WO2023105753A1 - Active gas generation apparatus - Google Patents

Active gas generation apparatus Download PDF

Info

Publication number
WO2023105753A1
WO2023105753A1 PCT/JP2021/045536 JP2021045536W WO2023105753A1 WO 2023105753 A1 WO2023105753 A1 WO 2023105753A1 JP 2021045536 W JP2021045536 W JP 2021045536W WO 2023105753 A1 WO2023105753 A1 WO 2023105753A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
film
discharge
metal electrode
active gas
Prior art date
Application number
PCT/JP2021/045536
Other languages
French (fr)
Japanese (ja)
Inventor
廉 有田
謙資 渡辺
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2021/045536 priority Critical patent/WO2023105753A1/en
Priority to JP2022548153A priority patent/JP7289608B1/en
Publication of WO2023105753A1 publication Critical patent/WO2023105753A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present disclosure relates to an active gas generator that has a parallel plate type electrode structure and uses dielectric barrier discharge to generate active gas.
  • a conventional active gas generator that has a parallel plate electrode structure and employs a dielectric barrier discharge has a gap between a conductive metal electrode and a dielectric film facing each other, or a gap between the dielectric films facing each other. becomes the discharge space.
  • a conventional active gas generator employs a parallel plate type dielectric barrier discharge in which a dielectric barrier discharge is generated in a discharge space, and the raw material gas introduced into the discharge space is activated to generate an active gas.
  • Patent Document 1 there is an active gas generator disclosed in Patent Document 1 as a conventional active gas generator that employs a parallel plate type dielectric barrier discharge.
  • FIG. 21 is an explanatory diagram showing an example of the discharge space.
  • FIG. 21 shows a cylindrical discharge space 80 .
  • FIG. 21 shows an XYZ orthogonal coordinate system.
  • the first method is to increase the discharge area
  • the second method is to increase the gap length.
  • the "gap length" corresponds to the distance between the facing metal electrode and the dielectric film or the distance between the facing dielectric films.
  • the first method is to increase the area of the bottom surface of the discharge space 80 with the radius r.
  • the second method is to increase the height d (gap length d) of the discharge space 80 .
  • the gap length d is about several millimeters, so the relationship is generally ⁇ r>>d ⁇ . Therefore, when the first method is adopted, there is a first problem that if the discharge area is increased, the size of the device itself is increased.
  • the gap length d is only set to 4 mm, so the device only needs to be increased by 3 mm in the height direction. That is, the second method does not increase the formation area of the device, and the variation of the discharge space 80 can be made relatively small.
  • the active gas generator disclosed in Patent Document 1 intentionally provides a convex portion near the discharge space.
  • this convex portion is provided in a region that is not the discharge space, and the convex portion does not exist in the discharge space.
  • the discharge space has a structure in which the gap length d is constant, as in the conventional case.
  • An object of the present disclosure is to solve the above-described problems and to provide an active gas generator that increases the volume of the discharge space without increasing the required applied voltage.
  • An active gas generating apparatus of the present disclosure is an active gas generating apparatus that generates an active gas obtained by activating a raw material gas supplied to a discharge space, and has a first electrode configuration having a first discharge field forming surface. and a second electrode configuration portion having a second discharge field formation surface, wherein the first and second electrode configuration portions are arranged such that the first and second discharge field formation surfaces face each other.
  • the first electrode configuration portion has a laminated structure of a first metal electrode and an electrode dielectric film, and in the first electrode configuration portion, the exposed surface on the side of the electrode dielectric film is the
  • the second electrode configuration portion has a laminated structure of a second metal electrode and a discharge field adjustment film, and the discharge field adjustment film side of the second electrode configuration portion serves as a first discharge field formation surface.
  • the exposed surface of becomes the second discharge field forming surface an alternating voltage is applied to one of the first and second metal electrodes, and the other metal electrode is set to a reference potential.
  • An electrode-facing space is defined between the dielectric film and the discharge field adjusting film, and in the electrode-facing space, there is a region where the first metal electrode and the second metal electrode overlap when viewed in plan.
  • the distance between the first and second discharge field forming surfaces in the discharge space is defined as the gap length, and the discharge field adjustment film is arranged in the discharge space in the direction in which the gap length becomes shorter. It is characterized by having at least one projecting protrusion.
  • the discharge field adjustment film has at least one projecting portion projecting in the direction in which the gap length is shortened, the gap between the at least one projecting portion and the electrode dielectric film In addition, a special discharge space with a relatively short gap length can be provided.
  • dielectric barrier discharge is more likely to occur than in a discharge space with a relatively long gap length only.
  • the active gas generator of the present disclosure can have a low-voltage discharge generation function capable of generating a dielectric barrier discharge with a lower applied voltage than in the past.
  • the active gas generator of the present disclosure has the low-voltage discharge generating function, it is possible to increase the volume of the discharge space without increasing the required applied voltage, and to improve the concentration of generated active gas. .
  • FIG. 1 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator according to Embodiment 1.
  • FIG. FIG. 2 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 1;
  • 2 is a plan view showing a planar structure of the high-voltage applying electrode portion shown in FIG. 1 as viewed from above;
  • FIG. 2 is a plan view showing a planar structure of the ground potential electrode portion shown in FIG. 1 as viewed from above;
  • FIG. FIG. 2 is a plan view showing a planar structure of the active gas generator of Embodiment 1 as viewed from above;
  • FIG. 6 is a cross-sectional view showing the cross-sectional structure of the BB cross section of FIG. 5;
  • FIG. 4 is a cross-sectional view showing a basic cross-sectional structure of a modified example of Embodiment 1;
  • FIG. 8 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 7;
  • FIG. 4 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator according to Embodiment 2;
  • FIG. 10 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 9;
  • FIG. 10 is a plan view showing a planar structure of a high-voltage applying electrode section of the first aspect of the second embodiment, viewed from above;
  • FIG. 10 is a plan view showing a planar structure of the ground potential electrode portion of the first mode of the second embodiment, viewed from above;
  • FIG. 10 is a plan view showing a planar structure of a high-voltage applying electrode section of a second aspect of Embodiment 2, viewed from above;
  • FIG. 11 is a plan view showing a planar structure of a ground potential electrode portion of a second aspect of Embodiment 2 as viewed from above;
  • FIG. 11 is a cross-sectional view showing a basic cross-sectional structure of a modified example of the second embodiment;
  • FIG. 16 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 15;
  • FIG. 10 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator according to Embodiment 3;
  • FIG. 18 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 17;
  • FIG. 11 is a cross-sectional view showing a basic cross-sectional structure of a modified example of Embodiment 3;
  • FIG. 20 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 19;
  • FIG. 4 is an explanatory diagram showing an example of a discharge space;
  • FIG. 1 is a cross-sectional view schematically showing a basic cross-sectional structure of an active gas generator 51 according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest R30 in FIG. An XYZ orthogonal coordinate system is shown in each of FIGS.
  • the active gas generator 51 of Embodiment 1 generates the active gas 6 obtained by activating the raw material gas 5 supplied to the discharge space 4 .
  • the raw material gas 5 for example, nitrogen gas, oxygen gas, or hydrogen gas can be considered. Also, a gas obtained by mixing a rare gas such as argon with any of the three gases described above as the raw material gas 5 is also conceivable. moreover. Argon gas itself is also conceivable as source gas 5 .
  • the active gas generator 51 includes a high voltage applying electrode section 1, a ground potential electrode section 2, and an AC power supply 100 as main components. As shown in FIGS. 1 and 2, a high-voltage applying electrode portion 1, which is an upper electrode constituent portion, is arranged above a ground potential electrode portion 2, which is a lower electrode constituent portion.
  • FIG. 3 is a plan view showing the planar structure of the high voltage applying electrode section 1 viewed from above (+Z direction).
  • FIG. 4 is a plan view showing the planar structure of the ground potential electrode portion 2 viewed from above.
  • FIG. 5 is a plan view showing the planar structure of the active gas generator 51 viewed from above.
  • FIG. 6 is a cross-sectional view showing a cross-sectional structure taken along line BB of FIG. 1 shows a cross-sectional structure taken along the line AA of FIG.
  • An XYZ orthogonal coordinate system is shown in each of FIGS.
  • FIG. 1 The electrode structure of the active gas generator 51 of Embodiment 1 will be mainly described below with reference to FIGS. 1 to 6.
  • FIG. 1 The electrode structure of the active gas generator 51 of Embodiment 1 will be mainly described below with reference to FIGS. 1 to 6.
  • the high-voltage applying electrode section 1 which is the first electrode-forming section, has a laminated structure of an electrode dielectric film 11 and a metal electrode 10, and the metal electrode 10 is provided on the upper surface of the electrode dielectric film 11. .
  • the constituent material of the metal electrode 10 is a metal
  • the constituent material of the electrode dielectric film 11 is an insulating dielectric.
  • the metal electrode 10 becomes the first metal electrode and the upper metal electrode.
  • the electrode dielectric film 11 becomes an upper formation film, and the lower surface of the electrode dielectric film 11 becomes an exposed surface on the electrode dielectric film 11 side.
  • the high voltage applying electrode portion 1, which is the upper electrode forming portion the lower surface of the electrode dielectric film 11 serves as the first discharge field forming surface.
  • each of the metal electrode 10 and the electrode dielectric film 11 has a rectangular shape (substantially square shape) in plan view.
  • the electrode dielectric film 11 includes the entire metal electrode 10 in plan view and has a planar shape wider than the metal electrode 10 .
  • the ground potential electrode section 2 which is the second electrode configuration section, has a laminated structure of the discharge field adjustment film 30 and the metal electrode 20, and the metal electrode 20 is provided on the lower surface of the discharge field adjustment film 30.
  • the constituent material of the metal electrode 20 is metal, and the constituent material of the discharge field adjustment film 30 can be a first constituent material having insulating properties or a second constituent material having conductivity.
  • each of the metal electrode 20 and the discharge field adjustment film 30 has a rectangular shape (substantially square shape) in plan view.
  • the discharge field adjustment film 30 includes the entire metal electrode 20 in plan view and has a planar shape wider than the metal electrode 20 .
  • the metal electrode 20 becomes the second metal electrode and the lower metal electrode.
  • the upper surface of the discharge field adjustment film 30 is the exposed surface on the discharge field adjustment film 30 side.
  • the upper surface of the discharge field adjustment film 30 becomes the second discharge field forming surface.
  • the high voltage applying electrode section 1 and the ground potential electrode section 2 are arranged so that the first and second discharge field forming surfaces face each other.
  • the electrode dielectric film 11 and the discharge field adjustment film 30 have rectangular shapes of the same size in plan view, and as shown in FIG. are arranged so that the
  • An AC voltage is applied as an applied voltage from an AC power supply 100, which is a high-frequency power supply, to the metal electrode 10, which is one of the first and second metal electrodes, and the metal electrode 20, which is the other metal electrode, has a reference potential. ground potential.
  • the metal electrode 20 includes the entire metal electrode 10 in plan view and has a planar shape slightly wider than the metal electrode 10 .
  • the space between the electrode dielectric film 11 of the high voltage applying electrode portion 1 and the discharge field adjusting film 30 of the ground potential electrode portion 2 is defined as the electrode facing space.
  • a region where the metal electrode 10 and the metal electrode 20 overlap in plan view becomes the discharge space 4, and the lower surface of the electrode dielectric film 11 in the discharge space 4 (first discharge field forming surface). and the upper surface (second discharge field forming surface) of the discharge field adjustment film 30 is defined as the gap length.
  • the pressure in the discharge space 4 is set to about 1 kPa to atmospheric pressure.
  • the discharge field adjustment film 30 is characterized by having a plurality of protrusions 30t (protrusions) that protrude upward (in the +Z direction) so as to shorten the gap length in the discharge space 4.
  • the discharge field adjustment film 30 has a plurality of protrusions 30t as at least one protrusion.
  • a region of the discharge field adjusting film 30 in which the plurality of convex portions 30t are not formed is referred to as a "concave region".
  • the concave region 30f is provided extending in the Y direction.
  • a plurality of protrusions 30t are also provided extending in the Y direction.
  • the discharge space 4 includes partial discharge spaces 41 and 42 .
  • the partial discharge space 41 is the space between the surface of the recessed region 30f of the discharge field adjustment film 30 and the lower surface of the electrode dielectric film 11
  • the partial discharge space 42 is the space between the upper surface of the projection 30t of the discharge field adjustment film 30 and the electrode. It becomes a space between the lower surface of the dielectric film 11 for the device.
  • the partial discharge space 41 has the same long gap length G1 as the normal discharge space when the plurality of convex portions 30t are not formed.
  • the partial discharge space 42 is a special discharge space having a short gap length G2 that is shorter than the long gap length G1.
  • the long gap length G1 may be about 2 mm
  • the short gap length G2 may be about 0.5 mm.
  • the long gap length G1 and the short gap length G2 are appropriately set within the range of 0.1 mm to 1 cm.
  • the electrode dielectric film 11 and the discharge field adjustment film 30 each have a dielectric constant of "10" and a film thickness of 1 mm.
  • the film thickness of the concave region 30f is 1 mm.
  • the long gap length G1 of the partial discharge space 41 is 2.5 mm, and the short gap length G2 of the partial discharge space 42 is 0.5 mm. Therefore, the film thickness of the convex portion 30t is 3 mm.
  • the partial discharge space 41 and the partial discharge space 42 are each kept at the atmospheric pressure, and the raw material gas 5 filling the partial discharge spaces 41 and 42 is argon (Ar) gas having a dielectric constant of "1".
  • the voltage applied between the metal electrode 10 and the metal electrode 20 is 4000V.
  • the voltage applied to the partial discharge space 41 and the partial discharge space 42 is 3703 V in the partial discharge space 41 and 2222 V in the partial discharge space 42 .
  • the breakdown threshold voltage of the partial discharge space 41 is 4900V, and the breakdown threshold voltage of the partial discharge space 42 is 1400V.
  • the "dielectric breakdown threshold voltage” indicates the threshold voltage value of the applied voltage for generating the dielectric barrier discharge.
  • the voltage applied to the partial discharge space 42 will be higher than the dielectric breakdown threshold voltage, and a discharge phenomenon will occur within the partial discharge space 42 .
  • the partial discharge is caused by charged particles and ultraviolet rays generated in the partial discharge space 42 adjacent to the partial discharge space 41 by the low voltage discharge generation function described later. A discharge also occurs in the space 41 .
  • the electrode facing space has a rectangular shape in plan view.
  • the electrode facing space has side faces S1 and S2 facing each other.
  • the side surface S1, which is the first side surface, is the side surface on the -X direction side
  • the side surface S2, which is the second side surface is the side surface on the + direction side. Therefore, a discharge space 4 is provided between the side surfaces S1 and S2.
  • a dielectric barrier discharge is generated in the discharge space 4 by applying a high AC voltage from the AC power supply 100 to the metal electrode 10 . can be generated.
  • the raw material gas 5 is supplied from the side surface S1, which is the first side surface of the electrode facing space, and is activated by passing through the discharge space 4 to become the active gas 6.
  • the active gas 6 serves as the second side surface of the electrode facing space. It is ejected from the side surface S2.
  • the direction from side S1 to side S2 (+X direction) is defined as the gas flow direction.
  • the plurality of projections 30t are each provided in a rectangular shape with the Y direction as the longitudinal direction in plan view, and are provided separately from each other along the gas flow direction.
  • the plurality of recessed regions 30f are each provided in a rectangular shape with the Y direction as the longitudinal direction in plan view, and are provided separately from each other along the gas flow direction.
  • the plurality of partial discharge spaces 42 are provided separately from each other along the direction of gas flow.
  • the area ratio between the plurality of convex portions 30t and the plurality of concave regions 30f is set to approximately 1:1, for example.
  • the discharge field adjustment film 30 when the discharge field adjustment film 30 is formed only of the second constituent material having conductivity, it may be formed integrally with the metal electrode 20 .
  • a functional film may be separately formed on the lower surface of the electrode dielectric film 11 and the upper surface of the discharge field adjusting film 30 by sputtering, thermal spraying, or the like.
  • As the functional film a photocatalyst film, a silicon film that easily emits photoelectrons, or the like can be considered.
  • the surface of the functional film becomes the exposed surface of the electrode dielectric film 11 side in the high voltage applying electrode section 1 .
  • the surface of the functional film becomes the exposed surface of the ground potential electrode portion 2 on the side of the discharge field adjustment film 30 .
  • the discharge field adjustment film 30 has a plurality of projections 30t protruding in the direction in which the gap length is shortened.
  • a partial discharge space 42 having a relatively short gap length G2 can be provided between the body film 11 and the lower surface of the body film 11 as a special discharge space.
  • the active gas generator 51 of Embodiment 1 does not have a partial discharge space 42 with only a relatively long long gap length G1 by providing a plurality of partial discharge spaces 42 in a part of the discharge space 4. Dielectric barrier discharge is more likely to occur than in the conventional discharge space.
  • the active gas generator 51 of Embodiment 1 can have a low-voltage discharge generation function capable of generating a dielectric barrier discharge with a lower applied voltage than in the conventional art.
  • the active gas generator 51 of the first embodiment has the low-voltage discharge generating function, so that the volume of the discharge space 4 can be increased without increasing the required applied voltage, and the generated concentration of the active gas 6 can be increased. can be improved.
  • dielectric barrier discharge is first generated in a partial discharge space 42, which is a special discharge space. Due to the discharge in the partial discharge space 42, charged particles such as ions and electrons of the source gas 5 are generated and flow into the adjacent partial discharge space 41 along the gas flow direction (+X direction) in which the source gas 5 flows. .
  • the discharge field adjustment film 30 Photoelectrons are emitted from the electrode dielectric film 11 and supplied to the partial discharge space 41 .
  • the dielectric breakdown threshold voltage of the partial discharge space 41 is lowered and, as a result, discharge is also generated within the partial discharge space 41 .
  • the low-voltage discharge generating function is exhibited by these chain phenomena.
  • a functional film such as a photocatalyst film is formed on the lower surface of the electrode dielectric film 11 or the upper surface of the discharge field adjusting film 30, the light generated by the discharge in the partial discharge space 42 will not reach the functional film. When irradiated, photoelectrons are emitted from the functional film.
  • the active gas generator 51 of Embodiment 1 can exhibit a low-voltage discharge generation function, so that a discharge phenomenon can be generated even in the discharge space 4 having the long gap length G1 with a relatively small applied voltage. can be generated.
  • the active gas generating device 51 of the first embodiment operates the above-described low-voltage discharge generating function. can be kept low.
  • the active gas generator 51 of Embodiment 1 supplies the raw material gas 5 from the side surface S1, which is the first side surface of the electrode facing space, and ejects the active gas 6 from the side surface S2, which is the second side surface. It is possible to improve the generated concentration of the active gas 6 with a relatively simple structure.
  • the plurality of protrusions 30t are formed separately along the gas flow direction (+X direction), so that each of the protrusions 30t has a short gap along the gas flow direction. Since a plurality of long partial discharge spaces 42 can be provided, the low voltage discharge generating function can be improved.
  • FIG. 7 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 51X that is a modification of Embodiment 1 of the present disclosure.
  • FIG. 8 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R31 in FIG.
  • An XYZ orthogonal coordinate system is shown in FIGS. 7 and 8, respectively.
  • the active gas generator 51X of the modification replaces the ground potential electrode section 2 of the active gas generator 51 with the ground potential electrode section 2X, and discharge field adjustment is performed in the ground potential electrode section 2X. It is characterized in that the film 30 is replaced with a discharge field adjusting film 30X.
  • the ground potential electrode section 2X which is the second electrode configuration section, has a laminated structure of the discharge field adjustment film 30X and the metal electrode 20, and the metal electrode 20 is provided on the lower surface of the discharge field adjustment film 32.
  • the discharge field adjustment film 30X includes a layered structure of the discharge field adjustment insulating film 31 and the discharge field adjustment conductive film 34 .
  • the constituent material of the discharge field adjusting insulating film 31 is a first constituent material having insulating properties
  • the constituent material of the discharge field adjusting conductive film 34 is a second constituent material having conductivity.
  • the discharge field adjusting conductive film 34 is provided on the metal electrode 20, and the discharge field adjusting insulating film 31 is provided on the discharge field adjusting conductive film 34. Therefore, the discharge field adjusting conductive film 34 is in contact with the metal electrode 20 .
  • the discharge field adjustment film 30X is characterized by having a plurality of protrusions 31t (protrusions) that protrude upward (in the +Z direction) so as to shorten the gap length in the discharge space 4. there is thus, the discharge field adjustment film 30X has a plurality of protrusions 31t as at least one protrusion.
  • each of the plurality of projections 31t in the discharge field adjustment film 30X has a hollow region 36 on the metal electrode 20 side.
  • the discharge space 4 includes partial discharge spaces 43 and 44.
  • the partial discharge space 43 is the space between the surface of the recessed region 31f of the discharge field adjustment film 30X and the lower surface of the electrode dielectric film 11, and the partial discharge space 44 is the space between the upper surface of the protrusion 31t of the discharge field adjustment film 30X and the electrode. It becomes a space between the lower surface of the dielectric film 11 for the device.
  • the partial discharge space 43 has a relatively long long gap length G3, which is the same as the normal discharge space when the plurality of projections 31t are not formed.
  • the partial discharge space 44 becomes a special discharge space having a short gap length G4 that is shorter than the long gap length G3.
  • the long gap length G3 may be about 2 mm
  • the short gap length G4 may be about 0.5 mm.
  • the long gap length G3 and the short gap length G4 are appropriately set within the range of 0.1 mm to 1 cm.
  • the discharge field adjustment film 32X has a plurality of projections 32t projecting in the direction of shortening the gap length, like the active gas generator 51.
  • the active gas generator 51X of the modified example can increase the volume of the discharge space 4 without increasing the required applied voltage and improve the generated concentration of the active gas 6, similarly to the active gas generator 51. can be done.
  • each of the plurality of projections 31t of the discharge field adjustment film 30X has the hollow region 36 on the side of the metal electrode 20 serving as the second metal electrode.
  • the special discharge voltage applied to the special discharge space in can be increased.
  • the constituent material of the discharge field adjustment film 30 of the active gas generator 51 is the first constituent material having insulating properties
  • the film thickness of the convex portion 30t is relatively thick.
  • the special discharge voltage applied to the partial discharge space 42 decreases as the film thickness of the projection 30t increases.
  • the film thickness of the projections 31t of the discharge field adjusting insulating film 31 can be reduced by the amount of the formation of the cavity region 36.
  • the special discharge voltage applied to the partial discharge space 44 can be increased as the film thickness of the convex portion 31t is reduced.
  • the special discharge voltage applied to the partial discharge space 44 of the modified example can be made higher than the special discharge voltage applied to the partial discharge space 42 of the active gas generator 51. can.
  • the modified active gas generator 51X can further enhance the low-voltage discharge generating function described above.
  • the modified active gas generator 51X uses the discharge field adjustment film 30X having a laminated structure of the discharge field adjustment insulating film 31 and the discharge field adjustment conductive film 34, thereby reducing the film thickness of the convex portion 31t. It is possible to further enhance the low-voltage discharge generating function described above.
  • Embodiment 1 (extended configuration)
  • the high voltage applying electrode section 1 has the electrode dielectric film 11
  • the ground potential electrode section 2 has the discharge field adjustment film 30 (30 ⁇ ) are shown.
  • the first electrode configuration portion having the electrode dielectric film 11 is limited to the high voltage application electrode portion 1 which is the upper electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 30 is the lower electrode configuration. It is limited to the ground potential electrode portion 2 which is the portion.
  • the first electrode configuration portion having the electrode dielectric film 11 is the ground potential electrode portion 2, which is the lower electrode configuration portion
  • the second electrode configuration portion having the discharge field adjustment film 30 is the upper electrode configuration portion.
  • An extended configuration using the high voltage applying electrode section 1 is conceivable.
  • the discharge field adjustment film 30 is characterized by having a plurality of protrusions that protrude downward (-Z direction) so that the gap length in the discharge space 4 is shortened.
  • the at least one protrusion has a plurality of downwardly projecting protrusions.
  • Embodiment 1 also has the same effects as those of the active gas generator 51 and the active gas generator 51X.
  • FIG. 9 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 52 according to Embodiment 2 of the present disclosure.
  • FIG. 10 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R32 in FIG. An XYZ orthogonal coordinate system is shown in FIGS. 9 and 10, respectively.
  • Embodiment 2 the same components as those of the active gas generator 51 of Embodiment 1 are assigned the same reference numerals, and the description thereof is omitted as appropriate, and the description will focus on the features of Embodiment 2.
  • the basic structure of the active gas generator 52 of the second embodiment generates the active gas 6 obtained by activating the raw material gas 5 supplied from the outer peripheral surface of the discharge space 4. ing.
  • the active gas generator 52 includes a high voltage applying electrode section 1B, a ground potential electrode section 2B, and an AC power supply 100 as main components. As shown in FIGS. 9 and 10, a high-voltage applying electrode portion 1B, which is an upper electrode forming portion, is arranged above a ground potential electrode portion 2B, which is a lower electrode forming portion.
  • the high-voltage applying electrode portion 1B which is the first electrode-forming portion, has a laminated structure of the electrode dielectric film 13 and the metal electrode 12, and the metal electrode 12 is provided on the upper surface of the electrode dielectric film 13. .
  • the constituent material of the metal electrode 12 is a metal
  • the constituent material of the electrode dielectric film 13 is a dielectric having insulating properties.
  • the metal electrode 12 becomes the first metal electrode and the upper metal electrode, and the electrode dielectric film 13 becomes the upper forming film.
  • the lower surface of the electrode dielectric film 13 is the exposed surface on the electrode dielectric film 13 side.
  • the lower surface of the electrode dielectric film 13 becomes the first discharge field forming surface.
  • the metal electrode 12 has an opening 18 in its center.
  • the ground potential electrode section 2B which is the second electrode configuration section and the lower electrode configuration section, has a laminated structure of the discharge field adjustment film 32 and the metal electrode 22.
  • a metal electrode 22 is provided on the lower surface of the discharge field adjusting film 32 that serves as the lower forming film.
  • the constituent material of the metal electrode 22 is metal, and the constituent material of the discharge field adjustment film 32 may be a first constituent material having insulating properties or a second constituent material having conductivity.
  • the metal electrode 22 becomes the second metal electrode and the lower metal electrode.
  • the discharge field adjustment film 320 becomes a lower formation film, and the upper surface of the discharge field adjustment film 32 becomes an exposed surface on the discharge field adjustment film 32 side in the ground potential electrode portion 2B.
  • the lower surface of the discharge field adjustment film 32 becomes the second discharge field forming surface.
  • the high voltage applying electrode portion 1B and the ground potential electrode portion 2B are arranged so that the first and second discharge field forming surfaces face each other.
  • An AC voltage is applied as an applied voltage from an AC power source 100 to the metal electrode 12, which is one of the first and second metal electrodes, and the metal electrode 22, which is the other metal electrode, is at a ground potential, which is a reference potential. set.
  • the space between the electrode dielectric film 13 of the high voltage applying electrode portion 1B and the discharge field adjusting film 32 of the ground potential electrode portion 2B is defined as the electrode facing space.
  • a region where the metal electrode 12 and the metal electrode 22 overlap in plan view becomes the discharge space 4, and the lower surface of the electrode dielectric film 13 in the discharge space 4 (first discharge field forming surface). and the upper surface (second discharge field forming surface) of the discharge field adjustment film 32 is defined as the gap length.
  • the pressure in the discharge space 4 is set to about 1 kPa to atmospheric pressure.
  • the discharge field adjustment film 32 is characterized by having a plurality of protrusions 32t (protrusions) that protrude upward (in the +Z direction) so as to shorten the gap length in the discharge space 4. there is thus, the discharge field adjustment film 32 has a plurality of protrusions 32t as at least one protrusion.
  • the concave region 32f is provided extending in the Y direction.
  • a plurality of protrusions 32t are also provided extending in the Y direction.
  • the discharge field adjustment film 32 has a gas ejection hole 38 in the center, and the metal electrode 22 has an opening area 28 in the center.
  • a gas ejection hole 38 serving as at least one gas ejection hole is provided through the discharge field adjustment film 32 .
  • the opening region 28 includes the gas ejection holes 38 in plan view, and has a planar shape wider than the gas ejection holes 38 .
  • the opening 18 of the metal electrode 12 includes the gas ejection hole 38 and the opening region 28 in plan view, and has a planar shape wider than the gas ejection hole 38 . Therefore, the metal electrode 14 does not overlap with the gas ejection holes 38 and the opening regions 28 in plan view.
  • the discharge space 4 includes partial discharge spaces 41 and 42 .
  • the partial discharge space 41 is a space between the surface of the recessed region 32f of the discharge field adjustment film 32 and the lower surface of the electrode dielectric film 13, and the partial discharge space 42 is formed between the upper surface of the projection 32t of the discharge field adjustment film 32 and the electrode. It becomes a space between the lower surface of the dielectric film 13 for the substrate.
  • the partial discharge space 41 has the same relatively long long gap length G1 as the normal discharge space when the plurality of projections 32t are not formed.
  • the partial discharge space 42 is a special discharge space having a short gap length G2 that is shorter than the long gap length G1.
  • the discharge field adjustment film 32 when the discharge field adjustment film 32 is formed only of the second constituent material having conductivity, it may be formed integrally with the metal electrode 22 .
  • a functional film may be separately formed on the lower surface of the electrode dielectric film 13 and the upper surface of the discharge field adjusting film 32 by sputtering, thermal spraying, or the like.
  • the surface of the functional film becomes the exposed surface on the electrode dielectric film 13 side of the high voltage applying electrode section 1B.
  • a functional film is formed on the upper surface of the discharge field adjustment film 32, the surface of the functional film becomes the exposed surface on the discharge field adjustment film 32 side of the ground potential electrode portion 2B.
  • the source gas 5 is supplied from the outer peripheral surface of the electrode facing space and is activated by passing through the discharge space 4 to become the active gas 6.
  • the active gas 6 is jetted below the metal electrode 22 in the ground potential electrode portion 2B through the gas jetting holes 38 and the opening regions 28 .
  • the direction from the outer peripheral surface of the electrode facing space toward the gas ejection holes 38 is defined as the gas flow direction.
  • the plurality of protrusions 32t are formed separately from each other along the direction of gas flow.
  • a first aspect of the second embodiment employs a high voltage applying electrode portion 1B1 as the high voltage applying electrode portion 1B and a ground potential electrode portion 2B1 as the ground potential electrode portion 2B.
  • FIG. 11 is a plan view showing the planar structure of the high-voltage applying electrode section 1B1 of the first mode as viewed from above (+Z direction).
  • FIG. 12 is a plan view showing the planar structure of the ground potential electrode portion 2B1 of the first mode as viewed from above.
  • An XYZ orthogonal coordinate system is shown in each of FIGS. 11 and 12 .
  • FIG. 11 and 12 is the cross-sectional structure of the basic structure shown in FIG.
  • the high-voltage applying electrode section 1B1 uses a metal electrode 121 as the metal electrode 12 and uses an electrode dielectric film 131 as the electrode dielectric film 13 .
  • the metal electrode 121 has an opening 181 as the opening 18 .
  • the metal electrode 121 and the electrode dielectric film 131 each have a circular shape in plan view.
  • the electrode dielectric film 131 includes the entire metal electrode 121 in plan view and has a planar shape wider than the metal electrode 121 . As shown in FIG. 11, the metal electrode 121 has a circular opening 181 in its center.
  • the ground potential electrode portion 2B1 uses a metal electrode 221 as the metal electrode 22 and a discharge field adjustment film 321 as the discharge field adjustment film 32.
  • the metal electrode 221 has an opening area 281 as the opening area 28
  • the discharge field adjustment film 321 has a gas ejection hole 381 as the gas ejection hole 38 .
  • the metal electrode 221 and the discharge field adjustment film 321 each have a circular shape in plan view.
