WO2023105772A1 - エアロゾル生成装置の電源ユニット - Google Patents
エアロゾル生成装置の電源ユニット Download PDFInfo
- Publication number
- WO2023105772A1 WO2023105772A1 PCT/JP2021/045601 JP2021045601W WO2023105772A1 WO 2023105772 A1 WO2023105772 A1 WO 2023105772A1 JP 2021045601 W JP2021045601 W JP 2021045601W WO 2023105772 A1 WO2023105772 A1 WO 2023105772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- power supply
- supply unit
- aerosol generator
- output
- Prior art date
Links
- 239000000443 aerosol Substances 0.000 title claims abstract description 119
- 238000010438 heat treatment Methods 0.000 claims abstract description 65
- 239000000796 flavoring agent Substances 0.000 claims abstract description 24
- 235000019634 flavors Nutrition 0.000 claims abstract description 24
- 230000006870 function Effects 0.000 claims description 19
- 101100152692 Nicotiana attenuata TD gene Proteins 0.000 abstract description 16
- 239000000758 substrate Substances 0.000 description 59
- 239000007788 liquid Substances 0.000 description 37
- 230000002829 reductive effect Effects 0.000 description 25
- 238000012546 transfer Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 18
- 239000003990 capacitor Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000004891 communication Methods 0.000 description 11
- 239000002775 capsule Substances 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 239000004020 conductor Substances 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 241000208125 Nicotiana Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001007 puffing effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 235000006679 Mentha X verticillata Nutrition 0.000 description 1
- 235000002899 Mentha suaveolens Nutrition 0.000 description 1
- 235000001636 Mentha x rotundifolia Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000003571 electronic cigarette Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/50—Control or monitoring
- A24F40/53—Monitoring, e.g. fault detection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a power supply unit for an aerosol generator.
- US Pat. No. 5,900,002 discloses a housing defining a reservoir configured to hold an aerosol precursor composition, a power source contained within the housing, and a controllable to vaporize components of the aerosol precursor composition.
- An aerosol delivery device is described that includes a heating element and a boost converter between an electrical load and a power source that includes the heating element.
- Patent Document 2 describes an electronic cigarette device that includes a power converter disposed within a housing and a power source disposed within the housing for at least indirectly supplying power to the power converter.
- the aerosol generator Since the aerosol generator is equipped with a heater, it is necessary to prevent this heater from overheating.
- the purpose of the present invention is to provide a power supply unit for an aerosol generator with enhanced safety.
- the power supply unit of the aerosol generator includes a power supply, a heater that heats a flavor source that adds flavor to the aerosol, a thermistor whose resistance value changes according to the temperature of the heater, and the thermistor. an operational amplifier to which an input terminal or a non-inverting input terminal is connected; an output terminal connected to the heater; and an enable terminal. and a voltage converter that stops output from the output terminal when a second level signal is input to the enable terminal; wherein the operational amplifier outputs the second level signal from an output terminal when the temperature of the heater is equal to or greater than a threshold to enable the voltage converter A terminal is connected to the output terminal of the operational amplifier and to the controller.
- FIG. 1 is a perspective view of an aerosol generator 200;
- FIG. 2 is another perspective view of the aerosol generator 200.
- FIG. 2 is an exploded perspective view of the aerosol generator 200.
- FIG. It is a left view of internal unit 2A. It is a right side view of 2 A of internal units. It is a perspective view which shows the structure of the heating part 60 of internal unit 2A, and the circuit part 70.
- FIG. 2 is a diagram showing a surface 201 of a main board 20;
- FIG. 3 is a diagram showing a back surface 202 of the main substrate 20;
- FIG. 3 is a plan view seen in a direction perpendicular to the element mounting surface of the puff sensor substrate 21 (in other words, the thickness direction of the puff sensor substrate 21).
- FIG. 10 is an exploded perspective view of the puff sensor substrate 21, the sensor holder 55, and the suction sensor 15 shown in FIG. 9; 4 is a perspective view of the chassis 50 with the sensor holding portion 55 removed;
- FIG. 2 is a diagram showing a schematic configuration of a circuit provided on a main substrate 20;
- FIG. 13 is a circuit diagram showing electronic components related to operation in a heating mode extracted from the circuit shown in FIG. 12;
- FIG. 13 is a circuit diagram showing electronic components extracted from the circuit shown in FIG. 12 and related to heating control of the seat heater HTR and the liquid heater, drive control of the vibration motor 13, and drive control of the LED 21D.
- 14 is a circuit diagram corresponding to FIG. 13 when FF9 is omitted;
- FIG. 14 is a circuit diagram corresponding to FIG.
- FIG. 13 when FF9 and AND gate 10 are omitted;
- FIG. FIG. 7 is an exploded perspective view of a heating unit 60 and a flow path forming body 19 shown in FIG. 6; 18 is an exploded view of the heater FPC 24 shown in FIG. 17;
- FIG. FIG. 13 is a circuit diagram showing electronic components related to restarting the MCU 6 extracted from the circuit shown in FIG. 12;
- FIG. 20 is a diagram showing a modification of the restart circuit RBT shown in FIG. 19;
- FIG. 1 The power supply unit of the aerosol generator, which is one embodiment of the present invention, will be described below.
- an aerosol generator equipped with a power supply unit of this embodiment will be described with reference to FIGS. 1 to 8.
- FIG. 1 An aerosol generator equipped with a power supply unit of this embodiment will be described with reference to FIGS. 1 to 8.
- FIG. 1 An aerosol generator equipped with a power supply unit of this embodiment will be described with reference to FIGS. 1 to 8.
- the aerosol generator 200 is a device for generating flavored aerosol without combustion and inhaling the generated aerosol.
- the aerosol generator 200 preferably has a size that fits in the hand, and has, for example, a rounded rectangular parallelepiped shape as shown in FIGS. 1 and 2 .
- the shape of the aerosol generating device 200 is not limited to this, and may be a rod shape, an egg shape, or the like.
- the vertical direction, the front-rear direction, and the left-right direction are referred to in descending order of length.
- front, rear, left, right, upper, and lower are defined as shown in FIGS. is denoted as R, upward as U, and downward as D.
- the aerosol generator 200 includes a power supply unit 100, a first cartridge 110, and a second cartridge 120.
- the first cartridge 110 and the second cartridge 120 are detachable from the power supply unit 100 .
- the first cartridge 110 and the second cartridge 120 are each replaceable.
- the power supply unit 100 includes an internal unit 2A and a case 3a, and at least part of the internal unit 2A is housed in the case 3a.
- the case 3a is composed of a first case 3A and a second case 3B that are detachable in the left-right direction (thickness direction), and the first case 3A and the second case 3B are assembled in the left-right direction (thickness direction).
- the front surface, rear surface, left surface, and right surface of the power supply unit 100 are formed.
- the first case 3A is supported on the left surface of a chassis 50, which will be described later, included in the internal unit 2A
- the second case 3B is supported on the right surface of the chassis 50.
- a capsule holder 4A is provided on the upper surface of the power supply unit 100 in front.
- the capsule holder 4A is provided with an opening 4a that opens upward.
- the capsule holder 4A is configured such that the second cartridge 120 can be inserted through the opening 4a.
- a mouthpiece 130 is detachably provided on the second cartridge 120 .
- the upper surface of the power supply unit 100 is formed by an OLED (Organic Light-Emitting Diode) cover 5a arranged behind the opening 4a, and the lower surface of the power supply unit 100 is a lower cover provided with the charging terminal 1. 8a and a pivotable lower lid 7a.
- OLED Organic Light-Emitting Diode
- an inclined surface that slopes downward toward the rear is provided.
- the inclined surface is provided with an operation section that can be operated by the user.
- the operation unit of the present embodiment is a button type switch BT, but may be configured by a touch panel or the like.
- the operation unit is used to activate/shutdown/operate a later-described MCU (Micro Controller Unit) 6 and various sensors, reflecting the user's intention of use.
- MCU Micro Controller Unit
- the charging terminal 1 accessible from the lower cover 8a is configured to be electrically connectable to an external power supply (not shown) capable of supplying the power supply unit 100 with power for charging the power supply ba included in the battery pack BP.
- the charging terminal 1 is, for example, a receptacle into which a mating plug can be inserted.
- a receptacle into which various USB terminals or the like can be inserted can be used.
- the charging terminal 1 is a USB Type-C receptacle.
- the charging terminal 1 may include, for example, a power receiving coil and be configured to be capable of contactlessly receiving power transmitted from an external power source.
- the method of power transmission in this case may be an electromagnetic induction type, a magnetic resonance type, or a combination of the electromagnetic induction type and the magnetic resonance type.
- the charging terminal 1 may be connectable to various USB terminals and the like, and may have the power receiving coil described above.
- the internal unit 2A includes a battery pack BP, a chassis 50, a heating section 60, a circuit section 70, a notification section, and various sensors, as shown in FIGS.
- the chassis 50 includes a cylindrical cartridge holding portion 51 positioned at the front, a semi-cylindrical battery holding portion 52 positioned at the rear and notched on the left side, and a cartridge holding portion.
- a plate-like connecting portion 53 that connects the portion 51 and the battery holding portion 52, and a motor holding portion 54 that is provided below and to the right of the connecting portion 53 and straddles the cartridge holding portion 51 and the battery holding portion 52.
- a sensor holding portion 55 provided on the rear left side of the cartridge holding portion 51 .
- the first cartridge 110 is inserted into the cartridge holding portion 51 from below with the lower lid 7a opened.
- the first cartridge 110 is accommodated in the cartridge holding portion 51 by closing the lower lid 7a with the first cartridge 110 inserted.
- a capsule holder 4A is attached to the upper portion of the cartridge holding portion 51 .
- the cartridge holding portion 51 is provided with a longitudinal through-hole in the front, and the aerosol source of the first cartridge 110 can be viewed from the remaining amount confirmation window 3w provided at the joining portion of the first case 3A and the second case 3B.
- the remaining amount and light from an LED (Light Emitting Diode) 21D which will be described later, are visible.
- the first cartridge 110 will be described later.
- a battery pack BP is arranged in the battery holding portion 52 .
- the battery pack BP includes a power source ba and a power source thermistor for detecting the temperature of the power source ba.
- the power source ba is a rechargeable secondary battery, an electric double layer capacitor, or the like, preferably a lithium ion secondary battery.
- the electrolyte of the power supply ba may be composed of one or a combination of a gel electrolyte, an electrolytic solution, a solid electrolyte, and an ionic liquid.
- the vibration motor 13 is arranged in the motor holding portion 54 .
- the sensor holder 55 is provided with a later-described suction sensor 15 that outputs an output corresponding to a user's suction action (puff action).
- the heating unit 60 includes a cylindrical heat transfer tube 61 and a seat heater HTR wound around the outer circumference of the heat transfer tube 61.
- the aforementioned capsule holder 4A is spaced apart around the seat heater HTR.
- An air layer between the capsule holder 4A and the seat heater HTR functions as a heat insulator.
- the lower portion of the second cartridge 120 inserted through the opening 4a of the capsule holder 4A is accommodated in the heat transfer tube 61, and the lower portion of the second cartridge 120 is heated by the seat heater HTR. This makes it easier for the flavor source stored in the second cartridge 120 to release the flavor than in the case where the heating unit 60 is not provided, so that the flavor is easily added to the aerosol.
- the heating unit 60 may be any element that can heat the second cartridge 120 .
- the element include a resistance heating element, a ceramic heater, an induction heater, and the like.
- the resistance heating element for example, one having PTC (Positive Temperature Coefficient) characteristics in which the resistance value increases as the temperature increases is preferably used. Instead of this, one having NTC (Negative Temperature Coefficient) characteristics in which the resistance value decreases as the temperature increases may be used.
- the heating unit 60 has a function of defining a flow path for air to be supplied to the second cartridge 120 and a function of heating the second cartridge 120 .
- the notification unit notifies various information such as the state of charge of the power supply ba, the remaining amount of the first cartridge 110, the remaining amount of the second cartridge 120, and the like.
- the notification unit of this embodiment includes the LED 21D and the vibration motor 13.
- the notification unit may be configured by a light emitting element such as the LED 21D, may be configured by a vibration element such as the vibration motor 13, or may be configured by a sound output element.
- the notification unit may be a combination of two or more elements selected from the light emitting element, the vibration element, and the sound output element.
- the various sensors include a suction sensor 15 that detects the user's puff action (suction action), a heater temperature sensor that detects the temperature of the seat heater HTR, and the like.
- the suction sensor 15 is composed of, for example, a condenser microphone, a pressure sensor, a flow sensor, and the like. A plurality of suction sensors 15 may be spaced apart and the puffing action may be detected from the difference in their output values.
- the heater temperature sensor includes a first thermistor th1 and a second thermistor th2. The first thermistor th1 and the second thermistor th2 are preferably in contact with or close to the seat heater HTR. If the seat heater HTR has PTC characteristics or NTC characteristics, the seat heater HTR itself may be used as the heater temperature sensor. Although the heater temperature sensor is composed of two thermistors, it may be composed of one thermistor.
- the circuit section 70 includes four rigid circuit boards, three FPCs (Flexible Printed Circuits), a plurality of ICs (Integrated Circuits), and a plurality of elements.
- the four circuit boards are composed of a main board 20, a puff sensor board 21, a pogo pin board 22, and an OLED board 26.
- the three FPCs consist of a main FPC 23, a heater FPC 24, and an OLED FPC 25.
- the main board 20 is arranged between the battery pack BP and the rear surface of the case 3a (the rear surface of the power supply unit 100) so that the element mounting surface faces the front-rear direction.
- the main substrate 20 is configured by stacking a plurality of substrates (six layers in this embodiment), and electronic components (elements) such as the MCU 6 and the charging IC 3 are mounted.
- the MCU 6 stores various sensor devices such as the suction sensor 15, an operation unit, a notification unit, the number of puffing operations or the load, the energization time of the seat heater HTR, and the like. It is a control device that is connected to a memory or the like and performs various controls of the aerosol generation device 200 .
- the MCU 6 is mainly composed of a processor, and further includes storage media such as RAM (Random Access Memory) necessary for the operation of the processor and ROM (Read Only Memory) for storing various information.
- RAM Random Access Memory
- ROM Read Only Memory
- a processor in this specification is, for example, an electric circuit in which circuit elements such as semiconductor elements are combined.
- the charging IC 3 is an IC that controls charging of the power supply ba with power input from the charging terminal 1 and supplies the power of the power supply ba to the electronic components of the main substrate 20 and the like.
- FIG. 7 is a diagram showing the front surface 201 of the main board 20
- FIG. 8 is a diagram showing the back surface 202 of the main board 20.
- the main board 20 has a plate-like shape extending vertically.
- FIGS. 7 and 8 as side surfaces orthogonal to the longitudinal direction of the main board 20, an upper side surface 20SU and a lower side surface 20SU are shown. 20SD are shown.
- As side surfaces perpendicular to the short direction of the main board 20 a left side surface 20SL and a right side surface 20SR are shown.
- the MCU 6 and charging IC 3 are mounted on the back surface 202 of the main substrate 20 together with the charging terminal 1.
- a debug connector 20E is further mounted on the rear surface 202 .
- the debug connector 20E is an interface for rewriting the program of the MCU 6 from an external device such as a personal computer.
- on the front surface 201 of the main substrate 20 are an OLED connector 20C, a heater connector 20B, a main connector 20A, and a battery connected to the battery pack BP via lead wires 16 (see FIG. 6).
- a connector 20D is mounted.
- the puff sensor board 21 is placed on the sensor holding portion 55 of the chassis 50 so that the element mounting surface faces the right front and the left rear.
- a suction sensor 15 is mounted on the puff sensor substrate 21 .
- the OLED substrate 26 is arranged between the battery pack BP and the OLED cover 5a so that the element mounting surface faces up and down.
- the OLED panel 17 is mounted on the OLED substrate 26 .
- the pogo-pin board 22 is placed on the lower lid 7a so that the element mounting surface faces the vertical direction when the lower lid 7a is closed.
- the pogo pin board 22 has input contacts P1 to P3 to which power is supplied from the main board 20 via the main FPC 23, and pogo pins p1 to P3, which are connectors electrically connected to loads provided on the first cartridge 110. p3 and are provided.
- the input side contacts P1 to P3 are electrically connected to the main FPC 23 only when the lower lid 7a is closed.
- Three pogo pins p1 to p3 are provided at equal intervals in the circumferential direction, and at least two pogo pins are electrically connected to the + terminal and - terminal of the first cartridge 110 accommodated in the cartridge holding portion 51. Configured.
- the left side of the battery pack BP held by the battery holding portion 52 is exposed from the battery holding portion 52 by the semi-cylindrical battery holding portion 52 .
- OLED FPCs 25 are arranged so as to overlap each other.
- the main FPC 23 is wired closest to the battery pack BP, the OLED FPC 25 is wired so as to partially overlap the main FPC 23, and the heater FPC 24 is wired so as to overlap the OLED FPC 25. That is, the heater FPC 24 to which the largest electric power is supplied among the three FPCs is arranged farthest from the battery pack BP.
- the main FPC 23 has a substantially cross-shaped unfolded shape, and is folded backward at a portion overlapping with the heater FPC 24 . In other words, the main FPC 23 is folded wiring.
- the folded portion of the main FPC 23 tends to float in the left-right direction, but the heater FPC 24 and the OLED FPC 25 overlap this portion, thereby preventing such floatation.
- the switch BT is directly mounted on the main FPC 23 without a rigid substrate or the like.
- the OLED FPC 25 has one end connected to the OLED connector 20C of the main substrate 20 and the other end connected to the OLED substrate 26 .
- the main FPC 23 connects the main connector 20A of the main board 20, the switch BT of the operating section, the connector 21B of the puff sensor board 21, and the input side contacts P1 to P3 of the pogo pin board 22.
- One end of the heater FPC 24 is connected to the heater connector 20B of the main board 20, and the seat heater HTR is integrally formed at the other end.
- the first cartridge 110 contains a reservoir storing an aerosol source, an electric load atomizing the aerosol source, a wick drawing the aerosol source from the reservoir to the load, and the aerosol source inside a cylindrical cartridge case 111. and an aerosol flow path through which the aerosol generated by being atomized flows toward the second cartridge 120 .
- Aerosol sources include liquids such as glycerin, propylene glycol, or water.
- the load is a heating element that heats the aerosol source without combustion by electric power supplied from the power supply ba via the pogo pins p1 to p3 of the pogo pin substrate 22.
- the load is a heating wire (coil ).
- the load atomizes the aerosol source by heating the aerosol source.
- a heating resistor, a ceramic heater, an induction heater, or the like can be used as the load.
- the load provided on the first cartridge 110 is also referred to as a liquid heater.
- the aerosol channel is connected to the second cartridge 120 via the channel forming body 19 (see FIG. 6) accommodated in the cartridge holding portion 51 of the chassis 50.
- the second cartridge 120 stores a flavor source.
- the flavor source is heated by heating the second cartridge 120 by the seat heater HTR.
- the second cartridge 120 adds flavor to the aerosol by passing the aerosol generated by atomizing the aerosol source by the liquid heater through the flavor source.
- raw material pieces constituting the flavor source cut tobacco or a molded body obtained by molding tobacco raw materials into granules can be used.
- the flavor source may be composed of plants other than tobacco (for example, mint, Chinese medicine, herbs, etc.). Flavor sources such as menthol may be added to the flavor source.
- the aerosol generator 200 can generate a flavored aerosol from an aerosol source and a flavor source. That is, the aerosol source and the flavor source constitute an aerosol generating source that generates a flavored aerosol.
- the aerosol generation source in the aerosol generation device 200 is a part that the user replaces and uses. This part is provided to the user as one set, for example, one first cartridge 110 and one or more (for example, five) second cartridges 120 . Also, the battery pack BP can be repeatedly charged and discharged unless the power supply ba is significantly degraded. Therefore, in the aerosol generating device 200, the frequency of replacement of the power supply unit 100 or the battery pack BP is the lowest, the frequency of replacement of the first cartridge 110 is the second lowest, and the frequency of replacement of the second cartridge 120 is the highest. Note that the first cartridge 110 and the second cartridge 120 may be integrated into one cartridge. A configuration or the like in which a drug or the like is added to the aerosol source instead of the flavor source may be used.
- the aerosol generator 200 configured in this way, air that has flowed in from an air intake port (not shown) provided in the case 3a or the internal unit 2A passes through the vicinity of the load of the first cartridge 110.
- the load atomizes the aerosol source drawn from the reservoir by the wick.
- the atomized aerosol flows through the aerosol channel together with the air that has flowed in from the inlet, and is supplied to the second cartridge 120 via the channel forming body 19 .
- the aerosol supplied to the second cartridge 120 is flavored by passing through the flavor source and supplied to the mouthpiece 131 of the mouthpiece 130 .
- the main connector 20A, the heater connector 20B, the OLED connector 20C, and the battery connector 20D mounted on the surface 201 of the main board 20 shown in FIG. , and the lead wire 16 are inserted in the right direction. Inserting to the right refers to inserting from left to right.
- the connector of the main FPC 23, the connector of the heater FPC 24, the connector of the OLED FPC 25, and the lead wire 16 are routed from the position of the inserted connector to the battery pack BP side across the left side surface 20SL of the main board 20. .
- a connector of a connection cable (not shown) is inserted leftward into the debugging connector 20E mounted on the rear surface 202 of the main board 20 shown in FIG. Inserting leftwards refers to inserting from right to left.
- a USB cable connector (not shown) is inserted upward into the charging terminal 1 mounted on the back surface 202 of the main board 20 . Upward insertion refers to insertion in the direction from bottom to top.
- the main board 20 has four connectors (OLED connector 20C, heater connector 20B, main connector 20A, and battery connector 20D) to which wiring (FPC and lead wires) are always connected, and only when necessary.
- the debugging connector 20E to which wiring (connection cable or USB cable) is connected and the charging terminal 1 are mounted on different element mounting surfaces. Therefore, wiring to be connected to the four connectors is facilitated. In particular, by making the insertion direction of the wires for the four connectors the same as described above, the wiring is further facilitated, and design such as reduction of surplus space is facilitated, so that the size of the power supply unit 100 can be reduced. can be realized.
- the wiring insertion direction for the four connectors mounted on the surface 201 is common to the right.
- the wiring insertion direction for the debugging connector 20E mounted on the rear surface 202 is a different direction (specifically, the opposite direction) from the above four connectors.
- the direction of insertion of the wiring into the charging terminal 1 is different from the direction of insertion of the wiring into the debugging connector 20E (specifically, the direction orthogonal to the insertion direction). Accordingly, even when a connection cable is inserted into the debugging connector 20E and a USB cable is connected to the charging terminal 1, interference between these two cables can be prevented.
- the debugging connector 20E can be connected to and removed from the connection cable.
- the debugging connector 20E allows the connection cable to be inserted/extracted even with the first case 3A of the cases 3a attached.
- the four connectors and the wires connected thereto are not exposed. As a result, it is possible to prevent a person from touching the four connectors on the surface 201 and the wires connected to them when inserting or removing the connection cable from the debugging connector 20E.
- the front surface 201 of the main board 20 faces the side opposite to the battery pack BP side.
- the distance between the front surface 201 of the main substrate 20 and the rear surface of the case 3a is smaller than the distance between the rear surface 202 of the main substrate 20 and the front surface of the case 3a.
- the surface 201 of the main board 20 and the inner wall of the case 3a (rear surface of the case 3a) facing this surface 201 there are no other parts constituting the internal unit 2A. As a result, the distance between the surface 201 and the case 3a is minimized, and the size of the power supply unit 100 is further reduced.
- FIG. 9 and 10 are diagrams showing detailed configurations of the puff sensor substrate 21 and the sensor holder 55.
- FIG. 9 is a plan view seen in a direction perpendicular to the element mounting surface of the puff sensor substrate 21 (in other words, the thickness direction of the puff sensor substrate 21).
- FIG. 10 is an exploded perspective view of the puff sensor substrate 21, the sensor holder 55, and the suction sensor 15 shown in FIG.
- FIG. 11 is a perspective view of the chassis 50 with the sensor holding portion 55 removed.
- the suction sensor 15 has a substantially cylindrical outer shape, with a fixed electrode 151 arranged at one end in the axial direction and a fixed electrode 151 arranged at the other end in the axial direction. It has a movable electrode 152 that can move in a direction and a ring-shaped side surface 153 .
- a terminal group 15A including an output terminal, a ground terminal, and a power terminal of the suction sensor 15 protrudes from the surface of the suction sensor 15 on the fixed electrode 151 side.
- the puff sensor substrate 21 has a plate shape extending vertically.
- the surface of the puff sensor substrate 21 opposite to the sensor holding portion 55 side is referred to as a front surface 214 for convenience, and the surface of the puff sensor substrate 21 facing the sensor holding portion 55 is referred to as a back surface 215 for convenience.
- the length in the short direction of the puff sensor substrate 21 is referred to as the width.
- the puff sensor substrate 21 has a first portion 211 arranged at one end (lower end) in the longitudinal direction and having the narrowest width, and a first portion 211 having the widest width arranged above the first portion 211 .
- a third portion 213 and a second portion 212 connecting the first portion 211 and the third portion 213 are provided.
- the width of the second portion 212 widens from the first portion 211 toward the third portion 213 and is wider than the width of the first portion 211 and narrower than the width of the third portion 213 . Since the width of the puff sensor substrate 21 is gradually changed by the second portion 212, the conductive pattern passing near the edge of the puff sensor substrate 21 does not have a sharp curve at the portion where the width changes.
- the angle ⁇ 1 of the apex formed by the third portion 213 and the second portion 212 is 90 degrees or more
- the angle ⁇ 1 formed by the second portion 212 and the first portion 211 is 90 degrees or more. Since the angle ⁇ 2 of the apex formed is 90 degrees or more, it becomes easy to provide the conductive pattern along this angle, and it is possible to prevent the conductive pattern from forming an acute angle.
- the suction sensor 15 is mounted on the back surface 215 of the first portion 211 .
- the first portion 211 is formed with three through holes 15B penetrating in the thickness direction.
- the terminal group 15A of the suction sensor 15 is inserted through the through hole 15B from the rear surface 215 side.
- the puff sensor substrate 21 is provided with a puff sensor connector 21A which is electrically connected to the connector 21B, and the terminal group 15A of the suction sensor 15 inserted into the through hole 15B is electrically connected to the puff sensor connector 21A. connected.
- the output signal of the suction sensor 15 is input to the MCU 6 via the puff sensor connector 21A, the connector 21B, and the main FPC 23 connected to the connector 21B. As shown in FIG.
- the width of the first portion 211 is small enough to allow the suction sensor 15 to protrude outward. That is, the suction sensor 15 has a portion projecting outward from the puff sensor substrate 21 . Also, the width of the suction sensor 15 is the same as the width of the third portion 213 . Note that the width of the suction sensor 15 may be smaller than the width of the third portion 213 . By making the width of the third portion 213 equal to or greater than the width of the suction sensor 15 in this manner, more electronic components can be mounted on the puff sensor substrate 21 .
- an opening 51H is formed in the left rear side surface of the cartridge holding portion 51 that defines a substantially cylindrical cavity that accommodates the first cartridge 110 .
- a peripheral edge portion 51E of the opening 51H is slightly recessed, and a sensor holding portion 55 is fixed to the peripheral edge portion 51E with an adhesive or the like, and the opening 51H is closed by the sensor holding portion 55.
- the sensor holding portion 55 has a curved shape corresponding to the curved shape of the outer peripheral surface of the substantially cylindrical cartridge holding portion 51 . That is, when viewed from above, the sensor holding portion 55 has a shape along the circumferential direction of the cartridge holding portion 51 . By forming the sensor holding portion 55 into such a curved shape, the area inside the case 3a can be effectively utilized, and the size of the power supply unit 100 can be reduced.
- the sensor holding portion 55 has a protruding portion 550 that protrudes left rearward and extends in the vertical direction.
- the projecting portion 550 includes an upper portion 551 having a flat surface 551A with a recess 551B and a substantially annular lower portion 552 arranged below the upper portion 551 .
- the inner diameter of the through hole 552A formed in the lower portion 552 is substantially equal to the outer diameter of the suction sensor 15. As shown in FIG.
- the suction sensor 15 mounted on the puff sensor substrate 21 When the suction sensor 15 mounted on the puff sensor substrate 21 is press-fitted into the through hole 552A, the inner peripheral surface of the lower portion 552 and the side surface 153 of the suction sensor 15 come into contact with each other, and the suction sensor 15 and the puff sensor substrate 21 As shown in FIG. 9, it is supported by the sensor holding portion 55 .
- the suction sensor 15 can detect pressure fluctuations in the internal space of the cartridge holding portion 51 . When the user sucks, pressure fluctuations occur in the internal space, so that the user's suction can be detected by the suction sensor 15 .
- the LED 21D mounted on the rear surface 215 of the puff sensor substrate 21 faces the recessed portion 551B of the sensor holding portion 55.
