power supply.
  • the method of power transmission in this case may be an electromagnetic induction type, a magnetic resonance type, or a combination of the electromagnetic induction type and the magnetic resonance type.
  • the charging terminal 1 may be connectable to various USB terminals and the like, and may have the power receiving coil described above.
  • the internal unit 2A includes a battery pack BP, a chassis 50, a heating section 60, a circuit section 70, a notification section, and various sensors, as shown in FIGS.
  • the chassis 50 includes a cylindrical cartridge holding portion 51 positioned at the front, a semi-cylindrical battery holding portion 52 positioned at the rear and notched on the left side, and a cartridge holding portion.
  • a plate-like connecting portion 53 that connects the portion 51 and the battery holding portion 52, and a motor holding portion 54 that is provided below and to the right of the connecting portion 53 and straddles the cartridge holding portion 51 and the battery holding portion 52.
  • a sensor holding portion 55 provided on the rear left side of the cartridge holding portion 51 .
  • the first cartridge 110 is inserted into the cartridge holding portion 51 from below with the lower lid 7a opened.
  • the first cartridge 110 is accommodated in the cartridge holding portion 51 by closing the lower lid 7a with the first cartridge 110 inserted.
  • a capsule holder 4A is attached to the upper portion of the cartridge holding portion 51 .
  • the cartridge holding portion 51 is provided with a longitudinal through-hole in the front, and the aerosol source of the first cartridge 110 can be viewed from the remaining amount confirmation window 3w provided at the joining portion of the first case 3A and the second case 3B.
  • the remaining amount and light from an LED (Light Emitting Diode) 21D which will be described later, are visible.
  • the first cartridge 110 will be described later.
  • a battery pack BP is arranged in the battery holding portion 52 .
  • the battery pack BP includes a power source ba and a power source thermistor for detecting the temperature of the power source ba.
  • the power source ba is a rechargeable secondary battery, an electric double layer capacitor, or the like, preferably a lithium ion secondary battery.
  • the electrolyte of the power supply ba may be composed of one or a combination of a gel electrolyte, an electrolytic solution, a solid electrolyte, and an ionic liquid.
  • the vibration motor 13 is arranged in the motor holding portion 54 .
  • the sensor holder 55 is provided with a later-described suction sensor 15 that outputs an output corresponding to a user's suction action (puff action).
  • the heating unit 60 includes a cylindrical heat transfer tube 61 and a seat heater HTR wound around the outer circumference of the heat transfer tube 61.
  • the aforementioned capsule holder 4A is spaced apart around the seat heater HTR.
  • An air layer between the capsule holder 4A and the seat heater HTR functions as a heat insulator.
  • the lower portion of the second cartridge 120 inserted through the opening 4a of the capsule holder 4A is accommodated in the heat transfer tube 61, and the lower portion of the second cartridge 120 is heated by the seat heater HTR. This makes it easier for the flavor source stored in the second cartridge 120 to release the flavor than in the case where the heating unit 60 is not provided, so that the flavor is easily added to the aerosol.
  • the heating unit 60 may be any element that can heat the second cartridge 120 .
  • the element include a resistance heating element, a ceramic heater, an induction heater, and the like.
  • the resistance heating element for example, one having PTC (Positive Temperature Coefficient) characteristics in which the resistance value increases as the temperature increases is preferably used. Instead of this, one having NTC (Negative Temperature Coefficient) characteristics in which the resistance value decreases as the temperature increases may be used.
  • the heating unit 60 has a function of defining a flow path for air to be supplied to the second cartridge 120 and a function of heating the second cartridge 120 .
  • the notification unit notifies various information such as the state of charge of the power supply ba, the remaining amount of the first cartridge 110, the remaining amount of the second cartridge 130, and the like.
  • the notification unit of this embodiment includes the LED 21D and the vibration motor 13.
  • the notification unit may be configured by a light emitting element such as the LED 21D, may be configured by a vibration element such as the vibration motor 13, or may be configured by a sound output element.
  • the notification unit may be a combination of two or more elements selected from the light emitting element, the vibration element, and the sound output element.
  • the various sensors include a suction sensor 15 that detects the user's puff action (suction action), a heater temperature sensor that detects the temperature of the seat heater HTR, and the like.
  • the suction sensor 15 is composed of, for example, a condenser microphone, a pressure sensor, a flow sensor, and the like. A plurality of suction sensors 15 may be spaced apart and the puffing action may be detected from the difference in their output values.
  • the heater temperature sensor includes a first thermistor th1 and a second thermistor th2. The first thermistor th1 and the second thermistor th2 are preferably in contact with or close to the seat heater HTR. If the seat heater HTR has PTC characteristics or NTC characteristics, the seat heater HTR itself may be used as the heater temperature sensor. Although the heater temperature sensor is composed of two thermistors, it may be composed of one thermistor.
  • the circuit section 70 includes four circuit boards, three FPCs (Flexible Printed Circuits), a plurality of ICs (Integrated Circuits), and a plurality of elements.
  • the four circuit boards are composed of a main board 20, a puff sensor board 21, a pogo pin board 22, and an OLED board 26.
  • the three FPCs consist of a main FPC 23, a heater FPC 24, and an OLED FPC 25. These four circuit boards are rigid and sufficiently rigid than the three FPCs.
  • the main board 20 is arranged between the battery pack BP and the rear surface of the case 3a (the rear surface of the power supply unit 100) so that the element mounting surface faces the front-rear direction.
  • the main substrate 20 is configured by stacking a plurality of substrates (six layers in this embodiment), and electronic components (elements) such as the MCU 6 and the charging IC 3 are mounted.
  • the MCU 6 stores various sensor devices such as the suction sensor 15, an operation unit, a notification unit, the number of puffing operations or the load, the energization time of the seat heater HTR, and the like. It is a control device that is connected to a memory or the like and performs various controls of the aerosol generation device 200 .
  • the MCU 6 is mainly composed of a processor, and further includes storage media such as RAM (Random Access Memory) necessary for the operation of the processor and ROM (Read Only Memory) for storing various information.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • a processor in this specification is, for example, an electric circuit in which circuit elements such as semiconductor elements are combined.
  • the charging IC 3 is an IC that controls charging of the power supply ba with power input from the charging terminal 1 and supplies the power of the power supply ba to the electronic components of the main substrate 20 and the like.
  • FIG. 7 is a diagram showing the front surface 201 of the main board 20
  • FIG. 8 is a diagram showing the back surface 202 of the main board 20.
  • the main board 20 has a plate-like shape extending vertically.
  • FIGS. 7 and 8 as side surfaces orthogonal to the longitudinal direction of the main board 20, an upper side surface 20SU and a lower side surface 20SU are shown. 20SD are shown.
  • As side surfaces perpendicular to the short direction of the main board 20 a left side surface 20SL and a right side surface 20SR are shown.
  • the MCU 6 and charging IC 3 are mounted on the back surface 202 of the main substrate 20 together with the charging terminal 1.
  • a debug connector 20E is further mounted on the rear surface 202 .
  • the debug connector 20E is an interface for rewriting the program of the MCU 6 from an external device such as a personal computer.
  • on the front surface 201 of the main substrate 20 are an OLED connector 20C, a heater connector 20B, a main connector 20A, and a battery connected to the battery pack BP via lead wires 16 (see FIG. 6).
  • a connector 20D is mounted.
  • the puff sensor board 21 is placed on the sensor holding portion 55 of the chassis 50 so that the element mounting surface faces the right front and the left rear.
  • a suction sensor 15 is mounted on the puff sensor substrate 21 .
  • the OLED substrate 26 is arranged between the battery pack BP and the OLED cover 5a so that the element mounting surface faces up and down.
  • the OLED panel 17 is mounted on the OLED substrate 26 .
  • the pogo-pin board 22 is placed on the lower lid 7a so that the element mounting surface faces the vertical direction when the lower lid 7a is closed.
  • the pogo pin board 22 has input contacts P1 to P3 to which power is supplied from the main board 20 via the main FPC 23, and pogo pins p1 to P3, which are connectors electrically connected to loads provided on the first cartridge 110. p3, and wiring connecting the pogo pins p1 to p3 and the input side contacts P1 to P3 are provided.
  • the input side contacts P1 to P3 are electrically connected to the main FPC 23 only when the lower lid 7a is closed.
  • Three pogo pins p1 to p3 are provided at equal intervals in the circumferential direction, and at least two pogo pins are electrically connected to the + terminal and - terminal of the first cartridge 110 accommodated in the cartridge holding portion 51. Configured.
  • the left side of the battery pack BP held by the battery holding portion 52 is exposed from the battery holding portion 52 by the semi-cylindrical battery holding portion 52 .
  • OLED FPCs 25 are arranged so as to overlap each other.
  • the main FPC 23 is wired closest to the battery pack BP, the OLED FPC 25 is wired so as to partially overlap the main FPC 23, and the heater FPC 24 is wired so as to overlap the OLED FPC 25. That is, the heater FPC 24 to which the largest electric power is supplied among the three FPCs is arranged farthest from the battery pack BP.
  • the main FPC 23 has a substantially cross-shaped unfolded shape, and is folded backward at a portion overlapping with the heater FPC 24 . In other words, the main FPC 23 is folded wiring.
  • the folded portion of the main FPC 23 tends to float in the left-right direction, but the heater FPC 24 and the OLED FPC 25 overlap this portion, thereby preventing such floatation.
  • the switch BT is directly mounted on the main FPC 23 without a rigid substrate or the like.
  • the OLED FPC 25 has one end connected to the OLED connector 20C of the main substrate 20 and the other end connected to the OLED substrate 26 .
  • the main FPC 23 connects the main connector 20A of the main board 20, the switch BT of the operating section, the connector 21B of the puff sensor board 21, and the input side contacts P1 to P3 of the pogo pin board 22.
  • One end of the heater FPC 24 is connected to the heater connector 20B of the main board 20, and the seat heater HTR is integrally formed at the other end.
  • the first cartridge 110 contains a reservoir storing an aerosol source, an electric load atomizing the aerosol source, a wick drawing the aerosol source from the reservoir to the load, and the aerosol source inside a cylindrical cartridge case 111. and an aerosol flow path through which the aerosol generated by being atomized flows toward the second cartridge 120 .
  • Aerosol sources include liquids such as glycerin, propylene glycol, or water.
  • the load is a heating element that heats the aerosol source without combustion by electric power supplied from the power supply ba via the pogo pins p1 to p3 of the pogo pin substrate 22.
  • the load is a heating wire (coil ).
  • the load atomizes the aerosol source by heating the aerosol source.
  • a heating resistor, a ceramic heater, an induction heater, or the like can be used as the load.
  • the load provided on the first cartridge 110 is also referred to as a liquid heater.
  • the aerosol channel is connected to the second cartridge 120 via the channel forming body 19 (see FIG. 6) accommodated in the cartridge holding portion 51 of the chassis 50.
  • the second cartridge 120 stores a flavor source.
  • the flavor source is heated by heating the second cartridge 120 by the seat heater HTR.
  • the second cartridge 120 adds flavor to the aerosol by passing the aerosol generated by atomizing the aerosol source by the liquid heater through the flavor source.
  • raw material pieces constituting the flavor source cut tobacco or a molded body obtained by molding tobacco raw materials into granules can be used.
  • the flavor source may be composed of plants other than tobacco (for example, mint, Chinese medicine, herbs, etc.). Flavor sources such as menthol may be added to the flavor source.
  • the aerosol generator 200 can generate a flavored aerosol from an aerosol source and a flavor source. That is, the aerosol source and the flavor source constitute an aerosol generating source that generates a flavored aerosol.
  • the aerosol generation source in the aerosol generation device 200 is a part that the user replaces and uses. This part is provided to the user as one set, for example, one first cartridge 110 and one or more (for example, five) second cartridges 120 . Also, the battery pack BP can be repeatedly charged and discharged unless the power supply ba is significantly degraded. Therefore, in the aerosol generating device 200, the frequency of replacement of the power supply unit 100 or the battery pack BP is the lowest, the frequency of replacement of the first cartridge 110 is the second lowest, and the frequency of replacement of the second cartridge 120 is the highest. Note that the first cartridge 110 and the second cartridge 120 may be integrated into one cartridge. A configuration or the like in which a drug or the like is added to the aerosol source instead of the flavor source may be used.
  • the aerosol generator 200 configured in this way, air that has flowed in from an air intake port (not shown) provided in the case 3a or the internal unit 2A passes through the vicinity of the load of the first cartridge 110.
  • the load atomizes the aerosol source drawn from the reservoir by the wick.
  • the atomized aerosol flows through the aerosol channel together with the air that has flowed in from the inlet, and is supplied to the second cartridge 120 via the channel forming body 19 .
  • the aerosol supplied to the second cartridge 120 is flavored by passing through the flavor source and supplied to the mouthpiece 131 of the mouthpiece 130 .
  • the lower lid 7a is configured to be rotatable around a rotation axis Ax extending in the left-right direction shown in FIG. Specifically, the front end of the lower lid 7a moves counterclockwise from the closed state (the state of covering the hollow portion of the cartridge holding portion 51) shown in FIG. part is exposed).
  • the pogo-pin board 22 has a flat plate shape, and input contacts P1 to P3 are provided at the rear end of the upper surface of the pogo-pin board 22.
  • the input contacts P1 to P3 are configured by projections protruding upward.
  • pogo pins p1 to p3 are provided which are projections protruding upward.
  • the pogo pin substrate 22 is fixed to the inner surface (upper surface) of the lower lid 7a.
  • the input-side contacts P1 to P3 of the pogo pin board 22 come into contact with terminals 81T to 83T of conductive patterns 81 to 83 provided on the main FPC 23, which will be described later, thereby connecting the main FPC 23 and the pogo pin board. 22 is established.
  • the input side contacts P1-P3 of the pogo-pin board 22 are separated from the terminals 81T-83T of the conductive patterns 81-83 and are out of contact with the conductive patterns 81-83.
  • the electrical connection between the main FPC 23 and the pogo pin board 22 is released.
  • the main FPC 23 is accommodated in the case 3 so as not to be deformed by the opening and closing operation of the lower lid 7a. That the main FPC 23 does not deform means that the position of the main FPC 23 in the case 3 does not substantially change.
  • the lower lid 7a and the pogo-pin substrate 22 fixed thereto serve as places to which force is applied when the first cartridge 110 is inserted into or removed from the cartridge holding portion 51.
  • the pogo-pin board 22 is composed of a rigid circuit board.
  • the durability of the power supply unit 100 can be improved by using an inexpensive and rigid rigid circuit board in such a portion.
  • electrical connection between the pogo-pin board 22 and the main FPC 23 is established only when the lower lid 7a is closed. As a result, the main FPC 23 is less likely to be damaged than when the main FPC 23 is interlocked with the rotation of the lower lid 7a.
  • the input-side contacts P1 to P3 that come into contact with the main FPC 23 are configured by projections that require a small contact area. Therefore, the external force applied to the main FPC 23 when the lower lid 7a is opened and closed and the stress caused by this external force can be reduced. Further, in this embodiment, it is not necessary to insert or remove the first cartridge 110 when inserting or removing the second cartridge 120 into or from the capsule holder 4A.
  • the structure requires opening and closing of the lower lid 7a in order to insert and remove the first cartridge 110, which is replaced less frequently than the second cartridge 120. As shown in FIG. As a result, frequent opening and closing of the lower lid 7a can be prevented, and the durability of the power supply unit 100 can be improved.
  • FIG. 9 is a diagram showing a schematic configuration of a circuit provided on the main substrate 20. As shown in FIG. In addition to the circuit of the main board 20, FIG. , and the battery pack BP connected to the battery connector 20D.
  • main ICs which are electronic components in which a plurality of circuit elements are chipped, are provided: a protection IC 2, a charging IC 3, an LDO (Low Dropout) regulator (hereinafter referred to as LDO) 4, and a DC/DC
  • a booster circuit 5 configured by a converter
  • an MCU 6 a load switch (hereinafter referred to as LSW) 7 configured by combining a capacitor, a resistor, a transistor, etc., a multiplexer 8, and a flip-flop (hereinafter referred to as FF).
  • LSW load switch
  • FF flip-flop
  • the main board 20 further includes switches Q1 to Q9 configured by MOSFETs (metal-oxide-semiconductor field-effect transistors), resistors R1 to R12, RA and RB having fixed electrical resistance values, and a capacitor C1. , a capacitor C2, a varistor V, a varistor V1, a reactor L3 connected to the charging IC 3, a reactor L5 connected to the booster circuit 5, and a reactor L11 connected to the booster circuit 11.
  • the switch Q3, switch Q4, switch Q7, switch Q8, and switch Q9 are each composed of an N-channel MOSFET.
  • the switch Q1, switch Q2, switch Q5, and switch Q6 are each composed of a P-channel MOSFET. Each of the switches Q1 to Q8 is switched between an on state and an off state by controlling the potential of the gate terminal by the MCU6.
  • a terminal VCC and a terminal VDD mounted on the chip indicate power supply terminals on the high potential side, respectively.
  • a terminal VSS and a terminal GND mounted on the chip respectively represent power supply terminals on the low potential side (reference potential side).
  • the difference between the potential of the power supply terminal on the high potential side and the potential of the power supply terminal on the low potential side is the power supply voltage (operating voltage). Chipped electronic components use this power supply voltage to perform various functions.
  • the terminal GND and terminal VSS of each IC are each connected to a ground line.
  • the terminal GND of the charging terminal 1, the negative power supply terminal of the operational amplifier OP1, and the negative power supply terminal of the operational amplifier OP2 are each connected to a ground line.
  • a battery connector 20 ⁇ /b>D (see near left center in FIG. 9 ) provided on the main substrate 20 includes a terminal BAT connected to the detection terminal SNS of the charging IC 3 and a charging terminal BAT of the charging IC 3 , and the ground of the main substrate 20 . It has a terminal GND connected to the line and a terminal TH3 connected to terminal P25 of MCU6.
  • a terminal BAT of the battery connector 20D is connected by a lead wire 16 to a positive terminal of a power source ba included in the battery pack BP.
  • a terminal TH3 of the battery connector 20D is connected by a lead wire 16 to a positive terminal of a power supply thermistor th3 included in the battery pack BP.
  • a terminal GND of the battery connector 20D is connected by a lead wire 16 to a negative terminal of the power source ba and a negative terminal of the power source thermistor th3.
  • An OLED connector 20C (see near the lower left in FIG. 9) provided on the main board 20 includes a terminal VCC_R connected to the output terminal VOUT of the booster circuit 5, a terminal VDD connected to the output terminal OUT of the LDO 4, and a terminal VDD connected to the output terminal OUT of the LDO 4. , a communication terminal T3 connected to the communication terminal P28 of the MCU 6 via a signal line SL, and a terminal VSS connected to the ground line of the main substrate 20.
  • the terminal VCC_R of the OLED connector 20C is connected to the driving voltage supply terminal of the OLED panel 17 by the OLED FPC 25.
  • the terminal VDD of the OLED connector 20C is connected by the OLED FPC 25 to the power terminal of the control IC that controls the OLED panel 17 .
  • the voltage to be supplied to the drive voltage supply terminal of the OLED panel 17 is, for example, about 15 V, which is higher than the voltage to be supplied to the power terminal of the control IC of the OLED panel 17 .
  • the terminal VSS of the OLED connector 20C is connected by the OLED FPC 25 to the ground terminals of the OLED panel 17 and the control IC of the OLED panel 17, respectively.
  • a terminal RSTB of the OLED connector 20C is connected by an OLED FPC 25 to a terminal for restarting the control IC of the OLED panel 17 .
  • the signal line SL connected to the communication terminal T3 of the OLED connector 20C is also connected to the communication terminal T3 of the charging IC3.
  • This signal line SL allows the MCU 6 to communicate with the charging IC 3 and communicate with the control IC of the OLED panel 17 .
  • the signal line SL is for serial communication, and actually requires a plurality of signal lines such as a data line for data transmission and a clock line for synchronization. Note that the signal line SL is illustrated as one signal line in FIG. 9 for simplification. Note that the communication between the MCU 6, the charging IC 3, and the control IC of the OLED panel 17 may be performed by parallel communication instead of serial communication.
  • a debug connector 20E (see near the lower left in FIG. 9) provided on the main board 20 has a terminal VMCU connected to the output terminal OUT of the LDO 4 and a terminal T1 connected to the communication terminal P23 of the MCU6 (in the figure a terminal T2 connected to the communication terminal P22 of the MCU6 (one terminal in the figure but actually two terminals); and a terminal T2 connected to the terminal P27 of the MCU6. and a terminal GND connected to the ground line of the main board 20 .
  • Terminal NRST is also connected to the drain terminal of a switch Q9 whose gate terminal is connected to the drain terminal of switch Q7 and whose source terminal is connected to the ground line.
  • the debugging connector 20E is not used under normal operating conditions of the aerosol generating device 200, and is used only when maintenance such as rewriting of information (including programs) stored in the MCU 6 is required. or a computer provided by the seller.
  • the main connector 20A (see near the right center in FIG. 9) provided on the main board 20 has a terminal PUFF connected to the terminal P19 of the MCU6, a gate terminal connected to the terminal P20 of the MCU6 and a source terminal connected to the ground line.
  • terminal LED connected to the drain terminal of the switch Q8 connected to the terminal LED connected to the drain terminal of the switch Q8, terminal VIB connected to the output terminal OUT of the LSW7, terminal VOTG connected to the boost output terminal RN of the charging IC3, and through the resistor R5.
  • a voltage dividing circuit consisting of a terminal VMCU connected to the output terminal OUT of LDO4, a terminal GND connected to the ground line, a resistor R4 and a resistor R3 connected in series therewith, the output terminal OUT of LDO4 terminal KEY connected to , terminal HT1 (P1) connected to the drain terminal of switch Q1 whose gate terminal is connected to terminal P12 of MCU 6 and whose source terminal is connected to output terminal VOUT of booster circuit 11, and gate A drain terminal of a switch Q2 whose terminal is connected to the terminal P13 of the MCU6 and whose source terminal is connected to the output terminal VOUT of the booster circuit 11, and whose gate terminal is connected to the terminal P17 of the MCU6 and whose source terminal is connected to the ground line.
  • the terminal HT1 (P1) of the main connector 20A is connected by the main FPC 23 to the input side contact P1 connected to the pogo pin p1.
  • the terminal HT1 (P2) of the main connector 20A is connected by the main FPC 23 to the input side contact P2 connected to the pogo pin p2.
  • the terminal HT1 (P3) of the main connector 20A is connected by the main FPC 23 to the input side contact P3 connected to the pogo pin p3.
  • a terminal KEY of the main connector 20A is connected to one end of the switch BT mounted on the main FPC 23 by wiring of the main FPC 23 . The other end of this switch BT is connected to the ground line of the main FPC 23 .
  • a heater connector 20B (see near the upper right in FIG. 9) provided on the main substrate 20 is a first thermistor terminal connected to the plus side terminal of the first thermistor th1 mounted on the heater FPC 24 via wiring of the heater FPC 24.
  • TH1 the second thermistor terminal TH2 connected to the positive side terminal of the second thermistor th2 mounted on the heater FPC24 through the wiring of the heater FPC24, and the positive side of the seat heater HTR formed by the conductive pattern of the heater FPC24.