  • the discharge field adjustment film 321 includes the entire metal electrode 221 in plan view and has a planar shape wider than the metal electrode 221 .
  • the electrode dielectric film 131 of the high voltage applying electrode portion 1B1 and the discharge field adjustment film 321 of the ground potential electrode portion 2B1 have circular shapes of the same size in plan view, and the electrode dielectric film in plan view. 131 and the discharge field adjustment film 321 are arranged so as to coincide with each other.
  • the electrode facing space is circular in plan view.
  • the discharge field adjustment film 321 which is circular in plan view, has a gas ejection hole 381 (central gas ejection hole) at its center, and the metal electrode 221 has an opening region 281 at its center. are doing.
  • the opening region 281 includes the gas ejection holes 381 in plan view and has a shape wider than the gas ejection holes 381 .
  • the opening 181 shown in FIG. 11 includes the opening area 281 and the gas ejection holes 381 in plan view, and has a shape wider than the opening area 281 and the gas ejection holes 381 . Therefore, the metal electrode 121 does not overlap the opening area 281 and the gas ejection holes 381 in plan view.
  • the electrode facing space has a circular outer peripheral surface on the side surface. Therefore, in the first mode, the discharge space 4 is provided within the circular outer peripheral surface.
  • the raw material gas 5 is supplied from the entire outer peripheral surface of the electrode-facing space and is activated by passing through the discharge space 4 to become the active gas 6 .
  • the active gas 6 is ejected below the metal electrode 221 in the ground potential electrode portion 2B1 through the gas ejection hole 381 and the opening region 281.
  • the gas flow direction is defined as the direction from the entire outer peripheral surface of the electrode facing space toward the gas ejection holes 381. As shown in FIG. That is, the direction of gas flow is the radial direction toward the gas ejection holes 381 in the circular electrode facing space.
  • the plurality of convex portions 32t are each provided in an annular shape and are provided separately from each other along the direction of gas flow. Therefore, the ring size (diameter) of the plurality of protrusions 32t becomes smaller as the gas ejection hole 381 is approached.
  • the plurality of convex portions 32t and the plurality of concave regions 32f are alternately provided along the gas flow direction, thereby forming the plurality of partial discharge spaces 42 discretely along the gas flow direction. and will be provided.
  • the area ratio between the plurality of protrusions 32t and the plurality of recessed regions 32f is set to approximately 1:1, for example.
  • a second aspect of the second embodiment employs a high voltage applying electrode portion 1B2 as the high voltage applying electrode portion 1B and a ground potential electrode portion 2B2 as the ground potential electrode portion 2B.
  • FIG. 13 is a plan view showing the planar structure of the high-voltage applying electrode section 1B2 of the second mode as viewed from above (+Z direction).
  • FIG. 14 is a plan view showing a planar structure of the ground potential electrode portion 2B2 of the second embodiment as viewed from above.
  • An XYZ orthogonal coordinate system is shown in each of FIGS. 13 and 14 .
  • FIG. 13 and 14 has a cross-sectional structure shown in FIG.
  • the high voltage applying electrode section 1B2 uses a pair of metal electrodes 122 as the metal electrodes 12 and uses an electrode dielectric film 132 as the electrode dielectric film 13 .
  • the pair of metal electrodes 122 has an opening 182 as the opening 18 .
  • the pair of metal electrodes 122 are provided separately from each other, and the area on the metal electrode 122 between the pair of metal electrodes 122 and 122 becomes the opening 182 .
  • the opening 182 is provided extending in the Y direction.
  • Each of the pair of metal electrodes 122 has a rectangular shape in plan view.
  • the electrode dielectric film 132 has a rectangular shape (substantially square shape) in plan view.
  • the electrode dielectric film 132 includes all of the pair of metal electrodes 122 in plan view and has a planar shape wider than the pair of metal electrodes 122 .
  • the ground potential electrode portion 2B2 uses a pair of metal electrodes 222 as the metal electrodes 22, and uses a discharge field adjustment film 322 as the discharge field adjustment film 32.
  • the metal electrode 222 has an opening region 282 as the opening region 28, and the opening region 282 is provided between the pair of metal electrodes 222,222.
  • the opening region 282 is formed extending in the Y direction.
  • the discharge field adjusting film 322 has a plurality of gas ejection holes 381 as the gas ejection holes 38 .
  • a plurality of gas ejection holes 382 are provided separately from each other along the Y direction.
  • the Y direction is the ejection hole forming direction.
  • Each of the pair of metal electrodes 222 has a rectangular shape in plan view.
  • the discharge field adjustment film 322 has a rectangular shape (square shape) in plan view.
  • the discharge field adjustment film 322 includes all of the pair of metal electrodes 222 in plan view and has a planar shape wider than the pair of metal electrodes 222 .
  • the electrode dielectric film 132 of the high voltage applying electrode portion 1B2 and the discharge field adjustment film 322 of the ground potential electrode portion 2B2 have rectangular shapes of the same size in plan view, and the electrode dielectric film in plan view. 132 and the discharge field adjustment film 322 are arranged to coincide with each other.
  • the electrode facing space has a rectangular shape in plan view.
  • the discharge field adjustment film 322 has a plurality of gas ejection holes 381 in the center, and the metal electrode 222 has an opening area 282 in the center.
  • the opening region 282 includes all of the plurality of gas ejection holes 381 in plan view and has a shape wider than the plurality of gas ejection holes 381 .
  • the opening 182 shown in FIG. 13 includes an opening region 282 and a plurality of gas ejection holes 381 in plan view, and has a shape wider than the opening region 282 and the plurality of gas ejection holes 381 . Therefore, the pair of metal electrodes 122 do not overlap the opening region 282 and the plurality of gas ejection holes 381 in plan view.
  • the electrode facing space has side faces S1 and S2 facing each other as part of the outer peripheral face.
  • the side surface S1 which is the first side surface, is the side surface on the -X direction side
  • the side surface S2, which is the second side surface is the side surface on the + direction side. Therefore, a discharge space 4 is provided between the side surfaces S1 and S2.
  • the X direction in which the side surfaces S1 and S2 face each other is defined as the side facing direction. Therefore, the direction of formation of the side surface (X direction) is a direction perpendicular to the direction of formation of the ejection holes (Y direction).
  • dielectric barrier discharge is generated in the discharge space 4 by applying an AC voltage from the AC power supply 100 to the pair of metal electrodes 122 . can be generated.
  • the raw material gas 5 is supplied from the side surfaces S1 and S2 of the electrode facing space, and is activated by passing through the discharge space 4 to become the active gas 6.
  • the active gas 6 is ejected below the metal electrode 222 in the ground potential electrode portion 2B2 through the plurality of gas ejection holes 381 and the opening area 282.
  • the directions ( ⁇ X directions) from the side surfaces S1 and S2 of the electrode facing space toward the plurality of gas ejection holes 381 are defined as the gas flow directions.
  • the plurality of projections 32t are each provided in a rectangular shape with the Y direction as the longitudinal direction in plan view, and are provided separately from each other along the gas flow direction (X direction).
  • the plurality of convex portions 32t and the plurality of concave regions 32f are alternately provided along the gas flow direction, thereby forming the plurality of partial discharge spaces 42 separated from each other along the gas flow direction. and will be provided.
  • the area ratio between the plurality of protrusions 32t and the plurality of recessed regions 32f is set to approximately 1:1, for example.
  • the first gas flow distance along the gas flow direction (+X direction) from the side surface S1, which is the first side surface, to the gas ejection hole 381 is the gas flow distance D1.
  • a second gas flow distance along the gas flow direction (-X direction) from the side surface S2, which is the second side surface, to the gas ejection hole 381 is the gas flow distance D2.
  • the gas circulation distance D1 and the gas circulation distance D2 are set to be equal.
  • the discharge field adjustment film 32 has a plurality of protrusions 32t protruding in the direction in which the gap length is shortened.
  • the active gas generator 52 of Embodiment 2 increases the volume of the discharge space 4 without increasing the required applied voltage, and improves the generated concentration of the active gas 6, as in the case of Embodiment 1. be able to.
  • the active gas generator 52 of Embodiment 2 supplies the raw material gas 5 from the outer peripheral surface of the electrode-facing space and ejects the active gas 6 downward from the gas ejection holes 38 (at least one gas ejection hole).
  • a substrate to be processed such as a wafer can be placed directly below the ejection holes 38 .
  • the gas ejection hole 38 is the gas ejection hole 381, which is one central gas ejection hole, in the first mode, and becomes a plurality of gas ejection holes 382 in the second mode.
  • the active gas generator 52 of Embodiment 2 can be provided relatively close to the substrate to be processed, the active gas 6 can be efficiently ejected without deteriorating the radical concentration.
  • the active gas 6 is deactivated in a relatively short period of time. Therefore, in order to effectively utilize the active gas 6, the generated active gas 6 is supplied in a short period of time to the active gas utilization space containing the substrate to be processed. Because there is a need.
  • the active gas generating device 52 of Embodiment 2 since the plurality of projections 32t are formed discretely along the gas flow direction, a plurality of projections 32t each having a short gap length along the gas flow direction are formed. Since the special discharge space can be provided, the low-voltage discharge generating function can be improved.
  • the metal electrodes 12 (a pair of metal The electrode 121 and the pair of metal electrodes 122) have a partially open electrode structure in which they are not provided. That is, the metal electrode 12 exhibits a partially open electrode structure that does not overlap the gas ejection holes 38 and the open area 28 in plan view.
  • abnormal discharge means that when the metal electrode 12 is formed to cover the gas ejection hole 38, the area near the gas ejection hole 38 and the opening area 28, for example, the area around the metal electrode 22. means a discharge that can
  • the constituent elements of the metal electrode 22 made of metal are more easily ionized by electric discharge compared to insulators.
  • the constituent elements of the metal electrode 22 are ionized, there arise problems such as mixing into the active gas 6 as metal contaminants and peeling of the metal electrode 22 itself from the discharge field adjustment film 32 .
  • the metal electrodes 12 (121, 122) should not overlap with the opening regions 28 (281, 282) and the gas ejection holes 38 (381, 382) in plan view.
  • the electrode dielectric film 131 and the discharge field adjustment film 321 having a circular planar shape are used to efficiently The active gas 6 can be jetted out.
  • a gas ejection hole 381 (central gas ejection hole) is formed at the center position of the discharge field adjustment film 321 which is circular in plan view. Therefore, the distance from the entire outer peripheral surface of the electrode facing space to the gas ejection holes 38 can be made uniform, and the active gas 6 with a stable radical concentration can be ejected from the gas ejection holes 38 .
  • the electrode dielectric film 132 and the discharge field adjusting film 322 having a rectangular planar shape are used to efficiently eject the active gas 6 without deteriorating the radical concentration. be able to.
  • a gas flow distance D1 (first gas flow distance) from the side surface S1, which is the first side surface, to the plurality of gas ejection holes 382, and a plurality of gas flow distances from the side surface S2, which is the second side surface.
  • a plurality of gas ejection holes 381 are provided so that the gas circulation distance D2 (second gas circulation distance) to the gas ejection holes 382 is equal.
  • the gas flow distances D1 and D2 from the side surfaces S1 and S2 to the plurality of gas ejection holes 38 can be made uniform, and the same radical concentration can be obtained from each of the plurality of gas ejection holes.
  • Active gas 6 can be ejected.
  • FIG. 15 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 52X that is a modification of the second embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R33 in FIG. An XYZ orthogonal coordinate system is shown in each of FIGS. 15 and 16 .
  • the modified active gas generator 52X replaces the ground potential electrode section 2B of the active gas generator 52 with a ground potential electrode section 2Y, and adjusts the discharge field in the ground potential electrode section 2Y. It is characterized by replacing the film 32 with a discharge field adjusting film 32X.
  • the ground potential electrode section 2Y which is the second electrode configuration section, has a laminated structure of the discharge field adjustment film 32X and the metal electrode 22, and the metal electrode 20 is provided on the lower surface of the discharge field adjustment film 32X.
  • the discharge field adjustment film 32X includes a laminated structure of the discharge field adjustment insulating film 33 and the discharge field adjustment conductive film 35.
  • the constituent material of the discharge field adjusting insulating film 33 is a first insulating constituent material
  • the constituent material of the discharge field adjusting conductive film 35 is a second constituent material having conductivity.
  • a discharge field adjusting conductive film 35 is provided on the metal electrode 22, and a discharge field adjusting insulating film 33 is provided on the discharge field adjusting conductive film 35. Therefore, the discharge field adjusting conductive film 35 is in contact with the metal electrode 22 .
  • the discharge field adjustment film 32X is characterized by having a plurality of protrusions 33t (protrusions) that protrude upward (in the +Z direction) so as to shorten the gap length in the discharge space 4. there is thus, the discharge field adjustment film 32X has a plurality of protrusions 33t as at least one protrusion.
  • a plurality of protrusions 33t in the discharge field adjustment film 32X each have a hollow region 36 on the metal electrode 22 side. Furthermore, the discharge field adjustment film 32X has gas ejection holes 48 similar to the gas ejection holes 38 of the discharge field adjustment film 32 .
  • the discharge field adjustment film 32X in the ground potential electrode portion 2Y1 which is the first aspect of the ground potential electrode portion 2Y, has the same planar shape as the discharge field adjustment film 321 shown in FIG. It has ejection holes 481 as gas ejection holes 48 .
  • the discharge field adjustment film 32X of the ground potential electrode portion 2Y1 has a plurality of projections 33t similar to the plurality of projections 32t shown in FIG. provided in
  • the discharge field adjustment film 32X in the ground potential electrode portion 2Y2, which is the second aspect of the ground potential electrode portion 2Y, has the same planar shape as the discharge field adjustment film 322 shown in FIG. It has ejection holes 482 as gas ejection holes 48 .
  • the discharge field adjustment film 32X of the ground potential electrode portion 2Y2 has a plurality of protrusions 33t similar to the plurality of protrusions 32t shown in FIG. is provided in a rectangular shape with .
  • the discharge space 4 includes partial discharge spaces 43 and 44.
  • the partial discharge space 43 is a space between the surface of the concave region 33f of the discharge field adjustment film 32X and the lower surface of the electrode dielectric film 13
  • the partial discharge space 44 is a space between the upper surface of the convex portion 33t of the discharge field adjustment film 32X and the electrode. It becomes a space between the lower surface of the dielectric film 13 for the substrate.
  • the partial discharge space 43 has the same relatively long long gap length G3 as the normal discharge space when the plurality of convex portions 33t are not formed.
  • the partial discharge space 44 becomes a special discharge space having a short gap length G4 that is shorter than the long gap length G3.
  • the discharge field adjustment film 32X has a plurality of projections 33t projecting in the direction of shortening the gap length, like the active gas generator 52.
  • the active gas generator 52X of the modified example can increase the volume of the discharge space 4 without increasing the required applied voltage and improve the generated concentration of the active gas 6, similarly to the active gas generator 52. can be done.
  • each of the plurality of protrusions 33t of the discharge field adjustment film 32X has a hollow region 36 on the side of the metal electrode 22 serving as the second metal electrode, so that in FIGS.
  • the special discharge voltage applied to the special discharge space can be increased when the same applied voltage is applied.
  • the active gas generator 52X which is a modification of the second embodiment, can further enhance the above-described low-voltage discharge generating function.
  • the active gas generator 52X of the modification uses the discharge field adjustment film 32X having a laminated structure of the discharge field adjustment insulating film 33 and the discharge field adjustment conductive film 35, thereby reducing the film thickness of the convex portion 33t. It is possible to further enhance the low-voltage discharge generating function described above.
  • the high voltage applying electrode portion 1B has the electrode dielectric film 13
  • the ground potential electrode portion 2B (2Y) has the discharge field adjusting film.
  • a structure with 32 (32X) was shown.
  • the first electrode configuration portion having the electrode dielectric film 13 is limited to the high voltage applying electrode portion 1B which is the upper electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 32 is the lower electrode configuration. It was limited to the ground potential electrode portion 2B, which is a portion.
  • an extended configuration in which the electrode dielectric film 13 and the discharge field adjustment film 32 are reversed in vertical relation is conceivable. That is, the first electrode configuration portion having the electrode dielectric film 13 is used as the ground potential electrode portion 2B (2Y) which is the lower electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 32 is used as the upper electrode configuration.
  • An extended configuration is conceivable in which the high-voltage applying electrode section 1B is used as a section.
  • the discharge field adjustment film 32 (32X) is characterized by having a plurality of protrusions that protrude downward (-Z direction) so that the gap length in the discharge space 4 is shortened.
  • the at least one protrusion has a plurality of downwardly projecting protrusions.
  • gas ejection holes corresponding to the gas ejection holes 38 (48) provided in the discharge field adjustment film 32 (32X) are formed. .
  • the diffusion structure of the second embodiment described above also has the same effect as the active gas generator 52 and the active gas generator 52X.
  • FIG. 17 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 53 according to Embodiment 3 of the present disclosure.
  • FIG. 18 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R34 in FIG. An XYZ orthogonal coordinate system is shown in each of FIGS. 17 and 18 .
  • the basic structure of the active gas generator 53 of Embodiment 3 generates the active gas 6 obtained by activating the raw material gas 5 supplied from the outer peripheral surface of the discharge space 4. ing.
  • the active gas generator 53 includes a high voltage applying electrode section 1C, a ground potential electrode section 2B, and an AC power supply 100 as main components. As shown in FIGS. 17 and 18, a high-voltage applying electrode portion 1C, which is an upper electrode forming portion, is arranged above a ground potential electrode portion 2B, which is a lower electrode forming portion.
  • the high-voltage applying electrode section 1C which is the first electrode configuration section, has a laminated structure of the electrode dielectric film 13, the metal electrode 14, and the high-voltage side grounding metal electrode 17.
  • a metal electrode 14 and a high voltage side grounding metal electrode 17 are provided on the upper surface of the electrode dielectric film 13 .
  • the constituent material of the metal electrode 14 and the high voltage side grounding metal electrode 17 is metal, and the constituent material of the electrode dielectric film 13 is a dielectric.
  • the metal electrode 14 becomes the upper metal electrode and the first metal electrode, and the electrode dielectric film 13 becomes the upper formation film.
  • the lower surface of the electrode dielectric film 13 is the exposed surface on the electrode dielectric film 13 side.
  • the lower surface of the electrode dielectric film 13 serves as the first discharge field forming surface.
  • the metal electrode 14 has an opening 19 in its central portion.
  • the ground potential electrode portion 2B which is the second electrode configuration portion, has a laminated structure of the discharge field adjustment film 32 and the metal electrode 22.
  • a metal electrode 22 is provided on the lower surface of the discharge field adjusting film 32 that serves as the lower forming film.
  • the constituent material of the metal electrode 22 is metal, and the constituent material of the discharge field adjustment film 32 may be a first constituent material having insulating properties or a second constituent material having conductivity.
  • the metal electrode 22 becomes the second metal electrode and the lower metal electrode.
  • the discharge field adjustment film 32 becomes a lower formation film.
  • the upper surface of the discharge field adjustment film 32 is the exposed surface on the discharge field adjustment film 32 side.
  • the lower surface of the discharge field adjustment film 32 becomes the second discharge field forming surface.
  • the high voltage applying electrode portion 1C and the ground potential electrode portion 2B are arranged so that the first and second discharge field forming surfaces face each other.
  • An AC voltage (applied voltage) is applied from an AC power supply 100 to the metal electrode 14, which is one of the first and second metal electrodes, and the ground potential, which is the reference potential, is the metal electrode 22, which is the other metal electrode. is set to Furthermore, the high voltage side grounding metal electrode 17 is set to the ground potential.
  • the space between the electrode dielectric film 13 of the high voltage applying electrode portion 1C and the discharge field adjusting film 32 of the ground potential electrode portion 2B is defined as the electrode facing space.
  • the area where the metal electrode 14 and the metal electrode 22 overlap in plan view becomes the discharge space 4, and the lower surface of the electrode dielectric film 13 in the discharge space 4 (first discharge field forming surface). and the upper surface (second discharge field forming surface) of the discharge field adjustment film 32 is defined as the gap length.
  • the pressure in the discharge space 4 is set to about 1 kPa to atmospheric pressure.
  • the discharge field adjustment film 32 is characterized by having a plurality of protrusions 32t (protrusions) that protrude upward (in the +Z direction) so as to shorten the gap length in the discharge space 4. there is thus, the discharge field adjustment film 32 has a plurality of protrusions 32t as at least one protrusion.
  • the concave region 32f is provided extending in the Y direction.
  • a plurality of protrusions 32t are also provided extending in the Y direction.
  • the discharge field adjusting film 32 has a gas ejection hole 38 in its central portion, and an opening region 28 in the center of the metal electrode 22 .
  • the gas ejection hole 38 becomes at least one gas ejection hole.
  • the opening region 28 includes the gas ejection holes 38 in plan view, and has a planar shape wider than the gas ejection holes 38 .
  • the opening 19 of the metal electrode 14 includes the gas ejection hole 38 and the opening area 28 in plan view, and has a planar shape wider than the gas ejection hole 38 . Therefore, the metal electrode 14 does not overlap with the gas ejection holes 38 and the opening regions 28 in plan view.
  • the high voltage side grounding metal electrode 17 includes the gas ejection holes 38 and the opening regions 28 in plan view, and has a planar shape wider than the gas ejection holes 38 . That is, the high-voltage side grounding metal electrode 17 overlaps the gas ejection hole 38 and the opening region 28 in plan view. Therefore, the high-voltage-side grounding metal electrode 17 exists on the active gas distribution path through which the active gas 6 passes.
  • the discharge space 4 includes partial discharge spaces 41 and 42 .
  • the partial discharge space 41 is a space between the surface of the recessed region 32f of the discharge field adjustment film 32 and the lower surface of the electrode dielectric film 13, and the partial discharge space 42 is formed between the upper surface of the projection 32t of the discharge field adjustment film 32 and the electrode. It becomes a space between the lower surface of the dielectric film 13 for the substrate.
  • the partial discharge space 41 has the same relatively long long gap length G1 as the normal discharge space when the plurality of projections 32t are not formed.
  • the partial discharge space 42 is a special discharge space having a short gap length G2 that is shorter than the long gap length G1.
  • discharge field adjustment film 32 when the discharge field adjustment film 32 is formed of the second constituent material having conductivity, it may be formed integrally with the metal electrode 22 .
  • a functional film may be separately formed on the lower surface of the electrode dielectric film 13 and the upper surface of the discharge field adjusting film 32 by sputtering, thermal spraying, or the like.
  • the source gas 5 is supplied from the outer peripheral surface of the electrode facing space and is activated by passing through the discharge space 4 to become the active gas 6.
  • the active gas 6 is jetted below the metal electrode 22 in the ground potential electrode portion 2B through the gas jetting holes 38 and the opening regions 28 .
  • the direction from the outer peripheral surface of the electrode facing space toward the gas ejection holes 38 is defined as the gas flow direction.
  • the plurality of protrusions 32t are formed separately from each other along the direction of gas flow.
  • the metal electrode 14 of the high-voltage applying electrode portion 1C is formed in a circular shape in plan view, similarly to the metal electrode 121 of the first mode of the second embodiment, and the opening 19 is formed in the center like the opening 181. It may be formed in a circular shape in plan view. However, since it is necessary to provide the high voltage side grounding metal electrode 17 in the opening 19 , it is desirable to have a shape wider than the opening 181 .
  • the electrode dielectric film 13 may be formed in a circular shape in plan view, like the electrode dielectric film 131 of the first aspect of the second embodiment.
  • the electrode dielectric film 13 includes all of the metal electrodes 14 in plan view and has a circular planar shape wider than the metal electrodes 14 .
  • the first mode of the ground potential electrode portion 2B a configuration similar to the first mode of the second embodiment shown in FIG. 12 may be adopted.
  • the electrode dielectric film 13 of the high-voltage applying electrode portion 1C and the discharge field adjusting film 32 of the ground potential electrode portion 2B have circular shapes of the same size in plan view. Then, the electrode dielectric film 13 and the discharge field adjustment film 32 are arranged so as to match each other.
  • a dielectric barrier discharge can be generated in the discharge space 4 by applying a high AC voltage (applied voltage) from the AC power supply 100 to the metal electrode 14 . .
  • the raw material gas 5 is supplied from the entire outer peripheral surface of the electrode-facing space and is activated by passing through the discharge space 4 to become the active gas 6 .
  • the active gas 6 is jetted below the metal electrode 22 in the ground potential electrode portion 2B through the gas jetting holes 38 and the opening regions 28 .
  • the gas flow direction is defined as the direction from the entire outer peripheral surface of the electrode facing space toward the gas ejection holes 38. As shown in FIG.
  • the metal electrodes 14 of the high-voltage applying electrode portion 1C may each be formed in a rectangular shape in plan view, similarly to the pair of metal electrodes 122 of the second aspect of the second embodiment. It may be provided extending in the Y direction like the opening 182 of the second aspect of the second aspect. However, since it is necessary to provide the high voltage side grounding metal electrode 17 in the opening 19, it is desirable to have a shape wider than the opening 182.
  • FIG. 1C The metal electrodes 14 of the high-voltage applying electrode portion 1C may each be formed in a rectangular shape in plan view, similarly to the pair of metal electrodes 122 of the second aspect of the second embodiment. It may be provided extending in the Y direction like the opening 182 of the second aspect of the second aspect. However, since it is necessary to provide the high voltage side grounding metal electrode 17 in the opening 19, it is desirable to have a shape wider than the opening 182.
  • the electrode dielectric film 13 may be formed in a rectangular shape (substantially square shape) in plan view, similarly to the electrode dielectric film 132 of the second aspect of the second embodiment.
  • the electrode dielectric film 13 includes all of the metal electrodes 14 in plan view and has a rectangular planar shape wider than the metal electrodes 14 .
  • a configuration similar to the second mode of the second embodiment shown in FIG. 14 may be adopted.
  • the electrode dielectric film 13 of the high-voltage applying electrode portion 1C and the discharge field adjusting film 32 of the ground potential electrode portion 2B have rectangular shapes of the same size in plan view. Then, the electrode dielectric film 13 and the discharge field adjustment film 32 are arranged so as to match each other.
  • dielectric barrier discharge can be generated in the discharge space 4 by applying an AC voltage from the AC power supply 100 to the metal electrode 14 .
  • the raw material gas 5 is supplied from the first and second side surfaces (side surfaces S1 and S2) of the electrode facing space, respectively, and is activated by passing through the discharge space 4, as in the second mode of the second embodiment. It becomes active gas 6.
  • the active gas 6 is jetted below the metal electrode 22 in the ground potential electrode portion 2B through the gas jetting holes 38 and the opening regions 28 .
  • the directions ( ⁇ X directions) toward the gas ejection holes 38 on the first and second side surfaces of the electrode facing space are defined as the gas flow directions.
  • the discharge field adjustment film 32 has a plurality of protrusions 32t protruding in the direction in which the gap length is shortened.
  • the active gas generator 53 of the third embodiment can increase the volume of the discharge space 4 without increasing the required applied voltage, as in the first and second embodiments.
  • the product concentration can be improved.
  • the raw material gas 5 is supplied from the outer peripheral surface of the electrode facing space, and the gas ejection holes 38 (at least one gas ejection hole ), a substrate to be processed such as a wafer can be placed directly below the gas ejection hole 38 .
  • the active gas generator 53 of the third embodiment can be provided relatively close to the substrate to be processed, the active gas 6 can be efficiently ejected without degrading the radical concentration, as in the second embodiment. can do.
  • the high voltage applying electrode section 1C which is the first electrode constituting section, is formed on the upper surface of the electrode dielectric film 13, that is, the metal electrode which is the first metal electrode.
  • a high-voltage side grounding metal electrode 17 serving as an auxiliary conductive film is further provided on the formation surface of 14 .
  • the high voltage side grounding metal electrode 17 is provided electrically independently of the metal electrode 14 and is set to the ground potential.
  • the high voltage side grounding metal electrode 17 is provided so as to overlap with the gas ejection hole 38 and the opening region 28 in plan view.
  • the electric field strength in the active gas flow path through which the active gas 6 flows above the gas ejection holes 38 is reduced by the high voltage side grounding metal electrode 17 set to the ground potential. can be mitigated.
  • the active gas generator 53 of Embodiment 3 can prevent dielectric breakdown of gases other than the active gas 6 by significantly reducing the electric field strength in the vicinity of the gas ejection holes 38 .
  • a gas serving as a raw material for film formation (a gas called a precursor) other than the active gas 6 exists below the gas ejection holes 38 .
  • a precursor for example, silane (SiH 4 ) or the like can be considered.
  • SiH 4 silane
  • precursors (gases) other than the active gas 6 may cause dielectric breakdown.
  • the active gas generator 53 of Embodiment 3 since the electric field intensity of the active gas flow path is relaxed by the high voltage side grounding metal electrode 17, dielectric breakdown of gases other than the active gas 6 such as precursors can be prevented. can be done.
  • FIG. 19 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 53X that is a modification of Embodiment 3 of the present disclosure.
  • FIG. 20 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R33 in FIG. The XYZ orthogonal coordinate system is shown in each of FIGS. 19 and 20.
  • FIG. 19 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 53X that is a modification of Embodiment 3 of the present disclosure.
  • FIG. 20 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R33 in FIG.
  • the XYZ orthogonal coordinate system is shown in each of FIGS. 19 and 20.
  • an active gas generator 53X which is a modification of the third embodiment, replaces the ground potential electrode section 2B of the active gas generator 53 with a ground potential electrode section 2Y, It is characterized in that the discharge field adjustment film 32 is replaced with a discharge field adjustment film 32X in 2Y.
  • the ground potential electrode section 2Y which is the second electrode configuration section, has a laminated structure of the discharge field adjustment film 32X and the metal electrode 22, and the metal electrode 20 is provided on the lower surface of the discharge field adjustment film 32X.
  • the discharge field adjustment film 32X includes a laminated structure of the discharge field adjustment insulating film 33 and the discharge field adjustment conductive film 35, as in the modification of the second embodiment.
  • the discharge space 4 includes partial discharge spaces 43 and 44, similar to the modification of the second embodiment shown in FIG.
  • the partial discharge space 43 has a relatively long long gap length G3, which is the same as the normal discharge space when the plurality of projections 33t are not formed.
  • the partial discharge space 44 becomes a special discharge space having a short gap length G4 that is shorter than the long gap length G3.
  • the discharge field adjustment film 32X has a plurality of projections 33t protruding in the direction of shortening the gap length.
  • the active gas generator 53X of the modified example can increase the volume of the discharge space 4 without increasing the required applied voltage and improve the generated concentration of the active gas 6, similarly to the active gas generator 53. can be done.
  • each of the plurality of protrusions 33t of the discharge field adjustment film 32X has a cavity region 36 on the side of the metal electrode 22 serving as the second metal electrode.
  • the active gas generator 53X which is a modified example of Embodiment 3, can further enhance the above-described low-voltage discharge generating function.
  • the modified active gas generator 53X uses the discharge field adjustment film 32X having a laminated structure of the discharge field adjustment insulating film 33 and the discharge field adjustment conductive film 35, thereby reducing the film thickness of the convex portion 33t. It is possible to further enhance the low-voltage discharge generating function described above.
  • the high voltage applying electrode section 1C has the electrode dielectric film 13
  • the ground potential electrode section 2B (2Y) has the discharge field adjusting film.
  • a structure with 32 (32X) was shown.
  • the first electrode configuration portion having the electrode dielectric film 13 is limited to the high voltage applying electrode portion 1C, which is the upper electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 32 is the lower electrode configuration. However, it is limited to the ground potential electrode portion 2B (2Y).
  • an extended configuration in which the electrode dielectric film 13 and the discharge field adjustment film 32 are reversed in vertical relation is conceivable. That is, the first electrode configuration portion having the electrode dielectric film 13 is used as the ground potential electrode portion 2B (2Y) which is the lower electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 32 is used as the upper electrode configuration.
  • An extended configuration is conceivable in which a high voltage applying electrode section 1C is used.
  • the discharge field adjustment film 32 (32X) is characterized by having a plurality of protrusions that protrude downward (-Z direction) so that the gap length in the discharge space 4 is shortened.
  • the at least one protrusion has a plurality of downwardly projecting protrusions.
  • gas ejection holes corresponding to the gas ejection holes 38 are formed in the electrode dielectric film 13 provided in the lower electrode configuration portion.
  • Embodiment 3 also has the same effects as those of the active gas generator 53 and the active gas generator 53X.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)