- the sensor holding portion 55 or the recess 551B is made of a light-transmissive material, and the light from the LED 21D passes through the opening 51H of the cartridge holding portion 51 and passes through the first cartridge 110 accommodated in the cartridge holding portion 51. Illuminate the aerosol source. This makes it easier for the user to visually check the remaining amount of the aerosol source in the first cartridge 110 through the remaining amount confirmation window 3w.
- the side surface 153 of the suction sensor 15 has a portion projecting outward from the puff sensor substrate 21 . Therefore, after the suction sensor 15 is mounted on the puff sensor substrate 21, the side surface 153 can be gripped and the suction sensor 15 can be easily press-fitted into the through hole 552A. As a result, the risk of touching sensitive parts such as the movable electrode 152 and the fixed electrode 151 of the suction sensor 15 with a finger during manufacturing of the power supply unit 100 can be reduced, and failure of the suction sensor 15 can be prevented.
- the lower portion 552 of the sensor holding portion 55 is provided with a notch 553 in a part of the periphery.
- the notch 553 makes it easier to maintain a gripping state of the side surface 153 of the suction sensor 15 in the process of press-fitting the suction sensor 15 into the through hole 552A. Therefore, the suction sensor 15 can be easily press-fitted into the sensor holding portion 55 .
- the notch 533 of the sensor holding portion 55 is exposed to the outside when the first case 3A of the cases 3a is removed from the chassis 50, as shown in FIG. Therefore, maintenance of the suction sensor 15 and attachment work to the sensor holder 55 can be facilitated compared to a configuration in which the notch 533 is not exposed to the outside when the case 3 a is removed from the chassis 50 .
- the sensor holding portion 55 can be mounted in two directions of the longitudinal direction (vertical direction), the lateral direction (front-rear direction), and the thickness direction (left-right direction) of the power supply unit 100 (in the example of the figure, the lateral direction and the thickness direction).
- direction) of the through-hole 552A (direction along a plane perpendicular to the extending direction of the through-hole 552A) intersects.
- the front-rear direction is the diameter of the through hole 552A.
- both the vertical direction and the thickness direction are parallel to the radial direction of the through hole 552A.
- the thickness (length in the left-right direction) and width (length in the front-rear direction) of the internal unit 2A are increased.
- the thickness and width of the internal unit 2A can be reduced, thereby miniaturizing the power supply unit 100. realizable.
- the shape of the aerosol generating device 200 as a whole is an elongated cylinder, and that the capsule holder 4A, the cartridge holding portion 51, and the battery pack BP are arranged in a straight line.
- the thickness direction is the through hole.
- the thickness and width of the internal unit 2A can be reduced, thereby miniaturizing the power supply unit 100. realizable.
- a connector 21B electrically connected to the puff sensor connector 21A and a vibration motor connector 21C, which will be described later, and a signal output from the output terminal of the suction sensor 15 are mounted on the puff sensor board 21.
- a varistor V as a protective component that protects other electrical components or the MCU 6, and a capacitor C2 as a protective component that protects the suction sensor 15 from power input to the power supply terminal of the suction sensor 15 are mounted.
- No ICs other than the suction sensor 15 are mounted on the puff sensor substrate 21 . In this way, since the puff sensor substrate 21 does not have an IC other than the suction sensor 15 that can be a source of noise, the suction sensor 15 can be stably operated.
- the capacitor C2 is mounted on the first portion 211.
- the varistor V is mounted across the first portion 211 and the second portion 212 . In this way, by mounting the capacitor C2 and the varistor V at positions close to the terminal group 15A of the suction sensor 15 when viewed in the thickness direction of the puff sensor substrate 21, the noise input to or output from the suction sensor 15 is reduced. can be handled quickly by protective parts.
- the suction sensor 15 supported by the chassis 50 within the case 3a is not exposed to the outside unless the first case 3A is removed from the chassis 50.
- the suction sensor 15 is exposed to the outside only when the first case 3 ⁇ /b>A is removed from the chassis 50 .
- the suction sensor 15 is not exposed to the outside, so that the suction sensor 15 is less likely to fail.
- FIG. 12 is a diagram showing a schematic configuration of a circuit provided on the main substrate 20. As shown in FIG. In addition to the circuit of the main board 20, FIG. , and the battery pack BP connected to the battery connector 20D.
- main ICs which are electronic components in which a plurality of circuit elements are chipped, are provided: a protection IC 2, a charging IC 3, an LDO (Low Dropout) regulator (hereinafter referred to as LDO) 4, and a DC/DC
- a booster circuit 5 configured by a converter
- an MCU 6 a load switch (hereinafter referred to as LSW) 7 configured by combining a capacitor, a resistor, a transistor, etc., a multiplexer 8, and a flip-flop (hereinafter referred to as FF).
- LSW load switch
- FF flip-flop
- the main board 20 further includes switches Q1 to Q9 configured by MOSFETs (metal-oxide-semiconductor field-effect transistors), resistors R1 to R12, RA and RB having fixed electrical resistance values, and a capacitor C1. , a capacitor C2, a varistor V, a reactor L3 connected to the charging IC3, a reactor L5 connected to the booster circuit 5, and a reactor L11 connected to the booster circuit 11 are provided.
- the switch Q3, switch Q4, switch Q7, switch Q8, and switch Q9 are each composed of an N-channel MOSFET.
- the switch Q1, switch Q2, switch Q5, and switch Q6 are each composed of a P-channel MOSFET. Each of the switches Q1 to Q8 is switched between an on state and an off state by controlling the potential of the gate terminal by the MCU6.
- a terminal VCC and a terminal VDD mounted on the chip indicate power supply terminals on the high potential side, respectively.
- a terminal VSS and a terminal GND mounted on the chip respectively represent power supply terminals on the low potential side (reference potential side).
- the difference between the potential of the power supply terminal on the high potential side and the potential of the power supply terminal on the low potential side is the power supply voltage (operating voltage). Chipped electronic components use this power supply voltage to perform various functions.
- the terminal GND and terminal VSS of each IC excluding the operational amplifier are each connected to the ground line.
- the terminal GND of the charging terminal 1, the negative power supply terminal of the operational amplifier OP1, and the negative power supply terminal of the operational amplifier OP2 are each connected to a ground line.
- a battery connector 20 ⁇ /b>D (see near left center in FIG. 12 ) provided on the main substrate 20 includes a terminal BAT connected to the detection terminal SNS of the charging IC 3 and a charging terminal BAT of the charging IC 3 , and the ground of the main substrate 20 . It has a terminal GND connected to the line and a terminal TH3 connected to terminal P25 of MCU6.
- a terminal BAT of the battery connector 20D is connected by a lead wire 16 to a positive terminal of a power source ba included in the battery pack BP.
- a terminal TH3 of the battery connector 20D is connected by a lead wire 16 to a positive terminal of a power supply thermistor th3 included in the battery pack BP.
- a terminal GND of the battery connector 20D is connected by a lead wire 16 to a negative terminal of the power source ba and a negative terminal of the power source thermistor th3.
- An OLED connector 20C (see near the lower left in FIG. 12) provided on the main substrate 20 includes a terminal VCC_R connected to the output terminal VOUT of the booster circuit 5, a terminal VDD connected to the output terminal OUT of the LDO 4, and a terminal VDD connected to the output terminal OUT of the LDO 4. , a communication terminal T3 connected to the communication terminal P28 of the MCU 6 via a signal line SL, and a terminal VSS connected to the ground line of the main substrate 20.
- the terminal VCC_R of the OLED connector 20C is connected to the driving voltage supply terminal of the OLED panel 17 by the OLED FPC 25.
- the terminal VDD of the OLED connector 20C is connected by the OLED FPC 25 to the power terminal of the control IC that controls the OLED panel 17 .
- the voltage to be supplied to the drive voltage supply terminal of the OLED panel 17 is, for example, about 15 V, which is higher than the voltage to be supplied to the power terminal of the control IC of the OLED panel 17 .
- the terminal VSS of the OLED connector 20C is connected by the OLED FPC 25 to the ground terminals of the OLED panel 17 and the control IC of the OLED panel 17, respectively.
- a terminal RSTB of the OLED connector 20C is connected by an OLED FPC 25 to a terminal for restarting the control IC of the OLED panel 17 .
- the signal line SL connected to the communication terminal T3 of the OLED connector 20C is also connected to the communication terminal T3 of the charging IC3.
- This signal line SL allows the MCU 6 to communicate with the charging IC 3 and communicate with the control IC of the OLED panel 17 .
- the signal line SL is for serial communication, and actually requires a plurality of signal lines such as a data line for data transmission and a clock line for synchronization. Note that the signal line SL is illustrated as one signal line in FIG. 12 for the sake of simplification. Note that the communication between the MCU 6, the charging IC 3, and the control IC of the OLED panel 17 may be performed by parallel communication instead of serial communication.
- a debug connector 20E (see near the lower left in FIG. 12) provided on the main substrate 20 has a terminal VMCU connected to the output terminal OUT of the LDO 4 and a terminal T1 (in the figure) connected to the communication terminal P23 of the MCU6. a terminal T2 connected to the communication terminal P22 of the MCU6 (one terminal in the figure but actually two terminals); and a terminal T2 connected to the terminal P27 of the MCU6. and a terminal GND connected to the ground line of the main board 20 .
- Terminal NRST is also connected to the drain terminal of a switch Q9 whose gate terminal is connected to the drain terminal of switch Q7 and whose source terminal is connected to the ground line.
- the debugging connector 20E is not used under normal operating conditions of the aerosol generating device 200, and is used only when maintenance such as rewriting of information (including programs) stored in the MCU 6 is required. or a computer provided by the seller.
- the main connector 20A (see near the right center in FIG. 12) provided on the main board 20 has a terminal PUFF connected to the terminal P19 of the MCU6, a gate terminal connected to the terminal P20 of the MCU6 and a source terminal connected to the ground line.
- terminal LED connected to the drain terminal of the switch Q8 connected to the terminal LED connected to the drain terminal of the switch Q8, terminal VIB connected to the output terminal OUT of the LSW7, terminal VOTG connected to the boost output terminal RN of the charging IC3, and through the resistor R5.
- a voltage dividing circuit consisting of a terminal VMCU connected to the output terminal OUT of LDO4, a terminal GND connected to the ground line, a resistor R4 and a resistor R3 connected in series therewith, the output terminal OUT of LDO4 terminal KEY connected to , terminal HT1 (P1) connected to the drain terminal of switch Q1 whose gate terminal is connected to terminal P12 of MCU 6 and whose source terminal is connected to output terminal VOUT of booster circuit 11, and gate A drain terminal of a switch Q2 whose terminal is connected to the terminal P13 of the MCU6 and whose source terminal is connected to the output terminal VOUT of the booster circuit 11, and whose gate terminal is connected to the terminal P17 of the MCU6 and whose source terminal is connected to the ground line.
- the terminal HT1 (P1) of the main connector 20A is connected by the main FPC 23 to the input side contact P1 connected to the pogo pin p1.
- the terminal HT1 (P2) of the main connector 20A is connected by the main FPC 23 to the input side contact P2 connected to the pogo pin p2.
- the terminal HT1 (P3) of the main connector 20A is connected by the main FPC 23 to the input side contact P3 connected to the pogo pin p3.
- a terminal KEY of the main connector 20A is connected to one end of the switch BT mounted on the main FPC 23 by wiring of the main FPC 23 . The other end of this switch BT is connected to the ground line of the main FPC 23 .
- a heater connector 20B (see near the upper right in FIG. 12) provided on the main board 20 is a first thermistor terminal connected to the plus side terminal of the first thermistor th1 mounted on the heater FPC 24 via wiring of the heater FPC 24.
- TH1 the second thermistor terminal TH2 connected to the positive side terminal of the second thermistor th2 mounted on the heater FPC24 through the wiring of the heater FPC24, and the positive side of the seat heater HTR formed by the conductive pattern of the heater FPC24.
- a seat heater terminal HT2 connected to the terminal through the wiring of the heater FPC 24 and a terminal GND connected to the ground line of the main substrate 20 are provided.
- the heater FPC 24 is formed with wiring connected to the negative terminal of the first thermistor th1, the negative terminal of the second thermistor th2, and the negative terminal of the seat heater HTR. Connected to GND.
- the seat heater terminal HT2 is connected to the drain terminal of a switch Q5 whose gate terminal is connected to the terminal P11 of the MCU6 and whose source terminal is connected to the output terminal VOUT of the booster circuit 11 .
- the puff sensor board 21 (see near the bottom center in FIG. 12) includes a puff sensor connector 21A connected to the terminal group 15A of the suction sensor 15, a connector 21B connected to the main FPC 23, and a connector 21B connected to the vibration motor 13.
- a vibration motor connector 21C, an LED 21D, a varistor V, and a capacitor C2 are mounted.
- the connector 21B of the puff sensor board 21 is connected to each of the terminal PUFF, the terminal LED, the terminal VIB, the terminal VOTG, the terminal VMCU, and the terminal GND of the main connector 20A by wiring formed on the main FPC 23 (terminals PUFF, terminal LED, terminal VIB, terminal VOTG, terminal VMCU, and terminal GND).
- the main FPC 23 is provided with the switch BT connected between the terminal KEY of the main connector 20A and the ground line.
- the switch BT is pressed, the terminal KEY is connected to the ground line of the main FPC 23, and the potential of the terminal KEY becomes the ground potential.
- the switch BT is not pressed, the terminal KEY is disconnected from the ground line of the main FPC 23, and the potential of the terminal KEY is indefinite.
- the puff sensor connector 21A of the puff sensor substrate 21 has a terminal GATE connected to the output terminal of the suction sensor 15, a terminal GND connected to the ground terminal of the suction sensor 15, and a terminal VDD connected to the power terminal of the suction sensor 15. And prepare.
- a terminal GATE of the puff sensor connector 21A is connected to a terminal PUFF of the connector 21B.
- a terminal VDD of the puff sensor connector 21A is connected to a terminal VMCU of the connector 21B.
- the terminal GND of the puff sensor connector 21A is connected to the terminal GND of the connector 21B.
- One end of the varistor V is connected to the connection line between the terminal GATE of the puff sensor connector 21A and the terminal PUFF of the connector 21B, and the other end of the varistor V is connected to the ground line.
- the varistor V can prevent the voltage from being input to other parts of the puff sensor board 21 and the MCU 6 even when a large voltage is input to the terminal GATE from the suction sensor 15 side.
- One end of the capacitor C2 is connected to the connection line between the terminal VDD of the puff sensor connector 21A and the terminal VMCU of the connector 21B, and the other end of the capacitor C2 is connected to the ground line. Due to the capacitor C2, even if an unstable voltage is input to the terminal VDD of the puff sensor connector 21A from the main board 20 side, the voltage smoothed by the capacitor C2 can be input to the suction sensor 15.
- the vibration motor connector 21C of the puff sensor board 21 has a positive side terminal connected to the terminal VIB of the connector 21B and a negative side terminal connected to the ground line.
- a vibration motor 13 is connected to the positive terminal and the negative terminal.
- the LED 21D of the puff sensor substrate 21 has an anode connected to the terminal VOTG of the connector 21B and a cathode connected to the terminal LED of the connector 21B.
- the charging terminal 1 on the upper left in FIG. 12 includes four terminals GND and four power supply input terminals BUS. Each power input terminal BUS of the charging terminal 1 is connected in parallel to the input terminal VIN of the protection IC2.
- a USB plug is connected to the charging terminal 1 and a USB cable including this USB plug is connected to an external power supply, that is, when the USB connection is established, the power supply input terminal BUS of the charging terminal 1 is connected to the protection IC 2 .
- a USB voltage VUSB is input to the input terminal VIN.
- the protection IC 2 adjusts the USB voltage V USB input to the input terminal VIN, and outputs a bus voltage V BUS of a predetermined value (5.0 V as an example below) from the output terminal OUT.
- the output terminal OUT of the protection IC2 is connected in parallel with the charging IC3, a voltage dividing circuit composed of a series circuit of a resistor R1 and a resistor R2, and a switch Q7.
- the output terminal OUT of the protection IC 2 is connected to one end of the resistor R2 constituting the voltage dividing circuit, the input terminal VBUS of the charging IC 3, the gate terminal to the terminal P21 of the MCU 6, and the source terminal to the ground line. and the drain terminal of switch Q7 connected to .
- resistor R1 One end of the resistor R1 is connected to the other end of the resistor R2, and the other end of the resistor R1 is connected to the ground line.
- a node connecting resistors R1 and R2 is connected to terminal P2 of MCU6.
- the charging IC 3 has a charging function of charging the power source ba based on the bus voltage VBUS input to the input terminal VBUS .
- the charging IC 3 acquires the charging current and charging voltage of the power source ba through the detection terminal SNS, and based on these, performs charging control of the power source ba (power supply control from the charging terminal BAT to the power source ba). Further, the charging IC 3 acquires the temperature information of the power supply ba, which the MCU 6 has acquired from the power supply thermistor th3 via the terminal P25, from the MCU 6 through serial communication using the signal line SL, and uses it for charging control.
- the charging IC 3 has a first function of generating a system power supply voltage VSYS from the voltage of the power supply ba input to the charging terminal BAT (hereinafter referred to as power supply voltage VBAT ) and outputting it from the output terminal SYS.
- the second function is enabled only when the USB connection is established.
- the system power supply voltage V SYS and the OTG voltage V OTG are in a normal state in which the power supply ba can supply power to the charging IC 3, and if the charging IC 3 is operating normally, the voltage from the charging IC 3 is always Output is possible.
- the charging IC 3 has a negative logic enable terminal CE ( ⁇ ), which is connected to the terminal P1 of the MCU6.
- CE negative logic enable terminal
- the charging IC 3 further includes a negative logic terminal QON ( ⁇ ).
- a terminal QON ( ⁇ ) is connected to a node N2 connecting resistors R3 and R4, and this node N2 is connected to terminal P21 of MCU6.
- the charging IC 3 stops voltage output from the output terminal SYS when a low level signal is input to the terminal QON ( ⁇ ).
- An LDO 4, a booster circuit 5, and a booster circuit 11 are connected in parallel to the output terminal SYS of the charging IC3.
- the output terminal SYS of the charging IC 3 is connected to the control terminal CTL and input terminal IN of the LDO 4 , the input terminal VIN of the booster circuit 5 and the input terminal VIN of the booster circuit 11 .
- the OTG voltage VOTG output from the boost output terminal RN of the charging IC 3 is supplied to the anode of the LED 21D via the terminal VOTG of the main connector 20A and the terminal VOTG of the connector 21B.
- the cathode of the LED 21D is grounded through the terminal LED of the connector 21B, the terminal LED of the main connector 20A, and the switch Q8. Therefore, the MCU 6 performs ON/OFF control of the switch Q8, thereby enabling lighting control of the LED 21D using the OTG voltage VOTG .
- the booster circuit 5 includes a switching terminal SW, a positive logic enable terminal EN connected to the terminal P26 of the MCU 6, an output terminal VOUT, and a terminal GND.
- One end of a reactor L5 is connected to the switching terminal SW of the booster circuit 5 .
- the other end of this reactor L5 is connected to the input terminal VIN of the booster circuit 5.
- the booster circuit 5 performs on/off control of the built-in transistor connected to the switching terminal SW to boost the voltage input to the switching terminal SW via the reactor L5 and output it from the output terminal VOUT.
- the OLED voltage VOLED output from the output terminal VOUT of the booster circuit 5 is a sufficiently large voltage suitable for driving the OLED panel 17, and is a voltage of 15V as an example.
- An input terminal VIN of the booster circuit 5 constitutes a high-potential-side power supply terminal of the booster circuit 5 .
- the booster circuit 5 outputs the OLED voltage VOLED , and the signal input from the terminal P26 of the MCU6 to the enable terminal EN. is at a low level, the output of the OLED voltage V OLED is stopped. In this manner, the OLED panel 17 is driven and controlled by the MCU6.
- the booster circuit 11 includes an input terminal VIN, a switching terminal SW, an output terminal VOUT, a positive logic enable terminal EN, and a terminal GND.
- One end of a reactor L ⁇ b>11 is connected to the switching terminal SW of the booster circuit 11 .
- the other end of the reactor L11 is connected to the input terminal VIN of the booster circuit 11.
- the booster circuit 11 performs on/off control of the built-in transistor connected to the switching terminal SW to boost the voltage input to the switching terminal SW via the reactor L11 and output it from the output terminal VOUT.
- the heating voltage VHEAT output from the output terminal VOUT of the booster circuit 11 is, for example, a voltage of 4V.
- An input terminal VIN of the booster circuit 11 constitutes a high-potential-side power supply terminal of the booster circuit 11 .
- the booster circuit 11 outputs a heating voltage V HEAT when a signal input from an output terminal Y of an AND gate 10 described later to an enable terminal EN is at a high level, and inputs the heating voltage V HEAT to the enable terminal EN. output of the heating voltage V_HEAT is stopped when the signal to be supplied is at a low level.
- the output terminal VOUT of the booster circuit 11 is connected in parallel with a capacitor C1, a voltage dividing circuit consisting of a series circuit of a resistor R7 and a resistor R6, a multiplexer 8, a switch Q1, a switch Q2, and a switch Q5. It is Specifically, the output terminal VOUT of the booster circuit 11 includes a capacitor C1 whose one end is connected to the ground line, the other end of the capacitor C1, a resistor R6 connected to the ground line, and a resistor R7 connected in series to the resistor R6. the input terminal of the voltage divider circuit (the terminal of resistor R7 opposite to resistor R6), the terminal VCC of multiplexer 8, the source terminal of switch Q1, the source terminal of switch Q2, and the source of switch Q5. connected to the terminal.
- a resistor RA having an electrical resistance value Ra is connected in parallel to the switch Q1.
- a resistor RB having an electrical resistance value Rb is connected in parallel to the switch Q2.
- the multiplexer 8 has an input terminal B0, an input terminal B1, an output terminal A, and a select terminal SE.
- the multiplexer 8 switches between a state in which the input terminal B0 and the output terminal A are connected and a state in which the input terminal B1 and the output terminal A are connected, according to a control signal input from the terminal P15 of the MCU6 to the select terminal SE.
- the input terminal B0 of the multiplexer 8 is connected to the line connecting the switch Q1 and the terminal HT1 (P1).
- the input terminal B1 of the multiplexer 8 is connected to the line connecting the switch Q2 and the terminal HT1 (P2).
- the output terminal A of the multiplexer 8 is connected to the non-inverting input terminal of the operational amplifier OP1.
- the inverting input terminal of operational amplifier OP1 is connected to the node connecting resistors R7 and R6.
- the output terminal of operational amplifier OP1 is connected to terminal P14 of MCU6.
- the LDO 4 maintains the voltage input to the input terminal VIN. (that is, the system power supply voltage V SYS ) is converted and output from the output terminal OUT as the system power supply voltage V MCU .
- the system power supply voltage V SYS is, for example, a value in the range of 3.5V to 4.2V, and the system power supply voltage V MCU is 3.1V, for example.
- the output terminal OUT of the LDO 4 is connected to the control IC of the OLED panel 17, the MCU 6, the LSW 7, the suction sensor 15, a series circuit composed of a resistor R3, a resistor R4, and a switch BT, a debugging connector 20E, are connected in parallel.
- the output terminal OUT of the LDO 4 is connected to the terminal VDD of the OLED connector 20C, the power terminal VDD of the MCU 6, the input terminal VIN of the LSW 7, and the resistor R5 whose one end is connected to the terminal VMCU of the main connector 20A. It is connected to the other end (node N1 in the figure), the input end (node N1 in the figure) of a voltage dividing circuit composed of resistors R4 and R3, and the terminal VMCU of the debug connector 20E.
- the output terminal OUT of LDO4 is connected to the source terminal of switch Q6 whose gate terminal is connected to terminal P4 of MCU6.
- the drain terminal of switch Q6 is connected to terminal VCC of AND gate 10, terminal VCC of FF9, one end of resistor R11, one end of resistor R12, the positive power supply terminal of operational amplifier OP2, and one end of resistor R8. , one end of the resistor R9 and the positive power supply terminal of the operational amplifier OP1 are connected in parallel.
- the other end of the resistor R12 is connected to the second thermistor terminal TH2, and the series circuit of the resistor R12 and the second thermistor th2 connected to the second thermistor terminal TH2 is applied with the system power supply voltage V MCU . constitutes a voltage divider circuit.
- the output of this voltage dividing circuit corresponds to the electric resistance value (in other words, temperature) of the second thermistor th2 and is input to the terminal P8 of the MCU6. This allows the MCU 6 to obtain the temperature of the second thermistor th2.
- the second thermistor th2 the one having the NTC characteristic in which the resistance value decreases with an increase in temperature is used, but the one having the PTC characteristic in which the resistance value increases with an increase in temperature is used. may
- resistor R10 One end of the resistor R10 is connected to the other end of the resistor R9, and the other end of the resistor R10 is connected to the ground line.
- a series circuit of resistors R9 and R10 constitutes a voltage divider circuit to which system supply voltage V MCU is applied. The output of this voltage dividing circuit is connected to the inverting input terminal of the operational amplifier OP2, and a fixed voltage value is input to this inverting input terminal.
- the other end of the resistor R8 is connected to the non-inverting input terminal of the operational amplifier OP2.
- resistor R8 is further connected to first thermistor terminal TH1 and terminal P9 of MCU6.
- a series circuit of the resistor R8 and the first thermistor th1 connected to the first thermistor terminal TH1 constitutes a voltage dividing circuit to which the system power supply voltage V MCU is applied.
- the output of this voltage dividing circuit corresponds to the electric resistance value (in other words, temperature) of the first thermistor th1 and is input to the terminal P9 of the MCU6. This allows the MCU 6 to acquire the temperature of the first thermistor th1 (in other words, the temperature of the seat heater HTR).
- the output of this voltage dividing circuit is also input to the non-inverting input terminal of the operational amplifier OP2.
- the output of the operational amplifier OP2 becomes low level when the temperature of the first thermistor th1 (the temperature of the seat heater HTR) increases and becomes equal to or higher than the threshold value THD1. In other words, as long as the temperature of the first thermistor th1 (the temperature of the seat heater HTR) is within the normal range, the output of the operational amplifier OP2 is high level.
- the output of the voltage dividing circuit consisting of the first thermistor th1 and the resistor R8 is the inverse of the operational amplifier OP2. input terminal, and the output of the voltage dividing circuit composed of the resistor R9 and the resistor R10 is connected to the non-inverting input terminal of the operational amplifier OP2. Even in this case, the output of the operational amplifier OP2 becomes low level when the temperature of the first thermistor th1 (the temperature of the seat heater HTR) rises and becomes equal to or higher than the threshold value THD1.
- the output terminal of the operational amplifier OP2 is connected to the input terminal D of FF9.
- a node connecting the input terminal D of FF9 and the output terminal of the operational amplifier OP2 is connected to the other end of the resistor R11 and the negative logic clear terminal CLR ( ⁇ ) provided to the FF9. That is, the input terminal D of FF9, the clear terminal CLR ( ⁇ ) of FF9, and the output terminal of the operational amplifier OP2 are each pulled up to the supply line of the system power supply voltage VMCU by the resistor R11.
- FF9 has a clock terminal CLK, and the clock terminal CLK is connected to terminal P7 of MCU6.
- FF 9 has an output terminal Q, which is connected to one input terminal B of AND gate 10 .
- the clock signal is input to the clock terminal CLK from the MCU 6 and the high level signal is input to the clear terminal CLR ( ⁇ )
- the FF9 is at the level of the signal input to the input terminal D. Therefore, the data (high or low data) is held, and the held data is output from the output terminal Q.
- FF 9 outputs a clock signal from MCU 6 to clock terminal CLK and a low level signal to clear terminal CLR ( ⁇ ) regardless of the held data. Reset processing for outputting a low level signal from the terminal Q is performed.
- This reset processing is canceled by re-inputting the clock signal to the clock terminal CLK while a high-level signal is input to the clear terminal CLR ( ⁇ ). That is, the supply of the clock signal to the clock terminal CLK is stopped while a high-level signal is input to the clear terminal CLR ( ⁇ ), and then the supply of the clock signal is resumed to release the clock signal.
- the other input terminal A of the AND gate 10 is connected to the terminal P6 of the MCU6.
- An output terminal Y of the AND gate 10 is connected to a positive logic enable terminal EN of the booster circuit 11 .
- the AND gate 10 outputs a high level signal from the output terminal Y only when the signal input to the input terminal A and the signal input to the input terminal B are both high level.
- the LSW7 outputs the system power supply voltage V MCU input to the input terminal VIN from the output terminal OUT when the control signal is input to the control terminal CTL from the terminal P10 of the MCU6.
- the output terminal OUT of the LSW 7 is connected to the vibration motor 13 via the terminal VIB of the main board 20 and the terminal VIB of the puff sensor board 21 . Therefore, by inputting a control signal from the MCU 6 to the LSW 7, the vibration motor 13 can be operated using the system power supply voltage V MCU .