  • a seat heater terminal HT2 connected to the terminal through the wiring of the heater FPC 24 and a terminal GND connected to the ground line of the main substrate 20 are provided.
  • the heater FPC 24 is formed with wiring connected to the negative terminal of the first thermistor th1, the negative terminal of the second thermistor th2, and the negative terminal of the seat heater HTR. Connected to GND.
  • the seat heater terminal HT2 is connected to the drain terminal of a switch Q5 whose gate terminal is connected to the terminal P11 of the MCU6 and whose source terminal is connected to the output terminal VOUT of the booster circuit 11 .
  • the puff sensor board 21 (see near the bottom center in FIG. 9) includes a puff sensor connector 21A connected to the terminal group 15A of the suction sensor 15, a connector 21B connected to the main FPC 23, and a connector 21B connected to the vibration motor 13.
  • a vibration motor connector 21C, an LED 21D, a varistor V, and a capacitor C2 are mounted.
  • the connector 21B of the puff sensor board 21 is connected to each of the terminal PUFF, the terminal LED, the terminal VIB, the terminal VOTG, the terminal VMCU, and the terminal GND of the main connector 20A by wiring formed on the main FPC 23 (terminals PUFF, terminal LED, terminal VIB, terminal VOTG, terminal VMCU, and terminal GND).
  • the main FPC 23 is provided with the switch BT connected between the terminal KEY of the main connector 20A and the ground line.
  • the switch BT is pressed, the terminal KEY is connected to the ground line of the main FPC 23, and the potential of the terminal KEY becomes the ground potential.
  • the switch BT is not pressed, the terminal KEY is disconnected from the ground line of the main FPC 23, and the potential of the terminal KEY is indefinite.
  • the puff sensor connector 21A of the puff sensor substrate 21 has a terminal GATE connected to the output terminal of the suction sensor 15, a terminal GND connected to the ground terminal of the suction sensor 15, and a terminal VDD connected to the power terminal of the suction sensor 15. And prepare.
  • a terminal GATE of the puff sensor connector 21A is connected to a terminal PUFF of the connector 21B.
  • a terminal VDD of the puff sensor connector 21A is connected to a terminal VMCU of the connector 21B.
  • the terminal GND of the puff sensor connector 21A is connected to the terminal GND of the connector 21B.
  • One end of the varistor V is connected to the connection line between the terminal GATE of the puff sensor connector 21A and the terminal PUFF of the connector 21B, and the other end of the varistor V is connected to the ground line.
  • the varistor V can prevent the voltage from being input to other parts of the puff sensor board 21 and the MCU 6 even when a large voltage is input to the terminal GATE from the suction sensor 15 side.
  • One end of the capacitor C2 is connected to the connection line between the terminal VDD of the puff sensor connector 21A and the terminal VMCU of the connector 21B, and the other end of the capacitor C2 is connected to the ground line. Due to the capacitor C2, even if an unstable voltage is input to the terminal VDD of the puff sensor connector 21A from the main board 20 side, the voltage smoothed by the capacitor C2 can be input to the suction sensor 15.
  • the vibration motor connector 21C of the puff sensor board 21 has a positive side terminal connected to the terminal VIB of the connector 21B and a negative side terminal connected to the ground line.
  • a vibration motor 13 is connected to the positive terminal and the negative terminal.
  • the LED 21D of the puff sensor substrate 21 has an anode connected to the terminal VOTG of the connector 21B and a cathode connected to the terminal LED of the connector 21B.
  • the charging terminal 1 on the upper left in FIG. 9 has four terminals GND and four power supply input terminals BUS. Each power input terminal BUS of the charging terminal 1 is connected in parallel to the input terminal VIN of the protection IC2.
  • a USB plug is connected to the charging terminal 1 and a USB cable including this USB plug is connected to an external power supply, that is, when the USB connection is established, the power supply input terminal BUS of the charging terminal 1 is connected to the protection IC 2 .
  • a USB voltage VUSB is input to the input terminal VIN.
  • the protection IC 2 adjusts the USB voltage V USB input to the input terminal VIN, and outputs a bus voltage V BUS of a predetermined value (5.0 V as an example below) from the output terminal OUT.
  • the output terminal OUT of the protection IC2 is connected in parallel with the charging IC3, a voltage dividing circuit composed of a series circuit of a resistor R1 and a resistor R2, and a switch Q7.
  • the output terminal OUT of the protection IC 2 is connected to one end of the resistor R2 constituting the voltage dividing circuit, the input terminal VBUS of the charging IC 3, the gate terminal to the terminal P21 of the MCU 6, and the source terminal to the ground line. and the drain terminal of switch Q7 connected to .
  • resistor R1 One end of the resistor R1 is connected to the other end of the resistor R2, and the other end of the resistor R1 is connected to the ground line.
  • a node connecting resistors R1 and R2 is connected to terminal P2 of MCU6.
  • the charging IC 3 has a charging function of charging the power source ba based on the bus voltage VBUS input to the input terminal VBUS .
  • the charging IC 3 acquires the charging current and charging voltage of the power source ba through the detection terminal SNS, and based on these, performs charging control of the power source ba (power supply control from the charging terminal BAT to the power source ba). Further, the charging IC 3 acquires the temperature information of the power supply ba, which the MCU 6 has acquired from the power supply thermistor th3 via the terminal P25, from the MCU 6 through serial communication using the signal line SL, and uses it for charging control.
  • the charging IC 3 has a first function of generating a system power supply voltage VSYS from the voltage of the power supply ba input to the charging terminal BAT (hereinafter referred to as power supply voltage VBAT ) and outputting it from the output terminal SYS.
  • the second function is enabled only when the USB connection is established.
  • the system power supply voltage V SYS and the OTG voltage V OTG are in a normal state in which the power supply ba can supply power to the charging IC 3, and if the charging IC 3 is operating normally, the voltage from the charging IC 3 is always Output is possible.
  • the charging IC 3 has a negative logic enable terminal CE ( ⁇ ), which is connected to the terminal P1 of the MCU6.
  • CE negative logic enable terminal
  • the charging IC 3 further includes a negative logic terminal QON ( ⁇ ).
  • a terminal QON ( ⁇ ) is connected to a node N2 connecting resistors R3 and R4, and this node N2 is connected to terminal P21 of MCU6.
  • the charging IC 3 stops voltage output from the output terminal SYS when a low level signal is input to the terminal QON ( ⁇ ).
  • An LDO 4, a booster circuit 5, and a booster circuit 11 are connected in parallel to the output terminal SYS of the charging IC3.
  • the output terminal SYS of the charging IC 3 is connected to the control terminal CTL and input terminal IN of the LDO 4 , the input terminal VIN of the booster circuit 5 and the input terminal VIN of the booster circuit 11 .
  • the OTG voltage VOTG output from the boost output terminal RN of the charging IC 3 is supplied to the anode of the LED 21D via the terminal VOTG of the main connector 20A and the terminal VOTG of the connector 21B.
  • the cathode of the LED 21D is grounded through the terminal LED of the connector 21B, the terminal LED of the main connector 20A, and the switch Q8. Therefore, the MCU 6 performs ON/OFF control of the switch Q8, thereby enabling lighting control of the LED 21D using the OTG voltage VOTG .
  • the booster circuit 5 includes a switching terminal SW, a positive logic enable terminal EN connected to the terminal P26 of the MCU 6, an output terminal VOUT, and a terminal GND.
  • One end of a reactor L5 is connected to the switching terminal SW of the booster circuit 5 .
  • the other end of this reactor L5 is connected to the input terminal VIN of the booster circuit 5.
  • the booster circuit 5 performs on/off control of the built-in transistor connected to the switching terminal SW to boost the voltage input to the switching terminal SW via the reactor L5 and output it from the output terminal VOUT.
  • the OLED voltage VOLED output from the output terminal VOUT of the booster circuit 5 is a sufficiently large voltage suitable for driving the OLED panel 17, and is a voltage of 15V as an example.
  • An input terminal VIN of the booster circuit 5 constitutes a high-potential-side power supply terminal of the booster circuit 5 .
  • the booster circuit 5 outputs the OLED voltage VOLED , and the signal input from the terminal P26 of the MCU6 to the enable terminal EN. is at a low level, the output of the OLED voltage V OLED is stopped. In this manner, the OLED panel 17 is driven and controlled by the MCU6.
  • the booster circuit 11 includes an input terminal VIN, a switching terminal SW, an output terminal VOUT, a positive logic enable terminal EN, and a terminal GND.
  • One end of a reactor L ⁇ b>11 is connected to the switching terminal SW of the booster circuit 11 .
  • the other end of the reactor L11 is connected to the input terminal VIN of the booster circuit 11.
  • the booster circuit 11 performs on/off control of the built-in transistor connected to the switching terminal SW to boost the voltage input to the switching terminal SW via the reactor L11 and output it from the output terminal VOUT.
  • the heating voltage VHEAT output from the output terminal VOUT of the booster circuit 11 is, for example, a voltage of 4V.
  • An input terminal VIN of the booster circuit 11 constitutes a high-potential-side power supply terminal of the booster circuit 11 .
  • the booster circuit 11 outputs a heating voltage V HEAT when a signal input from an output terminal Y of an AND gate 10 described later to an enable terminal EN is at a high level, and inputs the heating voltage V HEAT to the enable terminal EN. output of the heating voltage V_HEAT is stopped when the signal to be supplied is at a low level.
  • the output terminal VOUT of the booster circuit 11 is connected in parallel with a capacitor C1, a voltage dividing circuit consisting of a series circuit of a resistor R7 and a resistor R6, a multiplexer 8, a switch Q1, a switch Q2, and a switch Q5. It is Specifically, the output terminal VOUT of the booster circuit 11 includes a capacitor C1 whose one end is connected to the ground line, the other end of the capacitor C1, a resistor R6 connected to the ground line, and a resistor R7 connected in series to the resistor R6. the input terminal of the voltage divider circuit (the terminal of resistor R7 opposite to resistor R6), the terminal VCC of multiplexer 8, the source terminal of switch Q1, the source terminal of switch Q2, and the source of switch Q5. connected to the terminal.
  • a resistor RA having an electrical resistance value Ra is connected in parallel to the switch Q1.
  • a resistor RB having an electrical resistance value Rb is connected in parallel to the switch Q2.
  • the multiplexer 8 has an input terminal B0, an input terminal B1, an output terminal A, and a select terminal SE.
  • the multiplexer 8 switches between a state in which the input terminal B0 and the output terminal A are connected and a state in which the input terminal B1 and the output terminal A are connected, according to a control signal input from the terminal P15 of the MCU6 to the select terminal SE.
  • the input terminal B0 of the multiplexer 8 is connected to the line connecting the switch Q1 and the terminal HT1 (P1).
  • the input terminal B1 of the multiplexer 8 is connected to the line connecting the switch Q2 and the terminal HT1 (P2).
  • the output terminal A of the multiplexer 8 is connected to the non-inverting input terminal of the operational amplifier OP1.
  • the inverting input terminal of operational amplifier OP1 is connected to the node connecting resistors R7 and R6.
  • the output terminal of operational amplifier OP1 is connected to terminal P14 of MCU6.
  • the LDO 4 maintains the voltage input to the input terminal VIN. (that is, the system power supply voltage V SYS ) is converted and output from the output terminal OUT as the system power supply voltage V MCU .
  • the system power supply voltage V SYS is, for example, a value in the range of 3.5V to 4.2V, and the system power supply voltage V MCU is 3.1V, for example.
  • the output terminal OUT of the LDO 4 is connected to the control IC of the OLED panel 17, the MCU 6, the LSW 7, the suction sensor 15, a series circuit composed of a resistor R3, a resistor R4, and a switch BT, a debugging connector 20E, are connected in parallel.
  • the output terminal OUT of the LDO 4 includes the terminal VDD of the OLED connector 20C, the terminal VDD of the MCU 6, the input terminal VIN of the LSW 7, and the resistor R5 one end of which is connected to the terminal VMCU of the main connector 20A. terminal (node N1 in the figure), the input terminal (node N1 in the figure) of a voltage dividing circuit consisting of resistors R4 and R3, and the terminal VMCU of the debug connector 20E.
  • the output terminal OUT of LDO4 is connected to the source terminal of switch Q6 whose gate terminal is connected to terminal P4 of MCU6.
  • the drain terminal of switch Q6 is connected to terminal VCC of AND gate 10, terminal VCC of FF9, one end of resistor R11, one end of resistor R12, the positive power supply terminal of operational amplifier OP2, and one end of resistor R8. , one end of the resistor R9 and the positive power supply terminal of the operational amplifier OP1 are connected in parallel.
  • the other end of the resistor R12 is connected to the second thermistor terminal TH2, and the series circuit of the resistor R12 and the second thermistor th2 connected to the second thermistor terminal TH2 is applied with the system power supply voltage V MCU . constitutes a voltage divider circuit.
  • the output of this voltage dividing circuit corresponds to the electric resistance value (in other words, temperature) of the second thermistor th2 and is input to the terminal P8 of the MCU6. This allows the MCU 6 to obtain the temperature of the second thermistor th2.
  • the second thermistor th2 the one having the NTC characteristic in which the resistance value decreases with an increase in temperature is used, but the one having the PTC characteristic in which the resistance value increases with an increase in temperature is used. may
  • resistor R10 One end of the resistor R10 is connected to the other end of the resistor R9, and the other end of the resistor R10 is connected to the ground line.
  • a series circuit of resistors R9 and R10 constitutes a voltage divider circuit to which system supply voltage V MCU is applied. The output of this voltage dividing circuit is connected to the inverting input terminal of the operational amplifier OP2, and a fixed voltage value is input to this inverting input terminal.
  • the other end of the resistor R8 is connected to the non-inverting input terminal of the operational amplifier OP2.
  • resistor R8 is further connected to first thermistor terminal TH1 and terminal P9 of MCU6.
  • a series circuit of the resistor R8 and the first thermistor th1 connected to the first thermistor terminal TH1 constitutes a voltage dividing circuit to which the system power supply voltage V MCU is applied.
  • the output of this voltage dividing circuit corresponds to the electric resistance value (in other words, temperature) of the first thermistor th1 and is input to the terminal P9 of the MCU6. This allows the MCU 6 to acquire the temperature of the first thermistor th1 (in other words, the temperature of the seat heater HTR).
  • the output of this voltage dividing circuit is also input to the non-inverting input terminal of the operational amplifier OP2.
  • the output of the operational amplifier OP2 becomes low level when the temperature of the first thermistor th1 (the temperature of the seat heater HTR) increases and becomes equal to or higher than the threshold value THD1. In other words, as long as the temperature of the first thermistor th1 (the temperature of the seat heater HTR) is within the normal range, the output of the operational amplifier OP2 is high level.
  • the output of the voltage dividing circuit consisting of the first thermistor th1 and the resistor R8 is the inverse of the operational amplifier OP2. input terminal, and the output of the voltage dividing circuit composed of the resistor R9 and the resistor R10 is connected to the non-inverting input terminal of the operational amplifier OP2. Even in this case, the output of the operational amplifier OP2 becomes low level when the temperature of the first thermistor th1 (the temperature of the seat heater HTR) rises and becomes equal to or higher than the threshold value THD1.
  • the output terminal of the operational amplifier OP2 is connected to the input terminal D of FF9.
  • a node connecting the input terminal D of FF9 and the output terminal of the operational amplifier OP2 is connected to the other end of the resistor R11 and the negative logic clear terminal CLR ( ⁇ ) provided to the FF9. That is, the input terminal D of FF9, the clear terminal CLR ( ⁇ ) of FF9, and the output terminal of the operational amplifier OP2 are each pulled up to the supply line of the system power supply voltage VMCU by the resistor R11.
  • FF9 has a clock terminal CLK, and the clock terminal CLK is connected to terminal P7 of MCU6.
  • FF 9 has an output terminal Q, which is connected to one input terminal B of AND gate 10 .
  • the clock signal is input to the clock terminal CLK from the MCU 6 and the high level signal is input to the clear terminal CLR ( ⁇ )
  • the FF9 is at the level of the signal input to the input terminal D. Therefore, the data (high or low data) is held, and the held data is output from the output terminal Q.
  • FF 9 outputs a clock signal from MCU 6 to clock terminal CLK and a low level signal to clear terminal CLR ( ⁇ ) regardless of the held data. Reset processing for outputting a low level signal from the terminal Q is performed.
  • This reset processing is canceled by re-inputting the clock signal to the clock terminal CLK while a high-level signal is input to the clear terminal CLR ( ⁇ ). That is, the supply of the clock signal to the clock terminal CLK is stopped while a high-level signal is input to the clear terminal CLR ( ⁇ ), and then the supply of the clock signal is resumed to release the clock signal.
  • the other input terminal A of the AND gate 10 is connected to the terminal P6 of the MCU6.
  • An output terminal Y of the AND gate 10 is connected to a positive logic enable terminal EN of the booster circuit 11 .
  • the AND gate 10 outputs a high level signal from the output terminal Y only when the signal input to the input terminal A and the signal input to the input terminal B are both high level.
  • the LSW7 outputs the system power supply voltage V MCU input to the input terminal VIN from the output terminal OUT when the control signal is input to the control terminal CTL from the terminal P10 of the MCU6.
  • the output terminal OUT of the LSW 7 is connected to the vibration motor 13 via the terminal VIB of the main board 20 and the terminal VIB of the puff sensor board 21 . Therefore, by inputting a control signal from the MCU 6 to the LSW 7, the vibration motor 13 can be operated using the system power supply voltage V MCU .
  • the power supply unit 100 has, as operation modes, a sleep mode for power saving, a standby mode capable of transitioning from the sleep mode, and a heating mode capable of transitioning from the standby mode (aerosol generation by heating a liquid heater and a seat heater HTR) mode), and
  • a specific operation for example, a long press operation
  • the MCU 6 switches the operation mode to the standby mode.
  • the MCU 6 detects a specific operation (for example, a short press operation) on the switch BT in the standby mode
  • the MCU 6 switches the operation mode to the heating mode.
  • FIG. 10 is a circuit diagram showing electronic components related to operation in the heating mode extracted from the circuit shown in FIG. FIG. 10 additionally shows capacitor C3, which was not shown in FIG.
  • FIG. 11 is a circuit diagram showing, extracted from the circuit shown in FIG. 9, electronic components related to heating control of the seat heater HTR and the liquid heater, driving control of the vibration motor 13, and driving control of the LED 21D. The operation of the heating mode will be described below with reference to FIGS. 10 and 11.
  • FIG. 10 is a circuit diagram showing electronic components related to operation in the heating mode extracted from the circuit shown in FIG. 10 additionally shows capacitor C3, which was not shown in FIG.
  • FIG. 11 is a circuit diagram showing, extracted from the circuit shown in FIG. 9, electronic components related to heating control of the seat heater HTR and the liquid heater, driving control of the vibration motor 13, and driving control of the LED 21D. The operation of the heating mode will be described below with reference to FIGS. 10 and 11.
  • FIG. 10 is a circuit diagram showing electronic components related to operation in the heating mode extracted from the circuit shown in
  • the MCU 6 When the MCU 6 transitions to the heating mode, it controls the switch Q6 shown in FIG. 10 to the ON state.
  • the AND gate 10, the FF9, the resistor R11, the operational amplifier OP2, the resistor R11, the resistor R9 and the resistor R10 constitute a voltage dividing circuit
  • the resistor R8 and the first thermistor th1 constitute a voltage dividing circuit
  • the resistor R12 and the second thermistor th2 and the operational amplifier OP1, respectively, are supplied with the system power supply voltage V MCU .
  • the MCU 6 controls the signal input from the terminal P6 to the input terminal A of the AND gate 10 to high level.
  • the MCU6 also starts inputting the clock signal to the clock terminal CLK of the FF9.
  • the temperature of the first thermistor th1 (the temperature of the seat heater HTR) is within the normal range (less than the threshold value THD1)
  • the output of the operational amplifier OP2 becomes high level
  • the output of FF9 becomes high level.
  • the output of the AND gate 10 becomes high level. Therefore, the heating voltage VHEAT is started to be output from the booster circuit 11, and the seat heater HTR and the liquid heater are ready to be heated.
  • the MCU 6 performs control to connect the input terminal B0 and the output terminal A of the multiplexer 8 while turning on only the switch Q4 among the switches Q1 to Q4.
  • Rx is the electrical resistance value between the terminal HT1 (P1) and the terminal HT1 (P2)
  • the voltage input to the non-inverting input terminal is compared with the above-mentioned divided voltage value when the liquid heater is connected between the terminal HT1 (P1) and the terminal HT1 (P2), and the difference is is small, the output of the operational amplifier OP1 becomes low level. Therefore, when the output of the operational amplifier OP1 becomes low level, the MCU 6 determines that the liquid heater is connected between the terminals HT1 (P1) and HT1 (P2).
  • the MCU 6 notifies an error if the output of the operational amplifier OP1 does not go low in any of the first to third steps.
  • the MCU 6 controls the heating of the seat heater HTR and the liquid heater. Start. Specifically, the MCU 6 performs heating control of the seat heater HTR by on/off controlling the switch Q5 shown in FIG. 11 (for example, PWM control or PFM control). At this time, the MCU 6 controls the temperature of the seat heater HTR so that the temperature of the seat heater HTR converges to the target temperature based on the temperature of the second thermistor th2 (in other words, the temperature of the seat heater HTR) obtained from the signal input to the terminal P8. Then, the heating control of the seat heater HTR is performed. For example, PID (Proportional-Integral-Differential) control is used for this heating control.
  • PID Proportional-Integral-Differential
  • the MCU 6 When the liquid heater is connected between the terminal HT1 (P1) and the terminal HT1 (P2), the MCU 6 turns on the switch Q4 among the switches Q1 to Q4 shown in FIG. Heating control of the liquid heater is performed by controlling the switches Q2 and Q3 to be in the OFF state and controlling the ON/OFF of the switch Q1 (for example, PWM control or PFM control).
  • the MCU 6 turns on the switch Q3 among the switches Q1 to Q4, and turns off the switches Q2 and Q4.
  • the heating control of the liquid heater is performed by controlling the state and controlling the ON/OFF of the switch Q1.
  • the MCU 6 When the liquid heater is connected between the terminals HT1 (P2) and HT1 (P3), the MCU 6 turns on the switch Q3 among the switches Q1 to Q4, and turns off the switches Q1 and Q4.
  • the heating control of the liquid heater is performed by controlling the state and controlling the ON/OFF of the switch Q2.
  • the power of the resistor R8, the resistor R9, and the resistor R10 is set so that the output of the operational amplifier OP2 becomes low level. resistance is determined.
  • a low level is input to the clear terminal CLR ( ⁇ ) of FF9.
  • the negative logic clear terminal CLR ( ⁇ ) is enabled and the output of FF9 is forced to go low, so the output of the AND gate 10 goes low, and the booster circuit 11 increases the heating voltage V Stop HEAT output.
  • the output signal of the operational amplifier OP2 is input to the booster circuit 11 that can reliably stop the power supply to the seat heater HTR, thereby enhancing safety when the seat heater HTR becomes hot.
  • the aerosol generator 200 is provided with a restart circuit RBT (see FIG. 12) capable of restarting (resetting) the MCU 6 by the user's operation of the switch BT, the details of which will be described later. If the cause of the functioning of the protection circuit is the freezing of the MCU 6, the MCU 6 is restarted by the user. By restarting MCU6, FF9 is restarted.
  • RBT restart circuit
  • the signal input to the input terminal A of the AND gate 10 becomes low level. Also, at the timing when the MCU 6 is restarted, the switch Q6 is in the OFF state, so the potential of the signal at the input terminal B of the AND gate 10 is indefinite. Therefore, the output from the booster circuit 11 is not restarted just by restarting the MCU 6 . After the MCU 6 is restarted, the operation mode shifts to the heating mode by the user's operation, so that the signal input to the input terminal A of the AND gate 10 becomes high level. Moreover, the signal input to the input terminal B of the AND gate 10 becomes high level because the switch Q6 is turned on. As a result, the output from the booster circuit 11 is resumed.