Abstract

The purpose of the present disclosure is to provide an active gas generation apparatus that has achieved an increase in the volume of an electric discharge space without increasing the required applied voltage. Further, in the active gas generation apparatus (51) of the present disclosure, a high-voltage application electrode part (1) has a laminate structure formed of an electrode dielectric film (11) and a metal electrode (10), and a ground potential electrode part (2) has a laminate structure formed of an electric discharge field adjustment film (30) and a metal electrode (20). A space between the electrode dielectric film (11) of the high-voltage application electrode part (1) and the electric discharge field adjustment film (30) of the ground potential electrode part (2) is defined as an electrode opposing space. In the electrode opposing space, regions in which the metal electrode (10) and the metal electrode (20) overlap each other, as seen in a plan view, serve as electric discharge spaces (4). The electric discharge field adjustment film (30) has a plurality of protrusions (30t) protruding upwardly so that the gap length in the electric discharge spaces (4) is short.

Description

活性ガス生成装置Active gas generator
 本開示は、平行平板方式の電極構造を有し、誘電体バリア放電を利用して活性ガスを生成する活性ガス生成装置に関する。 The present disclosure relates to an active gas generator that has a parallel plate type electrode structure and uses dielectric barrier discharge to generate active gas.
 平行平板方式の電極構造を有し、誘電体バリア放電を採用した従来の活性ガス生成装置は、互いに対向する導電性の金属電極と誘電体膜との空隙、または、互いに対向する誘電体膜同士の空隙が放電空間となる。 A conventional active gas generator that has a parallel plate electrode structure and employs a dielectric barrier discharge has a gap between a conductive metal electrode and a dielectric film facing each other, or a gap between the dielectric films facing each other. becomes the discharge space.
 従来の活性ガス生成装置は、放電空間に誘電体バリア放電を発生させ、この放電空間によって投入された原料ガスを活性化して活性ガスを生成するという、平行平板方式誘電体バリア放電を採用している。 A conventional active gas generator employs a parallel plate type dielectric barrier discharge in which a dielectric barrier discharge is generated in a discharge space, and the raw material gas introduced into the discharge space is activated to generate an active gas. there is
 平行平板方式誘電体バリア放電を採用した従来の活性ガス生成装置として例えば特許文献1に開示された活性ガス生成装置がある。 For example, there is an active gas generator disclosed in Patent Document 1 as a conventional active gas generator that employs a parallel plate type dielectric barrier discharge.
特許第6873588号公報Japanese Patent No. 6873588
 従来の活性ガス生成装置において、放電空間の体積が小さいと、放電空間における原料ガスの滞在時間が短くなり、活性ガスの生成濃度(ラジカル濃度)が低下する。 In a conventional active gas generator, if the volume of the discharge space is small, the residence time of the raw material gas in the discharge space will be shortened, and the generated concentration of active gas (radical concentration) will decrease.
 図21は放電空間の一例を示す説明図である。図21では円柱形状の放電空間80が示されている。図21にXYZ直交座標系を記している。 FIG. 21 is an explanatory diagram showing an example of the discharge space. FIG. 21 shows a cylindrical discharge space 80 . FIG. 21 shows an XYZ orthogonal coordinate system.
 放電空間を大きくする方法として、以下の第1及び第2の方法が考えられる。第1の方法は、放電面積を大きくする方法であり、第2の方法はギャップ長を大きくする方法である。「ギャップ長」として、対向する金属電極と誘電体膜との距離、または対向する誘電体膜同士の距離が該当する。 As methods for enlarging the discharge space, the following first and second methods are conceivable. The first method is to increase the discharge area, and the second method is to increase the gap length. The "gap length" corresponds to the distance between the facing metal electrode and the dielectric film or the distance between the facing dielectric films.
 図21で示した円柱形状の放電空間80の場合、放電空間80における半径rの底面の面積を大きくすることが第1の方法となる。一方、放電空間80の高さd(ギャップ長d)を高くすることが第2の方法となる。 In the case of the cylindrical discharge space 80 shown in FIG. 21, the first method is to increase the area of the bottom surface of the discharge space 80 with the radius r. On the other hand, the second method is to increase the height d (gap length d) of the discharge space 80 .
 誘電体バリア放電において、ギャップ長dは数mm程度であるため、一般に{r>>d}の関係となる。そのため、第1の方法を採用した場合、放電面積を大きくすると装置自体が大型化してしまう第1の問題点があった。 In dielectric barrier discharge, the gap length d is about several millimeters, so the relationship is generally {r>>d}. Therefore, when the first method is adopted, there is a first problem that if the discharge area is increased, the size of the device itself is increased.
 例えば、放電空間80に関し{r=200mm、d=1mm}の時、放電空間80の体積を4倍とするために第1の方法を採用した場合には、半径rを2倍する必要があり、半径方向に200mm、装置の形成面積を大きくする必要があった。 For example, when the discharge space 80 is {r=200 mm, d=1 mm}, if the first method is adopted to quadruple the volume of the discharge space 80, the radius r must be doubled. , 200 mm in the radial direction, and it was necessary to increase the forming area of the device.
 一方、第2の方法を採用した場合は、ギャップ長dを4mmとするだけであるため、装置は高さ方向へ3mm高くするだけで済む。すなわち、第2の方法であれば装置の形成面積の増加はなく、放電空間80の変動量を比較的小さくすることができる。 On the other hand, when the second method is adopted, the gap length d is only set to 4 mm, so the device only needs to be increased by 3 mm in the height direction. That is, the second method does not increase the formation area of the device, and the variation of the discharge space 80 can be made relatively small.
 しかしながら、第2の方法を採用した場合、ギャップ長dの増加にともない、必要な印加電圧を増加させる必要が生じる。印加電圧の増加は、放電空間80以外の箇所、例えば、印加電圧の導入端子表面において沿面放電が発生する等の第2の問題点を生じさせる。 However, when the second method is adopted, it becomes necessary to increase the necessary applied voltage as the gap length d increases. An increase in the applied voltage causes a second problem such as occurrence of creeping discharge at locations other than the discharge space 80, for example, at the surface of the introduction terminal for the applied voltage.
 一方、特許文献1で開示された活性ガス生成装置は、放電空間の近傍に意図的に凸部を設けている。しかし、この凸部は放電空間ではない領域に設けられており、放電空間に凸部は存在していない。このように、特許文献1で開示された活性ガス生成装置において、放電空間は従来と同様、ギャップ長dが一定の構造となっている。 On the other hand, the active gas generator disclosed in Patent Document 1 intentionally provides a convex portion near the discharge space. However, this convex portion is provided in a region that is not the discharge space, and the convex portion does not exist in the discharge space. As described above, in the active gas generator disclosed in Patent Document 1, the discharge space has a structure in which the gap length d is constant, as in the conventional case.
 本開示では、上記のような問題点を解決し、必要とする印加電圧を増加させることなく放電空間の体積増加を図った活性ガス生成装置を提供することを目的とする。 An object of the present disclosure is to solve the above-described problems and to provide an active gas generator that increases the volume of the discharge space without increasing the required applied voltage.
 本開示の活性ガス生成装置は、放電空間に供給された原料ガスを活性化して得られる活性ガスを生成する活性ガス生成装置であって、第1の放電場形成面を有する第1の電極構成部と第2の放電場形成面を有する第2の電極構成部とを備え、前記第1及び第2の電極構成部は前記第1及び第2の放電場形成面が対向するように配置され、前記第1の電極構成部は、第1の金属電極と電極用誘電体膜との積層構造を有し、前記第1の電極構成部において、前記電極用誘電体膜側の露出面が前記第1の放電場形成面となり、前記第2の電極構成部は、第2の金属電極と放電場調整膜との積層構造を有し、前記第2の電極構成部において前記放電場調整膜側の露出面が前記第2の放電場形成面となり、前記第1及び第2の金属電極のうち一方の金属電極に交流電圧が印加され、他方の金属電極が基準電位に設定され、前記電極用誘電体膜と前記放電場調整膜との間が電極対向空間として規定され、前記電極対向空間内において、前記第1の金属電極と前記第2の金属電極とが平面視して重複する領域が前記放電空間となり、前記放電空間における前記第1及び第2の放電場形成面間の距離がギャップ長として規定され、前記放電場調整膜は、前記放電空間内において前記ギャップ長が短くなる方向に突出した少なくとも一つの突出部を有することを特徴とする。 An active gas generating apparatus of the present disclosure is an active gas generating apparatus that generates an active gas obtained by activating a raw material gas supplied to a discharge space, and has a first electrode configuration having a first discharge field forming surface. and a second electrode configuration portion having a second discharge field formation surface, wherein the first and second electrode configuration portions are arranged such that the first and second discharge field formation surfaces face each other. The first electrode configuration portion has a laminated structure of a first metal electrode and an electrode dielectric film, and in the first electrode configuration portion, the exposed surface on the side of the electrode dielectric film is the The second electrode configuration portion has a laminated structure of a second metal electrode and a discharge field adjustment film, and the discharge field adjustment film side of the second electrode configuration portion serves as a first discharge field formation surface. The exposed surface of becomes the second discharge field forming surface, an alternating voltage is applied to one of the first and second metal electrodes, and the other metal electrode is set to a reference potential. An electrode-facing space is defined between the dielectric film and the discharge field adjusting film, and in the electrode-facing space, there is a region where the first metal electrode and the second metal electrode overlap when viewed in plan. The distance between the first and second discharge field forming surfaces in the discharge space is defined as the gap length, and the discharge field adjustment film is arranged in the discharge space in the direction in which the gap length becomes shorter. It is characterized by having at least one projecting protrusion.
 本開示の活性ガス生成装置において、放電場調整膜はギャップ長が短くなる方向に突出した少なくとも一つの突出部を有しているため、上記少なくとも一つの突出部と電極用誘電体膜との間に、ギャップ長が比較的短い短ギャップ長の特殊放電空間を設けることができる。 In the active gas generator of the present disclosure, since the discharge field adjustment film has at least one projecting portion projecting in the direction in which the gap length is shortened, the gap between the at least one projecting portion and the electrode dielectric film In addition, a special discharge space with a relatively short gap length can be provided.
 本開示の活性ガス生成装置は、放電空間の一部に特殊放電空間を設けることにより、ギャップ長が比較的長い長ギャップ長のみの放電空間に比べて、誘電体バリア放電が生じやすくなる。 In the active gas generator of the present disclosure, by providing a special discharge space in part of the discharge space, dielectric barrier discharge is more likely to occur than in a discharge space with a relatively long gap length only.
 その結果、本開示の活性ガス生成装置は、従来と比較して低い印加電圧で誘電体バリア放電を発生させることができる低電圧放電発生機能を備えることができる。 As a result, the active gas generator of the present disclosure can have a low-voltage discharge generation function capable of generating a dielectric barrier discharge with a lower applied voltage than in the past.
 したがって、本開示の活性ガス生成装置は、上記低電圧放電発生機能を有する分、必要とする印加電圧を増加させることなく放電空間の体積増加を図り、活性ガスの生成濃度を向上させることができる。 Therefore, since the active gas generator of the present disclosure has the low-voltage discharge generating function, it is possible to increase the volume of the discharge space without increasing the required applied voltage, and to improve the concentration of generated active gas. .
 本開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects and advantages of the present disclosure will become more apparent with the following detailed description and accompanying drawings.
実施の形態1である活性ガス生成装置の基本断面構造を示す断面図である。1 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator according to Embodiment 1. FIG. 図1の着目領域の詳細断面構造を示す断面図である。FIG. 2 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 1; 図1で示した高電圧印加電極部を上方から視た平面構造を示す平面図である。2 is a plan view showing a planar structure of the high-voltage applying electrode portion shown in FIG. 1 as viewed from above; FIG. 図1で示した接地電位電極部を上方から視た平面構造を示す平面図である。2 is a plan view showing a planar structure of the ground potential electrode portion shown in FIG. 1 as viewed from above; FIG. 実施の形態1の活性ガス生成装置を上方から視た平面構造を示す平面図である。FIG. 2 is a plan view showing a planar structure of the active gas generator of Embodiment 1 as viewed from above; 図5のB-B断面の断面構造を示す断面図である。FIG. 6 is a cross-sectional view showing the cross-sectional structure of the BB cross section of FIG. 5; 実施の形態1の変形例の基本断面構造を示す断面図である。FIG. 4 is a cross-sectional view showing a basic cross-sectional structure of a modified example of Embodiment 1; 図7の着目領域の詳細断面構造を示す断面図である。FIG. 8 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 7; 実施の形態2である活性ガス生成装置の基本断面構造を示す断面図である。FIG. 4 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator according to Embodiment 2; 図9の着目領域の詳細断面構造を示す断面図である。FIG. 10 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 9; 実施の形態2の第1の態様の高電圧印加電極部を上方から視た平面構造を示す平面図である。FIG. 10 is a plan view showing a planar structure of a high-voltage applying electrode section of the first aspect of the second embodiment, viewed from above; 実施の形態2の第1の態様の接地電位電極部を上方から視た平面構造を示す平面図である。FIG. 10 is a plan view showing a planar structure of the ground potential electrode portion of the first mode of the second embodiment, viewed from above; 実施の形態2の第2の態様の高電圧印加電極部を上方から視た平面構造を示す平面図である。FIG. 10 is a plan view showing a planar structure of a high-voltage applying electrode section of a second aspect of Embodiment 2, viewed from above; 実施の形態2の第2の態様の接地電位電極部を上方から視た平面構造を示す平面図である。FIG. 11 is a plan view showing a planar structure of a ground potential electrode portion of a second aspect of Embodiment 2 as viewed from above; 実施の形態2の変形例の基本断面構造を示す断面図である。FIG. 11 is a cross-sectional view showing a basic cross-sectional structure of a modified example of the second embodiment; 図15の着目領域の詳細断面構造を示す断面図である。FIG. 16 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 15; 実施の形態3である活性ガス生成装置の基本断面構造を示す断面図である。FIG. 10 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator according to Embodiment 3; 図17の着目領域の詳細断面構造を示す断面図である。FIG. 18 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 17; 実施の形態3の変形例の基本断面構造を示す断面図である。FIG. 11 is a cross-sectional view showing a basic cross-sectional structure of a modified example of Embodiment 3; 図19の着目領域の詳細断面構造を示す断面図である。FIG. 20 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest in FIG. 19; 放電空間の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of a discharge space;
 <実施の形態1>
 図1は本開示の実施の形態1である活性ガス生成装置51の基本断面構造を模式的に示す断面図である。図2は図1の着目領域R30の詳細断面構造を示す断面図である。図1及び図2それぞれにXYZ直交座標系を記している。
<Embodiment 1>
FIG. 1 is a cross-sectional view schematically showing a basic cross-sectional structure of an active gas generator 51 according to Embodiment 1 of the present disclosure. FIG. 2 is a cross-sectional view showing a detailed cross-sectional structure of the region of interest R30 in FIG. An XYZ orthogonal coordinate system is shown in each of FIGS.
 図1及び図2に示すように、実施の形態1の活性ガス生成装置51は、放電空間4に供給された原料ガス5を活性化して得られる活性ガス6を生成している。 As shown in FIGS. 1 and 2, the active gas generator 51 of Embodiment 1 generates the active gas 6 obtained by activating the raw material gas 5 supplied to the discharge space 4 .
 原料ガス5として、例えば、窒素ガス、酸素ガスまたは水素ガスが考えられる。また、原料ガス5として上述した3つのガスのいずれかにアルゴン等の希ガスを混合したガスも考えられる。さらに。原料ガス5としてアルゴンガス自体も考えられる。 As the raw material gas 5, for example, nitrogen gas, oxygen gas, or hydrogen gas can be considered. Also, a gas obtained by mixing a rare gas such as argon with any of the three gases described above as the raw material gas 5 is also conceivable. moreover. Argon gas itself is also conceivable as source gas 5 .
 活性ガス生成装置51は高電圧印加電極部1、接地電位電極部2、及び交流電源100を主要構成要素として含んでいる。図1及び図2に示すように、下方電極構成部である接地電位電極部2の上方に上方電極構成部である高電圧印加電極部1が配置されている。 The active gas generator 51 includes a high voltage applying electrode section 1, a ground potential electrode section 2, and an AC power supply 100 as main components. As shown in FIGS. 1 and 2, a high-voltage applying electrode portion 1, which is an upper electrode constituent portion, is arranged above a ground potential electrode portion 2, which is a lower electrode constituent portion.
 図3は高電圧印加電極部1を上方(+Z方向)から視た平面構造を示す平面図である。図4は接地電位電極部2を上方から視た平面構造を示す平面図である。図5は活性ガス生成装置51を上方から視た平面構造を示す平面図である。図6は図5のB-B断面の断面構造を示す断面図である。なお、図1は図5のA-A断面の断面構造を示している。図3~図6それぞれにXYZ直交座標系を記している。 FIG. 3 is a plan view showing the planar structure of the high voltage applying electrode section 1 viewed from above (+Z direction). FIG. 4 is a plan view showing the planar structure of the ground potential electrode portion 2 viewed from above. FIG. 5 is a plan view showing the planar structure of the active gas generator 51 viewed from above. FIG. 6 is a cross-sectional view showing a cross-sectional structure taken along line BB of FIG. 1 shows a cross-sectional structure taken along the line AA of FIG. An XYZ orthogonal coordinate system is shown in each of FIGS.
 以下、図1~図6を参照して、実施の形態1の活性ガス生成装置51の電極構造を中心に説明する。 The electrode structure of the active gas generator 51 of Embodiment 1 will be mainly described below with reference to FIGS. 1 to 6. FIG.
 第1の電極構成部である高電圧印加電極部1は、電極用誘電体膜11及び金属電極10の積層構造を呈しており、電極用誘電体膜11の上面上に金属電極10が設けられる。金属電極10の構成材料は金属であり、電極用誘電体膜11の構成材料は絶縁性を有する誘電体である。 The high-voltage applying electrode section 1, which is the first electrode-forming section, has a laminated structure of an electrode dielectric film 11 and a metal electrode 10, and the metal electrode 10 is provided on the upper surface of the electrode dielectric film 11. . The constituent material of the metal electrode 10 is a metal, and the constituent material of the electrode dielectric film 11 is an insulating dielectric.
 金属電極10は第1の金属電極となり、かつ、上方金属電極となる。電極用誘電体膜11は上方形成膜となり、電極用誘電体膜11の下面が電極用誘電体膜11側の露出面となる。上方電極構成部である高電圧印加電極部1において、電極用誘電体膜11の下面が第1の放電場形成面となる。 The metal electrode 10 becomes the first metal electrode and the upper metal electrode. The electrode dielectric film 11 becomes an upper formation film, and the lower surface of the electrode dielectric film 11 becomes an exposed surface on the electrode dielectric film 11 side. In the high voltage applying electrode portion 1, which is the upper electrode forming portion, the lower surface of the electrode dielectric film 11 serves as the first discharge field forming surface.
 図3に示すように、金属電極10及び電極用誘電体膜11はそれぞれ平面視して矩形状(略正方形状)を呈している。電極用誘電体膜11は平面視して金属電極10の全てを含み、金属電極10より広い平面形状を有している。 As shown in FIG. 3, each of the metal electrode 10 and the electrode dielectric film 11 has a rectangular shape (substantially square shape) in plan view. The electrode dielectric film 11 includes the entire metal electrode 10 in plan view and has a planar shape wider than the metal electrode 10 .
 第2の電極構成部である接地電位電極部2は、放電場調整膜30及び金属電極20の積層構造を呈しており、放電場調整膜30の下面上に金属電極20が設けられる。金属電極20の構成材料は金属であり、放電場調整膜30の構成材料として、絶縁性を有する第1の構成材料あるいは導電性を有する第2の構成材料が考えられる。 The ground potential electrode section 2, which is the second electrode configuration section, has a laminated structure of the discharge field adjustment film 30 and the metal electrode 20, and the metal electrode 20 is provided on the lower surface of the discharge field adjustment film 30. The constituent material of the metal electrode 20 is metal, and the constituent material of the discharge field adjustment film 30 can be a first constituent material having insulating properties or a second constituent material having conductivity.
 図4に示すように、金属電極20及び放電場調整膜30はそれぞれ平面視して矩形状(略正方形状)を呈している。放電場調整膜30は平面視して金属電極20の全てを含み、金属電極20より広い平面形状を有している。 As shown in FIG. 4, each of the metal electrode 20 and the discharge field adjustment film 30 has a rectangular shape (substantially square shape) in plan view. The discharge field adjustment film 30 includes the entire metal electrode 20 in plan view and has a planar shape wider than the metal electrode 20 .
 金属電極20が第2の金属電極となり、かつ、下方金属電極となる。接地電位電極部2において、放電場調整膜30の上面が放電場調整膜30側の露出面となる。放電場調整膜30の上面が第2の放電場形成面となる。 The metal electrode 20 becomes the second metal electrode and the lower metal electrode. In the ground potential electrode portion 2 , the upper surface of the discharge field adjustment film 30 is the exposed surface on the discharge field adjustment film 30 side. The upper surface of the discharge field adjustment film 30 becomes the second discharge field forming surface.
 したがって、高電圧印加電極部1及び接地電位電極部2は第1及び第2の放電場形成面が対向するように配置される。 Therefore, the high voltage applying electrode section 1 and the ground potential electrode section 2 are arranged so that the first and second discharge field forming surfaces face each other.
 電極用誘電体膜11及び放電場調整膜30は平面視して同一サイズの矩形状を呈しており、図5に示すように、平面視して電極用誘電体膜11と放電場調整膜30とが合致するように配置される。 The electrode dielectric film 11 and the discharge field adjustment film 30 have rectangular shapes of the same size in plan view, and as shown in FIG. are arranged so that the
 第1及び第2の金属電極のうち一方の金属電極となる金属電極10に高周波電源である交流電源100から印加電圧として交流電圧が印加され、他方の金属電極となる金属電極20が基準電位となる接地電位に設定される。図5に示すように、金属電極20は平面視して金属電極10の全てを含み、金属電極10より少し広い平面形状を有している。 An AC voltage is applied as an applied voltage from an AC power supply 100, which is a high-frequency power supply, to the metal electrode 10, which is one of the first and second metal electrodes, and the metal electrode 20, which is the other metal electrode, has a reference potential. ground potential. As shown in FIG. 5 , the metal electrode 20 includes the entire metal electrode 10 in plan view and has a planar shape slightly wider than the metal electrode 10 .
 高電圧印加電極部1の電極用誘電体膜11と接地電位電極部2の放電場調整膜30との間の空間が電極対向空間として規定される。この電極対向空間内において、金属電極10と金属電極20とが平面視して重複する領域が放電空間4となり、放電空間4における電極用誘電体膜11の下面(第1の放電場形成面)と放電場調整膜30の上面(第2の放電場形成面)との間の距離がギャップ長として規定される。なお、放電空間4内の圧力は1kPa~大気圧程度の圧力に設定される。 The space between the electrode dielectric film 11 of the high voltage applying electrode portion 1 and the discharge field adjusting film 30 of the ground potential electrode portion 2 is defined as the electrode facing space. In this electrode-facing space, a region where the metal electrode 10 and the metal electrode 20 overlap in plan view becomes the discharge space 4, and the lower surface of the electrode dielectric film 11 in the discharge space 4 (first discharge field forming surface). and the upper surface (second discharge field forming surface) of the discharge field adjustment film 30 is defined as the gap length. Incidentally, the pressure in the discharge space 4 is set to about 1 kPa to atmospheric pressure.
 図1に示すように、放電場調整膜30は、放電空間4内においてギャップ長が短くなるように、上方(+Z方向)に突出した複数の凸部30t(突出部)を有することを特徴としている。このように、放電場調整膜30は、少なくとも一つの突出部として複数の凸部30tを有している。 As shown in FIG. 1, the discharge field adjustment film 30 is characterized by having a plurality of protrusions 30t (protrusions) that protrude upward (in the +Z direction) so as to shorten the gap length in the discharge space 4. there is Thus, the discharge field adjustment film 30 has a plurality of protrusions 30t as at least one protrusion.
 ここで、放電場調整膜30において複数の凸部30tが形成されていない領域を「凹部領域」と称する。図6に示すように、凹部領域30fはY方向に延びて設けられる。同様に複数の凸部30tもそれぞれY方向に延びて設けられる。 Here, a region of the discharge field adjusting film 30 in which the plurality of convex portions 30t are not formed is referred to as a "concave region". As shown in FIG. 6, the concave region 30f is provided extending in the Y direction. Similarly, a plurality of protrusions 30t are also provided extending in the Y direction.
 図2に示すように、放電空間4は部分放電空間41及び42を含んでいる。部分放電空間41は放電場調整膜30の凹部領域30fの表面と電極用誘電体膜11の下面との間の空間となり、部分放電空間42は放電場調整膜30の凸部30tの上面と電極用誘電体膜11の下面との間の空間となる。 As shown in FIG. 2, the discharge space 4 includes partial discharge spaces 41 and 42 . The partial discharge space 41 is the space between the surface of the recessed region 30f of the discharge field adjustment film 30 and the lower surface of the electrode dielectric film 11, and the partial discharge space 42 is the space between the upper surface of the projection 30t of the discharge field adjustment film 30 and the electrode. It becomes a space between the lower surface of the dielectric film 11 for the device.
 すなわち、部分放電空間41は複数の凸部30tが形成されない場合の通常放電空間と同じ長ギャップ長G1を有している。一方、部分放電空間42は長ギャップ長G1に比べて短い短ギャップ長G2を有する特殊放電空間となる。例えば、長ギャップ長G1として2mm程度の長さが考えられ、短ギャップ長G2として0.5mm程度の長さが考えられる。長ギャップ長G1及び短ギャップ長G2は0.1mm~1cmの範囲で適宜設定される。 That is, the partial discharge space 41 has the same long gap length G1 as the normal discharge space when the plurality of convex portions 30t are not formed. On the other hand, the partial discharge space 42 is a special discharge space having a short gap length G2 that is shorter than the long gap length G1. For example, the long gap length G1 may be about 2 mm, and the short gap length G2 may be about 0.5 mm. The long gap length G1 and the short gap length G2 are appropriately set within the range of 0.1 mm to 1 cm.
 以下、長ギャップ長G1及び短ギャップ長G2の設定具体例を説明する。放電場調整膜30と電極用誘電体膜11とが同じ材質の場合を想定する。すなわち、電極用誘電体膜11及び放電場調整膜30の構成材料が共に絶縁性を有する第1の構成材料である場合を想定する。 A specific example of setting the long gap length G1 and the short gap length G2 will be described below. It is assumed that the discharge field adjusting film 30 and the electrode dielectric film 11 are made of the same material. That is, it is assumed that the constituent materials of the electrode dielectric film 11 and the discharge field adjusting film 30 are both insulating first constituent materials.
 ここで、電極用誘電体膜11及び放電場調整膜30それぞれの比誘電率が“10”であり、膜厚がともに1mmとする。なお、放電場調整膜30に関しては凹部領域30fの膜厚が1mmとなっている。そして、部分放電空間41の長ギャップ長G1が2.5mm、部分放電空間42の短ギャップ長G2が0.5mmとする。したがって、凸部30tの膜厚は3mmとなる。 Here, it is assumed that the electrode dielectric film 11 and the discharge field adjustment film 30 each have a dielectric constant of "10" and a film thickness of 1 mm. As for the discharge field adjusting film 30, the film thickness of the concave region 30f is 1 mm. The long gap length G1 of the partial discharge space 41 is 2.5 mm, and the short gap length G2 of the partial discharge space 42 is 0.5 mm. Therefore, the film thickness of the convex portion 30t is 3 mm.
 このとき、部分放電空間41と部分放電空間42とはそれぞれ大気圧に保たれており、部分放電空間41及び42を満たす原料ガス5は、比誘電率が“1”のアルゴン(Ar)ガスであるとする。そして、金属電極10と金属電極20との間にかかる印加電圧が4000Vとする。 At this time, the partial discharge space 41 and the partial discharge space 42 are each kept at the atmospheric pressure, and the raw material gas 5 filling the partial discharge spaces 41 and 42 is argon (Ar) gas having a dielectric constant of "1". Suppose there is Assume that the voltage applied between the metal electrode 10 and the metal electrode 20 is 4000V.
 上述した条件下で、部分放電空間41と部分放電空間42とにかかる電圧は、部分放電空間41においては3703V、部分放電空間42においては2222Vとなる。 Under the conditions described above, the voltage applied to the partial discharge space 41 and the partial discharge space 42 is 3703 V in the partial discharge space 41 and 2222 V in the partial discharge space 42 .
 パッシェンの法則を用いると、部分放電空間41の絶縁破壊閾値電圧は4900Vとなり、部分放電空間42の絶縁破壊閾値電圧は1400Vとなる。なお、「絶縁破壊閾値電圧」は、誘電体バリア放電が発生するための印加電圧の閾値電圧値を示している。 Using Paschen's law, the breakdown threshold voltage of the partial discharge space 41 is 4900V, and the breakdown threshold voltage of the partial discharge space 42 is 1400V. The "dielectric breakdown threshold voltage" indicates the threshold voltage value of the applied voltage for generating the dielectric barrier discharge.
 したがって、上述した長ギャップ長G1及び短ギャップ長G2の設定であれば、部分放電空間42にかかる電圧は絶縁破壊閾値電圧よりも大きくなるため、部分放電空間42内で放電現象が発生する。一方、部分放電空間41にかかる電圧は絶縁破壊閾値電圧よりも小さいが、後述する低電圧放電発生機能によって、部分放電空間41に隣接する部分放電空間42にて発生した荷電粒子や紫外線により部分放電空間41も放電が発生する。 Therefore, if the long gap length G1 and the short gap length G2 are set as described above, the voltage applied to the partial discharge space 42 will be higher than the dielectric breakdown threshold voltage, and a discharge phenomenon will occur within the partial discharge space 42 . On the other hand, although the voltage applied to the partial discharge space 41 is lower than the dielectric breakdown threshold voltage, the partial discharge is caused by charged particles and ultraviolet rays generated in the partial discharge space 42 adjacent to the partial discharge space 41 by the low voltage discharge generation function described later. A discharge also occurs in the space 41 .
 上述したように、電極用誘電体膜11及び放電場調整膜30は平面視して矩形状を呈しているため、電極対向空間は平面視して矩形状となる。 As described above, since the electrode dielectric film 11 and the discharge field adjusting film 30 have a rectangular shape in plan view, the electrode facing space has a rectangular shape in plan view.
 電極対向空間は互いに対向する側面S1及びS2を有している。第1の側面となる側面S1が-X方向側にある側面であり、第2の側面となる側面S2が+方向側にある側面となる。したがって、側面S1及びS2間に放電空間4が設けられることになる。 The electrode facing space has side faces S1 and S2 facing each other. The side surface S1, which is the first side surface, is the side surface on the -X direction side, and the side surface S2, which is the second side surface, is the side surface on the + direction side. Therefore, a discharge space 4 is provided between the side surfaces S1 and S2.
 このような構成の実施の形態1の活性ガス生成装置51において、金属電極10に交流電源100から高電圧な印加電圧となる交流電圧を印加することにより、放電空間4内で誘電体バリア放電を発生させることができる。 In the active gas generator 51 of Embodiment 1 having such a configuration, a dielectric barrier discharge is generated in the discharge space 4 by applying a high AC voltage from the AC power supply 100 to the metal electrode 10 . can be generated.
 原料ガス5は電極対向空間の第1の側面となる側面S1から供給され、放電空間4を通過することにより活性化され活性ガス6となり、活性ガス6は電極対向空間の第2の側面となる側面S2から噴出される。活性ガス生成装置51において、側面S1から側面S2に向かう方向(+X方向)がガス流通方向として規定される。 The raw material gas 5 is supplied from the side surface S1, which is the first side surface of the electrode facing space, and is activated by passing through the discharge space 4 to become the active gas 6. The active gas 6 serves as the second side surface of the electrode facing space. It is ejected from the side surface S2. In the active gas generator 51, the direction from side S1 to side S2 (+X direction) is defined as the gas flow direction.
 図1及び図4に示すように、複数の凸部30tはそれぞれ平面視してY方向を長手方向とした矩形状に設けられ、ガス流通方向に沿って互いに離散して設けられる。同様に複数の凹部領域30fはそれぞれ平面視してY方向を長手方向とした矩形状に設けられ、ガス流通方向に沿って互いに離散して設けられることになる。 As shown in FIGS. 1 and 4, the plurality of projections 30t are each provided in a rectangular shape with the Y direction as the longitudinal direction in plan view, and are provided separately from each other along the gas flow direction. Similarly, the plurality of recessed regions 30f are each provided in a rectangular shape with the Y direction as the longitudinal direction in plan view, and are provided separately from each other along the gas flow direction.
 したがって、複数の凸部30tと複数の凹部領域30fがガス流通方向に沿って交互に形成されることにより、複数の部分放電空間42がガス流通方向に沿って互いに離散して設けられることになる。なお、複数の凸部30tと複数の凹部領域30fとの面積比は例えば1:1程度に設定される。 Therefore, by alternately forming the plurality of convex portions 30t and the plurality of concave regions 30f along the direction of gas flow, the plurality of partial discharge spaces 42 are provided separately from each other along the direction of gas flow. . The area ratio between the plurality of convex portions 30t and the plurality of concave regions 30f is set to approximately 1:1, for example.
 なお、放電場調整膜30が導電性を有する第2の構成材料のみで形成される場合、金属電極20と一体化して形成しても良い。 In addition, when the discharge field adjustment film 30 is formed only of the second constituent material having conductivity, it may be formed integrally with the metal electrode 20 .