- the power supply unit 100 has, as operation modes, a sleep mode for power saving, a standby mode capable of transitioning from the sleep mode, and a heating mode capable of transitioning from the standby mode (aerosol generation by heating a liquid heater and a seat heater HTR) mode), and
- a specific operation for example, a long press operation
- the MCU 6 switches the operation mode to the standby mode.
- the MCU 6 detects a specific operation (for example, a short press operation) on the switch BT in the standby mode
- the MCU 6 switches the operation mode to the heating mode.
- FIG. 13 is a circuit diagram showing electronic components related to the heating mode operation extracted from the circuit shown in FIG.
- FIG. 13 additionally shows capacitor C3, which was not shown in FIG.
- FIG. 14 is a circuit diagram showing, extracted from the circuit shown in FIG. 12, electronic components related to heating control of the seat heater HTR and the liquid heater, drive control of the vibration motor 13, and drive control of the LED 21D. The operation of the heating mode will be described below with reference to FIGS. 13 and 14.
- FIG. 13 is a circuit diagram showing electronic components related to the heating mode operation extracted from the circuit shown in FIG. 13 additionally shows capacitor C3, which was not shown in FIG.
- FIG. 14 is a circuit diagram showing, extracted from the circuit shown in FIG. 12, electronic components related to heating control of the seat heater HTR and the liquid heater, drive control of the vibration motor 13, and drive control of the LED 21D. The operation of the heating mode will be described below with reference to FIGS. 13 and 14.
- the MCU6 When the MCU6 transitions to the heating mode, it controls the switch Q6 shown in FIG. 13 to the ON state.
- the AND gate 10, the FF9, the resistor R11, the operational amplifier OP2, the resistor R11, the resistor R9 and the resistor R10 constitute a voltage dividing circuit
- the resistor R8 and the first thermistor th1 constitute a voltage dividing circuit
- the resistor R12 and the second thermistor th2 and the operational amplifier OP1, respectively, are supplied with the system power supply voltage V MCU .
- the MCU 6 controls the signal input from the terminal P6 to the input terminal A of the AND gate 10 to high level.
- the MCU6 also starts inputting the clock signal to the clock terminal CLK of the FF9.
- the temperature of the first thermistor th1 (the temperature of the seat heater HTR) is within the normal range (less than the threshold value THD1)
- the output of the operational amplifier OP2 becomes high level
- the output of FF9 becomes high level.
- the output of the AND gate 10 becomes high level. Therefore, the heating voltage VHEAT is started to be output from the booster circuit 11, and the seat heater HTR and the liquid heater are ready to be heated.
- the MCU 6 performs control to connect the input terminal B0 and the output terminal A of the multiplexer 8 while turning on only the switch Q4 among the switches Q1 to Q4.
- Rx is the electrical resistance value between the terminal HT1 (P1) and the terminal HT1 (P2)
- the voltage input to the non-inverting input terminal is compared with the above-mentioned divided voltage value when the liquid heater is connected between the terminal HT1 (P1) and the terminal HT1 (P2), and the difference is is small, the output of the operational amplifier OP1 becomes low level. Therefore, when the output of the operational amplifier OP1 becomes low level, the MCU 6 determines that the liquid heater is connected between the terminals HT1 (P1) and HT1 (P2).
- the MCU 6 notifies an error if the output of the operational amplifier OP1 does not go low in any of the first to third steps.
- the MCU 6 controls the heating of the seat heater HTR and the liquid heater. Start. Specifically, the MCU 6 performs heating control of the seat heater HTR by on/off controlling the switch Q5 shown in FIG. 14 (for example, PWM control or PFM control). At this time, the MCU 6 controls the temperature of the seat heater HTR so that the temperature of the seat heater HTR converges to the target temperature based on the temperature of the second thermistor th2 (in other words, the temperature of the seat heater HTR) obtained from the signal input to the terminal P8. Then, the heating control of the seat heater HTR is performed. For example, PID (Proportional-Integral-Differential) control is used for this heating control.
- PID Proportional-Integral-Differential
- the MCU 6 When the liquid heater is connected between the terminal HT1 (P1) and the terminal HT1 (P2), the MCU 6 turns on the switch Q4 among the switches Q1 to Q4 shown in FIG. Heating control of the liquid heater is performed by controlling the switches Q2 and Q3 to be in the OFF state and controlling the ON/OFF of the switch Q1 (for example, PWM control or PFM control).
- the MCU 6 turns on the switch Q3 among the switches Q1 to Q4, and turns off the switches Q2 and Q4.
- the heating control of the liquid heater is performed by controlling the state and controlling the ON/OFF of the switch Q1.
- the MCU 6 When the liquid heater is connected between the terminals HT1 (P2) and HT1 (P3), the MCU 6 turns on the switch Q3 among the switches Q1 to Q4, and turns off the switches Q1 and Q4.
- the heating control of the liquid heater is performed by controlling the state and controlling the ON/OFF of the switch Q2.
- the system power supply voltage V MCU output from the LDO 4 is constantly supplied to the suction sensor 15 connected to the puff sensor connector 21A.
- the system supply voltage V MCU is supplied via switch Q6 to the electronic components that need to operate only in the heating mode. With such a configuration, power consumption of the electronic component can be reduced except in the heating mode.
- the operation of the suction sensor 15 may become unstable. Therefore, by constantly supplying the system power supply voltage V MCU to the suction sensor 15, the suction operation can be detected with high accuracy by the suction sensor 15 even when suction is performed immediately after the transition to the heating mode. can be done.
- the puff sensor board 21 on which the suction sensor 15 is mounted and the main board 20 on which the MCU 6, which tends to be a noise source, is mounted are physically separated from each other.
- the suction sensor 15, which always operates, can be operated more stably.
- the switch BT which is likely to be an entry point for noise such as static electricity, is not mounted on the puff sensor substrate 21, and the switch BT is directly mounted on the main FPC 23.
- FIG. This also allows the suction sensor 15, which always operates, to operate more stably.
- FIG. 14 shows connectors (main connector 20A and heater connector 20B) electrically connected to power source ba, LED 21D and vibration motor 13 connected to main connector 20A via cables such as FPC and lead wires, A switch Q8 electrically connected to the low potential side of the main connector 20A and capable of opening and closing the electrical connection between the power source ba and the LED 21D, and a switch Q8 electrically connected to the high potential side of the main connector 20A and the power source ba.
- LSW 7 which can open and close the electrical connection between the vibration motors 13 are shown.
- the switch used for controlling power supply to the vibration motor 13 is not a simple switch but a highly functional LSW 7 having a backflow prevention function. As a result, it is possible to prevent the back electromotive force and reverse current generated by the vibration motor 13 from being input to the MCU 6, thereby improving the durability of the MCU 6.
- the LED 21D is driven by an operating voltage (specifically, the OTG voltage V OTG ) higher than the operating voltage of the vibration motor 13 (specifically, the system power supply voltage V MCU ), although there is no concern about the back electromotive force. .
- an operating voltage specifically, the OTG voltage V OTG
- the system power supply voltage V MCU the system power supply voltage V MCU
- FIG. 14 further shows a seat heater HTR connected to the heater connector 20B via a cable such as an FPC, and a liquid heater connected to the main connector 20A via a cable such as an FPC (a liquid heater htr is an example in the figure). ), a switch Q5 electrically connected to the high potential side of the heater connector 20B and capable of opening and closing electrical connection between the power source ba and the seat heater HTR, and a switch Q5 electrically connected to the high potential side of the main connector 20A.
- a switch Q1 and a switch Q2 which are connected to the power source ba and can open and close the electrical connection between the power source ba and the liquid heater;
- a switch Q3 and a switch Q4 are shown which can open and close the active connection.
- the seat heater HTR and the liquid heater which are loads that receive power supply from the power supply ba. Since the liquid heater needs to atomize the aerosol source, it needs to supply a lot of power per unit time. On the other hand, the seat heater HTR only needs to be supplied with enough power to improve the amount of flavor emitted from the flavor source, so the power required to be supplied per unit time is less than that of the liquid heater. Therefore, the switches Q1 to Q4 for controlling power supply to the liquid heater are more likely to be short-circuited than the switch Q5 for controlling power supply to the seat heater HTR.
- the switch Q1 and the switch Q2 are connected to the high potential side (in other words, between the power supply ba), and the switches Q3 and Q2 are connected to the low potential side (in other words, between the ground).
- a switch Q4 is connected.
- the electrical resistance value Ra of the resistor RA connected in parallel with the switch Q1 and the electrical resistance value Rb of the resistor RB connected in parallel with the switch Q2 are sufficiently high values. Note that the short-circuit current through resistors RA and RB is never supplied to the liquid heater.
- the switch Q5 is connected to the high potential side (in other words, between it and the power supply ba) for the seat heater HTR.
- the seat heater HTR is controlled by a protection circuit, which will be described later, so that its temperature does not become excessively high. Therefore, even if the switch Q5 is short-circuited, the function of the protection circuit can prevent the seat heater HTR from being continuously heated. From this point of view as well, safety can be ensured without providing another switch between the seat heater HTR and the ground.
- the power of the resistor R8, the resistor R9, and the resistor R10 is set so that the output of the operational amplifier OP2 becomes low level. resistance is determined.
- a low level is input to the clear terminal CLR ( ⁇ ) of FF9.
- the temperature of the first thermistor th1 will not exceed the threshold THD1 in principle. That is, when the temperature of the first thermistor th1 becomes equal to or higher than the threshold value THD1, there is a high possibility that the circuit (specifically, the switch Q5) supplying power to the seat heater HTR or the MCU 6 has some trouble.
- the low-level signal output from the operational amplifier OP2 controls the booster circuit 11 that outputs the heating voltage VHEAT instead of controlling the MCU6 and the switch Q5, thereby heating the seat heater HTR. I am stopping it.
- the output signal of the operational amplifier OP2 is input to the booster circuit 11 that can reliably stop the power supply to the seat heater HTR, thereby enhancing safety when the seat heater HTR becomes hot.
- the MCU6 or the switch Q5 cannot be controlled. Even in such a case, by inputting a low-level signal from the operational amplifier OP2 to the enable terminal EN of the booster circuit 11, power supply to the seat heater HTR can be reliably stopped.
- a high level signal is applied to the enable terminal CE ( ⁇ ) of the charging IC that generates the system power supply voltage VSYS to be input to the booster circuit 11.
- An input method is also conceivable.
- the configuration in which the output of the operational amplifier OP2 can be input to the enable terminal EN of the booster circuit 11 has the advantage of simplifying the circuit configuration and reducing the manufacturing cost.
- the aerosol generator 200 is provided with a restart circuit RBT (see FIG. 19) capable of restarting (resetting) the MCU 6 by the user's operation of the switch BT, which will be described later in detail. If the cause of the functioning of the protection circuit is the freezing of the MCU 6, the MCU 6 is restarted by the user. By restarting MCU6, FF9 is restarted.
- RBT restart circuit
- the signal input to the input terminal A of the AND gate 10 becomes low level. Also, at the timing when the MCU 6 is restarted, the switch Q6 is in the OFF state, so the potential of the signal at the input terminal B of the AND gate 10 is indefinite. Therefore, the output from the booster circuit 11 is not restarted just by restarting the MCU 6 . After the MCU 6 is restarted, the operation mode shifts to the heating mode by the user's operation, so that the signal input to the input terminal A of the AND gate 10 becomes high level. Moreover, the signal input to the input terminal B of the AND gate 10 becomes high level because the switch Q6 is turned on. As a result, the output from the booster circuit 11 is resumed.
- the MCU 6 controls the resumption of the output from the booster circuit 11 (performs control for resuming the output after reflecting the user's intention), thereby resuming the heating of the seat heater HTR contrary to the user's intention. It is possible to improve safety and convenience by preventing unauthorized access.
- the AND gate 10, FF9, and operational amplifier OP2 form a protection circuit for protecting the seat heater HTR by stopping the power supply to the seat heater HTR when the temperature of the seat heater HTR becomes high.
- This protection circuit does not receive a command from the MCU 6 to disable the booster circuit 11.
- the output from the booster circuit 11 can be autonomously stopped according to the temperature of the first thermistor th1.
- the seat heater HTR or the liquid heater can immediately stop heating, so that the safety of the aerosol generating device 200 can be improved.
- the AND gate 10 makes the signal input to the input terminal A of the low level. As a result, the output of the AND gate 10 becomes low level, and the booster circuit 11 stops outputting the heating voltage VHEAT .
- the output from the booster circuit 11 can be stopped by a command from the MCU 6 as well. As a result, for example, even when the first thermistor th1 is not operating normally, the output from the booster circuit 11 can be stopped by the command from the MCU 6 to improve safety.
- the threshold THD2 is smaller than the threshold THD1. Therefore, when the temperature of the seat heater HTR rises as long as the MCU 6 is operating normally, the MCU 6 can stop the output from the booster circuit 11 before the protection circuit does, thus ensuring safety. can be further increased.
- the MCU 6 can acquire the temperature of the first thermistor th1 from the signal input to the terminal P9. Therefore, the MCU 6 determines whether or not the temperature of the second thermistor th2 can be normally obtained. It is preferable to control the heating of the seat heater HTR so that the temperature of the heater HTR converges to the target temperature. As a result, even when the second thermistor th2 has some kind of abnormality, the heating control of the seat heater HTR can be executed by the first thermistor th1. Whether or not the temperature of the second thermistor th2 can be obtained normally is determined by determining whether or not the signal input to the terminal P8 indicates an abnormal value, or whether or not the signal can be obtained. can be done with
- the MCU 6 controls the heating of the seat heater HTR based on the temperature of the second thermistor th2. Therefore, it is preferable that the second thermistor th2 be arranged at a position that can more accurately reflect the temperature of the seat heater HTR.
- the first thermistor th1 is mainly used to stop the output from the booster circuit 11 by the protection circuit when the seat heater HTR becomes hot. For this reason, it is preferable that the first thermistor th1 is arranged at a position where the seat heater HTR is likely to reach a higher temperature so that the high temperature state of the seat heater HTR can be reliably detected.
- a detailed configuration of the heater FPC 24 on which the first thermistor th1 and the second thermistor th2 are mounted will be described later.
- FIG. 15 is a circuit diagram corresponding to FIG. 13 when FF9 is omitted. If the FF9 is omitted, the output terminal of the operational amplifier OP2 may be connected to the input terminal B of the AND gate 10 as shown in FIG. In the configuration shown in FIG. 15, when the temperature of the first thermistor th1 becomes equal to or higher than the threshold value THD1 and the output of the operational amplifier OP2 becomes low level, the output of the AND gate 10 becomes low level. As a result, the output from the booster circuit 11 can be stopped when the seat heater HTR reaches a high temperature. According to the configuration shown in FIG. 15, the size and weight of the power supply unit 100 can be reduced, and the power consumption can be reduced by the amount that the FF 9 can be eliminated.
- FIG. 16 is a circuit diagram corresponding to FIG. 13 when FF9 and AND gate 10 are omitted. If the FF9 and the AND gate 10 are omitted, the output terminal of the operational amplifier OP2 and the terminal P6 of the MCU6 may be connected to the enable terminal EN of the booster circuit 11, respectively, as shown in FIG. In the configuration shown in FIG. 16, when the temperature of the first thermistor th1 becomes equal to or higher than the threshold value THD1 and the output of the operational amplifier OP2 becomes low level, even if a high level signal is output from the terminal P6 of the MCU6, The enable terminal EN of the booster circuit 11 becomes low level.
- the output from the booster circuit 11 can be stopped when the seat heater HTR reaches a high temperature.
- the FF 9 and the AND gate 10 can be eliminated, so that the size and weight of the power supply unit 100 can be reduced, and the power consumption can be reduced.
- FIG. 17 is an exploded perspective view of the heating portion 60 and the flow path forming body 19 shown in FIG.
- FIG. 18 is a developed view of the heater FPC 24 shown in FIG.
- the heat transfer tube 61 and the flow path forming body 19 are fixed in a state in which the upper end portion of the flow path forming body 19 is inserted through the lower end portion of the heat transfer tube 61 .
- the flow path forming body 19 functions as a pedestal against which the bottom of the second cartridge 120 abuts while the second cartridge 120 is accommodated inside the heat transfer tube 61 .
- the flow path forming body 19 is preferably made of a material having a high heat insulating function, such as silicone.
- the heat of the seat heater HTR is transmitted not only to the second cartridge 120 but also to the flow path forming body 19 on the lower end side of the heat transfer tube 61 . .
- the heater FPC 24 has a winding region 24A wound around and fixed to the outer peripheral surface 61S of the heat transfer tube 61 formed of a cylindrical body, a connector region 24B inserted into the heater connector 20B of the main substrate 20, and a winding region 24A. and a connection region 24C that connects the connector regions 24B.
- the winding region 24A includes a thermistor mounting region 240A in which the first thermistor th1 and the second thermistor th2 are mounted, a heater region 240B in which the conductive pattern Ph constituting the seat heater HTR is formed, the thermistor mounting region 240A and the heater region 240B. and an intermediate region 240C between.
- the winding region 24A overlaps the heater region 240B with the thermistor mounting region 240A on the side opposite to the heat transfer tube 61 when viewed in the radial direction of the heat transfer tube 61.
- 61 is wound around the outer peripheral surface 61S.
- a terminal T11, a terminal T12, a terminal T13, and a terminal T14 are arranged side by side in the axial direction of the heat transfer tube 61 in the thermistor mounting area 240A.
- a positive side terminal of the first thermistor th1 is connected to the terminal T11, and a negative side terminal of the first thermistor th1 is connected to the terminal T12.
- the negative side terminal of the second thermistor th2 is connected to the terminal T13, and the positive side terminal of the second thermistor th2 is connected to the terminal T14.
- the first thermistor th1 and the second thermistor th2 are mounted in the thermistor mounting area 240A in a state in which their longitudinal directions match the axial direction of the heat transfer tube 61. 61 are mounted side by side in the axial direction.
- the axial width of the thermistor mounting region 240A can be increased. Further, since the longitudinal directions of the first thermistor th1 and the second thermistor th2 are aligned with the axial direction of the heat transfer tube 61, the longitudinal directions of the first thermistor th1 and the second thermistor th2 are aligned with the heat transfer tubes. 61, the axial width of the thermistor mounting region 240A can be increased. Thereby, the durability of the heater FPC 24 can be improved.
- the longitudinal directions of the first thermistor th1 and the second thermistor th2 are not orthogonal to the axial direction of the heat transfer tube 61, the effect of increasing the axial width of the thermistor mounting region 240A can be obtained.
- the second thermistor th2 is located closer to the center of the seat heater HTR than the first thermistor th1 in the axial direction of the heat transfer tube 61 (same as the lateral direction of the seat heater HTR and the vertical direction of the power supply unit 100). are placed. That is, the shortest distance between the center of the seat heater HTR and the second thermistor th2 in the axial direction of the heat transfer tube 61 (vertical direction in FIG. 18) is th1 is shorter than the shortest distance. According to this configuration, the second thermistor th2 arranged closer to the center in the axial direction of the seat heater HTR is less susceptible to the air cooling effect than the first thermistor t1. Therefore, the accurate temperature of the seat heater HTR can be reflected. By executing the heating control of the heater using the second thermistor th2, the precision of the heating control of the seat heater HTR can be improved.
- the second thermistor th2 is arranged at a position closer to the flow path forming body 19 than the first thermistor th1 in the vertical direction of the power supply unit 100 . That is, the shortest distance between the second thermistor th2 and the flow path forming body 19 is shorter than the shortest distance between the first thermistor th1 and the flow path forming body 19.
- a material with high heat insulation such as silicone is used as the flow path forming body 19
- the temperature of the second thermistor th2 closer to the flow path forming body 19 is higher than the temperature of the first thermistor th1. It shows a low value because the heat is taken away by the body 19 .
- the heating control of the seat heater HTR is performed using the second thermistor th2 that exhibits such a relatively low temperature, it is possible to obtain the effect that the seat heater HTR is less likely to reach a high temperature.
- the temperature of the first thermistor th1 shows a higher value than the temperature of the second thermistor th2 because of the distance from the flow path forming body 19 .
- the first thermistor th1 quickly reaches a high temperature state reflecting the temperature. Therefore, when the seat heater HTR reaches a high temperature, the protection circuit can be quickly activated, and safety can be improved.
- terminals T1, T2, T3, T4, and T5 are arranged vertically in this order. ing.
- the terminal names of the heater connector 20B to which the terminals T1 to T5 are connected are written in parentheses. Although one terminal GND is illustrated in the heater connector 20B in FIG. 12, the heater connector 20B actually includes two terminals GND as shown in FIG.
- the terminal T1 is connected to one end of a conductive pattern 242 made up of a single conductor wire.
- the other end of the conductive pattern 242 is connected to one end of a conductive pattern Ph made up of one conductor.
- the other end of the conductive pattern Ph is connected to one end of a conductive pattern 241 composed of a single conductor wire.
- the other end of the conductive pattern 241 is connected to the terminal T5.
- the terminal T2 is connected to one end of a conductive pattern 243 made up of a single conductor wire.
- the other end of the conductive pattern 243 is connected to the terminal T11.
- the terminal T4 is connected to one end of a conductive pattern 245 composed of a single conductor wire.
- the other end of the conductive pattern 245 is connected to the terminal T14.
- the terminal T3 is connected to one end of a conductive pattern 244 composed of a single conductor wire.
- Terminals T12 and T13 are connected in parallel to the other end of the conductive pattern 244 .
- Each conductive pattern in the heater FPC 24 is insulated from each other.
- the terminal names of the heater connector 20B to which the terminals T11 to T14 are electrically connected are written in parentheses.
- the first thermistor th1 and the second thermistor th2 share a conductive pattern 244 for ground connection.
- the wiring of the heater FPC 24 can be simplified and the manufacturing cost of the power supply unit 100 can be reduced as compared with the case where a conductive pattern for ground connection is provided for each of the first thermistor th1 and the second thermistor th2. can be reduced.
- the width of the conductive pattern 241 and the conductive pattern 242 connected to the conductive pattern Ph can be made as thick as possible in the limited heater FPC 24 . As a result, the parasitic resistance of the conductive pattern 241 and the conductive pattern 242 can be reduced, so that power can be supplied to the seat heater HTR with high efficiency.
- a conductive pattern 244 for grounding the first thermistor th1 and the second thermistor th2 and a conductive pattern 241 for grounding the conductive pattern Ph are separately provided.
- a conductive pattern for grounding the first thermistor th1 and a conductive pattern for grounding the second thermistor th2 are separately provided on the heater FPC 24, and one of these two conductive patterns is connected to a terminal. It may be connected to T5. Even with this configuration, it is possible to improve the accuracy of control using either one of the first thermistor th1 and the second thermistor th2.
- FIG. 19 is a circuit diagram showing electronic components related to restarting MCU 6 extracted from the circuit shown in FIG. FIG. 19 shows the restart circuit RBT.
- the restart circuit RBT includes a voltage dividing circuit consisting of a resistor R3 and a resistor R4, a switch BT, a terminal KEY and a terminal GND of the main connector 20A, a switch Q7, a switch Q9, a charging IC3, an LDO4, and a terminal NRST of the debug connector 20E.
- the restart circuit RBT enables the MCU 6 to be restarted by operating the switch BT (long press as an example) and by issuing a command from an external device connected to the debugging connector 20E.
- the MCU 6 is configured to be restarted when the signal input to the terminal P27 remains at a low level for a predetermined period of time. Also, the charging IC 3 is configured to restart when the signal input to the terminal QON ( ⁇ ) remains at a low level for a predetermined period of time.
- the resistors R3 and R4 have resistance values such that the output of the voltage dividing circuit of the resistors R3 and R4 is at a high level when the switch BT is not pressed. Since this high-level signal is input to the terminal QON ( ⁇ ) of the charging IC3, the charging IC3 is not reset in this state and continues to output the system power supply voltage VSYS from the output terminal SYS. By continuing the output of the system power supply voltage VSYS , the output of the system power supply voltage V_MCU from the output terminal OUT of the LDO4 is also continued. Therefore, the MCU 6 continues to operate without stopping.
- this high level signal is input to the gate terminal of the switch Q7. Therefore, when the USB is connected (when the bus voltage V BUS is output from the charging IC 3), the switch Q7 is turned on, and as a result, the potential of the gate terminal of the switch Q9 is low level (ground level). ), and the switch Q9 is turned off. When the switch Q9 is in the off state, the MCU6 does not restart because the potential of the terminal P27 of the MCU6 is indefinite.
- the resistors R3 and R4 have resistance values such that the output of the voltage dividing circuit of the resistors R3 and R4 is at a low level when the switch BT is pressed. In other words, the resistors R3 and R4 have resistance values such that the value obtained by dividing the system power supply voltage V MCU becomes low level. Since this low-level signal is input to the terminal QON ( ⁇ ) of the charging IC 3, if this state continues for a predetermined time, the charging IC 3 stops outputting the system power supply voltage VSYS from the output terminal SYS. When the output of the system power supply voltage V SYS is stopped, the voltage output from the LDO 4 is stopped, the system power supply voltage V MCU is no longer input to the terminal VDD of the MCU 6, and the MCU 6 stops.
- this low level signal is input to the gate terminal of the switch Q7. Therefore, when the USB connection is made (when the bus voltage V BUS is output from the charging IC 3), the switch Q7 is turned off, and as a result, the potential of the gate terminal of the switch Q9 becomes high level (bus voltage V BUS ), and the switch Q9 is turned on. When the switch Q9 is turned on, the potential of the terminal P27 of the MCU6 becomes low level (ground level). When the switch BT is continuously pressed for a predetermined time, a low level signal is input to the terminal P27 of the MCU 6 for a predetermined time, so the MCU 6 executes restart processing.
- the charging IC 3 resumes outputting the system power supply voltage VSYS , so that the system power supply voltage V MCU is input to the terminal VDD of the MCU 6 that has stopped, and the MCU 6 is activated. .
- the low-level signal generated by pressing the switch BT is input not only to the terminal QON ( ⁇ ) of the charging IC3 but also to the terminal P27 of the MCU6. Therefore, even if the MCU 6 is frozen, the MCU 6 can be restarted by stopping the output from the charging IC 3 . Even if the charging IC 3 is not reset for some reason, the MCU 6 can be restarted by inputting a low level signal to the terminal P27 as long as the MCU 6 is not frozen. In this way, the MCU 6 can be reliably restarted by a simple operation of pressing the switch BT because the two systems can be restarted.
- the MCU 6 can be restarted from an external device using the debug connector 20E. Even when a low-level signal is input from an external device to the terminal P27 of the MCU6, the presence of the switch Q9 prevents this signal from being transmitted to the terminal QON ( ⁇ ) of the charging IC. Since the signal input to the debug connector 20E and the signal generated by the operation of the switch BT can be separated in this manner, the operation of the restart circuit RBT can be stabilized.
- FIG. 19 a configuration in which the terminal NRST and the terminal QON ( ⁇ ) of the charging IC 3 are connected is also assumed, but such a configuration is not adopted in FIG. As a result, the restart circuit RBT can be simplified compared to the case where the debug connector 20E is connected to the terminal QON( ⁇ ), so the manufacturing cost of the power supply unit 100 can be reduced.
- the MCU 6 can be restarted using the switch BT only when the USB connection is made.
- the MCU 6 can be restarted only when the power supply ba can be charged, even if the remaining amount of the power supply ba decreases when the MCU 6 is restarted, the MCU 6 can be reliably restarted by the external power supply. be able to start.
- FIG. 20 shows a modification of restart circuit RBT shown in FIG.
- the restart circuit RBT shown in FIG. 20 has the point that the connection destination of the drain terminal of the switch Q9 is changed from the terminal P27 to the control terminal CTL of the LDO4, the voltage dividing circuit of the resistors R3 and R4, and the terminal of the charging IC3.
- the configuration is the same as that of FIG. 19 except that the connection with QON ( ⁇ ) is deleted.
- the restart circuit RBT shown in FIG. 20 when restarting the MCU 6 without using the debug connector 20E, it is necessary to make a USB connection.
- restart circuit RBT when restarting the MCU 6 using the debug connector 20E, an external device is connected to the debug connector 20E.
- the restart signal is continuously input to the terminal P27 for a predetermined time.
- the MCU 6 executes restart processing.
- a wiring PU indicated by a dashed line in the drawing may be added.
- the wiring PU is provided to pull up the potential of the terminal P27 of the MCU6 to a high level by the bus voltage VBUS .
- the potential of the terminal P27 does not become unstable even when a low level signal is not input to the terminal P27, so that the operation of the power supply unit 100 can be stabilized.
- the switch Q5 is connected between the terminal GND of the heater connector 20B connected to the negative terminal of the seat heater HTR and the ground provided on the main substrate 20.
- switch Q5 is preferably of the N-channel type.