  • FIG. 12 is a circuit diagram showing the electronic components involved in restarting the MCU 6 extracted from the circuit shown in FIG. FIG. 12 shows the restart circuit RBT.
  • the restart circuit RBT includes a voltage dividing circuit consisting of a resistor R3 and a resistor R4, a switch BT, a terminal KEY and a terminal GND of the main connector 20A, a switch Q7, a switch Q9, a charging IC3, an LDO4, and a terminal NRST of the debug connector 20E.
  • the restart circuit RBT enables the MCU 6 to be restarted by operating the switch BT (long press as an example) and by issuing a command from an external device connected to the debugging connector 20E. It has become.
  • the MCU 6 is configured to be restarted when the signal input to the terminal P27 remains at a low level for a predetermined period of time.
  • the charging IC 3 is configured to restart when the signal input to the terminal QON ( ⁇ ) remains at a low level for a predetermined period of time.
  • the resistors R3 and R4 have resistance values such that the output of the voltage dividing circuit of the resistors R3 and R4 is at a high level when the switch BT is not pressed. Since this high-level signal is input to the terminal QON ( ⁇ ) of the charging IC3, the charging IC3 is not reset in this state and continues to output the system power supply voltage VSYS from the output terminal SYS. By continuing the output of the system power supply voltage VSYS , the output of the system power supply voltage V_MCU from the output terminal OUT of the LDO4 is also continued. Therefore, the MCU 6 continues to operate without stopping.
  • this high level signal is input to the gate terminal of the switch Q7. Therefore, when the USB is connected (when the bus voltage V BUS is output from the charging IC 3), the switch Q7 is turned on, and as a result, the potential of the gate terminal of the switch Q9 is low level (ground level). ), and the switch Q9 is turned off. When the switch Q9 is in the off state, the MCU6 does not restart because the potential of the terminal P27 of the MCU6 is indefinite.
  • the resistors R3 and R4 have resistance values such that the output of the voltage dividing circuit of the resistors R3 and R4 is at a low level when the switch BT is pressed. In other words, the resistors R3 and R4 have resistance values such that the value obtained by dividing the system power supply voltage V MCU becomes low level. Since this low-level signal is input to the terminal QON ( ⁇ ) of the charging IC 3, if this state continues for a predetermined time, the charging IC 3 stops outputting the system power supply voltage VSYS from the output terminal SYS. When the output of the system power supply voltage V SYS is stopped, the voltage output from the LDO 4 is stopped, the system power supply voltage V MCU is no longer input to the terminal VDD of the MCU 6, and the MCU 6 stops.
  • this low level signal is input to the gate terminal of the switch Q7. Therefore, when the USB connection is made (when the bus voltage V BUS is output from the charging IC 3), the switch Q7 is turned off, and as a result, the potential of the gate terminal of the switch Q9 becomes high level (bus voltage V BUS ), and the switch Q9 is turned on. When the switch Q9 is turned on, the potential of the terminal P27 of the MCU6 becomes low level (ground level). When the switch BT is continuously pressed for a predetermined time, a low level signal is input to the terminal P27 of the MCU 6 for a predetermined time, so the MCU 6 executes restart processing.
  • the charging IC 3 resumes outputting the system power supply voltage VSYS , so that the system power supply voltage V MCU is input to the terminal VDD of the MCU 6 that has stopped, and the MCU 6 is activated. .
  • FIG. 13 is a front view of the main FPC 23 unfolded so that the thickness direction coincides with the left-right direction and viewed from the left side.
  • FIG. 14 is a front view of the main FPC 23 unfolded so that the thickness direction coincides with the left-right direction and viewed from the right side.
  • 15 is an enlarged view of the range AR shown in FIG. 14.
  • the main FPC 23 has a two-layer structure comprising a surface layer 231 (see FIG. 13) arranged on the first case 3A side and a back layer 232 (see FIG. 14) arranged on the right side of the surface layer 231.
  • a conductive pattern and a ground pattern having a reference potential are provided on the left surface of the surface layer 231 and the right surface of the back layer 232, respectively.
  • the conductive patterns formed on the main FPC 23 include conductive patterns 81 to 83 through which power for atomizing the aerosol source (supplied power to the liquid heater) flows, and elements controlled by the MCU 6 (LED 21D and vibration motor 13). and an input conductive pattern connected to elements (suction sensor 15 and switch BT) for inputting signals to the MCU 6 .
  • the conductive patterns 81 to 83 are used to heat the liquid heater, a large amount of power flows. For this reason, the conductive patterns 81 to 83 preferably have a low resistance so as to suppress heat generation and noise and to supply power to the liquid heater with high efficiency.
  • the conductive patterns 81 to 83 are wider than the control conductive pattern and the input conductive pattern to suppress heat generation and noise.
  • the main FPC 23 is attached to the internal unit 2A while being folded along folding lines LN1 to LN6 indicated by straight dashed lines in FIGS.
  • creases formed by folding along the folding lines LN1 to LN6 are referred to as creases l1 to l6.
  • the main FPC 23 includes a plurality of portions defined by fold lines l1-l6. Specifically, the main FPC 23 includes a first portion PA1 outside (edge side) of the fold line l1, a second portion PA2 between the fold line l1 and the fold line l2, and an inner portion of the fold lines l2, l3, l4, and l5.
  • the plane area of the third portion PA3 is the largest.
  • the main FPC 23 is folded toward the front side and the right side of the paper surface of FIG. 13, and in the state shown in FIG. 4, it is folded back from the front.
  • the main FPC 23 is folded toward the front side of the paper surface of FIG. 13 at the folding line LN1.
  • the main FPC 23 is folded toward the back side of the paper surface of FIG. 13 at the folding lines LN3 to LN6.
  • the first part PA1 is fixed to the chassis 50, but the second part PA2 is in a free state without being fixed anywhere.
  • the heater FPC 24 and the OLED FPC 25 suppress the floating of the second portion PA2.
  • the second portion PA2 is narrower than the third portion PA3 and the creases at both ends extend in different directions, so stress is more likely to be applied to the second portion PA2 than to other portions.
  • the main FPC 23 is folded along each of the folding lines LN1 to LN6. Therefore, compared to the case where the main FPC 23 is bent, the space occupied by the main FPC 23 in the case 3 is reduced, and the main FPC 23 is folded.
  • the FPC 23 can be arranged flexibly within the case 3.
  • the stress applied to each of the creases 11 to 16 increases as the smaller of the angles formed by the portions adjacent to each other becomes more acute. Therefore, in order to reduce the stress, it is preferable that the smaller angle (folding angle) formed by adjacent portions of the main FPC 23 with respect to each of the folding lines 11 to 16 is 90 degrees or more. By doing so, the durability of the main FPC 23 can be improved.
  • a substrate connector CN1 is mounted on the fourth portion PA4 of the back layer 232 between the folding line LN4 and the edge 4e of the fourth portion PA4.
  • An enlarged view of the board connector CN1 is shown in the area enclosed by the two-dot chain line in FIG.
  • the board connector CN1 is a portion connected to the main connector 20A of the main board 20, and the terminal KEY, the terminal PUFF, the terminal VMCU, the terminal VOTG, the terminal LED, the terminal VIB, the terminal GND, and the terminal HT1 (P1) of the main connector 20A.
  • terminal HT1 (P2), and terminal HT1 (P3) terminal KEY, terminal PUFF, terminal VMCU, terminal VOTG, terminal LED, terminal VIB, terminal GND, terminal HT1 (P1), terminal HT1 (P2), and a terminal HT1 (P3)).
  • the thick lines shown in FIGS. 13 and 14 indicate conductive patterns made of a conductive material.
  • a terminal KEY of the board connector CN1 is connected to a via B11 formed next to the edge 4e by an input conductive pattern.
  • the vias in the main FPC 23 electrically connect the conductive pattern of the surface layer 231 and the conductive pattern of the back layer 232, and are conductors that penetrate the main FPC 23 in its thickness direction and extend in its thickness direction.
  • a terminal PUFF of the substrate connector CN1 is connected to a via B9 formed next to the edge 4e by an input conductive pattern.
  • a terminal VMCU of the board connector CN1 is connected to a via B10 formed next to the edge 4e by an input conductive pattern.
  • a terminal VOTG of the substrate connector CN1 is connected to a via B6 formed in the third portion PA3 by a control conductive pattern.
  • a terminal VLED of the substrate connector CN1 is connected to a via B7 formed in the third portion PA3 by a control conductive pattern.
  • a terminal VIB of the board connector CN1 is connected to a via B8 formed in the third portion PA3 by a control conductive pattern. For each of the vias B6 to B11, the name of the terminal to be connected is written in parentheses.
  • the vias B6 to B11 each reach the surface layer 231 as shown in FIG.
  • a via B4 and a via B5 are provided in the fifth portion PA5 of the surface layer 231 .
  • an input conductive pattern connecting the via B9 and the via B4 and an input conductive pattern connecting the via B10 and the via B5 are formed.
  • a via B1, a via B2, and a via B3 are provided in a region of the third portion PA3 of the surface layer 231 adjacent to the fifth portion PA5.
  • a control conductive pattern is formed to connect the via B6 and the via B1
  • a control conductive pattern is formed to connect the via B7 and the via B2
  • a control conductive pattern is formed to connect the via B8 and the via B3.
  • a via B12 is provided in a region of the third portion PA3 of the surface layer 231 near the second portion PA2.
  • An input conductive pattern that connects the via B11 and the via B12 is formed on the surface layer 231 .
  • a substrate connector CN2 is mounted on the fifth portion PA5 of the back layer 232 between the folding line LN3 and the edge 5e of the fifth portion PA5.
  • An enlarged view of the substrate connector CN2 is shown in the area enclosed by the two-dot chain line in FIG.
  • the substrate connector CN2 is a portion connected to the connector 21B of the puff sensor substrate 21, and has terminals (terminal VOTG , a terminal LED, a terminal VIB, a terminal GND, a terminal PUFF, and a terminal VMCU).
  • the back layer 232 includes a control conductive pattern connecting the via B1 and the terminal VOTG of the board connector CN2, a control conductive pattern connecting the via B2 and the terminal LED of the board connector CN2, a via B3 and the board connector CN2. an input conductive pattern connecting the via B4 and the terminal PUFF of the board connector CN2; and an input conductive pattern connecting the via B5 and the terminal VMCU of the board connector CN2. is formed.
  • the name of the terminal to which the board connector CN2 is connected is written in parentheses for each of the vias B1 to B5.
  • the first portion PA1 of the back layer 232 has a terminal TH to which the positive terminal of the switch BT is connected, a terminal TL to which the negative terminal of the switch BT is connected, and a reference potential.
  • a ground pattern G3 and a terminal TV to which the positive terminal of the varistor V1 shown in FIG. 9 is connected are formed.
  • the terminal TL is formed integrally with the ground pattern G3.
  • An input conductive pattern PTx is formed on the back layer 232 to connect the terminal TH and the terminal TV to the via B12. Even if external noise such as static electricity enters through the switch BT directly mounted on the main FPC 23, the noise is mounted on the main FPC 23 by the varistor V1 as an overvoltage protection element arranged near the switch BT. are designed not to affect the electrical components of the
  • the input conductive patterns PTx are arranged in parallel at the portion D1 overlapping the folding line LN1, and arranged in parallel at the portion D2 overlapping the folding line LN2. Specifically, the input conductive pattern PTx branches into two at a position closer to the third portion PA3 than the folding line LN2, and returns to one after crossing the folding line LN2 and reaching the second portion PA2. It has become. In addition, the input conductive pattern PTx is configured to branch into two at a position closer to the second portion PA2 than the folding line LN1, and return to one after crossing the folding line LN1 and reaching the first portion PA1. There is The second part PA2 is particularly stressed at the creases at both ends. By arranging the input conductive patterns PTx formed in this portion in parallel, even if one of the two input conductive patterns PTx is disconnected, the other can continue to use the input conductive pattern PTx.
  • one end of the conductive pattern 82 is connected to the terminal HT1 (P2) of the board connector CN1.
  • the conductive pattern 82 extends from the terminal HT1 (P2) of the board connector CN1 toward the edge 4e, then folds toward the third portion PA3, and reaches the seventh portion PA7 via the third portion PA3.
  • the other end of the conductive pattern 82 is connected to four vias 82b.
  • the four vias 82b reach the seventh portion PA7 of the surface layer 231, as shown in FIG.
  • the seventh portion PA7 of the surface layer 231 is provided with terminals 82T that connect to the four vias 82b.
  • one end of the conductive pattern 83 is connected to the terminal HT1 (P3) of the board connector CN1.
  • the conductive pattern 83 extends from the terminal HT1 (P3) of the substrate connector CN1 toward the third portion PA3 and reaches the seventh portion PA7 via the third portion PA3.
  • the other end of the conductive pattern 83 is connected to four vias 83b.
  • the four vias 83b reach the seventh portion PA7 of the surface layer 231, as shown in FIG.
  • a seventh portion PA7 of the surface layer 231 is provided with a terminal 83T connected to the four vias 83b.
  • one end of the conductive pattern 81 is connected to the terminal HT1 (P1) of the board connector CN1.
  • the conductive pattern 81 extends from the terminal HT1 (P1) of the board connector CN1 toward the edge 4e and is formed on the fourth portion PA4.
  • a via 81 b is connected to the conductive pattern 81 .
  • the via 81b reaches the fourth portion PA4 of the surface layer 231, as shown in FIG.
  • the fourth portion PA4 of the surface layer 231 is provided with one end of the conductive pattern 81 connected to the via 81b.
  • the conductive pattern 81 of the surface layer 231 reaches the seventh portion PA7 via the third portion PA3.
  • the other end of the conductive pattern 81 on the surface layer 231 is configured to be wide, and this portion constitutes a terminal 81T.
  • the seventh portion PA7 is a portion in which the back layer 232 is fixed to the lower surface of the chassis 50 with the thickness direction aligned with the vertical direction, and is exposed when the lower lid 7a is opened.
  • the input contact P1 of the lower lid 7a contacts the terminal 81T
  • the input contact P2 of the lower lid 7a contacts the terminal 82T
  • the input contact P3 of the lower lid 7a contacts.
  • the main FPC 23 is electrically connected to the pogo pin board 22 and the liquid heater by contacting the terminal 83T.
  • the conductive patterns 81 to 83 are in contact with the input side contacts P1 to P3 at the terminals 81T to 83T.
  • the conductive patterns 81 to 83 are thickest at the terminals 81T to 83T and thinner than the terminals 81T to 83T for the portions other than the terminals 81T to 83T. By doing so, the durability of the terminals 81T to 83T can be enhanced.
  • the conductive patterns 81 to 83 provided on the main FPC 23 are formed over the surface layer 231 and the back layer 232 . Therefore, compared to the configuration in which the conductive patterns 81 to 83 are provided in one layer, the width of each of the conductive patterns 81 to 83 can be increased if the area of the main FPC 23 is the same. Also, it is conceivable that the main FPC 23 has a three-layer structure, for example, and the conductive patterns 81 to 83 are distributed to each layer. Since the main FPC 23 of this embodiment has fewer layers than this configuration, the structure can be simplified, and the manufacturing cost and weight can be reduced.
  • the conductive patterns 81 to 83 in the main FPC 23 of this embodiment are not branched like the input conductive pattern PTx, but are configured as a single line. In this way, by making the conductive patterns 81 to 83 thick and simple in shape, it is possible to prevent disconnection at folds and to suppress heat and noise by reducing resistance and inductance.
  • the width of the portions of the main FPC 23 excluding the third portion PA3 and the fourth portion PA4 is smaller than the sum of the widths of the conductive patterns 81-83.
  • the main FPC 23 has a two-layer structure, a conductive pattern 81 is formed on the surface layer 231, and conductive patterns 82 and 83 are formed on the back layer 232, thereby excluding the third portion PA3 and the fourth portion PA4. You can reduce the width of the part. That is, according to this embodiment, three thick conductive patterns can be formed without using an excessively large main FPC 23 .
  • the conductive patterns formed on the surface layer 231 include a control conductive pattern that connects the via B1 and the via B6, a control conductive pattern that connects the via B2 and the via B7, and a control conductive pattern that connects the via B3 and the via B8. is formed extending in the front-rear direction across the conductive pattern 82 and the conductive pattern 83 formed on the back layer 232 when the main FPC 23 is viewed from the front.
  • the conductive patterns formed on the surface layer 231 include an input conductive pattern that connects the vias B11 and B12, an input conductive pattern that connects the vias B4 and B9, and an input conductive pattern that connects the vias B5 and B10.
  • the conductive pattern is formed to extend in the front-rear direction across either the conductive pattern 82 or the conductive pattern 83 formed on the back layer 232 when the main FPC 23 is viewed from the front. In this manner, the control conductive pattern and the input conductive pattern formed on the surface layer 231 overlap the conductive patterns 82 and 83 formed on the back layer 232 when the main FPC 23 is viewed from the front. With such a configuration, the widths of the conductive pattern 82 and the conductive pattern 83 can be increased without interfering with the control conductive pattern and the input conductive pattern.
  • a large-area ground pattern G1 is formed across the first portion PA1 to the sixth portion PA6.
  • the ground pattern G1 is provided with a gap Ga3 at a position overlapping with the folding line LN3, a gap Ga2 at a position overlapping with the folding line LN2, and a gap Ga1 at a position overlapping with the folding line LN1.
  • ground patterns G2 having a smaller area than the ground pattern G1 are formed across the third portion PA3 to the fifth portion PA5.
  • the ground pattern G2 on the lower left side of the drawing is connected to the terminal GND of the substrate connector CN1.
  • the ground pattern G2 on the upper right side of the drawing is connected to the terminal GND of the substrate connector CN2.
  • no ground pattern is formed in the second portion PA2, the sixth portion PA6, and the seventh portion PA7. That is, the ground pattern G2 and the ground pattern G3 are formed avoiding some of the folds l1 to l7 (folds l1, l2, l5, l6).
  • a ground pattern is generally formed of a large-area copper foil, and such a large-area copper foil has little stress relief due to folds. Therefore, in the back layer 232, a ground pattern is not provided at the folding lines l1, l2, l5, and l6, thereby ensuring a stress relief area.
  • the ground pattern G1 formed on the front layer 231 is also formed on the back layer 232 at the positions of folds l1, l2, and l5 that avoid overlapping with the ground pattern.
  • the creases where the ground patterns overlap are only the crease l3 and the crease l4 in each of the surface layer 231 and the back layer 232 .
  • the area of the ground pattern can be increased while preventing disconnection of the ground pattern.
  • the stability of the reference potential in the ground pattern largely depends on the area of the ground pattern. According to the main FPC 23, the area of the ground pattern can be increased by forming the ground pattern over the surface layer 231 and the back layer 232 as described above.
  • the second portion PA2 no ground pattern is formed on the back layer 232, and the ground pattern G1 is formed only on the surface layer 231.
  • the second portion PA2 is a portion to which stress is likely to be applied. Therefore, by providing only the input conductive pattern PTx on the back layer 232, the flexibility of the second portion PA2 can be ensured and the durability of the main FPC 23 can be improved.
  • the ground pattern G2 and the ground pattern G3 may be formed by avoiding all of the folds l1 to l7.
  • the ground pattern G1 may be formed on part or all of the folds l1 to l7.
  • a power source power source ba
  • a first cartridge holding portion carrier holding portion 51
  • a controller configured to control discharge from the power source to the atomizer
  • a first rigid circuit board main board 20A
  • a second rigid circuit board connectable to the atomizer of the first cartridge inserted into the first cartridge holding portion
  • a flexible circuit board main FPC 23
  • an inexpensive and rigid second rigid circuit board is used in the place where force is applied when inserting and removing the first cartridge. Therefore, the manufacturing cost can be reduced while improving the durability of the power supply unit.
  • a second cartridge holding portion (capsule holder 4A) different from the first cartridge holding portion is provided in which a second cartridge containing a flavor source that imparts flavor to the aerosol source atomized by the atomizer can be inserted and removed.
  • the insertion direction (upward direction) of the first cartridge into the first cartridge holding portion is different from the insertion direction (downward direction) of the second cartridge into the second cartridge holding portion, Power supply unit for the aerosol generator.
  • the durability of the power supply unit is improved because it is not necessary to insert and remove the first cartridge when inserting and removing the second cartridge.
  • the flexible circuit board does not deform even when the first cartridge is inserted and removed, the flexible circuit board is less likely to be damaged and the durability of the power supply unit is improved.
  • the power supply unit of the aerosol generator Including conductive protrusions (input side contacts P1, P2, P3) connected to the second rigid circuit board, the protrusion contacts the flexible circuit board when the lid is in the closed state; the protrusion does not contact the flexible circuit board when the lid is in the open state; Power supply unit for the aerosol generator.
  • the projection has a limited area in contact with the flexible circuit board, it is possible to reduce the external force applied to the flexible circuit board when the lid is opened and closed, and the stress caused by this external force. improve sexuality.
  • the power supply unit of the aerosol generator includes conductive patterns (conductive patterns 81, 82, 83) that supply power from the power supply to the atomizer,
  • the conductive pattern includes contact portions (terminals 81T, 82T, and 83T) that contact the projections in the closed state of the lid and non-contact portions (terminals 81T, 81T, 83T) that do not contact the projections in the closed state of the lid. a portion excluding terminals 82T and 83T), the contact portion is thicker than the non-contact portion; Power supply unit for the aerosol generator.
  • a power supply unit for an aerosol generator according to any one of (1) to (7),
  • the flexible circuit board includes a fold (fold l5) between the first rigid circuit board and the second rigid circuit board. Power supply unit for the aerosol generator.
  • the space occupied by the flexible circuit board in the power supply unit can be reduced compared to the case where the flexible circuit board is curved to connect the first rigid circuit board and the second rigid circuit board.
  • the size of the power supply unit can be reduced while accommodating the circuit board.
  • the sharper the crease the stronger the stress applied to the flexible circuit board due to the crease. According to (9), the stress applied to the flexible circuit board can be reduced by avoiding the sharp angle of the crease, thereby improving the durability of the power supply unit.
  • the flexible circuit board includes a ground pattern (ground pattern G2) having a reference potential, which is formed to avoid the fold.
  • the ground pattern is generally formed of a large-area copper foil, and such a large-area copper foil has no place to escape stress due to folds and is easily damaged. Therefore, by not providing the ground pattern at the crease, such damage can be prevented, thereby improving the durability of the power supply unit.
  • the power unit of the aerosol generator according to (8) or (9),
  • the flexible circuit board includes a first layer (surface layer 231), a second layer (back layer 232), and a ground pattern (ground pattern G2) having a reference potential and formed avoiding the crease in the second layer. , a ground pattern (ground pattern G1) having a reference potential formed on the fold in the first layer, Power supply unit for the aerosol generator.
  • the ground pattern by forming the ground pattern at the creases of only some of the layers, the ground pattern can be enlarged in area and is less likely to be damaged at the creases. Therefore, the durability of the power supply unit is improved and its operation is stabilized.