 また。電極用誘電体膜11の下面及び放電場調整膜30の上面に機能性膜をスパッタや溶射等により別途成膜してもよい。機能性膜としては光触媒膜や光電子放出が起こり易いシリコン膜等が考えられる。電極用誘電体膜11の下面に機能性膜が形成される場合、機能性膜の表面が高電圧印加電極部1における電極用誘電体膜11側の露出面となる。同様に、放電場調整膜30の上面に機能性膜が形成される場合、機能性膜の表面が接地電位電極部2における放電場調整膜30側の露出面となる。 again. A functional film may be separately formed on the lower surface of the electrode dielectric film 11 and the upper surface of the discharge field adjusting film 30 by sputtering, thermal spraying, or the like. As the functional film, a photocatalyst film, a silicon film that easily emits photoelectrons, or the like can be considered. When a functional film is formed on the lower surface of the electrode dielectric film 11 , the surface of the functional film becomes the exposed surface of the electrode dielectric film 11 side in the high voltage applying electrode section 1 . Similarly, when a functional film is formed on the upper surface of the discharge field adjustment film 30 , the surface of the functional film becomes the exposed surface of the ground potential electrode portion 2 on the side of the discharge field adjustment film 30 .
 (効果)
 実施の形態1の活性ガス生成装置51において、放電場調整膜30はギャップ長が短くなる方向に突出した複数の凸部30tを有しているため、複数の凸部30tの上面と電極用誘電体膜11の下面との間に、ギャップ長が比較的短い短ギャップ長G2の部分放電空間42を特殊放電空間として設けることができる。
(effect)
In the active gas generator 51 of Embodiment 1, the discharge field adjustment film 30 has a plurality of projections 30t protruding in the direction in which the gap length is shortened. A partial discharge space 42 having a relatively short gap length G2 can be provided between the body film 11 and the lower surface of the body film 11 as a special discharge space.
 実施の形態1の活性ガス生成装置51は、放電空間4の一部に複数の部分放電空間42を設けることにより、ギャップ長が比較的長い長ギャップ長G1のみの部分放電空間42を有さない従来の放電空間に比べて、誘電体バリア放電が生じやすくなる。 The active gas generator 51 of Embodiment 1 does not have a partial discharge space 42 with only a relatively long long gap length G1 by providing a plurality of partial discharge spaces 42 in a part of the discharge space 4. Dielectric barrier discharge is more likely to occur than in the conventional discharge space.
 その結果、実施の形態1の活性ガス生成装置51は、従来と比較して低い印加電圧で誘電体バリア放電を発生させることができる低電圧放電発生機能を備えることができる。 As a result, the active gas generator 51 of Embodiment 1 can have a low-voltage discharge generation function capable of generating a dielectric barrier discharge with a lower applied voltage than in the conventional art.
 したがって、実施の形態1の活性ガス生成装置51は、上記低電圧放電発生機能を有する分、必要とする印加電圧を増加させることなく放電空間4の体積増加を図り、活性ガス6の生成濃度を向上させることができる。 Therefore, the active gas generator 51 of the first embodiment has the low-voltage discharge generating function, so that the volume of the discharge space 4 can be increased without increasing the required applied voltage, and the generated concentration of the active gas 6 can be increased. can be improved.
 以下、上述した低電圧放電発生機能について詳述する。放電空間4内においては、まず特殊放電空間である部分放電空間42において誘電体バリア放電が発生する。部分放電空間42における放電により、原料ガス5のイオンや電子等の荷電粒子が発生し、原料ガス5の流れとなるガス流通方向(+X方向)に沿って隣接する部分放電空間41へと流入する。 The low-voltage discharge generation function described above will be described in detail below. In the discharge space 4, dielectric barrier discharge is first generated in a partial discharge space 42, which is a special discharge space. Due to the discharge in the partial discharge space 42, charged particles such as ions and electrons of the source gas 5 are generated and flow into the adjacent partial discharge space 41 along the gas flow direction (+X direction) in which the source gas 5 flows. .
 また、部分放電空間42内の放電によって発生した紫外線等の光が、部分放電空間41に面する凹部領域30fの上面や電極用誘電体膜11の下面に照射されると、放電場調整膜30及び電極用誘電体膜11から光電子が放出され、部分放電空間41内に電子が供給される。部分放電空間41内にイオンや電子といった荷電粒子が供給されると、部分放電空間41の絶縁破壊閾値電圧が低下し、その結果、部分放電空間41内においても放電が生じる。これらの連鎖現象によって低電圧放電発生機能が発揮されることになる。 Further, when light such as ultraviolet rays generated by the discharge in the partial discharge space 42 irradiates the upper surface of the concave region 30f facing the partial discharge space 41 and the lower surface of the electrode dielectric film 11, the discharge field adjustment film 30 Photoelectrons are emitted from the electrode dielectric film 11 and supplied to the partial discharge space 41 . When charged particles such as ions and electrons are supplied into the partial discharge space 41 , the dielectric breakdown threshold voltage of the partial discharge space 41 is lowered and, as a result, discharge is also generated within the partial discharge space 41 . The low-voltage discharge generating function is exhibited by these chain phenomena.
 なお、電極用誘電体膜11の下面や放電場調整膜30の上面に光触媒膜等の機能性膜が形成されている場合は、部分放電空間42内の放電によって発生した光は機能性膜に照射され、機能性膜から光電子が放出されることになる。 If a functional film such as a photocatalyst film is formed on the lower surface of the electrode dielectric film 11 or the upper surface of the discharge field adjusting film 30, the light generated by the discharge in the partial discharge space 42 will not reach the functional film. When irradiated, photoelectrons are emitted from the functional film.
 このように、実施の形態1の活性ガス生成装置51は低電圧放電発生機能を発揮することができるため、比較的小さい印加電圧により、長ギャップ長G1を有する放電空間4内においても放電現象を発生させることができる。 As described above, the active gas generator 51 of Embodiment 1 can exhibit a low-voltage discharge generation function, so that a discharge phenomenon can be generated even in the discharge space 4 having the long gap length G1 with a relatively small applied voltage. can be generated.
 したがって、実施の形態1の活性ガス生成装置51は、長ギャップ長G1を長くして放電空間4の体積増加を図っても、上述した低電圧放電発生機能が働くため、必要とする印加電圧を低く抑えることができる。 Therefore, even if the discharge space 4 is increased in volume by increasing the long gap length G1, the active gas generating device 51 of the first embodiment operates the above-described low-voltage discharge generating function. can be kept low.
 さらに、実施の形態1の活性ガス生成装置51は、電極対向空間の第1の側面となる側面S1から原料ガス5を供給し、第2の側面となる側面S2から活性ガス6を噴出するという比較的簡単な構造で、活性ガス6の生成濃度の向上を図ることができる。 Furthermore, the active gas generator 51 of Embodiment 1 supplies the raw material gas 5 from the side surface S1, which is the first side surface of the electrode facing space, and ejects the active gas 6 from the side surface S2, which is the second side surface. It is possible to improve the generated concentration of the active gas 6 with a relatively simple structure.
 加えて、実施の形態1の活性ガス生成装置51において、複数の凸部30tはガス流通方向(+X方向)に沿って互いに離散して形成されるため、ガス流通方向に沿って各々が短ギャップ長の複数の部分放電空間42を設けることができる分、上記低電圧放電発生機能の向上を図ることができる。 In addition, in the active gas generator 51 of Embodiment 1, the plurality of protrusions 30t are formed separately along the gas flow direction (+X direction), so that each of the protrusions 30t has a short gap along the gas flow direction. Since a plurality of long partial discharge spaces 42 can be provided, the low voltage discharge generating function can be improved.
 (変形例)
 図7は本開示の実施の形態1の変形例である活性ガス生成装置51Xの基本断面構造を示す断面図である。図8は図7の着目領域R31の詳細断面構造を示す断面図である。図7及び図8それぞれにXYZ直交座標系を記している。
(Modification)
FIG. 7 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 51X that is a modification of Embodiment 1 of the present disclosure. FIG. 8 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R31 in FIG. An XYZ orthogonal coordinate system is shown in FIGS. 7 and 8, respectively.
 以下、図1~図6で示した実施の形態1の活性ガス生成装置51と同様な構成部には同一符号を付して説明を適宜省略し、変形例の活性ガス生成装置51Xの特徴部分を中心に説明する。 Hereinafter, the same components as those of the active gas generator 51 of Embodiment 1 shown in FIGS. will be mainly explained.
 図7及び図8に示すように、変形例の活性ガス生成装置51Xは、活性ガス生成装置51の接地電位電極部2を接地電位電極部2Xに置き換え、接地電位電極部2X内において放電場調整膜30を放電場調整膜30Xに置き換えたことを特徴としている。 As shown in FIGS. 7 and 8, the active gas generator 51X of the modification replaces the ground potential electrode section 2 of the active gas generator 51 with the ground potential electrode section 2X, and discharge field adjustment is performed in the ground potential electrode section 2X. It is characterized in that the film 30 is replaced with a discharge field adjusting film 30X.
 第2の電極構成部である接地電位電極部2Xは、放電場調整膜30X及び金属電極20の積層構造を呈しており、放電場調整膜32の下面上に金属電極20が設けられる。 The ground potential electrode section 2X, which is the second electrode configuration section, has a laminated structure of the discharge field adjustment film 30X and the metal electrode 20, and the metal electrode 20 is provided on the lower surface of the discharge field adjustment film 32.
 放電場調整膜30Xは放電場調整用絶縁膜31と放電場調整用導電膜34との積層構造を含んでいる。放電場調整用絶縁膜31の構成材料は絶縁性を有する第1の構成材料であり、放電場調整用導電膜34の構成材料は導電性を有する第2の構成材料である。 The discharge field adjustment film 30X includes a layered structure of the discharge field adjustment insulating film 31 and the discharge field adjustment conductive film 34 . The constituent material of the discharge field adjusting insulating film 31 is a first constituent material having insulating properties, and the constituent material of the discharge field adjusting conductive film 34 is a second constituent material having conductivity.
 図7に示すように、接地電位電極部2Xにおいて、金属電極20上に放電場調整用導電膜34が設けられ、放電場調整用導電膜34上に放電場調整用絶縁膜31が設けられる。したがって、放電場調整用導電膜34が金属電極20と接触関係を有している。 As shown in FIG. 7, in the ground potential electrode portion 2X, the discharge field adjusting conductive film 34 is provided on the metal electrode 20, and the discharge field adjusting insulating film 31 is provided on the discharge field adjusting conductive film 34. Therefore, the discharge field adjusting conductive film 34 is in contact with the metal electrode 20 .
 図7に示すように、放電場調整膜30Xは、放電空間4内においてギャップ長が短くなるように、上方(+Z方向)に突出した複数の凸部31t(突出部)を有することを特徴としている。このように、放電場調整膜30Xは、少なくとも一つの突出部として複数の凸部31tを有している。 As shown in FIG. 7, the discharge field adjustment film 30X is characterized by having a plurality of protrusions 31t (protrusions) that protrude upward (in the +Z direction) so as to shorten the gap length in the discharge space 4. there is Thus, the discharge field adjustment film 30X has a plurality of protrusions 31t as at least one protrusion.
 さらに、放電場調整膜30Xにおける複数の凸部31tはそれぞれ金属電極20側に空洞領域36を有している。 Furthermore, each of the plurality of projections 31t in the discharge field adjustment film 30X has a hollow region 36 on the metal electrode 20 side.
 図8に示すように、放電空間4は部分放電空間43及び44を含んでいる。部分放電空間43は放電場調整膜30Xの凹部領域31fの表面と電極用誘電体膜11の下面との間の空間となり、部分放電空間44は放電場調整膜30Xの凸部31tの上面と電極用誘電体膜11の下面との間の空間となる。 As shown in FIG. 8, the discharge space 4 includes partial discharge spaces 43 and 44. The partial discharge space 43 is the space between the surface of the recessed region 31f of the discharge field adjustment film 30X and the lower surface of the electrode dielectric film 11, and the partial discharge space 44 is the space between the upper surface of the protrusion 31t of the discharge field adjustment film 30X and the electrode. It becomes a space between the lower surface of the dielectric film 11 for the device.
 すなわち、部分放電空間43は複数の凸部31tが形成されない場合の通常放電空間と同じ比較的長い長ギャップ長G3を有している。一方、部分放電空間44は長ギャップ長G3に比べ短い短ギャップ長G4を有する特殊放電空間となる。例えば、長ギャップ長G3として2mm程度の長さが考えられ、短ギャップ長G4として0.5mm程度の長さが考えられる。長ギャップ長G3及び短ギャップ長G4は0.1mm~1cmの範囲で適宜設定される。 That is, the partial discharge space 43 has a relatively long long gap length G3, which is the same as the normal discharge space when the plurality of projections 31t are not formed. On the other hand, the partial discharge space 44 becomes a special discharge space having a short gap length G4 that is shorter than the long gap length G3. For example, the long gap length G3 may be about 2 mm, and the short gap length G4 may be about 0.5 mm. The long gap length G3 and the short gap length G4 are appropriately set within the range of 0.1 mm to 1 cm.
 実施の形態1の変形例である活性ガス生成装置51Xは、活性ガス生成装置51と同様、放電場調整膜32Xはギャップ長が短くなる方向に突出した複数の凸部32tを有している。 In the active gas generator 51X, which is a modification of the first embodiment, the discharge field adjustment film 32X has a plurality of projections 32t projecting in the direction of shortening the gap length, like the active gas generator 51.
 このため、変形例の活性ガス生成装置51Xは、活性ガス生成装置51と同様、必要とする印加電圧を増加させることなく放電空間4の体積増加を図り、活性ガス6の生成濃度を向上させることができる。 For this reason, the active gas generator 51X of the modified example can increase the volume of the discharge space 4 without increasing the required applied voltage and improve the generated concentration of the active gas 6, similarly to the active gas generator 51. can be done.
 さらに、変形例の活性ガス生成装置51Xは、放電場調整膜30Xの複数の凸部31tそれぞれが第2の金属電極となる金属電極20側に空洞領域36有する分、同一の印加電圧の印加時における特殊放電空間にかかる特殊放電電圧を高めることができる。 Furthermore, in the active gas generator 51X of the modified example, each of the plurality of projections 31t of the discharge field adjustment film 30X has the hollow region 36 on the side of the metal electrode 20 serving as the second metal electrode. The special discharge voltage applied to the special discharge space in can be increased.
 以下、上記効果について説明する。活性ガス生成装置51の放電場調整膜30の構成材料が絶縁性を有する第1の構成材料である場合、凸部30tの膜厚は比較的厚くなる。凸部30tの膜厚増加に伴い部分放電空間42にかかる特殊放電電圧は低下する。 The above effects will be explained below. When the constituent material of the discharge field adjustment film 30 of the active gas generator 51 is the first constituent material having insulating properties, the film thickness of the convex portion 30t is relatively thick. The special discharge voltage applied to the partial discharge space 42 decreases as the film thickness of the projection 30t increases.
 一方、変形例の活性ガス生成装置51Xでは、放電場調整用絶縁膜31の凸部31tの膜厚を空洞領域36の形成分、薄くすることができる。凸部31tの膜厚の薄膜化に伴い部分放電空間44にかかる特殊放電電圧を上昇させることができる。 On the other hand, in the modified active gas generator 51X, the film thickness of the projections 31t of the discharge field adjusting insulating film 31 can be reduced by the amount of the formation of the cavity region 36. The special discharge voltage applied to the partial discharge space 44 can be increased as the film thickness of the convex portion 31t is reduced.
 したがって、交流電源100から同一の印加電圧が付与される際、変形例の部分放電空間44にかかる特殊放電電圧を、活性ガス生成装置51の部分放電空間42にかかる特殊放電電圧より高くすることができる。 Therefore, when the same applied voltage is applied from the AC power supply 100, the special discharge voltage applied to the partial discharge space 44 of the modified example can be made higher than the special discharge voltage applied to the partial discharge space 42 of the active gas generator 51. can.
 その結果、変形例の活性ガス生成装置51Xは、上述した低電圧放電発生機能をより一層高めることができる。 As a result, the modified active gas generator 51X can further enhance the low-voltage discharge generating function described above.
 変形例の活性ガス生成装置51Xは、放電場調整用絶縁膜31と放電場調整用導電膜34との積層構造を有する放電場調整膜30Xを用いることにより、凸部31tの膜厚の薄膜化することができ、上述した低電圧放電発生機能をより一層高めることができる。 The modified active gas generator 51X uses the discharge field adjustment film 30X having a laminated structure of the discharge field adjustment insulating film 31 and the discharge field adjustment conductive film 34, thereby reducing the film thickness of the convex portion 31t. It is possible to further enhance the low-voltage discharge generating function described above.
 (拡張構成)
 図1~図8で示した実施の形態1(変形例を含む)では、高電圧印加電極部1が電極用誘電体膜11を有し、接地電位電極部2が放電場調整膜30(30X)を有する構造を示した。
(extended configuration)
In Embodiment 1 (including modifications) shown in FIGS. 1 to 8, the high voltage applying electrode section 1 has the electrode dielectric film 11, and the ground potential electrode section 2 has the discharge field adjustment film 30 (30× ) are shown.
 すなわち、電極用誘電体膜11を有する第1の電極構成部を上方電極構成部である高電圧印加電極部1に限定し、放電場調整膜30を有する第2の電極構成部を下方電極構成部である接地電位電極部2に限定していた。 That is, the first electrode configuration portion having the electrode dielectric film 11 is limited to the high voltage application electrode portion 1 which is the upper electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 30 is the lower electrode configuration. It is limited to the ground potential electrode portion 2 which is the portion.
 実施の形態1の上述した限定以外に電極用誘電体膜11と放電場調整膜30との上下関係を逆にした拡張構成が考えられる。すなわち、電極用誘電体膜11を有する第1の電極構成部を下方電極構成部である接地電位電極部2とし、放電場調整膜30を有する第2の電極構成部を上方電極構成部である高電圧印加電極部1とした拡張構成が考えられる。 In addition to the above-described limitation of the first embodiment, an extended configuration in which the electrode dielectric film 11 and the discharge field adjustment film 30 are reversed in vertical relation is conceivable. That is, the first electrode configuration portion having the electrode dielectric film 11 is the ground potential electrode portion 2, which is the lower electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 30 is the upper electrode configuration portion. An extended configuration using the high voltage applying electrode section 1 is conceivable.
 この拡張構成では、放電場調整膜30は、放電空間4内においてギャップ長が短くなるように、下方(-Z方向)に突出した複数の突出部を有することが特徴となる。このように、拡張構成では、少なくとも一つの突出部として下方に突出する複数の突出部を有している。 In this extended configuration, the discharge field adjustment film 30 is characterized by having a plurality of protrusions that protrude downward (-Z direction) so that the gap length in the discharge space 4 is shortened. Thus, in the expanded configuration, the at least one protrusion has a plurality of downwardly projecting protrusions.
 上述した実施の形態1の拡散構成においても、活性ガス生成装置51及び活性ガス生成装置51Xと同様な効果を奏する。 The diffusion structure of Embodiment 1 described above also has the same effects as those of the active gas generator 51 and the active gas generator 51X.
 <実施の形態2>
 図9は本開示の実施の形態2である活性ガス生成装置52の基本断面構造を示す断面図である。図10は図9の着目領域R32の詳細断面構造を示す断面図である。図9及び図10それぞれにXYZ直交座標系を記している。
<Embodiment 2>
FIG. 9 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 52 according to Embodiment 2 of the present disclosure. FIG. 10 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R32 in FIG. An XYZ orthogonal coordinate system is shown in FIGS. 9 and 10, respectively.
 以下、実施の形態1の活性ガス生成装置51と同様な構成部は同一符号を付して説明を適宜省略し、実施の形態2の特徴箇所を中心に説明する。 In the following, the same components as those of the active gas generator 51 of Embodiment 1 are assigned the same reference numerals, and the description thereof is omitted as appropriate, and the description will focus on the features of Embodiment 2.
 図9及び図10に示すように、実施の形態2の活性ガス生成装置52の基本構造は、放電空間4の外周面から供給された原料ガス5を活性化して得られる活性ガス6を生成している。 As shown in FIGS. 9 and 10, the basic structure of the active gas generator 52 of the second embodiment generates the active gas 6 obtained by activating the raw material gas 5 supplied from the outer peripheral surface of the discharge space 4. ing.
 活性ガス生成装置52は高電圧印加電極部1B、接地電位電極部2B、及び交流電源100を主要構成要素として含んでいる。図9及び図10に示すように、下方電極構成部である接地電位電極部2Bの上方に上方電極構成部である高電圧印加電極部1Bが配置されている。 The active gas generator 52 includes a high voltage applying electrode section 1B, a ground potential electrode section 2B, and an AC power supply 100 as main components. As shown in FIGS. 9 and 10, a high-voltage applying electrode portion 1B, which is an upper electrode forming portion, is arranged above a ground potential electrode portion 2B, which is a lower electrode forming portion.
 第1の電極構成部である高電圧印加電極部1Bは、電極用誘電体膜13及び金属電極12の積層構造を呈しており、電極用誘電体膜13の上面上に金属電極12が設けられる。金属電極12の構成材料は金属であり、電極用誘電体膜13の構成材料は絶縁性を有する誘電体である。 The high-voltage applying electrode portion 1B, which is the first electrode-forming portion, has a laminated structure of the electrode dielectric film 13 and the metal electrode 12, and the metal electrode 12 is provided on the upper surface of the electrode dielectric film 13. . The constituent material of the metal electrode 12 is a metal, and the constituent material of the electrode dielectric film 13 is a dielectric having insulating properties.
 金属電極12が第1の金属電極、かつ、上方金属電極となり、電極用誘電体膜13が上方形成膜となる。高電圧印加電極部1Bにおいて、電極用誘電体膜13の下面は電極用誘電体膜13側の露出面となる。電極用誘電体膜13下面が第1の放電場形成面となる。金属電極12は中央部に開口部18を有している。 The metal electrode 12 becomes the first metal electrode and the upper metal electrode, and the electrode dielectric film 13 becomes the upper forming film. In the high voltage applying electrode section 1B, the lower surface of the electrode dielectric film 13 is the exposed surface on the electrode dielectric film 13 side. The lower surface of the electrode dielectric film 13 becomes the first discharge field forming surface. The metal electrode 12 has an opening 18 in its center.
 第2の電極構成部であり、かつ、下方電極構成部である接地電位電極部2Bは、放電場調整膜32及び金属電極22の積層構造を呈している。下方形成膜となる放電場調整膜32の下面上に金属電極22が設けられる。金属電極22の構成材料は金属であり、放電場調整膜32の構成材料として、絶縁性を有する第1の構成材料あるいは導電性を有する第2の構成材料が考えられる。 The ground potential electrode section 2B, which is the second electrode configuration section and the lower electrode configuration section, has a laminated structure of the discharge field adjustment film 32 and the metal electrode 22. A metal electrode 22 is provided on the lower surface of the discharge field adjusting film 32 that serves as the lower forming film. The constituent material of the metal electrode 22 is metal, and the constituent material of the discharge field adjustment film 32 may be a first constituent material having insulating properties or a second constituent material having conductivity.
 金属電極22が第2の金属電極となり、かつ、下方金属電極となる。放電場調整膜320は下方形成膜となり、接地電位電極部2Bにおいて、放電場調整膜32の上面が放電場調整膜32側の露出面となる。放電場調整膜32の下面が第2の放電場形成面となる。 The metal electrode 22 becomes the second metal electrode and the lower metal electrode. The discharge field adjustment film 320 becomes a lower formation film, and the upper surface of the discharge field adjustment film 32 becomes an exposed surface on the discharge field adjustment film 32 side in the ground potential electrode portion 2B. The lower surface of the discharge field adjustment film 32 becomes the second discharge field forming surface.
 したがって、高電圧印加電極部1B及び接地電位電極部2Bは第1及び第2の放電場形成面が対向するように配置される。 Therefore, the high voltage applying electrode portion 1B and the ground potential electrode portion 2B are arranged so that the first and second discharge field forming surfaces face each other.
 第1及び第2の金属電極のうち一方の金属電極となる金属電極12に交流電源100から印加電圧として交流電圧が印加され、他方の金属電極となる金属電極22が基準電位となる接地電位に設定される。 An AC voltage is applied as an applied voltage from an AC power source 100 to the metal electrode 12, which is one of the first and second metal electrodes, and the metal electrode 22, which is the other metal electrode, is at a ground potential, which is a reference potential. set.
 高電圧印加電極部1Bの電極用誘電体膜13と接地電位電極部2Bの放電場調整膜32との間の空間が電極対向空間として規定される。この電極対向空間内において、金属電極12と金属電極22とが平面視して重複する領域が放電空間4となり、放電空間4における電極用誘電体膜13の下面(第1の放電場形成面)と放電場調整膜32の上面(第2の放電場形成面)との間の距離がギャップ長として規定される。なお、放電空間4内の圧力は1kPa~大気圧程度の圧力に設定される。 The space between the electrode dielectric film 13 of the high voltage applying electrode portion 1B and the discharge field adjusting film 32 of the ground potential electrode portion 2B is defined as the electrode facing space. In this electrode facing space, a region where the metal electrode 12 and the metal electrode 22 overlap in plan view becomes the discharge space 4, and the lower surface of the electrode dielectric film 13 in the discharge space 4 (first discharge field forming surface). and the upper surface (second discharge field forming surface) of the discharge field adjustment film 32 is defined as the gap length. Incidentally, the pressure in the discharge space 4 is set to about 1 kPa to atmospheric pressure.
 図9に示すように、放電場調整膜32は、放電空間4内においてギャップ長が短くなるように、上方(+Z方向)に突出した複数の凸部32t(突出部)を有することを特徴としている。このように、放電場調整膜32は、少なくとも一つの突出部として複数の凸部32tを有している。 As shown in FIG. 9, the discharge field adjustment film 32 is characterized by having a plurality of protrusions 32t (protrusions) that protrude upward (in the +Z direction) so as to shorten the gap length in the discharge space 4. there is Thus, the discharge field adjustment film 32 has a plurality of protrusions 32t as at least one protrusion.
 一方、凹部領域32fはY方向に延びて設けられる。同様に複数の凸部32tもそれぞれY方向に延びて設けられる。 On the other hand, the concave region 32f is provided extending in the Y direction. Similarly, a plurality of protrusions 32t are also provided extending in the Y direction.
 さらに、放電場調整膜32は中央部にガス噴出孔38を有しており、金属電極22は中央に開口領域28を有している。少なくとも一つのガス噴出孔となるガス噴出孔38は、放電場調整膜32を貫通して設けられる。 Furthermore, the discharge field adjustment film 32 has a gas ejection hole 38 in the center, and the metal electrode 22 has an opening area 28 in the center. A gas ejection hole 38 serving as at least one gas ejection hole is provided through the discharge field adjustment film 32 .
 開口領域28は平面視してガス噴出孔38を含み、ガス噴出孔38より広い平面形状を有している。また、金属電極12の開口部18は平面視してガス噴出孔38及び開口領域28を含み、ガス噴出孔38より広い平面形状を有している。したがって、金属電極14はガス噴出孔38及び開口領域28と平面視して重複することはない。 The opening region 28 includes the gas ejection holes 38 in plan view, and has a planar shape wider than the gas ejection holes 38 . Further, the opening 18 of the metal electrode 12 includes the gas ejection hole 38 and the opening region 28 in plan view, and has a planar shape wider than the gas ejection hole 38 . Therefore, the metal electrode 14 does not overlap with the gas ejection holes 38 and the opening regions 28 in plan view.
 図10に示すように、放電空間4は部分放電空間41及び42を含んでいる。部分放電空間41は放電場調整膜32の凹部領域32fの表面と電極用誘電体膜13の下面との間の空間となり、部分放電空間42は放電場調整膜32の凸部32tの上面と電極用誘電体膜13の下面との間の空間となる。 As shown in FIG. 10, the discharge space 4 includes partial discharge spaces 41 and 42 . The partial discharge space 41 is a space between the surface of the recessed region 32f of the discharge field adjustment film 32 and the lower surface of the electrode dielectric film 13, and the partial discharge space 42 is formed between the upper surface of the projection 32t of the discharge field adjustment film 32 and the electrode. It becomes a space between the lower surface of the dielectric film 13 for the substrate.
 すなわち、部分放電空間41は複数の凸部32tが形成されない場合の通常放電空間と同じ比較的長い長ギャップ長G1を有している。一方、部分放電空間42は長ギャップ長G1に比べ短い短ギャップ長G2を有する特殊放電空間となる。 That is, the partial discharge space 41 has the same relatively long long gap length G1 as the normal discharge space when the plurality of projections 32t are not formed. On the other hand, the partial discharge space 42 is a special discharge space having a short gap length G2 that is shorter than the long gap length G1.
 なお、放電場調整膜32が導電性を有する第2の構成材料のみで形成される場合、金属電極22と一体化して形成しても良い。 In addition, when the discharge field adjustment film 32 is formed only of the second constituent material having conductivity, it may be formed integrally with the metal electrode 22 .
 また、電極用誘電体膜13の下面及び放電場調整膜32の上面に機能性膜をスパッタや溶射等により別途成膜してもよい。電極用誘電体膜13の下面に機能性膜が形成される場合、機能性膜の表面が高電圧印加電極部1Bにおける電極用誘電体膜13側の露出面となる。同様に、放電場調整膜32の上面に機能性膜が形成される場合、機能性膜の表面が接地電位電極部2Bにおける放電場調整膜32側の露出面となる。 Further, a functional film may be separately formed on the lower surface of the electrode dielectric film 13 and the upper surface of the discharge field adjusting film 32 by sputtering, thermal spraying, or the like. When the functional film is formed on the lower surface of the electrode dielectric film 13, the surface of the functional film becomes the exposed surface on the electrode dielectric film 13 side of the high voltage applying electrode section 1B. Similarly, when a functional film is formed on the upper surface of the discharge field adjustment film 32, the surface of the functional film becomes the exposed surface on the discharge field adjustment film 32 side of the ground potential electrode portion 2B.
 図9及び図10で示す基本構造において、原料ガス5は電極対向空間の外周面から供給され、放電空間4を通過することにより活性化され活性ガス6となる。活性ガス6はガス噴出孔38及び開口領域28を介して接地電位電極部2Bにおける金属電極22の下方に噴出される。  In the basic structure shown in FIGS. 9 and 10, the source gas 5 is supplied from the outer peripheral surface of the electrode facing space and is activated by passing through the discharge space 4 to become the active gas 6. The active gas 6 is jetted below the metal electrode 22 in the ground potential electrode portion 2B through the gas jetting holes 38 and the opening regions 28 .
 活性ガス生成装置52において、電極対向空間の外周面からガス噴出孔38に向かう方向がガス流通方向として規定される。複数の凸部32tはガス流通方向に沿って互いに離散して形成される。 In the active gas generator 52, the direction from the outer peripheral surface of the electrode facing space toward the gas ejection holes 38 is defined as the gas flow direction. The plurality of protrusions 32t are formed separately from each other along the direction of gas flow.
 (第1の態様)
 高電圧印加電極部1Bとして高電圧印加電極部1B1を採用し、接地電位電極部2Bとして接地電位電極部2B1を採用したのが、実施の形態2の第1の態様である。
(First aspect)
A first aspect of the second embodiment employs a high voltage applying electrode portion 1B1 as the high voltage applying electrode portion 1B and a ground potential electrode portion 2B1 as the ground potential electrode portion 2B.
 図11は第1の態様の高電圧印加電極部1B1を上方(+Z方向)から視た平面構造を示す平面図である。図12は第1の態様の接地電位電極部2B1を上方から視た平面構造を示す平面図である。図11及び図12それぞれにXYZ直交座標系を記している。 FIG. 11 is a plan view showing the planar structure of the high-voltage applying electrode section 1B1 of the first mode as viewed from above (+Z direction). FIG. 12 is a plan view showing the planar structure of the ground potential electrode portion 2B1 of the first mode as viewed from above. An XYZ orthogonal coordinate system is shown in each of FIGS. 11 and 12 .
 以下、図9~図12を参照して、実施の形態2の活性ガス生成装置52の第1の態様の電極構造を説明する。なお、図11及び図12それぞれのC-C断面が図9で示す基本構造の断面構造となる。 The electrode structure of the first aspect of the active gas generator 52 of Embodiment 2 will be described below with reference to FIGS. 9 to 12. FIG. 11 and 12 is the cross-sectional structure of the basic structure shown in FIG.
 図11に示すように、高電圧印加電極部1B1は、金属電極12として金属電極121を用い、電極用誘電体膜13として電極用誘電体膜131を用いている。そして、金属電極121は開口部18として開口部181を有している。 As shown in FIG. 11, the high-voltage applying electrode section 1B1 uses a metal electrode 121 as the metal electrode 12 and uses an electrode dielectric film 131 as the electrode dielectric film 13 . The metal electrode 121 has an opening 181 as the opening 18 .
 金属電極121及び電極用誘電体膜131はそれぞれ平面視して円状を呈している。電極用誘電体膜131は平面視して金属電極121の全てを含み、金属電極121より広い平面形状を有している。図11に示すように、金属電極121は中心部に円状の開口部181を有している。 The metal electrode 121 and the electrode dielectric film 131 each have a circular shape in plan view. The electrode dielectric film 131 includes the entire metal electrode 121 in plan view and has a planar shape wider than the metal electrode 121 . As shown in FIG. 11, the metal electrode 121 has a circular opening 181 in its center.
 図12に示すように、接地電位電極部2B1は、金属電極22として金属電極221を用い、放電場調整膜32として放電場調整膜321を用いている。そして、金属電極221は開口領域28として開口領域281を有しており、放電場調整膜321はガス噴出孔38としてガス噴出孔381を有している。 As shown in FIG. 12, the ground potential electrode portion 2B1 uses a metal electrode 221 as the metal electrode 22 and a discharge field adjustment film 321 as the discharge field adjustment film 32. The metal electrode 221 has an opening area 281 as the opening area 28 , and the discharge field adjustment film 321 has a gas ejection hole 381 as the gas ejection hole 38 .
 金属電極221及び放電場調整膜321はそれぞれ平面視して円状を呈している。放電場調整膜321は平面視して金属電極221の全てを含み、金属電極221より広い平面形状を有している。 The metal electrode 221 and the discharge field adjustment film 321 each have a circular shape in plan view. The discharge field adjustment film 321 includes the entire metal electrode 221 in plan view and has a planar shape wider than the metal electrode 221 .
 高電圧印加電極部1B1の電極用誘電体膜131と接地電位電極部2B1の放電場調整膜321とは平面視して同一サイズの円状を呈しており、平面視して電極用誘電体膜131と放電場調整膜321とが合致するように配置される。 The electrode dielectric film 131 of the high voltage applying electrode portion 1B1 and the discharge field adjustment film 321 of the ground potential electrode portion 2B1 have circular shapes of the same size in plan view, and the electrode dielectric film in plan view. 131 and the discharge field adjustment film 321 are arranged so as to coincide with each other.
 上述したように、電極用誘電体膜131及び放電場調整膜321は平面視して円状を呈しているため、電極対向空間は平面視して円状となる。 As described above, since the electrode dielectric film 131 and the discharge field adjusting film 321 are circular in plan view, the electrode facing space is circular in plan view.