- a power source power source ba
- a heater sleep heater HTR
- a flavor source second cartridge 120
- a thermistor first thermistor th1 whose resistance value changes according to the temperature of the heater
- an operational amplifier operational amplifier OP2 having an inverting input terminal or a non-inverting input terminal connected to the thermistor; including an output terminal (output terminal VOUT) connected to the heater and an enable terminal (enable terminal EN), and output from the output terminal when a first level (high level) signal is input to the enable terminal and a voltage converter (booster circuit 11) that stops output from the output terminal when a second level (low level) signal is input to the enable terminal
- a controller MCU 6) configured to control power supply from the power source to the heater so as to converge the temperature of the heater to a target temperature
- the operational amplifier outputs the signal of the second level from the output terminal when the temperature of the heater becomes equal to or higher than a threshold value (th)
- the output from the voltage converter can be stopped without requiring a signal from the controller. Also, even if the temperature of the heater returns to below the threshold value, the voltage converter does not resume output if the second level signal is input from the controller to the enable terminal of the voltage converter. In this way, even if the controller is frozen, the power supply to the heater can be reliably stopped, and the controller can control the restart of the power supply to the heater, thereby improving the safety of the power supply unit.
- the heater temperature will not exceed the threshold in principle. In other words, when the temperature of the heater reaches or exceeds the threshold, there is a high possibility that some problem has occurred in the controller or the circuit that supplies power to the heater.
- the failure of this circuit is mainly a short circuit inside the switch or a short circuit bypassing the switch. If such a short circuit occurs, for example, even if an output signal of an operational amplifier is input to the control terminal of the switch, the switch will not operate normally and power supply to the heater cannot be stopped.
- the output signal of the operational amplifier is input to the voltage converter that can reliably stop the power supply to the heater, the safety of the power supply unit is improved and its manufacture is made with a simplified circuit. Cost can be reduced.
- a charging IC (charging IC3) configured to be able to control charging of the power supply and including an enable terminal (enable terminal CE ( ⁇ )),
- the charging IC is in an operating state or a non-operating state according to the level of the signal input to the enable terminal of the charging IC,
- the output terminal of the operational amplifier is connected only to the enable terminal of the voltage converter among the enable terminal of the voltage converter and the enable terminal of the charging IC. Power supply unit for the aerosol generator.
- the charging IC can supply power from the power source to the voltage converter, it is possible to stop the voltage converter by putting the charging IC into a non-operating state.
- the power supply to the heater can be stopped more directly by inputting the output of the operational amplifier into the voltage converter instead of the enable terminal of the charging IC.
- the circuit can be simplified. As a result, the manufacturing cost can be reduced while improving the safety of the power supply unit.
- a power supply unit for an aerosol generator according to any one of (1) to (3), the output terminal of the operational amplifier is directly connected to the enable terminal of the voltage converter; Power supply unit for the aerosol generator.
- a power supply unit for an aerosol generator according to any one of (1) to (3), A first input terminal (input terminal A) connected to the controller, a second input terminal (input terminal B) connected to the output terminal of the operational amplifier, and an output terminal connected to the enable terminal of the voltage converter. (output terminal Y) and an AND gate (AND gate 10) including Power supply unit for the aerosol generator.
- the output signal of the operational amplifier and the output signal of the controller can be synthesized by the AND gate, it is possible to suppress unstable behavior that may occur when signals of the same level are synthesized, and the operation of the power supply unit is stabilized. do.
- the AND gate and the operational amplifier can be directly connected without an intervening IC, so the manufacturing cost of the power supply unit can be reduced. Moreover, even if semiconductors such as ICs are in short supply, the production of power supply units can be continued.
- a power supply terminal (terminal VCC) of the AND gate is connected in parallel to a power supply terminal (positive power supply terminal) of the operational amplifier; Power supply unit for the aerosol generator.
- the circuit for supplying power to the AND gate and the operational amplifier can be simplified, so the manufacturing cost of the power supply unit can be reduced.
- the power supply unit of the aerosol generator, the second level is a low level,
- the output terminal of the operational amplifier is pulled up by connection to the power supply terminal of the AND gate and the power supply terminal of the operational amplifier.
- Power supply unit for the aerosol generator is a low level
- this unstable value is fixed at a high level by pulling up the output terminal of the operational amplifier whose output signal tends to take an unstable value when the power is turned on. Therefore, unintended behavior due to an unstable output signal that may be output by the operational amplifier immediately after power-on can be suppressed with a simple circuit configuration.
- the power supply unit of the aerosol generator a flip-flop (FF9) including a clear terminal (clear terminal CLR ( ⁇ )) connected to the output terminal of the operational amplifier and an output terminal (output terminal Q) connected to the second input terminal of the AND gate; prepare Power supply unit for the aerosol generator.
- FF9 flip-flop
- the flip-flop continues to output the second level signal output by the operational amplifier. can be done. Therefore, even if the state in which the temperature of the heater exceeds the threshold value is resolved, the output of the voltage converter is not immediately allowed to resume, thereby improving the safety of the power supply unit.
- the power unit of the aerosol generator includes a clock terminal (clock terminal CLK) connected to the controller, Power supply unit for the aerosol generator.
- the flip-flop remains at the second level unless the controller outputs the clock signal to the clock terminal. continue to output a signal of Therefore, even if the state in which the temperature of the heater exceeds the threshold value is resolved, the output of the voltage converter is not immediately allowed to resume, thereby improving the safety of the power supply unit.
- the power unit of the aerosol generator A restart circuit (restart circuit RBT) for restarting the controller,
- the controller is configured to output a clock signal to a clock terminal of the flip-flop when restarted by the restart circuit.
- Power supply unit for the aerosol generator is configured to supply a clock signal to a clock terminal of the flip-flop when restarted by the restart circuit.
- the controller that has started operating normally by being restarted can restart the operation of the voltage converter, thereby improving the safety of the power supply unit.
- the power unit of the aerosol generator includes an input terminal (input terminal D), the second level is a low level, The clear terminal of the above flip-flop functions with negative logic, an input terminal of the flip-flop and a clear terminal of the flip-flop are pulled up; Power supply unit for the aerosol generator.
- an unstable signal that may be output by the operational amplifier immediately after power-on is prevented from being input to the clear terminal. Also, if the temperature of the heater is less than the threshold, a stable high-level signal can be input to the input terminal of the flip-flop. Furthermore, when the restarted controller outputs the clock signal, the flip-flop can store the high-level signal input to the input terminal. In this way, the flip-flop can be stably operated, and the operation of the voltage converter can be restarted by the restarted controller.
Landscapes
- Battery Mounting, Suspending (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
安全性を高めたエアロゾル生成装置の電源ユニットを提供する。電源ユニット100は、香味源を加熱するシートヒータHTRと、シートヒータHTRの温度に応じて抵抗値が変化する第1サーミスタth1と、第1サーミスタth1に非反転入力端子が接続されるオペアンプOP2と、シートヒータHTRへ接続される出力端子VOUT及びイネーブル端子ENを含み、イネーブル端子ENにローレベルの信号が入力されると出力端子VOUTからの出力を停止する昇圧回路11と、シートヒータHTRの温度を目標温度へ収束させるように電源baからシートヒータHTRへの電力供給を制御するMCU6と、を備え、オペアンプOP2は、シートヒータHTRの温度が閾値THD1以上になるとローレベルの信号を出力し、昇圧回路11のイネーブル端子ENは、オペアンプOP2の出力端子とMCU6へ接続されている。
Description
本発明は、エアロゾル生成装置の電源ユニットに関する。
特許文献1には、エアロゾル前駆体組成物を保持するように構成されたリザーバを画定するハウジングと、ハウジング内に収容された電源と、エアロゾル前駆体組成物の成分を気化させるように制御可能な加熱要素と、加熱要素を含む電気負荷及び電源の間の昇圧コンバータと、を含むエアロゾル送達装置が記載されている。
特許文献2には、ハウジング内に配置された電力変換器と、電力変換器に少なくとも間接的に電力を供給するためのハウジング内に配置された電源とを含む電子タバコ装置が記載されている。
エアロゾル生成装置にはヒータが設けられるため、このヒータが過度に加熱されないようにする必要がある。
本発明の目的は、安全性を高めたエアロゾル生成装置の電源ユニットを提供することにある。
本発明の一態様のエアロゾル生成装置の電源ユニットは、電源と、エアロゾルに香味を付加する香味源を加熱するヒータと、前記ヒータの温度に応じて抵抗値が変化するサーミスタと、前記サーミスタに反転入力端子又は非反転入力端子が接続されるオペアンプと、前記ヒータへ接続される出力端子と、イネーブル端子とを含み、前記イネーブル端子に第1レベルの信号が入力されると前記出力端子からの出力を行い、前記イネーブル端子に第2レベルの信号が入力されると前記出力端子からの出力を停止する電圧変換器と、前記ヒータの温度を目標温度へ収束させるように、前記電源から前記ヒータへの電力供給を制御するように構成されるコントローラと、を備え、前記オペアンプは、前記ヒータの温度が閾値以上になると、出力端子から前記第2レベルの信号を出力し、前記電圧変換器のイネーブル端子は、前記オペアンプの出力端子と前記コントローラへ接続されている、ものである。
本発明によれば、安全性を高めることができる。
以下、本発明の一実施形態であるエアロゾル生成装置の電源ユニットについて説明する。先ず、本実施形態の電源ユニットを備えるエアロゾル生成装置について、図1~図8を参照しながら説明する。
(エアロゾル生成装置)
エアロゾル生成装置200は、燃焼を伴わずに香味が付加されたエアロゾルを生成し、生成したエアロゾルを吸引するための器具である。エアロゾル生成装置200は、手中におさまるサイズであることが好ましく、例えば、図1及び図2に示すように、丸みを帯びた略直方体形状を有する。なお、エアロゾル生成装置200の形状はこれに限らず、棒形状、卵型形状等であってもよい。以下の説明では、エアロゾル生成装置200において、直交する3方向のうち、長さの長い順から、上下方向、前後方向、左右方向と称する。また、以下の説明では、便宜上、図1~図8に記載したように、前方、後方、左方、右方、上方、下方を定義し、前方をFr、後方をRr、左側をL、右側をR、上方をU、下方をD、として示す。
エアロゾル生成装置200は、燃焼を伴わずに香味が付加されたエアロゾルを生成し、生成したエアロゾルを吸引するための器具である。エアロゾル生成装置200は、手中におさまるサイズであることが好ましく、例えば、図1及び図2に示すように、丸みを帯びた略直方体形状を有する。なお、エアロゾル生成装置200の形状はこれに限らず、棒形状、卵型形状等であってもよい。以下の説明では、エアロゾル生成装置200において、直交する3方向のうち、長さの長い順から、上下方向、前後方向、左右方向と称する。また、以下の説明では、便宜上、図1~図8に記載したように、前方、後方、左方、右方、上方、下方を定義し、前方をFr、後方をRr、左側をL、右側をR、上方をU、下方をD、として示す。
図3も参照して、エアロゾル生成装置200は、電源ユニット100と、第1カートリッジ110と、第2カートリッジ120と、を備える。第1カートリッジ110及び第2カートリッジ120は、電源ユニット100に対して着脱可能である。言い換えると、第1カートリッジ110及び第2カートリッジ120は、それぞれ交換可能である。
(電源ユニット)
電源ユニット100は、内部ユニット2Aとケース3aとを備え、内部ユニット2Aの少なくとも一部がケース3aに収容される。
電源ユニット100は、内部ユニット2Aとケース3aとを備え、内部ユニット2Aの少なくとも一部がケース3aに収容される。
ケース3aは、左右方向(厚さ方向)に着脱可能な第1ケース3A及び第2ケース3Bから構成され、これら第1ケース3Aと第2ケース3Bとが左右方向(厚さ方向)に組付けられることで、電源ユニット100の前面、後面、左面、右面が形成される。具体的には、内部ユニット2Aに含まれる後述のシャーシ50の左側の面に第1ケース3Aが支持され、シャーシ50の右側の面に第2ケース3Bが支持されて、内部ユニット2Aがケース3に収容される。電源ユニット100の上面には、前方にカプセルホルダ4Aが設けられる。カプセルホルダ4Aには、上方に開口する開口部4aが設けられる。カプセルホルダ4Aは、開口部4aから第2カートリッジ120が挿入可能に構成される。第2カートリッジ120には、マウスピース130が着脱可能に設けられる。
電源ユニット100の上面は、開口部4aの後方に配置されたOLED(Organic Light-Emitting Diode、有機発光ダイオード)カバー5aにより形成され、電源ユニット100の下面は、充電端子1が設けられた下カバー8a及び回動可能な下リッド7aにより形成される。
電源ユニット100の上面と後面との間には、後方に向かうにしたがって下方に傾斜する傾斜面が設けられる。傾斜面には、ユーザが操作可能な操作部が設けられる。本実施形態の操作部は、ボタン式のスイッチBTであるが、タッチパネル等から構成されてもよい。操作部は、ユーザの使用意思を反映して後述のMCU(Micro Controller Unit)6及び各種センサを起動/遮断/操作する際等に利用される。
下カバー8aからアクセス可能な充電端子1は、バッテリパックBPに含まれる電源baを充電する電力を電源ユニット100に供給可能な外部電源(図示省略)と電気的に接続可能に構成される。充電端子1は、例えば、相手側となるプラグを挿入可能なレセプタクルである。充電端子1としては、各種USB端子等を挿入可能なレセプタクルを用いることができる。一例として、本実施形態においては、充電端子1をUSB Type-C形状のレセプタクルとする。
また、充電端子1は、例えば、受電コイルを備え、外部電源から送電される電力を非接触で受電可能に構成されてもよい。この場合の電力伝送(Wireless Power Transfer)の方式は、電磁誘導型でもよいし、磁気共鳴型でもよいし、電磁誘導型と磁気共鳴型を組み合わせたものでもよい。別の一例として、充電端子1は、各種USB端子等が接続可能であり、且つ上述した受電コイルを有していてもよい。
内部ユニット2Aは、図3~図6に示すように、バッテリパックBPと、シャーシ50と、加熱部60と、回路部70と、通知部と、各種センサと、を備える。
シャーシ50は、図4及び図5に示すように、前方に位置する円筒状のカートリッジ保持部51と、後方に位置し左側方が切り欠かれた半円筒状のバッテリ保持部52と、カートリッジ保持部51とバッテリ保持部52とを連結する板状の連結部53と、連結部53の下方且つ右方であってカートリッジ保持部51及びバッテリ保持部52に跨るように設けられるモータ保持部54と、カートリッジ保持部51の左後方に設けられるセンサ保持部55と、を備える。
カートリッジ保持部51には、下リッド7aを開けた状態で下方から第1カートリッジ110が挿入される。また、第1カートリッジ110が挿入された状態で下リッド7aを閉じることでカートリッジ保持部51には第1カートリッジ110が収容される。カートリッジ保持部51の上部には、カプセルホルダ4Aが取り付けられる。カートリッジ保持部51には、前方に縦長の貫通孔が設けられ、第1ケース3Aと第2ケース3Bとの合わせ部に設けられた残量確認窓3wからは、第1カートリッジ110のエアロゾル源の残量及び後述するLED(Light Emitting Diode)21Dの光が目視可能である。第1カートリッジ110については後述する。
バッテリ保持部52にはバッテリパックBPが配置される。バッテリパックBPは、電源baと、電源baの温度を検出するための電源サーミスタと、を含む。電源baは、充電可能な二次電池、電気二重層キャパシタ等であり、好ましくは、リチウムイオン二次電池である。電源baの電解質は、ゲル状の電解質、電解液、固体電解質、イオン液体の1つ又はこれらの組合せで構成されていてもよい。
モータ保持部54には、振動モータ13が配置される。センサ保持部55には、ユーザの吸引動作(パフ動作)に応じた出力を行う後述する吸引センサ15が配置される。
加熱部60は、図6に示すように、筒状の伝熱チューブ61と、伝熱チューブ61の外周に巻回されたシートヒータHTRと、を備える。シートヒータHTRの周囲には前述のカプセルホルダ4Aが離間して設けられる。カプセルホルダ4AとシートヒータHTRとの間の空気層が断熱材として機能する。伝熱チューブ61には、カプセルホルダ4Aの開口部4aから挿入される第2カートリッジ120の下部が収容され、第2カートリッジ120の下部がシートヒータHTRによって加熱される。これにより、加熱部60がない場合に比べて、第2カートリッジ120に貯留する香味源が香味を放出しやすくなるため、エアロゾルに香味が付加されやすくなる。
なお、加熱部60は、第2カートリッジ120を加熱可能な素子であればよい。素子としては、抵抗発熱体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。抵抗発熱体としては、例えば、温度の増加に伴って抵抗値も増加するPTC(Positive Temperature Coefficient)特性を有するものが好ましく用いられる。これに代えて、温度の増加に伴って抵抗値が低下するNTC(Negative Temperature Coefficient)特性を有するものを用いてもよい。加熱部60は、第2カートリッジ120へ供給する空気の流路を画定する機能、及び第2カートリッジ120を加熱する機能を有する。
通知部は、電源baの充電状態、第1カートリッジ110の残量、第2カートリッジ120の残量等の各種情報を通知する。本実施形態の通知部は、LED21Dと、振動モータ13と、を含む。通知部は、LED21Dのような発光素子によって構成されていてもよく、振動モータ13のような振動素子によって構成されていてもよく、音出力素子によって構成されていてもよい。通知部は、発光素子、振動素子、及び音出力素子のうち、2以上の素子の組合せであってもよい。
各種センサは、ユーザのパフ動作(吸引動作)を検出する吸引センサ15、シートヒータHTRの温度を検出するヒータ温度センサ等を含む。
吸引センサ15は、例えば、コンデンサマイクロフォンや圧力センサや流量センサ等から構成される。複数の吸引センサ15を離間して配置し、これらの出力値の差などからパフ動作を検出してもよい。ヒータ温度センサは、第1サーミスタth1と第2サーミスタth2とを含む。第1サーミスタth1及び第2サーミスタth2は、シートヒータHTRと接する又は近接することが好ましい。シートヒータHTRがPTC特性やNTC特性を有する場合、シートヒータHTRそのものをヒータ温度センサに用いてもよい。ヒータ温度センサは、2つのサーミスタにより構成されるものとしているが、1つのサーミスタで構成されていてもよい。
回路部70は、リジッドな4つの回路基板と、3つのFPC(Flexible Printed Circuits、フレキシブルプリント回路基板)と、複数のIC(Integrated Circuit)と、複数の素子と、を備える。4つの回路基板は、メイン基板20、パフセンサ基板21、ポゴピン基板22、OLED基板26から構成される。3つのFPCは、メインFPC23、ヒータFPC24、OLED FPC25から構成される。
メイン基板20は、素子搭載面が前後方向を向くように、バッテリパックBPとケース3aの後面(電源ユニット100の後面)との間に配置される。メイン基板20は、複数層(本実施形態では6層)の基板が積層されて構成され、MCU6、充電IC3等の電子部品(素子)が搭載される。
