WO2023281712A1 - エアロゾル生成装置の電源ユニット - Google Patents

エアロゾル生成装置の電源ユニット Download PDF

Info

Publication number
WO2023281712A1
WO2023281712A1 PCT/JP2021/025828 JP2021025828W WO2023281712A1 WO 2023281712 A1 WO2023281712 A1 WO 2023281712A1 JP 2021025828 W JP2021025828 W JP 2021025828W WO 2023281712 A1 WO2023281712 A1 WO 2023281712A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply unit
pin
aerosol generator
insulating film
Prior art date
Application number
PCT/JP2021/025828
Other languages
English (en)
French (fr)
Inventor
稔 北原
秀二郎 田中
泰弘 小野
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2021/025828 priority Critical patent/WO2023281712A1/ja
Priority to CN202180098134.XA priority patent/CN117320576A/zh
Priority to JP2023532995A priority patent/JP7470870B2/ja
Publication of WO2023281712A1 publication Critical patent/WO2023281712A1/ja
Priority to JP2024062422A priority patent/JP2024088750A/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating

Definitions

  • the present invention relates to a power supply unit for an aerosol generator.
  • the power supply unit of the aerosol generator contains a circuit board for controlling heating. Since the power supply unit of the aerosol generator generates aerosol by heating, it is important to take measures to prevent malfunction. As countermeasures against noise such as static electricity, various countermeasures have been taken such as providing a coil in the circuit to smooth the noise.
  • the power supply unit of the aerosol generator described in Patent Document 1 requires electronic components such as coils and capacitors as noise countermeasures. There was room for improvement.
  • the present invention provides a power supply unit for an aerosol generator capable of suppressing the adverse effects of noise while reducing the number of parts.
  • the power supply unit of the aerosol generator of the present invention comprises: a power supply; a heater connector connected to a load that consumes power supplied from the power source and generates aerosol from an aerosol source, or a coil that transmits power to the load by electromagnetic induction; a controller configured to control at least one of charging and discharging the power source; a circuit board on which the controller and the heater connector are mounted, The circuit board is wiring electrically connected to the control device and the heater connector; a conductive portion electrically connected to ground; an insulating film covering at least a portion of the wiring and the conductive portion; The surface of the circuit board is an insulating film forming part in which the insulating film is formed; and an insulating film non-forming portion where the insulating film is not formed, The insulating film non-forming portion is provided so that at least a portion of the conductive portion extending along the edge of the circuit board and positioned outside the wiring is exposed from the insulating film.
  • FIG. 1 is a perspective view of an aerosol inhaler 1;
  • FIG. 2 is another perspective view of the aerosol inhaler 1.
  • FIG. 1 is a cross-sectional view of an aerosol inhaler 1;
  • FIG. 2 is a perspective view of the power supply unit 10;
  • FIG. 2 is an exploded perspective view of the power supply unit 10;
  • FIG. 2 is a diagram showing a circuit configuration of the power supply unit 10;
  • FIG. 2 is a perspective view of the power supply unit 10 with the case 11 removed;
  • FIG. 7 is a diagram showing a main surface side surface layer 71a of the MCU-mounted substrate 7;
  • FIG. 7 is a diagram showing a second wiring layer 74a of the MCU mounting substrate 7;
  • FIG. 7 is a diagram showing a sub-surface side surface layer 71b of the MCU-mounted substrate 7;
  • FIG. 7 is a diagram showing a fourth wiring layer 74b of the MCU mounting substrate 7;
  • FIG. 4 is a diagram showing a positional relationship between an MCU mounting substrate 7 and discharge terminals 41.
  • FIG. 4 is a cross-sectional view of the MCU mounting board 7.
  • a power supply unit of an aerosol generator according to one embodiment of the present invention will be described below.
  • an aerosol generator hereinafter referred to as an aerosol inhaler
  • a power supply unit will be described with reference to FIGS. 1 to 3. while explaining.
  • the aerosol inhaler 1 is a device for inhaling flavored aerosol without burning, and has a rod shape extending along a predetermined direction (hereinafter referred to as the X direction). As shown in FIGS. 1 and 2, the aerosol inhaler 1 includes a power supply unit 10, a first cartridge 20, and a second cartridge 30 arranged in this order along the X direction.
  • the first cartridge 20 may be detachable from the power supply unit 10
  • the second cartridge 30 is detachable from the first cartridge 20 .
  • the first cartridge 20 and the second cartridge 30 are replaceable with respect to the power supply unit 10 .
  • the second cartridge 30 is also replaceable with respect to the first cartridge 20 .
  • the first cartridge 20 may be fitted and fixed to the power supply unit 10 so that the user cannot easily attach and detach the first cartridge 20 .
  • the power supply unit 10 of this embodiment includes a battery pack BP, an MCU (Micro Controller Unit) 50, an MCU mounting board 7, and a receptacle mounted inside a cylindrical case 11. It is constructed by accommodating the substrate 8 and the like.
  • the power supply BAT housed in the battery pack BP is a rechargeable secondary battery, an electric double layer capacitor, etc., preferably a lithium ion secondary battery.
  • the electrolyte of the power supply BAT may be composed of one or a combination of a gel electrolyte, an electrolytic solution, a solid electrolyte, and an ionic liquid.
  • a discharge terminal 41 is provided on the top portion 11a located on one end side (first cartridge 20 side) of the case 11 in the X direction.
  • the discharge terminal 41 is composed of a positive discharge terminal 41a and a negative discharge terminal 41b.
  • the "positive electrode side” means a higher potential side than the "negative electrode side”.
  • the "negative side” means a lower potential side than the "positive side”. Therefore, the term “positive electrode side” and the term “negative electrode side” in the following description may be read as “high potential side” and “low potential side”, respectively.
  • the positive discharge terminal 41a and the negative discharge terminal 41b are provided so as to protrude from the top portion 11a toward the first cartridge 20, and are configured to be electrically connectable to the heater 21 of the first cartridge 20.
  • a low floor portion 11b having a height lower than that of the top portion 11a is provided around the top portion 11a.
  • a charging opening 43 (see FIG. 2) that allows access to the charging terminal 42 is provided in the peripheral wall portion of the bottom portion 11c located on the other end side of the case 11 in the X direction (the side opposite to the first cartridge 20). be provided.
  • the charging terminal 42 is electrically connected to an external power source such as an outlet or mobile battery to receive power supply, and in this embodiment, it is a USB (Universal Serial Bus) Type-C receptacle. It is not limited.
  • the charging opening 43 may be provided on the bottom surface on the side of the bottom portion 11c instead of on the peripheral wall portion on the side of the bottom portion 11c.
  • the charging terminal 42 may include, for example, a power receiving coil and be configured to be able to receive power transmitted from an external power source in a non-contact manner.
  • the wireless power transfer method in this case may be an electromagnetic induction type, a magnetic resonance type, or a combination of the electromagnetic induction type and the magnetic resonance type.
  • the charging terminal 42 may be connectable to various USB terminals or the like, and may have the power receiving coil described above. With such a configuration, the chances of charging the power supply BAT can be increased.
  • an operation unit 14 that can be operated by the user is provided on the peripheral wall portion of the top portion 11a so as to face the side opposite to the charging opening 43.
  • the operation unit 14 is composed of button-type switches, and is used to activate/deactivate the MCU 50 and various sensors reflecting the user's usage intention.
  • the operation unit 14 may be configured by a touch panel or the like.
  • the aerosol inhaler 1 is provided with a notification unit that notifies various information.
  • the notification unit may be configured by a light emitting element, may be configured by a vibration element, or may be configured by a sound output element. Also, the notification unit may be a combination of two or more elements among the light emitting element, the vibration element, and the sound output element.
  • the notification unit may be provided in any of the power supply unit 10, the first cartridge 20, and the second cartridge 30, but is preferably provided in the power supply unit 10 in order to shorten the lead wire (that is, the wiring distance) from the power supply BAT. preferable.
  • the notification unit of the present embodiment includes an LED window 13 provided around the operation unit 14, and LED_L1 and LED_L2 (see FIGS. 6 and 8), which will be described later. The internal configuration of the power supply unit 10 will be described later.
  • the first cartridge 20 has a reservoir 23 that stores the aerosol source 22 inside a cylindrical cartridge case 27, and atomizes and/or vaporizes the aerosol source 22 (hereinafter simply referred to as atomization). ), a wick 24 that draws the aerosol source from the reservoir 23 to the heater 21, an aerosol flow path 25 through which the aerosol generated by the atomization of the aerosol source 22 flows toward the second cartridge 30, a second and an end cap 26 that houses a portion of the cartridge 30 .
  • the reservoir 23 is partitioned so as to surround the aerosol flow path 25 and stores the aerosol source 22 .
  • the reservoir 23 may contain a porous material such as a resin web or cotton, and the porous material may be impregnated with the aerosol source 22 .
  • the reservoir 23 may store only the aerosol source 22 without accommodating the resin web or the cotton-like porous body.
  • Aerosol source 22 includes liquids such as glycerin, propylene glycol, and water. The storage amount of the aerosol source 22 in the reservoir 23 can be visually confirmed through a remaining amount confirmation window 28 (see FIGS. 1 and 2) provided in the first cartridge 20 .
  • a gap (not shown) serving as an air intake port is formed between the remaining amount confirmation window 28 and the cartridge case 27, and outside air is drawn into the cartridge case 27 through this gap.
  • the air intake port does not necessarily have to be provided around the remaining amount confirmation window 28 .
  • a gap may be formed between the operation portion 14 provided in the power supply unit and the LED window 13, and outside air may be taken into the case 11 through the gap, or the charging opening 43 may be used.
  • a communication hole may be provided in the wall surface of the cartridge case 27 or the case 11 to communicate the inside and the outside.
  • the wick 24 is a liquid holding member that draws the aerosol source 22 from the reservoir 23 into the heater 21 by using capillary action, and is made of, for example, glass fiber or porous ceramic.
  • the heater 21 atomizes the aerosol source 22 without combustion by power supplied from the power supply BAT via the discharge terminal 41 .
  • the heater 21 is composed of a heating wire (coil) wound at a predetermined pitch.
  • the heater 21 is an example of a load that can generate aerosol by atomizing the aerosol source 22, and the load is, for example, a heating element or an ultrasonic generator. Heating elements include heating resistors, ceramic heaters, induction heaters, and the like.
  • the aerosol flow path 25 is provided downstream of the heater 21 and on the center line L of the power supply unit 10 (case 11).
  • the center line L is a line that continuously connects the center points of the power supply unit 10 (case 11) in the X direction when the power supply unit 10 (case 11) is cut along a plane perpendicular to the X direction.
  • the end cap 26 includes a cartridge accommodating portion 26a that accommodates a portion of the second cartridge 30, and a communicating passage 26b that communicates the aerosol flow path 25 and the cartridge accommodating portion 26a.
  • the second cartridge 30 stores the flavor source 31 .
  • the second cartridge 30 is detachably housed in a cartridge housing portion 26 a provided in the end cap 26 of the first cartridge 20 .
  • the second cartridge 30 has a user's mouthpiece 32 at the end opposite to the first cartridge 20 side.
  • the suction port 32 is not limited to being configured integrally with the second cartridge 30 , and may be configured to be detachable from the second cartridge 30 .
  • the second cartridge 30 passes the aerosol generated by atomizing the aerosol source 22 by the heater 21 through the flavor source 31 to add flavor to the aerosol.
  • the raw material piece constituting the flavor source 31 cut tobacco or a molded body obtained by molding tobacco raw material into granules can be used.
  • the flavor source 31 may be composed of plants other than tobacco (for example, mint, Chinese medicine, herbs, etc.).
  • the flavor source 31 may be provided with a flavor such as menthol.
  • the aerosol with added flavor can be generated by the aerosol source 22, the flavor source 31, and the heater 21. That is, the aerosol source 22 and the flavor source 31 can be said to be aerosol generating sources that generate aerosol.
  • the configuration of the aerosol generation source used in the aerosol inhaler 1 includes a configuration in which the aerosol source 22 and the flavor source 31 are separated, and a configuration in which the aerosol source 22 and the flavor source 31 are integrally formed. , a configuration in which the flavor source 31 is omitted and a substance that can be contained in the flavor source 31 is added to the aerosol source 22, or a configuration in which a drug or the like is added to the aerosol source 22 instead of the flavor source 31.
  • the heater 21 atomizes the aerosol source 22 drawn or displaced from the reservoir 23 by the wick 24 .
  • the aerosol generated by atomization flows through the aerosol flow path 25 together with the air that has flowed in from a gap (not shown) that serves as an air intake port formed between the remaining amount confirmation window 28 and the cartridge case 27, and flows through the communication path. 26b to the second cartridge 30.
  • the aerosol supplied to the second cartridge 30 is flavored by passing through the flavor source 31 and supplied to the mouthpiece 32 .
  • the receptacle mounting board 8 includes, as main electronic components, a charging terminal 42 which is a receptacle into which a USB Type-C plug (hereinafter simply referred to as a USB plug) can be inserted, the receptacle mounting board 8, and the MCU mounting board 7.
  • the board connection cable Cb1 is an FPC (Flexible Printed Circuit) cable having six printed wirings, but is not limited to this.
  • the electronic parts shown within the range surrounded by the two-dot chain line are the electronic parts mounted on the MCU mounting board 7 .
  • the MCU-mounted board 7 includes, as main electronic components, an MCU-mounted board-side connector Cn2 to which the other end of the board connection cable Cb1 is connected, an MCU 50 that controls the entire aerosol inhaler 1 including the power supply unit 10, A charging IC (Integrated Circuit) 55 that charges the power supply BAT, etc., a protection IC 61 that protects the charging IC 55, an LDO (Low Dropout) regulator 62 that supplies a predetermined voltage to the MCU 50, etc., and a user's puff (suction).
  • Integrated Circuit Integrated Circuit
  • LDO Low Dropout
  • a battery pack including a suction sensor 15 for detecting operation, a discharge terminal 41 (41a, 41b) to which a heater 21 is connected, a DC/DC converter 63 capable of supplying power to the discharge terminal 41, and a power supply BAT. and a battery connector Cn3 to which a battery connection cable Cb2 that connects the BP and the MCU-mounted board 7 is connected.
  • the MCU 50, the charging IC 55, the protection IC 61, the LDO regulator 62, the suction sensor 15, and the DC/DC converter 63 are configured by, for example, chipping a plurality of circuit elements, and electrically connect the inside and outside of the device.
  • a pin is provided as a terminal for The details of the pins included in each of these chipped electronic components will be described later. It should be noted that, in this specification and the like, only major pins among the pins included in each of these chipped electronic components are described.
  • the battery pack BP includes a power supply BAT, a fuse FS connected to the positive terminal of the power supply BAT, and a thermistor TH connected to the negative terminal of the power supply BAT and arranged close to the power supply BAT.
  • the thermistor TH is mainly an element having NTC (Negative Temperature Coefficient) characteristics or PTC (Positive Temperature Coefficient) characteristics, that is, an element that has a correlation between electrical resistance and temperature.
  • the battery connection cable Cb2 that connects the battery pack BP and the MCU mounting board 7 is an FPC cable having three printed patterns, but it is not limited to this.
  • the battery connection cable Cb2 may be connected with three wires.
  • the wiring indicated by the thick solid line is the wiring connected to the ground provided in the power supply unit 10 (for example, the wiring configured by the ground pattern 78 shown in FIGS. 9 and 11 to be described later).
  • this wiring has the same potential as the reference potential (ground potential) in the power supply unit 10, and is hereinafter also referred to as a ground line.
  • main wirings other than the ground line include a VBUS line Ln1, a VBAT line Ln2, a D+ line Ln3a, a D ⁇ line Ln3b, a power-path line Ln4, and a VSYS line Ln4.
  • a line Ln5 and a VHEAT line Ln6 are provided.
  • Each of these lines (wiring) is mainly composed of a conductive pattern formed on the MCU mounting board 7 . Electronic components connected to these lines will be described later.
  • a board connection cable Cb1 a receptacle mounting board-side connector Cn1, and an MCU mounting board-side connector Cn2, which are electronic components that connect the receptacle mounting board 8 and the MCU mounting board 7, are combined to form a board connection. Also referred to as part CN.
  • the charging terminals 42 are the A1 pin, A4 pin, A5 pin, A6 pin, A7 pin, A8 pin, A9 pin, A12 pin, B1 pin, B4 pin, B5 pin, B6 pin, B7 pin, It has pins (terminals) connected to the B8 pin, B9 pin, and B12 pin, respectively.
  • the pin of the charging terminal 42 corresponding to the Bn pin of the USB plug is also called the Bn pin of the charging terminal 42 .
  • the A1 pin, A12 pin, B1 pin, and B12 pin of the charging terminal 42 corresponding to the GND (ground) pin of the USB plug are connected to the ground line.
  • the A4 pin, A9 pin, B4 pin, and B9 pin of the charging terminal 42 corresponding to the V BUS pin of the USB plug are connected to the high potential side of the charging IC 55 via the board connection portion CN, the VBUS line Ln1, and the protection IC 61. It is connected to the VBUS pin, which is a power supply terminal.
  • power for example, USB bus power
  • the charging IC 55 used can charge the power supply BAT and supply power to the MCU 50 .
  • the protection IC 61 provided between the charging terminal 42 and the charging IC 55 is detailed. , an OUT pin that is an output terminal for outputting a first system voltage Vs1 to be described later, a CE pin for turning on and off the operation of the protection IC 61 (hereinafter also referred to as on/off), and a power supply BAT. and a VBAT pin for sensing the state.
  • the A4 pin and B9 pin of the charging terminal 42 and the A9 pin and B4 pin are connected in parallel to the IN pin of the protection IC 61 via the substrate connection portion CN and the VBUS line Ln1.
  • the IN pin of the protection IC 61 is connected to the A4 pin and B9 pin of the charging terminal 42 and the A9 pin and B4 pin, respectively.
  • the VSS pin, GND pin and CE pin of the protection IC 61 are connected to the ground line.
  • the OUT pin of protection IC 61 is connected to the VBUS pin of charging IC 55 .
  • the VBAT pin of the protection IC 61 is connected to the positive terminal (that is, high potential side) of the power supply BAT via the VBAT line Ln2, battery connector Cn3, battery connection cable Cb2, and fuse FS.
  • the negative terminal (that is, the low potential side) of the power supply BAT is connected to the ground line via the battery connection cable Cb2 and the battery connector Cn3.
  • the protection IC 61 is supplied with a power supply voltage based on the difference between the potential of the IN pin and the potential of the VSS pin, and operates when the input to the CE pin is at a low level to apply a predetermined first system voltage Vs1 to the OUT pin. and detects whether the power supply BAT is connected based on the input voltage to the VBAT pin.
  • the charging IC 55 in this embodiment is enabled by inputting a low level to the CE pin, and therefore operates in negative logic.
  • a positive logic protection IC 61 that is enabled by inputting a high level to the CE pin may be used.
  • the CE pin is preferably connected to the IN pin so that a high level is input to the CE pin.
  • pins A4, A9, B4 and B9 of the charging terminal 42 are connected. is supplied with a predetermined USB voltage (for example, 5 [V]) from an external power supply. As a result, this USB voltage is supplied to the protection IC 61 as a power supply voltage. Also, since the CE pin of the protection IC 61 is grounded, the input voltage to this CE pin is always low level. Therefore, the protection IC 61 outputs the first system voltage Vs1 to the charging IC 55 in response to the USB voltage being supplied from the external power supply via the charging terminal 42 .
  • a predetermined USB voltage for example, 5 [V]
  • the first system voltage Vs1 output by the protection IC 61 has a voltage value within the recommended input voltage range of the charging IC 55 (for example, the range of 4.35 to 6.4 [V]).
  • the protection IC 61 uses the input voltage to the IN pin as the first system voltage Vs1 as it is. Output from the OUT pin.
  • the protection IC 61 detects a predetermined voltage (for example, 5.5 ⁇ 0.2 [V]), and the converted voltage is output from the OUT pin as the first system voltage Vs1.
  • the protection IC 61 opens a circuit (not shown) in the protection IC 61 that connects the IN pin and the OUT pin when a high voltage exceeding the maximum value of the recommended input voltage of the charging IC 55 is input to the IN pin.
  • the high voltage input to the IN pin may be prevented from being output from the OUT pin.
  • the protection IC 61 can detect whether or not the power supply BAT is connected based on the input voltage to the VBAT pin.
  • the protection IC 61 may use the detection result of whether or not the power supply BAT is connected in its own device, or may output it to the outside of its own device (for example, the MCU 50 or the charging IC 55).
  • the protection IC 61 may have various protection functions for protecting the electric circuit of the power supply unit 10, such as an overcurrent detection function and an overvoltage detection function, in addition to the function of protecting the charging IC 55 described above.
  • a capacitor (also called a smoothing capacitor or a bypass capacitor) Cd1 for stabilizing (smoothing) the input to the IN pin of the protection IC 61 is connected to the VBUS line Ln1 as needed. connected as appropriate.
  • a capacitor Cd2 is required between the OUT pin of the protection IC 61 and the VBUS pin of the charging IC 55 to stabilize the input to the VBUS pin of the charging IC 55 (that is, the first system voltage Vs1 output from the protection IC 61). are connected as appropriate.
  • the A4 pin, A9 pin, B4 pin, and B9 pin of the charging terminal 42 connected to the IN pin of the protection IC 61 are also connected to the ground line via a varistor (Variable Resistor: non-linear resistance element) VR1.
  • a varistor Variable Resistor: non-linear resistance element
  • the A6 pin and B6 pin of the charging terminal 42 corresponding to the Dp (also called D+) 1 pin or Dp2 pin of the USB plug are connected to the PA11 pin of the MCU 50 via the board connection portion CN and the D+ line Ln3a. Also, the A7 pin and B7 pin of the charging terminal 42 corresponding to the Dn (also called D-) 1 pin or Dp2 pin of the USB plug are connected to the PA12 pin of the MCU 50 via the board connection portion CN and the D- line Ln3b. be done.
  • the D+ line Ln3a and the D ⁇ line Ln3b are connected. It enables serial communication using two signal lines. Communication methods other than serial communication may be used for communication between the external device and the MCU 50 .
  • the A6 pin and B6 pin of the charging terminal 42 connected to the PA11 pin of the MCU 50 are also connected to the ground line via the varistor VR2.
  • the static electricity can be released to the ground line via the varistor VR2. Therefore, it is possible to protect the MCU 50 from static electricity generated at the A6 or B6 pin of the charging terminal 42 .
  • a resistor R11 is provided between the A6 and B6 pins of the charging terminal 42 and the PA11 pin of the MCU 50, the large current input to the PA11 pin of the MCU 50 can be prevented by the resistor R11. can also be suppressed by
  • a resistor is an element having a predetermined electrical resistance value, which is composed of a resistive element, a transistor, or the like.
  • the A7 pin and B7 pin of the charging terminal 42 connected to the PA12 pin of the MCU 50 are also connected to the ground line via the varistor VR3.
  • the static electricity can be released to the ground line via the varistor VR3. Therefore, it is possible to protect the MCU 50 from static electricity generated at the A7 pin or the B7 pin of the charging terminal 42 .