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

耐久性を向上させたエアロゾル生成装置の電源ユニットを提供する。電源ユニット100は、電源baと、エアロゾル源と霧化器を含む第1カートリッジ110が挿抜可能なカートリッジ保持部51と、電源baから前記霧化器への放電を制御可能に構成されるMCU6と、MCU6が実装されるメイン基板20と、カートリッジ保持部51に挿入された第1カートリッジ110の前記霧化器へ、接続可能なポゴピン基板22と、メイン基板20とポゴピン基板22とを接続可能なメインFPC23と、を備える。

Description

エアロゾル生成装置の電源ユニット
 本発明は、エアロゾル生成装置の電源ユニットに関する。
 特許文献1には、ヒータと、前記ヒータが加熱されるように電力を供給するバッテリと、制御部と、硬性素材で構成されたメインPCB及びサブPCBと、を含み、前記メインPCBは、エアロゾル生成装置の長手方向に対して平行に配置され、前記サブPCBは、前記エアロゾル生成装置の長手方向に対して垂直に配置され、前記メインPCB及び前記サブPCBは、軟性素材で構成された連結PCBによって電気的に連結されるエアロゾル生成装置が記載されている。
日本国特表2020-531015号公報
 エアロゾル生成装置として、エアロゾル源とこれを霧化する霧化器とを含むカートリッジを交換可能に構成したものが知られている。エアロゾル生成装置では、このカートリッジの交換が繰り返されるため、カートリッジと電源ユニットとの電気的な接続が破損なく確立されるようにする必要がある。
 本発明の目的は、耐久性を向上させたエアロゾル生成装置の電源ユニットを提供することにある。
 本発明の一態様のエアロゾル生成装置の電源ユニットは、電源と、エアロゾル源と霧化器を含む第1カートリッジが挿抜可能な第1カートリッジ保持部と、前記電源から前記霧化器への放電を制御可能に構成されるコントローラと、前記コントローラが実装される第1リジッド回路基板と、前記第1カートリッジ保持部に挿入された前記第1カートリッジの前記霧化器へ、接続可能な第2リジッド回路基板と、前記第1リジッド回路基板と前記第2リジッド回路基板とを接続可能なフレキシブル回路基板と、を備える、ものである。
 本発明によれば、耐久性を向上させることができる。
エアロゾル生成装置200の斜視図である。 エアロゾル生成装置200の他の斜視図である。 エアロゾル生成装置200の分解斜視図である。 内部ユニット2Aの左側面図である。 内部ユニット2Aの右側面図である。 内部ユニット2Aの加熱部60及び回路部70の構成を示す斜視図である。 メイン基板20の表面201を示す図である。 メイン基板20の裏面202を示す図である。 メイン基板20に設けられた回路の概略構成を示す図である。 加熱モードの動作にかかわる電子部品を図9に示す回路から抽出して示した回路図である。 シートヒータHTR及びリキッドヒータの加熱制御と、振動モータ13の駆動制御と、LED21Dの駆動制御とに関わる電子部品を図9に示す回路から抽出して示した回路図である。 MCU6の再起動にかかわる電子部品を図9に示す回路から抽出して示した回路図である。 メインFPC23を厚み方向が左右方向と一致するように展開して左側から見た正面図である。 メインFPC23を厚み方向が左右方向と一致するように展開して右側から見た正面図である。 図14に示す範囲ARの拡大図である。
 以下、本発明の一実施形態であるエアロゾル生成装置の電源ユニットについて説明する。先ず、本実施形態の電源ユニットを備えるエアロゾル生成装置について、図1~図8を参照しながら説明する。
(エアロゾル生成装置)
 エアロゾル生成装置200は、燃焼を伴わずに香味が付加されたエアロゾルを生成し、生成したエアロゾルを吸引するための器具である。エアロゾル生成装置200は、手中におさまるサイズであることが好ましく、例えば、図1及び図2に示すように、丸みを帯びた略直方体形状を有する。なお、エアロゾル生成装置200の形状はこれに限らず、棒形状、卵型形状等であってもよい。以下の説明では、エアロゾル生成装置200において、直交する3方向のうち、長さの長い順から、上下方向、前後方向、左右方向と称する。また、以下の説明では、便宜上、図1~図8に記載したように、前方、後方、左方、右方、上方、下方を定義し、前方をFr、後方をRr、左側をL、右側をR、上方をU、下方をD、として示す。
 図3も参照して、エアロゾル生成装置200は、電源ユニット100と、第1カートリッジ110と、第2カートリッジ120と、を備える。第1カートリッジ110及び第2カートリッジ120は、電源ユニット100に対して着脱可能である。言い換えると、第1カートリッジ110及び第2カートリッジ120は、それぞれ交換可能である。
(電源ユニット)
 電源ユニット100は、内部ユニット2Aとケース3aとを備え、内部ユニット2Aの少なくとも一部がケース3aに収容される。
 ケース3aは、左右方向(厚さ方向)に着脱可能な第1ケース3A及び第2ケース3Bから構成され、これら第1ケース3Aと第2ケース3Bとが左右方向(厚さ方向)に組付けられることで、電源ユニット100の前面、後面、左面、右面が形成される。具体的には、内部ユニット2Aに含まれる後述のシャーシ50の左側の面に第1ケース3Aが支持され、シャーシ50の右側の面に第2ケース3Bが支持されて、内部ユニット2Aがケース3に収容される。電源ユニット100の上面には、前方にカプセルホルダ4Aが設けられる。カプセルホルダ4Aには、上方に開口する開口部4aが設けられる。カプセルホルダ4Aは、開口部4aから第2カートリッジ120が挿入可能に構成される。第2カートリッジ120には、マウスピース130が着脱可能に設けられる。
 電源ユニット100の上面は、開口部4aの後方に配置されたOLED(Organic Light-Emitting Diode、有機発光ダイオード)カバー5aにより形成され、電源ユニット100の下面は、充電端子1が設けられた下カバー8a及び回動可能な下リッド7aにより形成される。
 電源ユニット100の上面と後面との間には、後方に向かうにしたがって下方に傾斜する傾斜面が設けられる。傾斜面には、ユーザが操作可能な操作部が設けられる。本実施形態の操作部は、ボタン式のスイッチBTであるが、タッチパネル等から構成されてもよい。操作部は、ユーザの使用意思を反映して後述のMCU(Micro Controller Unit)6及び各種センサを起動/遮断/操作する際等に利用される。
 下カバー8aからアクセス可能な充電端子1は、バッテリパックBPに含まれる電源baを充電する電力を電源ユニット100に供給可能な外部電源(図示省略)と電気的に接続可能に構成される。充電端子1は、例えば、相手側となるプラグを挿入可能なレセプタクルである。充電端子1としては、各種USB端子等を挿入可能なレセプタクルを用いることができる。一例として、本実施形態においては、充電端子1をUSB Type-C形状のレセプタクルとする。
 また、充電端子1は、例えば、受電コイルを備え、外部電源から送電される電力を非接触で受電可能に構成されてもよい。この場合の電力伝送(Wireless Power Transfer)の方式は、電磁誘導型でもよいし、磁気共鳴型でもよいし、電磁誘導型と磁気共鳴型を組み合わせたものでもよい。別の一例として、充電端子1は、各種USB端子等が接続可能であり、且つ上述した受電コイルを有していてもよい。
 内部ユニット2Aは、図3~図6に示すように、バッテリパックBPと、シャーシ50と、加熱部60と、回路部70と、通知部と、各種センサと、を備える。
 シャーシ50は、図4及び図5に示すように、前方に位置する円筒状のカートリッジ保持部51と、後方に位置し左側方が切り欠かれた半円筒状のバッテリ保持部52と、カートリッジ保持部51とバッテリ保持部52とを連結する板状の連結部53と、連結部53の下方且つ右方であってカートリッジ保持部51及びバッテリ保持部52に跨るように設けられるモータ保持部54と、カートリッジ保持部51の左後方に設けられるセンサ保持部55と、を備える。
 カートリッジ保持部51には、下リッド7aを開けた状態で下方から第1カートリッジ110が挿入される。また、第1カートリッジ110が挿入された状態で下リッド7aを閉じることでカートリッジ保持部51には第1カートリッジ110が収容される。カートリッジ保持部51の上部には、カプセルホルダ4Aが取り付けられる。カートリッジ保持部51には、前方に縦長の貫通孔が設けられ、第1ケース3Aと第2ケース3Bとの合わせ部に設けられた残量確認窓3wからは、第1カートリッジ110のエアロゾル源の残量及び後述するLED(Light Emitting Diode)21Dの光が目視可能である。第1カートリッジ110については後述する。
 バッテリ保持部52にはバッテリパックBPが配置される。バッテリパックBPは、電源baと、電源baの温度を検出するための電源サーミスタと、を含む。電源baは、充電可能な二次電池、電気二重層キャパシタ等であり、好ましくは、リチウムイオン二次電池である。電源baの電解質は、ゲル状の電解質、電解液、固体電解質、イオン液体の1つ又はこれらの組合せで構成されていてもよい。
 モータ保持部54には、振動モータ13が配置される。センサ保持部55には、ユーザの吸引動作(パフ動作)に応じた出力を行う後述する吸引センサ15が配置される。
 加熱部60は、図6に示すように、筒状の伝熱チューブ61と、伝熱チューブ61の外周に巻回されたシートヒータHTRと、を備える。シートヒータHTRの周囲には前述のカプセルホルダ4Aが離間して設けられる。カプセルホルダ4AとシートヒータHTRとの間の空気層が断熱材として機能する。伝熱チューブ61には、カプセルホルダ4Aの開口部4aから挿入される第2カートリッジ120の下部が収容され、第2カートリッジ120の下部がシートヒータHTRによって加熱される。これにより、加熱部60がない場合に比べて、第2カートリッジ120に貯留する香味源が香味を放出しやすくなるため、エアロゾルに香味が付加されやすくなる。
 なお、加熱部60は、第2カートリッジ120を加熱可能な素子であればよい。素子としては、抵抗発熱体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。抵抗発熱体としては、例えば、温度の増加に伴って抵抗値も増加するPTC(Positive Temperature Coefficient)特性を有するものが好ましく用いられる。これに代えて、温度の増加に伴って抵抗値が低下するNTC(Negative Temperature Coefficient)特性を有するものを用いてもよい。加熱部60は、第2カートリッジ120へ供給する空気の流路を画定する機能、及び第2カートリッジ120を加熱する機能を有する。
 通知部は、電源baの充電状態、第1カートリッジ110の残量、第2カートリッジ130の残量等の各種情報を通知する。本実施形態の通知部は、LED21Dと、振動モータ13と、を含む。通知部は、LED21Dのような発光素子によって構成されていてもよく、振動モータ13のような振動素子によって構成されていてもよく、音出力素子によって構成されていてもよい。通知部は、発光素子、振動素子、及び音出力素子のうち、2以上の素子の組合せであってもよい。
 各種センサは、ユーザのパフ動作(吸引動作)を検出する吸引センサ15、シートヒータHTRの温度を検出するヒータ温度センサ等を含む。
 吸引センサ15は、例えば、コンデンサマイクロフォンや圧力センサや流量センサ等から構成される。複数の吸引センサ15を離間して配置し、これらの出力値の差などからパフ動作を検出してもよい。ヒータ温度センサは、第1サーミスタth1と第2サーミスタth2とを含む。第1サーミスタth1及び第2サーミスタth2は、シートヒータHTRと接する又は近接することが好ましい。シートヒータHTRがPTC特性やNTC特性を有する場合、シートヒータHTRそのものをヒータ温度センサに用いてもよい。ヒータ温度センサは、2つのサーミスタにより構成されるものとしているが、1つのサーミスタで構成されていてもよい。
 回路部70は、4つの回路基板と、3つのFPC(Flexible Printed Circuits、フレキシブルプリント回路基板)と、複数のIC(Integrated Circuit)と、複数の素子と、を備える。4つの回路基板は、メイン基板20、パフセンサ基板21、ポゴピン基板22、OLED基板26から構成される。3つのFPCは、メインFPC23、ヒータFPC24、OLED FPC25から構成される。この4つの回路基板は、リジッドなものであり、3つのFPCよりも十分に剛性が高くなっている。
 メイン基板20は、素子搭載面が前後方向を向くように、バッテリパックBPとケース3aの後面(電源ユニット100の後面)との間に配置される。メイン基板20は、複数層(本実施形態では6層)の基板が積層されて構成され、MCU6、充電IC3等の電子部品(素子)が搭載される。
 詳細は図12等を用いて後述するが、MCU6は、吸引センサ15等の各種センサ装置、操作部、通知部、及び、パフ動作の回数又は負荷及びシートヒータHTRへの通電時間等を記憶するメモリ等に接続され、エアロゾル生成装置200の各種の制御を行う制御装置である。具体的には、MCU6は、プロセッサを主体に構成されており、プロセッサの動作に必要なRAM(Random Access Memory)と各種情報を記憶するROM(Read Only Memory)等の記憶媒体をさらに含む。本明細書におけるプロセッサとは、例えば、半導体素子等の回路素子を組み合わせた電気回路である。なお、MCU6に接続される要素の一部(例えば、吸引センサ15やメモリ)は、MCU6内部にMCU6自身の機能として設けられてもよい。
 充電IC3は、充電端子1から入力される電力による電源baの充電制御を行ったり、電源baの電力をメイン基板20の電子部品等に対して供給したりするICである。
 メイン基板20について図7及び図8を参照しながらより具体的に説明する。以下では、メイン基板20の後方を向く面を便宜上、表面201と称し、メイン基板20の前方を向く面を便宜上、裏面202と称する。図7は、メイン基板20の表面201を示す図であり、図8は、メイン基板20の裏面202を示す図である。メイン基板20は上下に延びる板状であり、図7及び図8には、メイン基板20の長手方向へ直交する側面として、上側の側面である上側面20SUと、下側の側面である下側面20SDとが示されている。また、メイン基板20の短手方向へ直交する側面として、左側の側面である左側面20SLと、右側の側面である右側面20SRとが示されている。
 図8に示すように、MCU6及び充電IC3は、充電端子1とともにメイン基板20の裏面202に実装される。裏面202には、更に、デバッグ用コネクタ20Eが実装される。デバッグ用コネクタ20Eは、MCU6のプログラムの書き換え等をパーソナルコンピュータ等の外部機器から行うためのインタフェースであり、例えばSWD(Serial Wire Debug)の規格に準拠したものが用いられる。一方、図7に示すように、メイン基板20の表面201には、OLEDコネクタ20C、ヒータコネクタ20B、メインコネクタ20A、及びバッテリパックBPにリード線16(図6参照)を介して接続されるバッテリコネクタ20Dが実装される。
 パフセンサ基板21は、図4及び図6に示すように、素子搭載面が右前方及び左後方を向くようにシャーシ50のセンサ保持部55に配置される。パフセンサ基板21には、吸引センサ15が実装される。
 OLED基板26は、図6に示すように、素子搭載面が上下方向を向くようにバッテリパックBPとOLEDカバー5aとの間に配置される。OLED基板26には、OLEDパネル17が実装される。
 ポゴピン基板22は、図6に示すように、下リッド7aが閉じた状態で、素子搭載面が上下方向を向くように下リッド7aに配置される。ポゴピン基板22には、メイン基板20からメインFPC23を介して電力が供給される入力側接点P1~P3と、第1カートリッジ110に設けられた負荷に電気的に接続されるコネクタであるポゴピンp1~p3と、ポゴピンp1~p3と入力側接点P1~P3とを接続する配線と、が設けられる。入力側接点P1~P3は、下リッド7aが閉じた状態でのみメインFPC23と電気的に接続される。ポゴピンp1~p3は、周方向に等間隔に3本設けられ、少なくとも2本のポゴピンがカートリッジ保持部51に収容される第1カートリッジ110の+端子及び-端子と電気的に接続されるように構成される。
 バッテリ保持部52に保持されたバッテリパックBPは、半円筒状のバッテリ保持部52により左側がバッテリ保持部52から露出する。バッテリ保持部52が切り欠かれることで形成されるバッテリパックBPの左方と第1ケース3Aとの間の空間には、図3、4、及び図6に示すように、メインFPC23、ヒータFPC24、OLED FPC25が重なりあうように配置されている。
 3つのFPCのうち、メインFPC23が最もバッテリパックBPの近くに配索され、メインFPC23に一部が重なるようにOLED FPC25が配索され、さらにOLED FPC25に重なるようヒータFPC24が配索される。即ち、3つのFPCのうち最も大きな電力が供給されるヒータFPC24がバッテリパックBPから最も離間して配索されている。メインFPC23は、展開した形状が略十字形状となっており、ヒータFPC24と重なる箇所において、後方に折り返されている。つまり、メインFPC23は、折込まれた折込配線となっている。メインFPC23の折り返された部分は、左右方向に浮き上がりやすくなるが、この部分にヒータFPC24及びOLED FPC25が重なることで、このような浮き上がりが阻止されている。スイッチBTは、リジッドな基板などを介することなく、メインFPC23に直接実装されている。
 OLED FPC25は、一端がメイン基板20のOLEDコネクタ20Cに接続され、他端がOLED基板26に接続されている。
 メインFPC23は、メイン基板20のメインコネクタ20Aと、操作部のスイッチBTと、パフセンサ基板21のコネクタ21Bと、ポゴピン基板22の入力側接点P1~P3と、を接続する。
 ヒータFPC24は、一端がメイン基板20のヒータコネクタ20Bに接続され、他端にシートヒータHTRが一体形成されている。
(第1カートリッジ)
 第1カートリッジ110は、円筒状のカートリッジケース111の内部に、エアロゾル源を貯留するリザーバと、エアロゾル源を霧化する電気的な負荷と、リザーバから負荷へエアロゾル源を引き込むウィックと、エアロゾル源が霧化されることで発生したエアロゾルが第2カートリッジ120に向かって流れるエアロゾル流路と、を備える。エアロゾル源は、グリセリン、プロピレングリコール、又は水等の液体を含む。
 負荷は、電源baからポゴピン基板22のポゴピンp1~p3を介して供給される電力によって、燃焼を伴わずにエアロゾル源を加熱する発熱素子であり、例えば所定ピッチで巻き回される電熱線(コイル)によって構成される。負荷は、エアロゾル源を加熱することで、エアロゾル源を霧化する。負荷としては、発熱抵抗体、セラミックヒータ、誘導加熱式のヒータ等を用いることができる。以下では、第1カートリッジ110に設けられた負荷のことをリキッドヒータとも記載する。
 エアロゾル流路は、シャーシ50のカートリッジ保持部51に収容された流路形成体19(図6参照)を介して第2カートリッジ120に接続される。
(第2カートリッジ)
 第2カートリッジ120は、香味源を貯留する。シートヒータHTRによって第2カートリッジ120が加熱されることで、香味源が加熱される。第2カートリッジ120は、リキッドヒータによってエアロゾル源が霧化されることで発生したエアロゾルを香味源に通すことによってエアロゾルに香味を付加する。香味源を構成する原料片としては、刻みたばこ、又は、たばこ原料を粒状に成形した成形体を用いることができる。香味源は、たばこ以外の植物(例えば、ミント、漢方、ハーブ等)によって構成されてもよい。香味源には、メントール等の香料が付与されていてもよい。
 エアロゾル生成装置200は、エアロゾル源と香味源によって、香味が付加されたエアロゾルを発生させることができる。つまり、エアロゾル源と香味源は、香味が付加されたエアロゾルを発生させるエアロゾル生成源を構成している。
 エアロゾル生成装置200におけるエアロゾル生成源は、ユーザが交換して使用する部分である。この部分は、例えば、1つの第1カートリッジ110と、1つ又は複数(例えば5つ)の第2カートリッジ120とが1セットとしてユーザに提供される。また、バッテリパックBPは電源baが大幅に劣化しない限り、繰り返し充放電可能である。したがって、エアロゾル生成装置200においては、電源ユニット100又はバッテリパックBPの交換頻度が最も低く、第1カートリッジ110の交換頻度が次に低く、第2カートリッジ120の交換頻度が最も高くなっている。なお、第1カートリッジ110と第2カートリッジ120を一体化して1つのカートリッジとして構成してもよい。香味源の代わりに薬剤等がエアロゾル源に付加された構成等であってもよい。
 このように構成されたエアロゾル生成装置200では、ケース3a又は内部ユニット2Aに設けられた不図示の空気取込口から流入した空気が、第1カートリッジ110の負荷付近を通過する。負荷は、ウィックによってリザーバから引き込まれたエアロゾル源を霧化する。霧化されて発生したエアロゾルは、取込口から流入した空気と共にエアロゾル流路を流れ、流路形成体19を介して第2カートリッジ120に供給される。第2カートリッジ120に供給されたエアロゾルは、香味源を通過することで香味が付加され、マウスピース130の吸口131に供給される。
 次に、下リッド7aの構成について補足する。
 下リッド7aは、図4に示す左右方向に延びる回動軸Axの周りに回動可能に構成されている。具体的には、下リッド7aは、図4に示す閉状態(カートリッジ保持部51の中空部を覆う状態)から、前端が反時計回りに移動することで、開状態(カートリッジ保持部51の中空部を露出させる状態)となる。図6に示すように、ポゴピン基板22は平板状であり、ポゴピン基板22の上面の後端には、上方向に突出する突起で構成された入力側接点P1~P3が設けられている。また、ポゴピン基板22の上面の前端には、上方向に突出する突起で構成されたポゴピンp1~p3が設けられている。このポゴピン基板22は、下リッド7aの内面(上面)に固着されている。下リッド7aが閉状態にあるときには、ポゴピン基板22の入力側接点P1~P3が、後述するメインFPC23に設けられた導電パターン81~83の端子81T~83Tと接触して、メインFPC23とポゴピン基板22との電気的な接続が確立される。一方、下リッド7aが開状態にあるときには、ポゴピン基板22の入力側接点P1~P3は、導電パターン81~83の端子81T~83Tから離間し、導電パターン81~83とは非接触になる。つまり、メインFPC23とポゴピン基板22との電気的な接続は解除される。メインFPC23は、下リッド7aの開閉動作によって変形することのないように、ケース3内に収納されている。メインFPC23が変形しないとは、ケース3内におけるメインFPC23の位置が実質的に変化しないことをいう。