詳細は図12等を用いて後述するが、MCU6は、吸引センサ15等の各種センサ装置、操作部、通知部、及び、パフ動作の回数又は負荷及びシートヒータHTRへの通電時間等を記憶するメモリ等に接続され、エアロゾル生成装置200の各種の制御を行う制御装置である。具体的には、MCU6は、プロセッサを主体に構成されており、プロセッサの動作に必要なRAM(Random Access Memory)と各種情報を記憶するROM(Read Only Memory)等の記憶媒体をさらに含む。本明細書におけるプロセッサとは、例えば、半導体素子等の回路素子を組み合わせた電気回路である。なお、MCU6に接続される要素の一部(例えば、吸引センサ15やメモリ)は、MCU6内部にMCU6自身の機能として設けられてもよい。
充電IC3は、充電端子1から入力される電力による電源baの充電制御を行ったり、電源baの電力をメイン基板20の電子部品等に対して供給したりするICである。
メイン基板20について図7及び図8を参照しながらより具体的に説明する。以下では、メイン基板20の後方を向く面を便宜上、表面201と称し、メイン基板20の前方を向く面を便宜上、裏面202と称する。図7は、メイン基板20の表面201を示す図であり、図8は、メイン基板20の裏面202を示す図である。メイン基板20は上下に延びる板状であり、図7及び図8には、メイン基板20の長手方向へ直交する側面として、上側の側面である上側面20SUと、下側の側面である下側面20SDとが示されている。また、メイン基板20の短手方向へ直交する側面として、左側の側面である左側面20SLと、右側の側面である右側面20SRとが示されている。
図8に示すように、MCU6及び充電IC3は、充電端子1とともにメイン基板20の裏面202に実装される。裏面202には、更に、デバッグ用コネクタ20Eが実装される。デバッグ用コネクタ20Eは、MCU6のプログラムの書き換え等をパーソナルコンピュータ等の外部機器から行うためのインタフェースであり、例えばSWD(Serial Wire Debug)の規格に準拠したものが用いられる。一方、図7に示すように、メイン基板20の表面201には、OLEDコネクタ20C、ヒータコネクタ20B、メインコネクタ20A、及びバッテリパックBPにリード線16(図6参照)を介して接続されるバッテリコネクタ20Dが実装される。
パフセンサ基板21は、図4及び図6に示すように、素子搭載面が右前方及び左後方を向くようにシャーシ50のセンサ保持部55に配置される。パフセンサ基板21には、吸引センサ15が実装される。
OLED基板26は、図6に示すように、素子搭載面が上下方向を向くようにバッテリパックBPとOLEDカバー5aとの間に配置される。OLED基板26には、OLEDパネル17が実装される。
ポゴピン基板22は、図6に示すように、下リッド7aが閉じた状態で、素子搭載面が上下方向を向くように下リッド7aに配置される。ポゴピン基板22には、メイン基板20からメインFPC23を介して電力が供給される入力側接点P1~P3と、第1カートリッジ110に設けられた負荷に電気的に接続されるコネクタであるポゴピンp1~p3と、が設けられる。入力側接点P1~P3は、下リッド7aが閉じた状態でのみメインFPC23と電気的に接続される。ポゴピンp1~p3は、周方向に等間隔に3本設けられ、少なくとも2本のポゴピンがカートリッジ保持部51に収容される第1カートリッジ110の+端子及び-端子と電気的に接続されるように構成される。
バッテリ保持部52に保持されたバッテリパックBPは、半円筒状のバッテリ保持部52により左側がバッテリ保持部52から露出する。バッテリ保持部52が切り欠かれることで形成されるバッテリパックBPの左方と第1ケース3Aとの間の空間には、図3、4、及び図6に示すように、メインFPC23、ヒータFPC24、OLED FPC25が重なりあうように配置されている。
3つのFPCのうち、メインFPC23が最もバッテリパックBPの近くに配索され、メインFPC23に一部が重なるようにOLED FPC25が配索され、さらにOLED FPC25に重なるようヒータFPC24が配索される。即ち、3つのFPCのうち最も大きな電力が供給されるヒータFPC24がバッテリパックBPから最も離間して配索されている。メインFPC23は、展開した形状が略十字形状となっており、ヒータFPC24と重なる箇所において、後方に折り返されている。つまり、メインFPC23は、折込まれた折込配線となっている。メインFPC23の折り返された部分は、左右方向に浮き上がりやすくなるが、この部分にヒータFPC24及びOLED FPC25が重なることで、このような浮き上がりが阻止されている。スイッチBTは、リジッドな基板などを介することなく、メインFPC23に直接実装されている。
OLED FPC25は、一端がメイン基板20のOLEDコネクタ20Cに接続され、他端がOLED基板26に接続されている。
メインFPC23は、メイン基板20のメインコネクタ20Aと、操作部のスイッチBTと、パフセンサ基板21のコネクタ21Bと、ポゴピン基板22の入力側接点P1~P3と、を接続する。
ヒータFPC24は、一端がメイン基板20のヒータコネクタ20Bに接続され、他端にシートヒータHTRが一体形成されている。
(第1カートリッジ)
第1カートリッジ110は、円筒状のカートリッジケース111の内部に、エアロゾル源を貯留するリザーバと、エアロゾル源を霧化する電気的な負荷と、リザーバから負荷へエアロゾル源を引き込むウィックと、エアロゾル源が霧化されることで発生したエアロゾルが第2カートリッジ120に向かって流れるエアロゾル流路と、を備える。エアロゾル源は、グリセリン、プロピレングリコール、又は水等の液体を含む。
第1カートリッジ110は、円筒状のカートリッジケース111の内部に、エアロゾル源を貯留するリザーバと、エアロゾル源を霧化する電気的な負荷と、リザーバから負荷へエアロゾル源を引き込むウィックと、エアロゾル源が霧化されることで発生したエアロゾルが第2カートリッジ120に向かって流れるエアロゾル流路と、を備える。エアロゾル源は、グリセリン、プロピレングリコール、又は水等の液体を含む。
負荷は、電源baからポゴピン基板22のポゴピンp1~p3を介して供給される電力によって、燃焼を伴わずにエアロゾル源を加熱する発熱素子であり、例えば所定ピッチで巻き回される電熱線(コイル)によって構成される。負荷は、エアロゾル源を加熱することで、エアロゾル源を霧化する。負荷としては、発熱抵抗体、セラミックヒータ、誘導加熱式のヒータ等を用いることができる。以下では、第1カートリッジ110に設けられた負荷のことをリキッドヒータとも記載する。
エアロゾル流路は、シャーシ50のカートリッジ保持部51に収容された流路形成体19(図6参照)を介して第2カートリッジ120に接続される。
(第2カートリッジ)
第2カートリッジ120は、香味源を貯留する。シートヒータHTRによって第2カートリッジ120が加熱されることで、香味源が加熱される。第2カートリッジ120は、リキッドヒータによってエアロゾル源が霧化されることで発生したエアロゾルを香味源に通すことによってエアロゾルに香味を付加する。香味源を構成する原料片としては、刻みたばこ、又は、たばこ原料を粒状に成形した成形体を用いることができる。香味源は、たばこ以外の植物(例えば、ミント、漢方、ハーブ等)によって構成されてもよい。香味源には、メントール等の香料が付与されていてもよい。
第2カートリッジ120は、香味源を貯留する。シートヒータHTRによって第2カートリッジ120が加熱されることで、香味源が加熱される。第2カートリッジ120は、リキッドヒータによってエアロゾル源が霧化されることで発生したエアロゾルを香味源に通すことによってエアロゾルに香味を付加する。香味源を構成する原料片としては、刻みたばこ、又は、たばこ原料を粒状に成形した成形体を用いることができる。香味源は、たばこ以外の植物(例えば、ミント、漢方、ハーブ等)によって構成されてもよい。香味源には、メントール等の香料が付与されていてもよい。
エアロゾル生成装置200は、エアロゾル源と香味源によって、香味が付加されたエアロゾルを発生させることができる。つまり、エアロゾル源と香味源は、香味が付加されたエアロゾルを発生させるエアロゾル生成源を構成している。
エアロゾル生成装置200におけるエアロゾル生成源は、ユーザが交換して使用する部分である。この部分は、例えば、1つの第1カートリッジ110と、1つ又は複数(例えば5つ)の第2カートリッジ120とが1セットとしてユーザに提供される。また、バッテリパックBPは電源baが大幅に劣化しない限り、繰り返し充放電可能である。したがって、エアロゾル生成装置200においては、電源ユニット100又はバッテリパックBPの交換頻度が最も低く、第1カートリッジ110の交換頻度が次に低く、第2カートリッジ120の交換頻度が最も高くなっている。なお、第1カートリッジ110と第2カートリッジ120を一体化して1つのカートリッジとして構成してもよい。香味源の代わりに薬剤等がエアロゾル源に付加された構成等であってもよい。
このように構成されたエアロゾル生成装置200では、ケース3a又は内部ユニット2Aに設けられた不図示の空気取込口から流入した空気が、第1カートリッジ110の負荷付近を通過する。負荷は、ウィックによってリザーバから引き込まれたエアロゾル源を霧化する。霧化されて発生したエアロゾルは、取込口から流入した空気と共にエアロゾル流路を流れ、流路形成体19を介して第2カートリッジ120に供給される。第2カートリッジ120に供給されたエアロゾルは、香味源を通過することで香味が付加され、マウスピース130の吸口131に供給される。
以下、シャーシ50に支持されるメイン基板20に実装されたコネクタの詳細について説明する。
図7に示したメイン基板20の表面201に実装されたメインコネクタ20A、ヒータコネクタ20B、OLEDコネクタ20C、及びバッテリコネクタ20Dには、それぞれ、メインFPC23のコネクタ、ヒータFPC24のコネクタ、OLED FPC25のコネクタ、及びリード線16が、右方向に挿入される。右方向へ挿入は、左から右へ向かう向きの挿入を指す。メインFPC23のコネクタ、ヒータFPC24のコネクタ、OLED FPC25のコネクタ、及びリード線16は、それぞれ、挿入されるコネクタの位置からメイン基板20の左側面20SLを跨いでバッテリパックBP側まで配策されている。図8に示したメイン基板20の裏面202に実装されたデバッグ用コネクタ20Eには、図示省略の接続ケーブルのコネクタが、左方向に挿入される。左方向へ挿入は、右から左へ向かう向きの挿入を指す。メイン基板20の裏面202に実装された充電端子1には、図示省略のUSBケーブルのコネクタが、上方向に挿入される。上方向へ挿入は、下から上へ向かう向きの挿入を指す。
図7に示したメイン基板20の表面201に実装されたメインコネクタ20A、ヒータコネクタ20B、OLEDコネクタ20C、及びバッテリコネクタ20Dには、それぞれ、メインFPC23のコネクタ、ヒータFPC24のコネクタ、OLED FPC25のコネクタ、及びリード線16が、右方向に挿入される。右方向へ挿入は、左から右へ向かう向きの挿入を指す。メインFPC23のコネクタ、ヒータFPC24のコネクタ、OLED FPC25のコネクタ、及びリード線16は、それぞれ、挿入されるコネクタの位置からメイン基板20の左側面20SLを跨いでバッテリパックBP側まで配策されている。図8に示したメイン基板20の裏面202に実装されたデバッグ用コネクタ20Eには、図示省略の接続ケーブルのコネクタが、左方向に挿入される。左方向へ挿入は、右から左へ向かう向きの挿入を指す。メイン基板20の裏面202に実装された充電端子1には、図示省略のUSBケーブルのコネクタが、上方向に挿入される。上方向へ挿入は、下から上へ向かう向きの挿入を指す。
このように、メイン基板20には、配線(FPCやリード線)が常時接続される4つのコネクタ(OLEDコネクタ20C、ヒータコネクタ20B、メインコネクタ20A、及びバッテリコネクタ20D)と、必要な場合にのみ配線(接続ケーブルやUSBケーブル)が接続されるデバッグ用コネクタ20E及び充電端子1と、が異なる素子搭載面に実装されている。このため、上記4つのコネクタに接続される配線の配索が容易となる。特に、上述したように上記4つのコネクタに対する配線の挿入方向を同一とすることで、配線の配索が更に容易となり、余剰スペースの低減等の設計が容易となるため、電源ユニット100の小型化が実現できる。
また、表面201に実装された4つのコネクタに対する配線の挿入方向は右方向で共通化されている。一方、裏面202に実装されたデバッグ用コネクタ20Eに対する配線の挿入方向は、上記4つのコネクタとは異なる方向(具体的には逆方向)となっている。これにより、デバッグ用コネクタ20Eに接続ケーブルを挿入する際に、この接続ケーブルが上記4つのコネクタに挿入される配線と干渉するのを防ぐことができる。また、充電端子1に対する配線の挿入方向は、デバッグ用コネクタ20Eに対する配線の挿入方向とは異なる方向(具体的にはその挿入方向に直交する方向)となっている。これにより、デバッグ用コネクタ20Eに接続ケーブルを挿入し且つ充電端子1にUSBケーブルを接続する場合でも、これら2つのケーブルが干渉するのを防ぐことができる。
また、デバッグ用コネクタ20Eは、ケース3aのうちの第2ケース3Bのみをシャーシ50から取外すことで、接続ケーブルを挿抜可能となる。換言すれば、デバッグ用コネクタ20Eは、ケース3aのうちの第1ケース3Aを取り付けたままでも、接続ケーブルを挿抜可能である。また、ケース3aのうちの第2ケース3Bのみをシャーシ50から取外した状態(第1ケース3Aを取り付けたままの状態)では、上記4つのコネクタとこれらに接続される配線は露出しない。この結果、デバッグ用コネクタ20Eに対する接続ケーブルの挿抜時において、表面201の4つコネクタやこれらに接続される配線に人が触れてしまうのを防ぐことができる。
また、図3に示すように、メイン基板20の表面201は、バッテリパックBP側とは反対側を向いている。換言すると、メイン基板20の表面201とケース3aの後面との距離は、メイン基板20の裏面202とケース3aの前面との距離よりも小さい。更に、メイン基板20の表面201とこの表面201に対向するケース3aの内壁(ケース3aの後面)との間には、内部ユニット2Aを構成する他の部品は存在していない。これにより、表面201とケース3aとの距離を最小限として電源ユニット100の更なる小型化が図られている。
次に、ケース3a内における吸引センサ15の保持機構の詳細について説明する。
図9及び図10は、パフセンサ基板21とセンサ保持部55の詳細構成を示す図である。図9は、パフセンサ基板21の素子搭載面に垂直な方向(換言すると、パフセンサ基板21の厚み方向)に見た平面図である。図10は、図9に示すパフセンサ基板21とセンサ保持部55と吸引センサ15の分解斜視図である。図11は、センサ保持部55を除いたシャーシ50の斜視図である。
図9及び図10は、パフセンサ基板21とセンサ保持部55の詳細構成を示す図である。図9は、パフセンサ基板21の素子搭載面に垂直な方向(換言すると、パフセンサ基板21の厚み方向)に見た平面図である。図10は、図9に示すパフセンサ基板21とセンサ保持部55と吸引センサ15の分解斜視図である。図11は、センサ保持部55を除いたシャーシ50の斜視図である。
図10に示すように、吸引センサ15は、略円柱状の外形となっており、軸方向の一端に配置された固定電極151と、軸方向の他端に配置され且つ固定電極151に対し軸方向に移動可能な可動電極152と、リング状の側面153と、を備える。吸引センサ15の固定電極151側の面には、吸引センサ15の出力端子、グランド端子、及び電源端子からなる端子群15Aが突出して設けられている。
図9及び図10に示すように、パフセンサ基板21は、上下方向に延びる板状である。以下では、パフセンサ基板21のセンサ保持部55側と反対側の面を便宜上、表面214と称し、パフセンサ基板21のセンサ保持部55側の面を便宜上、裏面215と称する。また、パフセンサ基板21の短手方向の長さのことを幅と記載する。
図9に示すように、パフセンサ基板21は、長手方向の一端(下端)に配置され且つ幅が最も狭い第1部分211と、第1部分211から上に離間して配置された幅が最も広い第3部分213と、第1部分211と第3部分213を接続する第2部分212と、を備える。第2部分212の幅は、第1部分211から第3部分213に向かって広くなっており、第1部分211の幅よりも広く、第3部分213の幅よりも狭くなっている。パフセンサ基板21では、第2部分212によって幅が緩やかに変化しているため、パフセンサ基板21の縁の近くを通る導電パターンが、幅の変化する部分にて鋭角のカーブを有さなくなる。これにより導電パターンの寄生抵抗や寄生インダクタンスが低減し、パフセンサ基板21上で生じる可能性がある熱やノイズが低減されるようになっている。より具体的には、図9の平面視において、第3部分213と第2部分212によって形成される頂点の角度θ1が90度以上となっており、第2部分212と第1部分211によって形成される頂点の角度θ2が90度以上となっていることで、この角度にそった導電パターンを設けることが容易となり、導電パターンが鋭角となるのを防ぐことができる。
吸引センサ15は、第1部分211の裏面215に実装されている。第1部分211には、厚み方向に貫通する3つ貫通孔15Bが形成されている。この貫通孔15Bには、裏面215側から、吸引センサ15の端子群15Aが挿通される。パフセンサ基板21には、コネクタ21Bと電気的に接続された後述のパフセンサ用コネクタ21Aが設けられており、貫通孔15Bに挿通された吸引センサ15の端子群15Aは、このパフセンサ用コネクタ21Aと電気的に接続される。吸引センサ15の出力信号は、パフセンサ用コネクタ21Aと、コネクタ21Bと、コネクタ21Bに接続されたメインFPC23とを経由してMCU6に入力されるようになっている。図9に示すように、第1部分211の幅は、吸引センサ15が外側に張り出すことのできる程度に小さくなっている。つまり、吸引センサ15は、パフセンサ基板21から外側に張り出す部分を有する。また、吸引センサ15の幅は、第3部分213の幅と同じになっている。なお、吸引センサ15の幅は、第3部分213の幅より小さくてもよい。このように、第3部分213の幅を吸引センサ15の幅以上とすることで、パフセンサ基板21により多くの電子部品を実装可能となる。
図11に示すように、第1カートリッジ110を収容する略円柱状の空洞を画定するカートリッジ保持部51には、左後方の側面に開口51Hが形成されている。開口51Hの周縁部51Eは僅かに窪んでおり、この周縁部51Eに、センサ保持部55が接着剤等で固着されて、開口51Hがセンサ保持部55によって閉じられる。
センサ保持部55は、略円筒状のカートリッジ保持部51の外周面の湾曲形状に対応した湾曲形状となっている。つまり、上方向から見た場合に、センサ保持部55は、カートリッジ保持部51の周方向に沿う形状となっている。センサ保持部55をこのような湾曲形状とすることで、ケース3a内の領域を有効活用でき、電源ユニット100の小型化に寄与できる。
図10に示すように、センサ保持部55は、左後方に突出し且つ上下方向に延びる突出部550を有する。突出部550は、凹部551Bが形成された平坦面551Aを有する上部分551と、この上部分551の下側に配置された略円環状の下部分552とを備える。下部分552に形成された貫通孔552Aの内径は、吸引センサ15の外径にほぼ等しい。
パフセンサ基板21に実装された吸引センサ15が、貫通孔552Aに圧入されることで、下部分552の内周面と吸引センサ15の側面153とが当接し、吸引センサ15及びパフセンサ基板21は、図9に示すように、センサ保持部55によって支持される。図9に示す状態では、可動電極152がカートリッジ保持部51に面するため、吸引センサ15が、カートリッジ保持部51の内部空間の圧力変動を検出可能になる。ユーザが吸引を行うと、この内部空間の圧力変動が生じるため、吸引センサ15によってユーザの吸引を検出可能となる。また、図9に示す状態においては、パフセンサ基板21の裏面215に実装されたLED21Dが、センサ保持部55の凹部551Bと対向する。センサ保持部55又はこの凹部551Bは、光透過性を持つ材料によって構成されており、LED21Dからの光は、カートリッジ保持部51の開口51Hを通して、カートリッジ保持部51に収容された第1カートリッジ110のエアロゾル源を照明する。これにより、ユーザは残量確認窓3wから、第1カートリッジ110のエアロゾル源の残量を目視しやすくなる。
前述したように、吸引センサ15の側面153は、パフセンサ基板21から外側に張り出す部分を有する。このため、吸引センサ15をパフセンサ基板21に実装した後、この側面153を把持して、吸引センサ15を貫通孔552Aに容易に圧入できる。これにより、電源ユニット100の製造時において、吸引センサ15の可動電極152や固定電極151という敏感な部品を指などで触れる虞が減って、吸引センサ15の故障を防ぐことができる。
また、センサ保持部55の下部分552には、図9及び図10に示したように、周縁部における一部に、切欠き553が設けられている。この切欠き553があることで、吸引センサ15が貫通孔552Aに圧入される過程において、吸引センサ15の側面153を把持した状態を維持しやすくなる。このため、吸引センサ15をセンサ保持部55により容易に圧入できる。
また、センサ保持部55の切欠き533は、図4に示すように、ケース3aのうちの第1ケース3Aをシャーシ50から取外した状態で外部に露出する。このため、ケース3aをシャーシ50から取外した状態で切欠き533が外部に露出しない構成と比べると、吸引センサ15のメンテナンスやセンサ保持部55への取り付け作業を容易とすることができる。
センサ保持部55は、電源ユニット100の長手方向(上下方向)と短手方向(前後方向)と厚さ方向(左右方向)のうちの2つの方向(図の例では、短手方向と厚さ方向)に対して、貫通孔552Aの径方向(貫通孔552Aの延びる方向に直交する平面に沿う方向)が交差するように配置されている。例えば、カートリッジ保持部51の後面に、短手方向が左右方向と一致し且つ長手方向が上下方向に一致するようにセンサ保持部55を固着する場合を想定すると、前後方向は貫通孔552Aの径方向に交差するものの、上下方向と厚み方向はいずれも貫通孔552Aの径方向と平行になる。このような構成では、内部ユニット2Aの厚み(左右方向の長さ)と幅(前後方向の長さ)が大きくなる。これに対し、カートリッジ保持部51の斜め左後ろの面にセンサ保持部55を固着する本形態の構成によれば、内部ユニット2Aの厚みと幅を小さくでき、これによって電源ユニット100の小型化が実現できる。
また、例えば、エアロゾル生成装置200の形状が全体として細長い筒状であり、カプセルホルダ4A、カートリッジ保持部51、バッテリパックBPが直線状に並ぶ構成を想定する。この場合、例えば、カートリッジ保持部51の左面に、短手方向が前後方向と一致し且つ長手方向が上下方向に一致するようにセンサ保持部55を固着する場合を想定すると、厚み方向は貫通孔552Aの径方向に交差するものの、上下方向と前後方向はいずれも貫通孔552Aの径方向と平行になる。このような構成では、内部ユニット2Aの厚みと幅が大きくなる。これに対し、カートリッジ保持部51の斜め左後ろの面にセンサ保持部55を固着する本形態の構成によれば、内部ユニット2Aの厚みと幅を小さくでき、これによって電源ユニット100の小型化が実現できる。
パフセンサ基板21の表面214には、パフセンサ用コネクタ21A及び後述の振動モータ用コネクタ21Cへ電気的に接続されたコネクタ21Bと、吸引センサ15の出力端子から出力される信号からパフセンサ基板21に実装される他の電気部品又はMCU6を保護する保護部品としてのバリスタVと、吸引センサ15の電源端子へ入力される電力から吸引センサ15を保護する保護部品としてのコンデンサC2と、が実装されている。なお、パフセンサ基板21には、吸引センサ15以外にICは実装されていない。このように、パフセンサ基板21には、吸引センサ15以外に、ノイズの発生源となり得るICが存在しないことで、吸引センサ15を安定的に動作させることができるようになっている。
図9に示すように、コンデンサC2は、第1部分211に実装されている。また、バリスタVは、第1部分211と第2部分212に跨って実装されている。このように、パフセンサ基板21の厚み方向にみて吸引センサ15の端子群15Aと近い位置に、コンデンサC2とバリスタVが実装されることで、吸引センサ15に入力又は吸引センサ15から出力されるノイズを保護部品により迅速に処理できる。
上述したようにケース3a内においてシャーシ50に支持された吸引センサ15は、第1ケース3Aをシャーシ50から取外していない状態では、外部に露出することはない。換言すると、吸引センサ15は、第1ケース3Aをシャーシ50から取外した場合にのみ外部に露出する。例えば、第2ケース3Bのみをシャーシ50から取外してデバッグ用コネクタ20Eを利用する場合には、吸引センサ15が外部に露出しないので、吸引センサ15が故障しにくくなるメリットを得ることができる。
(回路構成)
図12は、メイン基板20に設けられた回路の概略構成を示す図である。図12には、メイン基板20の回路に加えて、メイン基板20のメインコネクタ20Aに接続されたメインFPC23と、メインFPC23に接続されたパフセンサ基板21と、メインFPC23に接続されたポゴピン基板22と、バッテリコネクタ20Dに接続されたバッテリパックBPと、が図示されている。
図12は、メイン基板20に設けられた回路の概略構成を示す図である。図12には、メイン基板20の回路に加えて、メイン基板20のメインコネクタ20Aに接続されたメインFPC23と、メインFPC23に接続されたパフセンサ基板21と、メインFPC23に接続されたポゴピン基板22と、バッテリコネクタ20Dに接続されたバッテリパックBPと、が図示されている。
図12において太い実線で示した配線は、電源ユニット100の基準となる電位(グランド電位、以下一例として0Vとする)と同電位となる配線(電源ユニット100に設けられたグランドに接続される配線)であり、この配線を以下ではグランドラインと記載する。
メイン基板20には、複数の回路素子をチップ化した電子部品である主要なICとして、保護IC2と、充電IC3と、LDO(Low Dropout)レギュレータ(以下、LDOと記載)4と、DC/DCコンバータで構成された昇圧回路5と、MCU6と、コンデンサ、抵抗器、及びトランジスタ等を組み合わせて構成されたロードスイッチ(以下、LSWと記載)7と、マルチプレクサ8と、フリップフロップ(以下、FFと記載)9と、ANDゲート(図12では単に“AND”と記載)10と、DC/DCコンバータで構成された昇圧回路11と、オペアンプOP1と、オペアンプOP2と、が設けられている。
メイン基板20には、更に、MOSFET(metal-oxide-semiconductor field-effect transistor)によって構成されたスイッチQ1~Q9と、固定の電気抵抗値を持つ抵抗器R1~R12、RA、RBと、コンデンサC1と、コンデンサC2と、バリスタVと、充電IC3に接続されたリアクトルL3と、昇圧回路5に接続されたリアクトルL5と、昇圧回路11に接続されたリアクトルL11と、が設けられている。スイッチQ3、スイッチQ4、スイッチQ7、スイッチQ8、及びスイッチQ9は、それぞれ、Nチャネル型MOSFETによって構成されている。スイッチQ1、スイッチQ2、スイッチQ5、及びスイッチQ6は、それぞれ、Pチャネル型MOSFETによって構成されている。スイッチQ1~Q8は、それぞれ、ゲート端子の電位がMCU6によって制御されることで、オン状態とオフ状態が切り替えられる。
図12において、オペアンプを除く各ICには、各種端子の符号を記載している。チップに搭載される端子VCC及び端子VDDは、それぞれ、高電位側の電源端子を示す。チップに搭載される端子VSS及び端子GNDは、それぞれ、低電位側(基準電位側)の電源端子を示す。チップ化された電子部品は、高電位側の電源端子の電位と低電位側の電源端子の電位の差分が、電源電圧(動作電圧)となる。チップ化された電子部品は、この電源電圧を用いて、各種機能を実行する。
図12において、オペアンプを除く各ICの端子GNDと端子VSSは、それぞれグランドラインに接続されている。また、充電端子1の端子GNDとオペアンプOP1の負電源端子とオペアンプOP2の負電源端子は、それぞれ、グランドラインに接続されている。
メイン基板20に設けられたバッテリコネクタ20D(図12中の左中央付近参照)は、充電IC3の検出端子SNS及び充電IC3の充電端子BATのそれぞれへ接続された端子BATと、メイン基板20のグランドラインへ接続された端子GNDと、MCU6の端子P25へ接続された端子TH3と、を備える。バッテリコネクタ20Dの端子BATは、バッテリパックBPに含まれる電源baの正極側端子にリード線16によって接続されている。バッテリコネクタ20Dの端子TH3は、バッテリパックBPに含まれる電源サーミスタth3の正極側端子にリード線16によって接続されている。バッテリコネクタ20Dの端子GNDは、電源baの負極側端子と電源サーミスタth3の負極側端子のそれぞれにリード線16によって接続されている。
メイン基板20に設けられたOLEDコネクタ20C(図12中の左下付近参照)は、昇圧回路5の出力端子VOUTへ接続された端子VCC_Rと、LDO4の出力端子OUTへ接続された端子VDDと、MCU6の端子P24へ接続された端子RSTBと、MCU6の通信用端子P28へ信号線SLによって接続された通信用端子T3と、メイン基板20のグランドラインに接続された端子VSSと、を備える。
OLEDコネクタ20Cの端子VCC_Rは、OLEDパネル17の駆動電圧供給端子へOLED FPC25によって接続されている。OLEDコネクタ20Cの端子VDDは、OLEDパネル17を制御する制御ICの電源端子へOLED FPC25によって接続されている。OLEDパネル17の駆動電圧供給端子に供給すべき電圧は、例えば15V程度であり、OLEDパネル17の制御ICの電源端子へ供給すべき電圧よりも大きい。OLEDコネクタ20Cの端子VSSは、OLEDパネル17とOLEDパネル17の制御ICのそれぞれのグランド端子へOLED FPC25によって接続されている。OLEDコネクタ20Cの端子RSTBは、OLEDパネル17の制御ICにおける再起動を行うための端子へOLED FPC25によって接続されている。
OLEDコネクタ20Cの通信用端子T3に接続された信号線SLは、充電IC3の通信用端子T3にも接続されている。この信号線SLにより、MCU6は、充電IC3との間の通信と、OLEDパネル17の制御ICとの間の通信とが可能になっている。この信号線SLは、シリアル通信を行うためのものであり、実際には、データ送信用のデータラインと同期用のクロックラインなどの複数の信号線が必要になる。図12では、簡略化のため、信号線SLが1本の信号線として図示されている点に留意されたい。なお、MCU6と充電IC3及びOLEDパネル17の制御ICとの間の通信は、シリアル通信ではなくパラレル通信で行うようにしてもよい。
メイン基板20に設けられたデバッグ用コネクタ20E(図12中の左下付近参照)は、LDO4の出力端子OUTへ接続された端子VMCUと、MCU6の通信用端子P23へ接続された端子T1(図では1つとしているが実際には2つの端子)と、MCU6の通信用端子P22へ接続された端子T2(図では1つとしているが実際には2つの端子)と、MCU6の端子P27へ接続された端子NRSTと、メイン基板20のグランドラインに接続された端子GNDと、を備える。端子NRSTは、ゲート端子がスイッチQ7のドレイン端子へ接続され且つソース端子がグランドラインに接続されたスイッチQ9のドレイン端子にも接続されている。デバッグ用コネクタ20Eは、エアロゾル生成装置200の通常の使用状態において使用されることはなく、MCU6に記憶された情報(プログラムを含む)の書き換え等のメンテナンスが必要になったときにのみ、製造者や販売者が用意したコンピュータと接続されて使用される。
メイン基板20に設けられたメインコネクタ20A(図12中の右中央付近参照)は、MCU6の端子P19へ接続された端子PUFFと、ゲート端子がMCU6の端子P20へ接続され且つソース端子がグランドラインへ接続されたスイッチQ8のドレイン端子へ接続された端子LEDと、LSW7の出力端子OUTへ接続された端子VIBと、充電IC3の昇圧出力端子RNへ接続された端子VOTGと、抵抗器R5を介してLDO4の出力端子OUTへ接続された端子VMCUと、グランドラインへ接続された端子GNDと、抵抗器R4とこれに直列接続された抵抗器R3からなる分圧回路を介してLDO4の出力端子OUTへ接続された端子KEYと、ゲート端子がMCU6の端子P12へ接続され且つソース端子が昇圧回路11の出力端子VOUTへ接続されたスイッチQ1のドレイン端子に接続された端子HT1(P1)と、ゲート端子がMCU6の端子P13へ接続され且つソース端子が昇圧回路11の出力端子VOUTへ接続されたスイッチQ2のドレイン端子、及び、ゲート端子がMCU6の端子P17へ接続され且つソース端子がグランドラインへ接続されたスイッチQ4のドレイン端子に接続された端子HT1(P2)と、ゲート端子がMCU6の端子P18へ接続され且つソース端子がグランドラインへ接続されたスイッチQ3のドレイン端子に接続された端子HT1(P3)と、が設けられている。