  • the power supply unit 10 there is no problem even if the MCU 50 does not recognize whether the USB plug is inserted into the charging terminal 42 in the upside-up direction or the upside-down direction. Therefore, the A5 pin and B5 pin of the charging terminal 42 corresponding to the CC1 pin or CC2 pin of the USB plug are connected to the ground line. Furthermore, the A8 pin and B8 pin of the charging terminal 42 corresponding to the SBU1 pin or SBU2 pin of the USB plug are not connected to the electric circuit of the power supply unit 10 . That is, since these pins of the charging terminal 42 are not used in the power supply unit 10, they can be omitted as appropriate. By doing so, it is possible to prevent the circuit configuration of the power supply unit 10 from becoming complicated.
  • the charging IC 55 has a VBUS pin, which is one of power supply terminals on the high potential side, a GND pin, which is a power supply terminal on the low potential side, and a BAT_1 pin, which is an input/output terminal used for power transfer between the charging IC 55 and the power supply BAT. and a BAT_2 pin, a BAT_SNS pin as a detection terminal for detecting input to or output from the power supply BAT, and SYS_1, SYS_2, SW_1, and SW_2 as output terminals for outputting a second system voltage Vs2 described later. and a CE pin for turning on/off the operation of the charging IC 55 .
  • the BAT_1 pin and the BAT_2 pin can also function as high-potential-side power supply terminals in the charging IC 55 .
  • the VBUS pin of the charging IC 55 is connected to the OUT pin of the protection IC 61 as described above.
  • the BAT_1 pin, BAT_2 pin, and BAT_SNS pin of the charging IC 55 are connected to the positive terminal of the power supply BAT via the VBAT line Ln2, battery connector Cn3, battery connection cable Cb2, and fuse FS.
  • the SYS_1 pin, SYS_2 pin, SW_1 pin, and SW_2 pin of the charging IC 55 are connected via the power path line Ln4 to the IN pin, which is the power supply terminal on the high potential side of the LDO regulator 62, and the high potential side of the DC/DC converter 63. It is connected to the VIN pin which is a power supply terminal.
  • the SW_1 pin and the SW_2 pin are connected to the power path line Ln4 via the reactor Rc1.
  • the CE pin of the charging IC 55 is connected to the PB14 pin of the MCU 50 .
  • the charging IC 55 is supplied with a power supply voltage based on the difference between the potential of the VBUS pin, BAT_1 pin, or BAT_2 pin and the potential of the GND pin, and operates when the input to the CE pin is at a high level. It performs charging, and supplies power discharged from the power supply BAT to the LDO regulator 62, the DC/DC converter 63, and the like.
  • the charging IC 55 in this embodiment is enabled by inputting a high level to the CE pin, and therefore operates in positive logic.
  • a negative logic charging IC 55 that is enabled by inputting a low level to the CE pin may be used.
  • the charging IC 55 applies a voltage (for example, the first system voltage Vs1 ).
  • the output voltage (terminal voltage) of the power supply BAT is input to the BAT_1 pin and the BAT_2 pin.
  • the charging IC 55 applies the second system voltage Vs2 according to the input voltages to the BAT_1 pin and the BAT_2 pin from the SYS_1 pin, the SYS_2 pin, the SW_1 pin, and the SW_2 pin to the LDO regulator 62, DC/DC converter 63, etc.
  • Output for The second system voltage Vs2 is, for example, the output voltage itself of the power supply BAT, and specifically can be a voltage of about 3 to 4 [V].
  • the charging IC 55 further includes an SCL pin connected to the PB8 pin of the MCU50 and an SDA pin connected to the PB9 pin of the MCU50.
  • I2C Inter-Integrated Circuit
  • the charging IC 55 transmits, for example, battery information regarding the power supply BAT to the MCU 50 .
  • the battery information is, for example, information indicating the charging state of the power supply BAT by the charging IC 55 (for example, charging or charging stopped), the remaining amount of the power supply BAT (SOC: State Of Charge), and the like.
  • Communication between the charging IC 55 and the MCU 50 may employ a communication method other than the I2C communication.
  • the charging IC 55 may further include an ISET pin, an ILIM pin, a TS pin, and the like. If the charging IC 55 has an ISET pin, the electric resistance value of the resistor connected between the ISET pin and the ground line can be used to set the current value output from the charging IC 55 to the power supply BAT. When the charging IC 55 has an ILIM pin, the current value output from the charging IC 55 to the LDO regulator 62, the DC/DC converter 63, etc. is determined by the electrical resistance value of the resistor connected between the ILIM pin and the ground line. can be set. If the charging IC 55 has a TS pin, the charging IC 55 can detect the electrical resistance value and temperature of the resistor connected to the TS pin based on the input voltage to this TS pin.
  • a capacitor Cd3 for stabilizing the input to the BAT_SNS pin of the charging IC 55 is appropriately connected to the VBAT line Ln2 as required. Further, the power path line Ln4 is provided with a capacitor Cd4 for stabilizing the second system voltage Vs2 output from the charging IC 55, and a capacitor Cd5 for stabilizing the input to the IN pin of the LDO regulator 62. connected as appropriate.
  • the power path line Ln4 to which the second system voltage Vs2 output from the charging IC 55 is supplied further includes a first LED circuit Cc1 for operating (for example, lighting) the LED_L1 and a second LED circuit Cc2 for operating the LED_L2. is connected.
  • the first LED circuit Cc1 is configured by connecting in series an LED_L1 and a switch Sw1 that switches conduction and interruption of the first LED circuit Cc1.
  • One end of the first LED circuit Cc1 is connected to the power path line Ln4, and the other end is connected to the ground line.
  • the switch Sw1 of the first LED circuit Cc1 is turned on in response to an on command from the MCU50 and turned off in response to an off command from the MCU50.
  • the switch Sw1 When the switch Sw1 is turned on, the first LED circuit Cc1 becomes conductive, the second system voltage Vs2 output from the charging IC 55 is supplied to the LED_L1, and the LED_L1 lights up.
  • the switch Sw1 for example, a switch composed of a MOSFET can be adopted.
  • the gate terminal of the MOSFET that constitutes the switch Sw1 is connected to the PA0 pin of the MCU 50, and the MCU 50 controls the output from the PA0 pin so that the gate terminal of the switch Sw1 is supplied with The gate voltage is changed to turn on or off the switch Sw1.
  • the switch Sw1 is not limited to a MOSFET, and may be a switch that is turned on/off under the control of the MCU50.
  • the second LED circuit Cc2 is configured by connecting in series LED_L2 and a switch Sw2 that switches conduction and interruption of the second LED circuit Cc2.
  • One end of the second LED circuit Cc2 is connected to the power path line Ln4, and the other end is connected to the ground line.
  • the switch Sw2 of the second LED circuit Cc2 is turned on in response to an on command from the MCU50 and turned off in response to an off command from the MCU50.
  • the switch Sw2 is turned on, the second LED circuit Cc2 becomes conductive, the second system voltage Vs2 output from the charging IC 55 is supplied to the LED_L2, and the LED_L2 lights up.
  • a switch composed of a MOSFET can be employed as the switch Sw2.
  • the gate terminal of the MOSFET that constitutes the switch Sw2 is connected to the PB3 pin of the MCU 50, and the MCU 50 controls the output from the PB3 pin so that the voltage is applied to the gate terminal of the switch Sw2.
  • the switch Sw2 is turned on or off.
  • the switch Sw2 is not limited to a MOSFET, and may be a switch that is turned on/off under the control of the MCU50.
  • the LDO regulator 62 has an IN pin that is a power supply terminal on the high potential side, a GND pin that is a power supply terminal on the low potential side, an OUT pin that is an output terminal for outputting a third system voltage Vs3 described later, and the operation of the LDO regulator 62. and an EN pin for turning on/off the .
  • the IN pin of the LDO regulator 62 is connected to the SYS_1 pin, SYS_2 pin, etc. of the charging IC 55 via the power path line Ln4, as described above.
  • the GND pin of LDO regulator 62 is connected to the ground line.
  • the OUT pin of the LDO regulator 62 is connected to the VDD pin, which is the high-potential power terminal of the MCU 50, and the VDD pin, which is the high-potential power terminal of the suction sensor 15, via the VSYS line Ln5.
  • the EN pin of LDO regulator 62 is connected to power path line Ln4.
  • the LDO regulator 62 is supplied with a power supply voltage based on the difference between the potential of the IN pin and the potential of the GND pin, and operates when the input voltage to the EN pin is at a high level to generate a predetermined third system voltage Vs3. and output from the OUT pin.
  • the LDO regulator 62 in this embodiment is a positive logic operation because it is enabled by inputting a high level to the EN pin.
  • a positive logic LDO regulator 62 that is enabled by inputting a low level to the EN pin may be used.
  • the EN pin is preferably connected to the ground line so that a low level is always input to the EN pin.
  • the LDO regulator 62 in response to the charging IC 55 outputting the second system voltage Vs2, the LDO regulator 62 is supplied with the second system voltage Vs2 as the power supply voltage. Further, when the charging IC 55 outputs the second system voltage Vs2, the input voltage to the EN pin of the LDO regulator 62 becomes the second system voltage Vs2 (that is, high level). Therefore, when the charging IC 55 outputs the second system voltage Vs2, the LDO regulator 62 generates the third system voltage Vs3 and outputs the generated third system voltage Vs3 to the MCU 50, the suction sensor 15, and the like.
  • the third system voltage Vs3 output by the LDO regulator 62 has a voltage value suitable for operating the MCU 50, the suction sensor 15, and the like.
  • the third system voltage Vs3 is a voltage lower than the second system voltage Vs2, and can be set to 2.5 [V], for example.
  • the VSYS line Ln5 to which the third system voltage Vs3 output from the LDO regulator 62 is supplied, further includes an operation switch circuit Cc3 for detecting the user's operation of the operation switch OPS, and an operation switch circuit Cc3 for detecting the temperature of the power supply BAT. is connected to the power supply temperature detection circuit Cc4.
  • the operation switch circuit Cc3 is composed of a resistor R1, a resistor R2, a resistor R3, and an operation switch OPS.
  • the resistor R1 has one end connected to the VSYS line Ln5 and the other end connected to one end of each of the resistors R2 and R3.
  • the other end of the resistor R2 is connected to the PC4 pin of the MCU 50, and the other end of the resistor R3 is connected to one end of the operation switch OPS.
  • the other end of the operation switch OPS is connected to the ground line.
  • the PC4 pin of the MCU 50 receives a voltage obtained by stepping down the third system voltage Vs3 supplied to the VSYS line Ln5 by the resistors R1 and R2.
  • the third system voltage Vs3 supplied to the VSYS line Ln5 is applied to the PC4 pin of the MCU 50 after being divided by the resistors R1 and R3.
  • a voltage stepped down by R2 is input. Therefore, the MCU 50 can detect whether or not the operation switch OPS is operated by the user based on the input voltage to the PC4 pin.
  • the power supply temperature detection circuit Cc4 is configured by connecting in series a thermistor TH, a resistor R4, and a switch Sw3 for switching conduction and interruption of the power supply temperature detection circuit Cc4.
  • One end of the power supply temperature detection circuit Cc4 on the switch Sw3 side is connected to the VSYS line Ln5, and the other end of the power supply temperature detection circuit Cc4 on the thermistor TH side is connected to the ground line.
  • the PC1 pin of the MCU 50 is connected to the connection point CP between the resistor R4 and the thermistor TH in the power supply temperature detection circuit Cc4.
  • the switch Sw3 of the power supply temperature detection circuit Cc4 is turned on in response to an on command from the MCU50, and turned off in response to an off command from the MCU50.
  • the power supply temperature detection circuit Cc4 becomes conductive, and the third system voltage Vs3 supplied to the VSYS line Ln5 is divided by the electrical resistance value of the resistor R4 and the electrical resistance value of the thermistor TH.
  • a voltage is input to the PC1 pin of MCU 50 .
  • the MCU 50 can detect the temperature of the thermistor TH (that is, the temperature of the power supply BAT) based on the input voltage to the PC1 pin when the switch Sw3 is turned on.
  • the switch Sw3 may employ, for example, a switch configured by a MOSFET.
  • the gate terminal of the MOSFET that constitutes the switch Sw3 is connected to the PA8 pin of the MCU 50, and the MCU 50 controls the output from the PA8 pin so that the gate terminal of the switch Sw3 is supplied with By changing the gate voltage, the switch Sw3 is turned on or off.
  • the switch Sw3 is not limited to a MOSFET, and may be any switch that is turned on/off under the control of the MCU50.
  • the DC/DC converter 63 has a VIN pin that is a power supply terminal on the high potential side, a GND pin that is a power supply terminal on the low potential side, a SW pin to which a voltage is input, and an output terminal for outputting a fourth system voltage Vs4, which will be described later. , an EN pin for turning on/off the operation of the DC/DC converter 63, and a MODE pin for setting the operation mode of the DC/DC converter 63.
  • the VIN pin of the DC/DC converter 63 is connected to the SYS_1 pin, SYS_2 pin, etc. of the charging IC 55 via the power path line Ln4, as described above.
  • a GND pin of the DC/DC converter 63 is connected to the ground line.
  • the SW pin of DC/DC converter 63 is connected to power path line Ln4 via reactor Rc2.
  • the VOUT pin of the DC/DC converter 63 is connected to the positive discharge terminal 41a, which is the positive terminal (that is, the high potential side) of the discharge terminal 41, via the VHEAT line Ln6.
  • the EN pin of the DC/DC converter 63 is connected to the PB2 pin of MCU50.
  • a MODE pin of the DC/DC converter 63 is connected to the power path line Ln4.
  • a negative electrode side discharge terminal 41b which is the negative electrode terminal (that is, the low potential side) of the discharge terminal 41, is connected to the ground line.
  • the DC/DC converter 63 is supplied with a power supply voltage based on the difference between the potential of the VIN pin and the potential of the GND pin, and operates when the input voltage to the EN pin is at a high level to boost the input voltage. output from the VOUT pin.
  • the DC/DC converter 63 in this embodiment is a positive logic operation because it is enabled by inputting a high level to the EN pin.
  • a negative logic DC/DC converter 63 that is enabled by inputting a low level to the EN pin may be used.
  • the DC/DC converter 63 in response to the charging IC 55 outputting the second system voltage Vs2, the DC/DC converter 63 is supplied with the second system voltage Vs2 as the power supply voltage. Also, the MCU 50 inputs a high-level voltage signal to the EN pin of the DC/DC converter 63 when determining to heat the heater 21 in response to an aerosol generation request or the like. As a result, the DC/DC converter 63 outputs a fourth system voltage Vs4 obtained by boosting the voltage input to the DC/DC converter 63 to the discharge terminal 41 (that is, the heater 21).
  • the fourth system voltage Vs4 output by the DC/DC converter 63 has a voltage value suitable for heating the heater 21.
  • the fourth system voltage Vs4 is a voltage higher than the third system voltage Vs3, and can be set to a voltage of approximately 4.2 [V], for example.
  • the DC/DC converter 63 is, for example, a switching regulator, and can take a pulse width modulation mode (hereinafter also referred to as PWM mode) and a pulse frequency modulation mode (hereinafter also referred to as PFM mode) as operation modes.
  • PWM mode pulse width modulation mode
  • PFM mode pulse frequency modulation mode
  • the MODE pin of the DC/DC converter 63 is connected to the power path line Ln4 so that the input voltage to the MODE pin becomes high level when the DC/DC converter 63 can operate.
  • the DC/DC converter 63 is operated in PWM mode.
  • the VHEAT line Ln6 is provided with a switch Sw4 that switches between conduction and interruption of the VHEAT line Ln6.
  • the switch Sw4 is turned on in response to an on command from the MCU50, and turned off in response to an off command from the MCU50.
  • the switch Sw4 is turned on, the VHEAT line Ln6 becomes conductive, and the fourth system voltage Vs4 output from the DC/DC converter 63 is supplied to the discharge terminal 41 (specifically, the positive discharge terminal 41a). Heater 21 is heated. This allows the aerosol source to be atomized or vaporized to produce an aerosol.
  • a switch composed of, for example, a MOSFET can be used as the switch Sw4. More specifically, the switch Sw4 is desirably a power MOSFET with a high switching speed.
  • the gate terminal of the MOSFET that constitutes the switch Sw4 is connected to the PB4 pin of the MCU 50, and the MCU 50 controls the output from the PB4 pin to apply to the gate terminal of the switch Sw4. By changing the gate voltage, the switch Sw4 is turned on or off.
  • VHEAT line Ln6 (Other electronic components connected to VHEAT line Ln6) If the voltage supplied to the discharge terminal 41 becomes unstable, the amount of aerosol generated by the heater 21 may vary, leading to deterioration in flavor and taste. Therefore, as shown in FIG. 6, a capacitor for stabilizing the fourth system voltage Vs4 output from the DC/DC converter 63 is connected to the VHEAT line Ln6.
  • the power supply unit 10 three capacitors, a capacitor Cd61, a capacitor Cd62, and a capacitor Cd63, are connected in parallel as capacitors for stabilizing the fourth system voltage Vs4 output from the DC/DC converter 63. are provided.
  • stabilizing smoothing the voltage with a plurality of capacitors in this way, the heat generated due to the stabilization of the voltage can be distributed to the plurality of capacitors. Therefore, compared with the case where the voltage is stabilized by one capacitor, it is possible to avoid the capacitor from becoming hot and suppress deterioration and failure of the capacitor.
  • a high voltage value is required for the fourth system voltage Vs4. If such a high voltage were to be stabilized by a single capacitor, it would be expected that this capacitor would reach a very high temperature. As a result, not only the capacitor, which has reached a high temperature, is significantly deteriorated, but also other electronic components arranged around this capacitor may be adversely affected. Therefore, as described above, it is desirable to stabilize the fourth system voltage Vs4 using a plurality of capacitors.
  • the capacitor Cd61 has a relatively small electrostatic capacity, and accordingly has a relatively small physical size.
  • the capacitor Cd62 and the capacitor Cd63 have relatively large electrostatic capacitances, and correspondingly have relatively large physical sizes.
  • the capacitance of the capacitor Cd61 can be 0.1 [ ⁇ F]
  • the capacitance of the capacitors Cd62 and Cd63 can be 50 [ ⁇ F].
  • a varistor VR4 is provided between the discharge terminal 41 and the switch Sw4 in the VHEAT line Ln6. More specifically, one end of the varistor VR4 is connected to the VHEAT line Ln6 and the other end is connected to the ground line.
  • a capacitor Cd7 is also connected between the discharge terminal 41 and the switch Sw4 for stabilizing the voltage supplied to the discharge terminal 41 via the switch Sw4.
  • this capacitor Cd7 can also function as a protection component that protects the system of the power supply unit 10, such as the switch Sw4 and the DC/DC converter 63, from noise such as static electricity generated at the discharge terminal 41.
  • FIG. Therefore, the capacitor Cd7 can also protect the system of the power supply unit 10 such as the switch Sw4 and the DC/DC converter 63 from noise such as static electricity generated at the discharge terminal 41.
  • the suction sensor 15 includes a VDD pin that is a high-potential power terminal, a GND pin that is a low-potential power terminal, and an OUT pin that is an output terminal.
  • the VDD pin of the suction sensor 15 is connected to the OUT pin of the LDO regulator 62 via the VSYS line Ln5 as described above.
  • a GND pin of the suction sensor 15 is connected to the ground line.
  • the OUT pin of the suction sensor 15 is connected to the PC5 pin of the MCU50.
  • the suction sensor 15 operates when a power supply voltage is supplied by the difference between the potential of the VDD pin and the potential of the GND pin. Specifically, the suction sensor 15 operates by being supplied with the third system voltage Vs3 output from the LDO regulator 62 as a power supply voltage, and functions as a sensor device that detects the user's puffing action.
  • the suction sensor 15 is mainly composed of a condenser microphone or a pressure sensor, and sends a signal indicating the value of the pressure (internal pressure) change in the power supply unit 10 caused by suction by the user as a detection result from the OUT pin to the MCU 50. output.
  • a sensor device other than a condenser microphone or a pressure sensor may be employed as the suction sensor 15 .
  • the MCU 50 includes a VDD pin that is a high-potential power terminal, a VSS pin that is a low-potential power terminal, and a plurality of pins (hereinafter also referred to as input/output pins) that function as input terminals or output terminals.
  • the MCU 50 operates by being supplied with a power supply voltage based on the difference between the potential of the VDD pin and the potential of the VSS pin.
  • the MCU 50 Since the MCU 50 has the aforementioned PA11 pin and PA12 pin as input/output pins, it can communicate with an external device using these pins, and can acquire, for example, firmware update data from the external device. Further, since the MCU 50 has the PB8 pin and the PB9 pin as input/output pins, it can communicate with the charging IC 55 using these pins, and can acquire the above-described battery information and the like from the charging IC 55 .
  • the charging IC 55 is turned on/off by the output from the PB14 pin, and the DC/DC converter 63 is turned on/off by the output from the PB2 pin. can be individually controlled.
  • the switch Sw1 is activated by the output from the PA0 pin, the switch Sw2 by the output from the PB3 pin, and the switch Sw2 by the output from the PA8 pin.
  • the switch Sw3 can be turned on/off by the output from the PB4 pin, and the switch Sw4 can be turned on/off by the output from the PB4 pin.
  • the MCU 50 Since the MCU 50 has the PC5 pin, the PC4 pin, and the PC1 pin as input/output pins, the user's puff action is performed based on the input to the PC5 pin, and the user's operation switch OPS is operated based on the input to the PC4 pin. , the temperature of the thermistor TH (that is, the temperature of the power supply BAT) can be detected based on the input to the PC1 pin when the switch Sw3 is turned on.
  • FIG. 1 An insulating chassis 12 is provided in the inner space of the case 11, and a charging terminal 42 (see FIG. 3), a receptacle mounting board 8, a battery pack BP including a power supply BAT, and an MCU mounting board 7 are arranged from the bottom part 11c to the top. They are held by the chassis 12 in this order toward the portion 11a.
  • the case 11 has the above-described charging opening 43 that allows access to the charging terminal 42, an operation opening that exposes the operation portion 14 to the outside, and a pair of discharge terminals 41 that expose the discharge terminal 41 to the outside from the top portion 11a. An opening is provided.
  • the MCU mounting board 7 is a multi-layer board configured by laminating a plurality of layers, and has a substantially rectangular shape.
  • the MCU mounting board 7 is arranged such that its longitudinal direction is along the extending direction (X direction) of the center line L of the case 11 and one element mounting surface thereof faces the operation section 14 .
  • the X direction is sometimes referred to as the longitudinal direction
  • the top portion 11a side is referred to as the X1 direction
  • the bottom portion 11c side is referred to as the X2 direction.
  • the direction orthogonal to the longitudinal direction X is called a lateral direction Y, and in the lateral direction Y, one side (the left side in FIG. 7, the upper side in FIGS. 10 and 11) is referred to as the Y1 direction, and the other side (the right side in FIG. 7, the lower side in FIGS. 8 and 9 and the upper side in FIGS. 10 and 11) is referred to as the Y2 direction.
  • the centerline of the MCU mounting board 7 coincides with the centerline L of the power supply unit 10 (case 11) extending in the X direction.
  • the center line of the MCU mounting board 7 is the center point of the width direction (transverse direction) and thickness direction of the MCU mounting board 7 when the MCU mounting board 7 is cut along a plane orthogonal to the longitudinal direction X. It is a line connected continuously to X.
  • the MCU mounting board 7 is composed of a rectangular portion 81 that occupies most of the MCU mounting board 7 and a projecting portion 82 projecting from the rectangular portion 81 in the X1 direction. Both ends of the projecting portion 82 in the lateral direction Y are notched, and the X1-direction end of the projecting portion 82 faces the top portion 11a of the case 11. The X1 direction end faces the low floor portion 11b of the case 11 .
  • the MCU mounting board 7 Assuming that the surface of the MCU mounting board 7 on the operation unit 14 side is the main surface 7a and the opposite side is the subsurface 7b, the MCU mounting board 7 has both the main surface 7a and the subsurface 7b on which electronic components are mounted. It is a mounting board.
  • a battery connector Cn3, an MCU 50, an operation switch OPS, LED_L1, LED_L2, a DC/DC converter 63, a DC/DC converter 63, A reactor Rc2 of the DC/DC converter 63, a switch Sw4, a positive discharge terminal 41a, and the like are mounted.
  • a button-type operation switch OPS is mounted substantially in the center of the main surface 7a so as to face the operation unit 14. Thereby, the user can push down the operation switch OPS through the operation portion 14 of the case 11 .