 図12に示すように、平面視して円状の放電場調整膜321は中心位置にガス噴出孔381(中央ガス噴出孔)を有しており、金属電極221は中央に開口領域281を有している。開口領域281は平面視してガス噴出孔381を含み、ガス噴出孔381より広い形状を有している。 As shown in FIG. 12, the discharge field adjustment film 321, which is circular in plan view, has a gas ejection hole 381 (central gas ejection hole) at its center, and the metal electrode 221 has an opening region 281 at its center. are doing. The opening region 281 includes the gas ejection holes 381 in plan view and has a shape wider than the gas ejection holes 381 .
 また、図11で示した開口部181は平面視して開口領域281及びガス噴出孔381を含み、開口領域281及びガス噴出孔381より広い形状を有している。したがって、金属電極121は平面視して開口領域281及びガス噴出孔381と重複することはない。 In addition, the opening 181 shown in FIG. 11 includes the opening area 281 and the gas ejection holes 381 in plan view, and has a shape wider than the opening area 281 and the gas ejection holes 381 . Therefore, the metal electrode 121 does not overlap the opening area 281 and the gas ejection holes 381 in plan view.
 電極対向空間は側面に円周状の外周面を有している。したがって、第1の態様では円周状の外周面内に放電空間4が設けられることになる。 The electrode facing space has a circular outer peripheral surface on the side surface. Therefore, in the first mode, the discharge space 4 is provided within the circular outer peripheral surface.
 このような構成の実施の形態2の活性ガス生成装置52の第1の態様において、金属電極121に交流電源100から高電圧な印加電圧となる交流電圧を印加することにより、放電空間4内で誘電体バリア放電を発生させることができる。 In the first aspect of the active gas generator 52 of Embodiment 2 having such a configuration, by applying an AC voltage, which is a high voltage, from the AC power supply 100 to the metal electrode 121, in the discharge space 4, A dielectric barrier discharge can be generated.
 原料ガス5は電極対向空間の外周面全体から供給され、放電空間4を通過することにより活性化され活性ガス6となる。活性ガス6はガス噴出孔381及び開口領域281を介して接地電位電極部2B1における金属電極221の下方に噴出される。活性ガス生成装置52の第1の態様において、電極対向空間の外周面全体からガス噴出孔381に向かう方向がガス流通方向として規定される。すなわち、ガス流通方向は、円状の電極対向空間においてガス噴出孔381に向かう半径方向となる。 The raw material gas 5 is supplied from the entire outer peripheral surface of the electrode-facing space and is activated by passing through the discharge space 4 to become the active gas 6 . The active gas 6 is ejected below the metal electrode 221 in the ground potential electrode portion 2B1 through the gas ejection hole 381 and the opening region 281. As shown in FIG. In the first aspect of the active gas generator 52, the gas flow direction is defined as the direction from the entire outer peripheral surface of the electrode facing space toward the gas ejection holes 381. As shown in FIG. That is, the direction of gas flow is the radial direction toward the gas ejection holes 381 in the circular electrode facing space.
 図12に示すように、複数の凸部32tはそれぞれ円環状に設けられ、ガス流通方向に沿って互いに離散して設けられる。したがって、複数の凸部32tの円環の大きさ(径)はガス噴出孔381に近づくに従い小さくなる。 As shown in FIG. 12, the plurality of convex portions 32t are each provided in an annular shape and are provided separately from each other along the direction of gas flow. Therefore, the ring size (diameter) of the plurality of protrusions 32t becomes smaller as the gas ejection hole 381 is approached.
 したがって、放電場調整膜321において、複数の凸部32tと複数の凹部領域32fとがガス流通方向に沿って交互に設けられることにより、複数の部分放電空間42がガス流通方向に沿って互いに離散して設けられることになる。複数の凸部32tと複数の凹部領域32fとの面積比は例えば1:1程度に設定される。 Therefore, in the discharge field adjustment film 321, the plurality of convex portions 32t and the plurality of concave regions 32f are alternately provided along the gas flow direction, thereby forming the plurality of partial discharge spaces 42 discretely along the gas flow direction. and will be provided. The area ratio between the plurality of protrusions 32t and the plurality of recessed regions 32f is set to approximately 1:1, for example.
 (第2の態様)
 高電圧印加電極部1Bとして高電圧印加電極部1B2を採用し、接地電位電極部2Bとして接地電位電極部2B2を採用したのが、実施の形態2の第2の態様である。
(Second aspect)
A second aspect of the second embodiment employs a high voltage applying electrode portion 1B2 as the high voltage applying electrode portion 1B and a ground potential electrode portion 2B2 as the ground potential electrode portion 2B.
 図13は第2の態様の高電圧印加電極部1B2を上方(+Z方向)から視た平面構造を示す平面図である。図14は第2の態様の接地電位電極部2B2を上方から視た平面構造を示す平面図である。図13及び図14それぞれにXYZ直交座標系を記している。 FIG. 13 is a plan view showing the planar structure of the high-voltage applying electrode section 1B2 of the second mode as viewed from above (+Z direction). FIG. 14 is a plan view showing a planar structure of the ground potential electrode portion 2B2 of the second embodiment as viewed from above. An XYZ orthogonal coordinate system is shown in each of FIGS. 13 and 14 .
 以下、図9、図10、図13及び図14を参照して、実施の形態2の活性ガス生成装置52の第2の態様の電極構造を説明する。なお、図13及び図14それぞれのD-D断面が図9で示す断面構造となる。 The electrode structure of the second aspect of the active gas generator 52 of Embodiment 2 will be described below with reference to FIGS. 9, 10, 13 and 14. FIG. 13 and 14 has a cross-sectional structure shown in FIG.
 図13に示すように、高電圧印加電極部1B2は、金属電極12として一対の金属電極122を用い、電極用誘電体膜13として電極用誘電体膜132を用いている。そして、一対の金属電極122は開口部18として開口部182を有している。 As shown in FIG. 13, the high voltage applying electrode section 1B2 uses a pair of metal electrodes 122 as the metal electrodes 12 and uses an electrode dielectric film 132 as the electrode dielectric film 13 . The pair of metal electrodes 122 has an opening 182 as the opening 18 .
 一対の金属電極122は互いに離散して設けられており、一対の金属電極122,122間の金属電極122上の領域が開口部182となる。開口部182はY方向に延びて設けられる。 The pair of metal electrodes 122 are provided separately from each other, and the area on the metal electrode 122 between the pair of metal electrodes 122 and 122 becomes the opening 182 . The opening 182 is provided extending in the Y direction.
 一対の金属電極122はそれぞれ平面視して矩形状を呈している。電極用誘電体膜132は平面視して矩形状(略正方形状)を呈している。電極用誘電体膜132は平面視して一対の金属電極122の全てを含み、一対の金属電極122より広い平面形状を有している。 Each of the pair of metal electrodes 122 has a rectangular shape in plan view. The electrode dielectric film 132 has a rectangular shape (substantially square shape) in plan view. The electrode dielectric film 132 includes all of the pair of metal electrodes 122 in plan view and has a planar shape wider than the pair of metal electrodes 122 .
 図14に示すように、接地電位電極部2B2は、金属電極22として一対の金属電極222を用い、放電場調整膜32として放電場調整膜322を用いている。 As shown in FIG. 14, the ground potential electrode portion 2B2 uses a pair of metal electrodes 222 as the metal electrodes 22, and uses a discharge field adjustment film 322 as the discharge field adjustment film 32.
 そして、金属電極222は開口領域28として開口領域282を有しており、一対の金属電極222,222間に開口領域282は設けられる。開口領域282はY方向に延びて形成される。 The metal electrode 222 has an opening region 282 as the opening region 28, and the opening region 282 is provided between the pair of metal electrodes 222,222. The opening region 282 is formed extending in the Y direction.
 放電場調整膜322はガス噴出孔38として複数のガス噴出孔381を有している。複数のガス噴出孔382はY方向に沿って互いに離散して設けられる。Y方向が噴出孔形成方向となる。 The discharge field adjusting film 322 has a plurality of gas ejection holes 381 as the gas ejection holes 38 . A plurality of gas ejection holes 382 are provided separately from each other along the Y direction. The Y direction is the ejection hole forming direction.
 一対の金属電極222はそれぞれ平面視して矩形状を呈している。放電場調整膜322は平面視して矩形状(正方形状)を呈している。放電場調整膜322は平面視して一対の金属電極222の全てを含み、一対の金属電極222より広い平面形状を有している。 Each of the pair of metal electrodes 222 has a rectangular shape in plan view. The discharge field adjustment film 322 has a rectangular shape (square shape) in plan view. The discharge field adjustment film 322 includes all of the pair of metal electrodes 222 in plan view and has a planar shape wider than the pair of metal electrodes 222 .
 高電圧印加電極部1B2の電極用誘電体膜132と接地電位電極部2B2の放電場調整膜322とは平面視して同一サイズの矩形状を呈しており、平面視して電極用誘電体膜132と放電場調整膜322とが合致するように配置される。 The electrode dielectric film 132 of the high voltage applying electrode portion 1B2 and the discharge field adjustment film 322 of the ground potential electrode portion 2B2 have rectangular shapes of the same size in plan view, and the electrode dielectric film in plan view. 132 and the discharge field adjustment film 322 are arranged to coincide with each other.
 上述したように、電極用誘電体膜132及び放電場調整膜322は平面視して矩形状を呈しているため、電極対向空間は平面視して矩形状となる。 As described above, since the electrode dielectric film 132 and the discharge field adjusting film 322 have a rectangular shape in plan view, the electrode facing space has a rectangular shape in plan view.
 図14に示すように、放電場調整膜322は中央に複数のガス噴出孔381を有しており、金属電極222は中央に開口領域282を有している。開口領域282は平面視して複数のガス噴出孔381の全てを含み、複数のガス噴出孔381より広い形状を有している。 As shown in FIG. 14, the discharge field adjustment film 322 has a plurality of gas ejection holes 381 in the center, and the metal electrode 222 has an opening area 282 in the center. The opening region 282 includes all of the plurality of gas ejection holes 381 in plan view and has a shape wider than the plurality of gas ejection holes 381 .
 また、図13で示した開口部182は平面視して開口領域282及び複数のガス噴出孔381を含み、開口領域282及び複数のガス噴出孔381より広い形状を有している。したがって、一対の金属電極122が開口領域282及び複数のガス噴出孔381と平面視して重複することはない。 In addition, the opening 182 shown in FIG. 13 includes an opening region 282 and a plurality of gas ejection holes 381 in plan view, and has a shape wider than the opening region 282 and the plurality of gas ejection holes 381 . Therefore, the pair of metal electrodes 122 do not overlap the opening region 282 and the plurality of gas ejection holes 381 in plan view.
 電極対向空間は、外周面の一部として互いに対向する側面S1及びS2を有している。第1の側面となる側面S1は-X方向側にある側面であり、第2の側面となる側面S2は+方向側にある側面となる。したがって、側面S1及びS2間に放電空間4が設けられることになる。 The electrode facing space has side faces S1 and S2 facing each other as part of the outer peripheral face. The side surface S1, which is the first side surface, is the side surface on the -X direction side, and the side surface S2, which is the second side surface, is the side surface on the + direction side. Therefore, a discharge space 4 is provided between the side surfaces S1 and S2.
 ここで、側面S1及びS2が対向するX方向が側面対向方向として規定される。したがって、側面形成方向(X方向)は噴出孔形成方向(Y方向)と直角に交差する方向となる。 Here, the X direction in which the side surfaces S1 and S2 face each other is defined as the side facing direction. Therefore, the direction of formation of the side surface (X direction) is a direction perpendicular to the direction of formation of the ejection holes (Y direction).
 このような構成の実施の形態2の活性ガス生成装置52の第2の態様において、一対の金属電極122に交流電源100から交流電圧を印加することにより、放電空間4内で誘電体バリア放電を発生させることができる。 In the second aspect of the active gas generator 52 of Embodiment 2 having such a configuration, dielectric barrier discharge is generated in the discharge space 4 by applying an AC voltage from the AC power supply 100 to the pair of metal electrodes 122 . can be generated.
 図14に示すように、原料ガス5は電極対向空間の側面S1及びS2それぞれから供給され、放電空間4を通過することにより活性化され活性ガス6となる。活性ガス6は複数のガス噴出孔381及び開口領域282を介して接地電位電極部2B2における金属電極222の下方に噴出される。活性ガス生成装置52の第2の態様において、電極対向空間の側面S1及びS2それぞれから複数のガス噴出孔381に向かう方向(±X方向)がガス流通方向として規定される。 As shown in FIG. 14, the raw material gas 5 is supplied from the side surfaces S1 and S2 of the electrode facing space, and is activated by passing through the discharge space 4 to become the active gas 6. The active gas 6 is ejected below the metal electrode 222 in the ground potential electrode portion 2B2 through the plurality of gas ejection holes 381 and the opening area 282. As shown in FIG. In the second aspect of the active gas generator 52, the directions (±X directions) from the side surfaces S1 and S2 of the electrode facing space toward the plurality of gas ejection holes 381 are defined as the gas flow directions.
 図14に示すように、複数の凸部32tはそれぞれ平面視してY方向を長手方向とした矩形状に設けられ、ガス流通方向(X方向)に沿って互いに離散して設けられる。 As shown in FIG. 14, the plurality of projections 32t are each provided in a rectangular shape with the Y direction as the longitudinal direction in plan view, and are provided separately from each other along the gas flow direction (X direction).
 したがって、放電場調整膜322において、複数の凸部32tと複数の凹部領域32fとがガス流通方向に沿って交互に設けられることにより、複数の部分放電空間42がガス流通方向に沿って互いに離散して設けられることになる。複数の凸部32tと複数の凹部領域32fとの面積比は例えば1:1程度に設定される。 Therefore, in the discharge field adjustment film 322, the plurality of convex portions 32t and the plurality of concave regions 32f are alternately provided along the gas flow direction, thereby forming the plurality of partial discharge spaces 42 separated from each other along the gas flow direction. and will be provided. The area ratio between the plurality of protrusions 32t and the plurality of recessed regions 32f is set to approximately 1:1, for example.
 図14に示すように、放電空間4内において、第1の側面となる側面S1からガス噴出孔381に至るガス流通方向(+X方向)に沿った第1のガス流通距離がガス流通距離D1となる。同様に、放電空間4において、第2の側面となる側面S2からガス噴出孔381に至るガス流通方向(-X方向)に沿った第2のガス流通距離がガス流通距離D2となる。 As shown in FIG. 14, in the discharge space 4, the first gas flow distance along the gas flow direction (+X direction) from the side surface S1, which is the first side surface, to the gas ejection hole 381 is the gas flow distance D1. Become. Similarly, in the discharge space 4, a second gas flow distance along the gas flow direction (-X direction) from the side surface S2, which is the second side surface, to the gas ejection hole 381 is the gas flow distance D2.
 実施の形態2の第2の態様では、ガス流通距離D1とガス流通距離D2とが等しくなるように設定されている。 In the second aspect of Embodiment 2, the gas circulation distance D1 and the gas circulation distance D2 are set to be equal.
 (効果)
 実施の形態2の活性ガス生成装置52(第1及び第2の態様)において、放電場調整膜32はギャップ長が短くなる方向に突出した複数の凸部32tを有している。
(effect)
In the active gas generator 52 (first and second aspects) of Embodiment 2, the discharge field adjustment film 32 has a plurality of protrusions 32t protruding in the direction in which the gap length is shortened.
 このため、実施の形態2の活性ガス生成装置52は、実施の形態1と同様、必要とする印加電圧を増加させることなく放電空間4の体積増加を図り、活性ガス6の生成濃度を向上させることができる。 For this reason, the active gas generator 52 of Embodiment 2 increases the volume of the discharge space 4 without increasing the required applied voltage, and improves the generated concentration of the active gas 6, as in the case of Embodiment 1. be able to.
 実施の形態2の活性ガス生成装置52は、電極対向空間の外周面から原料ガス5を供給し、ガス噴出孔38(少なくとも一つのガス噴出孔)から活性ガス6を下方に噴出するため、ガス噴出孔38の直下にウェハー等の処理対象基板を配置することができる。 The active gas generator 52 of Embodiment 2 supplies the raw material gas 5 from the outer peripheral surface of the electrode-facing space and ejects the active gas 6 downward from the gas ejection holes 38 (at least one gas ejection hole). A substrate to be processed such as a wafer can be placed directly below the ejection holes 38 .
 なお、ガス噴出孔38は、第1の態様では一の中央ガス噴出孔であるガス噴出孔381となり、第2の態様では複数のガス噴出孔382となる。 Note that the gas ejection hole 38 is the gas ejection hole 381, which is one central gas ejection hole, in the first mode, and becomes a plurality of gas ejection holes 382 in the second mode.
 したがって、実施の形態2の活性ガス生成装置52を、処理対象基板から比較的近い位置に設けることができるため、ラジカル濃度を劣化させることなく効率的に活性ガス6を噴出することができる。 Therefore, since the active gas generator 52 of Embodiment 2 can be provided relatively close to the substrate to be processed, the active gas 6 can be efficiently ejected without deteriorating the radical concentration.
 なぜなら、活性ガス6は比較的短時間で失活するため、活性ガス6を有効利用するためには、処理対象基板を収容した活性ガス利用空間に生成した活性ガス6を短時間にて供給する必要性があるからである。 This is because the active gas 6 is deactivated in a relatively short period of time. Therefore, in order to effectively utilize the active gas 6, the generated active gas 6 is supplied in a short period of time to the active gas utilization space containing the substrate to be processed. Because there is a need.
 加えて、実施の形態2の活性ガス生成装置52において、複数の凸部32tはガス流通方向に沿って互いに離散して形成されるため、ガス流通方向に沿って各々が短ギャップ長の複数の特殊放電空間を設けることができる分、上記低電圧放電発生機能の向上を図ることができる。 In addition, in the active gas generating device 52 of Embodiment 2, since the plurality of projections 32t are formed discretely along the gas flow direction, a plurality of projections 32t each having a short gap length along the gas flow direction are formed. Since the special discharge space can be provided, the low-voltage discharge generating function can be improved.
 また、実施の形態2の活性ガス生成装置52(第1及び第2の態様)において、ガス噴出孔38(ガス噴出孔381及び複数のガス噴出孔382)の上方に金属電極12(一対の金属電極121及び一対の金属電極122)は設けられていない一部開口電極構造を呈している。すなわち、金属電極12はガス噴出孔38及び開口領域28と平面視して重複していない一部開口電極構造を呈している。 In addition, in the active gas generator 52 (first and second aspects) of Embodiment 2, the metal electrodes 12 (a pair of metal The electrode 121 and the pair of metal electrodes 122) have a partially open electrode structure in which they are not provided. That is, the metal electrode 12 exhibits a partially open electrode structure that does not overlap the gas ejection holes 38 and the open area 28 in plan view.
 一部開口電極構造を採用した理由は異常放電を回避するためである。ここで、「異常放電」とは、金属電極12がガス噴出孔38の上方を覆って形成された場合、ガス噴出孔38及び開口領域28の近傍領域、例えば、金属電極22の周辺領域において発生する可能性がある放電を意味する。 The reason for adopting a partially open electrode structure is to avoid abnormal discharge. Here, "abnormal discharge" means that when the metal electrode 12 is formed to cover the gas ejection hole 38, the area near the gas ejection hole 38 and the opening area 28, for example, the area around the metal electrode 22. means a discharge that can
 金属製の金属電極22は、絶縁体と比べて放電によって構成元素が容易にイオン化する。金属電極22の構成元素がイオン化すると、活性ガス6の中に金属コンタミとして混入したり、金属電極22自体が放電場調整膜32からが剥がれたりするといった問題が生じてしまう。 The constituent elements of the metal electrode 22 made of metal are more easily ionized by electric discharge compared to insulators. When the constituent elements of the metal electrode 22 are ionized, there arise problems such as mixing into the active gas 6 as metal contaminants and peeling of the metal electrode 22 itself from the discharge field adjustment film 32 .
 開口領域28の近傍における異常放電を防ぐためには、開口領域28と金属電極22との距離を長くする必要がある。このため、図9、図11及び図13に示すように、金属電極12(121,122)が開口領域28(281,282)及びガス噴出孔38(381,382)と平面視重複しないようにして、金属電極22と開口領域28との距離を長くすることにより、開口領域28の近辺における異常放電を防いでいる。 In order to prevent abnormal discharge in the vicinity of the opening region 28, it is necessary to increase the distance between the opening region 28 and the metal electrode 22. Therefore, as shown in FIGS. 9, 11 and 13, the metal electrodes 12 (121, 122) should not overlap with the opening regions 28 (281, 282) and the gas ejection holes 38 (381, 382) in plan view. By increasing the distance between the metal electrode 22 and the opening region 28, abnormal discharge in the vicinity of the opening region 28 is prevented.
 さらに、実施の形態2の活性ガス生成装置52の第1の態様は、平面形状が円状の電極用誘電体膜131及び放電場調整膜321を用いて、ラジカル濃度を劣化させることなく効率的に活性ガス6を噴出することができる。 Furthermore, in the first mode of the active gas generator 52 of Embodiment 2, the electrode dielectric film 131 and the discharge field adjustment film 321 having a circular planar shape are used to efficiently The active gas 6 can be jetted out.
 加えて、第1の態様において、平面視円状の放電場調整膜321の中心位置にガス噴出孔381(中央ガス噴出孔)が形成されている。このため、電極対向空間の外周面全体からガス噴出孔38に至る距離の均一化を図ることができ、ガス噴出孔38から安定したラジカル濃度の活性ガス6を噴出することができる。 In addition, in the first aspect, a gas ejection hole 381 (central gas ejection hole) is formed at the center position of the discharge field adjustment film 321 which is circular in plan view. Therefore, the distance from the entire outer peripheral surface of the electrode facing space to the gas ejection holes 38 can be made uniform, and the active gas 6 with a stable radical concentration can be ejected from the gas ejection holes 38 .
 活性ガス生成装置52の第2の態様は、平面形状が矩形状の電極用誘電体膜132及び放電場調整膜322を用いて、ラジカル濃度を劣化させることなく効率的に活性ガス6を噴出することができる。 In the second mode of the active gas generator 52, the electrode dielectric film 132 and the discharge field adjusting film 322 having a rectangular planar shape are used to efficiently eject the active gas 6 without deteriorating the radical concentration. be able to.
 加えて、第2の態様において、第1の側面となる側面S1から複数のガス噴出孔382に至るガス流通距離D1(第1のガス流通距離)と、第2の側面となる側面S2から複数のガス噴出孔382に至るガス流通距離D2(第2のガス流通距離)とが等しくなるように複数のガス噴出孔381が設けられている。 In addition, in the second aspect, a gas flow distance D1 (first gas flow distance) from the side surface S1, which is the first side surface, to the plurality of gas ejection holes 382, and a plurality of gas flow distances from the side surface S2, which is the second side surface. A plurality of gas ejection holes 381 are provided so that the gas circulation distance D2 (second gas circulation distance) to the gas ejection holes 382 is equal.
 このため、第2の態様は、側面S1及びS2それぞれから複数のガス噴出孔38に至るガス流通距離D1及びD2の均一化を図ることができ、複数のガス噴出孔それぞれから同一のラジカル濃度の活性ガス6を噴出することができる。 Therefore, in the second mode, the gas flow distances D1 and D2 from the side surfaces S1 and S2 to the plurality of gas ejection holes 38 can be made uniform, and the same radical concentration can be obtained from each of the plurality of gas ejection holes. Active gas 6 can be ejected.
 (変形例)
 図15は本開示の実施の形態2の変形例である活性ガス生成装置52Xの基本断面構造を示す断面図である。図16は図15の着目領域R33の詳細断面構造を示す断面図である。図15及び図16それぞれにXYZ直交座標系を記している。
(Modification)
FIG. 15 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 52X that is a modification of the second embodiment of the present disclosure. FIG. 16 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R33 in FIG. An XYZ orthogonal coordinate system is shown in each of FIGS. 15 and 16 .
 以下、図9~図14で示した実施の形態2の活性ガス生成装置52と同様な構成部には同一符号を付して説明を適宜省略し、変形例の活性ガス生成装置52Xの特徴部分を中心に説明する。 Hereinafter, the same reference numerals are given to the same components as those of the active gas generator 52 of Embodiment 2 shown in FIGS. will be mainly explained.
 図15及び図16に示すように、変形例の活性ガス生成装置52Xは、活性ガス生成装置52の接地電位電極部2Bを接地電位電極部2Yに置き換え、接地電位電極部2Y内において放電場調整膜32を放電場調整膜32Xに置き換えたことを特徴としている。 As shown in FIGS. 15 and 16, the modified active gas generator 52X replaces the ground potential electrode section 2B of the active gas generator 52 with a ground potential electrode section 2Y, and adjusts the discharge field in the ground potential electrode section 2Y. It is characterized by replacing the film 32 with a discharge field adjusting film 32X.
 第2の電極構成部である接地電位電極部2Yは、放電場調整膜32X及び金属電極22の積層構造を呈しており、放電場調整膜32Xの下面上に金属電極20が設けられる。 The ground potential electrode section 2Y, which is the second electrode configuration section, has a laminated structure of the discharge field adjustment film 32X and the metal electrode 22, and the metal electrode 20 is provided on the lower surface of the discharge field adjustment film 32X.
 放電場調整膜32Xは放電場調整用絶縁膜33と放電場調整用導電膜35との積層構造を含んでいる。放電場調整用絶縁膜33の構成材料は絶縁性を有する第1の構成材料であり、放電場調整用導電膜35の構成材料は導電性を有する第2の構成材料である。 The discharge field adjustment film 32X includes a laminated structure of the discharge field adjustment insulating film 33 and the discharge field adjustment conductive film 35. The constituent material of the discharge field adjusting insulating film 33 is a first insulating constituent material, and the constituent material of the discharge field adjusting conductive film 35 is a second constituent material having conductivity.
 図15に示すように、接地電位電極部2Yにおいて、金属電極22上に放電場調整用導電膜35が設けられ、放電場調整用導電膜35上に放電場調整用絶縁膜33が設けられる。したがって、放電場調整用導電膜35は金属電極22と接触関係を有している。 As shown in FIG. 15, in the ground potential electrode portion 2Y, a discharge field adjusting conductive film 35 is provided on the metal electrode 22, and a discharge field adjusting insulating film 33 is provided on the discharge field adjusting conductive film 35. Therefore, the discharge field adjusting conductive film 35 is in contact with the metal electrode 22 .
 図15に示すように、放電場調整膜32Xは、放電空間4内においてギャップ長が短くなるように、上方(+Z方向)に突出した複数の凸部33t(突出部)を有することを特徴としている。このように、放電場調整膜32Xは、少なくとも一つの突出部として複数の凸部33tを有している。 As shown in FIG. 15, the discharge field adjustment film 32X is characterized by having a plurality of protrusions 33t (protrusions) that protrude upward (in the +Z direction) so as to shorten the gap length in the discharge space 4. there is Thus, the discharge field adjustment film 32X has a plurality of protrusions 33t as at least one protrusion.
 放電場調整膜32Xにおける複数の凸部33tはそれぞれ金属電極22側に空洞領域36を有している。さらに、放電場調整膜32Xは放電場調整膜32のガス噴出孔38と同様なガス噴出孔48を有している。 A plurality of protrusions 33t in the discharge field adjustment film 32X each have a hollow region 36 on the metal electrode 22 side. Furthermore, the discharge field adjustment film 32X has gas ejection holes 48 similar to the gas ejection holes 38 of the discharge field adjustment film 32 .
 接地電位電極部2Yの第1の態様となる接地電位電極部2Y1における放電場調整膜32Xは、図12で示す放電場調整膜321と同様な平面形状を呈し、ガス噴出孔381と同様なガス噴出孔481をガス噴出孔48として有している。 The discharge field adjustment film 32X in the ground potential electrode portion 2Y1, which is the first aspect of the ground potential electrode portion 2Y, has the same planar shape as the discharge field adjustment film 321 shown in FIG. It has ejection holes 481 as gas ejection holes 48 .
 さらに、接地電位電極部2Y1の放電場調整膜32Xは、図12で示した複数の凸部32tと同様な複数の凸部33tを有し、複数の凸部33tはそれぞれ平面視して円環状に設けられる。 Furthermore, the discharge field adjustment film 32X of the ground potential electrode portion 2Y1 has a plurality of projections 33t similar to the plurality of projections 32t shown in FIG. provided in
 接地電位電極部2Yの第2の態様となる接地電位電極部2Y2における放電場調整膜32Xは、図14で示す放電場調整膜322と同様な平面形状を呈し、ガス噴出孔382と同様なガス噴出孔482をガス噴出孔48として有している。 The discharge field adjustment film 32X in the ground potential electrode portion 2Y2, which is the second aspect of the ground potential electrode portion 2Y, has the same planar shape as the discharge field adjustment film 322 shown in FIG. It has ejection holes 482 as gas ejection holes 48 .
 さらに、接地電位電極部2Y2の放電場調整膜32Xは、図14で示した複数の凸部32tと同様な複数の凸部33tを有し、複数の凸部33tはそれぞれ平面視してY方向を長手方向とした矩形状に設けられる。 Furthermore, the discharge field adjustment film 32X of the ground potential electrode portion 2Y2 has a plurality of protrusions 33t similar to the plurality of protrusions 32t shown in FIG. is provided in a rectangular shape with .
 図16に示すように、放電空間4は部分放電空間43及び44を含んでいる。部分放電空間43は放電場調整膜32Xの凹部領域33fの表面と電極用誘電体膜13の下面との間の空間となり、部分放電空間44は放電場調整膜32Xの凸部33tの上面と電極用誘電体膜13の下面との間の空間となる。 As shown in FIG. 16, the discharge space 4 includes partial discharge spaces 43 and 44. The partial discharge space 43 is a space between the surface of the concave region 33f of the discharge field adjustment film 32X and the lower surface of the electrode dielectric film 13, and the partial discharge space 44 is a space between the upper surface of the convex portion 33t of the discharge field adjustment film 32X and the electrode. It becomes a space between the lower surface of the dielectric film 13 for the substrate.
 すなわち、部分放電空間43は複数の凸部33tが形成されない場合の通常放電空間と同じ比較的長い長ギャップ長G3を有している。一方、部分放電空間44は長ギャップ長G3に比べ短い短ギャップ長G4を有する特殊放電空間となる。 That is, the partial discharge space 43 has the same relatively long long gap length G3 as the normal discharge space when the plurality of convex portions 33t are not formed. On the other hand, the partial discharge space 44 becomes a special discharge space having a short gap length G4 that is shorter than the long gap length G3.
 実施の形態2の変形例である活性ガス生成装置52Xは、活性ガス生成装置52と同様、放電場調整膜32Xはギャップ長が短くなる方向に突出した複数の凸部33tを有している。 In the active gas generator 52X, which is a modification of the second embodiment, the discharge field adjustment film 32X has a plurality of projections 33t projecting in the direction of shortening the gap length, like the active gas generator 52.
 このため、変形例の活性ガス生成装置52Xは、活性ガス生成装置52と同様、必要とする印加電圧を増加させることなく放電空間4の体積増加を図り、活性ガス6の生成濃度を向上させることができる。 For this reason, the active gas generator 52X of the modified example can increase the volume of the discharge space 4 without increasing the required applied voltage and improve the generated concentration of the active gas 6, similarly to the active gas generator 52. can be done.
 さらに、変形例の活性ガス生成装置52Xは、放電場調整膜32Xの複数の凸部33tそれぞれが第2の金属電極となる金属電極22側に空洞領域36を有する分、図7及び図8で示した実施の形態1の変形例と同様、同一の印加電圧の印加時における特殊放電空間にかかる特殊放電電圧を高めることができる。 Furthermore, in the active gas generator 52X of the modified example, each of the plurality of protrusions 33t of the discharge field adjustment film 32X has a hollow region 36 on the side of the metal electrode 22 serving as the second metal electrode, so that in FIGS. As in the modified example of the first embodiment shown, the special discharge voltage applied to the special discharge space can be increased when the same applied voltage is applied.
 その結果、実施の形態2の変形例である活性ガス生成装置52Xは、上述した低電圧放電発生機能をより一層高めることができる。 As a result, the active gas generator 52X, which is a modification of the second embodiment, can further enhance the above-described low-voltage discharge generating function.
 変形例の活性ガス生成装置52Xは、放電場調整用絶縁膜33と放電場調整用導電膜35との積層構造を有する放電場調整膜32Xを用いることにより、凸部33tの膜厚の薄膜化することができ、上述した低電圧放電発生機能をより一層高めることができる。 The active gas generator 52X of the modification uses the discharge field adjustment film 32X having a laminated structure of the discharge field adjustment insulating film 33 and the discharge field adjustment conductive film 35, thereby reducing the film thickness of the convex portion 33t. It is possible to further enhance the low-voltage discharge generating function described above.
 (拡張構成)
 図9~図16で示した実施の形態2(変形例を含む)では、高電圧印加電極部1Bが電極用誘電体膜13を有し、接地電位電極部2B(2Y)が放電場調整膜32(32X)を有する構造を示した。
(extended configuration)
In the second embodiment (including modifications) shown in FIGS. 9 to 16, the high voltage applying electrode portion 1B has the electrode dielectric film 13, and the ground potential electrode portion 2B (2Y) has the discharge field adjusting film. A structure with 32 (32X) was shown.
 すなわち、電極用誘電体膜13を有する第1の電極構成部を上方電極構成部である高電圧印加電極部1Bに限定し、放電場調整膜32を有する第2の電極構成部を下方電極構成部である接地電位電極部2Bに限定していた。 That is, the first electrode configuration portion having the electrode dielectric film 13 is limited to the high voltage applying electrode portion 1B which is the upper electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 32 is the lower electrode configuration. It was limited to the ground potential electrode portion 2B, which is a portion.
 実施の形態2の上述した限定以外に電極用誘電体膜13と放電場調整膜32との上下関係を逆にした拡張構成が考えられる。すなわち、電極用誘電体膜13を有する第1の電極構成部を下方電極構成部である接地電位電極部2B(2Y)とし、放電場調整膜32を有する第2の電極構成部を上方電極構成部である高電圧印加電極部1Bとした拡張構成が考えられる。 In addition to the above-described limitation of the second embodiment, an extended configuration in which the electrode dielectric film 13 and the discharge field adjustment film 32 are reversed in vertical relation is conceivable. That is, the first electrode configuration portion having the electrode dielectric film 13 is used as the ground potential electrode portion 2B (2Y) which is the lower electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 32 is used as the upper electrode configuration. An extended configuration is conceivable in which the high-voltage applying electrode section 1B is used as a section.
 この拡張構成では、放電場調整膜32(32X)は、放電空間4内においてギャップ長が短くなるように、下方(-Z方向)に突出した複数の突出部を有することを特徴としている。このように、拡張構成では、少なくとも一つの突出部として下方に突出する複数の突出部を有している。 In this extended configuration, the discharge field adjustment film 32 (32X) is characterized by having a plurality of protrusions that protrude downward (-Z direction) so that the gap length in the discharge space 4 is shortened. Thus, in the expanded configuration, the at least one protrusion has a plurality of downwardly projecting protrusions.
 さらに、下方電極構成部に設けられる電極用誘電体膜13には、放電場調整膜32(32X)に設けられたガス噴出孔38(48)に相当するガス噴出孔が形成されることになる。 Furthermore, in the electrode dielectric film 13 provided in the lower electrode configuration portion, gas ejection holes corresponding to the gas ejection holes 38 (48) provided in the discharge field adjustment film 32 (32X) are formed. .
 上述した実施の形態2の拡散構成においても、活性ガス生成装置52及び活性ガス生成装置52Xと同様な効果を奏する。 The diffusion structure of the second embodiment described above also has the same effect as the active gas generator 52 and the active gas generator 52X.
 <実施の形態3>
 図17は本開示の実施の形態3である活性ガス生成装置53の基本断面構造を示す断面図である。図18は図17の着目領域R34の詳細断面構造を示す断面図である。図17及び図18それぞれにXYZ直交座標系を記している。
<Embodiment 3>
FIG. 17 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 53 according to Embodiment 3 of the present disclosure. FIG. 18 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R34 in FIG. An XYZ orthogonal coordinate system is shown in each of FIGS. 17 and 18 .
 以下、図9~図14で示した実施の形態2の活性ガス生成装置52と同様な構成部は同一符号を付して説明を適宜省略し、実施の形態3の特徴箇所を中心に説明する。 9 to 14, the same components as those of the active gas generating device 52 of the second embodiment shown in FIGS. .
 図17及び図18に示すように、実施の形態3の活性ガス生成装置53の基本構造は、放電空間4の外周面から供給された原料ガス5を活性化して得られる活性ガス6を生成している。 As shown in FIGS. 17 and 18, the basic structure of the active gas generator 53 of Embodiment 3 generates the active gas 6 obtained by activating the raw material gas 5 supplied from the outer peripheral surface of the discharge space 4. ing.
 活性ガス生成装置53は高電圧印加電極部1C、接地電位電極部2B、及び交流電源100を主要構成要素として含んでいる。図17及び図18に示すように、下方電極構成部である接地電位電極部2Bの上方に上方電極構成部である高電圧印加電極部1Cが配置されている。 The active gas generator 53 includes a high voltage applying electrode section 1C, a ground potential electrode section 2B, and an AC power supply 100 as main components. As shown in FIGS. 17 and 18, a high-voltage applying electrode portion 1C, which is an upper electrode forming portion, is arranged above a ground potential electrode portion 2B, which is a lower electrode forming portion.
 第1の電極構成部である高電圧印加電極部1Cは、電極用誘電体膜13と金属電極14及び高圧側接地用金属電極17との積層構造を呈している。電極用誘電体膜13の上面上に金属電極14及び高圧側接地用金属電極17が設けられる。金属電極14及び高圧側接地用金属電極17それぞれの構成材料は金属であり、電極用誘電体膜13の構成材料は誘電体である。 The high-voltage applying electrode section 1C, which is the first electrode configuration section, has a laminated structure of the electrode dielectric film 13, the metal electrode 14, and the high-voltage side grounding metal electrode 17. A metal electrode 14 and a high voltage side grounding metal electrode 17 are provided on the upper surface of the electrode dielectric film 13 . The constituent material of the metal electrode 14 and the high voltage side grounding metal electrode 17 is metal, and the constituent material of the electrode dielectric film 13 is a dielectric.
 金属電極14が上方金属電極となり、かつ、第1の金属電極となり、電極用誘電体膜13が上方形成膜となる。高電圧印加電極部1Cにおいて、電極用誘電体膜13の下面が電極用誘電体膜13側の露出面となる。電極用誘電体膜13の下面が第1の放電場形成面となる。金属電極14は中央部に開口部19を有している。 The metal electrode 14 becomes the upper metal electrode and the first metal electrode, and the electrode dielectric film 13 becomes the upper formation film. In the high voltage applying electrode portion 1C, the lower surface of the electrode dielectric film 13 is the exposed surface on the electrode dielectric film 13 side. The lower surface of the electrode dielectric film 13 serves as the first discharge field forming surface. The metal electrode 14 has an opening 19 in its central portion.
 補助導電膜である高圧側接地用金属電極17は電極用誘電体膜13上の開口部19内に形成され、金属電極14とは電気的に独立して設けられる。 A high-voltage side grounding metal electrode 17, which is an auxiliary conductive film, is formed in an opening 19 on the electrode dielectric film 13, and is provided electrically independently of the metal electrode 14.
 第2の電極構成部である接地電位電極部2Bは、放電場調整膜32及び金属電極22の積層構造を呈している。下方形成膜となる放電場調整膜32の下面上に金属電極22が設けられる。金属電極22の構成材料は金属であり、放電場調整膜32の構成材料として、絶縁性を有する第1の構成材料あるいは導電性を有する第2の構成材料が考えられる。 The ground potential electrode portion 2B, which is the second electrode configuration portion, has a laminated structure of the discharge field adjustment film 32 and the metal electrode 22. A metal electrode 22 is provided on the lower surface of the discharge field adjusting film 32 that serves as the lower forming film. The constituent material of the metal electrode 22 is metal, and the constituent material of the discharge field adjustment film 32 may be a first constituent material having insulating properties or a second constituent material having conductivity.
 金属電極22が第2の金属電極となり、かつ、下方金属電極となる。放電場調整膜32は下方形成膜となる。接地電位電極部2Bにおいて、放電場調整膜32の上面が放電場調整膜32側の露出面となる。放電場調整膜32の下面が第2の放電場形成面となる。 The metal electrode 22 becomes the second metal electrode and the lower metal electrode. The discharge field adjustment film 32 becomes a lower formation film. In the ground potential electrode portion 2B, the upper surface of the discharge field adjustment film 32 is the exposed surface on the discharge field adjustment film 32 side. The lower surface of the discharge field adjustment film 32 becomes the second discharge field forming surface.
 したがって、高電圧印加電極部1C及び接地電位電極部2Bは第1及び第2の放電場形成面が対向するように配置される。 Therefore, the high voltage applying electrode portion 1C and the ground potential electrode portion 2B are arranged so that the first and second discharge field forming surfaces face each other.
 第1及び第2の金属電極のうち一方の金属電極となる金属電極14に交流電源100から交流電圧(印加電圧)が印加され、他方の金属電極となる金属電極22が基準電位となる接地電位に設定される。さらに、高圧側接地用金属電極17は接地電位に設定される。 An AC voltage (applied voltage) is applied from an AC power supply 100 to the metal electrode 14, which is one of the first and second metal electrodes, and the ground potential, which is the reference potential, is the metal electrode 22, which is the other metal electrode. is set to Furthermore, the high voltage side grounding metal electrode 17 is set to the ground potential.
 高電圧印加電極部1Cの電極用誘電体膜13と接地電位電極部2Bの放電場調整膜32との間の空間が電極対向空間として規定される。この電極対向空間内において、金属電極14と金属電極22とが平面視して重複する領域が放電空間4となり、放電空間4における電極用誘電体膜13の下面(第1の放電場形成面)と放電場調整膜32の上面(第2の放電場形成面)との間の距離がギャップ長として規定される。なお、放電空間4内の圧力は1kPa~大気圧程度の圧力に設定される。 The space between the electrode dielectric film 13 of the high voltage applying electrode portion 1C and the discharge field adjusting film 32 of the ground potential electrode portion 2B is defined as the electrode facing space. In this electrode-facing space, the area where the metal electrode 14 and the metal electrode 22 overlap in plan view becomes the discharge space 4, and the lower surface of the electrode dielectric film 13 in the discharge space 4 (first discharge field forming surface). and the upper surface (second discharge field forming surface) of the discharge field adjustment film 32 is defined as the gap length. Incidentally, the pressure in the discharge space 4 is set to about 1 kPa to atmospheric pressure.
 図17に示すように、放電場調整膜32は、放電空間4内においてギャップ長が短くなるように、上方(+Z方向)に突出した複数の凸部32t(突出部)を有することを特徴としている。このように、放電場調整膜32は、少なくとも一つの突出部として複数の凸部32tを有している。 As shown in FIG. 17, the discharge field adjustment film 32 is characterized by having a plurality of protrusions 32t (protrusions) that protrude upward (in the +Z direction) so as to shorten the gap length in the discharge space 4. there is Thus, the discharge field adjustment film 32 has a plurality of protrusions 32t as at least one protrusion.
 一方、凹部領域32fはY方向に延びて設けられる。同様に複数の凸部32tもそれぞれY方向に延びて設けられる。 On the other hand, the concave region 32f is provided extending in the Y direction. Similarly, a plurality of protrusions 32t are also provided extending in the Y direction.
 さらに、放電場調整膜32は中央部にガス噴出孔38を有しており、金属電極22中央に開口領域28を有している。ガス噴出孔38が少なくとも一つのガス噴出孔となる。 Furthermore, the discharge field adjusting film 32 has a gas ejection hole 38 in its central portion, and an opening region 28 in the center of the metal electrode 22 . The gas ejection hole 38 becomes at least one gas ejection hole.
 開口領域28は平面視してガス噴出孔38を含み、ガス噴出孔38より広い平面形状を有している。また、金属電極14の開口部19は平面視してガス噴出孔38及び開口領域28を含み、ガス噴出孔38より広い平面形状を有している。したがって、金属電極14がガス噴出孔38及び開口領域28と平面視して重複することはない。 The opening region 28 includes the gas ejection holes 38 in plan view, and has a planar shape wider than the gas ejection holes 38 . Further, the opening 19 of the metal electrode 14 includes the gas ejection hole 38 and the opening area 28 in plan view, and has a planar shape wider than the gas ejection hole 38 . Therefore, the metal electrode 14 does not overlap with the gas ejection holes 38 and the opening regions 28 in plan view.
 さらに、高圧側接地用金属電極17は平面視してガス噴出孔38及び開口領域28を含み、ガス噴出孔38より広い平面形状を有している。すなわち、高圧側接地用金属電極17はガス噴出孔38及び開口領域28と平面視して重複している。したがって、活性ガス6が通過する活性ガス流通経路上に高圧側接地用金属電極17が存在することになる。 Furthermore, the high voltage side grounding metal electrode 17 includes the gas ejection holes 38 and the opening regions 28 in plan view, and has a planar shape wider than the gas ejection holes 38 . That is, the high-voltage side grounding metal electrode 17 overlaps the gas ejection hole 38 and the opening region 28 in plan view. Therefore, the high-voltage-side grounding metal electrode 17 exists on the active gas distribution path through which the active gas 6 passes.
 図18に示すように、放電空間4は部分放電空間41及び42を含んでいる。部分放電空間41は放電場調整膜32の凹部領域32fの表面と電極用誘電体膜13の下面との間の空間となり、部分放電空間42は放電場調整膜32の凸部32tの上面と電極用誘電体膜13の下面との間の空間となる。 As shown in FIG. 18, the discharge space 4 includes partial discharge spaces 41 and 42 . The partial discharge space 41 is a space between the surface of the recessed region 32f of the discharge field adjustment film 32 and the lower surface of the electrode dielectric film 13, and the partial discharge space 42 is formed between the upper surface of the projection 32t of the discharge field adjustment film 32 and the electrode. It becomes a space between the lower surface of the dielectric film 13 for the substrate.
 すなわち、部分放電空間41は複数の凸部32tが形成されない場合の通常放電空間と同じ比較的長い長ギャップ長G1を有している。一方、部分放電空間42は長ギャップ長G1に比べ短い短ギャップ長G2を有する特殊放電空間となる。 That is, the partial discharge space 41 has the same relatively long long gap length G1 as the normal discharge space when the plurality of projections 32t are not formed. On the other hand, the partial discharge space 42 is a special discharge space having a short gap length G2 that is shorter than the long gap length G1.
 なお、放電場調整膜32が導電性を有する第2の構成材料で形成される場合、金属電極22と一体化して形成しても良い。 It should be noted that when the discharge field adjustment film 32 is formed of the second constituent material having conductivity, it may be formed integrally with the metal electrode 22 .
 また、実施の形態2と同様、電極用誘電体膜13の下面及び放電場調整膜32の上面に機能性膜をスパッタや溶射等により別途成膜してもよい。 Further, similarly to the second embodiment, a functional film may be separately formed on the lower surface of the electrode dielectric film 13 and the upper surface of the discharge field adjusting film 32 by sputtering, thermal spraying, or the like.
 図17及び図18で示す基本構造において、原料ガス5は電極対向空間の外周面から供給され、放電空間4を通過することにより活性化され活性ガス6となる。活性ガス6はガス噴出孔38及び開口領域28を介して接地電位電極部2Bにおける金属電極22の下方に噴出される。  In the basic structure shown in FIGS. 17 and 18, the source gas 5 is supplied from the outer peripheral surface of the electrode facing space and is activated by passing through the discharge space 4 to become the active gas 6. The active gas 6 is jetted below the metal electrode 22 in the ground potential electrode portion 2B through the gas jetting holes 38 and the opening regions 28 .
 実施の形態3の活性ガス生成装置53において、実施の形態2と同様、電極対向空間の外周面からガス噴出孔38に向かう方向がガス流通方向として規定される。複数の凸部32tはガス流通方向に沿って互いに離散して形成される。 In the active gas generator 53 of Embodiment 3, as in Embodiment 2, the direction from the outer peripheral surface of the electrode facing space toward the gas ejection holes 38 is defined as the gas flow direction. The plurality of protrusions 32t are formed separately from each other along the direction of gas flow.
 (第1の態様)
 高電圧印加電極部1Cの金属電極14は、実施の形態2の第1の態様である金属電極121と同様、平面視して円状に形成し、開口部19は開口部181のように中央に平面視円状に形成しても良い。ただし、開口部19内に高圧側接地用金属電極17を設ける必要があるため、開口部181より広い形状を有することが望ましい。
(First aspect)
The metal electrode 14 of the high-voltage applying electrode portion 1C is formed in a circular shape in plan view, similarly to the metal electrode 121 of the first mode of the second embodiment, and the opening 19 is formed in the center like the opening 181. It may be formed in a circular shape in plan view. However, since it is necessary to provide the high voltage side grounding metal electrode 17 in the opening 19 , it is desirable to have a shape wider than the opening 181 .
 また、電極用誘電体膜13は、実施の形態2の第1の態様である電極用誘電体膜131と同様、平面視して円状に形成しても良い。この場合、電極用誘電体膜13は平面視して金属電極14の全てを含み、金属電極14より広い円状の平面形状を有することになる。 Further, the electrode dielectric film 13 may be formed in a circular shape in plan view, like the electrode dielectric film 131 of the first aspect of the second embodiment. In this case, the electrode dielectric film 13 includes all of the metal electrodes 14 in plan view and has a circular planar shape wider than the metal electrodes 14 .
 また、接地電位電極部2Bの第1の態様として、図12で示した実施の形態2の第1の態様と同様な構成を採用しても良い。 Also, as the first mode of the ground potential electrode portion 2B, a configuration similar to the first mode of the second embodiment shown in FIG. 12 may be adopted.
 第1の態様の場合、高電圧印加電極部1Cの電極用誘電体膜13と接地電位電極部2Bの放電場調整膜32とは平面視して同一サイズの円状を呈しており、平面視して電極用誘電体膜13と放電場調整膜32とが合致するように配置される。 In the case of the first mode, the electrode dielectric film 13 of the high-voltage applying electrode portion 1C and the discharge field adjusting film 32 of the ground potential electrode portion 2B have circular shapes of the same size in plan view. Then, the electrode dielectric film 13 and the discharge field adjustment film 32 are arranged so as to match each other.
 実施の形態3の第1の態様において、金属電極14に交流電源100から高電圧となる交流電圧(印加電圧)を印加することにより、放電空間4内で誘電体バリア放電を発生させることができる。 In the first aspect of Embodiment 3, a dielectric barrier discharge can be generated in the discharge space 4 by applying a high AC voltage (applied voltage) from the AC power supply 100 to the metal electrode 14 . .
 原料ガス5は電極対向空間の外周面全体から供給され、放電空間4を通過することにより活性化され活性ガス6となる。活性ガス6はガス噴出孔38及び開口領域28を介して接地電位電極部2Bにおける金属電極22の下方に噴出される。活性ガス生成装置53の第1の態様において、電極対向空間の外周面全体からガス噴出孔38に向かう方向がガス流通方向として規定される。 The raw material gas 5 is supplied from the entire outer peripheral surface of the electrode-facing space and is activated by passing through the discharge space 4 to become the active gas 6 . The active gas 6 is jetted below the metal electrode 22 in the ground potential electrode portion 2B through the gas jetting holes 38 and the opening regions 28 . In the first aspect of the active gas generator 53, the gas flow direction is defined as the direction from the entire outer peripheral surface of the electrode facing space toward the gas ejection holes 38. As shown in FIG.
 (第2の態様)
 高電圧印加電極部1Cの金属電極14は、実施の形態2の第2の態様である一対の金属電極122と同様、それぞれ平面視して矩形状に形成しても良い、開口部19は実施の形態2の第2の態様の開口部182のように、Y方向に延びて設けられても良い。ただし、開口部19内に高圧側接地用金属電極17を設ける必要があるため、開口部182より広い形状を有することが望ましい。
(Second aspect)
The metal electrodes 14 of the high-voltage applying electrode portion 1C may each be formed in a rectangular shape in plan view, similarly to the pair of metal electrodes 122 of the second aspect of the second embodiment. It may be provided extending in the Y direction like the opening 182 of the second aspect of the second aspect. However, since it is necessary to provide the high voltage side grounding metal electrode 17 in the opening 19, it is desirable to have a shape wider than the opening 182. FIG.
 また、電極用誘電体膜13は、実施の形態2の第2の態様である電極用誘電体膜132と同様、平面視して矩形状(略正方形状)に形成しても良い。この場合、電極用誘電体膜13は平面視して金属電極14の全てを含み、金属電極14より広い矩形状の平面形状を有することになる。 Further, the electrode dielectric film 13 may be formed in a rectangular shape (substantially square shape) in plan view, similarly to the electrode dielectric film 132 of the second aspect of the second embodiment. In this case, the electrode dielectric film 13 includes all of the metal electrodes 14 in plan view and has a rectangular planar shape wider than the metal electrodes 14 .
 また、接地電位電極部2Bの第2の態様として、図14で示した実施の形態2の第2の態様と同様な構成を採用しても良い。 Also, as a second mode of the ground potential electrode portion 2B, a configuration similar to the second mode of the second embodiment shown in FIG. 14 may be adopted.
 第2の態様の場合、高電圧印加電極部1Cの電極用誘電体膜13と接地電位電極部2Bの放電場調整膜32とは平面視して同一サイズの矩形状を呈しており、平面視して電極用誘電体膜13と放電場調整膜32とが合致するように配置される。 In the case of the second mode, the electrode dielectric film 13 of the high-voltage applying electrode portion 1C and the discharge field adjusting film 32 of the ground potential electrode portion 2B have rectangular shapes of the same size in plan view. Then, the electrode dielectric film 13 and the discharge field adjustment film 32 are arranged so as to match each other.
 実施の形態3の活性ガス生成装置53の第2の態様において、金属電極14に交流電源100から交流電圧を印加することにより、放電空間4内で誘電体バリア放電を発生させることができる。 In the second aspect of the active gas generator 53 of Embodiment 3, dielectric barrier discharge can be generated in the discharge space 4 by applying an AC voltage from the AC power supply 100 to the metal electrode 14 .
 原料ガス5は、実施の形態2の第2の態様と同様、電極対向空間の第1及び第2の側面(側面S1及びS2)それぞれから供給され、放電空間4を通過することにより活性化され活性ガス6となる。活性ガス6はガス噴出孔38及び開口領域28を介して接地電位電極部2Bにおける金属電極22の下方に噴出される。活性ガス生成装置53の第2の態様において、電極対向空間の第1及び第2の側面それぞれガス噴出孔38に向かう方向(±X方向)がガス流通方向として規定される。 The raw material gas 5 is supplied from the first and second side surfaces (side surfaces S1 and S2) of the electrode facing space, respectively, and is activated by passing through the discharge space 4, as in the second mode of the second embodiment. It becomes active gas 6. The active gas 6 is jetted below the metal electrode 22 in the ground potential electrode portion 2B through the gas jetting holes 38 and the opening regions 28 . In the second aspect of the active gas generator 53, the directions (±X directions) toward the gas ejection holes 38 on the first and second side surfaces of the electrode facing space are defined as the gas flow directions.
 (効果)
 実施の形態3の活性ガス生成装置53(第1及び第2の態様)において、放電場調整膜32はギャップ長が短くなる方向に突出した複数の凸部32tを有している。
(effect)
In the active gas generator 53 (first and second aspects) of Embodiment 3, the discharge field adjustment film 32 has a plurality of protrusions 32t protruding in the direction in which the gap length is shortened.
 このため、実施の形態3の活性ガス生成装置53は、実施の形態1及び実施の形態2と同様、必要とする印加電圧を増加させることなく放電空間4の体積増加を図り、活性ガス6の生成濃度を向上させることができる。 For this reason, the active gas generator 53 of the third embodiment can increase the volume of the discharge space 4 without increasing the required applied voltage, as in the first and second embodiments. The product concentration can be improved.
 実施の形態3の活性ガス生成装置53は、実施の形態2の活性ガス生成装置52と同様、電極対向空間の外周面から原料ガス5を供給し、ガス噴出孔38(少なくとも一つのガス噴出孔)から活性ガス6を下方に噴出するため、ガス噴出孔38の直下にウェハー等の処理対象基板を配置することができる。 In the active gas generator 53 of Embodiment 3, as in the active gas generator 52 of Embodiment 2, the raw material gas 5 is supplied from the outer peripheral surface of the electrode facing space, and the gas ejection holes 38 (at least one gas ejection hole ), a substrate to be processed such as a wafer can be placed directly below the gas ejection hole 38 .
 したがって、実施の形態3の活性ガス生成装置53を処理対象基板から比較的近い位置に設けることができるため、実施の形態2と同様、ラジカル濃度を劣化させることなく効率的に活性ガス6を噴出することができる。 Therefore, since the active gas generator 53 of the third embodiment can be provided relatively close to the substrate to be processed, the active gas 6 can be efficiently ejected without degrading the radical concentration, as in the second embodiment. can do.
 さらに、実施の形態3の活性ガス生成装置53において、第1の電極構成部となる高電圧印加電極部1Cは、電極用誘電体膜13の上面、すなわち、第1の金属電極である金属電極14の形成面上に補助導電膜となる高圧側接地用金属電極17をさらに有している。この高圧側接地用金属電極17は金属電極14と電気的に独立して設けられ、かつ、接地電位に設定されている。 Furthermore, in the active gas generator 53 of Embodiment 3, the high voltage applying electrode section 1C, which is the first electrode constituting section, is formed on the upper surface of the electrode dielectric film 13, that is, the metal electrode which is the first metal electrode. A high-voltage side grounding metal electrode 17 serving as an auxiliary conductive film is further provided on the formation surface of 14 . The high voltage side grounding metal electrode 17 is provided electrically independently of the metal electrode 14 and is set to the ground potential.
 さらに、高圧側接地用金属電極17はガス噴出孔38及び開口領域28と平面視して重複して設けられる。 Furthermore, the high voltage side grounding metal electrode 17 is provided so as to overlap with the gas ejection hole 38 and the opening region 28 in plan view.
 したがって、実施の形態3の活性ガス生成装置53は、接地電位に設定された高圧側接地用金属電極17によって、ガス噴出孔38の上方の活性ガス6が流通する活性ガス流通経路における電界強度を緩和することができる。 Therefore, in the active gas generator 53 of Embodiment 3, the electric field strength in the active gas flow path through which the active gas 6 flows above the gas ejection holes 38 is reduced by the high voltage side grounding metal electrode 17 set to the ground potential. can be mitigated.
 その結果、実施の形態3の活性ガス生成装置53は、ガス噴出孔38の近傍の電界強度を格段に減少させることにより、活性ガス6以外のガスの絶縁破壊を防止することができる。 As a result, the active gas generator 53 of Embodiment 3 can prevent dielectric breakdown of gases other than the active gas 6 by significantly reducing the electric field strength in the vicinity of the gas ejection holes 38 .
 以下、この点を詳述する。例えば、活性ガス6を半導体等の成膜に用いる場合、活性ガス6以外に成膜の原料となるガス(プリカーサと呼ばれるガス)がガス噴出孔38の下方に存在する。プリカーサとして、例えば、シラン(SiH)等が考えられる。この状況下で、ガス噴出孔38近傍の電界が比較的高い場合、活性ガス6以外のプリカーサ(ガス)が絶縁破壊する可能性がある。 This point will be described in detail below. For example, when the active gas 6 is used for film formation of a semiconductor or the like, a gas serving as a raw material for film formation (a gas called a precursor) other than the active gas 6 exists below the gas ejection holes 38 . As a precursor, for example, silane (SiH 4 ) or the like can be considered. Under this circumstance, if the electric field in the vicinity of the gas ejection hole 38 is relatively high, precursors (gases) other than the active gas 6 may cause dielectric breakdown.
 実施の形態3の活性ガス生成装置53では、高圧側接地用金属電極17によって活性ガス流通経路の電界強度を緩和しているため、プリカーサ等の活性ガス6以外のガスの絶縁破壊を防止することができる。 In the active gas generator 53 of Embodiment 3, since the electric field intensity of the active gas flow path is relaxed by the high voltage side grounding metal electrode 17, dielectric breakdown of gases other than the active gas 6 such as precursors can be prevented. can be done.
 (変形例)
 図19は本開示の実施の形態3の変形例である活性ガス生成装置53Xの基本断面構造を示す断面図である。図20は図19の着目領域R33の詳細断面構造を示す断面図である。図19及び図20それぞれにXYZ直交座標系を記している。
(Modification)
FIG. 19 is a cross-sectional view showing a basic cross-sectional structure of an active gas generator 53X that is a modification of Embodiment 3 of the present disclosure. FIG. 20 is a cross-sectional view showing the detailed cross-sectional structure of the region of interest R33 in FIG. The XYZ orthogonal coordinate system is shown in each of FIGS. 19 and 20. FIG.
 以下、図17及び図18で示した実施の形態3の活性ガス生成装置53、または図15及び図16で示した実施の形態2の変形例である活性ガス生成装置52Xと同様な構成部には同一符号を付して説明を適宜省略し、実施の形態3の変形例の活性ガス生成装置53Xの特徴部分を中心に説明する。 17 and 18 of the active gas generator 53 of the third embodiment or the active gas generator 52X of the modified example of the second embodiment shown in FIGS. are denoted by the same reference numerals, and the description thereof is omitted as appropriate, and the characteristic portions of the active gas generator 53X of the modified example of the third embodiment will be mainly described.
 図19及び図20に示すように、実施の形態3の変形例である活性ガス生成装置53Xは、活性ガス生成装置53の接地電位電極部2Bを接地電位電極部2Yに置き換え、接地電位電極部2Y内において放電場調整膜32を放電場調整膜32Xに置き換えたことを特徴としている。 As shown in FIGS. 19 and 20, an active gas generator 53X, which is a modification of the third embodiment, replaces the ground potential electrode section 2B of the active gas generator 53 with a ground potential electrode section 2Y, It is characterized in that the discharge field adjustment film 32 is replaced with a discharge field adjustment film 32X in 2Y.
 第2の電極構成部である接地電位電極部2Yは、放電場調整膜32X及び金属電極22の積層構造を呈しており、放電場調整膜32Xの下面上に金属電極20が設けられる。 The ground potential electrode section 2Y, which is the second electrode configuration section, has a laminated structure of the discharge field adjustment film 32X and the metal electrode 22, and the metal electrode 20 is provided on the lower surface of the discharge field adjustment film 32X.
 放電場調整膜32Xは、実施の形態2の変形例と同様、放電場調整用絶縁膜33と放電場調整用導電膜35との積層構造を含んでいる。 The discharge field adjustment film 32X includes a laminated structure of the discharge field adjustment insulating film 33 and the discharge field adjustment conductive film 35, as in the modification of the second embodiment.
 図20に示すように、実施の形態3の変形例は、図16で示した実施の形態2の変形例と同様に、放電空間4は部分放電空間43及び44を含んでいる。 As shown in FIG. 20, in the modification of the third embodiment, the discharge space 4 includes partial discharge spaces 43 and 44, similar to the modification of the second embodiment shown in FIG.
 部分放電空間43は複数の凸部33tが形成されない場合の通常放電空間と同じ比較的長い長ギャップ長G3を有している。一方、部分放電空間44は長ギャップ長G3に比べ短い短ギャップ長G4を有する特殊放電空間となる。 The partial discharge space 43 has a relatively long long gap length G3, which is the same as the normal discharge space when the plurality of projections 33t are not formed. On the other hand, the partial discharge space 44 becomes a special discharge space having a short gap length G4 that is shorter than the long gap length G3.
 実施の形態3の変形例である活性ガス生成装置53Xは、活性ガス生成装置53と同様、放電場調整膜32Xはギャップ長が短くなる方向に突出した複数の凸部33tを有している。 In an active gas generator 53X, which is a modification of Embodiment 3, similarly to the active gas generator 53, the discharge field adjustment film 32X has a plurality of projections 33t protruding in the direction of shortening the gap length.
 このため、変形例の活性ガス生成装置53Xは、活性ガス生成装置53と同様、必要とする印加電圧を増加させることなく放電空間4の体積増加を図り、活性ガス6の生成濃度を向上させることができる。 For this reason, the active gas generator 53X of the modified example can increase the volume of the discharge space 4 without increasing the required applied voltage and improve the generated concentration of the active gas 6, similarly to the active gas generator 53. can be done.
 加えて、実施の形態3の変形例である活性ガス生成装置53Xは、放電場調整膜32Xの複数の凸部33tそれぞれが第2の金属電極となる金属電極22側に空洞領域36有する分、実施の形態1の変形例及び実施の形態2の変形例と同様、同一の印加電圧の印加時における特殊放電空間にかかる特殊放電電圧を高めることができる。 In addition, in the active gas generator 53X, which is a modified example of Embodiment 3, each of the plurality of protrusions 33t of the discharge field adjustment film 32X has a cavity region 36 on the side of the metal electrode 22 serving as the second metal electrode. As in the modified example of the first embodiment and the modified example of the second embodiment, it is possible to increase the special discharge voltage applied to the special discharge space when the same applied voltage is applied.
 その結果、実施の形態3の変形例である活性ガス生成装置53Xは、上述した低電圧放電発生機能をより一層高めることができる。 As a result, the active gas generator 53X, which is a modified example of Embodiment 3, can further enhance the above-described low-voltage discharge generating function.
 変形例の活性ガス生成装置53Xは、放電場調整用絶縁膜33と放電場調整用導電膜35との積層構造を有する放電場調整膜32Xを用いることにより、凸部33tの膜厚の薄膜化することができ、上述した低電圧放電発生機能をより一層高めることができる。 The modified active gas generator 53X uses the discharge field adjustment film 32X having a laminated structure of the discharge field adjustment insulating film 33 and the discharge field adjustment conductive film 35, thereby reducing the film thickness of the convex portion 33t. It is possible to further enhance the low-voltage discharge generating function described above.
 (拡張構成)
 図17~図20で示した実施の形態3(変形例を含む)では、高電圧印加電極部1Cが電極用誘電体膜13を有し、接地電位電極部2B(2Y)が放電場調整膜32(32X)を有する構造を示した。
(extended configuration)
In the third embodiment (including modifications) shown in FIGS. 17 to 20, the high voltage applying electrode section 1C has the electrode dielectric film 13, and the ground potential electrode section 2B (2Y) has the discharge field adjusting film. A structure with 32 (32X) was shown.
 すなわち、電極用誘電体膜13を有する第1の電極構成部を上方電極構成部である高電圧印加電極部1Cに限定し、放電場調整膜32を有する第2の電極構成部を下方電極構成部である接地電位電極部2B(2Y)に限定していた。 That is, the first electrode configuration portion having the electrode dielectric film 13 is limited to the high voltage applying electrode portion 1C, which is the upper electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 32 is the lower electrode configuration. However, it is limited to the ground potential electrode portion 2B (2Y).
 実施の形態3の上述した限定以外に電極用誘電体膜13と放電場調整膜32との上下関係を逆にした拡張構成が考えられる。すなわち、電極用誘電体膜13を有する第1の電極構成部を下方電極構成部である接地電位電極部2B(2Y)とし、放電場調整膜32を有する第2の電極構成部を上方電極構成部である高電圧印加電極部1Cとした拡張構成が考えられる。 In addition to the above-described limitation of the third embodiment, an extended configuration in which the electrode dielectric film 13 and the discharge field adjustment film 32 are reversed in vertical relation is conceivable. That is, the first electrode configuration portion having the electrode dielectric film 13 is used as the ground potential electrode portion 2B (2Y) which is the lower electrode configuration portion, and the second electrode configuration portion having the discharge field adjustment film 32 is used as the upper electrode configuration. An extended configuration is conceivable in which a high voltage applying electrode section 1C is used.
 この拡張構成では、放電場調整膜32(32X)は、放電空間4内においてギャップ長が短くなるように、下方(-Z方向)に突出した複数の突出部を有することを特徴としている。このように、拡張構成では、少なくとも一つの突出部として下方に突出する複数の突出部を有している。 In this extended configuration, the discharge field adjustment film 32 (32X) is characterized by having a plurality of protrusions that protrude downward (-Z direction) so that the gap length in the discharge space 4 is shortened. Thus, in the expanded configuration, the at least one protrusion has a plurality of downwardly projecting protrusions.
 さらに、下方電極構成部に設けられる電極用誘電体膜13には、ガス噴出孔38に相当するガス噴出孔が形成されることになる。 Further, gas ejection holes corresponding to the gas ejection holes 38 are formed in the electrode dielectric film 13 provided in the lower electrode configuration portion.
 上述した実施の形態3の拡散構成においても、活性ガス生成装置53及び活性ガス生成装置53Xと同様な効果を奏する。 The diffusion structure of Embodiment 3 described above also has the same effects as those of the active gas generator 53 and the active gas generator 53X.
 本開示は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、本開示がそれに限定されるものではない。例示されていない無数の変形例が、本開示の範囲から外れることなく想定され得るものと解される。 Although the present disclosure has been described in detail, the above description is illustrative in all aspects, and the present disclosure is not limited thereto. It is understood that numerous variations not illustrated can be envisioned without departing from the scope of the present disclosure.
 1,1B,1C 高電圧印加電極部
 2,2B,2X,2Y 接地電位電極部
 4 放電空間
 5 原料ガス
 6 活性ガス
 10、12,14,20,22,121,122,221,222 金属電極
 11,13,131,132 電極用誘電体膜
 17 高圧側接地用金属電極
 28,281,282 開口領域
 30,30X、32,32X,321,322 放電場調整膜
 30t~33t 凸部
 31,33 放電場調整用絶縁膜
 34,35 放電場調整用導電膜
 38,381,382 ガス噴出孔
 41~44 部分放電空間
Reference Signs List 1, 1B, 1C high voltage application electrode section 2, 2B, 2X, 2Y ground potential electrode section 4 discharge space 5 source gas 6 active gas 10, 12, 14, 20, 22, 121, 122, 221, 222 metal electrode 11 , 13, 131, 132 dielectric film for electrode 17 metal electrode for grounding on high voltage side 28, 281, 282 opening area 30, 30X, 32, 32X, 321, 322 discharge field adjustment film 30t to 33t convex part 31, 33 discharge field Adjustment insulating films 34, 35 Discharge field adjustment conductive films 38, 381, 382 Gas ejection holes 41 to 44 Partial discharge space