 このように、下リッド7a及びこれに固着されたポゴピン基板22は、カートリッジ保持部51に対する第1カートリッジ110の挿抜時に、力が加わる箇所となる。本形態では、ポゴピン基板22がリジッド回路基板で構成されている。このような箇所に、安価かつ剛性のあるリジッド回路基板が用いられることで、電源ユニット100の耐久性を向上させることができる。
 また、本形態では、下リッド7aを閉状態にする時にだけ、ポゴピン基板22とメインFPC23との電気的な接続が確立される。これにより、下リッド7aの回動にメインFPC23が連動する場合と比べて、メインFPC23が破損しにくくなる。
 また、本形態では、第1カートリッジ110の挿抜時には、メイン基板20や電源baと第1カートリッジ110との間に電気的接点は確立されなくなる。このため、意図しない短絡電流が生じにくくなり、電源ユニット100の安全性を向上させることができる。
 また、本形態では、メインFPC23と接触する入力側接点P1~P3は、それぞれ、接触面積の小さくてすむ突起で構成されている。このため、下リッド7aの開閉時にメインFPC23に与えられる外力や、この外力によって生じる応力を低減できる。
 また、本形態では、第2カートリッジ120をカプセルホルダ4Aに挿抜する際に、第1カートリッジ110の挿抜は不要となる。つまり、第2カートリッジ120よりも交換頻度の低い第1カートリッジ110の挿抜のために、下リッド7aの開閉が必要な構造となっている。これにより、下リッド7aが頻繁に開閉されるのを防いで、電源ユニット100の耐久性を向上させることができる。
(回路構成)
 図9は、メイン基板20に設けられた回路の概略構成を示す図である。図9には、メイン基板20の回路に加えて、メイン基板20のメインコネクタ20Aに接続されたメインFPC23と、メインFPC23に接続されたパフセンサ基板21と、メインFPC23に接続されたポゴピン基板22と、バッテリコネクタ20Dに接続されたバッテリパックBPと、が図示されている。
 図9において太い実線で示した配線は、電源ユニット100の基準となる電位(グランド電位、以下一例として0Vとする)と同電位となる配線(電源ユニット100に設けられたグランドに接続される配線)であり、この配線を以下ではグランドラインと記載する。
 メイン基板20には、複数の回路素子をチップ化した電子部品である主要なICとして、保護IC2と、充電IC3と、LDO(Low Dropout)レギュレータ(以下、LDOと記載)4と、DC/DCコンバータで構成された昇圧回路5と、MCU6と、コンデンサ、抵抗器、及びトランジスタ等を組み合わせて構成されたロードスイッチ(以下、LSWと記載)7と、マルチプレクサ8と、フリップフロップ(以下、FFと記載)9と、ANDゲート(図9では単に“AND”と記載)10と、DC/DCコンバータで構成された昇圧回路11と、オペアンプOP1と、オペアンプOP2と、が設けられている。
 メイン基板20には、更に、MOSFET(metal-oxide-semiconductor field-effect transistor)によって構成されたスイッチQ1~Q9と、固定の電気抵抗値を持つ抵抗器R1~R12、RA、RBと、コンデンサC1と、コンデンサC2と、バリスタVと、バリスタV1と、充電IC3に接続されたリアクトルL3と、昇圧回路5に接続されたリアクトルL5と、昇圧回路11に接続されたリアクトルL11と、が設けられている。スイッチQ3、スイッチQ4、スイッチQ7、スイッチQ8、及びスイッチQ9は、それぞれ、Nチャネル型MOSFETによって構成されている。スイッチQ1、スイッチQ2、スイッチQ5、及びスイッチQ6は、それぞれ、Pチャネル型MOSFETによって構成されている。スイッチQ1~Q8は、それぞれ、ゲート端子の電位がMCU6によって制御されることで、オン状態とオフ状態が切り替えられる。
 図9において、オペアンプを除く各ICには、各種端子の符号を記載している。チップに搭載される端子VCC及び端子VDDは、それぞれ、高電位側の電源端子を示す。チップに搭載される端子VSS及び端子GNDは、それぞれ、低電位側(基準電位側)の電源端子を示す。チップ化された電子部品は、高電位側の電源端子の電位と低電位側の電源端子の電位の差分が、電源電圧(動作電圧)となる。チップ化された電子部品は、この電源電圧を用いて、各種機能を実行する。
 図9において、オペアンプを除く各ICの端子GNDと端子VSSは、それぞれグランドラインに接続されている。また、充電端子1の端子GNDとオペアンプOP1の負電源端子とオペアンプOP2の負電源端子は、それぞれ、グランドラインに接続されている。
 メイン基板20に設けられたバッテリコネクタ20D(図9中の左中央付近参照)は、充電IC3の検出端子SNS及び充電IC3の充電端子BATのそれぞれへ接続された端子BATと、メイン基板20のグランドラインへ接続された端子GNDと、MCU6の端子P25へ接続された端子TH3と、を備える。バッテリコネクタ20Dの端子BATは、バッテリパックBPに含まれる電源baの正極側端子にリード線16によって接続されている。バッテリコネクタ20Dの端子TH3は、バッテリパックBPに含まれる電源サーミスタth3の正極側端子にリード線16によって接続されている。バッテリコネクタ20Dの端子GNDは、電源baの負極側端子と電源サーミスタth3の負極側端子のそれぞれにリード線16によって接続されている。
 メイン基板20に設けられたOLEDコネクタ20C(図9中の左下付近参照)は、昇圧回路5の出力端子VOUTへ接続された端子VCC_Rと、LDO4の出力端子OUTへ接続された端子VDDと、MCU6の端子P24へ接続された端子RSTBと、MCU6の通信用端子P28へ信号線SLによって接続された通信用端子T3と、メイン基板20のグランドラインに接続された端子VSSと、を備える。
 OLEDコネクタ20Cの端子VCC_Rは、OLEDパネル17の駆動電圧供給端子へOLED FPC25によって接続されている。OLEDコネクタ20Cの端子VDDは、OLEDパネル17を制御する制御ICの電源端子へOLED FPC25によって接続されている。OLEDパネル17の駆動電圧供給端子に供給すべき電圧は、例えば15V程度であり、OLEDパネル17の制御ICの電源端子へ供給すべき電圧よりも大きい。OLEDコネクタ20Cの端子VSSは、OLEDパネル17とOLEDパネル17の制御ICのそれぞれのグランド端子へOLED FPC25によって接続されている。OLEDコネクタ20Cの端子RSTBは、OLEDパネル17の制御ICにおける再起動を行うための端子へOLED FPC25によって接続されている。
 OLEDコネクタ20Cの通信用端子T3に接続された信号線SLは、充電IC3の通信用端子T3にも接続されている。この信号線SLにより、MCU6は、充電IC3との間の通信と、OLEDパネル17の制御ICとの間の通信とが可能になっている。この信号線SLは、シリアル通信を行うためのものであり、実際には、データ送信用のデータラインと同期用のクロックラインなどの複数の信号線が必要になる。図9では、簡略化のため、信号線SLが1本の信号線として図示されている点に留意されたい。なお、MCU6と充電IC3及びOLEDパネル17の制御ICとの間の通信は、シリアル通信ではなくパラレル通信で行うようにしてもよい。
 メイン基板20に設けられたデバッグ用コネクタ20E(図9中の左下付近参照)は、LDO4の出力端子OUTへ接続された端子VMCUと、MCU6の通信用端子P23へ接続された端子T1(図では1つとしているが実際には2つの端子)と、MCU6の通信用端子P22へ接続された端子T2(図では1つとしているが実際には2つの端子)と、MCU6の端子P27へ接続された端子NRSTと、メイン基板20のグランドラインに接続された端子GNDと、を備える。端子NRSTは、ゲート端子がスイッチQ7のドレイン端子へ接続され且つソース端子がグランドラインに接続されたスイッチQ9のドレイン端子にも接続されている。デバッグ用コネクタ20Eは、エアロゾル生成装置200の通常の使用状態において使用されることはなく、MCU6に記憶された情報(プログラムを含む)の書き換え等のメンテナンスが必要になったときにのみ、製造者や販売者が用意したコンピュータと接続されて使用される。
 メイン基板20に設けられたメインコネクタ20A(図9中の右中央付近参照)は、MCU6の端子P19へ接続された端子PUFFと、ゲート端子がMCU6の端子P20へ接続され且つソース端子がグランドラインへ接続されたスイッチQ8のドレイン端子へ接続された端子LEDと、LSW7の出力端子OUTへ接続された端子VIBと、充電IC3の昇圧出力端子RNへ接続された端子VOTGと、抵抗器R5を介してLDO4の出力端子OUTへ接続された端子VMCUと、グランドラインへ接続された端子GNDと、抵抗器R4とこれに直列接続された抵抗器R3からなる分圧回路を介してLDO4の出力端子OUTへ接続された端子KEYと、ゲート端子がMCU6の端子P12へ接続され且つソース端子が昇圧回路11の出力端子VOUTへ接続されたスイッチQ1のドレイン端子に接続された端子HT1(P1)と、ゲート端子がMCU6の端子P13へ接続され且つソース端子が昇圧回路11の出力端子VOUTへ接続されたスイッチQ2のドレイン端子、及び、ゲート端子がMCU6の端子P17へ接続され且つソース端子がグランドラインへ接続されたスイッチQ4のドレイン端子に接続された端子HT1(P2)と、ゲート端子がMCU6の端子P18へ接続され且つソース端子がグランドラインへ接続されたスイッチQ3のドレイン端子に接続された端子HT1(P3)と、が設けられている。
 メインコネクタ20Aの端子HT1(P1)は、ポゴピンp1に接続された入力側接点P1へメインFPC23によって接続されている。メインコネクタ20Aの端子HT1(P2)は、ポゴピンp2に接続された入力側接点P2へメインFPC23によって接続されている。メインコネクタ20Aの端子HT1(P3)は、ポゴピンp3に接続された入力側接点P3へメインFPC23によって接続されている。メインコネクタ20Aの端子KEYは、メインFPC23に実装されたスイッチBTの一端に、メインFPC23の配線によって接続されている。このスイッチBTの他端はメインFPC23のグランドラインに接続されている。
 メイン基板20に設けられたヒータコネクタ20B(図9中の右上付近参照)は、ヒータFPC24に実装された第1サーミスタth1のプラス側端子へヒータFPC24の配線を介して接続された第1サーミスタ端子TH1と、ヒータFPC24に実装された第2サーミスタth2のプラス側端子へヒータFPC24の配線を介して接続された第2サーミスタ端子TH2と、ヒータFPC24の導電パターンによって形成されたシートヒータHTRのプラス側端子へヒータFPC24の配線を介して接続されたシートヒータ端子HT2と、メイン基板20のグランドラインに接続された端子GNDと、を備える。ヒータFPC24には、第1サーミスタth1のマイナス側端子、第2サーミスタth2のマイナス側端子、及びシートヒータHTRのマイナス側端子へ接続される配線が形成されており、この配線がヒータコネクタ20Bの端子GNDへ接続されている。シートヒータ端子HT2は、ゲート端子がMCU6の端子P11へ接続され且つソース端子が昇圧回路11の出力端子VOUTへ接続されたスイッチQ5のドレイン端子へ接続されている。
 パフセンサ基板21(図9中の下中央付近参照)には、吸引センサ15の端子群15Aに接続されたパフセンサ用コネクタ21Aと、メインFPC23に接続されたコネクタ21Bと、振動モータ13に接続された振動モータ用コネクタ21Cと、LED21Dと、バリスタVと、コンデンサC2と、が実装されている。
 パフセンサ基板21のコネクタ21Bは、メインコネクタ20Aの端子PUFF、端子LED、端子VIB、端子VOTG、端子VMCU、及び端子GNDのそれぞれと、メインFPC23に形成された配線によって接続される端子(端子PUFF、端子LED、端子VIB、端子VOTG、端子VMCU、及び端子GND)を備える。前述のように、メインFPC23には、メインコネクタ20Aの端子KEYとグランドラインとの間に接続されるスイッチBTが設けられている。スイッチBTが押下されると、端子KEYとメインFPC23のグランドラインとが接続されて、端子KEYの電位がグランド電位となる。一方、スイッチBTが押下されていない状態では、端子KEYとメインFPC23のグランドラインとは非接続となり、端子KEYの電位は不定となる。
 パフセンサ基板21のパフセンサ用コネクタ21Aは、吸引センサ15の出力端子へ接続された端子GATEと、吸引センサ15のグランド端子へ接続された端子GNDと、吸引センサ15の電源端子へ接続された端子VDDと、を備える。パフセンサ用コネクタ21Aの端子GATEは、コネクタ21Bの端子PUFFに接続されている。パフセンサ用コネクタ21Aの端子VDDは、コネクタ21Bの端子VMCUに接続されている。パフセンサ用コネクタ21Aの端子GNDは、コネクタ21Bの端子GNDに接続されている。パフセンサ用コネクタ21Aの端子GATEとコネクタ21Bの端子PUFFとの接続ラインにはバリスタVの一端が接続され、バリスタVの他端はグランドラインに接続されている。バリスタVにより、端子GATEに吸引センサ15側から大きな電圧が入力された場合でも、パフセンサ基板21の他の部品やMCU6にその電圧が入力されるのを防ぐことができる。パフセンサ用コネクタ21Aの端子VDDとコネクタ21Bの端子VMCUとの接続ラインには、コンデンサC2の一端が接続され、コンデンサC2の他端はグランドラインに接続されている。コンデンサC2により、メイン基板20側からパフセンサ用コネクタ21Aの端子VDDに不安定な電圧が入力された場合でも、吸引センサ15にコンデンサC2によって平滑化された電圧を入力することができる。
 パフセンサ基板21の振動モータ用コネクタ21Cは、コネクタ21Bの端子VIBへ接続されたプラス側端子と、グランドラインへ接続されたマイナス側端子と、を備える。このプラス側端子とマイナス側端子に、振動モータ13が接続される。
 パフセンサ基板21のLED21Dは、アノードがコネクタ21Bの端子VOTGへ接続され、カソードがコネクタ21Bの端子LEDへ接続されている。
 図9中左上の充電端子1は、4つの端子GNDと、4つの電源入力端子BUSと、を備える。充電端子1の各電源入力端子BUSは、保護IC2の入力端子VINに並列接続されている。充電端子1にUSBプラグが接続され、このUSBプラグを含むUSBケーブルが外部電源に接続された状態、すなわちUSB接続がなされた状態では、充電端子1の電源入力端子BUSを介して、保護IC2の入力端子VINにUSB電圧VUSBが入力される。
 保護IC2は、入力端子VINに入力されたUSB電圧VUSBを調整し、既定値(以下では一例として5.0Vとする)のバス電圧VBUSを出力端子OUTから出力する。保護IC2の出力端子OUTには、充電IC3と、抵抗器R1及び抵抗器R2の直列回路からなる分圧回路と、スイッチQ7と、が並列接続されている。具体的には、保護IC2の出力端子OUTは、分圧回路を構成する抵抗器R2の一端と、充電IC3の入力端子VBUSと、ゲート端子がMCU6の端子P21へ接続され且つソース端子がグランドラインへ接続されたスイッチQ7のドレイン端子と、に接続されている。抵抗器R2の他端には抵抗器R1の一端が接続され、抵抗器R1の他端はグランドラインに接続されている。抵抗器R1と抵抗器R2を接続するノードはMCU6の端子P2へ接続されている。保護IC2は、負論理のイネーブル端子CE( ̄)にMCU6からローレベルの信号が入力されている状態では、出力端子OUTからのバス電圧VBUSの出力を行い、イネーブル端子CE( ̄)にMCU6からハイレベルの信号が入力されている状態では、出力端子OUTからのバス電圧VBUSの出力を停止する。
 充電IC3は、入力端子VBUSに入力されるバス電圧VBUSに基づいて電源baを充電する充電機能を備える。充電IC3は、検出端子SNSによって電源baの充電電流や充電電圧を取得し、これらに基づいて、電源baの充電制御(充電端子BATから電源baへの電力供給制御)を行う。また、充電IC3は、MCU6が端子P25を介して電源サーミスタth3から取得した電源baの温度情報を、信号線SLを利用したシリアル通信によってMCU6から取得し、充電制御に利用する。
 充電IC3は、充電端子BATに入力される電源baの電圧(以下、電源電圧VBATと記載)からシステム電源電圧VSYSを生成して出力端子SYSから出力する第1機能と、入力端子VBUSに入力されるバス電圧VBUSからシステム電源電圧VSYSを生成して出力端子SYSから出力する第2機能と、充電端子BATに入力される電源電圧VBATを昇圧して得られるOTG電圧VOTG(一例として5Vの電圧)を昇圧出力端子RNから出力する第3機能と、を有する。第2機能については、USB接続がなされている状態においてのみ有効化される。このように、システム電源電圧VSYSとOTG電圧VOTGは、電源baが充電IC3への電力供給を可能な正常の状態であり、充電IC3が正常に作動していれば、常時、充電IC3から出力可能となっている。
 充電IC3のスイッチング端子SWにはリアクトルL3の一端が接続されている。リアクトルL3の他端は、充電IC3の出力端子SYSに接続されている。充電IC3は、負論理のイネーブル端子CE( ̄)を有し、このイネーブル端子CE( ̄)はMCU6の端子P1へ接続されている。MCU6は、USB接続がなされることで端子P2にハイレベルの信号が入力されると、端子P1の電位をローレベルに制御することで、充電IC3による電源baの充電制御を許可し、更に、第2機能を有効化する。
 充電IC3は、負論理の端子QON( ̄)を更に備える。端子QON( ̄)は、抵抗器R3と抵抗器R4とを接続するノードN2に接続され、このノードN2はMCU6の端子P21へ接続されている。充電IC3は、端子QON( ̄)にローレベルの信号が入力されると、出力端子SYSからの電圧出力を停止する。
 充電IC3の出力端子SYSには、LDO4と、昇圧回路5と、昇圧回路11とが並列接続されている。具体的には、充電IC3の出力端子SYSは、LDO4の制御端子CTL及び入力端子INと、昇圧回路5の入力端子VINと、昇圧回路11の入力端子VINと、に接続されている。充電IC3の昇圧出力端子RNから出力されるOTG電圧VOTGは、メインコネクタ20Aの端子VOTGとコネクタ21Bの端子VOTGを経由して、LED21Dのアノードに供給される。LED21Dのカソードは、コネクタ21Bの端子LED、メインコネクタ20Aの端子LED、及びスイッチQ8を介してグランドに接続されている。したがって、MCU6がスイッチQ8のオンオフ制御を行うことで、OTG電圧VOTGを用いたLED21Dの点灯制御が可能となっている。
 昇圧回路5は、スイッチング端子SWと、MCU6の端子P26へ接続された正論理のイネーブル端子ENと、出力端子VOUTと、端子GNDと、を備える。昇圧回路5のスイッチング端子SWには、リアクトルL5の一端が接続されている。このリアクトルL5の他端は昇圧回路5の入力端子VINに接続されている。昇圧回路5は、スイッチング端子SWに接続された内蔵トランジスタのオンオフ制御を行うことで、リアクトルL5を介してスイッチング端子SWに入力された電圧を昇圧して、出力端子VOUTから出力する。昇圧回路5の出力端子VOUTから出力されるOLED電圧VOLEDは、OLEDパネル17の駆動に適した十分に大きい電圧であり、一例として15Vの電圧である。昇圧回路5の入力端子VINは、昇圧回路5の高電位側の電源端子を構成している。昇圧回路5は、MCU6の端子P26からイネーブル端子ENに入力される信号がハイレベルとなっている場合に、OLED電圧VOLEDの出力を行い、MCU6の端子P26からイネーブル端子ENに入力される信号がローレベルとなっている場合に、OLED電圧VOLEDの出力を停止する。このようにして、OLEDパネル17は、MCU6によって駆動制御される。
 昇圧回路11は、入力端子VINと、スイッチング端子SWと、出力端子VOUTと、正論理のイネーブル端子ENと、端子GNDと、を備える。昇圧回路11のスイッチング端子SWには、リアクトルL11の一端が接続されている。このリアクトルL11の他端は昇圧回路11の入力端子VINに接続されている。昇圧回路11は、スイッチング端子SWに接続された内蔵トランジスタのオンオフ制御を行うことで、リアクトルL11を介してスイッチング端子SWに入力された電圧を昇圧して、出力端子VOUTから出力する。昇圧回路11の出力端子VOUTから出力される加熱用電圧VHEATは、一例として4Vの電圧である。昇圧回路11の入力端子VINは、昇圧回路11の高電位側の電源端子を構成している。昇圧回路11は、後述のANDゲート10の出力端子Yからイネーブル端子ENに対して入力される信号がハイレベルとなっている場合に加熱用電圧VHEATの出力を行い、このイネーブル端子ENに入力される信号がローレベルとなっている場合に加熱用電圧VHEATの出力を停止する。
 昇圧回路11の出力端子VOUTには、コンデンサC1と、抵抗器R7及び抵抗器R6の直列回路からなる分圧回路と、マルチプレクサ8と、スイッチQ1と、スイッチQ2と、スイッチQ5と、が並列接続されている。具体的には、昇圧回路11の出力端子VOUTは、一端がグランドラインに接続されたコンデンサC1の他端と、グランドラインに接続された抵抗器R6及び抵抗器R6に直列接続された抵抗器R7からなる分圧回路の入力端子(抵抗器R7の抵抗器R6側と反対側の端子)と、マルチプレクサ8の端子VCCと、スイッチQ1のソース端子と、スイッチQ2のソース端子と、スイッチQ5のソース端子とに接続されている。
 スイッチQ1には、電気抵抗値Raを持つ抵抗器RAが並列接続されている。スイッチQ2には、電気抵抗値Rbを持つ抵抗器RBが並列接続されている。
 マルチプレクサ8は、入力端子B0と、入力端子B1と、出力端子Aと、セレクト端子SEと、を有する。マルチプレクサ8は、MCU6の端子P15からセレクト端子SEに入力される制御信号によって、入力端子B0と出力端子Aを接続する状態と、入力端子B1と出力端子Aを接続する状態とを切り替える。
 マルチプレクサ8の入力端子B0は、スイッチQ1と端子HT1(P1)とを接続するラインに接続されている。マルチプレクサ8の入力端子B1は、スイッチQ2と端子HT1(P2)とを接続するラインに接続されている。マルチプレクサ8の出力端子Aは、オペアンプOP1の非反転入力端子に接続されている。オペアンプOP1の反転入力端子は、抵抗器R7と抵抗器R6とを接続するノードへ接続されている。オペアンプOP1の出力端子は、MCU6の端子P14へ接続されている。
 LDO4は、制御端子CTLに入力される信号がハイレベルの状態(換言すると、システム電源電圧VSYSが充電IC3の出力端子SYSから出力されている状態)では、入力端子VINに入力されている電圧(すなわちシステム電源電圧VSYS)を変換して得た電圧をシステム電源電圧VMCUとして出力端子OUTから出力する。システム電源電圧VSYSは、一例として3.5V~4.2Vの範囲の値であり、システム電源電圧VMCUは、一例として3.1Vである。
 LDO4の出力端子OUTには、OLEDパネル17の制御ICと、MCU6と、LSW7と、吸引センサ15と、抵抗器R3、抵抗器R4、及びスイッチBTからなる直列回路と、デバッグ用コネクタ20Eと、が並列に接続されている。具体的には、LDO4の出力端子OUTは、OLEDコネクタ20Cの端子VDDと、MCU6の端子VDDと、LSW7の入力端子VINと、一端がメインコネクタ20Aの端子VMCUに接続された抵抗器R5の他端(図中のノードN1)と、抵抗器R4及び抵抗器R3からなる分圧回路の入力端(図中のノードN1)と、デバッグ用コネクタ20Eの端子VMCUと、に接続されている。
 また、LDO4の出力端子OUTには、ゲート端子がMCU6の端子P4に接続されたスイッチQ6のソース端子が接続されている。スイッチQ6のドレイン端子には、ANDゲート10の端子VCCと、FF9の端子VCCと、抵抗器R11の一端と、抵抗器R12の一端と、オペアンプOP2の正電源端子と、抵抗器R8の一端と、抵抗器R9の一端と、オペアンプOP1の正電源端子と、が並列に接続されている。
 抵抗器R12の他端は第2サーミスタ端子TH2へ接続されており、抵抗器R12と、第2サーミスタ端子TH2に接続されている第2サーミスタth2との直列回路が、システム電源電圧VMCUが印加される分圧回路を構成する。この分圧回路の出力は、第2サーミスタth2の電気抵抗値(換言すると温度)に応じたものとなり、MCU6の端子P8へ入力される。これにより、MCU6は、第2サーミスタth2の温度を取得可能となっている。本形態では、第2サーミスタth2として、温度の増加に伴って抵抗値が減少するNTC特性を有するものを用いているが、温度の増加に伴って抵抗値が増加するPTC特性を有するものを用いてもよい。
 抵抗器R9の他端には抵抗器R10の一端が接続され、抵抗器R10の他端はグランドラインに接続されている。抵抗器R9と抵抗器R10との直列回路が、システム電源電圧VMCUが印加される分圧回路を構成する。この分圧回路の出力は、オペアンプOP2の反転入力端子に接続されており、この反転入力端子には固定の電圧値が入力されることになる。オペアンプOP2の非反転入力端子には、抵抗器R8の他端が接続されている。
 また、抵抗器R8の他端は、更に、第1サーミスタ端子TH1と、MCU6の端子P9とに接続されている。抵抗器R8と、第1サーミスタ端子TH1に接続されている第1サーミスタth1との直列回路が、システム電源電圧VMCUが印加される分圧回路を構成する。この分圧回路の出力は、第1サーミスタth1の電気抵抗値(換言すると温度)に応じたものとなり、MCU6の端子P9へ入力される。これにより、MCU6は、第1サーミスタth1の温度(換言すると、シートヒータHTRの温度)を取得可能となっている。また、この分圧回路の出力は、オペアンプOP2の非反転入力端子にも入力される。本形態では、第1サーミスタth1として、温度の増加に伴って抵抗値が減少するNTC特性を有するものを用いている。したがって、オペアンプOP2の出力は、第1サーミスタth1の温度(シートヒータHTRの温度)が高くなってその温度が閾値THD1以上になると、ローレベルとなる。換言すれば、第1サーミスタth1の温度(シートヒータHTRの温度)が正常の範囲にある限りは、オペアンプOP2の出力はハイレベルとなる。
 なお、第1サーミスタth1として、温度の増加に伴って抵抗値が増加するPTC特性を持つものを用いる場合には、第1サーミスタth1と抵抗器R8からなる分圧回路の出力がオペアンプOP2の反転入力端子に接続され、抵抗器R9と抵抗器R10からなる分圧回路の出力がオペアンプOP2の非反転入力端子に接続される構成とすればよい。この場合でも、オペアンプOP2の出力は、第1サーミスタth1の温度(シートヒータHTRの温度)が高くなってその温度が閾値THD1以上になると、ローレベルになる。
 オペアンプOP2の出力端子は、FF9の入力端子Dへ接続されている。FF9の入力端子DとオペアンプOP2の出力端子とを接続するノードには、抵抗器R11の他端と、FF9に設けられた負論理のクリア端子CLR( ̄)とが接続されている。つまり、FF9の入力端子Dと、FF9のクリア端子CLR( ̄)と、オペアンプOP2の出力端子は、それぞれ、システム電源電圧VMCUの供給ラインに、抵抗器R11によってプルアップされている。
 FF9は、クロック端子CLKを有し、クロック端子CLKはMCU6の端子P7に接続されている。FF9は、出力端子Qを有し、出力端子QはANDゲート10の一方の入力端子Bに接続されている。FF9は、MCU6からクロック端子CLKにクロック信号が入力されており、且つ、クリア端子CLR( ̄)にハイレベルの信号が入力されている状態においては、入力端子Dに入力された信号のレベルにしたがったデータ(ハイ又はローのデータ)を保持し、保持したデータを出力端子Qから出力する。FF9は、MCU6からクロック端子CLKにクロック信号が入力されており、且つ、クリア端子CLR( ̄)にローレベルの信号が入力されている状態においては、保持しているデータに関らず、出力端子Qからローレベルの信号を出力するリセット処理を行う。このリセット処理は、クリア端子CLR( ̄)にハイレベルの信号が入力された状態で、クロック端子CLKへのクロック信号の入力し直しが行われることで解除される。すなわち、クリア端子CLR( ̄)にハイレベルの信号が入力された状態で、クロック端子CLKへのクロック信号の供給が停止され、その後、クロック信号の供給が再開されることで、解除される。
 ANDゲート10の他方の入力端子Aは、MCU6の端子P6に接続されている。ANDゲート10の出力端子Yは、昇圧回路11の正論理のイネーブル端子ENに接続されている。ANDゲート10は、入力端子Aに入力される信号と入力端子Bに入力される信号が共にハイレベルの状態においてのみ、出力端子Yからハイレベルの信号を出力する。
 LSW7は、MCU6の端子P10から制御端子CTLに制御信号が入力されている場合に、入力端子VINに入力されているシステム電源電圧VMCUを出力端子OUTから出力する。LSW7の出力端子OUTは、メイン基板20の端子VIB及びパフセンサ基板21の端子VIBを経由して、振動モータ13へ接続されている。したがって、MCU6がLSW7に制御信号を入力することで、システム電源電圧VMCUを用いて、振動モータ13を作動させることができる。
(スタンバイモードから加熱モードへの遷移)
 電源ユニット100は、動作モードとして、省電力化を図るスリープモードと、スリープモードから遷移可能なスタンバイモードと、スタンバイモードから遷移可能な加熱モード(リキッドヒータやシートヒータHTRの加熱を行ってエアロゾル生成を行うモード)と、を備える。MCU6は、スリープモードにおいて、スイッチBTに対する特定の操作(例えば長押し操作)を検出すると、動作モードをスタンバイモードに切り替える。MCU6は、スタンバイモードにおいて、スイッチBTに対する特定の操作(例えば短押し操作)を検出すると、動作モードを加熱モードに切り替える。
(加熱モードの動作)
 図10は、加熱モードの動作にかかわる電子部品を図9に示す回路から抽出して示した回路図である。図10には、図9には示していなかったコンデンサC3が追加で示されている。図11は、シートヒータHTR及びリキッドヒータの加熱制御と、振動モータ13の駆動制御と、LED21Dの駆動制御とに関わる電子部品を図9に示す回路から抽出して示した回路図である。以下、図10と図11を参照して加熱モードの動作を説明する。
 MCU6は、加熱モードに遷移すると、図10に示されたスイッチQ6をオン状態に制御する。これにより、ANDゲート10、FF9、抵抗器R11、オペアンプOP2、抵抗器R11、抵抗器R9及び抵抗器R10からなる分圧回路、抵抗器R8及び第1サーミスタth1からなる分圧回路、抵抗器R12及び第2サーミスタth2からなる分圧回路、及びオペアンプOP1のそれぞれに、システム電源電圧VMCUが供給されることになる。更に、MCU6は、加熱モードに遷移すると、端子P6からANDゲート10の入力端子Aに入力する信号をハイレベルに制御する。また、MCU6は、FF9のクロック端子CLKにクロック信号の入力を開始する。この状態では、第1サーミスタth1の温度(シートヒータHTRの温度)が正常の範囲(閾値THD1未満)であれば、オペアンプOP2の出力はハイレベルとなり、その結果、FF9の出力はハイレベルとなり、その結果、ANDゲート10の出力はハイレベルとなる。このため、昇圧回路11から加熱用電圧VHEATの出力が開始されて、シートヒータHTRとリキッドヒータを加熱可能な状態となる。
(リキッドヒータの接続先の判定)
 昇圧回路11から加熱用電圧VHEATの出力が開始されると、図11に示すように、シートヒータ端子HT2に接続されたシートヒータHTRと、端子HT1(P1)~端子HT1(P3)のいずれか2つに接続されたリキッドヒータ(図11では、端子HT1(P1)と端子HT1(P2)に接続されたリキッドヒータhtrを記載)とに、電力の供給が可能な状態となる。この状態において、まず、MCU6は、ポゴピンp1、ポゴピンp2、及びポゴピンp3のうち、どのペアにリキッドヒータが接続されているのかを、図9に示したオペアンプOP1の出力によって判定する。この判定工程は、次の第一工程、第二工程、及び第三工程を含む。
 (第一工程)
 MCU6は、スイッチQ1-Q4のうちスイッチQ4のみをオンに制御した状態で、マルチプレクサ8の入力端子B0と出力端子Aを接続する制御を行う。この状態では、端子HT1(P1)と端子HT1(P2)間の電気抵抗値をRxとすると、分圧値=VHEAT*{Rx/(Ra+Rx)}がオペアンプOP1の非反転入力端子に入力される。オペアンプOP1では、非反転入力端子に入力される電圧と、端子HT1(P1)と端子HT1(P2)間にリキッドヒータが接続されていた場合の上記分圧値の値とが比較され、その差が小さい場合には、オペアンプOP1の出力がローレベルとなる。したがって、オペアンプOP1の出力がローレベルとなった場合には、MCU6は、端子HT1(P1)と端子HT1(P2)間にリキッドヒータが接続されていると判定する。
 (第二工程)
 MCU6は、第一工程でオペアンプOP1の出力がハイレベルとなった場合には、スイッチQ1-Q4のうちスイッチQ3のみをオンに制御した状態で、マルチプレクサ8の入力端子B0と出力端子Aを接続する制御を行う。この状態では、端子HT1(P1)と端子HT1(P3)間にリキッドヒータが接続されていた場合には、オペアンプOP1の出力がローレベルとなる。したがって、オペアンプOP1の出力がローレベルとなった場合には、MCU6は、端子HT1(P1)と端子HT1(P3)間にリキッドヒータが接続されていると判定する。
 (第三工程)
 MCU6は、第二工程でオペアンプOP1の出力がハイレベルとなった場合には、スイッチQ1-Q4のうちスイッチQ3のみをオンに制御した状態で、マルチプレクサ8の入力端子B1と出力端子Aを接続する制御を行う。この状態では、端子HT1(P2)と端子HT1(P3)間にリキッドヒータが接続されていた場合には、オペアンプOP1の出力がローレベルとなる。したがって、オペアンプOP1の出力がローレベルとなった場合には、MCU6は、端子HT1(P2)と端子HT1(P3)間にリキッドヒータが接続されていると判定する。
 MCU6は、第一工程から第三工程のいずれでもオペアンプOP1の出力がローレベルとならなかった場合には、エラー通知を行う。
(加熱制御の開始)
 MCU6は、上記の判定工程を終えた状態で、吸引センサ15の出力レベルが、ユーザによる吸引が行われたときに相当する値に変化した場合には、シートヒータHTRとリキッドヒータの加熱制御を開始する。具体的には、MCU6は、図11に示したスイッチQ5をオンオフ制御(例えばPWM制御やPFM制御)することで、シートヒータHTRの加熱制御を行う。また、このとき、MCU6は、端子P8に入力される信号から取得した第2サーミスタth2の温度(換言すると、シートヒータHTRの温度)に基づいて、シートヒータHTRの温度が目標温度に収束するように、シートヒータHTRの加熱制御を行う。この加熱制御には、例えばPID(Proportional-Integral-Differential)制御が用いられる。
 また、MCU6は、端子HT1(P1)と端子HT1(P2)間にリキッドヒータが接続されている場合には、図11に示したスイッチQ1~Q4のうち、スイッチQ4をオン状態に制御し、スイッチQ2とスイッチQ3をオフ状態に制御し、スイッチQ1をオンオフ制御(例えばPWM制御やPFM制御)することで、リキッドヒータの加熱制御を行う。MCU6は、端子HT1(P1)と端子HT1(P3)間にリキッドヒータが接続されている場合には、スイッチQ1~Q4のうち、スイッチQ3をオン状態に制御し、スイッチQ2とスイッチQ4をオフ状態に制御し、スイッチQ1をオンオフ制御することで、リキッドヒータの加熱制御を行う。MCU6は、端子HT1(P2)と端子HT1(P3)間にリキッドヒータが接続されている場合には、スイッチQ1~Q4のうち、スイッチQ3をオン状態に制御し、スイッチQ1とスイッチQ4をオフ状態に制御し、スイッチQ2をオンオフ制御することで、リキッドヒータの加熱制御を行う。
(ヒータの過加熱保護)
 電源ユニット100では、加熱モードにおいて、第1サーミスタth1の温度が閾値THD1以上になると、オペアンプOP2の出力がローレベルとなるように、抵抗器R8、抵抗器R9、及び抵抗器R10のそれぞれの電気抵抗値が決められている。第1サーミスタth1の温度が閾値THD1以上になって、オペアンプOP2の出力がローレベルになると、FF9のクリア端子CLR( ̄)にローレベルが入力される。これにより、負論理であるクリア端子CLR( ̄)がイネーブルされてFF9の出力が強制的にローレベルとなるため、ANDゲート10の出力もローレベルとなって、昇圧回路11は加熱用電圧VHEATの出力を停止する。このように、シートヒータHTRへの電力供給を確実に停止できる昇圧回路11にオペアンプOP2の出力信号が入力されることで、シートヒータHTRが高温となったときの安全性を高めている。
 なお、FF9の出力をハイレベルに戻すためには、MCU6によるFF9のクロック端子CLKへのクロック信号の入力し直し(換言すると、FF9の再起動)が必要である。つまり、昇圧回路11からの出力が停止してから、第1サーミスタth1の温度が閾値THD1未満に戻ったとしても、MCU6がFF9の再起動処理を行わない限り、昇圧回路11からの出力は再開されない。
 第1サーミスタth1の温度が閾値THD1以上となった要因が、MCU6のフリーズであった場合を想定する。この場合、ANDゲート10の入力端子Aにはハイレベルの信号が入力され続け、また、FF9へクロック信号が入力され続ける。エアロゾル生成装置200には、詳細は後述するが、ユーザによるスイッチBTの操作によって、MCU6の再起動(リセット)が可能な再起動回路RBT(図12参照)が設けられている。保護回路が機能した要因がMCU6のフリーズであった場合には、ユーザによってMCU6の再起動がなされる。MCU6が再起動することで、FF9の再起動が行われる。また、MCU6が再起動することで、ANDゲート10の入力端子Aに入力される信号はローレベルとなる。また、MCU6が再起動したタイミングでは、スイッチQ6はオフ状態であるため、ANDゲート10の入力端子Bの信号の電位は不定となる。したがって、MCU6が再起動しただけでは、昇圧回路11からの出力は再開されない。MCU6の再起動後、ユーザ操作によって動作モードが加熱モードに移行することで、ANDゲート10の入力端子Aに入力される信号はハイレベルとなる。また、スイッチQ6がオン状態となることで、ANDゲート10の入力端子Bに入力される信号はハイレベルとなる。これによって、昇圧回路11からの出力が再開されることになる。
(再起動回路RBTの構成及び動作)
 図12は、MCU6の再起動にかかわる電子部品を図9に示す回路から抽出して示した回路図である。図12には、再起動回路RBTが示されている。再起動回路RBTは、抵抗器R3及び抵抗器R4からなる分圧回路と、スイッチBTと、メインコネクタ20Aの端子KEY及び端子GNDと、スイッチQ7と、スイッチQ9と、充電IC3と、LDO4と、デバッグ用コネクタ20Eの端子NRSTと、備えて構成される。本形態では、この再起動回路RBTによって、MCU6の再起動を、スイッチBTの操作(一例として長押し操作)と、デバッグ用コネクタ20Eに接続された外部機器からの指令と、によって行うことが可能になっている。MCU6は、端子P27に入力される信号がローレベルの状態が所定時間継続した場合に、再起動を行うよう構成されている。また、充電IC3は、端子QON( ̄)に入力される信号がローレベルの状態が所定時間継続した場合に、再起動を行うよう構成されている。
(スイッチBTを用いたMCU6のリセット)
 まず、デバッグ用コネクタ20Eを用いずにMCU6の再起動を行う際の動作を説明する。
 抵抗器R3と抵抗器R4は、スイッチBTが押下されていない状態では、抵抗器R3と抵抗器R4の分圧回路の出力がハイレベルとなるような抵抗値を有する。このハイレベルの信号は、充電IC3の端子QON( ̄)に入力されるため、この状態では充電IC3はリセットされず、出力端子SYSからのシステム電源電圧VSYSの出力を継続する。システム電源電圧VSYSの出力が継続されることで、LDO4の出力端子OUTからのシステム電源電圧VMCUの出力も継続される。このため、MCU6は停止することなく継続して作動する。また、このハイレベルの信号は、スイッチQ7のゲート端子に入力される。このため、USB接続されている場合(バス電圧VBUSが充電IC3から出力されている場合)には、スイッチQ7がオン状態となり、その結果、スイッチQ9のゲート端子の電位がローレベル(グランドレベル)となってスイッチQ9がオフ状態となる。スイッチQ9がオフ状態のときは、MCU6の端子P27の電位は不定となるため、MCU6による再起動は行われない。
 抵抗器R3と抵抗器R4は、スイッチBTが押下された状態では、抵抗器R3と抵抗器R4の分圧回路の出力がローレベルになるような抵抗値を有する。換言すれば、抵抗器R3と抵抗器R4は、システム電源電圧VMCUを分圧した値がローレベルになるような抵抗値を有する。このローレベルの信号は、充電IC3の端子QON( ̄)に入力されるため、この状態が所定時間継続されると、充電IC3は出力端子SYSからのシステム電源電圧VSYSの出力を停止する。システム電源電圧VSYSの出力が停止されると、LDO4からの電圧出力が停止されて、MCU6の端子VDDにシステム電源電圧VMCUが入力されなくなり、MCU6は停止する。
 また、このローレベルの信号は、スイッチQ7のゲート端子に入力される。このため、USB接続されている場合(バス電圧VBUSが充電IC3から出力されている場合)には、スイッチQ7がオフ状態となり、その結果、スイッチQ9のゲート端子の電位がハイレベル(バス電圧VBUS)となってスイッチQ9がオン状態となる。スイッチQ9がオン状態になると、MCU6の端子P27の電位はローレベル(グランドレベル)となる。スイッチBTが所定時間継続して押下されている場合には、MCU6の端子P27にローレベルの信号が所定時間入力されるため、MCU6は再起動の処理を実行する。スイッチBTの押下が終了された場合には、充電IC3がシステム電源電圧VSYSの出力を再開するため、停止しているMCU6の端子VDDにシステム電源電圧VMCUが入力されて、MCU6が起動する。
(デバッグ用コネクタ20Eを用いたMCU6のリセット)
 デバッグ用コネクタ20Eを用いてMCU6を再起動する場合には、USB接続を行い、更に、デバッグ用コネクタ20Eに外部機器を接続する。この状態で、スイッチBTが押下されていなければ、スイッチQ9はオフ状態となっているため、MCU6の端子P27の電位は、外部機器からの入力に依存したものとなる。したがって、外部機器がローレベルの再起動信号を端子NRSTに入力するよう作業者が操作を行うことで、その再起動信号が端子P27に所定時間継続して入力される。この再起動信号の入力を受けることで、MCU6は再起動の処理を実行する。
(メインFPC23の詳細構成)
 次に、メインFPC23の詳細について説明する。
 図13は、メインFPC23を厚み方向が左右方向と一致するように展開して左側から見た正面図である。図14は、メインFPC23を厚み方向が左右方向と一致するように展開して右側から見た正面図である。図15は、図14に示す範囲ARの拡大図である。
 メインFPC23は、第1ケース3A側に配置された表層231(図13参照)と、表層231の右側に配置された裏層232(図14参照)とを備えた2層構造となっている。表層231の左面と裏層232の右面には、それぞれ、導電パターンと、基準電位を有するグランドパターンとが設けられる。メインFPC23に形成される導電パターンには、エアロゾル源を霧化するための電力(リキッドヒータへの供給電力)が流れる導電パターン81~83と、MCU6によって制御される素子(LED21D及び振動モータ13)に接続される制御用導電パターンと、MCU6に信号を入力する素子(吸引センサ15及びスイッチBT)に接続される入力用導電パターンと、が含まれる。導電パターン81~83は、リキッドヒータを加熱するために用いられるため、大電力が流れる。このため、導電パターン81~83は、発熱やノイズを抑制し且つ高効率にリキッドヒータへ電力を供給できるよう低抵抗であることが好ましい。導電パターン81~83は、制御用導電パターンと入力用導電パターンよりも幅が広くなっており、発熱やノイズを抑制するようになっている。
 メインFPC23は、図13及び図14において直線の一点鎖線で示される折り線LN1~LN6のそれぞれによって折られた状態で、内部ユニット2Aに組み付けられる。以下では、折り線LN1~LN6で折られることで生じる折り目のことを折り目l1~l6と記載する。メインFPC23は、折り目l1~l6によって区画される複数の部分を含む。具体的には、メインFPC23は、折り目l1より外側(端縁側)の第1部分PA1と、折り目l1と折り目l2の間の第2部分PA2と、折り目l2、l3、l4、l5よりも内側の第3部分PA3と、折り目l4より外側(端縁側)の第4部分PA4と、折り目l3より外側(端縁側)の第5部分PA5と、折り目l5と折り目l6の間の第6部分PA6と、折り目l6より外側(端縁側)の第7部分PA7と、から構成されている。これらの複数の部分のうち、第3部分PA3の平面積が最大となっている。