  • a pair of LED_L1 and LED_L2 are mounted in the vicinity of the operation switch OPS so as to sandwich the operation switch OPS in the lateral direction Y. As shown in FIG. Thereby, the user can visually recognize the light emitted from LED_L1 and LED_L2 through the LED window 13 provided around the operation unit 14 .
  • the battery connector Cn3 is mounted on the end in the X2 direction, and the positive discharge terminal 41a is mounted on the projecting portion 82, which is the end in the X1 direction.
  • the end in the X2 direction is located near the power source BAT, and as shown in FIG. 7, a battery connection cable Cb2 extending from the power source BAT is connected to the battery connector Cn3.
  • the end in the X1 direction is located near the first cartridge 20, and the heater 21 is connected to the positive electrode side discharge terminal 41a.
  • the positive discharge terminal 41a is mounted on the projecting portion 82 on the Y2 direction side with the center line L interposed therebetween.
  • a switch Sw4 is mounted on the projecting portion 82 on the Y1 direction side across the center line L.
  • a DC/DC converter 63 and a reactor Rc2 of the DC/DC converter 63 are mounted on the main surface 7a between the operation switch OPS and the switch Sw4 in the X direction.
  • a charging IC 55 As shown in FIG. 10, a charging IC 55, a reactor Rc1 of the charging IC 55, a protection IC 61, an MCU mounting board side connector Cn2, a suction The sensor 15, the negative electrode side discharge terminal 41b, and the like are mounted.
  • an MCU-mounted board-side connector Cn2 is mounted approximately in the center of the secondary surface 7b, and a board-connecting cable Cb1 extending from a receptacle-mounted board 8 on which charging terminals 42 are mounted on the MCU-mounted board-side connector Cn2. is connected.
  • the charging IC 55 is mounted on the X2 direction side of the MCU mounting board side connector Cn2, and between the charging IC 55 and the MCU mounting board side connector Cn2 in the X direction and on the Y1 direction side in the Y direction.
  • a reactor Rc1 of the charging IC 55 is mounted on the Y2 direction side, and a protection IC 61 is mounted on the Y2 direction side.
  • the suction sensor 15 is mounted on the X1 direction side of the MCU mounting board side connector Cn2, and the negative discharge terminal 41b is mounted on the projecting portion 82 which is the end portion in the X1 direction. As described above, the end in the X1 direction is located near the first cartridge 20, and the heater 21 is connected to the negative discharge terminal 41b.
  • the negative discharge terminal 41b is arranged on the Y1 direction side of the projecting portion 82 with the center line L interposed therebetween.
  • the positive side discharge terminal 41a is mounted on the main surface 7a
  • the negative side discharge terminal 41b is mounted on the subsurface 7b.
  • the positive electrode side discharge terminal 41 a and the negative electrode side discharge terminal 41 b are needle-like probes with thin tip portions exposed from the top portion 11 a of the case 11 . As shown in FIG.
  • a virtual line P connecting the center Pa of the probe of the positive electrode side discharge terminal 41a and the center Pb of the probe of the negative electrode side discharge terminal 41b when viewed from the extending direction (X direction) of the center line L of the case 11 are arranged so as to pass through the center line L, and the center Pa of the probe of the positive electrode side discharge terminal 41a and the center Pb of the probe of the negative electrode side discharge terminal 41b are arranged on a circle Q passing through the center line L.
  • the MCU mounting board 7 is provided with a first wiring layer 72a, a main surface side insulating layer 73a, and a second wiring layer 74a in this order from the base layer 70 toward the main surface side surface layer 71a. Further, from the base layer 70 toward the sub-surface side surface layer 71b, a third wiring layer 72b, a sub-surface side insulating layer 73b, and a fourth wiring layer 74b are provided in this order. Note that the MCU mounting board 7 is not limited to this, and various configurations can be adopted. For example, a plurality of second wiring layers 74a and/or fourth wiring layers 74b may be provided, or only one of the first wiring layer 72a and the third wiring layer may be provided.
  • a conductive pattern formed of copper foil or the like is provided on the second wiring layer 74a and the fourth wiring layer 74b.
  • the conductive pattern forming the power supply line and the signal line is referred to as a wiring pattern 77
  • the conductive pattern forming the ground line is referred to as a ground pattern 78.
  • FIGS. It is provided so as to surround the pattern 77 .
  • the ground pattern 78 is positioned outside the wiring pattern 77 .
  • 9 is a diagram showing the second wiring layer 74a of the MCU mounting substrate 7
  • FIG. 11 is a diagram showing the fourth wiring layer 74b of the MCU mounting substrate 7.
  • the wiring pattern 77 is hatched with oblique lines
  • the ground pattern 78 is hatched with dots. It should be noted that FIGS. 9 and 11 show only some wiring patterns among the plurality of wiring patterns.
  • the via V1 is composed of a conductor penetrating from the second wiring layer 74a to the fourth wiring layer 74b.
  • the conductive patterns electrically connected to the via V1 are set to the same potential.
  • the wiring pattern 77 of the second wiring layer 74a and the wiring pattern 77 of the fourth wiring layer 74b are electrically connected to each other through the via V1.
  • the via V2 is composed of a conductor penetrating from the second wiring layer 74a to the first wiring layer 72a, and is electrically connected to the via V2 among the conductive patterns formed in the first wiring layer 72a and the second wiring layer 74a.
  • the conductive patterns on the The via V3 is composed of a conductor penetrating from the third wiring layer 72b to the fourth wiring layer 74b, and is electrically connected to the via V3 among the conductive patterns formed in the third wiring layer 72b and the fourth wiring layer 74b.
  • the conductive patterns on the For example, the ground pattern 78 of the second wiring layer 74a and a part of the conductive pattern of the first wiring layer 72a are electrically connected to each other through vias V2, and the ground pattern 78 of the fourth wiring layer 74b and the third wiring layer are electrically connected to each other.
  • Part of the conductive patterns of 72b are electrically connected to each other through vias V3.
  • the via V4 is composed of a conductor penetrating from the first wiring layer 72a to the third wiring layer 72b, and is electrically connected to the via V4 among the conductive patterns formed in the first wiring layer 72a and the third wiring layer 72b.
  • the wiring to be connected is set to the same potential.
  • a part of the conductive pattern of the first wiring layer 72a and a part of the conductive pattern of the third wiring layer 72b are electrically connected to each other through the via V4.
  • a part of the conductive pattern of the first wiring layer 72a and a part of the conductive pattern of the third wiring layer 72b are connected to the ground pattern 78 of the second wiring layer 74a and the ground of the fourth wiring layer 74b.
  • Pattern 78 can be a ground line with a common reference potential.
  • the main-surface-side surface layer 71a and the sub-surface-side surface layer 71b are composed of an insulating resist film 79 (see FIG. 13), cover the second wiring layer 74a and the fourth wiring layer 74b, and short-circuit the wiring patterns 77 to each other. Also, the wiring pattern 77 and the ground pattern 78 are protected from being short-circuited. The details of the main-surface-side surface layer 71a and the sub-surface-side surface layer 71b will be described later.
  • the base layer 70, the main-surface-side insulating layer 73a, and the sub-surface-side insulating layer 73b are made of an insulator containing glass or epoxy resin, for example, and adhere to each other while preventing short circuits between the upper and lower layers.
  • a main-surface-side surface layer 71a which is the surface of the main surface 7a of the MCU-mounted substrate 7, and a sub-surface-side surface layer 71b, which is the surface of the sub-surface 7b of the MCU-mounted substrate 7, have An insulating film forming portion 75 having an insulating resist film 79 formed thereon and an insulating film non-forming portion 76 having no resist film 79 formed thereon are respectively provided.
  • the insulating film forming portion 75 is surrounded by a thick line.
  • the insulating film forming part 75 is formed in the wiring pattern of the second wiring layer 74a formed in the layer below the main surface layer 71a and the subsurface layer 71b. 77 and the wiring pattern 77 of the fourth wiring layer 74b, and most of the ground pattern 78 of the second wiring layer 74a and the ground pattern 78 of the fourth wiring layer 74b. As described above, the insulating film forming portion 75 prevents unintentional short circuit between the wiring patterns 77 and between the wiring pattern 77 and the ground pattern 78 .
  • the insulating film non-formed portion 76 is provided near the edge of the MCU mounting board 7 .
  • the second wiring layer extending along the edge of the MCU mounting substrate 7 and positioned outside the wiring pattern 77 of the second wiring layer 74a and the wiring pattern 77 of the fourth wiring layer 74b. At least part of the ground pattern 78 of 74 a and the ground pattern 78 of the fourth wiring layer 74 b are exposed from the resist film 79 .
  • the boundary between the insulating film formed portion 75 and the insulating film non-formed portion 76 is the ground pattern 78 of the second wiring layer 74a and the ground pattern 78 of the fourth wiring layer 74b located near the edge of the MCU mounting board 7. Located slightly inside. The distance from this edge to the ground pattern 78 of the second wiring layer 74a and the ground pattern 78 of the fourth wiring layer 74b is It is shorter than the distance to 77.
  • the wiring pattern 77 of the second wiring layer 74a and the wiring pattern 77 of the fourth wiring layer 74b are positioned outside the wiring pattern 77 of the second wiring layer 74a and the wiring pattern 77 of the fourth wiring layer 74b due to the insulating film non-formed portions 76 of the main surface side surface layer 71a and the sub-surface side surface layer 71b. Since the ground pattern 78 of the second wiring layer 74a and the ground pattern 78 of the fourth wiring layer 74b are exposed from the resist film 79, external noise (for example, electrostatic noise) can easily enter the ground pattern 78. .
  • the noise that has entered the ground pattern 78 enters the first wiring layer 72a and the third wiring layer 72b from the ground pattern 78 via the via V2 and the via V3. Therefore, noise can be suppressed from entering the wiring pattern 77 and the electronic components connected to the wiring pattern 77 without using other electronic components such as a capacitor as a noise countermeasure, and adverse effects of noise can be suppressed.
  • other electronic components such as capacitors can be simplified or omitted as a countermeasure against noise, so that the size and cost of the power supply unit 10 can be reduced.
  • the edge on which the insulating film non-formed portion 76 is provided should include at least one of the plurality of edges of the MCU mounting board 7 .
  • the insulating film non-formed portion 76 does not have to be provided on all edges of the MCU mounting substrate 7, and may be provided only on necessary edges.
  • the electronic parts can be protected from noise by providing the insulating film non-formed portion 76, short-circuiting is likely to occur in the wiring pattern 77 or the like. important.
  • the long edge 81d corresponds to the pair of long sides of the rectangular portion 81
  • the short edge 81e corresponds to the pair of short sides of the rectangular portion 81
  • the X1 Assuming that the side edge is referred to as an upper edge 82f and the edges on both sides of the projecting portion 82 in the Y direction are referred to as side edges 82g, the insulating film non-formed portion 76 of the present embodiment is the length of the rectangular portion 81 on the main surface 7a and the subsurface 7b. It is provided along the edge 81d.
  • a portion of the ground pattern 78 extending along the long edge 81d and positioned outside the wiring pattern 77 extends from the resist film 79 in the vicinity of the long edge 81d. expose.
  • "extending along the long edge 81d and positioned outside the wiring pattern 77 in the vicinity of the long edge 81d" means that the insulating film is not formed. It may also include that the portion 76 is located between (or is located at) the edge closest to the wiring pattern 77 .
  • the insulating film non-formation portion 76 By providing the insulating film non-formation portion 76 along the long edge 81d of the rectangular portion 81, a long ground pattern 78 into which noise enters can be ensured, and the adverse effect of noise can be further suppressed. Conversely, the insulating film non-formed portion 76 is not provided along the short edge 81e of the rectangular portion 81 on the main surface 7a and the secondary surface 7b, and the insulating film formed portion 75 is provided on the short edge 81e. ing.
  • the MCU mounting substrate 7 can be easily manufactured by forming the insulating film formed portion 75 instead of providing the insulating film non-formed portion 76 on the short edge 81e where a long ground pattern 78 into which noise penetrates cannot be secured.
  • the insulating film non-formed portion 76 is provided continuously from the end in the X1 direction of the long edge 81d to the end in the X2 direction.
  • the insulating film non-formation portion 76 may be intermittently provided along the long edge 81 d, but by providing it continuously, it is possible to effectively suppress the adverse effects of noise and also to reduce the manufacturing cost of the MCU mounting substrate 7 . can be easily
  • the insulating film non-formation portion 76 is provided on the same edge of the main surface 7a and the subsurface 7b. 7a and the secondary surface 7b may be different, and the insulating film non-formation portion 76 may be provided only on one of the surfaces. Moreover, the insulating film non-formation portion 76 may be provided only on the short edge 81e of the main surface 7a and/or the subsurface 7b, or may be provided on the long edge 81d and the short edge 81e.
  • the insulating film non-formed portion 76 exists at a position closer than the distance from the case 11 to the electronic components mounted on the MCU mounting substrate 7 .
  • the shortest distance from the ground pattern 78 exposed from the resist film 79 of the insulating film non-formed portion 76 to the case 11 is shorter than the shortest distance from the electronic components mounted on the MCU mounting substrate 7 to the case 11 .
  • the MCU 50 performs an important function in the power supply unit 10, as shown in FIG. It is preferably shorter than the shortest distance L2 to case 11 . As a result, noise from the outside of the case 11 penetrates into the ground pattern 78 of the insulating film non-formed portion 76 more easily than into the MCU 50, so that malfunction of the MCU 50 due to noise can be suppressed.
  • the ground pattern 78 of the insulating film non-formation portion 76 exists at a position closer than the distance from the mating portion of the case 11 to the electronic component mounted on the MCU mounting substrate 7 .
  • the insulating film non-formed portion 76 is not limited to the edge corresponding to the long side of the MCU mounting substrate 7, and may be provided on the edge closest to the MCU 50, or may be provided on both edges.
  • the long edge 81d of the main surface 7a is the edge closest to the MCU 50. However, if the long edge 81d of the main surface 7a is not the edge closest to the MCU 50, the distance from the MCU 50 An insulating film non-formation portion 76 may be provided at the edge closest to the .
  • the insulating film non-formed portion 76 By providing the insulating film non-formed portion 76 at the edge closest to the MCU 50, it is difficult for noise to enter the MCU 50 that performs an important function in the power supply unit 10, and malfunction of the MCU 50 due to noise can be suppressed. Furthermore, by providing the insulating film non-formed portion 76 at the edge closest to the MCU 50 and at the edge facing the closest edge with the MCU 50 interposed therebetween, it becomes more difficult for noise to enter the MCU 50. Malfunction of the MCU 50 due to noise can be further suppressed.
  • the edge on which the insulating film non-formed portion 76 is provided attention may be paid to the wiring pattern 77 . That is, when there is an edge adjacent to the thick (large width) wiring pattern 77 and an edge adjacent to the thin (small width) wiring pattern 77, the edge where the insulating film non-formed portion 76 is provided is the thick (large width) edge. ) preferably includes an edge adjacent to the wiring pattern 77; Since the thick (large width) wiring pattern 77 is more susceptible to intrusion of noise than the thin (small width) wiring pattern 77 , the insulating film non-formed portion 76 is provided at the edge near the thick (large width) wiring pattern 77 .
  • Intrusion of noise into the wiring pattern 77 can be effectively suppressed by providing the wiring pattern 77 .
  • the distance from the ground pattern 78 exposed from the resist film 79 to the electronic component or the distance to the MCU 50 should be longer than the distance from the ground pattern 78 to the thick (wide) wiring pattern 77. is preferred.
  • the thick (large width) wiring pattern 77 is provided with a plurality of vias (not shown) connected to the conductive patterns constituting the ground lines of the first wiring layer 72a and/or the third wiring layer 72b. preferably.
  • the noise is transmitted through the plurality of vias to the first wiring layer 72a and the second wiring layer 72a. It is possible to invade the conductive pattern constituting the ground line of the three-wiring layer 72b, thereby suppressing the adverse effect of noise.
  • the side edge 82g and the upper edge 82f which are the edges of the projecting portion 82, are not provided with the insulating film non-formed portion 76, and the insulating film is not formed on the side edge 82g and the upper edge 82f of the projecting portion 82.
  • a forming portion 75 is provided.
  • the switch Sw4 and the positive discharge terminal 41a are mounted on the projecting portion 82 of the main surface 7a as described above.
  • the wiring pattern 77 formed on the projecting portion 82 shown in FIG. 9 is a VHEAT signal through which the fourth system voltage Vs4 output from the DC/DC converter 63 is supplied to the discharge terminal 41 (specifically, the positive discharge terminal 41a).
  • a switch Sw4 which is a part of the line Ln6 (see FIG. 6) and switches between conduction and interruption of the VHEAT line Ln6, is a component that greatly affects discharge control to the heater . Since the side edge 82g, which is the edge closest to the switch Sw4, is not provided with the insulating film non-formed portion 76, it is possible to suppress a short circuit in the switch Sw4.
  • the insulating film non-formed portion 76 is not provided on the upper edge 82f of the protruding portion 82, it is possible to easily manufacture the MCU mounting board 7 while suppressing the short circuit in the switch Sw4.
  • the heater 21 is the heating unit that consumes the power supplied from the power source BAT to generate aerosol from the aerosol source, and power is supplied to the heater 21 from the discharge terminal 41 of the power supply unit 10.
  • the heating unit that generates the aerosol can be composed of a susceptor built in the first cartridge 20 or the like and an induction heating coil that transmits power to the susceptor by electromagnetic induction.
  • the discharge terminal 41 of the power supply unit 10 is connected to the induction heating coil to supply power to the induction heating coil.
  • a power supply (power supply BAT);
  • a load (heater 21) that consumes the power supplied from the power supply and generates aerosol from the aerosol source (aerosol source 22), or a heater connector (discharge terminal 41) to which a coil that transmits power to the load by electromagnetic induction is connected.
  • a control device configured to control at least one of charging and discharging of the power supply
  • a circuit board (MCU mounting board 7) on which the control device and the heater connector are mounted,
  • the circuit board is wiring (wiring pattern 77) electrically connected to the control device and the heater connector; a conductive portion (ground pattern 78) electrically connected to the ground; an insulating film (resist film 79) that covers at least part of the wiring and the conductive portion,
  • the surface of the circuit board main-surface-side surface layer 71a, sub-surface-side surface layer 71b) is an insulating film forming portion (insulating film forming portion 75) in which the insulating film is formed; and an insulating film non-formed portion (insulating film non-formed portion 76) where the insulating film is not formed,
  • the insulating film non-forming portion is provided so that at least a portion of the conductive portion extending along the edge of the circuit board and positioned outside the wiring is exposed from the insulating film
  • a power supply unit of the aerosol generator according to (1) The edge on which the insulating film non-formed portion is provided is at least one edge (long edge 81d) among a plurality of edges of the circuit board. Power supply unit for the aerosol generator.
  • the circuit board has a rectangular portion (rectangular portion 81),
  • the edge on which the insulating film non-formed portion is provided includes an edge (long edge 81d) corresponding to the long side of the rectangular portion, Power supply unit for the aerosol generator.
  • the adverse effects of noise can be suppressed, and the circuit board can be manufactured easily.
  • a power supply unit for the aerosol generator according to any one of (1) to (4), A housing (case 11) that houses at least the circuit board, Electronic components connected to the wiring are mounted on the circuit board, The shortest distance from the conductive portion exposed from the insulating film to the housing is shorter than the shortest distance from the electronic component to the housing. Power supply unit for the aerosol generator.
  • noise from the outside of the housing penetrates into the conductive part more easily than into the electronic component, so that the adverse effect of noise on the electronic component can be suppressed.
  • noise from the outside of the housing enters the conductive part more easily than entering the control device, so that malfunction of the control device due to noise can be suppressed.
  • the edge on which the insulating film non-formed portion is provided includes an edge (long edge 81d) closest to the control device, Power supply unit for the aerosol generator.
  • the power supply unit of the aerosol generator according to any one of (1) to (7),
  • the circuit board has a rectangular portion, The edge on which the insulating film non-formed portion is provided, a first edge (long edge 81d) closest to the control device; A second edge (long edge 81d) facing the first edge across the control device, Power supply unit for the aerosol generator.
  • the insulating film non-formed portion is provided at the edge near the wiring having a large width where noise easily penetrates, it is possible to effectively suppress the noise from entering the wiring.
  • control device which performs an important function in the power supply unit of the aerosol generator, farther from the insulating film non-formed portion.
  • the power supply unit of the aerosol generator according to (10), the second wiring comprises a plurality of vias, the via is connected to the ground; Power supply unit for the aerosol generator.
  • the noise can enter the ground through the plurality of vias. Adverse effects can be suppressed.
  • the power supply unit of the aerosol generator according to any one of (1) to (11), A switch (switch Sw4) mounted on the circuit board and connected to the wiring to turn on/off power supply to the heater connector;
  • the edge on which the insulating film non-formation portion is provided does not include the edge (side edge 82g) closest to the switch. Power supply unit for the aerosol generator.
  • the switch is a component that greatly affects the discharge control to the heater. According to (12), no insulating film non-formation portion is provided on the edge closest to the switch, so short-circuiting in the switch can be suppressed.
  • a power supply unit for the aerosol generator according to (12) The circuit board is a rectangular portion (rectangular portion 81) on which the control device is mounted; a convex portion (protruding portion 82) that protrudes from the rectangular portion and on which the switch is mounted; The edge on which the insulating film non-formed portion is provided does not include the edge of the convex portion (side edge 82g, upper edge 82f), Power supply unit for the aerosol generator.
  • the heater connector and the switch can be arranged close to each other.
  • a power supply unit for an aerosol generator according to any one of (1) to (14),
  • the circuit board has a rectangular portion (rectangular portion 81),
  • the insulating film forming portion includes an edge (short edge 81e) corresponding to the short side of the rectangular portion, Power supply unit for the aerosol generator.
  • Aerosol inhaler (aerosol generator) 7 MCU mounting board (circuit board) 10 power supply unit 11 case (enclosure) 21 heater (load) 22 aerosol source 41 discharge terminal (heater connector) 50 MCU (control unit) 71a Main surface side surface layer (surface of circuit board) 71b secondary side surface layer (surface of circuit board) 75 Insulating film formed portion 76 Insulating film non-formed portion 77 Wiring pattern (wiring) 78 ground pattern (conductive part) 79 resist film 81 rectangular portion 81d long edge (edge corresponding to the long side) 81e short edge (edge corresponding to the short side) 82 Projection 82g Side edge (edge of projection) 82f upper edge (edge of convex part) L1 Shortest distance (shortest distance from the conductive part exposed from the insulating film to the housing) L2 Shortest distance (shortest distance from the control device to the above) BAT Power Sw4 Switch

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

エアロゾル吸引器(1)の電源ユニット(10)は、MCU搭載基板(7)を備える。MCU搭載基板(7)は、MCU(50)と放電端子(41)と電気的に接続される配線パターン(77)と、グランドと電気的に接続されるグランドパターン(78)と、配線パターン(77)及びグランドパターン(78)の少なくとも一部を覆うレジスト膜(79)と、を有する。MCU搭載基板(7)の主面側表面層(71a)及び副面側表面層(71b)は、絶縁膜形成部(75)と絶縁膜非形成部(76)と、を有する。絶縁膜非形成部(76)は、MCU搭載基板(7)の縁に沿って延在し且つ配線パターン(77)よりも外側に位置するグランドパターン(78)の少なくとも一部がレジスト膜(79)から露出するように設けられる。

Description

エアロゾル生成装置の電源ユニット
 本発明は、エアロゾル生成装置の電源ユニットに関する。
 エアロゾル生成装置の電源ユニットでは、加熱制御などを行うための回路基板が内部に収容されている。エアロゾル生成装置の電源ユニットにおいて、加熱によりエアロゾルを生成するという性質上、誤動作しないよう対策を施すことが重要である。静電気などのノイズに対する対策として回路にコイルを設けてノイズを平滑化するなど種々の対策がとられている。
 例えば、特許文献1に記載のエアロゾル生成装置の電源ユニットでは、回路基板上にコンデンサを配置し、静電ノイズを平滑化することが記載されている。
日本国特許第6633788号公報
 しかしながら、特許文献1に記載のエアロゾル生成装置の電源ユニット等では、ノイズ対策として、コイル、コンデンサ等の電子部品が必要であり、エアロゾル生成装置の電源ユニットの小型化、低コスト化の点で、改善の余地があった。
 本発明は、部品点数を抑えながら、ノイズによる悪影響を抑制可能なエアロゾル生成装置の電源ユニットを提供する。
 本発明のエアロゾル生成装置の電源ユニットは、
 電源と、
 前記電源から供給される電力を消費してエアロゾル源からエアロゾルを生成する負荷、又は、前記負荷へ電磁誘導により送電するコイルが接続されるヒータコネクタと、
 前記電源の充電と放電の少なくとも一方を制御するよう構成される制御装置と、
 前記制御装置及び前記ヒータコネクタが実装される回路基板と、を備え、
 前記回路基板は、
 前記制御装置及び前記ヒータコネクタと電気的に接続される配線と、
 グランドと電気的に接続される導電部と、
 前記配線及び前記導電部の少なくとも一部を覆う絶縁膜と、を備え、
 前記回路基板の表面は、
 前記絶縁膜が形成された絶縁膜形成部と、
 前記絶縁膜が形成されていない絶縁膜非形成部と、を有し、
 前記絶縁膜非形成部は、前記回路基板の縁に沿って延在し且つ前記配線よりも外側に位置する前記導電部の少なくとも一部が前記絶縁膜から露出するように設けられる。
 本発明によれば、部品点数を抑えながら、ノイズによる悪影響を抑制できる。
エアロゾル吸引器1の斜視図である。 エアロゾル吸引器1の他の斜視図である。 エアロゾル吸引器1の断面図である。 電源ユニット10の斜視図である。 電源ユニット10の分解斜視図である。 電源ユニット10の回路構成を示す図である。 ケース11を取り外した電源ユニット10の斜視図である。 MCU搭載基板7の主面側表面層71aを示す図である。 MCU搭載基板7の第2配線層74aを示す図である。 MCU搭載基板7の副面側表面層71bを示す図である。 MCU搭載基板7の第4配線層74bを示す図である。 MCU搭載基板7と放電端子41との位置関係を示す図である。 MCU搭載基板7の断面図である。
 以下、本発明の一実施形態のエアロゾル生成装置の電源ユニットについて説明するが、先ず、電源ユニットが装着されたエアロゾル生成装置(以下、エアロゾル吸引器と称する)について、図1~図3を参照しながら説明する。
(エアロゾル吸引器)
 エアロゾル吸引器1は、燃焼を伴わずに香味が付加されたエアロゾルを吸引するための器具であり、所定方向(以下、X方向と称する)に沿って延びる棒形状を有する。エアロゾル吸引器1は、図1及び図2に示すように、X方向に沿って電源ユニット10と、第1カートリッジ20と、第2カートリッジ30と、がこの順に設けられている。第1カートリッジ20は、電源ユニット10に対して着脱可能としてもよく、第2カートリッジ30は、第1カートリッジ20に対して着脱可能である。言い換えると、電源ユニット10に対し、第1カートリッジ20及び第2カートリッジ30は、それぞれ交換可能である。第2カートリッジ30は、第1カートリッジ20に対し、交換可能でもある。なお、第1カートリッジ20は、電源ユニット10に対して嵌合させて固定し、ユーザが容易に着脱できない構成としてもよい。
(電源ユニット)
 本実施形態の電源ユニット10は、図3~図5、図7に示すように、円筒状のケース11の内部に、バッテリパックBP、MCU(Micro Controller Unit)50、MCU搭載基板7、レセプタクル搭載基板8等を収容して構成される。
 バッテリパックBPに収容される電源BATは、充電可能な二次電池、電気二重層キャパシタ等であり、好ましくは、リチウムイオン二次電池である。電源BATの電解質は、ゲル状の電解質、電解液、固体電解質、イオン液体の1つ又はこれらの組み合わせで構成されていてもよい。
 ケース11のX方向の一端側(第1カートリッジ20側)に位置するトップ部11aには、放電端子41が設けられる。放電端子41は、正極側放電端子41a及び負極側放電端子41bから構成される。なお、本明細書において、「正極側」とは、「負極側」よりも高電位側であることを意味する。換言すると、「負極側」とは、「正極側」よりも低電位側であることを意味する。したがって、以下の説明における「正極側」という用語を「高電位側」、「負極側」という用語を「低電位側」、とそれぞれ読み替えてもよい。
 正極側放電端子41a及び負極側放電端子41bは、トップ部11aから第1カートリッジ20に向かって突出するように設けられ、第1カートリッジ20のヒータ21と電気的に接続可能に構成される。また、トップ部11aの周囲には、トップ部11aよりも高さの低い低床部11bが設けられている。
 ケース11のX方向の他端側(第1カートリッジ20と反対側)に位置するボトム部11c側の周壁部には、充電端子42へのアクセスを許容する充電用開口43(図2参照)が設けられる。充電端子42は、コンセントやモバイルバッテリ等の外部電源と電気的に接続して電力供給を受けるものであり、本実施形態ではUSB(Universal Serial Bus) Type-C形状のレセプタクルとしているが、これに限定されるものではない。充電用開口43は、ボトム部11c側の周壁部ではなく、ボトム部11c側の底面に設けられてもよい。
 なお、充電端子42は、例えば、受電コイルを備え、外部電源から送電される電力を非接触で受電可能に構成されてもよい。この場合の電力伝送(Wireless Power Transfer)の方式は、電磁誘導型でもよいし、磁気共鳴型でもよいし、電磁誘導型と磁気共鳴型を組み合わせたものでもよい。また、別の一例として、充電端子42は、各種USB端子等が接続可能であり、且つ上記の受電コイルを有していてもよい。このような構成とすることで、電源BATの充電機会を増大できる。
 また、ケース11には、ユーザが操作可能な操作部14が、トップ部11aの周壁部に充電用開口43とは反対側を向くように設けられる。操作部14は、ボタン式のスイッチから構成され、ユーザの使用意思を反映してMCU50及び各種センサを起動/遮断する際等に利用される。操作部14は、タッチパネル等から構成されてもよい。
 また、エアロゾル吸引器1には、各種情報を報知する報知部が設けられている。報知部は、発光素子によって構成されていてもよく、振動素子によって構成されていてもよく、音出力素子によって構成されていてもよい。また、報知部は、発光素子、振動素子及び音出力素子のうち、2以上の素子の組み合わせであってもよい。報知部は、電源ユニット10、第1カートリッジ20、及び第2カートリッジ30のいずれに設けられてもよいが、電源BATからの導線(すなわち配線距離)を短くするため電源ユニット10に設けられることが好ましい。本実施形態の報知部は、操作部14の周囲に設けられたLED窓13、及び後述するLED_L1、LED_L2(図6、図8参照)によって構成される。電源ユニット10の内部構成については後述する。
(第1カートリッジ)
 第1カートリッジ20は、図3に示すように、円筒状のカートリッジケース27の内部に、エアロゾル源22を貯留するリザーバ23と、エアロゾル源22を霧化及び/又は気化(以下、単に霧化という)するヒータ21と、リザーバ23からヒータ21へエアロゾル源を引き込むウィック24と、エアロゾル源22が霧化されることで発生したエアロゾルが第2カートリッジ30に向かって流れるエアロゾル流路25と、第2カートリッジ30の一部を収容するエンドキャップ26と、を備える。
 リザーバ23は、エアロゾル流路25の周囲を囲むように区画形成され、エアロゾル源22を貯留する。リザーバ23には、樹脂ウェブや綿等の多孔体が収容され、且つ、エアロゾル源22が多孔体に含浸されていてもよい。リザーバ23には、樹脂ウェブ又は綿上の多孔質体が収容されず、エアロゾル源22のみが貯留されていてもよい。エアロゾル源22は、グリセリン、プロピレングリコール、水などの液体を含む。リザーバ23におけるエアロゾル源22の貯留量は、第1カートリッジ20に設けられた残量確認窓28(図1、2参照)から視認可能となっている。残量確認窓28とカートリッジケース27の間には空気取込口となる隙間(図示せず)が形成され、この隙間から外気をカートリッジケース27の内部に取り込む。なお、空気取込口は、必ずしも残量確認窓28の周囲に設けられている必要はない。例えば、電源ユニットに設けられた操作部14とLED窓13の間に隙間を形成し、その隙間から外気をケース11の内部に取り込んでもよいし、充電用開口43を利用してもよい。また、カートリッジケース27やケース11の壁面に内部と外部とを連通する連通孔が設けられていてもよい。
 ウィック24は、リザーバ23から毛管現象を利用してエアロゾル源22をヒータ21へ引き込む液保持部材であって、例えば、ガラス繊維や多孔質セラミック等によって構成される。
 ヒータ21は、電源BATから放電端子41を介して供給される電力によって燃焼を伴わずにエアロゾル源22を霧化する。ヒータ21は、所定ピッチで巻き回される電熱線(コイル)によって構成されている。なお、ヒータ21は、エアロゾル源22を霧化してエアロゾルを発生可能な負荷の例示であり、負荷は、例えば、発熱素子、又は超音波発生器である。発熱素子としては、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。
 エアロゾル流路25は、ヒータ21の下流側であって、電源ユニット10(ケース11)の中心線L上に設けられる。なお、この中心線Lは、電源ユニット10(ケース11)をX方向に直交する面で切断した際の電源ユニット10(ケース11)の中心点をX方向に連続してつなげた線である。
 エンドキャップ26は、第2カートリッジ30の一部を収容するカートリッジ収容部26aと、エアロゾル流路25とカートリッジ収容部26aとを連通させる連通路26bと、を備える。
(第2カートリッジ)
 第2カートリッジ30は、香味源31を貯留する。第2カートリッジ30は、第1カートリッジ20のエンドキャップ26に設けられたカートリッジ収容部26aに着脱可能に収容される。第2カートリッジ30は、第1カートリッジ20側とは反対側の端部が、ユーザの吸口32となっている。なお、吸口32は、第2カートリッジ30と一体不可分に構成される場合に限らず、第2カートリッジ30と着脱可能に構成されてもよい。このように吸口32を電源ユニット10と第1カートリッジ20とは別体に構成することで、吸口32を衛生的に保つことができる。
 第2カートリッジ30は、ヒータ21によってエアロゾル源22が霧化されることで発生したエアロゾルを香味源31に通すことによってエアロゾルに香味を付与する。香味源31を構成する原料片としては、刻みたばこ、たばこ原料を粒状に成形した成形体を用いることができる。香味源31は、たばこ以外の植物(例えば、ミント、漢方、ハーブ等)によって構成されてもよい。香味源31には、メントールなどの香料が付与されていてもよい。
 本実施形態のエアロゾル吸引器1では、エアロゾル源22と香味源31とヒータ21とによって、香味が付加されたエアロゾルを発生させることができる。つまり、エアロゾル源22と香味源31は、エアロゾルを発生させるエアロゾル生成源ということができる。
 エアロゾル吸引器1に用いられるエアロゾル生成源の構成は、エアロゾル源22と香味源31とが別体になっている構成の他、エアロゾル源22と香味源31とが一体的に形成されている構成、香味源31が省略されて香味源31に含まれ得る物質がエアロゾル源22に付加された構成、香味源31の代わりに薬剤等がエアロゾル源22に付加された構成等であってもよい。
 このように構成されたエアロゾル吸引器1では、ヒータ21は、ウィック24によってリザーバ23から引き込まれた又は移動させられたエアロゾル源22を霧化する。霧化されて発生したエアロゾルは、残量確認窓28とカートリッジケース27の間に形成された空気取込口となる隙間(図示せず)から流入した空気と共にエアロゾル流路25を流れ、連通路26bを介して第2カートリッジ30に供給される。第2カートリッジ30に供給されたエアロゾルは、香味源31を通過することで香味が付与され、吸口32に供給される。
(電源ユニット10の回路構成)
 続いて、電源ユニット10の回路構成について図6を参照しながら説明する。
 図6において、一点鎖線で囲んだ範囲内に図示した電子部品は、レセプタクル搭載基板8に実装された電子部品である。すなわち、レセプタクル搭載基板8は、主要な電子部品として、USB Type-Cのプラグ(以下、単にUSBプラグともいう)を挿入可能なレセプタクルである充電端子42と、レセプタクル搭載基板8とMCU搭載基板7とを接続する基板接続ケーブルCb1の一端が接続されるレセプタクル搭載基板側コネクタCn1と、を備える。本実施形態では、基板接続ケーブルCb1を、6本のプリント配線を有するFPC(Flexible Printed Circuit)ケーブルとするが、これに限定されるものではない。
 また、図6において、二点鎖線で囲んだ範囲内に図示した電子部品は、MCU搭載基板7に実装された電子部品である。すなわち、MCU搭載基板7は、主要な電子部品として、基板接続ケーブルCb1の他端が接続されるMCU搭載基板側コネクタCn2と、電源ユニット10を含むエアロゾル吸引器1全体を統括制御するMCU50と、電源BATの充電等を行う充電IC(Integrated Circuit)55と、充電IC55を保護する保護IC61と、MCU50等に対して所定の電圧を供給するLDO(Low Dropout)レギュレータ62と、ユーザのパフ(吸引)動作を検出するための吸引センサ15と、ヒータ21が接続される放電端子41(41a、41b)と、放電端子41に電力を供給可能なDC/DCコンバータ63と、電源BATを含むバッテリパックBPとMCU搭載基板7とを接続するバッテリ接続ケーブルCb2が接続されるバッテリコネクタCn3と、を備える。
 MCU50、充電IC55、保護IC61、LDOレギュレータ62、吸引センサ15、及びDC/DCコンバータ63は、例えば、複数の回路素子をチップ化して構成され、自装置の内部と外部とを電気的に接続するための端子としてのピンを備える。これらチップ化された各電子部品が備えるピンの詳細については後述する。なお、本明細書等では、これらチップ化された各電子部品が備えるピンのうち主要なピンのみを記載している点に留意されたい。
 バッテリパックBPは、電源BATと、電源BATの正極端子に接続されるヒューズFSと、電源BATの負極端子に接続され且つ電源BATに近接配置されたサーミスタTHと、を備える。サーミスタTHは、NTC(Negative Temperature Coefficient:負の抵抗温度係数)特性あるいはPTC(Positive Temperature Coefficient:正の抵抗温度係数)特性を有する素子、すなわち、電気抵抗値と温度とに相関を持つ素子を主体に構成される。また、本実施形態では、バッテリパックBPとMCU搭載基板7とを接続するバッテリ接続ケーブルCb2を、3本のプリントパターンを有するFPCケーブルとするが、これに限定されるものではない。バッテリ接続ケーブルCb2は3本のワイヤで接続されていてもよい。
 図6において、太い実線で示す配線は、電源ユニット10に設けられたグランドに接続された配線(例えば、後述する図9及び図11に示されるグランドパターン78等により構成される配線)である。すなわち、この配線は、電源ユニット10において基準となる電位(グランド電位)と同電位になる配線であり、以下、グランドラインともいう。
 また、電源ユニット10には、グランドライン以外の主要な配線として、VBUSラインLn1と、VBATラインLn2と、D+ラインLn3aと、D-ラインLn3bと、パワーパス(Power-Path)ラインLn4と、VSYSラインLn5と、VHEATラインLn6とが設けられる。これらの各ライン(配線)は、MCU搭載基板7に形成された導電パターンを主体に構成される。これら各ラインに接続される電子部品については後述する。
 なお、以下では、レセプタクル搭載基板8とMCU搭載基板7とを接続する電子部品である、基板接続ケーブルCb1と、レセプタクル搭載基板側コネクタCn1と、MCU搭載基板側コネクタCn2とを合わせて、基板接続部CNとも称する。
(充電端子及び保護IC)
 充電端子42は、挿入されたUSBプラグのA1ピン、A4ピン、A5ピン、A6ピン、A7ピン、A8ピン、A9ピン、A12ピン、B1ピン、B4ピン、B5ピン、B6ピン、B7ピン、B8ピン、B9ピン、及びB12ピンの各ピンにそれぞれ接続されるピン(端子)を備える。本明細書等では、USBプラグのAnピン(ただしn=1~12)に対応する充電端子42のピンを、充電端子42のAnピンともいう。同様に、USBプラグのBnピンに対応する充電端子42のピンを、充電端子42のBnピンともいう。
 USBプラグのGND(グランド)ピンに対応する充電端子42のA1ピン、A12ピン、B1ピン、及びB12ピンは、グランドラインに接続される。
 USBプラグのVBUSピンに対応する充電端子42のA4ピン、A9ピン、B4ピン、及びB9ピンは、基板接続部CN、VBUSラインLn1、及び保護IC61を介して、充電IC55の高電位側の電源端子であるVBUSピンに接続される。これにより、充電端子42のA4ピン、A9ピン、B4ピン、あるいはB9ピンを介して電源ユニット10へ入力された外部電源からの電力(例えばUSBバスパワー)を充電IC55に供給でき、この電力を用いた充電IC55による電源BATの充電やMCU50への電力供給を可能にする。
 充電端子42と充電IC55との間に設けられる保護IC61について詳述すると、保護IC61は、高電位側の電源端子であるINピンと、低電位側の電源端子であるVSSピンと、グランドされるGNDピンと、後述の第1システム電圧Vs1が出力される出力端子であるOUTピンと、保護IC61の動作をオンにしたりオフにしたりする(以下、オン/オフするともいう)ためのCEピンと、電源BATの接続状態を検知するためのVBATピンと、を備える。
 充電端子42のA4ピン及びB9ピンと、A9ピン及びB4ピンとは、基板接続部CN及びVBUSラインLn1を介して、保護IC61のINピンに対して並列に接続される。換言すると、保護IC61のINピンは、充電端子42のA4ピン及びB9ピンと、A9ピン及びB4ピンとのそれぞれに接続される。保護IC61のVSSピン、GNDピン、及びCEピンは、グランドラインに接続される。保護IC61のOUTピンは、充電IC55のVBUSピンに接続される。保護IC61のVBATピンは、VBATラインLn2、バッテリコネクタCn3、バッテリ接続ケーブルCb2、及びヒューズFSを介して、電源BATの正極端子(すなわち高電位側)に接続される。なお、電源BATの負極端子(すなわち低電位側)は、バッテリ接続ケーブルCb2及びバッテリコネクタCn3を介して、グランドラインに接続される。