Claims (8)

  1.  放電空間に供給された原料ガスを活性化して得られる活性ガスを生成する活性ガス生成装置であって、
     第1の放電場形成面を有する第1の電極構成部と
     第2の放電場形成面を有する第2の電極構成部とを備え、前記第1及び第2の電極構成部は前記第1及び第2の放電場形成面が対向するように配置され、
     前記第1の電極構成部は、第1の金属電極と電極用誘電体膜との積層構造を有し、前記第1の電極構成部において、前記電極用誘電体膜側の露出面が前記第1の放電場形成面となり、
     前記第2の電極構成部は、第2の金属電極と放電場調整膜との積層構造を有し、前記第2の電極構成部において前記放電場調整膜側の露出面が前記第2の放電場形成面となり、
     前記第1及び第2の金属電極のうち一方の金属電極に交流電圧が印加され、他方の金属電極が基準電位に設定され、
     前記電極用誘電体膜と前記放電場調整膜との間が電極対向空間として規定され、
     前記電極対向空間内において、前記第1の金属電極と前記第2の金属電極とが平面視して重複する領域が前記放電空間となり、前記放電空間における前記第1及び第2の放電場形成面間の距離がギャップ長として規定され、
     前記放電場調整膜は、前記放電空間内において前記ギャップ長が短くなる方向に突出した少なくとも一つの突出部を有することを特徴とする、
    活性ガス生成装置。
    An active gas generator for generating an active gas obtained by activating a raw material gas supplied to a discharge space,
    a first electrode configuration portion having a first discharge field forming surface; and a second electrode configuration portion having a second discharge field forming surface, wherein the first and second electrode configuration portions The second discharge field forming surfaces are arranged to face each other,
    The first electrode configuration portion has a laminated structure of a first metal electrode and an electrode dielectric film, and in the first electrode configuration portion, the exposed surface on the electrode dielectric film side is the first becomes the discharge field forming surface of 1,
    The second electrode configuration portion has a laminated structure of a second metal electrode and a discharge field adjustment film, and the exposed surface of the second electrode configuration portion on the side of the discharge field adjustment film is exposed to the second discharge. It becomes a scene formation surface,
    an AC voltage is applied to one of the first and second metal electrodes, and the other metal electrode is set to a reference potential;
    A space between the electrode dielectric film and the discharge field adjustment film is defined as an electrode facing space,
    In the electrode facing space, a region where the first metal electrode and the second metal electrode overlap in plan view becomes the discharge space, and the first and second discharge field forming surfaces in the discharge space. is defined as the gap length, and the distance between
    The discharge field adjustment film has at least one projecting portion projecting in the direction in which the gap length is shortened in the discharge space,
    Active gas generator.
  2.  請求項1記載の活性ガス生成装置であって、
     前記電極対向空間は平面視して矩形状であり、
     前記電極対向空間は互いに対向する第1及び第2の側面を有し、前記第1及び第2の側面の間に前記放電空間が配置され、
     前記原料ガスは前記電極対向空間の前記第1の側面から供給され、
     前記活性ガスは前記電極対向空間の前記第2の側面から噴出され、前記第1の側面から前記第2の側面に向かう方向がガス流通方向として規定され、
     前記少なくとも一つの突出部は複数の突出部を含み、
     前記複数の突出部は前記ガス流通方向に沿って互いに離散して形成される、
    活性ガス生成装置。
    The active gas generator according to claim 1,
    The electrode facing space has a rectangular shape in plan view,
    the electrode facing space has first and second side surfaces facing each other, the discharge space being disposed between the first and second side surfaces;
    the raw material gas is supplied from the first side surface of the electrode-facing space;
    The active gas is ejected from the second side surface of the electrode facing space, and the direction from the first side surface to the second side surface is defined as the gas flow direction,
    the at least one protrusion comprises a plurality of protrusions;
    the plurality of protrusions are formed separately from each other along the direction of gas flow;
    Active gas generator.
  3.  請求項1記載の活性ガス生成装置であって、
     前記第1及び第2の電極構成部のうち、上方に位置する電極構成部が上方電極構成部として規定され、下方に位置する電極構成部が下方電極構成部として規定され、
     前記第1及び第2の金属電極のうち、上方に位置する金属電極が上方金属電極として規定され、下方に位置する金属電極が下方金属電極として規定され、
     前記電極用誘電体膜及び前記放電場調整膜のうち、上方に位置する膜が上方形成膜として規定され、下方に位置する膜が下方形成膜として規定され、
     前記上方金属電極に交流電圧が印加され、前記下方金属電極が基準電位に設定され、
     前記電極対向空間は外周面を有し、
     前記下方形成膜は少なくとも一つのガス噴出孔を有し、前記下方金属電極は開口領域を有し、前記少なくとも一つのガス噴出孔及び前記開口領域は平面視して重複し、
     前記原料ガスは前記電極対向空間の前記外周面から供給され、
     前記活性ガスは前記少なくとも一つのガス噴出孔及び前記開口領域を介して前記下方金属電極の下方に噴出され、前記外周面から前記少なくとも一つのガス噴出孔に至る方向がガス流通方向として規定され、
     前記少なくとも一つの突出部は複数の突出部を含み、
     前記複数の突出部は前記ガス流通方向に沿って互いに離散して形成される、
    活性ガス生成装置。
    The active gas generator according to claim 1,
    Among the first and second electrode configuration portions, the upper electrode configuration portion is defined as an upper electrode configuration portion, and the lower electrode configuration portion is defined as a lower electrode configuration portion,
    Of the first and second metal electrodes, the upper metal electrode is defined as an upper metal electrode, and the lower metal electrode is defined as a lower metal electrode,
    Among the electrode dielectric film and the discharge field adjustment film, the upper film is defined as an upper formation film, and the lower film is defined as a lower formation film,
    an alternating voltage is applied to the upper metal electrode and the lower metal electrode is set to a reference potential;
    The electrode facing space has an outer peripheral surface,
    the lower forming film has at least one gas ejection hole, the lower metal electrode has an opening area, the at least one gas ejection hole and the opening area overlap in plan view,
    the raw material gas is supplied from the outer peripheral surface of the electrode-facing space;
    The active gas is ejected below the lower metal electrode through the at least one gas ejection hole and the opening region, and the direction from the outer peripheral surface to the at least one gas ejection hole is defined as the gas flow direction,
    the at least one protrusion comprises a plurality of protrusions;
    the plurality of protrusions are formed separately from each other along the direction of gas flow;
    Active gas generator.
  4.  請求項3記載の活性ガス生成装置であって、
     前記第1の電極構成部は前記上方電極構成部であり、前記第2の電極構成部は前記下方電極構成部であり、
     前記第1の金属電極は前記上方金属電極であり、前記第2の金属電極は前記下方金属電極であり、
     前記電極用誘電体膜は前記上方形成膜であり、前記放電場調整膜は前記下方形成膜であり、
     前記電極用誘電体膜及び前記放電場調整膜は平面視して円状であり、前記電極対向空間は平面視して円状であり、
     前記少なくとも一つのガス噴出孔は前記放電場調整膜の中心位置に形成される中央ガス噴出孔を含み、
     前記原料ガスは前記電極対向空間の前記外周面から供給され、前記活性ガスは前記中央ガス噴出孔及び前記開口領域を介して前記第2の金属電極の下方に噴出される、
    活性ガス生成装置。
    The active gas generator according to claim 3,
    The first electrode configuration portion is the upper electrode configuration portion, the second electrode configuration portion is the lower electrode configuration portion,
    the first metal electrode is the upper metal electrode and the second metal electrode is the lower metal electrode;
    The electrode dielectric film is the upper formation film, the discharge field adjustment film is the lower formation film,
    The electrode dielectric film and the discharge field adjustment film are circular in plan view, and the electrode facing space is circular in plan view,
    the at least one gas ejection hole includes a central gas ejection hole formed at a center position of the discharge field adjustment film;
    The raw material gas is supplied from the outer peripheral surface of the electrode facing space, and the active gas is jetted downward from the second metal electrode through the central gas jetting hole and the opening region,
    Active gas generator.
  5.  請求項3記載の活性ガス生成装置であって、
     前記第1の電極構成部は前記上方電極構成部であり、前記第2の電極構成部は前記下方電極構成部であり、
     前記第1の金属電極は前記上方金属電極であり、前記第2の金属電極は前記下方金属電極であり、
     前記電極用誘電体膜は前記上方形成膜であり、前記放電場調整膜は前記下方形成膜であり、
     前記電極用誘電体膜及び前記放電場調整膜は平面視して矩形状であり、前記電極対向空間は平面視して矩形状であり、
     前記少なくとも一つのガス噴出孔は複数のガス噴出孔を含み、前記複数のガス噴出孔は噴出孔形成方向に沿って設けられ、
     前記電極対向空間は互いに対向する第1及び第2の側面を有し、前記第1の側面と前記複数のガス噴出孔との間及び前記第2の側面と前記複数のガス噴出孔との間それぞれに前記放電空間が配置され、前記外周面は前記第1及び第2の側面を含み、
     前記第1及び第2の側面が対向する方向が側面対向方向として規定され、前記噴出孔形成方向は前記側面対向方向と交差する方向であり、
     前記原料ガスは前記電極対向空間の前記第1及び第2の側面それぞれから供給され、前記活性ガスは前記複数のガス噴出孔及び前記開口領域を介して前記第2の金属電極の下方に噴出され、
     前記放電空間内において、前記第1の側面から前記複数のガス噴出孔に至る前記ガス流通方向に沿った第1のガス流通距離と、前記第2の側面から前記複数のガス噴出孔に至る前記ガス流通方向に沿った第2のガス流通距離とが等しい、
    活性ガス生成装置。
    The active gas generator according to claim 3,
    The first electrode configuration portion is the upper electrode configuration portion, the second electrode configuration portion is the lower electrode configuration portion,
    the first metal electrode is the upper metal electrode and the second metal electrode is the lower metal electrode;
    The electrode dielectric film is the upper formation film, the discharge field adjustment film is the lower formation film,
    The electrode dielectric film and the discharge field adjusting film are rectangular in plan view, and the electrode facing space is rectangular in plan view,
    the at least one gas ejection hole includes a plurality of gas ejection holes, and the plurality of gas ejection holes are provided along the ejection hole formation direction;
    The electrode facing space has first and second side surfaces facing each other, between the first side surface and the plurality of gas ejection holes and between the second side surface and the plurality of gas ejection holes. The discharge space is arranged respectively, the outer peripheral surface includes the first and second side surfaces,
    A direction in which the first and second side surfaces face each other is defined as a side facing direction, and the ejection hole forming direction is a direction intersecting the side facing direction,
    The raw material gas is supplied from each of the first and second side surfaces of the electrode facing space, and the active gas is ejected below the second metal electrode through the plurality of gas ejection holes and the opening area. ,
    In the discharge space, a first gas flow distance along the gas flow direction from the first side surface to the plurality of gas ejection holes, and a distance from the second side surface to the plurality of gas ejection holes. is equal to a second gas flow distance along the gas flow direction;
    Active gas generator.
  6.  請求項4または請求項5に記載の活性ガス生成装置であって、
     前記第1の電極構成部は、前記電極用誘電体膜の前記第1の金属電極の形成面上に設けられる補助導電膜をさらに含み、前記補助導電膜は前記第1の金属電極と電気的に独立して設けられ、かつ、前記基準電位に設定され、
     前記補助導電膜は前記少なくとも一つのガス噴出孔と平面視して重複していることを特徴とする、
    活性ガス生成装置。
    The active gas generator according to claim 4 or claim 5,
    The first electrode forming part further includes an auxiliary conductive film provided on the surface of the electrode dielectric film on which the first metal electrode is formed, and the auxiliary conductive film is electrically connected to the first metal electrode. and set to the reference potential,
    The auxiliary conductive film overlaps the at least one gas ejection hole in plan view,
    Active gas generator.
  7.  請求項1から請求項6のうち、いずれか1項に記載の活性ガス生成装置であって、
     前記放電場調整膜の前記少なくとも一つの突出部はそれぞれ前記第2の金属電極側に空洞領域を有する、
    活性ガス生成装置。
    The active gas generator according to any one of claims 1 to 6,
    each of the at least one protruding portion of the discharge field adjustment film has a hollow region on the side of the second metal electrode;
    Active gas generator.
  8.  請求項7記載の活性ガス生成装置であって、
     前記放電場調整膜は、絶縁体を構成材料とした放電場調整用絶縁膜と導電性を有する放電場調整用導電膜との積層構造であり、前記放電場調整用導電膜と前記第2の金属電極とが接触関係を有する、
    活性ガス生成装置。
    The active gas generator according to claim 7,
    The discharge field adjustment film has a laminated structure of a discharge field adjustment insulating film made of an insulator and a discharge field adjustment conductive film having electrical conductivity. having a contact relationship with the metal electrode;
    Active gas generator.
PCT/JP2021/045536 2021-12-10 2021-12-10 Active gas generation apparatus WO2023105753A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/045536 WO2023105753A1 (en) 2021-12-10 2021-12-10 Active gas generation apparatus
JP2022548153A JP7289608B1 (en) 2021-12-10 2021-12-10 Active gas generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045536 WO2023105753A1 (en) 2021-12-10 2021-12-10 Active gas generation apparatus