 メインFPC23は、折り線LN2においては、図13の紙面手前側且つ紙面右側に向かって折られて、図4に示す状態では、前から後ろに折り返された状態となる。メインFPC23は、折り線LN1においては、図13の紙面手前側に向かって折られる。メインFPC23は、折り線LN3~LN6においては、それぞれ、図13の紙面奥側に向かって折られる。第1部分PA1は、シャーシ50に固定されるが、第2部分PA2は、どこにも固定されないフリーの状態となる。ただし、前述したように、ヒータFPC24とOLED FPC25によって、第2部分PA2の浮き上がりは抑制されている。第2部分PA2は、第3部分PA3と比べて幅が細く、また両端の折り目が異なる方向に延びているため、他の部分に比べて応力がかかりやすい点に留意されたい。
 このように、メインFPC23は、折り線LN1~LN6のそれぞれで折られた構成であるため、メインFPC23を湾曲させる場合に比べて、ケース3内におけるメインFPC23の占める空間を少なくしつつも、メインFPC23をケース3内で柔軟に配索することができる。なお、折り目l1~l6は、それぞれを境にして隣接する部分のなす角度のうちの小さい方が鋭角であるほど、それぞれに加わる応力が強くなる。したがって、応力を小さくするためには、メインFPC23における折り目l1~l6の各々を境にして隣接する部分のなす角度のうちの小さい方(折り角度)を90度以上とすることが好ましい。このようにすることで、メインFPC23の耐久性を向上させることができる。
 図14に示すように、裏層232の第4部分PA4には、折り線LN4と第4部分PA4の端縁4eとの間に、基板コネクタCN1が実装されている。図14中の二点鎖線で囲った領域には、基板コネクタCN1の拡大図が示されている。基板コネクタCN1は、メイン基板20のメインコネクタ20Aと接続される部分であり、メインコネクタ20Aの端子KEY、端子PUFF、端子VMCU、端子VOTG、端子LED、端子VIB、端子GND、端子HT1(P1)、端子HT1(P2)、及び端子HT1(P3)のそれぞれと接続される端子(端子KEY、端子PUFF、端子VMCU、端子VOTG、端子LED、端子VIB、端子GND、端子HT1(P1)、端子HT1(P2)、及び端子HT1(P3))を備える。
 図13及び図14に示す太線は、導電性材料で構成された導電パターンを示している。基板コネクタCN1の端子KEYは、端縁4e側の隣に形成されたビアB11に入力用導電パターンで接続されている。メインFPC23におけるビアは、表層231の導電パターンと裏層232の導電パターンとの電気的な接続を行うものであり、メインFPC23を厚み方向に貫通してその厚み方向に延びる導電体である。基板コネクタCN1の端子PUFFは、端縁4e側の隣に形成されたビアB9に入力用導電パターンで接続されている。基板コネクタCN1の端子VMCUは、端縁4e側の隣に形成されたビアB10に入力用導電パターンで接続されている。基板コネクタCN1の端子VOTGは、第3部分PA3に形成されたビアB6に制御用導電パターンで接続されている。基板コネクタCN1の端子VLEDは、第3部分PA3に形成されたビアB7に制御用導電パターンで接続されている。基板コネクタCN1の端子VIBは、第3部分PA3に形成されたビアB8に制御用導電パターンで接続されている。ビアB6~ビアB11のそれぞれには、接続先の端子名を括弧内にて記載している。
 ビアB6~ビアB11は、それぞれ、図13に示すように、表層231まで達している。表層231の第5部分PA5には、ビアB4とビアB5が設けられている。表層231には、ビアB9とビアB4を接続する入力用導電パターンと、ビアB10とビアB5を接続する入力用導電パターンとが形成されている。表層231の第3部分PA3の第5部分PA5に隣接した領域には、ビアB1、ビアB2、及びビアB3が設けられている。表層231には、ビアB6とビアB1を接続する制御用導電パターンが形成され、ビアB7とビアB2を接続する制御用導電パターンが形成され、ビアB8とビアB3を接続する制御用導電パターンが形成されている。表層231の第3部分PA3の第2部分PA2に近い領域には、ビアB12が設けられている。表層231には、ビアB11とビアB12を接続する入力用導電パターンが形成されている。
 図14に示すように、ビアB1~ビアB5とビアB12は、それぞれ、裏層232まで達している。裏層232の第5部分PA5には、折り線LN3と第5部分PA5の端縁5eとの間に、基板コネクタCN2が実装されている。図14中の二点鎖線で囲った領域には、基板コネクタCN2の拡大図が示されている。基板コネクタCN2は、パフセンサ基板21のコネクタ21Bと接続される部分であり、コネクタ21Bの端子VOTG、端子LED、端子VIB、端子GND、端子PUFF、及び端子VMCUのそれぞれと接続される端子(端子VOTG、端子LED、端子VIB、端子GND、端子PUFF、及び端子VMCU)を備える。
 裏層232には、ビアB1と基板コネクタCN2の端子VOTGとを接続する制御用導電パターンと、ビアB2と基板コネクタCN2の端子LEDとを接続する制御用導電パターンと、ビアB3と基板コネクタCN2の端子VIBとを接続する制御用導電パターンと、ビアB4と基板コネクタCN2の端子PUFFとを接続する入力用導電パターンと、ビアB5と基板コネクタCN2の端子VMCUとを接続する入力用導電パターンとが形成されている。図14においては、ビアB1~ビアB5のそれぞれに、基板コネクタCN2の接続先の端子名を括弧内にて記載している。
 図15に示すように、裏層232の第1部分PA1には、スイッチBTのプラス側端子が接続される端子THと、スイッチBTのマイナス側端子が接続される端子TLと、基準電位を有するグランドパターンG3と、図9に示したバリスタV1のプラス側端子が接続される端子TVと、が形成されている。端子TLはグランドパターンG3と一体的に形成されている。裏層232には、この端子TH及び端子TVとビアB12とを接続する入力用導電パターンPTxが形成されている。メインFPC23に直接実装されるスイッチBTを介して静電気などの外来ノイズが侵入しても、スイッチBTの近傍に配置された過電圧保護素子としてのバリスタV1によって、このノイズがメインFPC23に実装された他の電気部品に影響を及ぼさないようになっている。
 図14に示すように、入力用導電パターンPTxは、折り線LN1と重なる部分D1においては並列化され、折り線LN2と重なる部分D2においては並列化されている。具体的には、入力用導電パターンPTxは、折り線LN2よりも第3部分PA3側の位置において2本に分岐し、折り線LN2を超えて第2部分PA2に達した後に1本に戻る構成となっている。また、入力用導電パターンPTxは、折り線LN1よりも第2部分PA2側の位置において2本に分岐し、折り線LN1を超えて第1部分PA1に達した後に1本に戻る構成となっている。第2部分PA2は、両端の折り目の部分に特に応力がかかる。この部分に形成される入力用導電パターンPTxが並列化されることで、2本の入力用導電パターンPTxの一方が断線しても、他方によって入力用導電パターンPTxの使用を継続できる。
 裏層232において、基板コネクタCN1の端子HT1(P2)には、導電パターン82の一端が接続されている。導電パターン82は、基板コネクタCN1の端子HT1(P2)から端縁4e側に延びてから第3部分PA3側に折り返され、第3部分PA3を経由して第7部分PA7にまで達している。導電パターン82の他端には、4つのビア82bが接続されている。4つのビア82bは、図13に示すように、表層231の第7部分PA7まで達している。表層231の第7部分PA7には、この4つのビア82bと接続する端子82Tが設けられている。
 裏層232において、基板コネクタCN1の端子HT1(P3)には、導電パターン83の一端が接続されている。導電パターン83は、基板コネクタCN1の端子HT1(P3)から第3部分PA3側に延び、第3部分PA3を経由して第7部分PA7にまで達している。導電パターン83の他端には、4つのビア83bが接続されている。4つのビア83bは、図13に示すように、表層231の第7部分PA7まで達している。表層231の第7部分PA7には、この4つのビア83bと接続する端子83Tが設けられている。
 裏層232において、基板コネクタCN1の端子HT1(P1)には、導電パターン81の一端が接続されている。導電パターン81は、基板コネクタCN1の端子HT1(P1)から端縁4e側に延びて、第4部分PA4に形成されている。導電パターン81には、ビア81bが接続されている。ビア81bは、図13に示すように、表層231の第4部分PA4まで達している。表層231の第4部分PA4には、このビア81bと接続する導電パターン81の一端が設けられている。表層231の導電パターン81は、第3部分PA3を経由して第7部分PA7まで達している。表層231の導電パターン81の他端は、幅広に構成されており、この部分が端子81Tを構成している。
 第7部分PA7は、厚み方向が上下方向に一致する状態で、裏層232がシャーシ50の下面に固着されており、下リッド7aを開状態にしたときに露出する部分である。下リッド7aを閉状態にすることで、下リッド7aの入力側接点P1が端子81Tと接触し、下リッド7aの入力側接点P2が端子82Tと接触し、下リッド7aの入力側接点P3が端子83Tと接触して、ポゴピン基板22及びリキッドヒータとメインFPC23との電気的接続がなされる。このように、導電パターン81~83は、端子81T~83Tにおいて、入力側接点P1~入力側接点P3と接触する。このため、導電パターン81~83の厚みは、端子81T~83Tにおいて最も厚く、端子81T~83Tを除く部分については、端子81T~83Tよりも薄くすることが好ましい。このようにすることで、端子81T~83Tの耐久性を高めることができる。
 メインFPC23に設けられる導電パターン81~83は、表層231と裏層232に亘って形成されている。このため、1つの層に導電パターン81~83を設ける構成と比較すると、メインFPC23の面積が同じであれば、導電パターン81~83のそれぞれの幅を太くすることができる。また、メインFPC23を例えば3層構造とし、導電パターン81~83を各層に振り分けて形成する構成も考えられる。本形態のメインFPC23は、この構成と比較すると、層数が少ないため構造を簡素化でき、製造コストや重量を低減できる。また、本形態のメインFPC23における導電パターン81~83は、それぞれ、入力用導電パターンPTxのように分岐されることなく、1本の線として構成されている。このように、導電パターン81~83を太く単純な形状とすることで、折り目における断線の防止と低抵抗化及び低インダクタンス化による熱及びノイズの抑制とを実現することができる。
 なお、メインFPC23の複数の部分のうちの第3部分PA3及び第4部分PA4を除く部分の幅は、導電パターン81~83のそれぞれの幅を合算した値よりも小さくなっている。本形態では、メインFPC23を2層構造とし、表層231には導電パターン81を形成し、裏層232には導電パターン82、83を形成することで、第3部分PA3及び第4部分PA4を除く部分の幅を小さくできる。つまり、本形態によれば、メインFPC23として過度に大きいものを用いずとも、3つの太い導電パターンを形成することができる。
 表層231に形成された導電パターンとして、ビアB1とビアB6を接続する制御用導電パターンと、ビアB2とビアB7を接続する制御用導電パターンと、ビアB3とビアB8を接続する制御用導電パターンは、メインFPC23の正面視において、裏層232に形成された導電パターン82及び導電パターン83を跨いで前後方向に延びて形成されている。また、表層231に形成された導電パターンとして、ビアB11とビアB12を接続する入力用導電パターンと、ビアB4とビアB9を接続する入力用導電パターンと、ビアB5とビアB10を接続する入力用導電パターンは、メインFPC23の正面視において、裏層232に形成された導電パターン82と導電パターン83のいずれかを跨いで前後方向に延びて形成されている。このように、表層231に形成される制御用導電パターンと入力用導電パターンは、メインFPC23の正面視において、裏層232に形成される導電パターン82及び導電パターン83と重なる構成となっている。このような構成により、制御用導電パターン及び入力用導電パターンと干渉することなく、導電パターン82及び導電パターン83の幅を太くすることができる。
 図13に示すように、表層231には、第1部分PA1~第6部分PA6に跨って、大面積のグランドパターンG1が形成されている。このグランドパターンG1には、折り線LN3と重なる位置において隙間Ga3が設けられ、折り線LN2と重なる位置において隙間Ga2が設けられ、折り線LN1と重なる位置において隙間Ga1が設けられている。このような隙間Ga1~Ga3を設けることで、グランドパターンG1において折り目l1~l3に加わる応力を逃がすことができる。
 図14に示すように、裏層232には、第3部分PA3~第5部分PA5に跨って、グランドパターンG1よりは面積の小さい2つのグランドパターンG2が形成されている。図中左下側のグランドパターンG2は、基板コネクタCN1の端子GNDに接続されている。図中右上側のグランドパターンG2は、基板コネクタCN2の端子GNDに接続されている。
 図14に示すように、裏層232において、第2部分PA2、第6部分PA6、及び第7部分PA7には、グランドパターンは形成されていない。つまり、グランドパターンG2及びグランドパターンG3は、折り目l1~l7のうちの一部(折り目l1、l2、l5、l6)を避けて形成されている。グランドパターンは、一般的には大面積の銅箔で形成されるが、このような大面積の銅箔は、折り目による応力の逃げ場が少ない。そこで、裏層232においては、折り目l1、l2、l5、l6の箇所にグランドパターンを設けないことで、応力の逃げ場を確保している。
 一方で、表層231に形成されたグランドパターンG1は、裏層232においてグランドパターンとの重なりが避けられた折り目l1、l2、l5の位置にも形成されている。つまり、表層231と裏層232のそれぞれでグランドパターンが重なる折り目は折り目l3と折り目l4のみとなる。このように、表層231と裏層232のそれぞれでグランドパターンが重なる折り目の数を減らすことで、グランドパターンの断線を防ぎつつ、グランドパターンの面積を大きくすることができる。グランドパターンにおける基準電位の安定性は、グランドパターンの面積に大きく依存する。メインFPC23によれば、以上のように表層231と裏層232に亘ってグランドパターンが形成されることで、グランドパターンの面積を広くできる。
 また、第2部分PA2においては、裏層232においてグランドパターンが形成されず、表層231においてのみグランドパターンG1が形成されている。前述したように、第2部分PA2は応力が加わりやすい部分である。このことから、裏層232には入力用導電パターンPTxのみを設ける構成とすることで、第2部分PA2の柔軟性を担保して、メインFPC23の耐久性を向上させることができる。
 なお、グランドパターンG2及びグランドパターンG3は、折り目l1~l7のうちの全部を避けて形成されていてもよい。この場合、表層231においては、折り目l1~l7の一部又は全部にグランドパターンG1が形成される構成としてもよい。
 本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
(1)
 電源(電源ba)と、
 エアロゾル源と霧化器(リキッドヒータ)を含む第1カートリッジ(第1カートリッジ110)が挿抜可能な第1カートリッジ保持部(カートリッジ保持部51)と、
 上記電源から上記霧化器への放電を制御可能に構成されるコントローラ(MCU6)と、
 上記コントローラが実装される第1リジッド回路基板(メイン基板20A)と、
 上記第1カートリッジ保持部に挿入された上記第1カートリッジの上記霧化器へ、接続可能な第2リジッド回路基板(ポゴピン基板22)と、
 上記第1リジッド回路基板と上記第2リジッド回路基板とを接続可能なフレキシブル回路基板(メインFPC23)と、を備える、
エアロゾル生成装置の電源ユニット。
支援方法。
 (1)によれば、第1カートリッジの挿抜時に力が加わる箇所に、安価かつ剛性のある第2リジッド回路基板が用いられる。このため、電源ユニットの耐久性を向上させつつ、その製造コストを低減できる。
(2)
 (1)に記載のエアロゾル生成装置の電源ユニットであって、
 上記霧化器が霧化した上記エアロゾル源に香味を付与する香味源を含む第2カートリッジを挿抜可能、且つ、上記第1カートリッジ保持部とは異なる第2カートリッジ保持部(カプセルホルダ4A)を備え、
 上記第1カートリッジ保持部に対する上記第1カートリッジの挿入方向(上方向)は、上記第2カートリッジ保持部に対する上記第2カートリッジの挿入方向(下方向)とは異なる、
エアロゾル生成装置の電源ユニット。
 (2)によれば、第2カートリッジの挿抜時に、第1カートリッジを挿抜せずにすむので、電源ユニットの耐久性が向上する。
(3)
 (1)又は(2)に記載のエアロゾル生成装置の電源ユニットであって、
 上記第1カートリッジ保持部へ上記第1カートリッジを挿抜可能な開状態と、上記第1カートリッジ保持部へ上記第1カートリッジを挿抜不能な閉状態とを切替可能な蓋(下リッド7a)を備え、
 上記第2リジッド回路基板は、上記蓋に配置される、
エアロゾル生成装置の電源ユニット。
 (3)によれば、第1カートリッジの挿抜時には、第1リジッド回路基板や電源と第1カートリッジの間に電気的接点が確立されなくなる。このため、意図しない短絡電流が生じにくくなり、電源ユニットの安全性が向上する。
(4)
 (3)に記載のエアロゾル生成装置の電源ユニットであって、
 上記蓋の開閉時に、上記フレキシブル回路基板は変形しない、
エアロゾル生成装置の電源ユニット。
 (4)によれば、第1カートリッジを挿抜しても、フレキシブル回路基板は変形しないので、フレキシブル回路基板が破損しにくくなり、電源ユニットの耐久性が向上する。
(5)
 (3)に記載のエアロゾル生成装置の電源ユニットであって、
 上記蓋を上記閉状態から上記開状態に切替える時に、上記第2リジッド回路基板と上記フレキシブル回路基板との接続が解除され、
 上記蓋を上記開状態から上記閉状態に切替える時に、上記第2リジッド回路基板と上記フレキシブル回路基板との接続が確立される、
エアロゾル生成装置の電源ユニット。
 (5)によれば、蓋を閉状態にする時にだけ第2リジッド回路基板と上記フレキシブル回路基板との接続が確立されるので、フレキシブル回路基板が破損しにくくなり、電源ユニットの耐久性が向上する。
(6)
 (5)に記載のエアロゾル生成装置の電源ユニットであって、
 上記第2リジッド回路基板へ接続される導電性の突起(入力側接点P1、P2、P3)を含み、
 上記突起は、上記蓋が上記閉状態である場合に、上記フレキシブル回路基板へ接触し、
 上記突起は、上記蓋が上記開状態である場合に、上記フレキシブル回路基板へ接触されない、
エアロゾル生成装置の電源ユニット。
 (6)によれば、フレキシブル回路基板と接触する面積が限定される突起であれば、蓋の開閉時にフレキシブル回路基板に与えられる外力や、この外力によって生じる応力を低減できるので、電源ユニットの耐久性が向上する。
(7)
 (6)に記載のエアロゾル生成装置の電源ユニットであって、
 上記フレキシブル回路基板は、上記電源から上記霧化器へ電力を供給する導電パターン(導電パターン81、82、83)を含み、
 上記導電パターンは、上記蓋の上記閉状態で上記突起へ接触する接触部分(端子81T、端子82T、端子83T)と、上記蓋の上記閉状態で上記突起へ接触しない非接触部分(端子81T、端子82T、端子83Tを除く部分)と、を含み、
 上記接触部分は、上記非接触部分よりも厚い、
エアロゾル生成装置の電源ユニット。
 (7)によれば、接触部分を厚くすることで、蓋の開閉を繰り返してもこの導電パターンの接触部分が摩耗しきることを抑制できるので、電源ユニットの耐久性が向上する。
(8)
 (1)から(7)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 上記フレキシブル回路基板は、上記第1リジッド回路基板と上記第2リジッド回路基板の間に折り目(折り目l5)を含む、
エアロゾル生成装置の電源ユニット。
 (8)によれば、フレキシブル回路基板を湾曲させて第1リジッド回路基板と第2リジッド回路基板を接続した場合に比べて、電源ユニット内においてフレキシブル回路基板が占める空間を少なくできるので、複数の回路基板を収容しつつも電源ユニットのサイズを低減できる。
(9)
 (8)に記載のエアロゾル生成装置の電源ユニットであって、
 上記折り目によって形成される角度のうち小さい角度は、90度以上である、
エアロゾル生成装置の電源ユニット。
 折り目によってフレキシブル回路基板に加わる応力は、折り目が鋭角であればあるほど強くなる。(9)によれば、この折り目を鋭角としないことで、フレキシブル回路基板に加わる応力を低減できるので、電源ユニットの耐久性が向上する。
(10)
 (8)又は(9)に記載のエアロゾル生成装置の電源ユニットであって、
 上記フレキシブル回路基板は、上記折り目を避けて形成された、基準電位を有するグランドパターン(グランドパターンG2)を備える、
エアロゾル生成装置の電源ユニット。
 (10)によれば、グランドパターンは、一般的には大面積の銅箔で形成されるところ、このような大面積の銅箔は、折り目による応力の逃げ場がなく、破損しやすい。そこで、折り目の箇所にグランドパターンを設けないことで、このような破損を防止できるので、電源ユニットの耐久性が向上する。
(11)
 (8)又は(9)に記載のエアロゾル生成装置の電源ユニットであって、
 上記フレキシブル回路基板は、第1層(表層231)と、第2層(裏層232)と、上記第2層において上記折り目を避けて形成された基準電位を有するグランドパターン(グランドパターンG2)と、上記第1層において上記折り目に形成された基準電位を有するグランドパターン(グランドパターンG1)と、を備える、
エアロゾル生成装置の電源ユニット。
 (11)によれば、複数のうち一部の層だけ、折り目においてはグランドパターンを形成することで、グランドパターンを大面積化しつつ、折り目でも破損しにくくなる。このため、電源ユニットの耐久性が向上し、かつその動作も安定する。
100 電源ユニット
6 MCU
20 メイン基板
22 ポゴピン基板
23 メインFPC
51 カートリッジ保持部
110 第1カートリッジ
ba 電源

Claims (11)

  1.  電源と、
     エアロゾル源と霧化器を含む第1カートリッジが挿抜可能な第1カートリッジ保持部と、
     前記電源から前記霧化器への放電を制御可能に構成されるコントローラと、
     前記コントローラが実装される第1リジッド回路基板と、
     前記第1カートリッジ保持部に挿入された前記第1カートリッジの前記霧化器へ、接続可能な第2リジッド回路基板と、
     前記第1リジッド回路基板と前記第2リジッド回路基板とを接続可能なフレキシブル回路基板と、を備える、
    エアロゾル生成装置の電源ユニット。
  2.  請求項1に記載のエアロゾル生成装置の電源ユニットであって、
     前記霧化器が霧化した前記エアロゾル源に香味を付与する香味源を含む第2カートリッジを挿抜可能、且つ、前記第1カートリッジ保持部とは異なる第2カートリッジ保持部を備え、
     前記第1カートリッジ保持部に対する前記第1カートリッジの挿入方向は、前記第2カートリッジ保持部に対する前記第2カートリッジの挿入方向とは異なる、
    エアロゾル生成装置の電源ユニット。
  3.  請求項1又は2に記載のエアロゾル生成装置の電源ユニットであって、
     前記第1カートリッジ保持部へ前記第1カートリッジを挿抜可能な開状態と、前記第1カートリッジ保持部へ前記第1カートリッジを挿抜不能な閉状態とを切替可能な蓋を備え、
     前記第2リジッド回路基板は、前記蓋に配置される、
    エアロゾル生成装置の電源ユニット。
  4.  請求項3に記載のエアロゾル生成装置の電源ユニットであって、
     前記蓋の開閉時に、前記フレキシブル回路基板は変形しない、
    エアロゾル生成装置の電源ユニット。
  5.  請求項3に記載のエアロゾル生成装置の電源ユニットであって、
     前記蓋を前記閉状態から前記開状態に切替える時に、前記第2リジッド回路基板と前記フレキシブル回路基板との接続が解除され、
     前記蓋を前記開状態から前記閉状態に切替える時に、前記第2リジッド回路基板と前記フレキシブル回路基板との接続が確立される、
    エアロゾル生成装置の電源ユニット。
  6.  請求項5に記載のエアロゾル生成装置の電源ユニットであって、
     前記第2リジッド回路基板へ接続される導電性の突起を含み、
     前記突起は、前記蓋が前記閉状態である場合に、前記フレキシブル回路基板へ接触し、
     前記突起は、前記蓋が前記開状態である場合に、前記フレキシブル回路基板へ接触されない、
    エアロゾル生成装置の電源ユニット。
  7.  請求項6に記載のエアロゾル生成装置の電源ユニットであって、
     前記フレキシブル回路基板は、前記電源から前記霧化器へ電力を供給する導電パターンを含み、
     前記導電パターンは、前記蓋の前記閉状態で前記突起へ接触する接触部分と、前記蓋の前記閉状態で前記突起へ接触しない非接触部分と、を含み、
     前記接触部分は、前記非接触部分よりも厚い、
    エアロゾル生成装置の電源ユニット。
  8.  請求項1から7のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
     前記フレキシブル回路基板は、前記第1リジッド回路基板と前記第2リジッド回路基板の間に折り目を含む、
    エアロゾル生成装置の電源ユニット。
  9.  請求項8に記載のエアロゾル生成装置の電源ユニットであって、
     前記折り目によって形成される角度のうち小さい角度は、90度以上である、
    エアロゾル生成装置の電源ユニット。
  10.  請求項8又は9に記載のエアロゾル生成装置の電源ユニットであって、
     前記フレキシブル回路基板は、前記折り目を避けて形成された、基準電位を有するグランドパターンを備える、
    エアロゾル生成装置の電源ユニット。
  11.  請求項8又は9に記載のエアロゾル生成装置の電源ユニットであって、
     前記フレキシブル回路基板は、第1層と、第2層と、前記第2層において前記折り目を避けて形成された基準電位を有するグランドパターンと、前記第1層において前記折り目に形成された基準電位を有するグランドパターンと、を備える、
    エアロゾル生成装置の電源ユニット。
PCT/JP2021/045598 2021-12-10 2021-12-10 エアロゾル生成装置の電源ユニット WO2023105769A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/045598 WO2023105769A1 (ja) 2021-12-10 2021-12-10 エアロゾル生成装置の電源ユニット
CN202180104898.5A CN118382373A (zh) 2021-12-10 2021-12-10 气溶胶生成装置的电源单元

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045598 WO2023105769A1 (ja) 2021-12-10 2021-12-10 エアロゾル生成装置の電源ユニット

Publications (1)

Publication Number Publication Date
WO2023105769A1 true WO2023105769A1 (ja) 2023-06-15

Family

ID=86729933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045598 WO2023105769A1 (ja) 2021-12-10 2021-12-10 エアロゾル生成装置の電源ユニット

Country Status (2)

Country Link
CN (1) CN118382373A (ja)
WO (1) WO2023105769A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213451A1 (ja) * 2019-04-19 2020-10-22 株式会社村田製作所 電池パック、非燃焼式吸引器、電子機器及び電動工具
JP2021016388A (ja) * 2020-03-26 2021-02-15 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、及び、エアロゾル生成装置の電源ユニットの制御プログラム
JP2021083383A (ja) * 2019-11-28 2021-06-03 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット、エアロゾル生成装置の本体ユニット、エアロゾル生成装置、及び、非燃焼式吸引器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020213451A1 (ja) * 2019-04-19 2020-10-22 株式会社村田製作所 電池パック、非燃焼式吸引器、電子機器及び電動工具
JP2021083383A (ja) * 2019-11-28 2021-06-03 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット、エアロゾル生成装置の本体ユニット、エアロゾル生成装置、及び、非燃焼式吸引器
JP2021016388A (ja) * 2020-03-26 2021-02-15 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット、エアロゾル生成装置の電源ユニットの制御方法、及び、エアロゾル生成装置の電源ユニットの制御プログラム

Also Published As

Publication number Publication date
CN118382373A (zh) 2024-07-23

Similar Documents

Publication Publication Date Title
US11452314B2 (en) Power supply unit for aerosol generation device
JP2024081781A (ja) エアロゾル生成装置の電源ユニット
WO2023105769A1 (ja) エアロゾル生成装置の電源ユニット
WO2023105768A1 (ja) エアロゾル生成装置の電源ユニット
WO2023105767A1 (ja) エアロゾル生成装置の電源ユニット
JP7201862B2 (ja) エアロゾル生成装置
WO2023105765A1 (ja) エアロゾル生成装置の電源ユニット
WO2023105775A1 (ja) エアロゾル生成装置の電源ユニット
WO2023105779A1 (ja) エアロゾル生成装置の電源ユニット
WO2023105772A1 (ja) エアロゾル生成装置の電源ユニット
WO2023105773A1 (ja) エアロゾル生成装置の電源ユニット
WO2023105776A1 (ja) エアロゾル生成装置の電源ユニット
WO2023105771A1 (ja) エアロゾル生成装置の電源ユニット
WO2023105764A1 (ja) エアロゾル生成装置の電源ユニット
JP7389933B2 (ja) エアロゾル生成装置
JP7500874B2 (ja) エアロゾル生成装置の電源ユニット
JP7522929B2 (ja) エアロゾル生成装置の電源ユニット
JP7201861B2 (ja) エアロゾル生成装置
WO2023281712A1 (ja) エアロゾル生成装置の電源ユニット
WO2023281714A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239374A1 (ja) エアロゾル生成装置の電源ユニット
WO2023281716A1 (ja) エアロゾル生成装置の電源ユニット
WO2023281713A1 (ja) エアロゾル生成装置の電源ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023566042

Country of ref document: JP

Kind code of ref document: A