メインコネクタ20Aの端子HT1(P1)は、ポゴピンp1に接続された入力側接点P1へメインFPC23によって接続されている。メインコネクタ20Aの端子HT1(P2)は、ポゴピンp2に接続された入力側接点P2へメインFPC23によって接続されている。メインコネクタ20Aの端子HT1(P3)は、ポゴピンp3に接続された入力側接点P3へメインFPC23によって接続されている。メインコネクタ20Aの端子KEYは、メインFPC23に実装されたスイッチBTの一端に、メインFPC23の配線によって接続されている。このスイッチBTの他端はメインFPC23のグランドラインに接続されている。
メイン基板20に設けられたヒータコネクタ20B(図12中の右上付近参照)は、ヒータFPC24に実装された第1サーミスタth1のプラス側端子へヒータFPC24の配線を介して接続された第1サーミスタ端子TH1と、ヒータFPC24に実装された第2サーミスタth2のプラス側端子へヒータFPC24の配線を介して接続された第2サーミスタ端子TH2と、ヒータFPC24の導電パターンによって形成されたシートヒータHTRのプラス側端子へヒータFPC24の配線を介して接続されたシートヒータ端子HT2と、メイン基板20のグランドラインに接続された端子GNDと、を備える。ヒータFPC24には、第1サーミスタth1のマイナス側端子、第2サーミスタth2のマイナス側端子、及びシートヒータHTRのマイナス側端子へ接続される配線が形成されており、この配線がヒータコネクタ20Bの端子GNDへ接続されている。シートヒータ端子HT2は、ゲート端子がMCU6の端子P11へ接続され且つソース端子が昇圧回路11の出力端子VOUTへ接続されたスイッチQ5のドレイン端子へ接続されている。
パフセンサ基板21(図12中の下中央付近参照)には、吸引センサ15の端子群15Aに接続されたパフセンサ用コネクタ21Aと、メインFPC23に接続されたコネクタ21Bと、振動モータ13に接続された振動モータ用コネクタ21Cと、LED21Dと、バリスタVと、コンデンサC2と、が実装されている。
パフセンサ基板21のコネクタ21Bは、メインコネクタ20Aの端子PUFF、端子LED、端子VIB、端子VOTG、端子VMCU、及び端子GNDのそれぞれと、メインFPC23に形成された配線によって接続される端子(端子PUFF、端子LED、端子VIB、端子VOTG、端子VMCU、及び端子GND)を備える。前述のように、メインFPC23には、メインコネクタ20Aの端子KEYとグランドラインとの間に接続されるスイッチBTが設けられている。スイッチBTが押下されると、端子KEYとメインFPC23のグランドラインとが接続されて、端子KEYの電位がグランド電位となる。一方、スイッチBTが押下されていない状態では、端子KEYとメインFPC23のグランドラインとは非接続となり、端子KEYの電位は不定となる。
パフセンサ基板21のパフセンサ用コネクタ21Aは、吸引センサ15の出力端子へ接続された端子GATEと、吸引センサ15のグランド端子へ接続された端子GNDと、吸引センサ15の電源端子へ接続された端子VDDと、を備える。パフセンサ用コネクタ21Aの端子GATEは、コネクタ21Bの端子PUFFに接続されている。パフセンサ用コネクタ21Aの端子VDDは、コネクタ21Bの端子VMCUに接続されている。パフセンサ用コネクタ21Aの端子GNDは、コネクタ21Bの端子GNDに接続されている。パフセンサ用コネクタ21Aの端子GATEとコネクタ21Bの端子PUFFとの接続ラインにはバリスタVの一端が接続され、バリスタVの他端はグランドラインに接続されている。バリスタVにより、端子GATEに吸引センサ15側から大きな電圧が入力された場合でも、パフセンサ基板21の他の部品やMCU6にその電圧が入力されるのを防ぐことができる。パフセンサ用コネクタ21Aの端子VDDとコネクタ21Bの端子VMCUとの接続ラインには、コンデンサC2の一端が接続され、コンデンサC2の他端はグランドラインに接続されている。コンデンサC2により、メイン基板20側からパフセンサ用コネクタ21Aの端子VDDに不安定な電圧が入力された場合でも、吸引センサ15にコンデンサC2によって平滑化された電圧を入力することができる。
パフセンサ基板21の振動モータ用コネクタ21Cは、コネクタ21Bの端子VIBへ接続されたプラス側端子と、グランドラインへ接続されたマイナス側端子と、を備える。このプラス側端子とマイナス側端子に、振動モータ13が接続される。
パフセンサ基板21のLED21Dは、アノードがコネクタ21Bの端子VOTGへ接続され、カソードがコネクタ21Bの端子LEDへ接続されている。
図12中左上の充電端子1は、4つの端子GNDと、4つの電源入力端子BUSと、を備える。充電端子1の各電源入力端子BUSは、保護IC2の入力端子VINに並列接続されている。充電端子1にUSBプラグが接続され、このUSBプラグを含むUSBケーブルが外部電源に接続された状態、すなわちUSB接続がなされた状態では、充電端子1の電源入力端子BUSを介して、保護IC2の入力端子VINにUSB電圧VUSBが入力される。
保護IC2は、入力端子VINに入力されたUSB電圧VUSBを調整し、既定値(以下では一例として5.0Vとする)のバス電圧VBUSを出力端子OUTから出力する。保護IC2の出力端子OUTには、充電IC3と、抵抗器R1及び抵抗器R2の直列回路からなる分圧回路と、スイッチQ7と、が並列接続されている。具体的には、保護IC2の出力端子OUTは、分圧回路を構成する抵抗器R2の一端と、充電IC3の入力端子VBUSと、ゲート端子がMCU6の端子P21へ接続され且つソース端子がグランドラインへ接続されたスイッチQ7のドレイン端子と、に接続されている。抵抗器R2の他端には抵抗器R1の一端が接続され、抵抗器R1の他端はグランドラインに接続されている。抵抗器R1と抵抗器R2を接続するノードはMCU6の端子P2へ接続されている。保護IC2は、負論理のイネーブル端子CE( ̄)にMCU6からローレベルの信号が入力されている状態では、出力端子OUTからのバス電圧VBUSの出力を行い、イネーブル端子CE( ̄)にMCU6からハイレベルの信号が入力されている状態では、出力端子OUTからのバス電圧VBUSの出力を停止する。
充電IC3は、入力端子VBUSに入力されるバス電圧VBUSに基づいて電源baを充電する充電機能を備える。充電IC3は、検出端子SNSによって電源baの充電電流や充電電圧を取得し、これらに基づいて、電源baの充電制御(充電端子BATから電源baへの電力供給制御)を行う。また、充電IC3は、MCU6が端子P25を介して電源サーミスタth3から取得した電源baの温度情報を、信号線SLを利用したシリアル通信によってMCU6から取得し、充電制御に利用する。
充電IC3は、充電端子BATに入力される電源baの電圧(以下、電源電圧VBATと記載)からシステム電源電圧VSYSを生成して出力端子SYSから出力する第1機能と、入力端子VBUSに入力されるバス電圧VBUSからシステム電源電圧VSYSを生成して出力端子SYSから出力する第2機能と、充電端子BATに入力される電源電圧VBATを昇圧して得られるOTG電圧VOTG(一例として5Vの電圧)を昇圧出力端子RNから出力する第3機能と、を有する。第2機能については、USB接続がなされている状態においてのみ有効化される。このように、システム電源電圧VSYSとOTG電圧VOTGは、電源baが充電IC3への電力供給を可能な正常の状態であり、充電IC3が正常に作動していれば、常時、充電IC3から出力可能となっている。
充電IC3のスイッチング端子SWにはリアクトルL3の一端が接続されている。リアクトルL3の他端は、充電IC3の出力端子SYSに接続されている。充電IC3は、負論理のイネーブル端子CE( ̄)を有し、このイネーブル端子CE( ̄)はMCU6の端子P1へ接続されている。MCU6は、USB接続がなされることで端子P2にハイレベルの信号が入力されると、端子P1の電位をローレベルに制御することで、充電IC3による電源baの充電制御を許可し、更に、第2機能を有効化する。
充電IC3は、負論理の端子QON( ̄)を更に備える。端子QON( ̄)は、抵抗器R3と抵抗器R4とを接続するノードN2に接続され、このノードN2はMCU6の端子P21へ接続されている。充電IC3は、端子QON( ̄)にローレベルの信号が入力されると、出力端子SYSからの電圧出力を停止する。
充電IC3の出力端子SYSには、LDO4と、昇圧回路5と、昇圧回路11とが並列接続されている。具体的には、充電IC3の出力端子SYSは、LDO4の制御端子CTL及び入力端子INと、昇圧回路5の入力端子VINと、昇圧回路11の入力端子VINと、に接続されている。充電IC3の昇圧出力端子RNから出力されるOTG電圧VOTGは、メインコネクタ20Aの端子VOTGとコネクタ21Bの端子VOTGを経由して、LED21Dのアノードに供給される。LED21Dのカソードは、コネクタ21Bの端子LED、メインコネクタ20Aの端子LED、及びスイッチQ8を介してグランドに接続されている。したがって、MCU6がスイッチQ8のオンオフ制御を行うことで、OTG電圧VOTGを用いたLED21Dの点灯制御が可能となっている。
昇圧回路5は、スイッチング端子SWと、MCU6の端子P26へ接続された正論理のイネーブル端子ENと、出力端子VOUTと、端子GNDと、を備える。昇圧回路5のスイッチング端子SWには、リアクトルL5の一端が接続されている。このリアクトルL5の他端は昇圧回路5の入力端子VINに接続されている。昇圧回路5は、スイッチング端子SWに接続された内蔵トランジスタのオンオフ制御を行うことで、リアクトルL5を介してスイッチング端子SWに入力された電圧を昇圧して、出力端子VOUTから出力する。昇圧回路5の出力端子VOUTから出力されるOLED電圧VOLEDは、OLEDパネル17の駆動に適した十分に大きい電圧であり、一例として15Vの電圧である。昇圧回路5の入力端子VINは、昇圧回路5の高電位側の電源端子を構成している。昇圧回路5は、MCU6の端子P26からイネーブル端子ENに入力される信号がハイレベルとなっている場合に、OLED電圧VOLEDの出力を行い、MCU6の端子P26からイネーブル端子ENに入力される信号がローレベルとなっている場合に、OLED電圧VOLEDの出力を停止する。このようにして、OLEDパネル17は、MCU6によって駆動制御される。
昇圧回路11は、入力端子VINと、スイッチング端子SWと、出力端子VOUTと、正論理のイネーブル端子ENと、端子GNDと、を備える。昇圧回路11のスイッチング端子SWには、リアクトルL11の一端が接続されている。このリアクトルL11の他端は昇圧回路11の入力端子VINに接続されている。昇圧回路11は、スイッチング端子SWに接続された内蔵トランジスタのオンオフ制御を行うことで、リアクトルL11を介してスイッチング端子SWに入力された電圧を昇圧して、出力端子VOUTから出力する。昇圧回路11の出力端子VOUTから出力される加熱用電圧VHEATは、一例として4Vの電圧である。昇圧回路11の入力端子VINは、昇圧回路11の高電位側の電源端子を構成している。昇圧回路11は、後述のANDゲート10の出力端子Yからイネーブル端子ENに対して入力される信号がハイレベルとなっている場合に加熱用電圧VHEATの出力を行い、このイネーブル端子ENに入力される信号がローレベルとなっている場合に加熱用電圧VHEATの出力を停止する。
昇圧回路11の出力端子VOUTには、コンデンサC1と、抵抗器R7及び抵抗器R6の直列回路からなる分圧回路と、マルチプレクサ8と、スイッチQ1と、スイッチQ2と、スイッチQ5と、が並列接続されている。具体的には、昇圧回路11の出力端子VOUTは、一端がグランドラインに接続されたコンデンサC1の他端と、グランドラインに接続された抵抗器R6及び抵抗器R6に直列接続された抵抗器R7からなる分圧回路の入力端子(抵抗器R7の抵抗器R6側と反対側の端子)と、マルチプレクサ8の端子VCCと、スイッチQ1のソース端子と、スイッチQ2のソース端子と、スイッチQ5のソース端子とに接続されている。
スイッチQ1には、電気抵抗値Raを持つ抵抗器RAが並列接続されている。スイッチQ2には、電気抵抗値Rbを持つ抵抗器RBが並列接続されている。
マルチプレクサ8は、入力端子B0と、入力端子B1と、出力端子Aと、セレクト端子SEと、を有する。マルチプレクサ8は、MCU6の端子P15からセレクト端子SEに入力される制御信号によって、入力端子B0と出力端子Aを接続する状態と、入力端子B1と出力端子Aを接続する状態とを切り替える。
マルチプレクサ8の入力端子B0は、スイッチQ1と端子HT1(P1)とを接続するラインに接続されている。マルチプレクサ8の入力端子B1は、スイッチQ2と端子HT1(P2)とを接続するラインに接続されている。マルチプレクサ8の出力端子Aは、オペアンプOP1の非反転入力端子に接続されている。オペアンプOP1の反転入力端子は、抵抗器R7と抵抗器R6とを接続するノードへ接続されている。オペアンプOP1の出力端子は、MCU6の端子P14へ接続されている。
LDO4は、制御端子CTLに入力される信号がハイレベルの状態(換言すると、システム電源電圧VSYSが充電IC3の出力端子SYSから出力されている状態)では、入力端子VINに入力されている電圧(すなわちシステム電源電圧VSYS)を変換して得た電圧をシステム電源電圧VMCUとして出力端子OUTから出力する。システム電源電圧VSYSは、一例として3.5V~4.2Vの範囲の値であり、システム電源電圧VMCUは、一例として3.1Vである。
LDO4の出力端子OUTには、OLEDパネル17の制御ICと、MCU6と、LSW7と、吸引センサ15と、抵抗器R3、抵抗器R4、及びスイッチBTからなる直列回路と、デバッグ用コネクタ20Eと、が並列に接続されている。具体的には、LDO4の出力端子OUTは、OLEDコネクタ20Cの端子VDDと、MCU6の電源端子VDDと、LSW7の入力端子VINと、一端がメインコネクタ20Aの端子VMCUに接続された抵抗器R5の他端(図中のノードN1)と、抵抗器R4及び抵抗器R3からなる分圧回路の入力端(図中のノードN1)と、デバッグ用コネクタ20Eの端子VMCUと、に接続されている。
また、LDO4の出力端子OUTには、ゲート端子がMCU6の端子P4に接続されたスイッチQ6のソース端子が接続されている。スイッチQ6のドレイン端子には、ANDゲート10の端子VCCと、FF9の端子VCCと、抵抗器R11の一端と、抵抗器R12の一端と、オペアンプOP2の正電源端子と、抵抗器R8の一端と、抵抗器R9の一端と、オペアンプOP1の正電源端子と、が並列に接続されている。
抵抗器R12の他端は第2サーミスタ端子TH2へ接続されており、抵抗器R12と、第2サーミスタ端子TH2に接続されている第2サーミスタth2との直列回路が、システム電源電圧VMCUが印加される分圧回路を構成する。この分圧回路の出力は、第2サーミスタth2の電気抵抗値(換言すると温度)に応じたものとなり、MCU6の端子P8へ入力される。これにより、MCU6は、第2サーミスタth2の温度を取得可能となっている。本形態では、第2サーミスタth2として、温度の増加に伴って抵抗値が減少するNTC特性を有するものを用いているが、温度の増加に伴って抵抗値が増加するPTC特性を有するものを用いてもよい。
抵抗器R9の他端には抵抗器R10の一端が接続され、抵抗器R10の他端はグランドラインに接続されている。抵抗器R9と抵抗器R10との直列回路が、システム電源電圧VMCUが印加される分圧回路を構成する。この分圧回路の出力は、オペアンプOP2の反転入力端子に接続されており、この反転入力端子には固定の電圧値が入力されることになる。オペアンプOP2の非反転入力端子には、抵抗器R8の他端が接続されている。
また、抵抗器R8の他端は、更に、第1サーミスタ端子TH1と、MCU6の端子P9とに接続されている。抵抗器R8と、第1サーミスタ端子TH1に接続されている第1サーミスタth1との直列回路が、システム電源電圧VMCUが印加される分圧回路を構成する。この分圧回路の出力は、第1サーミスタth1の電気抵抗値(換言すると温度)に応じたものとなり、MCU6の端子P9へ入力される。これにより、MCU6は、第1サーミスタth1の温度(換言すると、シートヒータHTRの温度)を取得可能となっている。また、この分圧回路の出力は、オペアンプOP2の非反転入力端子にも入力される。本形態では、第1サーミスタth1として、温度の増加に伴って抵抗値が減少するNTC特性を有するものを用いている。したがって、オペアンプOP2の出力は、第1サーミスタth1の温度(シートヒータHTRの温度)が高くなってその温度が閾値THD1以上になると、ローレベルとなる。換言すれば、第1サーミスタth1の温度(シートヒータHTRの温度)が正常の範囲にある限りは、オペアンプOP2の出力はハイレベルとなる。
なお、第1サーミスタth1として、温度の増加に伴って抵抗値が増加するPTC特性を持つものを用いる場合には、第1サーミスタth1と抵抗器R8からなる分圧回路の出力がオペアンプOP2の反転入力端子に接続され、抵抗器R9と抵抗器R10からなる分圧回路の出力がオペアンプOP2の非反転入力端子に接続される構成とすればよい。この場合でも、オペアンプOP2の出力は、第1サーミスタth1の温度(シートヒータHTRの温度)が高くなってその温度が閾値THD1以上になると、ローレベルになる。
オペアンプOP2の出力端子は、FF9の入力端子Dへ接続されている。FF9の入力端子DとオペアンプOP2の出力端子とを接続するノードには、抵抗器R11の他端と、FF9に設けられた負論理のクリア端子CLR( ̄)とが接続されている。つまり、FF9の入力端子Dと、FF9のクリア端子CLR( ̄)と、オペアンプOP2の出力端子は、それぞれ、システム電源電圧VMCUの供給ラインに、抵抗器R11によってプルアップされている。
FF9は、クロック端子CLKを有し、クロック端子CLKはMCU6の端子P7に接続されている。FF9は、出力端子Qを有し、出力端子QはANDゲート10の一方の入力端子Bに接続されている。FF9は、MCU6からクロック端子CLKにクロック信号が入力されており、且つ、クリア端子CLR( ̄)にハイレベルの信号が入力されている状態においては、入力端子Dに入力された信号のレベルにしたがったデータ(ハイ又はローのデータ)を保持し、保持したデータを出力端子Qから出力する。FF9は、MCU6からクロック端子CLKにクロック信号が入力されており、且つ、クリア端子CLR( ̄)にローレベルの信号が入力されている状態においては、保持しているデータに関らず、出力端子Qからローレベルの信号を出力するリセット処理を行う。このリセット処理は、クリア端子CLR( ̄)にハイレベルの信号が入力された状態で、クロック端子CLKへのクロック信号の入力し直しが行われることで解除される。すなわち、クリア端子CLR( ̄)にハイレベルの信号が入力された状態で、クロック端子CLKへのクロック信号の供給が停止され、その後、クロック信号の供給が再開されることで、解除される。
ANDゲート10の他方の入力端子Aは、MCU6の端子P6に接続されている。ANDゲート10の出力端子Yは、昇圧回路11の正論理のイネーブル端子ENに接続されている。ANDゲート10は、入力端子Aに入力される信号と入力端子Bに入力される信号が共にハイレベルの状態においてのみ、出力端子Yからハイレベルの信号を出力する。
LSW7は、MCU6の端子P10から制御端子CTLに制御信号が入力されている場合に、入力端子VINに入力されているシステム電源電圧VMCUを出力端子OUTから出力する。LSW7の出力端子OUTは、メイン基板20の端子VIB及びパフセンサ基板21の端子VIBを経由して、振動モータ13へ接続されている。したがって、MCU6がLSW7に制御信号を入力することで、システム電源電圧VMCUを用いて、振動モータ13を作動させることができる。
(スタンバイモードから加熱モードへの遷移)
電源ユニット100は、動作モードとして、省電力化を図るスリープモードと、スリープモードから遷移可能なスタンバイモードと、スタンバイモードから遷移可能な加熱モード(リキッドヒータやシートヒータHTRの加熱を行ってエアロゾル生成を行うモード)と、を備える。MCU6は、スリープモードにおいて、スイッチBTに対する特定の操作(例えば長押し操作)を検出すると、動作モードをスタンバイモードに切り替える。MCU6は、スタンバイモードにおいて、スイッチBTに対する特定の操作(例えば短押し操作)を検出すると、動作モードを加熱モードに切り替える。
電源ユニット100は、動作モードとして、省電力化を図るスリープモードと、スリープモードから遷移可能なスタンバイモードと、スタンバイモードから遷移可能な加熱モード(リキッドヒータやシートヒータHTRの加熱を行ってエアロゾル生成を行うモード)と、を備える。MCU6は、スリープモードにおいて、スイッチBTに対する特定の操作(例えば長押し操作)を検出すると、動作モードをスタンバイモードに切り替える。MCU6は、スタンバイモードにおいて、スイッチBTに対する特定の操作(例えば短押し操作)を検出すると、動作モードを加熱モードに切り替える。
(加熱モードの動作)
図13は、加熱モードの動作にかかわる電子部品を図12に示す回路から抽出して示した回路図である。図13には、図12には示していなかったコンデンサC3が追加で示されている。図14は、シートヒータHTR及びリキッドヒータの加熱制御と、振動モータ13の駆動制御と、LED21Dの駆動制御とに関わる電子部品を図12に示す回路から抽出して示した回路図である。以下、図13と図14を参照して加熱モードの動作を説明する。
図13は、加熱モードの動作にかかわる電子部品を図12に示す回路から抽出して示した回路図である。図13には、図12には示していなかったコンデンサC3が追加で示されている。図14は、シートヒータHTR及びリキッドヒータの加熱制御と、振動モータ13の駆動制御と、LED21Dの駆動制御とに関わる電子部品を図12に示す回路から抽出して示した回路図である。以下、図13と図14を参照して加熱モードの動作を説明する。
MCU6は、加熱モードに遷移すると、図13に示されたスイッチQ6をオン状態に制御する。これにより、ANDゲート10、FF9、抵抗器R11、オペアンプOP2、抵抗器R11、抵抗器R9及び抵抗器R10からなる分圧回路、抵抗器R8及び第1サーミスタth1からなる分圧回路、抵抗器R12及び第2サーミスタth2からなる分圧回路、及びオペアンプOP1のそれぞれに、システム電源電圧VMCUが供給されることになる。更に、MCU6は、加熱モードに遷移すると、端子P6からANDゲート10の入力端子Aに入力する信号をハイレベルに制御する。また、MCU6は、FF9のクロック端子CLKにクロック信号の入力を開始する。この状態では、第1サーミスタth1の温度(シートヒータHTRの温度)が正常の範囲(閾値THD1未満)であれば、オペアンプOP2の出力はハイレベルとなり、その結果、FF9の出力はハイレベルとなり、その結果、ANDゲート10の出力はハイレベルとなる。このため、昇圧回路11から加熱用電圧VHEATの出力が開始されて、シートヒータHTRとリキッドヒータを加熱可能な状態となる。
(リキッドヒータの接続先の判定)
昇圧回路11から加熱用電圧VHEATの出力が開始されると、図14に示すように、シートヒータ端子HT2に接続されたシートヒータHTRと、端子HT1(P1)~端子HT1(P3)のいずれか2つに接続されたリキッドヒータ(図14では、端子HT1(P1)と端子HT1(P2)に接続されたリキッドヒータhtrを記載)とに、電力の供給が可能な状態となる。この状態において、まず、MCU6は、ポゴピンp1、ポゴピンp2、及びポゴピンp3のうち、どのペアにリキッドヒータが接続されているのかを、図12に示したオペアンプOP1の出力によって判定する。この判定工程は、次の第一工程、第二工程、及び第三工程を含む。
昇圧回路11から加熱用電圧VHEATの出力が開始されると、図14に示すように、シートヒータ端子HT2に接続されたシートヒータHTRと、端子HT1(P1)~端子HT1(P3)のいずれか2つに接続されたリキッドヒータ(図14では、端子HT1(P1)と端子HT1(P2)に接続されたリキッドヒータhtrを記載)とに、電力の供給が可能な状態となる。この状態において、まず、MCU6は、ポゴピンp1、ポゴピンp2、及びポゴピンp3のうち、どのペアにリキッドヒータが接続されているのかを、図12に示したオペアンプOP1の出力によって判定する。この判定工程は、次の第一工程、第二工程、及び第三工程を含む。
(第一工程)
MCU6は、スイッチQ1-Q4のうちスイッチQ4のみをオンに制御した状態で、マルチプレクサ8の入力端子B0と出力端子Aを接続する制御を行う。この状態では、端子HT1(P1)と端子HT1(P2)間の電気抵抗値をRxとすると、分圧値=VHEAT*{Rx/(Ra+Rx)}がオペアンプOP1の非反転入力端子に入力される。オペアンプOP1では、非反転入力端子に入力される電圧と、端子HT1(P1)と端子HT1(P2)間にリキッドヒータが接続されていた場合の上記分圧値の値とが比較され、その差が小さい場合には、オペアンプOP1の出力がローレベルとなる。したがって、オペアンプOP1の出力がローレベルとなった場合には、MCU6は、端子HT1(P1)と端子HT1(P2)間にリキッドヒータが接続されていると判定する。
MCU6は、スイッチQ1-Q4のうちスイッチQ4のみをオンに制御した状態で、マルチプレクサ8の入力端子B0と出力端子Aを接続する制御を行う。この状態では、端子HT1(P1)と端子HT1(P2)間の電気抵抗値をRxとすると、分圧値=VHEAT*{Rx/(Ra+Rx)}がオペアンプOP1の非反転入力端子に入力される。オペアンプOP1では、非反転入力端子に入力される電圧と、端子HT1(P1)と端子HT1(P2)間にリキッドヒータが接続されていた場合の上記分圧値の値とが比較され、その差が小さい場合には、オペアンプOP1の出力がローレベルとなる。したがって、オペアンプOP1の出力がローレベルとなった場合には、MCU6は、端子HT1(P1)と端子HT1(P2)間にリキッドヒータが接続されていると判定する。
(第二工程)
MCU6は、第一工程でオペアンプOP1の出力がハイレベルとなった場合には、スイッチQ1-Q4のうちスイッチQ3のみをオンに制御した状態で、マルチプレクサ8の入力端子B0と出力端子Aを接続する制御を行う。この状態では、端子HT1(P1)と端子HT1(P3)間にリキッドヒータが接続されていた場合には、オペアンプOP1の出力がローレベルとなる。したがって、オペアンプOP1の出力がローレベルとなった場合には、MCU6は、端子HT1(P1)と端子HT1(P3)間にリキッドヒータが接続されていると判定する。
MCU6は、第一工程でオペアンプOP1の出力がハイレベルとなった場合には、スイッチQ1-Q4のうちスイッチQ3のみをオンに制御した状態で、マルチプレクサ8の入力端子B0と出力端子Aを接続する制御を行う。この状態では、端子HT1(P1)と端子HT1(P3)間にリキッドヒータが接続されていた場合には、オペアンプOP1の出力がローレベルとなる。したがって、オペアンプOP1の出力がローレベルとなった場合には、MCU6は、端子HT1(P1)と端子HT1(P3)間にリキッドヒータが接続されていると判定する。
(第三工程)
MCU6は、第二工程でオペアンプOP1の出力がハイレベルとなった場合には、スイッチQ1-Q4のうちスイッチQ3のみをオンに制御した状態で、マルチプレクサ8の入力端子B1と出力端子Aを接続する制御を行う。この状態では、端子HT1(P2)と端子HT1(P3)間にリキッドヒータが接続されていた場合には、オペアンプOP1の出力がローレベルとなる。したがって、オペアンプOP1の出力がローレベルとなった場合には、MCU6は、端子HT1(P2)と端子HT1(P3)間にリキッドヒータが接続されていると判定する。
MCU6は、第二工程でオペアンプOP1の出力がハイレベルとなった場合には、スイッチQ1-Q4のうちスイッチQ3のみをオンに制御した状態で、マルチプレクサ8の入力端子B1と出力端子Aを接続する制御を行う。この状態では、端子HT1(P2)と端子HT1(P3)間にリキッドヒータが接続されていた場合には、オペアンプOP1の出力がローレベルとなる。したがって、オペアンプOP1の出力がローレベルとなった場合には、MCU6は、端子HT1(P2)と端子HT1(P3)間にリキッドヒータが接続されていると判定する。
MCU6は、第一工程から第三工程のいずれでもオペアンプOP1の出力がローレベルとならなかった場合には、エラー通知を行う。
(加熱制御の開始)
MCU6は、上記の判定工程を終えた状態で、吸引センサ15の出力レベルが、ユーザによる吸引が行われたときに相当する値に変化した場合には、シートヒータHTRとリキッドヒータの加熱制御を開始する。具体的には、MCU6は、図14に示したスイッチQ5をオンオフ制御(例えばPWM制御やPFM制御)することで、シートヒータHTRの加熱制御を行う。また、このとき、MCU6は、端子P8に入力される信号から取得した第2サーミスタth2の温度(換言すると、シートヒータHTRの温度)に基づいて、シートヒータHTRの温度が目標温度に収束するように、シートヒータHTRの加熱制御を行う。この加熱制御には、例えばPID(Proportional-Integral-Differential)制御が用いられる。
MCU6は、上記の判定工程を終えた状態で、吸引センサ15の出力レベルが、ユーザによる吸引が行われたときに相当する値に変化した場合には、シートヒータHTRとリキッドヒータの加熱制御を開始する。具体的には、MCU6は、図14に示したスイッチQ5をオンオフ制御(例えばPWM制御やPFM制御)することで、シートヒータHTRの加熱制御を行う。また、このとき、MCU6は、端子P8に入力される信号から取得した第2サーミスタth2の温度(換言すると、シートヒータHTRの温度)に基づいて、シートヒータHTRの温度が目標温度に収束するように、シートヒータHTRの加熱制御を行う。この加熱制御には、例えばPID(Proportional-Integral-Differential)制御が用いられる。
また、MCU6は、端子HT1(P1)と端子HT1(P2)間にリキッドヒータが接続されている場合には、図14に示したスイッチQ1~Q4のうち、スイッチQ4をオン状態に制御し、スイッチQ2とスイッチQ3をオフ状態に制御し、スイッチQ1をオンオフ制御(例えばPWM制御やPFM制御)することで、リキッドヒータの加熱制御を行う。MCU6は、端子HT1(P1)と端子HT1(P3)間にリキッドヒータが接続されている場合には、スイッチQ1~Q4のうち、スイッチQ3をオン状態に制御し、スイッチQ2とスイッチQ4をオフ状態に制御し、スイッチQ1をオンオフ制御することで、リキッドヒータの加熱制御を行う。MCU6は、端子HT1(P2)と端子HT1(P3)間にリキッドヒータが接続されている場合には、スイッチQ1~Q4のうち、スイッチQ3をオン状態に制御し、スイッチQ1とスイッチQ4をオフ状態に制御し、スイッチQ2をオンオフ制御することで、リキッドヒータの加熱制御を行う。
図13に示したように、LDO4から出力されているシステム電源電圧VMCUは、パフセンサ用コネクタ21Aに接続された吸引センサ15には常時供給される。一方、加熱モードのときにのみ動作が必要な電子部品には、システム電源電圧VMCUがスイッチQ6を介して供給される。このような構成により、加熱モード以外においては、上記電子部品の電力消費を低減することが可能になる。吸引センサ15へのシステム電源電圧VMCUの投入直後は、吸引センサ15の動作が不安定になる虞がある。そこで、吸引センサ15にはシステム電源電圧VMCUが常時供給されることで、加熱モードに遷移してから直ぐに吸引が行われた場合でも、その吸引動作を吸引センサ15によって高精度に検出することができる。
また、本形態では、吸引センサ15が実装されるパフセンサ基板21と、ノイズ源となりやすいMCU6が実装されるメイン基板20とが物理的に離れて配置されている。これによって、常時動作する吸引センサ15をより安定的に動作させることができる。また、パフセンサ基板21には、静電気などのノイズの侵入口となりやすいスイッチBTは実装されず、スイッチBTはメインFPC23に直接実装されている。これによっても、常時動作する吸引センサ15をより安定的に動作させることができる。また、スイッチBTを柔軟なメインFPC23に実装していることで、スイッチBTと吸引センサ15との距離を容易に離すことが可能である。