Publications (1)

Publication Number Publication Date
WO2023105753A1 true WO2023105753A1 (en) 2023-06-15

Family

ID=86721439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045536 WO2023105753A1 (en) 2021-12-10 2021-12-10 Active gas generation apparatus

Country Status (2)

Country Link
JP (1) JP7289608B1 (en)
WO (1) WO2023105753A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055678A1 (en) * 2003-12-08 2005-06-16 Ngk Insulators, Ltd. Plasma generating electrode, its manufacturing method, and plasma reactor
WO2019229873A1 (en) * 2018-05-30 2019-12-05 東芝三菱電機産業システム株式会社 Active gas generation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005055678A1 (en) * 2003-12-08 2005-06-16 Ngk Insulators, Ltd. Plasma generating electrode, its manufacturing method, and plasma reactor
WO2019229873A1 (en) * 2018-05-30 2019-12-05 東芝三菱電機産業システム株式会社 Active gas generation device

Also Published As

Publication number Publication date
JP7289608B1 (en) 2023-06-12
JPWO2023105753A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
JP6851706B2 (en) Inert gas generator
TWI750819B (en) Active gas generation apparatus
JP6858477B1 (en) Inert gas generator
KR102421455B1 (en) active gas generator
US10840065B2 (en) Active gas generation apparatus including a metal housing, first and second auxiliary members, and a housing contact
US20220223387A1 (en) High power electrostatic chuck with features preventing he hole light-up/arcing
US20110115363A1 (en) Electron emitter and field emission device provided with electron emitter
JP7289608B1 (en) Active gas generator
TW202225463A (en) Active gas generator
WO2019168273A1 (en) Ultraviolet light-emitting element
JPH0881205A (en) Ozone generator
US6559580B1 (en) Compact multistage spark gap switch
JP7305863B1 (en) gas generator
JP3116794B2 (en) High frequency ion source
JP7297399B1 (en) Active gas generator
WO2023248517A1 (en) Composite member
US20170267525A1 (en) Ozone generation apparatus
TWI533397B (en) A placing table of the plasma processing apparatus, and a corresponding plasma processing apparatus
CN113277479A (en) High-purity, high-concentration and miniaturized ozone generator applied to semiconductor
JP2006092787A (en) Discharge device having two dimensional array with dielectric barrier
JP2004234956A (en) Two dimensional array type dielectric barrier discharge device
TW200400781A (en) Atmospheric pressure plasma generator
JP2014185046A (en) Discharge element and method for manufacturing the same
JP2015118766A (en) Plasma generator
JPS59196546A (en) Electron beam device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022548153

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967247

Country of ref document: EP

Kind code of ref document: A1