JPS59196546A - Electron beam device - Google Patents

Electron beam device

Info

Publication number
JPS59196546A
JPS59196546A JP7171483A JP7171483A JPS59196546A JP S59196546 A JPS59196546 A JP S59196546A JP 7171483 A JP7171483 A JP 7171483A JP 7171483 A JP7171483 A JP 7171483A JP S59196546 A JPS59196546 A JP S59196546A
Authority
JP
Japan
Prior art keywords
shield electrode
insulator
electric field
cathode part
coaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7171483A
Other languages
Japanese (ja)
Inventor
Shigeru Yamaji
茂 山地
Atsushi Ueda
篤 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7171483A priority Critical patent/JPS59196546A/en
Publication of JPS59196546A publication Critical patent/JPS59196546A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To obtain a device having higher insulating performance by lowering the strength of an electric field of the triple junction part according to the shape of the contacting part of an insulator and a conductor. CONSTITUTION:The base of the cylindrical projecting part 20 provided on a shield electrode 2 is closely contacted with the base of the hollow part 30 (the surface of an insulator in the hollow part) while being composed in such measure as leaving a gap of an appropriate size on the part, in which the shield electrode 2 and an insulator 3 are facing, other than said closely contacted part. Thereby, there is no electric field accelerating electrons accelerated by an electric field Ea above the figure so that said electrons are puzzled near the triple junction part 10 thus generating the electric field in the opposite direction to the electric field Ea due to field-effect of said electrons so as no more to be able to generate electron avalanche while causing no creepage flush circuit.

Description

【発明の詳細な説明】 この発明は電子ビーム装置に関し、特に陰極部を保持す
る碍子の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron beam device, and particularly to the structure of an insulator that holds a cathode portion.

第1図は従来の電子ビーム装置の陰極部の構造を示す断
面図であり、図において(1)は陰極部、(2)は電界
緩和用のシールド電極、(3)は絶縁碍子、(4)は容
器、(5) 、 (6)はフランジ、(7)は真空空間
、(8)は絶縁媒体、(9)は止め具である。陰極部(
1)と容器(4)とは同軸円筒を構成し、(1)が内側
円筒、(2)が外側円筒となる。従って絶縁碍子(3)
の形状は同軸円錐となる。陰極部(11は電子ビーム発
生用の熱陰極、加熱電力供給用のリード線、ビーム電子
制御用のウェーネルト(Wehnelt electr
ode )などが配設され、負の極性の直流高電圧が加
えられる。容器(4)は接地されており、絶縁碍子(3
)はフランジ(5)。
Figure 1 is a cross-sectional view showing the structure of the cathode part of a conventional electron beam device. ) is a container, (5) and (6) are flanges, (7) is a vacuum space, (8) is an insulating medium, and (9) is a stopper. Cathode part (
1) and the container (4) constitute a coaxial cylinder, with (1) being the inner cylinder and (2) being the outer cylinder. Therefore, insulator (3)
The shape of is a coaxial cone. Cathode part (11 is a hot cathode for electron beam generation, a lead wire for heating power supply, and a Wehnelt electr for beam electronic control.
ode ), etc., and a negative polarity high DC voltage is applied. The container (4) is grounded and the insulator (3)
) is the flange (5).

(6)により容器(4)に固定され、その中心軸の穴に
ょつて熱陰極(1)とシールド電極(2)を保持しこれ
を止め具(9)によって固定する。陰極部(11中の熱
陰極等は第1図の上方の方に設けられていて図面には示
してないが、この熱陰極から発生した電子ビームは真空
空間(7)の中で第1図には示してない図の上方の方へ
放射される。絶縁媒体(8)は装置の容量及び構造に応
じて、真空、気体、液体等が用いられる。
(6) is fixed to the container (4), the hot cathode (1) and the shield electrode (2) are held through the hole in the central axis, and these are fixed by the fastener (9). The cathode section (the hot cathode etc. in 11 is provided in the upper part of Fig. 1 and is not shown in the drawing, but the electron beam generated from this hot cathode is in the vacuum space (7) as shown in Fig. 1). The insulating medium (8) may be a vacuum, gas, liquid, etc. depending on the capacity and structure of the device.

第2図は第1図の断面の右下部分の等電位線と電界強度
とを示す図であり、図において第1図と同一符号は同一
部分を示し、点線は等電位線、矢印を付した実線は矢印
の根元の点の電界強度である。陰極部(1)、シールド
電極(2)、容器(4)は導体であるので、導体の中は
等電位に保たれその表面は等電位面を形成する。シール
ド電極(2)の表面電位を1001容器(4)の表面電
位を0%とした等電位面(第2図に示す断面では等電位
線)のチで表わしである。電界強度は等電位線に対して
直角な方向への微小な距離変化に対応する電位変化の比
(すなわち電位傾度)であり、誘電体の中の電位傾度は
誘電率に逆比例することはよく知られているところであ
る。
Figure 2 is a diagram showing equipotential lines and electric field strength in the lower right part of the cross section of Figure 1. In the figure, the same symbols as in Figure 1 indicate the same parts, dotted lines are equipotential lines, and arrows are attached. The solid line is the electric field strength at the base of the arrow. Since the cathode part (1), the shield electrode (2), and the container (4) are conductors, the inside of the conductor is kept at an equal potential, and the surface thereof forms an equipotential surface. The surface potential of the shield electrode (2) is expressed by the equipotential surface (the equipotential line in the cross section shown in FIG. 2) with the surface potential of the 1001 container (4) set as 0%. Electric field strength is the ratio of potential change (i.e., potential gradient) corresponding to a minute distance change in the direction perpendicular to the equipotential lines, and it is often said that the potential gradient in a dielectric is inversely proportional to the permittivity. It is a well-known place.

第2図に示すような場合問題となるのは、p、14体と
、互に誘電率の異なる2種類の誘電体との接合点すなわ
ち、いわゆるトリプルジャンクション(triple 
junction )部で、第2図(10に示す点であ
る。トリプルジャンクション部00よりも陰極部+11
に近い部分ではシールド電#IL(2)からの電力線は
直接碍子(3)に入るから電界の強さは第2図Eb に
示すように比較的小さくなる。またトリプルジャンクシ
、ン部(10よりシールド電極(2)の外縁に近い部分
ではシールド電極(2)の形状によって等電位線が図に
示すようになり、電界の強さは第2図Ecに示すように
比較的小さくなる。これに対しトリプルジャンクション
部(10では電力線は極めて薄い真空層(低銹電率)を
経て碍子(高誘電率)に入るので、電位変化の相等大き
な部分がこの薄い真空層で発生し、碍子内の電位変化は
小さくなるの  。
In the case shown in Figure 2, the problem is the junction between the p,14 body and two types of dielectric materials with different permittivity, that is, the so-called triple junction.
This is the point shown in Figure 2 (10) at the cathode section +11 compared to the triple junction section 00.
Since the power line from the shield line #IL (2) directly enters the insulator (3) near the area, the strength of the electric field becomes relatively small as shown in Fig. 2Eb. Also, in the triple junction part (closer to the outer edge of the shield electrode (2) than 10), due to the shape of the shield electrode (2), the equipotential lines become as shown in the figure, and the electric field strength is as shown in Figure 2 Ec. On the other hand, in the triple junction section (10), the power line enters the insulator (high dielectric constant) through an extremely thin vacuum layer (low electric constant), so a relatively large portion of the potential change is caused by this thin layer. It occurs in a vacuum layer, and the potential change inside the insulator becomes smaller.

で、トリプルジャンクション部(11の電界は第2図E
a  に示すように大きくなる。捷だ、第2図Edに示
す部分では100 %と90%の等電位線間隔が最も小
さくなり、電界Ed は大きくなるが、真空中での電極
間耐圧は大きいので問題にならない。
The electric field at the triple junction (11) is shown in Figure 2E.
It becomes larger as shown in a. In the part shown in Fig. 2 Ed, the distance between the 100% and 90% equipotential lines is the smallest, and the electric field Ed becomes larger, but this is not a problem because the withstand voltage between the electrodes in vacuum is large.

さて、トリプルジャンクシ、ン部叫での電界Eが大きい
と、この近傍に存在する電子(高電界Eaにより電界放
射した電子、あるいは絶縁碍子(3)から蒸発して来た
電子、又は偏在電子など)は電界EIL  により充分
加速され、結果として電子なだれとなり、ついにはトリ
プルジャンクション部□0がら沿面閃絡に至らしめる。
Now, if the electric field E at the triple junction is large, the electrons existing in the vicinity (electrons emitted by the high electric field Ea, electrons evaporated from the insulator (3), or unevenly distributed electrons) etc.) are sufficiently accelerated by the electric field EIL, resulting in an electron avalanche, which eventually leads to creeping flash at the triple junction □0.

シールド電極(2)の径を大きくして電界Eaの強さを
低下しようとすると、シールド電極(2)の外縁と容器
(4)とが近くなりEd が大きくなり、シールド電極
(2)と容器(4)間で放電する。
If an attempt is made to reduce the strength of the electric field Ea by increasing the diameter of the shield electrode (2), the outer edge of the shield electrode (2) and the container (4) will become closer and Ed will increase, causing the shield electrode (2) and the container to (4) Discharge between.

従来の装置には上述のような欠点があり、この発明はこ
れらの欠点を除去するためになされたもので、トリプル
ジャンクシ、ン部の電界の強さを碍子と導体とが接触す
る部分の形状にょシ低下して、より高い絶縁性能をもつ
電子ビーム装置を提供することを目的としている。
The conventional device has the above-mentioned drawbacks, and the present invention was made to eliminate these drawbacks. The purpose of this invention is to provide an electron beam device with a reduced shape and higher insulation performance.

以下、図面についてこの発明の詳細な説明する。第3図
はこの発明の一実施例を示す断面図であり、第1図と同
一符号は同−又は相当部分を示し、翰はシールド電極(
2)に設けられた円筒状の突出部であり、(至)は絶縁
碍子(3)に設けられた円筒状の中空部である。突出部
翰の底面は中空部例の底面(中空部における碍子(3)
の表面)と密接し、かつこの密接部分以外の部分で、シ
ールド電1ffj1(2)と絶縁碍子(3)とが対向す
る部分には適当な寸法の間隙が残るような寸法に構成さ
れている。
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 3 is a sectional view showing an embodiment of the present invention, in which the same reference numerals as in FIG. 1 indicate the same or corresponding parts, and the shield electrode (
2) is a cylindrical protrusion provided in the insulator (3), and (to) is a cylindrical hollow portion provided in the insulator (3). The bottom surface of the protruding part is the bottom surface of the hollow part (insulator (3) in the hollow part).
(surface), and the dimensions are such that a gap of an appropriate size remains in the part other than this close contact part where the shield electric wire 1ffj1 (2) and the insulator (3) face each other. .

第4図は第3図の断面の一部における電界を示す図であ
るが、トリプルジャンクション部α0における電界の条
件は第2図の場合と実質的には同一であり、したがって
その電界強度Ea は第2図に示すEa  より低減さ
れることはない。しかし、絶縁碍子(3)に沿って沿面
1′71絡が起るためには、電界Ea によって加速さ
れた電子が絶縁碍子(3)に清って容器(4)まで到達
しなければならぬが、第3図に示す形状ではEaによっ
て加速された電子を上方(紙面上で)へ加速する電界は
存在しないので、この電子はトリプルジャンクション部
(10の近傍でとまってし1い、その電子の電界効果に
よって電界E8 に対し反対方向の電界が発生し、もは
や電子なだれを起すことができず、漕面閃粕は起らない
。また絶縁碍子(3)の内部での電界は、絶縁碍子(3
)の貫通絶縁破壊を起す値からは充分に小さな値に保た
れているので、貫通絶縁破壊が発生するおそれはない。
FIG. 4 is a diagram showing the electric field in a part of the cross section of FIG. 3, and the electric field conditions at the triple junction α0 are substantially the same as those in FIG. 2, so the electric field strength Ea is It will not be lower than Ea shown in FIG. However, in order for the creepage 1'71 circuit to occur along the insulator (3), the electrons accelerated by the electric field Ea must pass through the insulator (3) and reach the container (4). However, in the shape shown in Figure 3, there is no electric field that accelerates the electrons accelerated by Ea upwards (on the paper), so these electrons stop near the triple junction (10) and the electrons An electric field in the opposite direction to the electric field E8 is generated due to the electric field effect, and it is no longer possible to cause an electron avalanche, and no surface flashing occurs.Furthermore, the electric field inside the insulator (3) (3
) is kept at a sufficiently small value from the value that causes through-hole dielectric breakdown, so there is no risk of through-hole dielectric breakdown occurring.

以上のようにこの発明によれば、碍子の形状を変化する
ことによって、電子ビーム装置の絶縁性能を向上するこ
とができる。
As described above, according to the present invention, the insulation performance of the electron beam device can be improved by changing the shape of the insulator.

【図面の簡単な説明】[Brief explanation of the drawing]

納1図は従来の装置を示す断面図、第2図は第1図に示
す断面の一部分における等電位線と電界強度とを示す図
、第3図はこの発明の一実施例を示す断面図、第4図は
第3図に示す断面の一部分における電界強度を示す図で
ある。 (1)・・・陰極部、(2)・・・シールド電極、(3
)・・・絶縁碍子、(4)・・・容器、(7)・・・真
空空間、(10・・・トリプルジャンクション部、(イ
)・・・円部状の突出部、(ハ)・・・間隙、(ト)川
内筒状の中空部。 なお、各図中同一符号は同−又は相当部分を示す。 代理人大岩増雄 259− (’J 機 第4図
Figure 1 is a sectional view showing a conventional device, Figure 2 is a diagram showing equipotential lines and electric field strength in a part of the cross section shown in Figure 1, and Figure 3 is a sectional view showing an embodiment of the present invention. , FIG. 4 is a diagram showing the electric field strength in a part of the cross section shown in FIG. 3. (1)... Cathode part, (2)... Shield electrode, (3
)... Insulator, (4)... Container, (7)... Vacuum space, (10... Triple junction part, (A)... Circular protrusion, (C)... ... Gap, (G) Kawauchi's cylindrical hollow part. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa 259- ('J aircraft Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 電子ビームの放射源として負の直流高′亀圧が加えられ
ている円筒状陰極部と、この陰極部を内側円筒とする同
軸円筒の外(fi11円筒を構成して接地されている容
器と、上記陰極部を上記容器に保持するための同軸円錐
状の絶縁碍子と、この絶縁碍子が上記陰極部に接する近
傍における電位傾斜を緩和するために設けられる電界緩
和用のシールド電極とを備えた電子ビーム装置において
、上記シールド電極の上記絶縁碍子に対向する側に上記
陰極部の軸と同軸で上記陰極部の外径よシも大きな外径
を有する円錐状の突出部を設け、上記絶縁碍子の上記シ
ールド電極に対向する側に上記陰極部の軸と同軸で上記
円筒状の突出部の外径よりも大きな外径を有する円筒状
の中空部を設け、この円筒状の中空部の底面と上記シー
ルド電極の上記円筒状の突出部の底面とが密着し、この
密着部分以外の部分では上記シールド電極とこれに対向
する絶縁碍子との間には間隙が保たれるよう構成するこ
とを特徴とする電子ビーム装置。
A cylindrical cathode part to which a negative direct current high pressure is applied as an electron beam radiation source, a coaxial cylinder outside the coaxial cylinder with this cathode part as an inner cylinder (a grounded container constituting a fi11 cylinder, An electron device comprising: a coaxial conical insulator for holding the cathode part in the container; and a shield electrode for mitigating an electric field provided to relieve a potential gradient in the vicinity where the insulator contacts the cathode part. In the beam device, a conical protrusion that is coaxial with the axis of the cathode part and has a larger outer diameter than the outer diameter of the cathode part is provided on the side of the shield electrode facing the insulator, and A cylindrical hollow part that is coaxial with the axis of the cathode part and has a larger outer diameter than the outer diameter of the cylindrical protrusion is provided on the side facing the shield electrode, and the bottom surface of this cylindrical hollow part and the The shield electrode is configured so that the bottom surface of the cylindrical protrusion is in close contact with the bottom surface of the shield electrode, and a gap is maintained between the shield electrode and the insulator facing the shield electrode in a portion other than the contact portion. electron beam equipment.
JP7171483A 1983-04-22 1983-04-22 Electron beam device Pending JPS59196546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7171483A JPS59196546A (en) 1983-04-22 1983-04-22 Electron beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7171483A JPS59196546A (en) 1983-04-22 1983-04-22 Electron beam device

Publications (1)

Publication Number Publication Date
JPS59196546A true JPS59196546A (en) 1984-11-07

Family

ID=13468470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7171483A Pending JPS59196546A (en) 1983-04-22 1983-04-22 Electron beam device

Country Status (1)

Country Link
JP (1) JPS59196546A (en)

Similar Documents

Publication Publication Date Title
US4184188A (en) Substrate clamping technique in IC fabrication processes
US5511104A (en) X-ray tube
US4715054A (en) Plasma x-ray source
US3154711A (en) Electron beam focusing by means of contact differences of potential
US2557180A (en) Apparatus for coupling ultra high frequency systems
US2545120A (en) Cathode-ray tube arc-over preventive
US10349505B2 (en) High-voltage supply and an x-ray emitter having the high-voltage supply
US2460141A (en) Electric discharge device
US2421767A (en) Electrode structure
US4065690A (en) X-ray tube with a control grid
JPS59196546A (en) Electron beam device
US20240242918A1 (en) Structure for Particle Acceleration And Charged Particle Beam Apparatus
US4396861A (en) High voltage lead-through
US3363961A (en) Cathode arrangement of an electron microscope for reducing the occurrence of virtualcathodes
JPS59196545A (en) Electron beam device
US1927807A (en) Space discharge apparatus
JPS6328517Y2 (en)
JPS6023569B2 (en) gas insulated electrical equipment
US2992347A (en) Oscillation suppressor for electron guns
US2644101A (en) Anode insulating structure
US2803776A (en) Anode support
JPS60121619A (en) Dc insulated porcelain of electron beam device
US3215890A (en) Electron gun structure for producing an electron beam free of radial velocity components wherein the length of the first non-magnetic cylinder is approximately equal to an integral number of wave lengths of the scallop frequency
US2933635A (en) Vacuum-tight electrode lead-in assembly for mercury vapor rectifiers
US2927233A (en) Electrical apparatus