また、本形態では、吸引センサ15が実装されるパフセンサ基板21と、ノイズ源となりやすいMCU6が実装されるメイン基板20とが物理的に離れて配置されている。これによって、常時動作する吸引センサ15をより安定的に動作させることができる。また、パフセンサ基板21には、静電気などのノイズの侵入口となりやすいスイッチBTは実装されず、スイッチBTはメインFPC23に直接実装されている。これによっても、常時動作する吸引センサ15をより安定的に動作させることができる。また、スイッチBTを柔軟なメインFPC23に実装していることで、スイッチBTと吸引センサ15との距離を容易に離すことが可能である。
図14には、電源baへ電気的に接続されるコネクタ(メインコネクタ20A及びヒータコネクタ20B)と、FPCやリード線等のケーブルを介してメインコネクタ20Aへ接続されるLED21D及び振動モータ13と、メインコネクタ20Aの低電位側へ電気的に接続され且つ電源baとLED21Dの間の電気的な接続を開閉可能なスイッチQ8と、メインコネクタ20Aの高電位側へ電気的に接続され且つ電源baと振動モータ13の間の電気的な接続を開閉可能なLSW7と、が示されている。
ここで、電源baからの電力供給を受ける負荷であるLED21Dと振動モータ13に着目する。振動モータ13は、振動することによって逆起電力(低電位側から高電位側へ流れる逆流電流)が生じ得る。本形態では、振動モータ13への給電制御のために用いられるスイッチが、単純なスイッチではない、逆流防止機能を持つ高機能なLSW7とされている。これにより、振動モータ13で生じた逆起電力や逆流電流がMCU6に入力されるのを防ぐことができ、MCU6の耐久性を向上させている。
一方、LED21Dは、逆起電力の懸念はないものの、振動モータ13の動作電圧(具体的にはシステム電源電圧VMCU)よりも大きな動作電圧(具体的にはOTG電圧VOTG)で駆動される。これは、LED21Dの輝度を高くするためには、動作電圧を大きくする必要があるからである。本形態では、LED21Dへの給電制御を行うためのスイッチQ8が、メインコネクタ20Aの低電位側に接続されている。これにより、スイッチQ8が短絡しても、スイッチQ8からMCU6に対し、システム電源電圧VMCUよりも高いOTG電圧VOTGが入力されるのを防ぐことができる。このように、スイッチQ8を低電位側に設けることで、OTG電圧VOTGを、システム電源電圧VMCUによって制限されることなく、高い値とすることができ、LED21Dの輝度を効果的に高めることができる。
図14には、更に、FPC等のケーブルを介してヒータコネクタ20Bへ接続されるシートヒータHTRと、FPC等のケーブルを介してメインコネクタ20Aへ接続されるリキッドヒータ(図ではリキッドヒータhtrを一例として記載)と、ヒータコネクタ20Bの高電位側へ電気的に接続され且つ電源baとシートヒータHTRの間の電気的な接続を開閉可能なスイッチQ5と、メインコネクタ20Aの高電位側へ電気的に接続され且つ電源baとリキッドヒータの間の電気的な接続を開閉可能なスイッチQ1及びスイッチQ2と、メインコネクタ20Aの低電位側へ電気的に接続され且つ電源baとリキッドヒータの間の電気的な接続を開閉可能なスイッチQ3及びスイッチQ4と、が示されている。
ここで、電源baからの電力供給を受ける負荷であるシートヒータHTRとリキッドヒータに着目する。リキッドヒータはエアロゾル源を霧化させる必要があるため、単位時間あたりに多くの電力を供給する必要がある。一方、シートヒータHTRは、香味源から放出される香味の量が向上される程度の電力が供給されれば良いため、単位時間あたりに供給が必要な電力はリキッドヒータよりも多くない。したがって、リキッドヒータへの給電制御を行うためのスイッチQ1~Q4については、シートヒータHTRへの給電制御を行うためのスイッチQ5よりも短絡の可能性が高い。
本形態では、リキッドヒータに対しては、高電位側に(換言すると電源baとの間に)スイッチQ1及びスイッチQ2が接続され、低電位側に(換言するとグランドとの間に)スイッチQ3及びスイッチQ4が接続されている。これにより、スイッチQ1及びスイッチQ2のうちのリキッドヒータへ接続されている方と、スイッチQ3及びスイッチQ4のうちのリキッドヒータへ接続されている方とのどちらか一方が短絡しても、他方のスイッチをオフ状態に制御することで、一方のスイッチの短絡電流がリキッドヒータへ供給され続けることを抑制できる。これにより、電源ユニット100の安全性を向上させることができる。なお、スイッチQ1に並列接続される抵抗器RAの電気抵抗値Raと、スイッチQ2に並列接続される抵抗器RBの電気抵抗値Rbは、十分に高い値である。つまり、抵抗器RA及び抵抗器RBを経由した短絡電流がリキッドヒータへ供給されることはない点に留意されたい。
また、本形態では、シートヒータHTRに対しては、高電位側に(換言すると電源baとの間に)スイッチQ5のみが接続されている。前述のように、スイッチQ5は短絡の可能性が低いため、シートヒータHTRとグランドとの間に別のスイッチを設けずとも、安全性を確保することができる。また、シートヒータHTRについては、後述の保護回路によってその温度が過剰に高くならないよう制御される。そのため、仮に、スイッチQ5が短絡した場合であっても、保護回路の機能によって、シートヒータHTRが加熱され続けるのは防ぐことができる。この観点からも、シートヒータHTRとグランドとの間に別のスイッチを設けずとも、安全性を確保できる。このように、シートヒータHTRに接続するスイッチを1つのみにすることで、電源ユニット100の部品点数が減少し、電源ユニット100の製造コストを低減できる。
(ヒータの過加熱保護)
電源ユニット100では、加熱モードにおいて、第1サーミスタth1の温度が閾値THD1以上になると、オペアンプOP2の出力がローレベルとなるように、抵抗器R8、抵抗器R9、及び抵抗器R10のそれぞれの電気抵抗値が決められている。第1サーミスタth1の温度が閾値THD1以上になって、オペアンプOP2の出力がローレベルになると、FF9のクリア端子CLR( ̄)にローレベルが入力される。これにより、FF9が保持したデータが取り消されることでFF9の出力が強制的にローレベルとなるため、ANDゲート10の出力もローレベルとなって、昇圧回路11は加熱用電圧VHEATの出力を停止する。つまり、オペアンプOP2の出力がローレベルになることは、昇圧回路11のイネーブル端子ENに入力される信号がローレベルになることを意味する。
電源ユニット100では、加熱モードにおいて、第1サーミスタth1の温度が閾値THD1以上になると、オペアンプOP2の出力がローレベルとなるように、抵抗器R8、抵抗器R9、及び抵抗器R10のそれぞれの電気抵抗値が決められている。第1サーミスタth1の温度が閾値THD1以上になって、オペアンプOP2の出力がローレベルになると、FF9のクリア端子CLR( ̄)にローレベルが入力される。これにより、FF9が保持したデータが取り消されることでFF9の出力が強制的にローレベルとなるため、ANDゲート10の出力もローレベルとなって、昇圧回路11は加熱用電圧VHEATの出力を停止する。つまり、オペアンプOP2の出力がローレベルになることは、昇圧回路11のイネーブル端子ENに入力される信号がローレベルになることを意味する。
MCU6からシートヒータHTRへの電力供給制御が正常に機能していれば、原則として第1サーミスタth1の温度は閾値THD1以上とはならない。つまり、第1サーミスタth1の温度が閾値THD1以上になった場合には、シートヒータHTRへ電力を供給する回路(具体的にはスイッチQ5)又はMCU6に何らかの不具合が生じている可能性が高いことを意味する。
本形態では、オペアンプOP2から出力されるローレベルの信号によって、MCU6やスイッチQ5を制御するのではなく、加熱用電圧VHEATの出力を行う昇圧回路11を制御して、シートヒータHTRの加熱を停止させている。このように、シートヒータHTRへの電力供給を確実に停止できる昇圧回路11にオペアンプOP2の出力信号が入力されることで、シートヒータHTRが高温となったときの安全性を高めている。例えば、MCU6がフリーズ又はスイッチQ5が短絡することで、第1サーミスタth1の温度が閾値THD1以上となった場合には、MCU6又はスイッチQ5を制御することはできない。このような場合でも、昇圧回路11のイネーブル端子ENにオペアンプOP2からのローレベルの信号が入力されるようにすることで、シートヒータHTRへの電力供給を確実に停止させることができる。
また、昇圧回路11から加熱用電圧VHEATの出力を停止させる方法としては、昇圧回路11に入力されるシステム電源電圧VSYSを生成する充電ICのイネーブル端子CE( ̄)にハイレベルの信号を入力する方法も考えられる。この方法に対し、昇圧回路11のイネーブル端子ENにオペアンプOP2の出力を入力できるようにした構成によれば、回路構成を簡素化して製造コストを低減できるメリットがある。
なお、FF9の出力をハイレベルに戻すためには、MCU6によるFF9のクロック端子CLKへのクロック信号の入力し直し(換言すると、FF9の再起動)が必要である。つまり、昇圧回路11からの出力が停止してから、第1サーミスタth1の温度が閾値THD1未満に戻ったとしても、MCU6がFF9の再起動処理を行わない限り、昇圧回路11からの出力は再開されない。
第1サーミスタth1の温度が閾値THD1以上となった要因が、MCU6のフリーズであった場合を想定する。この場合、ANDゲート10の入力端子Aにはハイレベルの信号が入力され続け、また、FF9へクロック信号が入力され続ける。エアロゾル生成装置200には、詳細は後述するが、ユーザによるスイッチBTの操作によって、MCU6の再起動(リセット)が可能な再起動回路RBT(図19参照)が設けられている。保護回路が機能した要因がMCU6のフリーズであった場合には、ユーザによってMCU6の再起動がなされる。MCU6が再起動することで、FF9の再起動が行われる。また、MCU6が再起動することで、ANDゲート10の入力端子Aに入力される信号はローレベルとなる。また、MCU6が再起動したタイミングでは、スイッチQ6はオフ状態であるため、ANDゲート10の入力端子Bの信号の電位は不定となる。したがって、MCU6が再起動しただけでは、昇圧回路11からの出力は再開されない。MCU6の再起動後、ユーザ操作によって動作モードが加熱モードに移行することで、ANDゲート10の入力端子Aに入力される信号はハイレベルとなる。また、スイッチQ6がオン状態となることで、ANDゲート10の入力端子Bに入力される信号はハイレベルとなる。これによって、昇圧回路11からの出力が再開されることになる。
このように、昇圧回路11からの出力の再開はMCU6が制御する(ユーザの意思を反映してから出力を再開する制御を行う)ことで、ユーザの意図に反してシートヒータHTRの加熱が再開されるのを防いで、安全性や利便性を高めることができる。
以上のように、ANDゲート10、FF9、及びオペアンプOP2は、シートヒータHTRが高温になった場合にシートヒータHTRへの電力供給を停止して保護を図る保護回路を構成している。この保護回路は、昇圧回路11をディセーブルにする指令をMCU6から受けることなく、換言すると、ANDゲート10の入力端子Aにハイレベルの信号が入力され且つFF9のクロック端子CLKにクロック信号が入力されている状態であっても、第1サーミスタth1の温度に応じて、自律的に、昇圧回路11からの出力を停止させることができる。これにより、MCU6にフリーズなどの障害が生じていても、シートヒータHTRやリキッドヒータによる加熱の緊急停止を実行できるので、エアロゾル生成装置200の安全性を向上させることができる。
また、MCU6は、端子P8に入力される信号に基づいて取得した第2サーミスタth2の温度が閾値THD2(この値は閾値THD1よりも小さい値)以上であると判定した場合には、ANDゲート10の入力端子Aに入力する信号をローレベルにする。これにより、ANDゲート10の出力はローレベルとなって、昇圧回路11は加熱用電圧VHEATの出力を停止する。このように、MCU6が正常に作動している場合には、MCU6からの指令によっても、昇圧回路11からの出力を停止させることができる。これにより、例えば、第1サーミスタth1が正常に作動していない場合であっても、MCU6からの指令によって、昇圧回路11からの出力を停止させて安全性を高めることができる。また、閾値THD2は閾値THD1よりも小さい。このため、MCU6が正常に作動していれば、シートヒータHTRの温度が高くなった場合には、保護回路よりも先にMCU6が昇圧回路11からの出力を停止させることができ、安全性を更に高めることができる。
本形態において、MCU6は、端子P9に入力される信号から第1サーミスタth1の温度を取得可能である。このため、MCU6は、第2サーミスタth2の温度を正常に取得できるか否かを判定し、第2サーミスタth2の温度を正常に取得できない場合には、第1サーミスタth1の温度に基づいて、シートヒータHTRの温度が目標温度に収束するように、シートヒータHTRの加熱制御を行うことが好ましい。これにより、第2サーミスタth2に何らかの異常が生じた場合でも、第1サーミスタth1によってシートヒータHTRの加熱制御を実行することができる。第2サーミスタth2の温度を正常に取得できるか否かの判定は、端子P8に入力される信号が異常値を示しているか否か、又は、その信号を取得できるか否か等を判定することで行うことができる。
ただし、基本的には、MCU6は、第2サーミスタth2の温度に基づいて、シートヒータHTRの加熱制御を実行する。そのため、第2サーミスタth2は、シートヒータHTRの温度をより正確に反映できるような位置に配置されることが好ましい。一方、第1サーミスタth1は、シートヒータHTRが高温になった場合に、保護回路によって昇圧回路11からの出力を停止するために主に用いられる。このため、シートヒータHTRの高温状態を確実に検出できるように、シートヒータHTRのより高温になりやすい位置に、第1サーミスタth1は配置されることが好ましい。第1サーミスタth1及び第2サーミスタth2が実装されるヒータFPC24の詳細構成については、後述する。
なお、上述した保護回路において、FF9は必須ではなく省略可能である。図15は、FF9を省略した場合の図13に対応する回路図である。FF9を省略する場合には、図15に示すように、オペアンプOP2の出力端子がANDゲート10の入力端子Bへ接続される構成とすればよい。図15に示す構成では、第1サーミスタth1の温度が閾値THD1以上になってオペアンプOP2の出力がローレベルになると、ANDゲート10の出力がローレベルになる。これにより、シートヒータHTRが高温となった場合に、昇圧回路11からの出力を停止させることができる。図15に示す構成によれば、FF9を削除できる分、電源ユニット100の小型化と軽量化と省電力化を実現できる。
また、上述した保護回路において、FF9とANDゲート10の両方を省略することも可能である。図16は、FF9とANDゲート10を省略した場合の図13に対応する回路図である。FF9とANDゲート10を省略する場合には、図16に示すように、オペアンプOP2の出力端子とMCU6の端子P6がそれぞれ昇圧回路11のイネーブル端子ENへ接続される構成とすればよい。図16に示す構成では、第1サーミスタth1の温度が閾値THD1以上になってオペアンプOP2の出力がローレベルになると、MCU6の端子P6からハイレベルの信号が出力されている状態であっても、昇圧回路11のイネーブル端子ENはローレベルとなる。これにより、シートヒータHTRが高温となった場合に、昇圧回路11からの出力を停止させることができる。図16に示す構成によれば、FF9とANDゲート10を削除できる分、電源ユニット100の小型化と軽量化と省電力化を実現できる。
(ヒータFPC24の構成)
図17は、図6に示した加熱部60及び流路形成体19の分解斜視図である。図18は、図17に示すヒータFPC24の展開図である。伝熱チューブ61と流路形成体19は、伝熱チューブ61の下端部に流路形成体19の上端部が挿通された状態で固定されている。これにより、流路形成体19は、伝熱チューブ61の内側に第2カートリッジ120が収容された状態で第2カートリッジ120の底が当接する台座として機能する。流路形成体19は、断熱機能の高い素材で構成されることが好ましく、例えばシリコーン等で構成される。流路形成体19が断熱機能の高い素材で構成されると、シートヒータHTRの熱は、第2カートリッジ120だけでなく、伝熱チューブ61の下端側において流路形成体19にも伝達される。
図17は、図6に示した加熱部60及び流路形成体19の分解斜視図である。図18は、図17に示すヒータFPC24の展開図である。伝熱チューブ61と流路形成体19は、伝熱チューブ61の下端部に流路形成体19の上端部が挿通された状態で固定されている。これにより、流路形成体19は、伝熱チューブ61の内側に第2カートリッジ120が収容された状態で第2カートリッジ120の底が当接する台座として機能する。流路形成体19は、断熱機能の高い素材で構成されることが好ましく、例えばシリコーン等で構成される。流路形成体19が断熱機能の高い素材で構成されると、シートヒータHTRの熱は、第2カートリッジ120だけでなく、伝熱チューブ61の下端側において流路形成体19にも伝達される。
ヒータFPC24は、筒状体で構成された伝熱チューブ61の外周面61Sに巻き付けて固着される巻き付け領域24Aと、メイン基板20のヒータコネクタ20Bに挿入されるコネクタ領域24Bと、巻き付け領域24Aとコネクタ領域24Bを繋ぐ連結領域24Cと、から構成されている。
巻き付け領域24Aは、第1サーミスタth1及び第2サーミスタth2が実装されるサーミスタ実装領域240Aと、シートヒータHTRを構成する導電パターンPhが形成されたヒータ領域240Bと、サーミスタ実装領域240Aとヒータ領域240Bの間の中間領域240Cと、から構成されている。このように、シートヒータHTRと第1サーミスタth1及び第2サーミスタth2が同一のFPCに実装されることで、シートヒータHTRとサーミスタをそれぞれ別の基板に設ける場合に比べて、簡易な構造とすることができ、電源ユニット100のコストやサイズを低減できる。
図17に示すように、巻き付け領域24Aは、伝熱チューブ61の径方向に見て、ヒータ領域240Bに対し、伝熱チューブ61とは反対側にサーミスタ実装領域240Aが重なる状態で、伝熱チューブ61の外周面61Sに巻き付けられる。この構成により、シートヒータHTRと第1サーミスタth1及び第2サーミスタth2を極力近づけて配置できるので、シートヒータHTRの加熱制御や保護回路による保護制御の精度を向上できる。
図18に示すように、サーミスタ実装領域240Aには、端子T11と、端子T12と、端子T13と、端子T14とが、伝熱チューブ61の軸方向に並んで配置されている。第1サーミスタth1のプラス側端子は端子T11に接続され、第1サーミスタth1のマイナス側端子は端子T12に接続されている。第2サーミスタth2のマイナス側端子は端子T13に接続され、第2サーミスタth2のプラス側端子は端子T14に接続されている。図18の左上の拡大図に示すように、第1サーミスタth1と第2サーミスタth2は、それぞれ、長手方向が伝熱チューブ61の軸方向と一致する状態で、サーミスタ実装領域240Aに、伝熱チューブ61の軸方向に並んで実装されている。
このように、第1サーミスタth1と第2サーミスタth2が伝熱チューブ61の軸方向に並ぶことで、第1サーミスタth1と第2サーミスタth2が伝熱チューブ61の周方向に並ぶ構成と比べると、サーミスタ実装領域240Aの軸方向の幅を太くできる。また、第1サーミスタth1と第2サーミスタth2のそれぞれの長手方向が伝熱チューブ61の軸方向と一致していることで、第1サーミスタth1と第2サーミスタth2のそれぞれの長手方向が伝熱チューブ61の軸方向と直交する構成と比べると、サーミスタ実装領域240Aの軸方向の幅を太くできる。これにより、ヒータFPC24の耐久性を向上させることができる。
なお、第1サーミスタth1と第2サーミスタth2のそれぞれの長手方向が、伝熱チューブ61の軸方向と非直交であれば、サーミスタ実装領域240Aの軸方向の幅を太くできる効果は得られる。
第2サーミスタth2は、第1サーミスタth1よりも、伝熱チューブ61の軸方向(シートヒータHTRの短手方向、及び、電源ユニット100の上下方向と同義)におけるシートヒータHTRの中央に近い位置に配置されている。すなわち、伝熱チューブ61の軸方向(図18中の上下の方向)におけるシートヒータHTRの中央と第2サーミスタth2との間の最短距離は、該軸方向におけるシートヒータHTRの中央と第1サーミスタth1との間の最短距離より短くなっている。この構成によれば、シートヒータHTRの軸方向中央寄りに配置される第2サーミスタth2の方が、第1サーミスタt1よりも空冷の効果を受けにくくなる。このため、シートヒータHTRの正確な温度を反映できる。このような第2サーミスタth2を用いてヒータの加熱制御を実行することで、シートヒータHTRの加熱制御の精度を向上させることができる。
また、第2サーミスタth2は、電源ユニット100の上下方向において、第1サーミスタth1よりも流路形成体19に近い位置に配置されている。すなわち、第2サーミスタth2と流路形成体19の間の最短距離は、第1サーミスタth1と流路形成体19の間の最短距離より短くなっている。流路形成体19としてシリコーン等の断熱性の高いものを用いた場合には、流路形成体19により近い第2サーミスタth2の温度の方が、第1サーミスタth1の温度よりも、流路形成体19に熱を奪われる分、低い値を示す。本形態では、このような相対的に低めの温度を示す第2サーミスタth2を用いてシートヒータHTRの加熱制御を実行するため、シートヒータHTRが高温になりにくくなる効果を得ることができる。一方、第1サーミスタth1の温度は、流路形成体19から離れている分、第2サーミスタth2の温度よりも高い値を示す。つまり、シートヒータHTRが過度に加熱されている場合には、第1サーミスタth1がより早くその温度を反映した高温状態となる。このため、シートヒータHTRが高温になった場合に保護回路を迅速に作動させることができ、安全性を高めることができる。
図18中の中央下の拡大図に示すように、コネクタ領域24Bには、端子T1と、端子T2と、端子T3と、端子T4と、端子T5が、この順番で上下方向に並んで配置されている。図18において、端子T1~端子T5のそれぞれには、その接続先であるヒータコネクタ20Bの端子名が括弧内に記載されている。図12では、ヒータコネクタ20Bに含まれる端子GNDを1つとして図示しているが、実際には、図18に示すように、ヒータコネクタ20Bには2つの端子GNDが含まれる。
端子T1には、1本の導線で構成された導電パターン242の一端が接続されている。導電パターン242の他端は、1本の導線で構成された導電パターンPhの一端に接続されている。導電パターンPhの他端には、1本の導線で構成された導電パターン241の一端が接続されている。導電パターン241の他端は、端子T5に接続されている。
端子T2には、1本の導線で構成された導電パターン243の一端が接続されている。導電パターン243の他端は、端子T11に接続されている。端子T4には、1本の導線で構成された導電パターン245の一端が接続されている。導電パターン245の他端は、端子T14に接続されている。端子T3には、1本の導線で構成された導電パターン244の一端が接続されている。導電パターン244の他端には、端子T12と端子T13が並列に接続されている。ヒータFPC24における各導電パターンは互いに絶縁されている。図18において、端子T11~端子T14のそれぞれには、その電気的な接続先であるヒータコネクタ20Bの端子名が括弧内に記載されている。
ヒータFPC24では、第1サーミスタth1と第2サーミスタth2とで、グランドに接続するための導電パターン244が共通化されている。これにより、第1サーミスタth1と第2サーミスタth2のそれぞれに対してグランドに接続するための導電パターンを設ける場合に比べて、ヒータFPC24の配線を簡単なものにでき、電源ユニット100の製造コストを低減できる。また、導電パターンPhに接続される導電パターン241と導電パターン242の幅を、限られたヒータFPC24においてできる限り太くできる。これにより、導電パターン241と導電パターン242の寄生抵抗を低減できるので、シートヒータHTRへより高効率に電力を供給できる。
また、ヒータFPC24では、第1サーミスタth1と第2サーミスタth2をグランドに接続するための導電パターン244と、導電パターンPhをグランドに接続するための導電パターン241とが別々に設けられる。これにより、導電パターンPhへ接続される導電パターン241の電位の変動が、第1サーミスタth1と第2サーミスタth2に影響を及ぼすのを回避できる。したがって、第1サーミスタth1と第2サーミスタth2を用いた制御の精度を向上させて、電源ユニット100の安全性を向上させることができる。なお、第1サーミスタth1をグランドに接続するための導電パターンと、第2サーミスタth2をグランドに接続するための導電パターンとをヒータFPC24に個別に設け、この2つの導電パターンのいずれか一方が端子T5に接続されてもよい。この構成でも、第1サーミスタth1と第2サーミスタth2のいずれか一方を用いた制御の精度を向上させることができる。
(再起動回路RBTの構成及び動作)
図19は、MCU6の再起動にかかわる電子部品を図12に示す回路から抽出して示した回路図である。図19には、再起動回路RBTが示されている。再起動回路RBTは、抵抗器R3及び抵抗器R4からなる分圧回路と、スイッチBTと、メインコネクタ20Aの端子KEY及び端子GNDと、スイッチQ7と、スイッチQ9と、充電IC3と、LDO4と、デバッグ用コネクタ20Eの端子NRSTと、備えて構成される。本形態では、この再起動回路RBTによって、MCU6の再起動を、スイッチBTの操作(一例として長押し操作)と、デバッグ用コネクタ20Eに接続された外部機器からの指令と、によって行うことが可能になっている。MCU6は、端子P27に入力される信号がローレベルの状態が所定時間継続した場合に、再起動を行うよう構成されている。また、充電IC3は、端子QON( ̄)に入力される信号がローレベルの状態が所定時間継続した場合に、再起動を行うよう構成されている。
図19は、MCU6の再起動にかかわる電子部品を図12に示す回路から抽出して示した回路図である。図19には、再起動回路RBTが示されている。再起動回路RBTは、抵抗器R3及び抵抗器R4からなる分圧回路と、スイッチBTと、メインコネクタ20Aの端子KEY及び端子GNDと、スイッチQ7と、スイッチQ9と、充電IC3と、LDO4と、デバッグ用コネクタ20Eの端子NRSTと、備えて構成される。本形態では、この再起動回路RBTによって、MCU6の再起動を、スイッチBTの操作(一例として長押し操作)と、デバッグ用コネクタ20Eに接続された外部機器からの指令と、によって行うことが可能になっている。MCU6は、端子P27に入力される信号がローレベルの状態が所定時間継続した場合に、再起動を行うよう構成されている。また、充電IC3は、端子QON( ̄)に入力される信号がローレベルの状態が所定時間継続した場合に、再起動を行うよう構成されている。
(スイッチBTを用いたMCU6のリセット)
まず、デバッグ用コネクタ20Eを用いずにMCU6の再起動を行う際の動作を説明する。
抵抗器R3と抵抗器R4は、スイッチBTが押下されていない状態では、抵抗器R3と抵抗器R4の分圧回路の出力がハイレベルとなるような抵抗値を有する。このハイレベルの信号は、充電IC3の端子QON( ̄)に入力されるため、この状態では充電IC3はリセットされず、出力端子SYSからのシステム電源電圧VSYSの出力を継続する。システム電源電圧VSYSの出力が継続されることで、LDO4の出力端子OUTからのシステム電源電圧VMCUの出力も継続される。このため、MCU6は停止することなく継続して作動する。また、このハイレベルの信号は、スイッチQ7のゲート端子に入力される。このため、USB接続されている場合(バス電圧VBUSが充電IC3から出力されている場合)には、スイッチQ7がオン状態となり、その結果、スイッチQ9のゲート端子の電位がローレベル(グランドレベル)となってスイッチQ9がオフ状態となる。スイッチQ9がオフ状態のときは、MCU6の端子P27の電位は不定となるため、MCU6による再起動は行われない。
まず、デバッグ用コネクタ20Eを用いずにMCU6の再起動を行う際の動作を説明する。
抵抗器R3と抵抗器R4は、スイッチBTが押下されていない状態では、抵抗器R3と抵抗器R4の分圧回路の出力がハイレベルとなるような抵抗値を有する。このハイレベルの信号は、充電IC3の端子QON( ̄)に入力されるため、この状態では充電IC3はリセットされず、出力端子SYSからのシステム電源電圧VSYSの出力を継続する。システム電源電圧VSYSの出力が継続されることで、LDO4の出力端子OUTからのシステム電源電圧VMCUの出力も継続される。このため、MCU6は停止することなく継続して作動する。また、このハイレベルの信号は、スイッチQ7のゲート端子に入力される。このため、USB接続されている場合(バス電圧VBUSが充電IC3から出力されている場合)には、スイッチQ7がオン状態となり、その結果、スイッチQ9のゲート端子の電位がローレベル(グランドレベル)となってスイッチQ9がオフ状態となる。スイッチQ9がオフ状態のときは、MCU6の端子P27の電位は不定となるため、MCU6による再起動は行われない。
抵抗器R3と抵抗器R4は、スイッチBTが押下された状態では、抵抗器R3と抵抗器R4の分圧回路の出力がローレベルになるような抵抗値を有する。換言すれば、抵抗器R3と抵抗器R4は、システム電源電圧VMCUを分圧した値がローレベルになるような抵抗値を有する。このローレベルの信号は、充電IC3の端子QON( ̄)に入力されるため、この状態が所定時間継続されると、充電IC3は出力端子SYSからのシステム電源電圧VSYSの出力を停止する。システム電源電圧VSYSの出力が停止されると、LDO4からの電圧出力が停止されて、MCU6の端子VDDにシステム電源電圧VMCUが入力されなくなり、MCU6は停止する。
また、このローレベルの信号は、スイッチQ7のゲート端子に入力される。このため、USB接続されている場合(バス電圧VBUSが充電IC3から出力されている場合)には、スイッチQ7がオフ状態となり、その結果、スイッチQ9のゲート端子の電位がハイレベル(バス電圧VBUS)となってスイッチQ9がオン状態となる。スイッチQ9がオン状態になると、MCU6の端子P27の電位はローレベル(グランドレベル)となる。スイッチBTが所定時間継続して押下されている場合には、MCU6の端子P27にローレベルの信号が所定時間入力されるため、MCU6は再起動の処理を実行する。スイッチBTの押下が終了された場合には、充電IC3がシステム電源電圧VSYSの出力を再開するため、停止しているMCU6の端子VDDにシステム電源電圧VMCUが入力されて、MCU6が起動する。
(デバッグ用コネクタ20Eを用いたMCU6のリセット)
デバッグ用コネクタ20Eを用いてMCU6を再起動する場合には、USB接続を行い、更に、デバッグ用コネクタ20Eに外部機器を接続する。この状態で、スイッチBTが押下されていなければ、スイッチQ9はオフ状態となっているため、MCU6の端子P27の電位は、外部機器からの入力に依存したものとなる。したがって、外部機器がローレベルの再起動信号を端子NRSTに入力するよう作業者が操作を行うことで、その再起動信号が端子P27に所定時間継続して入力される。この再起動信号の入力を受けることで、MCU6は再起動の処理を実行する。
デバッグ用コネクタ20Eを用いてMCU6を再起動する場合には、USB接続を行い、更に、デバッグ用コネクタ20Eに外部機器を接続する。この状態で、スイッチBTが押下されていなければ、スイッチQ9はオフ状態となっているため、MCU6の端子P27の電位は、外部機器からの入力に依存したものとなる。したがって、外部機器がローレベルの再起動信号を端子NRSTに入力するよう作業者が操作を行うことで、その再起動信号が端子P27に所定時間継続して入力される。この再起動信号の入力を受けることで、MCU6は再起動の処理を実行する。