 保護IC61は、INピンの電位とVSSピンの電位との差分により電源電圧が供給され、且つCEピンへの入力がローレベルであるときに動作して、所定の第1システム電圧Vs1をOUTピンから出力したり、VBATピンへの入力電圧に基づき電源BATが接続されているか否かを検知したりする。本実施形態における充電IC55は、CEピンへローレベルが入力されることでイネーブルされることから、負論理動作である。これに代えて、CEピンへハイレベルが入力されることでイネーブルされる正論理動作の保護IC61を用いてもよい。この場合、CEピンへハイレベルが入力されるように、CEピンはINピンへ接続されることが好ましい。
 より詳細に説明すると、充電端子42にUSBプラグが挿入され、且つ、このUSBプラグを含むUSBケーブルが外部電源に接続されると、充電端子42のA4ピン、A9ピン、B4ピン、及びB9ピンには、外部電源から所定のUSB電圧(例えば5[V])が供給される。これにより、このUSB電圧が電源電圧として保護IC61に供給される。また、保護IC61のCEピンはグランドされているため、このCEピンへの入力電圧は常にローレベルとなる。したがって、保護IC61は、充電端子42を介して外部電源からUSB電圧が供給されたことに応じて、第1システム電圧Vs1を充電IC55に対して出力する。
 保護IC61が出力する第1システム電圧Vs1は、充電IC55の推奨入力電圧の範囲(例えば4.35~6.4[V]の範囲)に含まれる電圧値を有する。
 例えば、保護IC61は、INピンへの入力電圧(換言するとINピンの電位)が充電IC55の推奨入力電圧の範囲に含まれる場合には、INピンへの入力電圧を第1システム電圧Vs1としてそのままOUTピンから出力する。一方、保護IC61は、INピンへの入力電圧が充電IC55の推奨入力電圧の最大値を上回る場合には、INピンへの入力電圧から充電IC55の推奨入力電圧の範囲に含まれる所定の電圧(例えば5.5±0.2[V])に変換し、変換した電圧を第1システム電圧Vs1としてOUTピンから出力する。これにより、充電IC55の推奨入力電圧の最大値を上回るような高電圧が保護IC61へ入力されたとしても、この高電圧が保護IC61から充電IC55に出力されるのを回避して、この高電圧から充電IC55を保護することが可能となる。
 なお、保護IC61は、充電IC55の推奨入力電圧の最大値を上回るような高電圧がINピンに入力された場合には、INピンとOUTピンとを接続する保護IC61内の回路(不図示)を開くことで、INピンに入力された高電圧がOUTピンから出力されないようにしてもよい。
 また、前述したように、保護IC61は、VBATピンへの入力電圧に基づき電源BATが接続されているか否かを検知することが可能である。保護IC61は、電源BATが接続されているか否かの検知結果を、自装置で利用してもよいし、自装置の外部(例えばMCU50あるいは充電IC55)へ出力してもよい。さらに、保護IC61は、前述した充電IC55を保護する機能のほか、例えば過電流検知機能や過電圧検知機能等、電源ユニット10の電気回路を保護するための各種保護機能を有していてもよい。
 また、図6に示すように、VBUSラインLn1には、保護IC61のINピンへの入力を安定化(平滑化)するためのコンデンサ(平滑コンデンサあるいはバイパスコンデンサとも称される)Cd1が必要に応じて適宜接続される。同様に、保護IC61のOUTピンと充電IC55のVBUSピンとの間には、充電IC55のVBUSピンへの入力(すなわち保護IC61から出力された第1システム電圧Vs1)を安定化するためのコンデンサCd2が必要に応じて適宜接続される。
 ところで、保護IC61のINピンと接続される充電端子42のA4ピン、A9ピン、B4ピン、及びB9ピンは、バリスタ(Variable Resistor:非直線性抵抗素子)VR1を介して、グランドラインとも接続される。このように、バリスタVR1を介して、充電端子42のA4ピン、A9ピン、B4ピン、及びB9ピンをグランドラインと接続しておくことで、充電端子42へのUSBプラグ挿入時にこれらが擦れる等して充電端子42のA4ピン、A9ピン、B4ピン、あるいはB9ピンに静電気が発生しても、この静電気を、バリスタVR1を介してグランドラインへ逃がすことができる。したがって、充電端子42のA4ピン、A9ピン、B4ピン、あるいはB9ピンに発生した静電気から保護IC61を保護することが可能となる。
 USBプラグのDp(D+ともいう)1ピンあるいはDp2ピンに対応する充電端子42のA6ピン及びB6ピンは、基板接続部CN及びD+ラインLn3aを介して、MCU50のPA11ピンに接続される。また、USBプラグのDn(D-ともいう)1ピンあるいはDp2ピンに対応する充電端子42のA7ピン及びB7ピンは、基板接続部CN及びD-ラインLn3bを介して、MCU50のPA12ピンに接続される。これにより、充電端子42に挿入されたUSBプラグを含むUSBケーブルが接続された外部機器(以下、単に、外部機器ともいう)とMCU50との間で、例えば、D+ラインLn3a及びD-ラインLn3bの2つの信号線を用いたシリアル通信を行うことを可能にする。なお、外部機器とMCU50との間の通信には、シリアル通信以外の通信方式を採用してもよい。
 また、MCU50のPA11ピンと接続される充電端子42のA6ピン及びB6ピンは、バリスタVR2を介して、グランドラインとも接続される。これにより、充電端子42のA6ピンあるいはB6ピンに静電気が発生しても、この静電気を、バリスタVR2を介してグランドラインへ逃がすことができる。したがって、充電端子42のA6あるいはB6ピンに発生した静電気からMCU50を保護することが可能となる。
 さらに、図6に示すように、充電端子42のA6ピン及びB6ピンと、MCU50のPA11ピンとの間に抵抗器R11を設ければ、MCU50のPA11ピンに大電流が入力されるのを抵抗器R11によっても抑制することが可能となる。なお、本明細書等において、抵抗器とは、抵抗素子やトランジスタ等により構成された所定の電気抵抗値を有する素子である。
 また、MCU50のPA12ピンと接続される充電端子42のA7ピン及びB7ピンは、バリスタVR3を介して、グランドラインとも接続される。これにより、充電端子42のA7ピンあるいはB7ピンに静電気が発生しても、この静電気を、バリスタVR3を介してグランドラインへ逃がすことができる。したがって、充電端子42のA7ピンあるいはB7ピンに発生した静電気からMCU50を保護することが可能となる。
 さらに、図6に示すように、充電端子42のA7ピン及びB7ピンと、MCU50のPA12ピンとの間に抵抗器R12を設ければ、MCU50のPA12ピンに大電流が入力されるのを抵抗器R12によっても抑制することが可能となる。
 また、電源ユニット10では、USBプラグが充電端子42にアップサイドアップの向きで挿入されたのかアップサイドダウンの向きで挿入されたのかを、MCU50が認識しなくても問題は生じない。このため、USBプラグのCC1ピンあるいはCC2ピンに対応する充電端子42のA5ピン及びB5ピンは、グランドラインに接続される。さらに、USBプラグのSBU1ピンあるいはSBU2ピンに対応する充電端子42のA8ピン及びB8ピンにあっては、電源ユニット10の電気回路と接続されていない。すなわち、これら充電端子42のピンは、電源ユニット10において利用されていないため、適宜省略することも可能である。このようにすることで、電源ユニット10の回路構成が複雑化することを抑制できる。
(充電IC)
 充電IC55は、高電位側の電源端子の1つであるVBUSピンと、低電位側の電源端子であるGNDピンと、充電IC55と電源BATとの間の電力授受に用いられる入出力端子であるBAT_1ピン及びBAT_2ピンと、電源BATへの入力あるいは電源BATからの出力を検出する検出端子としてのBAT_SNSピンと、後述の第2システム電圧Vs2が出力される出力端子であるSYS_1、SYS_2ピン、SW_1ピン、及びSW_2ピンと、充電IC55の動作をオン/オフするためのCEピンと、を含んで構成される。なお、BAT_1ピン及びBAT_2ピンも、充電IC55における高電位側の電源端子として機能し得る。
 充電IC55のVBUSピンは、前述したように、保護IC61のOUTピンに接続される。充電IC55のBAT_1ピン、BAT_2ピン、及びBAT_SNSピンは、VBATラインLn2、バッテリコネクタCn3、バッテリ接続ケーブルCb2、及びヒューズFSを介して、電源BATの正極端子に接続される。充電IC55のSYS_1ピン、SYS_2ピン、SW_1ピン、及びSW_2ピンは、パワーパスラインLn4を介して、LDOレギュレータ62の高電位側の電源端子であるINピンと、DC/DCコンバータ63の高電位側の電源端子であるVINピンとに接続される。なお、SW_1ピン及びSW_2ピンは、リアクトルRc1を介して、パワーパスラインLn4に接続される。また、充電IC55のCEピンは、MCU50のPB14ピンに接続される。
 充電IC55は、VBUSピン、BAT_1ピン、あるいはBAT_2ピンの電位とGNDピンの電位との差分により電源電圧が供給され、且つCEピンへの入力がハイレベルであるときに動作して、電源BATの充電を行ったり、電源BATから放電された電力をLDOレギュレータ62やDC/DCコンバータ63等に供給したりする。本実施形態における充電IC55は、CEピンへハイレベルが入力されることでイネーブルされることから、正論理動作である。これに代えて、CEピンへローレベルが入力されることでイネーブルされる負論理動作の充電IC55を用いてもよい。
 より詳細に説明すると、充電IC55は、VBUSピンに第1システム電圧Vs1が入力されると、BAT_1ピン及びBAT_2ピンから電源BATに対して電源BATを充電するための電圧(例えば第1システム電圧Vs1)を出力する。一方、電源BATの放電時には、電源BATの出力電圧(端子電圧)がBAT_1ピン及びBAT_2ピンに入力される。この場合、充電IC55は、BAT_1ピン及びBAT_2ピンへの入力電圧に応じた第2システム電圧Vs2を、SYS_1ピン、SYS_2ピン、SW_1ピン、及びSW_2ピンから、LDOレギュレータ62やDC/DCコンバータ63等に対して出力する。第2システム電圧Vs2は、例えば、電源BATの出力電圧そのものであり、具体的には3~4[V]程度の電圧とすることができる。
 また、充電IC55は、MCU50のPB8ピンに接続されるSCLピンと、MCU50のPB9ピンに接続されるSDAピンと、をさらに備える。これにより、充電IC55とMCU50との間で、例えばI2C(Inter-Integrated Circuit)通信を行うことが可能である。この通信を利用して、充電IC55は、例えば、電源BATに関するバッテリ情報をMCU50に送信する。ここで、バッテリ情報は、例えば、充電IC55による電源BATの充電状態(例えば充電中もしくは充電停止中)や、電源BATの残量(SOC:State Of Charge)等をあらわす情報である。なお、充電IC55とMCU50との間の通信には、I2C通信以外の通信方式を採用してもよい。
 また、図6に示すように、充電IC55は、ISETピン、ILIMピン、TSピン等をさらに備えてもよい。充電IC55がISETピンを備える場合、このISETピンとグランドラインとの間に接続される抵抗器の電気抵抗値により、充電IC55から電源BATに対して出力される電流値を設定可能である。充電IC55がILIMピンを備える場合、このILIMピンとグランドラインとの間に接続される抵抗器の電気抵抗値により、充電IC55からLDOレギュレータ62やDC/DCコンバータ63等に対して出力される電流値の上限を設定可能である。充電IC55がTSピンを備える場合、充電IC55は、このTSピンへの入力電圧に基づき、TSピンに接続された抵抗器の電気抵抗値や温度を検出可能である。
 なお、図6に示すように、VBATラインLn2には、充電IC55のBAT_SNSピンへの入力等を安定化するためのコンデンサCd3が必要に応じて適宜接続される。また、パワーパスラインLn4には、充電IC55から出力された第2システム電圧Vs2を安定化するためのコンデンサCd4、LDOレギュレータ62のINピンへの入力を安定化するためのコンデンサCd5が必要に応じて適宜接続される。
(LED回路)
 充電IC55から出力された第2システム電圧Vs2が供給されるパワーパスラインLn4には、さらに、LED_L1を作動(例えば点灯)させるための第1LED回路Cc1と、LED_L2を作動させるための第2LED回路Cc2とが接続される。
 第1LED回路Cc1は、LED_L1と、第1LED回路Cc1の導通及び遮断を切り替えるスイッチSw1とを直列に接続して構成される。第1LED回路Cc1の一端はパワーパスラインLn4に接続され、他端はグランドラインに接続される。また、第1LED回路Cc1のスイッチSw1は、MCU50からのオン指令に応じてオンとなり、MCU50からのオフ指令に応じてオフとなる。スイッチSw1がオンとなると、第1LED回路Cc1が導通した状態となり、充電IC55から出力された第2システム電圧Vs2がLED_L1に供給されて、LED_L1が点灯する。
 スイッチSw1としては、例えば、MOSFETにより構成されるスイッチを採用することができる。本実施形態では、一例として、スイッチSw1を構成するMOSFETのゲート端子がMCU50のPA0ピンに接続されており、MCU50がPA0ピンからの出力を制御することにより、スイッチSw1のゲート端子に印加されるゲート電圧を変化させ、スイッチSw1をオンにしたりオフにしたりする。なお、スイッチSw1は、MOSFETに限らず、MCU50の制御にしたがってオン/オフされるスイッチであればよい。
 また、第2LED回路Cc2は、LED_L2と、第2LED回路Cc2の導通及び遮断を切り替えるスイッチSw2とを直列に接続して構成される。第2LED回路Cc2の一端はパワーパスラインLn4に接続され、他端はグランドラインに接続される。また、第2LED回路Cc2のスイッチSw2は、MCU50からのオン指令に応じてオンとなり、MCU50からのオフ指令に応じてオフとなる。スイッチSw2がオンとなると、第2LED回路Cc2が導通した状態となり、充電IC55から出力された第2システム電圧Vs2がLED_L2に供給されて、LED_L2が点灯する。
 スイッチSw1と同様に、スイッチSw2としては、例えば、MOSFETにより構成されるスイッチを採用することができる。本実施形態では、一例として、スイッチSw2を構成するMOSFETのゲート端子がMCU50のPB3ピンに接続されており、MCU50がPB3ピンからの出力を制御することにより、スイッチSw2のゲート端子に印加されるゲート電圧を変化させ、スイッチSw2をオンにしたりオフにしたりする。なお、スイッチSw2は、MOSFETに限らず、MCU50の制御にしたがってオン/オフされるスイッチであればよい。
(LDOレギュレータ)
 LDOレギュレータ62は、高電位側の電源端子であるINピンと、低電位側の電源端子であるGNDピンと、後述の第3システム電圧Vs3が出力される出力端子であるOUTピンと、LDOレギュレータ62の動作をオン/オフするためのENピンと、を備える。
 LDOレギュレータ62のINピンは、前述したように、パワーパスラインLn4を介して、充電IC55のSYS_1ピン、SYS_2ピン等に接続される。LDOレギュレータ62のGNDピンは、グランドラインに接続される。LDOレギュレータ62のOUTピンは、VSYSラインLn5を介して、MCU50の高電位側の電源端子であるVDDピンと、吸引センサ15の高電位側の電源端子であるVDDピンとに接続される。LDOレギュレータ62のENピンは、パワーパスラインLn4に接続される。
 LDOレギュレータ62は、INピンの電位とGNDピンの電位との差分により電源電圧が供給され、且つENピンへの入力電圧がハイレベルであるときに動作し、所定の第3システム電圧Vs3を生成してOUTピンから出力する。本実施形態におけるLDOレギュレータ62は、ENピンへハイレベルが入力されることでイネーブルされることから、正論理動作である。これに代えて、ENピンへローレベルが入力されることでイネーブルされる正論理動作のLDOレギュレータ62を用いてもよい。この場合、ENピンへローレベルが常に入力されるように、ENピンはグランドラインへ接続されることが好ましい。
 より詳細に説明すると、充電IC55から第2システム電圧Vs2が出力されたことに応じて、LDOレギュレータ62には、第2システム電圧Vs2が電源電圧として供給される。また、充電IC55から第2システム電圧Vs2が出力されているときには、LDOレギュレータ62のENピンへの入力電圧は第2システム電圧Vs2(すなわちハイレベル)となる。したがって、LDOレギュレータ62は、充電IC55から第2システム電圧Vs2が出力されると、第3システム電圧Vs3を生成し、生成した第3システム電圧Vs3をMCU50や吸引センサ15等に対して出力する。
 LDOレギュレータ62が出力する第3システム電圧Vs3は、MCU50や吸引センサ15等を動作させるのに適した電圧値を有する。具体的に、第3システム電圧Vs3は、第2システム電圧Vs2よりも低い電圧であり、例えば2.5[V]とすることができる。
(操作スイッチ回路)
 LDOレギュレータ62から出力された第3システム電圧Vs3が供給されるVSYSラインLn5には、さらに、操作スイッチOPSに対するユーザの操作を検出するための操作スイッチ回路Cc3と、電源BATの温度を検出するための電源温度検出回路Cc4とが接続される。
 操作スイッチ回路Cc3は、抵抗器R1と、抵抗器R2と、抵抗器R3と、操作スイッチOPSとにより構成される。抵抗器R1は、一端がVSYSラインLn5に接続され、他端が抵抗器R2及び抵抗器R3のそれぞれの一端に接続される。また、抵抗器R2の他端はMCU50のPC4ピンに接続され、抵抗器R3の他端は操作スイッチOPSの一端に接続される。そして、操作スイッチOPSの他端はグランドラインに接続される。
 操作スイッチOPSがユーザによって操作されていないときに、MCU50のPC4ピンには、VSYSラインLn5に供給される第3システム電圧Vs3を抵抗器R1と抵抗器R2とによって降圧した電圧が入力される。一方、操作スイッチOPSがユーザによって操作されているときに、MCU50のPC4ピンには、VSYSラインLn5に供給される第3システム電圧Vs3を抵抗器R1と抵抗器R3とによって分圧した後に抵抗器R2によって降圧した電圧が入力される。したがって、MCU50は、PC4ピンへの入力電圧に基づき操作スイッチOPSに対するユーザの操作の有無を検出することができる。
(電源温度検出回路)
 電源温度検出回路Cc4は、サーミスタTHと、抵抗器R4と、電源温度検出回路Cc4の導通及び遮断を切り替えるスイッチSw3とを直列に接続して構成される。電源温度検出回路Cc4におけるスイッチSw3側の一端はVSYSラインLn5に接続され、電源温度検出回路Cc4におけるサーミスタTH側の他端はグランドラインに接続される。また、MCU50のPC1ピンは、電源温度検出回路Cc4において抵抗器R4とサーミスタTHとの間となる接続点CPに接続される。
 電源温度検出回路Cc4のスイッチSw3は、MCU50からのオン指令に応じてオンとなり、MCU50からのオフ指令に応じてオフとなる。スイッチSw3がオンとなると、電源温度検出回路Cc4が導通した状態となり、VSYSラインLn5に供給される第3システム電圧Vs3を抵抗器R4の電気抵抗値とサーミスタTHの電気抵抗値とによって分圧した電圧がMCU50のPC1ピンに入力される。前述したように、サーミスタTHは電気抵抗値と温度とに相関性を有するものであるため、スイッチSw3をオンとしたときのPC1ピンへの入力電圧はサーミスタTHの温度によって変化する。したがって、MCU50は、スイッチSw3をオンとしたときのPC1ピンへの入力電圧に基づきサーミスタTHの温度(すなわち電源BATの温度)を検出可能である。
 なお、スイッチSw1等と同様に、スイッチSw3としては、例えば、MOSFETにより構成されるスイッチを採用することができる。本実施形態では、一例として、スイッチSw3を構成するMOSFETのゲート端子がMCU50のPA8ピンに接続されており、MCU50がPA8ピンからの出力を制御することにより、スイッチSw3のゲート端子に印加されるゲート電圧を変化させ、スイッチSw3をオンにしたりオフにしたりする。なお、スイッチSw3は、MOSFETに限らず、MCU50の制御にしたがってオン/オフされるスイッチであればよい。
(DC/DCコンバータ)
 DC/DCコンバータ63は、高電位側の電源端子であるVINピンと、低電位側の電源端子であるGNDピンと、電圧が入力されるSWピンと、後述の第4システム電圧Vs4が出力される出力端子であるVOUTピンと、DC/DCコンバータ63の動作をオン/オフするためのENピンと、DC/DCコンバータ63の動作モードを設定するためのMODEピンと、を備える。
 DC/DCコンバータ63のVINピンは、前述したように、パワーパスラインLn4を介して、充電IC55のSYS_1ピン、SYS_2ピン等に接続される。DC/DCコンバータ63のGNDピンは、グランドラインに接続される。DC/DCコンバータ63のSWピンは、リアクトルRc2を介して、パワーパスラインLn4に接続される。DC/DCコンバータ63のVOUTピンは、VHEATラインLn6を介して、放電端子41の正極端子(すなわち高電位側)である正極側放電端子41aに接続される。DC/DCコンバータ63のENピンは、MCU50のPB2ピンに接続される。DC/DCコンバータ63のMODEピンは、パワーパスラインLn4に接続される。また、放電端子41の負極端子(すなわち低電位側)である負極側放電端子41bは、グランドラインに接続される。
 DC/DCコンバータ63は、VINピンの電位とGNDピンの電位との差分により電源電圧が供給され、且つENピンへの入力電圧がハイレベルであるときに動作し、入力された電圧を昇圧してVOUTピンから出力する。本実施形態におけるDC/DCコンバータ63は、ENピンへハイレベルが入力されることでイネーブルされることから、正論理動作である。これに代えて、ENピンへローレベルが入力されることでイネーブルされる負論理動作のDC/DCコンバータ63を用いてもよい。
 より詳細に説明すると、充電IC55から第2システム電圧Vs2が出力されたことに応じて、DC/DCコンバータ63には、第2システム電圧Vs2が電源電圧として供給される。また、MCU50は、エアロゾルの生成要求等に応じてヒータ21を加熱すると判断した際に、DC/DCコンバータ63のENピンにハイレベルの電圧信号を入力する。これにより、DC/DCコンバータ63は、DC/DCコンバータ63に入力された電圧を昇圧して得られる第4システム電圧Vs4を放電端子41(すなわちヒータ21)に対して出力する。
 DC/DCコンバータ63が出力する第4システム電圧Vs4は、ヒータ21を加熱するのに適した電圧値を有する。具体的に、第4システム電圧Vs4は、第3システム電圧Vs3よりも高い電圧であり、例えば4.2[V]程度の電圧とすることができる。
 また、DC/DCコンバータ63は、例えばスイッチングレギュレータであり、動作モードとして、パルス幅変調モード(以下、PWMモードともいう)と、パルス周波数変調モード(以下、PFMモードともいう)と、をとり得る。本実施形態では、DC/DCコンバータ63のMODEピンをパワーパスラインLn4に接続することで、DC/DCコンバータ63が動作し得るときのMODEピンへの入力電圧がハイレベルとなるようにして、DC/DCコンバータ63をPWMモードで動作させるようにしている。
 また、図6に示すように、VHEATラインLn6には、VHEATラインLn6の導通及び遮断を切り替えるスイッチSw4が設けられる。スイッチSw4は、MCU50からのオン指令に応じてオンとなり、MCU50からのオフ指令に応じてオフとなる。スイッチSw4がオンとなると、VHEATラインLn6が導通した状態となり、DC/DCコンバータ63から出力された第4システム電圧Vs4が放電端子41(具体的には正極側放電端子41a)に供給されて、ヒータ21が加熱される。これにより、エアロゾル源が霧化あるいは気化され、エアロゾルを生成することが可能になっている。
 スイッチSw4としては、例えばMOSFETにより構成されるスイッチを採用できる。より具体的には、スイッチSw4は、スイッチング速度が高速なパワーMOSFETであることが望ましい。本実施形態では、一例として、スイッチSw4を構成するMOSFETのゲート端子がMCU50のPB4ピンに接続されており、MCU50がPB4ピンからの出力を制御することにより、スイッチSw4のゲート端子に印加されるゲート電圧を変化させ、スイッチSw4をオンにしたりオフにしたりする。
(VHEATラインLn6に接続される他の電子部品)
 放電端子41に供給される電圧が不安定になると、ヒータ21によって生成されるエアロゾルの量がばらついて香喫味の悪化につながるおそれがある。そこで、図6に示すように、VHEATラインLn6には、DC/DCコンバータ63から出力された第4システム電圧Vs4を安定化するためのコンデンサが接続される。
 より詳細に説明すると、電源ユニット10では、DC/DCコンバータ63から出力された第4システム電圧Vs4を安定化するためのコンデンサとして、コンデンサCd61、コンデンサCd62、及びコンデンサCd63の3つのコンデンサを並列に設けている。このように、複数のコンデンサにより電圧の安定化(平滑化)を行うようにすることで、電圧の安定化に伴う発熱を複数のコンデンサに分散できる。したがって、1つのコンデンサにより電圧の安定化を行うようにした場合に比べて、コンデンサが高温となることを回避して、コンデンサの劣化や故障を抑制することが可能となる。
 特に、ヒータ21によって生成されるエアロゾルの量を確保する観点から、第4システム電圧Vs4には高い電圧値が要求される。仮に、このような高電圧の安定化を1つのコンデンサにより行うようにすると、このコンデンサが非常に高温となることが想定される。その結果、高温となったコンデンサが著しく劣化するだけでなく、このコンデンサの周辺に配置された他の電子部品にも悪影響を及ぼし得る。したがって、前述したように、第4システム電圧Vs4の安定化は、複数のコンデンサにより行うのが望ましい。
 なお、コンデンサCd61、コンデンサCd62、及びコンデンサCd63のうち、コンデンサCd61は、静電容量が比較的小さく、これに伴って物理的なサイズも比較的小さいコンデンサとなっている。一方、コンデンサCd62及びコンデンサCd63は、静電容量が比較的大きく、これに伴って物理的なサイズも比較的大きいコンデンサとなっている。具体的一例として、コンデンサCd61の静電容量は0.1[μF]とすることができ、コンデンサCd62及びコンデンサCd63の静電容量は50[μF]とすることができる。このように、静電容量が互いに異なる複数のコンデンサを用いることで、第4システム電圧Vs4にさまざまな脈動成分(リップル)が含まれていても、これらを除去できる。
 また、図6に示すように、本実施形態では、VHEATラインLn6において、放電端子41とスイッチSw4との間には、バリスタVR4を設けている。より詳細に、バリスタVR4の一端はVHEATラインLn6に接続され、他端はグランドラインに接続される。このようなバリスタVR4を設けることで、例えば第1カートリッジ20の脱着により放電端子41に静電気のノイズが発生しても、このノイズを、バリスタVR4を介してグランドラインへ逃がすことができる。したがって、放電端子41に発生した静電気等のノイズから、スイッチSw4やDC/DCコンバータ63等の電源ユニット10のシステムを保護することが可能となる。
 また、図6に示すように、VHEATラインLn6において、放電端子41とスイッチSw4との間には、スイッチSw4を介して放電端子41に供給される電圧を安定化するためのコンデンサCd7も接続される。なお、このコンデンサCd7は、放電端子41に発生した静電気等のノイズから、スイッチSw4やDC/DCコンバータ63等の電源ユニット10のシステムを保護する保護部品としても機能し得る。したがって、コンデンサCd7によっても、放電端子41に発生した静電気等のノイズから、スイッチSw4やDC/DCコンバータ63等の電源ユニット10のシステムを保護することが可能になっている。なお、第1カートリッジ20の脱着時以外にも、ユーザが放電端子41に触れてしまった時や、放電端子41に応力が加わった時にも、放電端子41において静電気等のノイズが生じうる。
(吸引センサ)
 吸引センサ15は、高電位側の電源端子であるVDDピンと、低電位側の電源端子であるGNDピンと、出力端子であるOUTピンと、を備える。
 吸引センサ15のVDDピンは、前述したように、VSYSラインLn5を介して、LDOレギュレータ62のOUTピンに接続される。吸引センサ15のGNDピンは、グランドラインに接続される。吸引センサ15のOUTピンは、MCU50のPC5ピンに接続される。
 吸引センサ15は、VDDピンの電位とGNDピンの電位との差分により電源電圧が供給されると動作する。具体的に、吸引センサ15には、LDOレギュレータ62から出力された第3システム電圧Vs3が電源電圧として供給されることで動作して、ユーザのパフ動作を検出するセンサ装置として機能する。例えば、吸引センサ15は、コンデンサマイクロフォンや圧力センサを主体に構成され、ユーザの吸引により生じた電源ユニット10内の圧力(内圧)変化の値を検出結果として示す信号を、OUTピンからMCU50に対して出力する。なお、吸引センサ15には、コンデンサマイクロフォンあるいは圧力センサ以外のセンサ装置を採用してもよい。
(MCU)
 MCU50は、高電位側の電源端子であるVDDピンと、低電位側の電源端子であるVSSピンと、入力端子あるいは出力端子として機能する複数のピン(以下、入出力ピンともいう)と、を備える。MCU50は、VDDピンの電位とVSSピンの電位との差分により電源電圧が供給されることで動作する。
 MCU50は、入出力ピンとして、前述したPA11ピン及びPA12ピンを備えるため、これらのピンを利用して外部機器と通信でき、例えばファームウェアの更新データ等を外部機器から取得できる。また、MCU50は、入出力ピンとして、前述したPB8ピン及びPB9ピンを備えるため、これらのピンを利用して充電IC55と通信でき、前述したバッテリ情報等を充電IC55から取得できる。
 さらに、MCU50は、入出力ピンとして、前述したPB14ピン及びPB2ピンを備えるため、PB14ピンからの出力により充電IC55のオン/オフを、PB2ピンからの出力によりDC/DCコンバータ63のオン/オフを、それぞれ制御できる。
 また、MCU50は、入出力ピンとして、前述したPA0ピン、PB3ピン、PA8ピン、及びPB4ピンを備えるため、PA0ピンからの出力によりスイッチSw1を、PB3ピンからの出力によりスイッチSw2を、PA8ピンからの出力によりスイッチSw3を、PB4ピンからの出力によりスイッチSw4を、それぞれオン/オフできる。
 そして、MCU50は、入出力ピンとして、前述したPC5ピン、PC4ピン、及びPC1ピンを備えるため、PC5ピンへの入力に基づきユーザのパフ動作を、PC4ピンへの入力に基づき操作スイッチOPSに対するユーザの操作を、スイッチSw3をオンとしたときのPC1ピンへの入力に基づきサーミスタTHの温度(すなわち電源BATの温度)を、それぞれ検出できる。
(電源ユニットの内部構成)
 続いて、電源ユニット10の内部構成について図5、及び図7~図12を参照しながら説明する。
 ケース11の内部空間には絶縁性のシャーシ12が設けられ、充電端子42(図3参照)、レセプタクル搭載基板8、電源BATを含むバッテリパックBP、及びMCU搭載基板7が、ボトム部11cからトップ部11aに向かってこの順にシャーシ12に保持される。ケース11には、充電端子42へのアクセスを許容する前述した充電用開口43、操作部14を外部に露出させる操作用開口、及び放電端子41をトップ部11aから外部に露出させる一対の放電用開口が設けられている。
(MCU搭載基板)
 MCU搭載基板7には、電源ユニット10の回路構成(図6等を参照)で説明した複数の電子部品が実装されている。MCU搭載基板7は、複数の層が積層されて構成された多層基板であって、略矩形形状を有する。MCU搭載基板7は、長手方向がケース11の中心線Lの延伸方向(X方向)に沿うように、且つ、一方側の素子実装面が操作部14に対向するように配置される。なお、以下の説明では、X方向を長手方向と称することがあり、X方向において、トップ部11a側をX1方向、ボトム部11c側をX2方向と称する。また、MCU搭載基板7上において、長手方向Xに直交する方向を短手方向Yと称し、短手方向Yにおいて、一方側(図7の左方であって、図8、9の上方且つ図10、11の下方)をY1方向、他方側(図7の右方であって、図8、9の下方且つ図10、11の上方)をY2方向と称する。MCU搭載基板7の中心線は、電源ユニット10(ケース11)のX方向に延びる中心線Lと一致する。なお、MCU搭載基板7の中心線は、MCU搭載基板7を長手方向Xに直交する面で切断した際のMCU搭載基板7の幅方向(短手方向)及び厚さ方向の中心点を長手方向Xに連続してつなげた線である。
 MCU搭載基板7は、図7に示すように、MCU搭載基板7の大部分を占める矩形部81と、矩形部81からX1方向に突出した突出部82と、から構成される。突出部82は、短手方向Yの両端部が切り欠かれており、突出部82のX1方向端部がケース11のトップ部11aに対向し、突出部82が設けられていない矩形部81のX1方向端部がケース11の低床部11bに対向する。
 MCU搭載基板7の操作部14側の面を主面7a、反対側の面を副面7bとすると、MCU搭載基板7は、主面7a及び副面7bの両方に電子部品が実装される両面実装基板である。
 主面7aの主面側表面層71a(以下、単に主面7aと称する)には、図8に示すように、バッテリコネクタCn3、MCU50、操作スイッチOPS、LED_L1、LED_L2、DC/DCコンバータ63、DC/DCコンバータ63のリアクトルRc2、スイッチSw4、及び正極側放電端子41a等が実装される。
 より具体的に説明すると、主面7aの略中央には、操作部14と対向するように、ボタン式の操作スイッチOPSが実装される。これにより、ユーザは、ケース11の操作部14を介して操作スイッチOPSを押し下げることができる。また、操作スイッチOPSの近傍には、短手方向Yにおいて操作スイッチOPSを挟むように一対のLED_L1、LED_L2が実装される。これにより、ユーザは、LED_L1及びLED_L2から出射された光を、操作部14の周囲に設けられたLED窓13を介して視認することができる。
 また、主面7aには、X2方向の端部にバッテリコネクタCn3が実装され、X1方向の端部である突出部82に正極側放電端子41aが実装される。X2方向の端部は、電源BATに近い位置であり、図7に示すように、バッテリコネクタCn3には電源BATから延びるバッテリ接続ケーブルCb2が接続される。X1方向の端部は、第1カートリッジ20に近い位置であり、正極側放電端子41aにはヒータ21が接続される。
 正極側放電端子41aは、突出部82において中心線Lを挟んでY2方向側に実装される。突出部82において中心線Lを挟んでY1方向側には、スイッチSw4が実装される。また、主面7aには、X方向において、操作スイッチOPSとスイッチSw4の間に、DC/DCコンバータ63、及びDC/DCコンバータ63のリアクトルRc2が実装されている。
 副面7bの副面側表面層71b(以下、単に副面7bと称する)には、図10に示すように、充電IC55、充電IC55のリアクトルRc1、保護IC61、MCU搭載基板側コネクタCn2、吸引センサ15、及び負極側放電端子41b等が実装される。
 より具体的に説明すると、副面7bの略中央には、MCU搭載基板側コネクタCn2が実装され、MCU搭載基板側コネクタCn2には充電端子42を実装したレセプタクル搭載基板8から延びる基板接続ケーブルCb1が接続される。
 また、副面7bには、MCU搭載基板側コネクタCn2のX2方向側に充電IC55が実装され、X方向において充電IC55とMCU搭載基板側コネクタCn2との間であって、Y方向においてY1方向側には充電IC55のリアクトルRc1が実装され、Y2方向側には保護IC61が実装されている。さらに副面7bには、MCU搭載基板側コネクタCn2のX1方向側に吸引センサ15が実装され、X1方向の端部である突出部82に負極側放電端子41bが実装される。前述したようにX1方向の端部は、第1カートリッジ20に近い位置であり、負極側放電端子41bにはヒータ21が接続される。
 負極側放電端子41bは、突出部82において中心線Lを挟んでY1方向側に配置される。このようにMCU搭載基板7には、主面7aに正極側放電端子41aが実装され、副面7bに負極側放電端子41bが実装される。正極側放電端子41a及び負極側放電端子41bは、ケース11のトップ部11aから露出する先端部が細い針状のプローブになっている。図12に示すように、ケース11の中心線Lの延伸方向(X方向)から見て、正極側放電端子41aのプローブの中心Paと負極側放電端子41bのプローブの中心Pbを結ぶ仮想線Pは、中心線Lを通るように配置され、さらに正極側放電端子41aのプローブの中心Paと負極側放電端子41bのプローブの中心Pbは、中心線Lを通る円Q上に配置される。
 MCU搭載基板7は、図13に示すように、ベース層70から主面側表面層71aに向かって、第1配線層72a、主面側絶縁層73a、第2配線層74aがこの順に設けられ、さらにベース層70から副面側表面層71bに向かって、第3配線層72b、副面側絶縁層73b、第4配線層74bがこの順に設けられている。なお、MCU搭載基板7は、これに限らず、種々の構成を採用することができる。例えば、第2配線層74a及び/又は第4配線層74bが複数設けられていてもよく、第1配線層72a及び第3配線層のうちいずれか一方のみが設けられていてもよい。
 第2配線層74a及び第4配線層74bには、銅箔等から形成される導電パターンが設けられている。ここで、電源ライン及び信号ラインを構成する導電パターンを配線パターン77と称し、グランドラインを構成する導電パターンをグランドパターン78と称すると、図9及び図11に示すように、グランドパターン78は配線パターン77を囲うように設けられている。言い換えると、グランドパターン78は、配線パターン77よりも外側に位置している。図9は、MCU搭載基板7の第2配線層74aを示す図であり、図11はMCU搭載基板7の第4配線層74bを示す図である。なお、図9及び図11では、斜線のハッチングで示した部分が配線パターン77であり、ドットのハッチングで示した部分がグランドパターン78である。図9及び図11では、複数の配線パターンのうち一部の配線パターンのみを示している点に留意されたい。
 図13に示すように、ビアV1は第2配線層74aから第4配線層74bまで貫通する導電体から構成され、第1配線層72a、第2配線層74a、第3配線層72b、第4配線層74bに形成される導電パターンのうちビアV1と電気的に接続される導電パターンを同電位とする。例えば第2配線層74aの配線パターン77及び第4配線層74bの配線パターン77はビアV1を介して互いに電気的に接続される。ビアV2は第2配線層74aから第1配線層72aまで貫通する導電体から構成され、第1配線層72a、第2配線層74aに形成される導電パターンのうちビアV2と電気的に接続される導電パターンを同電位とする。ビアV3は第3配線層72bから第4配線層74bまで貫通する導電体から構成され、第3配線層72b、第4配線層74bに形成される導電パターンのうちビアV3と電気的に接続される導電パターンを同電位とする。例えば、第2配線層74aのグランドパターン78及び第1配線層72aの一部の導電パターンはビアV2を介して互いに電気的に接続され、第4配線層74bのグランドパターン78及び第3配線層72bの一部の導電パターンはビアV3を介して互いに電気的に接続される。また、ビアV4は第1配線層72aから第3配線層72bまで貫通する導電体から構成され、第1配線層72a、第3配線層72bに形成される導電パターンのうちビアV4と電気的に接続される配線を同電位とする。例えば、第1配線層72aの一部の導電パターン及び第3配線層72bの一部の導電パターンはビアV4を介して互いに電気的に接続される。これにより、第1配線層72aの一部の導電パターン及び第3配線層72bの一部の導電パターンと、これらに接続される第2配線層74aのグランドパターン78及び第4配線層74bのグランドパターン78を、共通の基準電位を有するグランドラインとすることができる。
 主面側表面層71a及び副面側表面層71bは、絶縁性のレジスト膜79(図13参照)から構成され、第2配線層74a及び第4配線層74bを覆い、配線パターン77同士が短絡しないように、且つ、配線パターン77とグランドパターン78が短絡しないように保護する。主面側表面層71a及び副面側表面層71bについての詳細は後述する。ベース層70、主面側絶縁層73a及び副面側絶縁層73bは、例えばガラスやエポキシ樹脂を含む絶縁物から構成され、上下の層の短絡を防止しつつ接着する。
(主面側表面層及び副面側表面層)
 図8及び図10に示すように、MCU搭載基板7の主面7aの表面である主面側表面層71a、及びMCU搭載基板7の副面7bの表面である副面側表面層71bにはそれぞれ、絶縁性のレジスト膜79が形成された絶縁膜形成部75と、レジスト膜79が形成されていない絶縁膜非形成部76と、が設けられている。図8及び図10において、太線で囲まれた部分が絶縁膜形成部75である。
 図9及び図11も併せて参照することで、絶縁膜形成部75は、主面側表面層71a及び副面側表面層71bの下の層に形成された、第2配線層74aの配線パターン77及び第4配線層74bの配線パターン77と、第2配線層74aのグランドパターン78及び第4配線層74bのグランドパターン78の大部分と、を覆っていることが分かる。前述したように絶縁膜形成部75により、配線パターン77同士、配線パターン77とグランドパターン78の意図しない短絡が防止される。
 一方、絶縁膜非形成部76は、MCU搭載基板7の縁の近傍に設けられる。絶縁膜非形成部76では、MCU搭載基板7の縁に沿って延在し且つ第2配線層74aの配線パターン77及び第4配線層74bの配線パターン77よりも外側に位置する第2配線層74aのグランドパターン78及び第4配線層74bのグランドパターン78の少なくとも一部がレジスト膜79から露出する。言い換えると、絶縁膜形成部75と絶縁膜非形成部76の境界が、MCU搭載基板7の縁の近傍に位置する第2配線層74aのグランドパターン78及び第4配線層74bのグランドパターン78の少し内側に位置している。そして、この縁から第2配線層74aのグランドパターン78及び第4配線層74bのグランドパターン78までの距離が、この縁から第2配線層74aの配線パターン77及び第4配線層74bの配線パターン77までの距離よりも短くなっている。
 このように、主面側表面層71a及び副面側表面層71bの絶縁膜非形成部76によって、第2配線層74aの配線パターン77及び第4配線層74bの配線パターン77よりも外側に位置する第2配線層74aのグランドパターン78及び第4配線層74bのグランドパターン78がレジスト膜79から露出することで、外部からのノイズ(例えば、静電ノイズ)がグランドパターン78に侵入しやすくなる。そして、グランドパターン78に侵入したノイズは、グランドパターン78からビアV2及びビアV3を介して第1配線層72a及び第3配線層72bに侵入する。そのため、ノイズ対策としてコンデンサ等の他の電子部品が無くても、ノイズが、配線パターン77、及び配線パターン77に接続される電子部品に侵入することを抑制でき、ノイズによる悪影響を抑制できる。また、ノイズ対策としてコンデンサ等の他の電子部品を簡略化したり省略したりすることができるため、電源ユニット10の小型化、低コスト化を図ることができる。
 絶縁膜非形成部76が設けられる縁は、MCU搭載基板7の複数の縁のうち少なくとも一つの縁を含んでいればよい。言い換えると、絶縁膜非形成部76は、MCU搭載基板7の全ての縁に設けられる必要はなく、必要な縁にのみ設けられていればよい。絶縁膜非形成部76を設けることで電子部品をノイズから保護することができるものの、配線パターン77等で短絡が発生しやすくなるため、どの縁に絶縁膜非形成部76を設けるかということが重要となる。
 ここで、MCU搭載基板7の縁について、矩形部81の一対の長辺に対応する縁を長縁81d、矩形部81の一対の短辺に対応する縁を短縁81e、突出部82のX1側の縁を上縁82f、突出部82のY方向両側の縁を側縁82gと称すると、本実施形態の絶縁膜非形成部76は、主面7a及び副面7bにおいて矩形部81の長縁81dに沿って設けられる。本実施形態の絶縁膜非形成部76においては、長縁81dの近傍において、長縁81dに沿って延在し且つ配線パターン77よりも外側に位置するグランドパターン78の一部がレジスト膜79から露出する。なお、本実施形態の絶縁膜非形成部76においては、「長縁81dの近傍において、長縁81dに沿って延在し且つ配線パターン77よりも外側に位置する」とは、絶縁膜非形成部76が配線パターン77から最も近い縁との間に位置する(または最も近い縁に位置する)ことをも含みうる。絶縁膜非形成部76を矩形部81の長縁81dに沿って設けることで、ノイズが浸入するグランドパターン78を長く確保でき、ノイズによる悪影響をさらに抑制できる。逆に言うと、絶縁膜非形成部76は、主面7a及び副面7bにおいて矩形部81の短縁81eに沿って設けられておらず、短縁81eには絶縁膜形成部75が設けられている。ノイズが浸入するグランドパターン78を長く確保できない短縁81eに絶縁膜非形成部76を設けず、絶縁膜形成部75とすることで、MCU搭載基板7の製造を容易にできる。
 また、本実施形態では、絶縁膜非形成部76は、長縁81dのX1方向の端部からX2方向の端部に至るまで連続して設けられている。絶縁膜非形成部76は、長縁81dに沿って断続的に設けられていてもよいが、連続して設けられることで、ノイズによる悪影響を効果的に抑制できるとともに、MCU搭載基板7の製造を容易にできる。
 なお、本実施形態では、絶縁膜非形成部76が主面7a及び副面7bで同じ縁に設けられているが、必ずしもこれに限らず、絶縁膜非形成部76が設けられる縁が主面7a及び副面7bで異なっていてもよく、絶縁膜非形成部76がいずれか一方の面にのみ設けられていてもよい。また、絶縁膜非形成部76が、主面7a及び/又は副面7bの短縁81eにのみ設けられていてもよく、長縁81d及び短縁81eに設けられていてもよい。
 ケース11から侵入したノイズは、ケース11からの距離が近いところに飛び込みやすい。特に、ケース11が金属の場合、この傾向は顕著となる。したがって、ケース11からMCU搭載基板7に実装される電子部品までの距離よりも近い位置に、絶縁膜非形成部76が存在することが好ましい。言い換えると、絶縁膜非形成部76のレジスト膜79から露出するグランドパターン78からケース11までの最短距離は、MCU搭載基板7に実装される電子部品からケース11までの最短距離よりも短いことが好ましい。これにより、背の高い電子部品(例えば、リアクトルRc2)がMCU搭載基板7に実装される場合であっても、ケース11の外部からのノイズが電子部品に侵入するよりも絶縁膜非形成部76のグランドパターン78に侵入しやすいため、ノイズによる電子部品への悪影響を抑制できる。
 特に、電源ユニット10においてMCU50は重要な機能を果たすので、図12に示すように、絶縁膜非形成部76のレジスト膜79から露出するグランドパターン78からケース11までの最短距離L1が、MCU50からケース11までの最短距離L2よりも短いことが好ましい。これにより、ケース11の外部からのノイズがMCU50に侵入するよりも絶縁膜非形成部76のグランドパターン78に侵入しやすいため、ノイズによるMCU50の誤作動を抑制できる。
 仮にケース11が複数の部材から組み合わされる場合、ノイズは複数の部材の合わせ部から侵入しやすい。したがって、この場合、ケース11の合わせ部からMCU搭載基板7に実装される電子部品までの距離よりも近い位置に、絶縁膜非形成部76のグランドパターン78が存在することが好ましい。
 また、絶縁膜非形成部76は、MCU搭載基板7の長辺に対応する縁に限らず、MCU50との距離が最も近い縁に設けてもよく、これら両方の縁に設けてもよい。なお、本実施形態では、主面7aの長縁81dがMCU50との距離が最も近い縁であるが、主面7aの長縁81dがMCU50との距離が最も近い縁でない場合、MCU50との距離が最も近い縁に絶縁膜非形成部76を設けてもよい。MCU50との距離が最も近い縁に絶縁膜非形成部76に設けることで、電源ユニット10において重要な機能を果たすMCU50にノイズが侵入しづらくなるため、ノイズによるMCU50の誤作動を抑制できる。さらに、絶縁膜非形成部76を、MCU50との距離が最も近い縁と、MCU50を挟んで、最も近い縁と対向する縁とに設けられることで、ノイズがMCU50により一層侵入しづらくなるため、ノイズによるMCU50の誤作動をさらに抑制できる。
 また、絶縁膜非形成部76を設ける縁の選定に関し、配線パターン77に着目してもよい。即ち、太い(幅の大きい)配線パターン77に近接する縁と、細い(幅の小さい)配線パターン77に近接する縁がある場合、絶縁膜非形成部76を設ける縁は、太い(幅の大きい)配線パターン77に近接する縁を含むことが好ましい。太い(幅の大きい)配線パターン77は細い(幅の小さい)配線パターン77に比べてノイズが侵入しやすいので、太い(幅の大きい)配線パターン77の近くの縁に絶縁膜非形成部76を設けることで、配線パターン77へのノイズの侵入を効果的に抑制できる。この場合であっても、レジスト膜79から露出するグランドパターン78から電子部品までの距離又はMCU50までの距離が、このグランドパターン78から太い(幅の大きい)配線パターン77までの距離よりも長いことが好ましい。MCU50等の電子部品を絶縁膜非形成部76からより遠くに配置することで、ノイズによるMCU50の誤作動を抑制できる。
 さらに、太い(幅の大きい)配線パターン77には、第1配線層72a及び/又は第3配線層72bのグランドラインを構成する導電パターンに接続される複数のビア(不図示)が設けられていることが好ましい。これにより、仮にノイズが絶縁膜非形成部76に侵入できず太い(幅の大きい)配線パターン77に侵入した場合であっても、ノイズをこの複数のビアを介して第1配線層72a及び第3配線層72bのグランドラインを構成する導電パターンに侵入させることができ、ノイズによる悪影響を抑制できる。
 また、本実施形態では、突出部82の縁である側縁82g及び上縁82fに絶縁膜非形成部76が設けられておらず、突出部82の側縁82g及び上縁82fには絶縁膜形成部75が設けられている。主面7aの突出部82には、前述したようにスイッチSw4及び正極側放電端子41aが実装される。図9に示す突出部82に形成された配線パターン77は、DC/DCコンバータ63から出力された第4システム電圧Vs4が放電端子41(具体的には正極側放電端子41a)に供給されるVHEATラインLn6(図6参照)の一部であり、VHEATラインLn6の導通及び遮断を切り替えるスイッチSw4は、ヒータ21への放電制御に大きく影響する部品である。スイッチSw4との距離が最も近い縁である側縁82gに絶縁膜非形成部76が設けられないことで、スイッチSw4における短絡を抑制することができる。
 これに加えて、突出部82の上縁82fにも絶縁膜非形成部76が設けられていないことで、スイッチSw4における短絡を抑制しながら、MCU搭載基板7の製造を容易にできる。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 例えば、前述した実施形態では、電源BATから供給される電力を消費してエアロゾル源からエアロゾルを生成する加熱部をヒータ21とし、電源ユニット10の放電端子41からヒータ21に電力を供給する例を説明したが、これに限らない。例えば、エアロゾルを生成する加熱部を、第1カートリッジ20等に内蔵されるサセプタと、このサセプタへ電磁誘導により送電する誘導加熱用コイルと、によって構成することもできる。サセプタ及び誘導加熱用コイルにより加熱部を構成した場合には、電源ユニット10の放電端子41は、誘導加熱用コイルに接続され、誘導加熱用コイルに電力を供給する。
 本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
 (1) 電源(電源BAT)と、
 前記電源から供給される電力を消費してエアロゾル源(エアロゾル源22)からエアロゾルを生成する負荷(ヒータ21)、又は、前記負荷へ電磁誘導により送電するコイルが接続されるヒータコネクタ(放電端子41)と、
 前記電源の充電と放電の少なくとも一方を制御するよう構成される制御装置(MCU50)と、
 前記制御装置及び前記ヒータコネクタが実装される回路基板(MCU搭載基板7)と、を備え、
 前記回路基板は、
 前記制御装置及び前記ヒータコネクタと電気的に接続される配線(配線パターン77)と、
 グランドと電気的に接続される導電部(グランドパターン78)と、
 前記配線及び前記導電部の少なくとも一部を覆う絶縁膜(レジスト膜79)と、を備え、
 前記回路基板の表面(主面側表面層71a、副面側表面層71b)は、
 前記絶縁膜が形成された絶縁膜形成部(絶縁膜形成部75)と、
 前記絶縁膜が形成されていない絶縁膜非形成部(絶縁膜非形成部76)と、を有し、
 前記絶縁膜非形成部は、前記回路基板の縁に沿って延在し且つ前記配線よりも外側に位置する前記導電部の少なくとも一部が前記絶縁膜から露出するように設けられる、
 エアロゾル生成装置(エアロゾル吸引器1)の電源ユニット(電源ユニット10)。
 (1)によれば、絶縁膜非形成部では、回路基板の縁に沿って延在且つ配線よりも外側に位置する導電部の少なくとも一部が絶縁膜から露出するので、外部からのノイズが導電部を介してグランドに侵入しやすいため、ノイズによる悪影響を抑制できる。また、ノイズ対策としてコンデンサ等の他の電子部品を簡略化したり省略したりすることができるため、エアロゾル生成装置の電源ユニットの小型化、低コスト化を図ることができる。
 (2) (1)に記載のエアロゾル生成装置の電源ユニットであって、
 前記絶縁膜非形成部が設けられる前記縁は、前記回路基板の複数の縁のうち少なくとも一つの縁(長縁81d)である、
 エアロゾル生成装置の電源ユニット。
 (2)によれば、絶縁膜非形成部が必要な縁にのみ設ければよい。
 (3) (1)又は(2)に記載のエアロゾル生成装置の電源ユニットであって、
 前記回路基板は、矩形部(矩形部81)を有し、
 前記絶縁膜非形成部が設けられる前記縁は、前記矩形部の長辺に対応する縁(長縁81d)を含む、
 エアロゾル生成装置の電源ユニット。
 (3)によれば、絶縁膜非形成部を矩形部の長辺に対応する縁に沿って設けることで、ノイズが浸入する導電部を長く確保できるので、ノイズによる悪影響をさらに抑制できる。
 (4) (3)に記載のエアロゾル生成装置の電源ユニットであって、
 前記絶縁膜非形成部は、前記縁の一端から他端まで連続する、
 エアロゾル生成装置の電源ユニット。
 (4)によれば、ノイズによる悪影響を抑制できるとともに、回路基板の製造を容易にできる。
 (5) (1)~(4)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 少なくとも前記回路基板を収容する筐体(ケース11)を備え、
 前記回路基板には、前記配線に接続される電子部品が実装され、
 前記絶縁膜から露出する前記導電部から前記筐体までの最短距離が、前記電子部品から前記筐体までの最短距離よりも短い、
 エアロゾル生成装置の電源ユニット。
 (5)によれば、筐体の外部からのノイズが電子部品に侵入するよりも導電部に侵入しやすいため、ノイズによる電子部品への悪影響を抑制できる。
 (6) (5)に記載のエアロゾル生成装置の電源ユニットであって、
 前記電子部品は、前記制御装置である、
 エアロゾル生成装置の電源ユニット。
 (6)によれば、筐体の外部からのノイズが制御装置に侵入するよりも導電部に侵入しやすいため、ノイズによる制御装置の誤作動を抑制できる。
 (7) (1)~(6)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 前記絶縁膜非形成部が設けられる前記縁は、前記制御装置との距離が最も近い縁(長縁81d)を含む、
 エアロゾル生成装置の電源ユニット。
 (7)によれば、ノイズが制御装置に侵入しづらくなるため、ノイズによる制御装置の誤作動を抑制できる。
 (8) (1)~(7)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 前記回路基板は、矩形部を有し、
 前記絶縁膜非形成部が設けられる前記縁は、
 前記制御装置との距離が最も近い第1縁(長縁81d)と、
 前記制御装置を挟んで、前記第1縁と対向する第2縁(長縁81d)と、を含む、
 エアロゾル生成装置の電源ユニット。
 (8)によれば、ノイズが制御装置により一層侵入しづらくなるため、ノイズによる制御装置の誤作動をさらに抑制できる。
 (9) (1)~(8)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 前記配線は
 第1の配線(配線パターン77)と、
 前記第1の配線の幅よりも大きい幅の第2の配線(配線パターン77)と、を含み、
 前記絶縁膜非形成部は、前記第2の配線までの距離が前記第1の配線までの距離よりも短い位置の縁を含む、
 エアロゾル生成装置の電源ユニット。
 (9)によれば、ノイズが侵入しやすい幅の大きい配線の近くの縁に絶縁膜非形成部が設けられるので、配線へのノイズの侵入を効果的に抑制できる。
 (10) (9)に記載のエアロゾル生成装置の電源ユニットであって、
 前記絶縁膜非形成部が設けられる前記縁から前記制御装置までの距離が、前記絶縁膜非形成部が設けられる前記縁から前記第2の配線までの距離よりも長い、
 エアロゾル生成装置の電源ユニット。
 (10)によれば、エアロゾル生成装置の電源ユニットにおいて重要な機能を果たす制御装置を絶縁膜非形成部からより遠くに配置することで、ノイズによる制御装置の誤作動を抑制できる。
 (11) (10)に記載のエアロゾル生成装置の電源ユニットであって、
 前記第2の配線は、複数のビアを備え、
 前記ビアは、前記グランドと接続している、
 エアロゾル生成装置の電源ユニット。
 (11)によれば、仮にノイズが絶縁膜非形成部に侵入できず第2の配線に侵入した場合であっても、ノイズを複数のビアを介してグランドに侵入させることができ、ノイズによる悪影響を抑制できる。
 (12) (1)~(11)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 前記回路基板に実装され、前記配線と接続し前記ヒータコネクタへの電力供給をオン/オフするスイッチ(スイッチSw4)を備え、
 前記絶縁膜非形成部が設けられる前記縁は、前記スイッチとの距離が最も近い縁(側縁82g)を含まない、
 エアロゾル生成装置の電源ユニット。
 スイッチはヒータへの放電制御に大きく影響する部品である。(12)によれば、スイッチとの距離が最も近い縁には絶縁膜非形成部が設けられないので、スイッチにおける短絡を抑制することができる。
 (13) (12)に記載のエアロゾル生成装置の電源ユニットであって、
 前記回路基板は、
 前記制御装置が実装された矩形部(矩形部81)と、
 前記矩形部から突出し、前記スイッチが実装された凸部(突出部82)と、を備え、
 前記絶縁膜非形成部が設けられる前記縁は、前記凸部の縁(側縁82g、上縁82f)を含まない、
 エアロゾル生成装置の電源ユニット。
 (13)によれば、凸部には絶縁膜非形成部が設けられないので、スイッチにおける短絡を抑制しながら、回路基板の製造を容易にできる。
 (14) (13)に記載のエアロゾル生成装置の電源ユニットであって、
 前記ヒータコネクタは、前記凸部に実装されている、
 エアロゾル生成装置の電源ユニット。
 (14)によれば、ヒータコネクタとスイッチとを近接配置できる。
 (15) (1)~(14)のいずれかに記載のエアロゾル生成装置の電源ユニットであって、
 前記回路基板は、矩形部(矩形部81)を有し、
 前記絶縁膜形成部は、前記矩形部の短辺に対応する縁(短縁81e)を含む、
 エアロゾル生成装置の電源ユニット。
 (15)によれば、ノイズが浸入する導電部を長く確保できない部分に絶縁膜非形成部を設けないことで、回路基板の製造を容易にできる。
1 エアロゾル吸引器(エアロゾル生成装置)
7 MCU搭載基板(回路基板)
10 電源ユニット
11 ケース(筐体)
21 ヒータ(負荷)
22 エアロゾル源
41 放電端子(ヒータコネクタ)
50 MCU(制御装置)
71a 主面側表面層(回路基板の表面)
71b 副面側表面層(回路基板の表面)
75 絶縁膜形成部
76 絶縁膜非形成部
77 配線パターン(配線)
78 グランドパターン(導電部)
79 レジスト膜
81 矩形部
81d 長縁(長辺に対応する縁)
81e 短縁(短辺に対応する縁)
82 突出部
82g 側縁(凸部の縁)
82f 上縁(凸部の縁)
L1 最短距離(絶縁膜から露出する導電部から筐体までの最短距離)
L2 最短距離(制御装置から前記までの最短距離)
BAT 電源
Sw4 スイッチ
 

Claims (15)

  1.  電源と、
     前記電源から供給される電力を消費してエアロゾル源からエアロゾルを生成する負荷、又は、前記負荷へ電磁誘導により送電するコイルが接続されるヒータコネクタと、
     前記電源の充電と放電の少なくとも一方を制御するよう構成される制御装置と、
     前記制御装置及び前記ヒータコネクタが実装される回路基板と、を備え、
     前記回路基板は、
     前記制御装置及び前記ヒータコネクタと電気的に接続される配線と、
     グランドと電気的に接続される導電部と、
     前記配線及び前記導電部の少なくとも一部を覆う絶縁膜と、を備え、
     前記回路基板の表面は、
     前記絶縁膜が形成された絶縁膜形成部と、
     前記絶縁膜が形成されていない絶縁膜非形成部と、を有し、
     前記絶縁膜非形成部は、前記回路基板の縁に沿って延在し且つ前記配線よりも外側に位置する前記導電部の少なくとも一部が前記絶縁膜から露出するように設けられる、
     エアロゾル生成装置の電源ユニット。
  2.  請求項1に記載のエアロゾル生成装置の電源ユニットであって、
     前記絶縁膜非形成部が設けられる前記縁は、前記回路基板の複数の縁のうち少なくとも一つの縁である、
     エアロゾル生成装置の電源ユニット。
  3.  請求項1又は2に記載のエアロゾル生成装置の電源ユニットであって、
     前記回路基板は、矩形部を有し、
     前記絶縁膜非形成部が設けられる前記縁は、前記矩形部の長辺に対応する縁を含む、
     エアロゾル生成装置の電源ユニット。
  4.  請求項3に記載のエアロゾル生成装置の電源ユニットであって、
     前記絶縁膜非形成部は、前記縁の一端から他端まで連続する、
     エアロゾル生成装置の電源ユニット。
  5.  請求項1~4のいずれか一項に記載のエアロゾル生成装置の電源ユニットであって、
     少なくとも前記回路基板を収容する筐体を備え、
     前記回路基板には、前記配線に接続される電子部品が実装され、
     前記絶縁膜から露出する前記導電部から前記筐体までの最短距離が、前記電子部品から前記筐体までの最短距離よりも短い、
     エアロゾル生成装置の電源ユニット。
  6.  請求項5に記載のエアロゾル生成装置の電源ユニットであって、
     前記電子部品は、前記制御装置である、
     エアロゾル生成装置の電源ユニット。
  7.  請求項1~6のいずれか一項に記載のエアロゾル生成装置の電源ユニットであって、
     前記絶縁膜非形成部が設けられる前記縁は、前記制御装置との距離が最も近い縁を含む、
     エアロゾル生成装置の電源ユニット。
  8.  請求項1~7のいずれか一項に記載のエアロゾル生成装置の電源ユニットであって、
     前記回路基板は、矩形部を有し、
     前記絶縁膜非形成部が設けられる前記縁は、
     前記制御装置との距離が最も近い第1縁と、
     前記制御装置を挟んで、前記第1縁と対向する第2縁と、を含む、
     エアロゾル生成装置の電源ユニット。
  9.  請求項1~8のいずれか一項に記載のエアロゾル生成装置の電源ユニットであって、
     前記配線は
     第1の配線と、
     前記第1の配線の幅よりも大きい幅の第2の配線と、を含み、
     前記絶縁膜非形成部は、前記第2の配線までの距離が前記第1の配線までの距離よりも短い位置の縁を含む、
     エアロゾル生成装置の電源ユニット。
  10.  請求項9に記載のエアロゾル生成装置の電源ユニットであって、
     前記絶縁膜非形成部が設けられる前記縁から前記制御装置までの距離が、前記絶縁膜非形成部が設けられる前記縁から前記第2の配線までの距離よりも長い、
     エアロゾル生成装置の電源ユニット。
  11.  請求項10に記載のエアロゾル生成装置の電源ユニットであって、
     前記第2の配線は、複数のビアを備え、
     前記ビアは、前記グランドと接続している、
     エアロゾル生成装置の電源ユニット。
  12.  請求項1~11のいずれか一項に記載のエアロゾル生成装置の電源ユニットであって、
     前記回路基板に実装され、前記配線と接続し前記ヒータコネクタへの電力供給をオン/オフするスイッチを備え、
     前記絶縁膜非形成部が設けられる前記縁は、前記スイッチとの距離が最も近い縁を含まない、
     エアロゾル生成装置の電源ユニット。
  13.  請求項12に記載のエアロゾル生成装置の電源ユニットであって、
     前記回路基板は、
     前記制御装置が実装された矩形部と、
     前記矩形部から突出し、前記スイッチが実装された凸部と、を備え、
     前記絶縁膜非形成部が設けられる前記縁は、前記凸部の縁を含まない、
     エアロゾル生成装置の電源ユニット。
  14.  請求項13に記載のエアロゾル生成装置の電源ユニットであって、
     前記ヒータコネクタは、前記凸部に実装されている、
     エアロゾル生成装置の電源ユニット。
  15.  請求項1~14のいずれか一項に記載のエアロゾル生成装置の電源ユニットであって、
     前記回路基板は、矩形部を有し、
     前記絶縁膜形成部は、前記矩形部の短辺に対応する縁を含む、
     エアロゾル生成装置の電源ユニット。
     
PCT/JP2021/025828 2021-07-08 2021-07-08 エアロゾル生成装置の電源ユニット WO2023281712A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/025828 WO2023281712A1 (ja) 2021-07-08 2021-07-08 エアロゾル生成装置の電源ユニット
CN202180098134.XA CN117320576A (zh) 2021-07-08 2021-07-08 气溶胶生成装置的电源单元
JP2023532995A JP7470870B2 (ja) 2021-07-08 2021-07-08 エアロゾル生成装置の電源ユニット
JP2024062422A JP2024088750A (ja) 2021-07-08 2024-04-08 エアロゾル生成装置の電源ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025828 WO2023281712A1 (ja) 2021-07-08 2021-07-08 エアロゾル生成装置の電源ユニット

Publications (1)

Publication Number Publication Date
WO2023281712A1 true WO2023281712A1 (ja) 2023-01-12

Family

ID=84800537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025828 WO2023281712A1 (ja) 2021-07-08 2021-07-08 エアロゾル生成装置の電源ユニット

Country Status (3)

Country Link
JP (2) JP7470870B2 (ja)
CN (1) CN117320576A (ja)
WO (1) WO2023281712A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075381A1 (ja) * 2005-01-14 2006-07-20 Renesas Technology Corp. カメラモジュールおよび半導体装置
JP2007087817A (ja) * 2005-09-22 2007-04-05 Fujifilm Corp フレキシブルケーブル
JP2007088056A (ja) * 2005-09-20 2007-04-05 Nitto Denko Corp 配線回路基板
JP2021510500A (ja) * 2017-12-29 2021-04-30 ジェイティー インターナショナル エス.エイ.JT International S.A. 蒸気生成装置用の電磁誘導加熱アセンブリ
JP6875595B1 (ja) * 2020-07-09 2021-05-26 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075381A1 (ja) * 2005-01-14 2006-07-20 Renesas Technology Corp. カメラモジュールおよび半導体装置
JP2007088056A (ja) * 2005-09-20 2007-04-05 Nitto Denko Corp 配線回路基板
JP2007087817A (ja) * 2005-09-22 2007-04-05 Fujifilm Corp フレキシブルケーブル
JP2021510500A (ja) * 2017-12-29 2021-04-30 ジェイティー インターナショナル エス.エイ.JT International S.A. 蒸気生成装置用の電磁誘導加熱アセンブリ
JP6875595B1 (ja) * 2020-07-09 2021-05-26 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット

Also Published As

Publication number Publication date
JP2024088750A (ja) 2024-07-02
CN117320576A (zh) 2023-12-29
JPWO2023281712A1 (ja) 2023-01-12
JP7470870B2 (ja) 2024-04-18

Similar Documents

Publication Publication Date Title
JP7560403B2 (ja) エアロゾル吸引器の電源ユニット
US11764675B2 (en) Power supply unit for aerosol inhaler
US11478020B2 (en) Power supply unit for aerosol generation device and aerosol generation device
US20240315346A1 (en) Power supply unit for aerosol generation device
US20220125120A1 (en) Power supply unit for aerosol generation device
US20240138026A1 (en) Power supply unit of aerosol generating device
US11980224B2 (en) Power supply unit for aerosol generation device
WO2023281712A1 (ja) エアロゾル生成装置の電源ユニット
WO2023281715A1 (ja) エアロゾル生成装置の電源ユニット
JP7551925B2 (ja) エアロゾル生成装置の電源ユニット
WO2023281714A1 (ja) エアロゾル生成装置の電源ユニット
JP7571235B2 (ja) エアロゾル生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949345

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532995

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180098134.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949345

Country of ref document: EP

Kind code of ref document: A1