図19に示した再起動回路RBTによれば、スイッチBTの押下によって生成されるローレベルの信号は、充電IC3の端子QON( ̄)だけでなく、MCU6の端子P27にも入力される。このため、MCU6がフリーズしていた場合でも、充電IC3からの出力停止によって、MCU6を再起動できる。また、充電IC3が何らかの要因でリセットされない場合でも、MCU6がフリーズしていない状態であれば、端子P27へのローレベル信号の入力によってMCU6を再起動できる。このように、2系統での再起動が可能なことで、スイッチBTを押下するだけの単純な操作によって、MCU6を確実に再起動することができる。
また、図19に示した再起動回路RBTによれば、デバッグ用コネクタ20Eを用いて外部機器からMCU6を再起動することもできる。外部機器からMCU6の端子P27にローレベルの信号を入力する場合でも、スイッチQ9の存在によって、この信号が充電ICの端子QON( ̄)に伝達されることは防がれる。このように、デバッグ用コネクタ20Eに入力される信号と、スイッチBTの操作によって生成される信号を分離できるため、再起動回路RBTの動作を安定化できる。なお、図19において、端子NRSTと充電IC3の端子QON( ̄)を接続する構成も想定されるが、図19ではそのような構成は採用していない。これにより、デバッグ用コネクタ20Eを端子QON( ̄)へ接続する場合と比べて、再起動回路RBTを簡素化できるので、電源ユニット100の製造コストを低減できる。
また、図19に示した再起動回路RBTでは、スイッチBTを用いたMCU6の再起動については、USB接続がなされている場合にのみ可能となる。このように、電源baの充電が可能な状態でのみMCU6の再起動ができるようにすることで、MCU6の再起動時に電源baの残量が低下したとしても、外部電源によってMCU6を確実に再起動することが可能になる。
(再起動回路RBTの変形例)
図20は、図19に示す再起動回路RBTの変形例を示す図である。図20に示す再起動回路RBTは、スイッチQ9のドレイン端子の接続先が端子P27からLDO4の制御端子CTLへ変更された点と、抵抗器R3及び抵抗器R4の分圧回路と充電IC3の端子QON( ̄)との接続が削除された点と、を除いては、図19と同じ構成である。図20に示す再起動回路RBTでは、デバッグ用コネクタ20Eを用いずにMCU6の再起動を行う際には、USB接続を行う必要がある。
図20は、図19に示す再起動回路RBTの変形例を示す図である。図20に示す再起動回路RBTは、スイッチQ9のドレイン端子の接続先が端子P27からLDO4の制御端子CTLへ変更された点と、抵抗器R3及び抵抗器R4の分圧回路と充電IC3の端子QON( ̄)との接続が削除された点と、を除いては、図19と同じ構成である。図20に示す再起動回路RBTでは、デバッグ用コネクタ20Eを用いずにMCU6の再起動を行う際には、USB接続を行う必要がある。
図20に示す再起動回路RBTにおいて、USB接続されており、且つ、スイッチBTが押下されていない状態では、抵抗器R3と抵抗器R4の分圧回路の出力はハイレベルとなる。このハイレベルの信号は、スイッチQ7のゲート端子に入力される。このため、スイッチQ7がオン状態となり、その結果、スイッチQ9のゲート端子の電位がローレベル(グランドレベル)となってスイッチQ9がオフ状態となる。スイッチQ9がオフ状態のときは、LDO4の制御端子CTLにローレベルの信号が入力されることはない。したがって、MCU6は継続して作動する。
図20に示す再起動回路RBTにおいて、USB接続されており、且つ、スイッチBTが押下された状態では、抵抗器R3と抵抗器R4の分圧回路の出力はローレベルとなる。このローレベルの信号は、スイッチQ7のゲート端子に入力される。このため、スイッチQ7がオフ状態となり、その結果、スイッチQ9のゲート端子の電位がハイレベル(バス電圧VBUS)となってスイッチQ9がオン状態となる。スイッチQ9がオン状態になると、LDO4の制御端子CTLがグランドに接続されるため、この制御端子CTLに入力される信号がローレベルになる。LDO4は、制御端子CTLにローレベルの信号が所定時間継続して入力されると、出力端子OUTからの電圧出力を停止する。このため、スイッチBTが所定時間継続して押下されることで、MCU6へのシステム電源電圧VMCUの供給が停止されて、MCU6は停止する。スイッチBTの押下が終了された場合には、スイッチQ9はオフ状態となるため、制御端子CTLに入力される信号はハイレベル(システム電源電圧VSYS)に戻る。これにより、LDO4がシステム電源電圧VMCUの出力を再開するため、停止しているMCU6の端子VDDにシステム電源電圧VMCUが入力されて、MCU6が起動する。
図20に示す再起動回路RBTにおいて、デバッグ用コネクタ20Eを用いてMCU6を再起動する場合には、デバッグ用コネクタ20Eに外部機器を接続する。この状態で、外部機器がローレベルの再起動信号を端子NRSTに入力するよう作業者が操作を行うことで、その再起動信号が端子P27に所定時間継続して入力される。この再起動信号の入力を受けることで、MCU6は再起動の処理を実行する。
図20に示す再起動回路RBTでは、スイッチBTが長押しされても、MCU6の端子P27へローレベルの信号が入力されることはない。このため、図19に示す再起動回路RBTに比べて回路を簡素なものにでき、電源ユニット100の製造コストを低減できる。
なお、図20に示す再起動回路RBTにおいては、図中の破線で示す配線PUを追加してもよい。配線PUは、MCU6の端子P27の電位をバス電圧VBUSによってハイレベルにプルアップするために設けられる。この配線PUを追加することで、端子P27にローレベルの信号が入力されていない状態でも、端子P27の電位が不定にならないので、電源ユニット100の動作を安定させることができる。
なお、図12に示す回路において、スイッチQ5が、シートヒータHTRのマイナス側端子に接続されたヒータコネクタ20Bの端子GNDと、メイン基板20に設けられたグランドとの間に接続される構成であってもよい。この構成においては、スイッチQ5はNチャネル型とすることが好ましい。
本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
(1)
電源(電源ba)と、
エアロゾルに香味を付加する香味源(第2カートリッジ120)を加熱するヒータ(シートヒータHTR)と、
上記ヒータの温度に応じて抵抗値が変化するサーミスタ(第1サーミスタth1)と、
上記サーミスタに反転入力端子又は非反転入力端子が接続されるオペアンプ(オペアンプOP2)と、
上記ヒータへ接続される出力端子(出力端子VOUT)と、イネーブル端子(イネーブル端子EN)とを含み、上記イネーブル端子に第1レベル(ハイレベル)の信号が入力されると上記出力端子からの出力を行い、上記イネーブル端子に第2レベル(ローレベル)の信号が入力されると上記出力端子からの出力を停止する電圧変換器(昇圧回路11)と、
上記ヒータの温度を目標温度へ収束させるように、上記電源から上記ヒータへの電力供給を制御するように構成されるコントローラ(MCU6)と、を備え、
上記オペアンプは、上記ヒータの温度が閾値(閾値THD1)以上になると、出力端子から上記第2レベルの信号を出力し、
上記電圧変換器のイネーブル端子は、上記オペアンプの出力端子と上記コントローラへ接続されている、
エアロゾル生成装置の電源ユニット(電源ユニット100)。
電源(電源ba)と、
エアロゾルに香味を付加する香味源(第2カートリッジ120)を加熱するヒータ(シートヒータHTR)と、
上記ヒータの温度に応じて抵抗値が変化するサーミスタ(第1サーミスタth1)と、
上記サーミスタに反転入力端子又は非反転入力端子が接続されるオペアンプ(オペアンプOP2)と、
上記ヒータへ接続される出力端子(出力端子VOUT)と、イネーブル端子(イネーブル端子EN)とを含み、上記イネーブル端子に第1レベル(ハイレベル)の信号が入力されると上記出力端子からの出力を行い、上記イネーブル端子に第2レベル(ローレベル)の信号が入力されると上記出力端子からの出力を停止する電圧変換器(昇圧回路11)と、
上記ヒータの温度を目標温度へ収束させるように、上記電源から上記ヒータへの電力供給を制御するように構成されるコントローラ(MCU6)と、を備え、
上記オペアンプは、上記ヒータの温度が閾値(閾値THD1)以上になると、出力端子から上記第2レベルの信号を出力し、
上記電圧変換器のイネーブル端子は、上記オペアンプの出力端子と上記コントローラへ接続されている、
エアロゾル生成装置の電源ユニット(電源ユニット100)。
(1)によれば、ヒータの温度が閾値以上になると、コントローラからの信号を必要とせずに、電圧変換器からの出力を停止できる。また、ヒータの温度が閾値未満に戻っても、コントローラから第2レベルの信号が電圧変換器のイネーブル端子に入力されていれば、電圧変換器は出力を再開しない。このように、コントローラがフリーズしていた場合でも、確実にヒータへの電力供給を停止できると共に、コントローラによってヒータへの電力供給の再開を制御できるので、電源ユニットの安全性が向上する。
(2)
(1)に記載のエアロゾル生成装置の電源ユニットであって、
グランドと、
上記電源と上記ヒータの間又は上記ヒータと上記グランドの間へ接続され、且つ、開閉を制御するための制御端子(ゲート端子)を備えるスイッチ(スイッチQ5)と、を備え、
上記オペアンプの出力端子は、上記電圧変換器のイネーブル端子と上記スイッチの制御端子のうち上記電圧変換器のイネーブル端子のみへ接続される、
エアロゾル生成装置の電源ユニット。
(1)に記載のエアロゾル生成装置の電源ユニットであって、
グランドと、
上記電源と上記ヒータの間又は上記ヒータと上記グランドの間へ接続され、且つ、開閉を制御するための制御端子(ゲート端子)を備えるスイッチ(スイッチQ5)と、を備え、
上記オペアンプの出力端子は、上記電圧変換器のイネーブル端子と上記スイッチの制御端子のうち上記電圧変換器のイネーブル端子のみへ接続される、
エアロゾル生成装置の電源ユニット。
コントローラからヒータへの電力供給制御が正常に機能していれば、原則としてヒータの温度は閾値以上とはならない。つまり、ヒータの温度が閾値以上になった場合には、コントローラ又はヒータへ電力を供給する回路に何らかの不具合が生じている可能性が高い。この回路の不具合は、スイッチ内部の短絡又はスイッチを迂回する形での短絡が主である。このような短絡が生じてしまうと、例えばスイッチの制御端子へオペアンプの出力信号を入力しても、スイッチが正常に作動せず、ヒータへの電力供給を停止できない。(2)によれば、オペアンプの出力信号が、ヒータへの電力供給を確実に停止できる電圧変換器に入力されるため、電源ユニットの安全性を向上させつつ、簡素化された回路によってその製造コストを低減できる。
(3)
(1)又は(2)に記載のエアロゾル生成装置の電源ユニットであって、
上記電源の充電を制御可能に構成され、且つ、イネーブル端子(イネーブル端子CE( ̄))を含む充電IC(充電IC3)を備え、
上記充電ICは、上記充電ICの上記イネーブル端子へ入力される信号のレベルに応じて、動作状態又は非動作状態となり、
上記オペアンプの出力端子は、上記電圧変換器の上記イネーブル端子と上記充電ICの上記イネーブル端子のうち上記電圧変換器の上記イネーブル端子のみへ接続される、
エアロゾル生成装置の電源ユニット。
(1)又は(2)に記載のエアロゾル生成装置の電源ユニットであって、
上記電源の充電を制御可能に構成され、且つ、イネーブル端子(イネーブル端子CE( ̄))を含む充電IC(充電IC3)を備え、
上記充電ICは、上記充電ICの上記イネーブル端子へ入力される信号のレベルに応じて、動作状態又は非動作状態となり、
上記オペアンプの出力端子は、上記電圧変換器の上記イネーブル端子と上記充電ICの上記イネーブル端子のうち上記電圧変換器の上記イネーブル端子のみへ接続される、
エアロゾル生成装置の電源ユニット。
例えば、充電ICが、電源からの電力を電圧変換器に供給できる場合には、充電ICを非動作状態にすることで、電圧変換器を停止することも可能である。(3)によれば、オペアンプの出力をこのような充電ICのイネーブル端子へ入力するのではなく、電圧変換器に入力することで、より直接的にヒータへの電力供給を停止できる。同時に、回路を簡素化できる。この結果、電源ユニットの安全性を向上させつつ、その製造コストを低減できる。
(4)
(1)から(3)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
上記オペアンプの出力端子は、上記電圧変換器のイネーブル端子へ直接接続される、
エアロゾル生成装置の電源ユニット。
(1)から(3)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
上記オペアンプの出力端子は、上記電圧変換器のイネーブル端子へ直接接続される、
エアロゾル生成装置の電源ユニット。
(4)によれば、オペアンプの出力信号とコントローラの出力信号を合成するにあたって、ICを必要としないので、電源ユニットの製造コストを低減できる。また、ICをはじめとする半導体が供給不足に陥った場合でも、電源ユニットの製造を継続できる。
(5)
(4)に記載のエアロゾル生成装置の電源ユニットであって、
上記第2レベルは、ローレベルであり、
上記オペアンプの出力端子は、プルアップされる、
エアロゾル生成装置の電源ユニット。
(4)に記載のエアロゾル生成装置の電源ユニットであって、
上記第2レベルは、ローレベルであり、
上記オペアンプの出力端子は、プルアップされる、
エアロゾル生成装置の電源ユニット。
(5)によれば、電源投入時において出力信号が不安定な値を取りやすいオペアンプの出力端子をプルアップすることで、この不安定な値がハイレベルに固定される。このため、電源投入直後のオペアンプが出力する虞のある不安定な出力信号による意図しない挙動を抑制できる。
(6)
(5)に記載のエアロゾル生成装置の電源ユニットであって、
上記オペアンプの出力端子は、上記オペアンプの電源端子への接続により、プルアップされる、
エアロゾル生成装置の電源ユニット。
(5)に記載のエアロゾル生成装置の電源ユニットであって、
上記オペアンプの出力端子は、上記オペアンプの電源端子への接続により、プルアップされる、
エアロゾル生成装置の電源ユニット。
(6)によれば、オペアンプの出力端子をプルアップするために、専用の電源を設けなくて済むので、回路構成が簡略なものとなり、電源ユニットの製造コストを低減できる。
(7)
(1)から(3)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
上記コントローラへ接続される第1入力端子(入力端子A)と、上記オペアンプの出力端子へ接続される第2入力端子(入力端子B)と、上記電圧変換器のイネーブル端子へ接続される出力端子(出力端子Y)と、を含むANDゲート(ANDゲート10)を備える、
エアロゾル生成装置の電源ユニット。
(1)から(3)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
上記コントローラへ接続される第1入力端子(入力端子A)と、上記オペアンプの出力端子へ接続される第2入力端子(入力端子B)と、上記電圧変換器のイネーブル端子へ接続される出力端子(出力端子Y)と、を含むANDゲート(ANDゲート10)を備える、
エアロゾル生成装置の電源ユニット。
(7)によれば、オペアンプの出力信号とコントローラの出力信号をANDゲートによって合成できるため、特に同レベルの信号を合成する際に生じ得る不安定な挙動を抑制でき、電源ユニットの動作が安定する。
(8)
(7)に記載のエアロゾル生成装置の電源ユニットであって、
上記ANDゲートの第2入力端子は、上記オペアンプの出力端子へ直接接続される、
エアロゾル生成装置の電源ユニット。
(7)に記載のエアロゾル生成装置の電源ユニットであって、
上記ANDゲートの第2入力端子は、上記オペアンプの出力端子へ直接接続される、
エアロゾル生成装置の電源ユニット。
(8)によれば、ANDゲートとオペアンプを、ICを介することなく直接接続できるので、電源ユニットの製造コストを低減できる。また、ICをはじめとする半導体が供給不足に陥った場合でも、電源ユニットの製造を継続できる。
(9)
(7)又は(8)に記載のエアロゾル生成装置の電源ユニットであって、
上記ANDゲートの電源端子(端子VCC)は、上記オペアンプの電源端子(正電源端子)へ並列に接続される、
エアロゾル生成装置の電源ユニット。
(7)又は(8)に記載のエアロゾル生成装置の電源ユニットであって、
上記ANDゲートの電源端子(端子VCC)は、上記オペアンプの電源端子(正電源端子)へ並列に接続される、
エアロゾル生成装置の電源ユニット。
(9)によれば、ANDゲートとオペアンプへ電源を供給するための回路を簡単なものにできるので、電源ユニットの製造コストを低減できる。
(10)
(9)に記載のエアロゾル生成装置の電源ユニットであって、
上記第2レベルは、ローレベルであり、
上記オペアンプの出力端子は、上記ANDゲートの電源端子及び上記オペアンプの電源端子への接続により、プルアップされる、
エアロゾル生成装置の電源ユニット。
(9)に記載のエアロゾル生成装置の電源ユニットであって、
上記第2レベルは、ローレベルであり、
上記オペアンプの出力端子は、上記ANDゲートの電源端子及び上記オペアンプの電源端子への接続により、プルアップされる、
エアロゾル生成装置の電源ユニット。
(10)によれば、電源投入時において出力信号が不安定な値を取りやすいオペアンプの出力端子がプルアップされることで、この不安定な値がハイレベルに固定される。このため、電源投入直後のオペアンプが出力する虞のある不安定な出力信号による意図しない挙動を、簡易な回路構成で抑制できる。
(11)
(7)に記載のエアロゾル生成装置の電源ユニットであって、
上記オペアンプの出力端子へ接続されるクリア端子(クリア端子CLR( ̄))と、上記ANDゲートの第2入力端子へ接続される出力端子(出力端子Q)と、を含むフリップフロップ(FF9)を備える、
エアロゾル生成装置の電源ユニット。
(7)に記載のエアロゾル生成装置の電源ユニットであって、
上記オペアンプの出力端子へ接続されるクリア端子(クリア端子CLR( ̄))と、上記ANDゲートの第2入力端子へ接続される出力端子(出力端子Q)と、を含むフリップフロップ(FF9)を備える、
エアロゾル生成装置の電源ユニット。
(11)によれば、オペアンプの出力が第2レベルになった後、オペアンプの出力が第1レベルに戻ったとしても、オペアンプが出力した第2レベルの信号を、フリップフロップが出力し続けることができる。このため、ヒータの温度が閾値以上となる状態が解消されてもすぐさま電圧変換器の出力再開が許容されることが無くなり、電源ユニットの安全性が向上する。
(12)
(11)に記載のエアロゾル生成装置の電源ユニットであって、
上記フリップフロップは、上記コントローラへ接続されるクロック端子(クロック端子CLK)を含む、
エアロゾル生成装置の電源ユニット。
(11)に記載のエアロゾル生成装置の電源ユニットであって、
上記フリップフロップは、上記コントローラへ接続されるクロック端子(クロック端子CLK)を含む、
エアロゾル生成装置の電源ユニット。
(12)によれば、オペアンプの出力が第2レベルになった後、オペアンプの出力が第1レベルに戻ったとしても、コントローラがクロック端子へクロック信号を出力しない限り、フリップフロップは第2レベルの信号を出力し続ける。このため、ヒータの温度が閾値以上となる状態が解消されてもすぐさま電圧変換器の出力再開が許容されることが無くなり、電源ユニットの安全性が向上する。
(13)
(12)に記載のエアロゾル生成装置の電源ユニットであって、
上記コントローラを再起動させる再起動回路(再起動回路RBT)を備え、
上記コントローラは、上記再起動回路によって再起動されると、上記フリップフロップのクロック端子へ、クロック信号を出力するように構成される、
エアロゾル生成装置の電源ユニット。
(12)に記載のエアロゾル生成装置の電源ユニットであって、
上記コントローラを再起動させる再起動回路(再起動回路RBT)を備え、
上記コントローラは、上記再起動回路によって再起動されると、上記フリップフロップのクロック端子へ、クロック信号を出力するように構成される、
エアロゾル生成装置の電源ユニット。
(13)によれば、再起動されることで正常に動作を開始したコントローラによって、電圧変換器の動作を再開できるため、電源ユニットの安全性が向上する。
(14)
(13)に記載のエアロゾル生成装置の電源ユニットであって、
上記フリップフロップは、入力端子(入力端子D)を含み、
上記第2レベルは、ローレベルであり、
上記フリップフロップのクリア端子は、負論理によって機能し、
上記フリップフロップの入力端子と上記フリップフロップのクリア端子は、プルアップされる、
エアロゾル生成装置の電源ユニット。
(13)に記載のエアロゾル生成装置の電源ユニットであって、
上記フリップフロップは、入力端子(入力端子D)を含み、
上記第2レベルは、ローレベルであり、
上記フリップフロップのクリア端子は、負論理によって機能し、
上記フリップフロップの入力端子と上記フリップフロップのクリア端子は、プルアップされる、
エアロゾル生成装置の電源ユニット。
(14)によれば、電源投入直後のオペアンプが出力する虞がある不安定な信号がクリア端子へ入力されなくなる。また、ヒータの温度が閾値未満であれば、フリップフロップの入力端子には安定したハイレベルの信号を入力することができる。更に、再起動したコントローラが、クロック信号を出力すると、入力端子に入力されているハイレベルの信号をフリップフロップが記憶できるようになる。このように、フリップフロップを安定して動作させることができると共に、再起動後のコントローラによって、電圧変換器の動作を再開できる。
100 電源ユニット
3a ケース
6 MCU
11 昇圧回路
15 吸引センサ
ba 電源
HTR シートヒータ
th1 第1サーミスタ
OP2 オペアンプ
3a ケース
6 MCU
11 昇圧回路
15 吸引センサ
ba 電源
HTR シートヒータ
th1 第1サーミスタ
OP2 オペアンプ
Claims (14)
- 電源と、
エアロゾルに香味を付加する香味源を加熱するヒータと、
前記ヒータの温度に応じて抵抗値が変化するサーミスタと、
前記サーミスタに反転入力端子又は非反転入力端子が接続されるオペアンプと、
前記ヒータへ接続される出力端子と、イネーブル端子とを含み、前記イネーブル端子に第1レベルの信号が入力されると前記出力端子からの出力を行い、前記イネーブル端子に第2レベルの信号が入力されると前記出力端子からの出力を停止する電圧変換器と、
前記ヒータの温度を目標温度へ収束させるように、前記電源から前記ヒータへの電力供給を制御するように構成されるコントローラと、を備え、
前記オペアンプは、前記ヒータの温度が閾値以上になると、出力端子から前記第2レベルの信号を出力し、
前記電圧変換器のイネーブル端子は、前記オペアンプの出力端子と前記コントローラへ接続されている、
エアロゾル生成装置の電源ユニット。 - 請求項1に記載のエアロゾル生成装置の電源ユニットであって、
グランドと、
前記電源と前記ヒータの間又は前記ヒータと前記グランドの間へ接続され、且つ、開閉を制御するための制御端子を備えるスイッチと、を備え、
前記オペアンプの出力端子は、前記電圧変換器のイネーブル端子と前記スイッチの制御端子のうち前記電圧変換器のイネーブル端子のみへ接続される、
エアロゾル生成装置の電源ユニット。 - 請求項1又は2に記載のエアロゾル生成装置の電源ユニットであって、
前記電源の充電を制御可能に構成され、且つ、イネーブル端子を含む充電ICを備え、
前記充電ICは、前記充電ICの前記イネーブル端子へ入力される信号のレベルに応じて、動作状態又は非動作状態となり、
前記オペアンプの出力端子は、前記電圧変換器の前記イネーブル端子と前記充電ICの前記イネーブル端子のうち前記電圧変換器の前記イネーブル端子のみへ接続される、
エアロゾル生成装置の電源ユニット。 - 請求項1から3のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
前記オペアンプの出力端子は、前記電圧変換器のイネーブル端子へ直接接続される、
エアロゾル生成装置の電源ユニット。 - 請求項4に記載のエアロゾル生成装置の電源ユニットであって、
前記第2レベルは、ローレベルであり、
前記オペアンプの出力端子は、プルアップされる、
エアロゾル生成装置の電源ユニット。 - 請求項5に記載のエアロゾル生成装置の電源ユニットであって、
前記オペアンプの出力端子は、前記オペアンプの電源端子への接続により、プルアップされる、
エアロゾル生成装置の電源ユニット。 - 請求項1から3のいずれか1項に記載のエアロゾル生成装置の電源ユニットであって、
前記コントローラへ接続される第1入力端子と、前記オペアンプの出力端子へ接続される第2入力端子と、前記電圧変換器のイネーブル端子へ接続される出力端子と、を含むANDゲートを備える、
エアロゾル生成装置の電源ユニット。 - 請求項7に記載のエアロゾル生成装置の電源ユニットであって、
前記ANDゲートの第2入力端子は、前記オペアンプの出力端子へ直接接続される、
エアロゾル生成装置の電源ユニット。 - 請求項7又は8に記載のエアロゾル生成装置の電源ユニットであって、
前記ANDゲートの電源端子は、前記オペアンプの電源端子へ並列に接続される、
エアロゾル生成装置の電源ユニット。 - 請求項9に記載のエアロゾル生成装置の電源ユニットであって、
前記第2レベルは、ローレベルであり、
前記オペアンプの出力端子は、前記ANDゲートの電源端子及び前記オペアンプの電源端子への接続により、プルアップされる、
エアロゾル生成装置の電源ユニット。 - 請求項7に記載のエアロゾル生成装置の電源ユニットであって、
前記オペアンプの出力端子へ接続されるクリア端子と、前記ANDゲートの第2入力端子へ接続される出力端子と、を含むフリップフロップを備える、
エアロゾル生成装置の電源ユニット。 - 請求項11に記載のエアロゾル生成装置の電源ユニットであって、
前記フリップフロップは、前記コントローラへ接続されるクロック端子を含む、
エアロゾル生成装置の電源ユニット。 - 請求項12に記載のエアロゾル生成装置の電源ユニットであって、
前記コントローラを再起動させる再起動回路を備え、
前記コントローラは、前記再起動回路によって再起動されると、前記フリップフロップのクロック端子へ、クロック信号を出力するように構成される、
エアロゾル生成装置の電源ユニット。 - 請求項13に記載のエアロゾル生成装置の電源ユニットであって、
前記フリップフロップは、入力端子を含み、
前記第2レベルは、ローレベルであり、
前記フリップフロップのクリア端子は、負論理によって機能し、
前記フリップフロップの入力端子と前記フリップフロップのクリア端子は、プルアップされる、
エアロゾル生成装置の電源ユニット。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/045601 WO2023105772A1 (ja) | 2021-12-10 | 2021-12-10 | エアロゾル生成装置の電源ユニット |
JP2023566045A JPWO2023105772A1 (ja) | 2021-12-10 | 2021-12-10 | |
CN202180104807.8A CN118369009A (zh) | 2021-12-10 | 2021-12-10 | 气溶胶生成装置的电源单元 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/045601 WO2023105772A1 (ja) | 2021-12-10 | 2021-12-10 | エアロゾル生成装置の電源ユニット |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023105772A1 true WO2023105772A1 (ja) | 2023-06-15 |
Family
ID=86730052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/045601 WO2023105772A1 (ja) | 2021-12-10 | 2021-12-10 | エアロゾル生成装置の電源ユニット |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023105772A1 (ja) |
CN (1) | CN118369009A (ja) |
WO (1) | WO2023105772A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6915142B1 (ja) * | 2020-11-20 | 2021-08-04 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット |
JP6952851B1 (ja) * | 2020-09-07 | 2021-10-27 | 日本たばこ産業株式会社 | 吸引器用コントローラ |
-
2021
- 2021-12-10 CN CN202180104807.8A patent/CN118369009A/zh active Pending
- 2021-12-10 WO PCT/JP2021/045601 patent/WO2023105772A1/ja active Application Filing
- 2021-12-10 JP JP2023566045A patent/JPWO2023105772A1/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6952851B1 (ja) * | 2020-09-07 | 2021-10-27 | 日本たばこ産業株式会社 | 吸引器用コントローラ |
JP6915142B1 (ja) * | 2020-11-20 | 2021-08-04 | 日本たばこ産業株式会社 | エアロゾル生成装置の電源ユニット |
Also Published As
Publication number | Publication date |
---|---|
CN118369009A (zh) | 2024-07-19 |
JPWO2023105772A1 (ja) | 2023-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7545541B2 (ja) | 吸引器 | |
WO2023105772A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2023105776A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2023105773A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2023105779A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2023105775A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2023105771A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2023105764A1 (ja) | エアロゾル生成装置の電源ユニット | |
EP4088591A1 (en) | Power supply unit of aerosol generating device | |
JP7389933B2 (ja) | エアロゾル生成装置 | |
WO2023105767A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2023105768A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2023105769A1 (ja) | エアロゾル生成装置の電源ユニット | |
WO2023105765A1 (ja) | エアロゾル生成装置の電源ユニット | |
JP2024116317A (ja) | エアロゾル生成装置の電源ユニット | |
CN117377400A (zh) | 气溶胶生成装置的电源单元 | |
JP7531058B2 (ja) | エアロゾル生成装置の電源ユニット | |
WO2022239374A1 (ja) | エアロゾル生成装置の電源ユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21967264 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023566045 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180104807.8 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |