WO2005055678A1 - Plasma generating electrode, its manufacturing method, and plasma reactor - Google Patents

Plasma generating electrode, its manufacturing method, and plasma reactor Download PDF

Info

Publication number
WO2005055678A1
WO2005055678A1 PCT/JP2004/018287 JP2004018287W WO2005055678A1 WO 2005055678 A1 WO2005055678 A1 WO 2005055678A1 JP 2004018287 W JP2004018287 W JP 2004018287W WO 2005055678 A1 WO2005055678 A1 WO 2005055678A1
Authority
WO
WIPO (PCT)
Prior art keywords
concave
plasma
conductive film
electrode
ceramic
Prior art date
Application number
PCT/JP2004/018287
Other languages
French (fr)
Japanese (ja)
Inventor
Atsuo Kondo
Yasumasa Fujioka
Masaaki Masuda
Kenji Dosaka
Kazuhiro Kondo
Original Assignee
Ngk Insulators, Ltd.
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd., Honda Motor Co., Ltd. filed Critical Ngk Insulators, Ltd.
Priority to EP04819967A priority Critical patent/EP1701597B1/en
Priority to US10/581,748 priority patent/US20070119828A1/en
Priority to JP2005516027A priority patent/JPWO2005055678A1/en
Publication of WO2005055678A1 publication Critical patent/WO2005055678A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2418Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the electrodes being embedded in the dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0826Details relating to the shape of the electrodes essentially linear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0824Details relating to the shape of the electrodes
    • B01J2219/0835Details relating to the shape of the electrodes substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0883Gas-gas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/10Treatment of gases
    • H05H2245/17Exhaust gases

Definitions

  • Plasma generating electrode method for manufacturing the same, and plasma reactor
  • the present invention relates to a plasma generating electrode, a method for manufacturing the same, and a plasma reactor.
  • the present invention relates to a plasma generating electrode capable of generating high-density plasma having a high energy state, a method for manufacturing the same, and a plasma reactor.
  • a silent discharge is generated by disposing a dielectric between two electrodes whose both ends are fixed and applying a high-voltage alternating current or a periodic pulse voltage. It is known that radicals and ions are generated to promote the reaction and decomposition of gas.It is known that this can be used for removing harmful components contained in engine exhaust gas and various incinerator exhaust gas. You.
  • a plasma field for example, nitrogen oxide (NO) contained in the engine exhaust gas and various incinerator exhaust gas can be used.
  • a carbon reactor (PM) a plasma reactor equipped with a plasma generating electrode for treating hydrocarbons (HC), carbon monoxide (CO), and the like are disclosed. ).
  • Patent Document 1 The method for manufacturing a plasma reactor described in Patent Document 1 increases the residence time of harmful substances contained in exhaust gas! In order to activate the plasma reaction, it is described that an uneven surface is formed on the surface of the dielectric.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-286829
  • Patent Document 1 only describes a plasma reactor formed so that convex protrusions are scattered on the surface of a dielectric substance. Even when the projections are formed, there is a problem that the effect of the plasma reaction, which does not change much in the residence time of the exhaust gas, is hardly obtained.
  • the present invention has been made in view of the above-mentioned problems, and has a high energy density and a high density.
  • a plasma generating electrode capable of generating a high level of plasma
  • a method for manufacturing the same and a plasma reactor.
  • the present invention provides the following plasma generating electrode, a method for producing the same, and a plasma reactor.
  • a plasma generating electrode including two or more plate-shaped unit electrodes facing each other and capable of generating plasma by applying a voltage between the unit electrodes, wherein the plasma generating electrodes face each other.
  • a plate-shaped ceramic dielectric having a plurality of concave grooves and Z or a plurality of concaves formed on at least one surface of the unit electrode, and a conductive film disposed inside the ceramic dielectric When a voltage is applied between the unit electrodes!], The surface of the ceramic dielectric and the plurality of concave grooves and Z or the side surfaces of the plurality of concave portions.
  • a plasma generation electrode (hereinafter, referred to as a "first invention") capable of generating, near the edge portion, a plasma having a higher density than the plasma generated between the unit electrodes other than the vicinity of the edge portion. Door there is).
  • each of the plurality of grooves and Z or the plurality of recesses up to the surface force of the ceramic dielectric up to the plurality of the grooves and Z or the bottom of the plurality of recesses is: The plasma generating electrode according to any one of [1] to [3], wherein the average thickness of the ceramic dielectric is 1Z3 or less.
  • a method for manufacturing a plasma generating electrode comprising: two or more plate-shaped unit electrodes facing each other, and capable of generating plasma by applying a voltage between the unit electrodes.
  • the ceramic raw material is formed into a plate shape to obtain a plurality of unfired ceramic molded bodies, and a conductive film is formed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies.
  • a ceramic molded body having a conductive film provided thereon is obtained, and another unfired ceramic molded body is laminated on the obtained ceramic molded body provided with the conductive film so as to cover the conductive film.
  • a plurality of concave grooves and Z or a plurality of concave parts are formed on at least one surface of the obtained unit electrode precursor, and the plurality of concave grooves and Z are formed on at least one surface. Or a plurality of the recesses are formed
  • the obtained groove and Z or the unit electrode precursor with a concave portion is obtained, and the obtained groove and Z or the unit electrode precursor with a concave portion are fired, and a plurality of the concave grooves and the Z or Z or A unit electrode with a concave groove and a Z or a concave having a plate-shaped ceramic dielectric on which a plurality of the concaves are formed and the conductive film disposed inside the ceramic dielectric is obtained.
  • a method for manufacturing a plasma generating electrode comprising two or more plate-like unit electrodes facing each other, and capable of generating plasma by applying a voltage between the unit electrodes.
  • the ceramic raw material is formed into a plate shape to obtain a plurality of unfired ceramic molded bodies, and a plurality of recesses are formed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies.
  • a conductive film is disposed on the other surface to obtain a concave and groove or Z or a ceramic molded body provided with a conductive film with concave portions, and the obtained concave groove and Z or Z or The other unfired ceramic formed body is laminated on the ceramic formed body provided with the conductive film with concave portions so as to cover the conductive film, and A plurality of concave grooves and z or a plurality of concave parts formed on the other surface to obtain a concave groove and z or a unit electrode precursor with concave parts, and obtain the obtained concave groove and z or a unit electrode precursor with concave parts.
  • a method for manufacturing a plasma generating electrode comprising two or more plate-like unit electrodes facing each other, and capable of generating plasma by applying a voltage between the unit electrodes.
  • the ceramic raw material is formed into a plate shape to obtain a plurality of unfired ceramic molded bodies, and a conductive film is formed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies.
  • a ceramic molded body having a conductive film provided thereon is obtained, and another unfired ceramic molded body is laminated on the obtained ceramic molded body provided with the conductive film so as to cover the conductive film.
  • a plurality of grooves and Z or a plurality of recesses are formed on at least one surface thereof, and the plurality of unit electrodes are formed on at least one surface.
  • Groove and Z or multiple A concave groove and a Z or a unit electrode with a concave having the plate-shaped ceramic dielectric having the concave formed therein and the conductive film disposed inside the ceramic dielectric are obtained.
  • a method for manufacturing a plasma generating electrode in which a groove, a Z or a unit electrode with a concave portion is disposed as at least one of the unit electrodes hereinafter, may be referred to as a “fifth invention” t).
  • a method for manufacturing a plasma generating electrode comprising two or more plate-shaped unit electrodes facing each other, and capable of generating plasma by applying a voltage between the unit electrodes.
  • the ceramic raw material is formed into a plate shape to obtain a plurality of unfired ceramic molded bodies, and a film is formed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies.
  • a conductive film in which a plurality of voids penetrating in the thickness direction is formed is provided to obtain a ceramic molded body provided with a conductive film, and the obtained ceramic molded body provided with a conductive film is coated with the conductive film.
  • a plate-shaped ceramic dielectric having a plurality of recessed grooves and Z or a plurality of recesses corresponding to the shapes of the plurality of void portions of the conductive film on one surface; and a ceramic dielectric.
  • the plasma generation electrode and the plasma reactor of the present invention can generate high-energy, high-density plasma between unit electrodes facing each other. Further, the method for manufacturing a plasma generating electrode of the present invention can manufacture the above-described plasma generating electrode simply and at low cost.
  • FIG. 1 is a perspective view schematically showing one example of an embodiment of a plasma generating electrode according to the present invention (first invention).
  • FIG. 2 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
  • FIG. 3 (a) is an enlarged view of a groove in another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
  • FIG. 3 (b) is an enlarged view of a groove in another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
  • FIG. 3 (c) is an enlarged view of a groove in another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
  • FIG. 3 (d) is an enlarged view of a groove in another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
  • FIG. 4 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
  • FIG. 5 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
  • FIG. 6 schematically shows another example of one embodiment of the plasma generating electrode of the present invention (first invention). It is a perspective view shown typically.
  • FIG. 7 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode of the present invention (first invention).
  • FIG. 8 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode of the present invention (first invention).
  • FIG. 9 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode of the present invention (first invention).
  • FIG. 10 is a cross-sectional view schematically showing one embodiment of the plasma reactor of the present invention (second invention).
  • FIG. 11 is a schematic view showing an example of a plasma generating electrode according to the present invention (first invention). Explanation of symbols
  • FIG. 1 is a perspective view showing an example of one embodiment of the plasma generating electrode of the present invention
  • FIG. 2 shows another example of one embodiment of the plasma generating electrode of the present invention. It is a perspective view.
  • the plasma generating electrode 1 of the present embodiment includes two or more plate-shaped unit electrodes 2 facing each other, and a plasma is generated by applying a voltage between the unit electrodes 2.
  • a plurality of concave grooves 5 and Z or a plurality of concave portions 6 are formed on at least one surface of at least one of the unit electrodes 2 facing each other. It has a plate-shaped ceramic dielectric 3 and a conductive film 4 disposed inside the ceramic dielectric 3, and when a voltage is applied between the unit electrodes 2.
  • an edge portion 9 formed by the surface 21 of the ceramic dielectric 3 and the side surfaces 22 of the plurality of concave grooves 5 and the Z or the plurality of concave portions 6 is generated between the unit electrodes 2 other than the vicinity of the edge portion 9. It can generate high-density plasma with higher density than plasma.
  • the plasma generating electrode 1 shown in FIG. 1 has a plurality of concave grooves 5 formed on both surfaces 21 of the ceramic dielectric 3, and the plasma generating electrode 1 shown in FIG. 2 has both surfaces 21 of the ceramic dielectric 3. 21 has a plurality of recesses 6 formed therein. Since the plasma generating electrode 1 of the present embodiment generates high-density plasma near the edge portion 9 described above, a voltage is applied between the unit electrodes 2 at the edge portion 9. In this case, the structure is sharp enough to cause discharge concentration.
  • the discharge concentration occurs near the edge portion 9 formed by the surface 21 of the ceramic dielectric 3 and the side surfaces 22 of the plurality of concave grooves 5, so that the edge portion It is possible to generate plasma at a higher density than the plasma generated between the unit electrodes 2 other than near 9, for example, near the surface 21 of the ceramic dielectric 3.
  • plasma generation electrode 1 of the present embodiment plasma with lower energy and higher density can be generated.
  • the plasma generation electrode 1 of the present embodiment is a plasma reactor that reacts a gas containing a predetermined component, such as an exhaust gas treatment device that treats soot and nitric oxide contained in combustion exhaust gas, air, etc. Can be used as an ozonizer for purifying ozone by reacting oxygen contained in ozone.
  • a gas containing a predetermined component such as an exhaust gas treatment device that treats soot and nitric oxide contained in combustion exhaust gas, air, etc.
  • the shape of the plurality of concave grooves 5 and Z or the plurality of concave portions 6 is not particularly limited.
  • a plurality of substantially parallel concave grooves 5 may be formed on the surface 21.As shown in FIG. 2, a plurality of concave portions 6 are regularly formed on the surface 21 of the ceramic dielectric 3. May be done.
  • the shape of the opening of the concave portion 6 is a square, and the shape of the force opening indicating the plasma generating electrode 1 formed at equal intervals is shown in FIG.
  • the shape of the opening of the concave portion 6 may be a polygon other than a square, or may be a shape such as a circle or an ellipse.
  • a plurality of recesses 5 and Z or a plurality of recesses configured so that the side surfaces 22 of the plurality of recesses 6 are perpendicular to the surface 21 of the ceramic dielectric 3.
  • Force indicating groove 5 and Z or multiple concave portions 6 The shape of concave groove 5 or concave portion 6 in plasma generating electrode 1 of the present embodiment is not limited to this. a) —As shown in FIG. 3D, the side surfaces 22 of the plurality of concave grooves 5 and Z or the plurality of concave portions 6 are configured so as to have a predetermined angle with respect to the surface 21 of the ceramic dielectric 3. , You can. Specifically, as shown in FIGS.
  • FIGS. 3 (a) to 3 (d) are enlarged views in which the concave groove in another example of the embodiment of the plasma generating electrode according to the present invention (first invention) is enlarged.
  • 3 (a) to 3 (d) the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted. .
  • the width of the grooves 5 is reduced. , 10-5000 m. If the width of the concave groove 5 is less than 10 m, an enormous number of concave grooves will be formed in order to obtain the effect, and it may not be possible to manufacture at low cost. If the width of the groove 5 exceeds 5,000 m, the area of the surface 21 of the ceramic dielectric 3 (the area when the surface 21 of the ceramic dielectric 3 is a flat surface) is larger than the edge of the groove 5. The proportion of the part 9 decreases, and the proportion of high-density plasma generation also decreases, so there is a possibility that sufficient effects cannot be obtained.
  • the opening area of one recess 6 is 100-1 ⁇ It is preferably 10 8 / ⁇ 2 . If the opening area of the concave portion 6 is less than 100 m 2 , an enormous number of concave portions are formed in order to obtain the effect, and there is a possibility that the concave portion 6 cannot be manufactured at low cost. Also, the recess 6 If the opening area exceeds 1 ⁇ 10 8 / ⁇ m 2 , the edge portion of the recess 6 will be larger than the area of the surface 21 of the ceramic dielectric 3 (the area when the surface 21 of the ceramic dielectric 3 is flat). Therefore, the ratio of high-density plasma generation may also decrease, and a sufficient effect may not be obtained.
  • the plasma generating electrode 1 of the present embodiment generates high-density plasma in the vicinity of the edge portion 9 described above.
  • the edge portion 9 when the edge portion 9 is chamfered, the angular force 45-45 assumed by extending the surface 21 of the ceramic dielectric 3 and the side surfaces 22 of the plurality of concave grooves 5 and Z or the plurality of concave portions 6 is used.
  • the angle is preferably 135 degrees, more preferably 80 to 100 degrees.
  • the radius of curvature of the rounded portion is 1 ⁇ m to 100 mm.
  • the width of the C-shaped part i.e., the surface 21 of the ceramic dielectric 3 and the plurality of concave grooves 5 and Z or the plurality of concave parts on the C-removed surface It is preferable that the distance between the side face 22 and the side face 6 is 1 ⁇ m to 10 mm. With such a configuration, it is possible to cause discharge concentration effectively in the vicinity of the edge portion 9 and effectively generate high-density plasma.
  • the interval at which the plurality of concave grooves 5 are formed is not particularly limited.
  • the intervals at which the concave grooves 5 are formed may be made non-uniform.
  • the width of the concave groove 5 may be formed to be relatively narrow and spaced apart, or as shown in FIG. 6, the width of the concave groove 5 may be made relatively wide. May be formed. 4 to 6, the same components as those of the plasma generating electrode 1 shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
  • the plurality of grooves 5 and Z or the plurality of recesses 6 have an area with the surface 21 of the ceramic dielectric 3 as a plane. of Preferably, it is formed in a region corresponding to 20-80%. If the concave grooves 5 and Z or the concave portion 6 are formed in a region of less than 20% or more than 80% of the area of the ceramic dielectric 3 with the surface 21 as a plane, the concave portion occupying the surface 21 of the ceramic dielectric 3 is formed. The ratio of the edge portions 9 of the grooves 5 and Z or the concave portions 6 becomes small, and the high-density plasma generation region generated near the edge portions 9 described above decreases.
  • the depth from the surface of the ceramic dielectric 3 to the bottom surface of the concave groove 5 may be such that all the concave grooves 5 have the same depth.
  • each groove 5 may be formed to have a different depth.
  • the depth of the concave groove may be different for each ceramic dielectric.
  • the concave portion 6 is formed on the surface 21 of the ceramic dielectric 3, and even in this case, even at the depth from the surface of the unit electrode 2 to the bottom surface of the concave portion 6!
  • all the recesses 6 are formed to have the same depth! However, they may be formed to have different depths.
  • the direction in which the concave groove 5 is formed on the surface 21 of the ceramic dielectric 3 is not particularly limited, either, as shown in FIG.
  • a concave groove 5 may be formed along the flow direction of the fluid.
  • the concave groove 5 may be formed along a direction that intersects the direction in which the space for generating plasma penetrates. 8 the same reference numerals are given to the same components as those of the plasma generating electrode 1 shown in FIG. 1, and description thereof will be omitted.
  • the plasma generating electrode 1 of the present embodiment from the surface 21 of the ceramic dielectric 3 to the bottom of the plurality of concave grooves 5 and Z or the plurality of concave portions 6 Is preferably 3 to 200 m. If the depth of the concave grooves 5 and Z or the concave portions 6 is less than 3 m, the difference from the case where the surface 21 of the ceramic dielectric 3 is flat is reduced, and high-density plasma is generated near the edge portion 9 described above. May not be sufficiently effective. Further, when the depth of the concave grooves 5 and Z or the concave portion 6 exceeds 200 m, the mechanical strength of the ceramic dielectric 3 is reduced, and there is a possibility that breakage or the like may occur.
  • each depth force from the surface 21 of the dielectric 3 to the bottom of the plurality of grooves 5 and Z or the plurality of recesses 6 is preferably 1Z3 or less of the average value of the thickness of the ceramic dielectric 3. Better. If the average thickness of the ceramic dielectric 3 exceeds 1Z3, the mechanical strength of the ceramic dielectric 3 is reduced, and there is a possibility that the ceramic dielectric 3 may be damaged.
  • the average value of the thickness of the ceramic dielectric 3 described above is obtained, for example, by calculating the value of the total volume of the ceramic dielectric 3 on one surface of the ceramic dielectric 3, specifically, the surface 21 of the ceramic dielectric 3.
  • the ceramic dielectric 3 used in the plasma generating electrode 1 of the present embodiment is not particularly limited as long as it can be suitably used as a dielectric.
  • 3 is aluminum oxide, magnesium oxide, silicon oxide, silicon nitride, aluminum nitride, mullite, cordierite, magnesium calcium titanium-based oxide, norium-titanium-zinc-based oxide, and barium-titanium-based oxide It is preferable to contain at least one compound selected. By including such a compound, a ceramic dielectric 3 having excellent thermal shock resistance can be obtained.
  • the ceramic dielectric 3 used in the present embodiment can be formed using a tape-shaped unfired ceramic molded body, for example, a ceramic green sheet, or a sheet obtained by extrusion molding. Can also be formed. Further, it is also possible to use a flat plate produced by a powder dry press.
  • the surface of the ceramic dielectric 3 obtained by firing may be formed by machining, for example, slicing, die cutting, ultrasonic horn, or the like, or a ceramic green sheet (not yet fired).
  • the surface of the fired ceramic molded body may be formed by using a pressing die or the like corresponding to the shape of the concave groove 5 or the concave portion 6.
  • a ceramic green sheet having a plurality of holes formed by punching (hereinafter referred to as a punched ceramic green sheet) ) And a single ceramic green sheet (unfired ceramic molded body) formed by laminating a simple plate-shaped ceramic green sheet and having a plurality of recesses 6 formed on its surface. It can also be used. In the case where a plurality of recesses 6 are formed using such a punched ceramic green sheet, as described above, a laminate laminated with one or more plate-like ceramic green sheets may be used in advance.
  • the conductive film 4 is disposed on a mere plate-shaped ceramic green sheet, and the above-described punched ceramic green sheet or the punched ceramic green sheet is provided on the surface opposite to the surface on which the conductive film 4 is disposed. And a ceramic green sheet in which another plate-shaped ceramic green sheet is laminated. Furthermore, two plate-shaped ceramic green sheets are laminated so as to cover the conductive film 4, and a punched ceramic green sheet or the like is laminated on at least one of the surfaces opposite to the surface on which the conductive film 4 is provided. May be used. Further, as in the plasma generating electrode 1 shown in FIG.
  • the conductive film 4 is formed on the surface of the ceramic green sheet (unfired ceramic molded body) by forming a plurality of voids 10 penetrating in the film thickness direction.
  • a concave portion 6 corresponding to the shape of the void portion 10 may be formed by inserting a ceramic green sheet (unfired ceramic molded body) into the void portion 10 of the conductive film 4 provided and disposed.
  • FIG. 9 shows a state in which a plurality of recesses 6 are formed on the surface 21 of the ceramic dielectric 3, and the voids are formed so as to form a plurality of recesses 5 (see FIG. 1).
  • the part 10 may be formed in a groove shape.
  • the plasma generating electrode 1 shown in FIGS. 1 to 9 is one in which a plurality of concave grooves 5 and Z or a plurality of concave portions 6 are formed on both surfaces 21 of a plate-shaped ceramic dielectric 3.
  • the plurality of concave grooves 5 and Z or the plurality of concave portions 6 may be formed on at least one surface 21.
  • a plurality of grooves 5 and a plurality of Zs or a plurality of recesses 6 were formed on at least one surface 21 of both unit electrodes 2 facing each other.
  • the forces are not shown in the plasma generating electrodes of the present embodiment.
  • At least one of the opposing unit electrodes may have a plurality of concave grooves and Z or a plurality of concave portions formed on at least one surface thereof.
  • a conventionally known electrode such as a metal plate or the like can be suitably used as the other unit electrode facing the same.
  • the conductive film 4 forming the unit electrode 2 is a conductive film capable of generating plasma by applying a voltage between the unit electrodes 2.
  • a conductive film capable of generating plasma by applying a voltage between the unit electrodes 2.
  • it is not particularly limited, for example, at least one selected from the group consisting of tungsten, molybdenum, manganese, chromium, titanium, zirconium, nickel, iron, silver, copper, platinum, and palladium. It is preferable to include a metal of
  • the method for disposing the conductive film 4 is not particularly limited. However, it is preferable that the conductive film 4 is formed by coating the ceramic dielectric 3. Specific examples of suitable methods include, for example, screen printing, calender roll, spray, electrostatic coating, dip, knife coater, chemical vapor deposition, physical vapor deposition and the like. According to such a method, a thin conductive film 4 having excellent smoothness on the surface of the conductive film 4 after coating and having a small thickness can be easily formed.
  • the conductive film 4 preferably has a current-carrying part 11 partially covered with the ceramic dielectric 3 so that a voltage from outside the unit electrode 2 can be directly applied.
  • each of the unit electrodes 2 constituting the plasma generating electrode 1 of the present embodiment is held at least one end by a holding member 7.
  • the material of the holding member 7 is not particularly limited as long as it can hold the unit electrodes 2 at a predetermined interval, and the material is not particularly limited.
  • the holding member 7 preferably contains at least one compound selected from the group consisting of aluminum oxide, magnesium oxide, silicon oxide, silicon nitride, zirconia, mullite, cordierite, and crystallized glass. Further, it is preferable that the holding member 7 has electrical insulation properties from the viewpoint of preventing local creeping discharge.
  • the method of manufacturing a plasma generating electrode according to the present embodiment includes two or more plate-like unit electrodes facing each other, and applies a voltage between the unit electrodes to increase the plasma.
  • a method of manufacturing a plasma generating electrode capable of generating a ceramic comprising forming a plurality of unfired ceramic molded bodies by forming a ceramic raw material into a plate shape, and forming a plurality of obtained unfired ceramic molded bodies.
  • a conductive film is disposed on one surface of a predetermined unfired ceramic molded body to obtain a ceramic molded body provided with a conductive film, and the obtained ceramic molded body provided with a conductive film is coated with the conductive film.
  • Another unfired ceramic molded body is laminated to obtain a plate-shaped unit electrode precursor, and a plurality of grooves and Z or a plurality of recesses are formed on at least one surface of the obtained unit electrode precursor, Obtaining a groove and Z or a unit electrode precursor with a concave portion having a plurality of concave grooves and z or a plurality of concave portions formed on at least one surface, and firing the obtained groove and Z or a unit electrode precursor with a concave portion.
  • a plurality of unfired ceramic compacts to be a ceramic dielectric constituting a plasma generating electrode are formed.
  • Conventionally known ceramic green sheets can be suitably used for the plurality of green ceramic bodies.
  • a slurry is prepared by mixing an appropriate binder, a sintering aid, a plasticizer, a dispersant, an organic solvent, and the like with a predetermined ceramic powder.
  • a predetermined ceramic powder for example, powders of aluminum oxide, mullite, cordierite, silicon nitride, aluminum nitride and the like can be suitably used.
  • the sintering aid is preferably added in an amount of 3 to 10 parts by mass with respect to 100 parts by mass of the ceramic powder.
  • a plasticizer, a dispersant, and an organic solvent are preferably added to form a conventionally known ceramic green sheet.
  • the plasticizer, the dispersant, and the organic solvent used in the slurry can be suitably used.
  • This slurry may be in the form of a paste.
  • the obtained slurry is formed into a predetermined thickness according to a conventionally known method such as a doctor blade method, a calendar method, a printing method, a reverse roller coater method, etc.
  • An unfired ceramic compact is formed.
  • the unfired ceramic compact formed in this way is subjected to processing such as cutting, cutting, punching, formation of a communication hole, etc., or is integrally formed by laminating a plurality of unfired ceramic compacts by thermocompression bonding or the like. It may be used as a typical laminate.
  • the unfired ceramic molded body is formed into one ceramic dielectric by laminating and firing two or more sheets while sandwiching the conductive film. They may be formed in substantially the same size and thickness, or may be formed in different sizes and thicknesses.
  • a conductor paste for forming a conductive film is prepared.
  • This conductor paste can be obtained, for example, by mixing a molybdenum powder with a solvent such as a binder and terbineol and sufficiently mixing the mixture using a triroll mill. Note that an additive may be added to the conductor paste as necessary to improve the adhesion and sinterability with the unfired ceramic molded body.
  • the conductor paste thus obtained is provided on a surface of a predetermined green ceramic molded body among a plurality of green ceramic molded bodies by, for example, screen printing or the like to form a predetermined shape. Is formed to obtain a ceramic molded body provided with a conductive film.
  • the conductive film may be provided by a method such as calender roll, spray, electrostatic coating, dip, knife coater, chemical vapor deposition, or physical vapor deposition.
  • the ceramic molded body provided with the conductive film and the unfired ceramic molded body other than the predetermined green ceramic molded body are covered with the conductive film constituting the ceramic molded body provided with the conductive film.
  • a unit electrode precursor in which a conductive film is disposed it is preferable to laminate while pressing at a temperature of 100 ° C and a pressure of lOMPa.
  • a plurality of grooves and Z or a plurality of recesses are formed on at least one of the surfaces of the obtained unit electrode precursor, and the plurality of grooves and the Z or the plurality of recesses are formed on at least one surface.
  • a unit electrode precursor with the formed groove and Z or recess is obtained.
  • it can be formed on at least one surface of the unit electrode precursor using a pressing die or the like corresponding to the shape of the concave groove or the concave portion.
  • an unsintered ceramic molded body having a plurality of holes formed by punching is manufactured, and at least one surface of the unit electrode precursor is formed.
  • a fired ceramic molded body may be provided on at least one surface of the unit electrode precursor.
  • a method of forming a plurality of holes is particularly limited. However, for example, as disclosed in Japanese Patent Application Laid-Open No.
  • a punching die for punching includes a punch and a die for punching a material to be caroed, and a stripper for guiding the punch, as disclosed in JP-A-2003-145494.
  • the punch A punching die for simultaneous punching and lamination comprising adjusting means A for changing the relative position with respect to the stripper and adjusting means B for changing the gap between the die and the stripper at the time of punching is preferable.
  • a process is applied to a relatively soft unfired ceramic molded body constituting a unit electrode precursor before firing. Therefore, the operation of forming the concave groove and the Z or the concave portion can be easily performed.
  • the shape of the groove, Z, or recess to be formed may be the same as the shape of the groove, Z, or recess described in the embodiment of the plasma generating electrode of the first invention. preferable.
  • a concave groove and Z or a unit electrode precursor with a concave part having a plurality of concave grooves and Z or a plurality of concave parts formed on at least one surface are obtained, and the obtained concave groove and Z or concave part are obtained.
  • the unit electrode precursor with a part is fired to form a unit electrode with a concave groove and a z or a concave part.
  • the concave groove and the unit electrode with the Z or the concave portion serve as at least one of the unit electrodes constituting the plasma generating electrode.
  • a firing method performed when a general ceramic is manufactured can be suitably used.
  • a holding member for holding the unit electrodes constituting the plasma generating electrode at a predetermined interval is formed.
  • the method for forming the holding member is not particularly limited.
  • a mixed powder of a zirconium powder and an organic binder is subjected to die press molding. Thereafter, the holding member can be formed by calcining the binder, sintering it, and finishing the final dimensions by grinding if necessary.
  • the unit electrodes facing each other is held at a predetermined interval by the obtained holding member so that the obtained groove and the unit electrode with the Z or the concave are obtained. Then, a plasma generating electrode is manufactured.
  • all the unit electrodes facing each other may use a unit electrode with a concave groove and Z or a concave unit, and the unit electrode with a concave groove and Z or a concave unit may be only one of the unit electrodes facing each other and the other electrode.
  • the method of manufacturing a plasma generating electrode according to the present embodiment includes a plasma capable of generating plasma by providing two or more plate-shaped unit electrodes facing each other and applying a voltage between the unit electrodes.
  • a method for producing a generating electrode comprising forming a plurality of unfired ceramic formed bodies by forming a ceramic raw material into a plate shape, and forming a predetermined unfired ceramic formed body among the obtained plurality of unfired ceramic formed bodies.
  • a plurality of concave grooves and Z or a plurality of concave portions are formed on one surface, and a conductive film is disposed on the other surface to obtain a ceramic molded body provided with a concave groove and a Z or a concave conductive film.
  • Other unfired ceramic components so that the conductive film is covered
  • a unit electrode precursor with a plurality of grooves and z or a plurality of recesses formed on at least one surface to obtain a unit electrode precursor with a groove and a Z or a recess is obtained.
  • a plate-shaped ceramic dielectric in which a plurality of concave grooves and Z or a plurality of concave portions are formed on at least one surface by firing the unit electrode precursor, and a conductive film disposed inside the ceramic dielectric. And a unit electrode having a concave groove and a Z or a concave portion having the following structure, and the obtained unit electrode having the concave groove and a Z or a concave portion is disposed as at least one of the opposing unit electrodes constituting the plasma generating electrode.
  • a plurality of unfired ceramic molded bodies are obtained by the same method as in the above-described third embodiment.
  • a plurality of grooves and Z or a plurality of recesses are formed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies, and the other surface is formed on the other surface.
  • a plurality of concave grooves and Z or a plurality of concave parts are formed on at least one surface of the unit electrode precursor after obtaining the unit electrode precursor.
  • a plurality of concave grooves and Z or a plurality of concave portions are formed on the surface of the green ceramic molded body in a state of being formed.
  • a method similar to the method described in the embodiment of the third invention can be used, for example, corresponding to the shape of the concave groove or the concave portion.
  • a stamping die or the like or an unsintered ceramic formed body having a plurality of holes formed by punching, and the unsintered ceramic formed body having a plurality of holes formed therein may be formed into a plate-shaped unformed ceramic body. Grooves and recesses may be formed by laminating with the sintered ceramic molded body.
  • a conductive paste can be prepared by the method described in the third embodiment of the present invention, and can be disposed by the same method.
  • step of forming the plurality of concave grooves and Z or the plurality of concave parts, and the step of disposing the conductive film either of them may be performed first, or they may be performed simultaneously.
  • another unfired ceramic formed body is laminated on the ceramic formed body provided with the conductive film with the grooves and Z or the recesses obtained in this manner so as to cover the conductive film, and Both of which have a plurality of grooves and Z or a plurality of grooves formed with a plurality of recesses on one surface.
  • a unit electrode precursor with concave portions is obtained.
  • a groove having Z or a concave portion and a unit electrode precursor with a Z or a concave portion may be formed, or a plurality of concave grooves and Z may be formed on a surface opposite to a surface on which another unfired ceramic molded body is laminated.
  • the laminate is laminated as a concave groove having a plurality of concave portions and Z or an unsintered ceramic molded body with concave portions, and a concave groove having both concave surfaces and Z or concave portions formed on both surfaces thereof and a Z or a unit electrode precursor having concave portions. You may form! / ⁇ .
  • a plasma generating electrode is manufactured by the same method as the embodiment of the third invention. Can be. With this configuration, the plasma generating electrode 1 as shown in FIG. 1 can be manufactured simply and at low cost.
  • the method of manufacturing a plasma generating electrode according to the present embodiment includes a plasma capable of generating plasma by providing two or more plate-shaped unit electrodes facing each other and applying a voltage between the unit electrodes.
  • a method for producing a generating electrode comprising forming a plurality of unfired ceramic formed bodies by forming a ceramic raw material into a plate shape, and forming a predetermined unfired ceramic formed body among the obtained plurality of unfired ceramic formed bodies.
  • a conductive film is provided on one surface to obtain a ceramic body provided with a conductive film, and another unfired ceramic formed body is laminated on the obtained ceramic body provided with a conductive film so as to cover the conductive film.
  • firing the obtained unit electrode precursor forming a plurality of grooves and Z or a plurality of recesses on at least one surface thereof, and forming a plurality of Groove and Z or Is a concave groove and a Z having a plate-shaped ceramic dielectric in which a plurality of concave portions are formed, and a conductive film disposed inside the ceramic dielectric, or a unit electrode with a concave portion.
  • this is a manufacturing method in which a unit electrode with a concave portion is arranged as at least one of opposed unit electrodes constituting a plasma generating electrode.
  • the plasma generating electrode 1 as shown in FIG. 1 can be obtained simply and at low cost.
  • the manufacturing method according to the third embodiment of the present invention before firing the unit electrode precursor,
  • a plurality of concave grooves and Z or a plurality of concave portions In the fabrication method, after firing the unit electrode precursor, a plurality of grooves and on the surface thereof
  • the method of forming the plurality of grooves and the Z or the plurality of recesses is not particularly limited, but may be mechanical processing, for example, slicing, die slicing, sandblasting, or ultrasonic horn. And the like by way of example.
  • the manufacturing method according to the present embodiment except for the step of forming a plurality of grooves and Z or a plurality of recesses after firing the unit electrode precursor as described above, It can be realized by a method similar to the method described in the embodiment.
  • the shape of the groove and the Z or the concave portion to be formed may be the same as the shape of the groove and the Z or the concave portion described in the embodiment of the plasma generating electrode of the first invention. preferable.
  • the method of manufacturing a plasma generating electrode according to the present embodiment includes a plasma capable of generating plasma by providing two or more plate-shaped unit electrodes facing each other and applying a voltage between the unit electrodes.
  • a method for producing a generating electrode comprising forming a plurality of unfired ceramic formed bodies by forming a ceramic raw material into a plate shape, and forming a predetermined unfired ceramic formed body among the obtained plurality of unfired ceramic formed bodies.
  • a conductive film in which a plurality of voids penetrating in the film thickness direction is formed is provided to obtain a ceramic molded body provided with a conductive film.
  • Another unfired ceramic formed body is laminated so as to cover the film to obtain a plate-shaped unit electrode precursor, and the obtained unit electrode precursor is fired, and at least one surface has an unfired ceramic formed body.
  • the plasma generating electrode 1 as shown in FIG. 9 can be manufactured simply and at low cost.
  • a plurality of unfired ceramic molded bodies are manufactured in the same manner as in the above-described embodiment of the third invention. .
  • a conductive film having a plurality of voids penetrating in the thickness direction is provided on one surface of a predetermined unfired ceramic molded body among the plurality of obtained unfired ceramic molded bodies.
  • a ceramic molded body provided with a conductive film is produced.
  • the conductive film can be provided by a method such as screen printing, calender roll, spray, electrostatic coating, dip, knife coater, chemical vapor deposition, physical vapor deposition and the like.
  • a plurality of concave grooves and Z or a plurality of concave portions corresponding to the shape of the void portion of the conductive film can be formed on the surface of the molded unit electrode precursor.
  • the unit electrode precursor is baked by the same method as that of the embodiment of the method for manufacturing a plasma generating electrode according to the third invention, so that at least one surface 21 as shown in FIG.
  • a plasma generating electrode including a unit electrode 2 having a ceramic dielectric 3 in a shape and a conductive film 4 disposed inside the ceramic dielectric 3 can be manufactured.
  • FIG. 10 is a cross-sectional view schematically showing a configuration of the plasma reactor of the present embodiment.
  • the plasma reactor 20 of the present embodiment is different from the embodiment of the plasma generating electrode (plasma generating electrode 1) of the present invention shown in FIG. And a case body 12 having a gas flow path (gas flow path 13) containing gas therein, and when the gas is introduced into the gas flow path 13 of the case body 12, the plasma generated by the plasma generation electrode 1 is provided.
  • a predetermined component contained in the gas can react. Since the plasma reactor 20 according to the present embodiment includes the plasma generating electrode 1 according to the first embodiment of the present invention, high-density plasma can be generated.
  • case body 12 constituting plasma reactor 20 of the present embodiment is not particularly limited.
  • it has excellent conductivity, is lightweight and inexpensive, and is deformed by thermal expansion. It is preferable that ferrite stainless steel or the like be used.
  • the plasma reactor of the present embodiment may further include a power supply for applying a voltage to the plasma generation electrode.
  • a power supply for applying a voltage to the plasma generation electrode.
  • a conventionally known power source can be suitably used as long as it can supply a current capable of effectively generating plasma.
  • the power supply is a pulse power supply, and that the power supply has at least one SI thyristor therein. By using such a power supply, plasma can be generated more efficiently.
  • the plasma reactor of the present embodiment may have a configuration in which a current is supplied from an external power supply instead of the configuration including the power supply as described above.
  • the current supplied to the plasma generating electrode constituting the plasma reactor can be appropriately selected and determined depending on the intensity of the generated plasma.
  • the DC voltage supplied to the plasma generating electrode is lkV or more
  • the peak voltage is lkV or more
  • the number of pulses per second is 100.
  • the current be a pulse current having the above (100 Hz or more), an AC current having a peak voltage of lkV or more and a frequency of 100 or more (100 Hz or more), or a current obtained by superposing any two of them. With this configuration, plasma can be generated efficiently.
  • the plasma reactor of the present embodiment and the catalyst in combination in an exhaust form through which a gas that also discharges engine power of an automobile or the like passes, the nitrogen contained in the exhaust gas is reduced. It is possible to more effectively remove harmful substances such as dashi.
  • examples of the catalyst used with the plasma reactor of the present embodiment include platinum (Pt), palladium (Pd), rhodium (Rh), gold (Au), silver (Ag), Copper (Cu), iron (Fe), nickel (Ni), iridium (Ir), gallium (Ga), etc. can be selected from one or a combination of two or more, and these metals are supported on a porous carrier.
  • the catalyst constituted as described above can be suitably used.
  • a plasma reactor (Example 1) was manufactured by fabricating a plasma generation electrode ⁇ having a plasma generation electrode 1 disposed inside a case body having a gas flow path containing a predetermined component. .
  • the plasma generating electrode 1 used in the present embodiment has a ceramic dielectric 3 having a thickness of 1 mm, and a concave groove 5 having a width of 100 ⁇ m and a depth of 100 ⁇ m formed on each side of the surface of the ceramic dielectric 3. It was formed in a region corresponding to 50% of the area where the surface was flat.
  • the average value of the thickness of the ceramic dielectric 3 constituting the plasma generating electrode 1 used in the present embodiment is 0.9 mm.
  • Propane gas burner exhaust gas was passed through the plasma reactor of this example under the condition that the gas flow rate was 1. ONm 3 Zmin. Nitrogen monoxide contained in the exhaust gas was reduced to 82% by volume. Thus, the soot contained in the exhaust gas could be removed (oxidized) at a rate of 58% by mass.
  • a plasma generating electrode including a unit electrode including a plate-shaped ceramic dielectric having a flat surface and a conductive film disposed inside the ceramic dielectric is manufactured.
  • a plasma reactor (Comparative Example 1) was manufactured by disposing it inside a case body having a gas flow path containing a predetermined component. The thickness of the ceramic dielectric constituting the plasma generating electrode used in Comparative Example 1 was 1 mm.
  • a plasma generating electrode including a unit electrode having a conductive film disposed therein is manufactured, and the plasma generating electrode is disposed inside a case body having a gas flow path containing a predetermined component. Then, a plasma reactor (Comparative Example 1) was manufactured.
  • the thickness of the ceramic dielectric constituting the plasma generating electrode used in Comparative Example 2 was 1 mm, and the height of the protrusion was 100 / zm.
  • a catalyst was provided downstream of the plasma reactor of Example 1 to evaluate NO purification performance.
  • the catalyst is a cordierite obtained by impregnating commercially available 0-A1 O with 5% by mass of platinum (Pt).
  • the size of this catalyst is 1 inch (approx. 2.54 cm) in diameter and 60 mm long. Further, the ceramic honeycomb structure has 400 cells, and the thickness (rib thickness) of the partition partitioning the cells is 4 mil (about 0.1 mm).
  • the conditions for generating the plasma and the ventilation conditions for the exhaust gas are the same as those in the first embodiment.
  • a catalyst was provided downstream of the plasma reactor of Comparative Example 1, and the NO purification performance was evaluated.
  • the catalyst the same catalyst as used in Example 2 was used.
  • the conditions for generating plasma and the conditions for gas ventilation are the same as in Comparative Example 1.
  • Comparative Example 3 the NO contained in the exhaust gas was 65% by volume as NO and was not subjected to power purification.
  • the plasma generating electrode and the plasma reactor of the present invention can generate high-density plasma having a high energy state, a predetermined component contained in exhaust gas or the like can be generated. It can be suitably used for an exhaust gas processing device for processing. Further, the method for manufacturing a plasma generating electrode of the present invention can manufacture the above-described plasma generating electrode simply and at low cost.

Abstract

A plasma generating electrode (1) having two or more plate-shaped unit electrodes (2) opposed to each other and adapted to generate a plasma when a voltage is applied between the unit electrodes (2). At least one of the unit electrodes (2) includes a plate-shaped ceramic dielectric body (3) where at least one of the surfaces has grooves (5) and/or recesses and a conductive film (4) provided inside the ceramic dielectric body (3). When a voltage is applied between the unit electrodes (2), at edge potions (9) formed by the surface of the ceramic dielectric body (3) and the side surfaces of the grooves (5) and/or recesses, a plasma having a density higher than that of the plasma generated between the unit electrodes except for the edge portions (9) and its vicinities can be generated.

Description

明 細 書  Specification
プラズマ発生電極及びその製造方法、並びにプラズマ反応器  Plasma generating electrode, method for manufacturing the same, and plasma reactor
技術分野  Technical field
[0001] 本発明は、プラズマ発生電極及びその製造方法、並びにプラズマ反応器に関する The present invention relates to a plasma generating electrode, a method for manufacturing the same, and a plasma reactor.
。さらに詳しくは、エネルギー状態の高い高密度なプラズマを発生させることが可能 なプラズマ発生電極及びその製造方法、並びにプラズマ反応器に関する。 . More specifically, the present invention relates to a plasma generating electrode capable of generating high-density plasma having a high energy state, a method for manufacturing the same, and a plasma reactor.
背景技術  Background art
[0002] 二枚の両端を固定された電極間に誘電体を配置し高電圧の交流、あるいは周期パ ルス電圧をかけることにより、無声放電が発生し、これによりできるプラズマ場では活 性種、ラジカル、イオンが生成され、気体の反応、分解を促進することが知られており 、これをエンジン排気ガスや各種の焼却炉排気ガスに含まれる有害成分の除去に利 用できることが知られて 、る。  [0002] A silent discharge is generated by disposing a dielectric between two electrodes whose both ends are fixed and applying a high-voltage alternating current or a periodic pulse voltage. It is known that radicals and ions are generated to promote the reaction and decomposition of gas.It is known that this can be used for removing harmful components contained in engine exhaust gas and various incinerator exhaust gas. You.
[0003] 例えば、エンジン排気ガスや各種の焼却炉排気ガスを、プラズマ場内を通過させる こと〖こよって、このエンジン排気ガスや各種の焼却炉排気ガス中に含まれる、例えば 、窒素酸化物(NO )、カーボン微粒子(PM: Particulate Matter)、炭化水素(H C)、一酸化炭素 (CO)等を処理する、プラズマ発生電極を備えたプラズマ反応器等 が開示されている (例えば、特許文献 1参照)。  [0003] For example, by passing engine exhaust gas and various incinerator exhaust gas through a plasma field, for example, nitrogen oxide (NO) contained in the engine exhaust gas and various incinerator exhaust gas can be used. ), A carbon reactor (PM), a plasma reactor equipped with a plasma generating electrode for treating hydrocarbons (HC), carbon monoxide (CO), and the like are disclosed. ).
[0004] 特許文献 1に記載されたプラズマ反応器の製造方法には、排気ガスに含まれる有 害物質の滞留時間を増力!]させてプラズマ反応を活性化させるために、誘電体の表面 に凹凸面を形成することが記載されている。  [0004] The method for manufacturing a plasma reactor described in Patent Document 1 increases the residence time of harmful substances contained in exhaust gas! In order to activate the plasma reaction, it is described that an uneven surface is formed on the surface of the dielectric.
特許文献 1:特開 2003— 286829号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-286829
発明の開示  Disclosure of the invention
[0005] し力しながら、この特許文献 1には、誘電体の表面に凸状の突起が点在するように 形成されたプラズマ反応器についての記載しかされておらず、さらに、このような凸状 の突起を形成したとしても、実際には、排気ガスの滞留時間にあまり変化はなぐブラ ズマ反応の活性には、ほとんど効果を得られないという問題があった。  [0005] However, Patent Document 1 only describes a plasma reactor formed so that convex protrusions are scattered on the surface of a dielectric substance. Even when the projections are formed, there is a problem that the effect of the plasma reaction, which does not change much in the residence time of the exhaust gas, is hardly obtained.
[0006] 本発明は、上述した問題に鑑みてなされたものであり、エネルギー状態の高い高密 度なプラズマを発生させることが可能なプラズマ発生電極及びその製造方法、並び にプラズマ反応器を提供する。 [0006] The present invention has been made in view of the above-mentioned problems, and has a high energy density and a high density. Provided are a plasma generating electrode capable of generating a high level of plasma, a method for manufacturing the same, and a plasma reactor.
[0007] 本発明は、以下のプラズマ発生電極及びその製造方法、並びにプラズマ反応器を 提供するものである。  [0007] The present invention provides the following plasma generating electrode, a method for producing the same, and a plasma reactor.
[0008] [1]互いに対向する二つ以上の板状の単位電極を備え、前記単位電極相互間に 電圧を印加することによってプラズマを発生させることが可能なプラズマ発生電極で あって、互いに対向する前記単位電極のうちの少なくとも一方力 少なくとも一方の 表面に複数の凹溝及び Z又は複数の凹部が形成された板状のセラミック誘電体と、 前記セラミック誘電体の内部に配設された導電膜とを有してなり、前記単位電極相互 間に電圧を印力!]した際に、前記セラミック誘電体の表面と、複数の前記凹溝及び Z 又は複数の前記凹部の側面とによって構成されるエッジ部分近傍に、前記エッジ部 分近傍以外の前記単位電極相互間に発生するプラズマよりも密度の高いプラズマを 発生させることが可能なプラズマ発生電極 (以下、「第一の発明」 t 、うことがある)。  [1] A plasma generating electrode including two or more plate-shaped unit electrodes facing each other and capable of generating plasma by applying a voltage between the unit electrodes, wherein the plasma generating electrodes face each other. A plate-shaped ceramic dielectric having a plurality of concave grooves and Z or a plurality of concaves formed on at least one surface of the unit electrode, and a conductive film disposed inside the ceramic dielectric When a voltage is applied between the unit electrodes!], The surface of the ceramic dielectric and the plurality of concave grooves and Z or the side surfaces of the plurality of concave portions. A plasma generation electrode (hereinafter, referred to as a "first invention") capable of generating, near the edge portion, a plasma having a higher density than the plasma generated between the unit electrodes other than the vicinity of the edge portion. Door there is).
[0009] [2]複数の前記凹溝及び Z又は複数の前記凹部が、前記セラミック誘電体の表面 を平面とした面積の 20— 80%に相当する領域に形成されてなる前記 [ 1]に記載の プラズマ発生電極。 [2] The method according to [1], wherein the plurality of concave grooves and the Z or the plurality of concave portions are formed in a region corresponding to 20 to 80% of the area of the surface of the ceramic dielectric as a plane. The plasma generating electrode as described.
[0010] [3]複数の前記凹溝及び Z又は複数の前記凹部の、前記セラミック誘電体の表面 力 複数の前記凹溝及び Z又は複数の前記凹部の底部までのそれぞれの深さが、 [3] The depth of each of the plurality of grooves and Z or the plurality of recesses to the surface force of the ceramic dielectric up to the plurality of the grooves and Z or the bottom of the plurality of recesses is as follows:
3— 200/z mである前記 [1]又は [2]に記載のプラズマ発生電極。 The plasma generation electrode according to the above [1] or [2], which has a density of 3 to 200 / zm.
[0011] [4]複数の前記凹溝及び Z又は複数の前記凹部の、前記セラミック誘電体の表面 力 複数の前記凹溝及び Z又は複数の前記凹部の底部までのそれぞれの深さが、 前記セラミック誘電体の厚さの平均値の 1Z3以下である前記 [1]一 [3]の 、ずれか に記載のプラズマ発生電極。 [0011] [4] The depth of each of the plurality of grooves and Z or the plurality of recesses up to the surface force of the ceramic dielectric up to the plurality of the grooves and Z or the bottom of the plurality of recesses is: The plasma generating electrode according to any one of [1] to [3], wherein the average thickness of the ceramic dielectric is 1Z3 or less.
[0012] [5]前記 [1]一 [4]のいずれかに記載のプラズマ発生電極と、所定の成分を含むガ スの流路 (ガス流路)を内部に有するケース体とを備え、前記ガスが前記ケース体の 前記ガス流路に導入されたときに、前記プラズマ発生電極で発生したプラズマにより 前記ガスに含まれる前記所定の成分が反応することが可能なプラズマ反応器 (以下 、「第二の発明」ということがある)。 [0013] [6]前記プラズマ発生電極に電圧を印加するためのパルス電源をさらに備えた前 記 [5]に記載のプラズマ反応器。 [5] The plasma generating electrode according to any one of [1] to [4], and a case body having a gas flow path (gas flow path) containing a predetermined component therein, When the gas is introduced into the gas flow path of the case body, the plasma generated by the plasma generation electrode allows the predetermined component contained in the gas to react with the plasma reactor (hereinafter, referred to as “ Second invention "). [6] The plasma reactor according to the above [5], further comprising a pulse power supply for applying a voltage to the plasma generating electrode.
[0014] [7]前記パルス電源力 その内部に少なくとも一つの SIサイリスタを有する前記 [6] に記載のプラズマ反応器。  [7] The plasma reactor according to [6], wherein the pulse power supply has at least one SI thyristor therein.
[0015] [8]互いに対向する二つ以上の板状の単位電極を備え、前記単位電極相互間に 電圧を印加することによってプラズマを発生させることが可能なプラズマ発生電極の 製造方法であって、セラミック原料を板状に成形して複数の未焼成セラミック成形体 を得、得られた複数の前記未焼成セラミック成形体のうち所定の前記未焼成セラミツ ク成形体の一方の表面に導電膜を配設して導電膜配設セラミック成形体を得、得ら れた前記導電膜配設セラミック成形体に、前記導電膜を被覆するように他の前記未 焼成セラミック成形体を積層して板状の単位電極前駆体を得、得られた前記単位電 極前駆体の少なくとも一方の表面に複数の凹溝及び Z又は複数の凹部を形成して、 少なくとも一方の表面に複数の前記凹溝及び Z又は複数の前記凹部が形成された 凹溝及び Z又は凹部付き単位電極前駆体を得、得られた前記凹溝及び Z又は凹部 付き単位電極前駆体を焼成して、少なくとも一方の表面に複数の前記凹溝及び Z又 は複数の前記凹部が形成された板状のセラミック誘電体と、前記セラミック誘電体の 内部に配設された前記導電膜とを有する凹溝及び Z又は凹部付き単位電極を得、 得られた前記凹溝及び Z又は凹部付き単位電極を、前記単位電極の少なくとも一方 として配置するプラズマ発生電極の製造方法。(以下、「第三の発明」ということがある [8] A method for manufacturing a plasma generating electrode, comprising: two or more plate-shaped unit electrodes facing each other, and capable of generating plasma by applying a voltage between the unit electrodes. The ceramic raw material is formed into a plate shape to obtain a plurality of unfired ceramic molded bodies, and a conductive film is formed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies. A ceramic molded body having a conductive film provided thereon is obtained, and another unfired ceramic molded body is laminated on the obtained ceramic molded body provided with the conductive film so as to cover the conductive film. A plurality of concave grooves and Z or a plurality of concave parts are formed on at least one surface of the obtained unit electrode precursor, and the plurality of concave grooves and Z are formed on at least one surface. Or a plurality of the recesses are formed The obtained groove and Z or the unit electrode precursor with a concave portion is obtained, and the obtained groove and Z or the unit electrode precursor with a concave portion are fired, and a plurality of the concave grooves and the Z or Z or A unit electrode with a concave groove and a Z or a concave having a plate-shaped ceramic dielectric on which a plurality of the concaves are formed and the conductive film disposed inside the ceramic dielectric is obtained. A method for producing a plasma generating electrode, wherein a unit electrode having a groove, a Z or a concave portion is disposed as at least one of the unit electrodes. (Hereinafter sometimes referred to as "third invention"
) o ) o
[0016] [9]互いに対向する二つ以上の板状の単位電極を備え、前記単位電極相互間に 電圧を印加することによってプラズマを発生させることが可能なプラズマ発生電極の 製造方法であって、セラミック原料を板状に成形して複数の未焼成セラミック成形体 を得、得られた複数の前記未焼成セラミック成形体のうち所定の前記未焼成セラミツ ク成形体の一方の表面に複数の凹溝及び Z又は複数の凹部を形成するとともに、他 方の表面に導電膜を配設して凹溝及び Z又は凹部付き導電膜配設セラミック成形 体を得、得られた前記凹溝及び Z又は凹部付き導電膜配設セラミック成形体に、前 記導電膜を被覆するように他の前記未焼成セラミック成形体を積層して、少なくとも一 方の表面に複数の前記凹溝及び z又は複数の前記凹部が形成された凹溝及び z 又は凹部付き単位電極前駆体を得、得られた前記凹溝及び z又は凹部付き単位電 極前駆体を焼成して、少なくとも一方の表面に複数の前記凹溝及び Z又は複数の 前記凹部が形成された板状のセラミック誘電体と、前記セラミック誘電体の内部に配 設された前記導電膜とを有する凹溝及び Z又は凹部付き単位電極を得、得られた前 記凹溝及び Z又は凹部付き単位電極を、前記単位電極の少なくとも一方として配置 するプラズマ発生電極の製造方法 (以下、「第四の発明」ということがある)。 [9] A method for manufacturing a plasma generating electrode comprising two or more plate-like unit electrodes facing each other, and capable of generating plasma by applying a voltage between the unit electrodes. The ceramic raw material is formed into a plate shape to obtain a plurality of unfired ceramic molded bodies, and a plurality of recesses are formed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies. While forming a groove and Z or a plurality of concave portions, a conductive film is disposed on the other surface to obtain a concave and groove or Z or a ceramic molded body provided with a conductive film with concave portions, and the obtained concave groove and Z or Z or The other unfired ceramic formed body is laminated on the ceramic formed body provided with the conductive film with concave portions so as to cover the conductive film, and A plurality of concave grooves and z or a plurality of concave parts formed on the other surface to obtain a concave groove and z or a unit electrode precursor with concave parts, and obtain the obtained concave groove and z or a unit electrode precursor with concave parts. By firing a plate-shaped ceramic dielectric having at least one surface formed with the plurality of concave grooves and the Z or the plurality of concave portions, and the conductive film disposed inside the ceramic dielectric. A method of manufacturing a plasma generating electrode in which a unit electrode having a concave groove and Z or a concave portion having the concave groove and Z or a unit electrode having the concave portion is disposed as at least one of the unit electrodes. Invention ").
[0017] [10]互いに対向する二つ以上の板状の単位電極を備え、前記単位電極相互間に 電圧を印加することによってプラズマを発生させることが可能なプラズマ発生電極の 製造方法であって、セラミック原料を板状に成形して複数の未焼成セラミック成形体 を得、得られた複数の前記未焼成セラミック成形体のうち所定の前記未焼成セラミツ ク成形体の一方の表面に導電膜を配設して導電膜配設セラミック成形体を得、得ら れた前記導電膜配設セラミック成形体に、前記導電膜を被覆するように他の前記未 焼成セラミック成形体を積層して板状の単位電極前駆体を得、得られた前記単位電 極前駆体を焼成した後にその少なくとも一方の表面に複数の凹溝及び Z又は複数 の凹部を形成して、少なくとも一方の表面に複数の前記凹溝及び Z又は複数の前記 凹部が形成された板状のセラミック誘電体と、前記セラミック誘電体の内部に配設さ れた前記導電膜とを有する凹溝及び Z又は凹部付き単位電極を得、得られた前記 凹溝及び Z又は凹部付き単位電極を、前記単位電極の少なくとも一方として配置す るプラズマ発生電極の製造方法 (以下、「第五の発明」 t 、うことがある)。  [10] A method for manufacturing a plasma generating electrode comprising two or more plate-like unit electrodes facing each other, and capable of generating plasma by applying a voltage between the unit electrodes. The ceramic raw material is formed into a plate shape to obtain a plurality of unfired ceramic molded bodies, and a conductive film is formed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies. A ceramic molded body having a conductive film provided thereon is obtained, and another unfired ceramic molded body is laminated on the obtained ceramic molded body provided with the conductive film so as to cover the conductive film. After sintering the obtained unit electrode precursor, a plurality of grooves and Z or a plurality of recesses are formed on at least one surface thereof, and the plurality of unit electrodes are formed on at least one surface. Groove and Z or multiple A concave groove and a Z or a unit electrode with a concave having the plate-shaped ceramic dielectric having the concave formed therein and the conductive film disposed inside the ceramic dielectric are obtained. A method for manufacturing a plasma generating electrode in which a groove, a Z or a unit electrode with a concave portion is disposed as at least one of the unit electrodes (hereinafter, may be referred to as a “fifth invention” t).
[0018] [11]互いに対向する二つ以上の板状の単位電極を備え、前記単位電極相互間に 電圧を印加することによってプラズマを発生させることが可能なプラズマ発生電極の 製造方法であって、セラミック原料を板状に成形して複数の未焼成セラミック成形体 を得、得られた複数の前記未焼成セラミック成形体のうち所定の前記未焼成セラミツ ク成形体の一方の表面に、その膜厚方向に貫通した複数の空隙部が形成された導 電膜を配設して導電膜配設セラミック成形体を得、得られた前記導電膜配設セラミツ ク成形体に、前記導電膜を被覆するように他の前記未焼成セラミック成形体を積層し て板状の単位電極前駆体を得、得られた前記単位電極前駆体を焼成して、少なくと も一方の表面に、前記導電膜の複数の前記空隙部の形状に対応した複数の前記凹 溝及び Z又は複数の前記凹部が形成された板状のセラミック誘電体と、前記セラミツ ク誘電体の内部に配設された前記導電膜とを有する凹溝及び Z又は凹部付き単位 電極を得、得られた前記凹溝及び Z又は凹部付き単位電極を、前記単位電極の少 なくとも一方として配置するプラズマ発生電極の製造方法 (以下、「第六の発明」とい うことがある)。 [11] A method for manufacturing a plasma generating electrode, comprising two or more plate-shaped unit electrodes facing each other, and capable of generating plasma by applying a voltage between the unit electrodes. The ceramic raw material is formed into a plate shape to obtain a plurality of unfired ceramic molded bodies, and a film is formed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies. A conductive film in which a plurality of voids penetrating in the thickness direction is formed is provided to obtain a ceramic molded body provided with a conductive film, and the obtained ceramic molded body provided with a conductive film is coated with the conductive film. By laminating the other unfired ceramic molded bodies so as to obtain a plate-shaped unit electrode precursor, and firing the obtained unit electrode precursor, at least A plate-shaped ceramic dielectric having a plurality of recessed grooves and Z or a plurality of recesses corresponding to the shapes of the plurality of void portions of the conductive film on one surface; and a ceramic dielectric. Obtaining a unit electrode with a concave groove and Z or a concave portion having the conductive film disposed therein, and arranging the obtained unit electrode with the concave groove and Z or a concave portion as at least one of the unit electrodes. A method for manufacturing a plasma generating electrode (hereinafter, may be referred to as a "sixth invention").
[0019] 本発明のプラズマ発生電極及びプラズマ反応器は、対向する単位電極相互間に、 エネルギー状態の高い高密度なプラズマを発生させることができる。また、本発明の プラズマ発生電極の製造方法は、簡便かつ低コストに上述したプラズマ発生電極を 製造することができる。  The plasma generation electrode and the plasma reactor of the present invention can generate high-energy, high-density plasma between unit electrodes facing each other. Further, the method for manufacturing a plasma generating electrode of the present invention can manufacture the above-described plasma generating electrode simply and at low cost.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の一例を模式的 に示す斜視図である。  FIG. 1 is a perspective view schematically showing one example of an embodiment of a plasma generating electrode according to the present invention (first invention).
[図 2]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例を模式 的に示す斜視図である。  FIG. 2 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
[図 3(a)]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例にお ける凹溝を拡大した拡大図である。  FIG. 3 (a) is an enlarged view of a groove in another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
[図 3(b)]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例にお ける凹溝を拡大した拡大図である。  FIG. 3 (b) is an enlarged view of a groove in another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
[図 3(c)]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例にお ける凹溝を拡大した拡大図である。  FIG. 3 (c) is an enlarged view of a groove in another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
[図 3(d)]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例にお ける凹溝を拡大した拡大図である。  FIG. 3 (d) is an enlarged view of a groove in another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
[図 4]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例を模式 的に示す斜視図である。  FIG. 4 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
[図 5]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例を模式 的に示す斜視図である。  FIG. 5 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode according to the present invention (first invention).
[図 6]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例を模式 的に示す斜視図である。 FIG. 6 schematically shows another example of one embodiment of the plasma generating electrode of the present invention (first invention). It is a perspective view shown typically.
[図 7]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例を模式 的に示す斜視図である。  FIG. 7 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode of the present invention (first invention).
[図 8]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例を模式 的に示す斜視図である。  FIG. 8 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode of the present invention (first invention).
[図 9]本発明(第一の発明)のプラズマ発生電極の一の実施の形態の他の例を模式 的に示す斜視図である。  FIG. 9 is a perspective view schematically showing another example of one embodiment of the plasma generating electrode of the present invention (first invention).
[図 10]本発明(第二の発明)のプラズマ反応器の一の実施の形態を模式的に示す断 面図である。  FIG. 10 is a cross-sectional view schematically showing one embodiment of the plasma reactor of the present invention (second invention).
[図 11]本発明(第一の発明)のプラズマ発生電極の実施例を示す模式図である。 符号の説明  FIG. 11 is a schematic view showing an example of a plasma generating electrode according to the present invention (first invention). Explanation of symbols
[0021] 1…プラズマ発生電極、 2…単位電極、 3…セラミック誘電体、 4…導電膜、 5…凹溝、 6…凹部、 7…保持部材、 9…エッジ部分、 10· ··空隙部、 11…通電部、 12…ケース 体、 13· ··ガス流路、 20…プラズマ反応器、 21· ··表面 (セラミック誘電体の表面)、 22 • · '側面(凹溝及び Z又は凹部の側面)。  [0021] 1 ... Plasma generating electrode, 2 ... Unit electrode, 3 ... Ceramic dielectric, 4 ... Conducting film, 5 ... Concave groove, 6 ... Concave, 7 ... Holding member, 9 ... Edge portion, 10 ... Void portion , 11 ... energized part, 12 ... case body, 13 ... gas flow path, 20 ... plasma reactor, 21 ... surface (surface of ceramic dielectric), 22 • ... 'side surface (concave groove and Z or concave part) Side).
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明のプラズマ発生電極及びその製造方法、並びにプラズマ反応器の実 施の形態について詳細に説明するが、本発明は、これに限定されて解釈されるもの ではなぐ本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種 々の変更、修正、改良をカ卩ぇ得るものである。  Hereinafter, embodiments of the plasma generating electrode and the method of manufacturing the same and the plasma reactor according to the present invention will be described in detail. However, the present invention is not to be construed as being limited thereto. Various changes, modifications, and improvements may be made based on the knowledge of those skilled in the art without departing from the scope.
[0023] 図 1は、本発明のプラズマ発生電極の一の実施の形態の一例を示す斜視図であり 、図 2は、本発明のプラズマ発生電極の一の実施の形態の他の例を示す斜視図であ る。図 1及び図 2に示すように、本実施の形態のプラズマ発生電極 1は、互いに対向 する二つ以上の板状の単位電極 2を備え、単位電極 2相互間に電圧を印加すること によってプラズマを発生させることが可能なプラズマ発生電極 1であって、互いに対 向する単位電極 2のうちの少なくとも一方力 少なくとも一方の表面に複数の凹溝 5及 び Z又は複数の凹部 6が形成された板状のセラミック誘電体 3と、セラミック誘電体 3 の内部に配設された導電膜 4とを有してなり、単位電極 2相互間に電圧を印カロした際 に、セラミック誘電体 3の表面 21と、複数の凹溝 5及び Z又は複数の凹部 6の側面 22 とによって構成されるエッジ部分 9に、エッジ部分 9近傍以外の単位電極 2相互間に 発生するプラズマよりも密度の高い高密度なプラズマを発生させることが可能なもの である。図 1示すプラズマ発生電極 1は、セラミック誘電体 3の両方の表面 21に複数 の凹溝 5が形成されたものであり、図 2に示すプラズマ発生電極 1は、セラミック誘電 体 3の両方の表面 21に複数の凹部 6が形成されたものである。なお、本実施の形態 のプラズマ発生電極 1は、上述したエッジ部分 9近傍に、高密度のプラズマを発生さ せるものであるため、このエッジ部分 9は、単位電極 2相互間に電圧を印加した際に 放電集中が起こる程度に鋭く構成されている。 FIG. 1 is a perspective view showing an example of one embodiment of the plasma generating electrode of the present invention, and FIG. 2 shows another example of one embodiment of the plasma generating electrode of the present invention. It is a perspective view. As shown in FIGS. 1 and 2, the plasma generating electrode 1 of the present embodiment includes two or more plate-shaped unit electrodes 2 facing each other, and a plasma is generated by applying a voltage between the unit electrodes 2. A plurality of concave grooves 5 and Z or a plurality of concave portions 6 are formed on at least one surface of at least one of the unit electrodes 2 facing each other. It has a plate-shaped ceramic dielectric 3 and a conductive film 4 disposed inside the ceramic dielectric 3, and when a voltage is applied between the unit electrodes 2. In addition, an edge portion 9 formed by the surface 21 of the ceramic dielectric 3 and the side surfaces 22 of the plurality of concave grooves 5 and the Z or the plurality of concave portions 6 is generated between the unit electrodes 2 other than the vicinity of the edge portion 9. It can generate high-density plasma with higher density than plasma. The plasma generating electrode 1 shown in FIG. 1 has a plurality of concave grooves 5 formed on both surfaces 21 of the ceramic dielectric 3, and the plasma generating electrode 1 shown in FIG. 2 has both surfaces 21 of the ceramic dielectric 3. 21 has a plurality of recesses 6 formed therein. Since the plasma generating electrode 1 of the present embodiment generates high-density plasma near the edge portion 9 described above, a voltage is applied between the unit electrodes 2 at the edge portion 9. In this case, the structure is sharp enough to cause discharge concentration.
[0024] 単位電極 2相互間に所定の電圧を印加すると、対向する単位電極 2を構成するそ れぞれのセラミック誘電体 3の間に放電が起こり、プラズマが発生する。図 1に示すプ ラズマ発生電極 1は、セラミック誘電体 3の表面 21と、複数の凹溝 5の側面 22とによつ て構成されるエッジ部分 9近傍に、放電集中が起こるため、エッジ部分 9近傍以外の 単位電極 2相互間、例えば、セラミック誘電体 3の表面 21近傍に発生するプラズマよ りも高密度のプラズマを発生させることができる。このように、本実施の形態のプラズ マ発生電極 1によれば、より低エネルギーで高 ヽ密度のプラズマを発生させることが できる。また、図 2に示すプラズマ発生電極 1にょうに、互いに対向する単位電極 2を 構成するセラミック誘電体 3の表面 21に複数の凹部 6が形成されている場合にも同様 である。本実施の形態のプラズマ発生電極 1は、所定の成分を含むガスを反応させる プラズマ反応器、例えば、燃焼排気ガスに含まれる煤や一酸化窒素等を処理する排 気ガス処理装置や、空気等に含まれる酸素を反応させてオゾンを精製するォゾナイ ザ等に用いることができる。 When a predetermined voltage is applied between the unit electrodes 2, a discharge occurs between the respective ceramic dielectrics 3 constituting the unit electrodes 2 facing each other, and plasma is generated. In the plasma generating electrode 1 shown in FIG. 1, the discharge concentration occurs near the edge portion 9 formed by the surface 21 of the ceramic dielectric 3 and the side surfaces 22 of the plurality of concave grooves 5, so that the edge portion It is possible to generate plasma at a higher density than the plasma generated between the unit electrodes 2 other than near 9, for example, near the surface 21 of the ceramic dielectric 3. As described above, according to the plasma generation electrode 1 of the present embodiment, plasma with lower energy and higher density can be generated. The same applies to the case where a plurality of recesses 6 are formed on the surface 21 of the ceramic dielectric 3 constituting the unit electrode 2 facing each other, as in the case of the plasma generating electrode 1 shown in FIG. The plasma generation electrode 1 of the present embodiment is a plasma reactor that reacts a gas containing a predetermined component, such as an exhaust gas treatment device that treats soot and nitric oxide contained in combustion exhaust gas, air, etc. Can be used as an ozonizer for purifying ozone by reacting oxygen contained in ozone.
[0025] 図 1及び図 2に示すように、複数の凹溝 5及び Z又は複数の凹部 6の形状について は特に限定されることはなぐ例えば、図 1に示すように、セラミック誘電体 3の表面 21 に、略平行な複数の凹溝 5が形成されたものであってもよぐ図 2に示すように、セラミ ック誘電体 3の表面 21に、規則的に複数の凹部 6が形成されたものであってもよい。 なお、図 2においては、凹部 6の開口部の形状が四角形で、それぞれが等間隔に形 成されているプラズマ発生電極 1を示している力 開口部の形状や、その間隔等につ いては特に限定されることはなぐ例えば、凹部 6の開口部の形状は四角形以外の多 角形であってもよぐまた、円形や楕円形等の形状であってもよい。 [0025] As shown in FIGS. 1 and 2, the shape of the plurality of concave grooves 5 and Z or the plurality of concave portions 6 is not particularly limited. For example, as shown in FIG. A plurality of substantially parallel concave grooves 5 may be formed on the surface 21.As shown in FIG. 2, a plurality of concave portions 6 are regularly formed on the surface 21 of the ceramic dielectric 3. May be done. In FIG. 2, the shape of the opening of the concave portion 6 is a square, and the shape of the force opening indicating the plasma generating electrode 1 formed at equal intervals is shown in FIG. For example, the shape of the opening of the concave portion 6 may be a polygon other than a square, or may be a shape such as a circle or an ellipse.
[0026] また、図 1及び図 2においては、複数の凹溝 5及び Z又は複数の凹部 6の側面 22 がセラミック誘電体 3の表面 21に対して垂直になるように構成された複数の凹溝 5及 び Z又は複数の凹部 6を示している力 本実施の形態のプラズマ発生電極 1におけ る凹溝 5や凹部 6の形状についてはこれに限定されることはなぐ例えば、図 3 (a)— 図 3 (d)に示すように、複数の凹溝 5及び Z又は複数の凹部 6の側面 22が、セラミック 誘電体 3の表面 21に対して所定の角度を有するように構成されて 、てもよ 、。具体 的には、図 3 (a)及び図 3 (b)示すように、セラミック誘電体 3の表面 21に垂直な断面 における凹溝 5 (凹部 6)の形状が台形となるように構成されたものであってもよいし、 図 3 (c)示すように、凹溝 5 (凹部 6)の側面 22がー方の方向に傾 、て構成されたもの であってもよい。また、図 3 (d)に示すように、凹溝 5 (凹部 6)の底面が二以上の平面 力も構成されたものであってもよい。ここで、図 3 (a)—図 3 (d)は、本発明(第一の発 明)のプラズマ発生電極の一の実施の形態の他の例における凹溝を拡大した拡大図 である。なお、図 3 (a)—図 3 (d)において、図 1及び図 2に示す各要素と同様に構成 されて 、るものにっ 、ては、同一の符号を付して説明を省略する。  Also, in FIGS. 1 and 2, a plurality of recesses 5 and Z or a plurality of recesses configured so that the side surfaces 22 of the plurality of recesses 6 are perpendicular to the surface 21 of the ceramic dielectric 3. Force indicating groove 5 and Z or multiple concave portions 6 The shape of concave groove 5 or concave portion 6 in plasma generating electrode 1 of the present embodiment is not limited to this. a) —As shown in FIG. 3D, the side surfaces 22 of the plurality of concave grooves 5 and Z or the plurality of concave portions 6 are configured so as to have a predetermined angle with respect to the surface 21 of the ceramic dielectric 3. , You can. Specifically, as shown in FIGS. 3 (a) and 3 (b), the shape of the concave groove 5 (recess 6) in the cross section perpendicular to the surface 21 of the ceramic dielectric 3 is trapezoidal. Alternatively, as shown in FIG. 3C, the side surface 22 of the concave groove 5 (the concave portion 6) may be inclined in the negative direction. Further, as shown in FIG. 3D, the bottom surface of the concave groove 5 (the concave portion 6) may be configured to have two or more plane forces. Here, FIGS. 3 (a) to 3 (d) are enlarged views in which the concave groove in another example of the embodiment of the plasma generating electrode according to the present invention (first invention) is enlarged. 3 (a) to 3 (d), the same components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted. .
[0027] また、特に限定されることはないが、図 1に示すように、セラミック誘電体 3の表面 21 に複数の凹溝 5が形成されている場合には、その凹溝 5の幅が、 10— 5000 mであ ることが好ましい。凹溝 5の幅が 10 m未満であると、効果を得るために膨大な数の 凹溝を形成することになり、低コストで作製できない恐れがある。また、凹溝 5の幅が 5 000 mを超えると、セラミック誘電体 3の表面 21の面積(セラミック誘電体 3の表面 2 1を平面とした場合の面積)に対して、凹溝 5のエッジ部分 9の割合が少なくなり、高 密度なプラズマが発生する割合も減少し十分な効果を得ることができない恐れがある  Although not particularly limited, as shown in FIG. 1, when a plurality of grooves 5 are formed on the surface 21 of the ceramic dielectric 3, the width of the grooves 5 is reduced. , 10-5000 m. If the width of the concave groove 5 is less than 10 m, an enormous number of concave grooves will be formed in order to obtain the effect, and it may not be possible to manufacture at low cost. If the width of the groove 5 exceeds 5,000 m, the area of the surface 21 of the ceramic dielectric 3 (the area when the surface 21 of the ceramic dielectric 3 is a flat surface) is larger than the edge of the groove 5. The proportion of the part 9 decreases, and the proportion of high-density plasma generation also decreases, so there is a possibility that sufficient effects cannot be obtained.
[0028] また、同様に、図 2に示すように、セラミック誘電体 3の表面 21に複数の凹部 6が形 成されている場合には、一つの凹部 6の開口面積が、 100— 1 Χ 108 /ζ πι2であること が好ましい。凹部 6の開口面積が 100 m2未満であると、効果を得るために膨大な 数の凹部を形成することになり、低コストで作製できない恐れがある。また、凹部 6の 開口面積が 1 X 108/ζ m2を超えると、セラミック誘電体 3の表面 21の面積 (セラミック 誘電体 3の表面 21を平面とした場合の面積)に対して、凹部 6のエッジ部分 9の割合 が少なくなり、高密度なプラズマが発生する割合も減少し十分な効果を得ることがで きない恐れがある。 Similarly, when a plurality of recesses 6 are formed on the surface 21 of the ceramic dielectric 3 as shown in FIG. 2, the opening area of one recess 6 is 100-1Χ It is preferably 10 8 / ζπι 2 . If the opening area of the concave portion 6 is less than 100 m 2 , an enormous number of concave portions are formed in order to obtain the effect, and there is a possibility that the concave portion 6 cannot be manufactured at low cost. Also, the recess 6 If the opening area exceeds 1 × 10 8 / ζm 2 , the edge portion of the recess 6 will be larger than the area of the surface 21 of the ceramic dielectric 3 (the area when the surface 21 of the ceramic dielectric 3 is flat). Therefore, the ratio of high-density plasma generation may also decrease, and a sufficient effect may not be obtained.
[0029] また、図 1及び図 2に示すように、本実施の形態のプラズマ発生電極 1は、上述した エッジ部分 9近傍に、高密度のプラズマを発生させるものであるため、このエッジ部分 9は、単位電極 2相互間に電圧を印カロした際に放電集中が起こる程度に鋭く構成さ れていなければならない。このため、セラミック誘電体 3の表面 21に垂直な断面にお ける、セラミック誘電体 3の表面 21と、複数の凹溝 5及び Z又は複数の凹部 6の側面 22とによって構成されるエッジ部分 9の角度は、 45— 135度であることが好ましぐ 8 0— 100度であることがさらに好ましい。また、エッジ部分 9が面取りされている場合に は、セラミック誘電体 3の表面 21と複数の凹溝 5及び Z又は複数の凹部 6の側面 22と を延長することによって想定される角度力 45— 135度であることが好ましぐ 80— 1 00度であることがさらに好ましい。さらに、例えば、エッジ部分 9が曲率を有するように R取りされている場合には、 R取り部分の曲率半径が 1 μ m— 100mmであることが好 ましぐまた、例えば、エッジ部分 9の先端部が平面となるように C取りされている場合 には、 C取りの幅、即ち、 C取りされた表面における、セラミック誘電体 3の表面 21と複 数の凹溝 5及び Z又は複数の凹部 6の側面 22との距離が、 1 μ m— 10mmであるこ とが好ましい。このように構成することによって、エッジ部分 9近傍に効果的に放電集 中を起こさせることが可能となり、高密度のプラズマを有効に発生させることができる。  As shown in FIGS. 1 and 2, the plasma generating electrode 1 of the present embodiment generates high-density plasma in the vicinity of the edge portion 9 described above. Must be so sharp that discharge concentration occurs when a voltage is applied between the unit electrodes 2. Therefore, in a cross section perpendicular to the surface 21 of the ceramic dielectric 3, the edge portion 9 formed by the surface 21 of the ceramic dielectric 3 and the side surfaces 22 of the plurality of concave grooves 5 and the Z or the plurality of concave portions 6. Is more preferably 80-100 degrees, preferably 45-135 degrees. Further, when the edge portion 9 is chamfered, the angular force 45-45 assumed by extending the surface 21 of the ceramic dielectric 3 and the side surfaces 22 of the plurality of concave grooves 5 and Z or the plurality of concave portions 6 is used. The angle is preferably 135 degrees, more preferably 80 to 100 degrees. Further, for example, when the edge portion 9 is rounded so as to have a curvature, it is preferable that the radius of curvature of the rounded portion is 1 μm to 100 mm. If the part is C-shaped so that it is flat, the width of the C-shaped part, i.e., the surface 21 of the ceramic dielectric 3 and the plurality of concave grooves 5 and Z or the plurality of concave parts on the C-removed surface It is preferable that the distance between the side face 22 and the side face 6 is 1 μm to 10 mm. With such a configuration, it is possible to cause discharge concentration effectively in the vicinity of the edge portion 9 and effectively generate high-density plasma.
[0030] また、複数の凹溝 5を形成する間隔についても特に限定されることはなぐ例えば、 図 4に示すように、凹溝 5を形成する間隔を不均一にしてもよい。また、図 5に示すよう に、凹溝 5の幅を比較的狭ぐかつ間隔を空けるように形成してもよいし、図 6に示す ように、凹溝 5の幅が比較的広くなるように形成してもよい。図 4一図 6において、図 1 に示したプラズマ発生電極 1と同様に構成されている各要素については、同一の符 号を付して説明を省略する。  The interval at which the plurality of concave grooves 5 are formed is not particularly limited. For example, as shown in FIG. 4, the intervals at which the concave grooves 5 are formed may be made non-uniform. Further, as shown in FIG. 5, the width of the concave groove 5 may be formed to be relatively narrow and spaced apart, or as shown in FIG. 6, the width of the concave groove 5 may be made relatively wide. May be formed. 4 to 6, the same components as those of the plasma generating electrode 1 shown in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.
[0031] 図 1及び図 2に示すような本実施の形態のプラズマ発生電極 1においては、複数の 凹溝 5及び Z又は複数の凹部 6が、セラミック誘電体 3の表面 21を平面とした面積の 20— 80%に相当する領域に形成されてなることが好ましい。セラミック誘電体 3の表 面 21を平面とした面積の 20%未満又は 80%を超える領域に凹溝 5及び Z又は凹 部 6が形成されていると、セラミック誘電体 3の表面 21に占める凹溝 5及び Z又は凹 部 6のエッジ部分 9の割合が小さくなり、上述したエッジ部分 9近傍に発生する高密度 なプラズマの発生領域が減少してしまう。 In the plasma generating electrode 1 of the present embodiment as shown in FIGS. 1 and 2, the plurality of grooves 5 and Z or the plurality of recesses 6 have an area with the surface 21 of the ceramic dielectric 3 as a plane. of Preferably, it is formed in a region corresponding to 20-80%. If the concave grooves 5 and Z or the concave portion 6 are formed in a region of less than 20% or more than 80% of the area of the ceramic dielectric 3 with the surface 21 as a plane, the concave portion occupying the surface 21 of the ceramic dielectric 3 is formed. The ratio of the edge portions 9 of the grooves 5 and Z or the concave portions 6 becomes small, and the high-density plasma generation region generated near the edge portions 9 described above decreases.
[0032] また、図 1に示すように、セラミック誘電体 3の表面から凹溝 5の底面までの深さにつ いては、全ての凹溝 5が同じ深さとなるように形成されていてもよいし、図 7に示すよう に、それぞれの凹溝 5毎に異なる深さとなるように形成されていてもよい。また、図示 は省略するが、それぞれのセラミック誘電体毎に、凹溝の深さが異なるように構成して もよい。同様に、図 2に示すように、セラミック誘電体 3の表面 21に凹部 6が形成され て 、る場合にっ 、ても、単位電極 2の表面から凹部 6の底面までの深さにつ!、ては、 全ての凹部 6が同じ深さとなるように形成されて!ヽてもよ!/ヽし、異なる深さとなるように 形成されていてもよい。 Further, as shown in FIG. 1, the depth from the surface of the ceramic dielectric 3 to the bottom surface of the concave groove 5 may be such that all the concave grooves 5 have the same depth. Alternatively, as shown in FIG. 7, each groove 5 may be formed to have a different depth. Although not shown, the depth of the concave groove may be different for each ceramic dielectric. Similarly, as shown in FIG. 2, the concave portion 6 is formed on the surface 21 of the ceramic dielectric 3, and even in this case, even at the depth from the surface of the unit electrode 2 to the bottom surface of the concave portion 6! Finally, all the recesses 6 are formed to have the same depth! However, they may be formed to have different depths.
[0033] また、セラミック誘電体 3の表面 21に形成する凹溝 5の形成方向についても特に限 定されることはなく、図 1に示すように、プラズマを発生する空間が貫通する方向、例 えば、単位電極 2相互間に発生したプラズマに排気ガス等の流体を通過させて用い る場合には、その流体の流れ方向に沿って凹溝 5が形成されていてもよいし、図 8に 示すように、プラズマを発生する空間が貫通する方向と交差する方向に沿って凹溝 5 が形成されていてもよい。図 8において、図 1に示したプラズマ発生電極 1と同様に構 成されて!/、る各要素にっ 、ては、同一の符号を付して説明を省略する。  [0033] The direction in which the concave groove 5 is formed on the surface 21 of the ceramic dielectric 3 is not particularly limited, either, as shown in FIG. For example, when a fluid such as exhaust gas is allowed to pass through the plasma generated between the unit electrodes 2, a concave groove 5 may be formed along the flow direction of the fluid. As shown, the concave groove 5 may be formed along a direction that intersects the direction in which the space for generating plasma penetrates. 8, the same reference numerals are given to the same components as those of the plasma generating electrode 1 shown in FIG. 1, and description thereof will be omitted.
[0034] また、図 1又は図 2に示すように、本実施の形態のプラズマ発生電極 1においては、 セラミック誘電体 3の表面 21から複数の凹溝 5及び Z又は複数の凹部 6の底部まで のそれぞれの深さが、 3— 200 mであることが好ましい。凹溝 5及び Z又は凹部 6の 深さが 3 m未満であると、セラミック誘電体 3の表面 21が平坦な場合との差が少なく なり、上述したエッジ部分 9近傍に高密度なプラズマを発生させるという効果が十分 に得られないことがある。また、凹溝 5及び Z又は凹部 6の深さが 200 mを超えると 、セラミック誘電体 3の機械的強度が低下して、破損等を生じる恐れがある。  Further, as shown in FIG. 1 or FIG. 2, in the plasma generating electrode 1 of the present embodiment, from the surface 21 of the ceramic dielectric 3 to the bottom of the plurality of concave grooves 5 and Z or the plurality of concave portions 6 Is preferably 3 to 200 m. If the depth of the concave grooves 5 and Z or the concave portions 6 is less than 3 m, the difference from the case where the surface 21 of the ceramic dielectric 3 is flat is reduced, and high-density plasma is generated near the edge portion 9 described above. May not be sufficiently effective. Further, when the depth of the concave grooves 5 and Z or the concave portion 6 exceeds 200 m, the mechanical strength of the ceramic dielectric 3 is reduced, and there is a possibility that breakage or the like may occur.
[0035] また、本実施の形態のプラズマ発生電極 1にお ヽては、単位電極 2を構成するセラ ミック誘電体 3の表面 21から複数の凹溝 5及び Z又は複数の凹部 6の底部までのそ れぞれの深さ力 セラミック誘電体 3の厚さの平均値の 1Z3以下であることが好まし い。セラミック誘電体 3の厚さの平均値の 1Z3を超えると、セラミック誘電体 3の機械 的強度が低下して、破損等を生じる恐れがある。上述したセラミック誘電体 3の厚さの 平均値は、例えば、セラミック誘電体 3の全体積の値を、セラミック誘電体 3の一方の 表面、具体的には、セラミック誘電体 3の表面 21のうち最長の辺と二番目に長い辺で 構成される表面を平面とした場合の面積で除算することによって算出することができ る。また、セラミック誘電体 3の内部に配設された導電膜 4の体積は、セラミック誘電体 3の体積に対して十分に小さいために、上述したセラミック誘電体 3の全体積を求め る際には、単位電極 2の全体積を近似的に用いることも可能である。 Further, in the plasma generating electrode 1 of the present embodiment, a cell constituting the unit electrode 2 is used. Each depth force from the surface 21 of the dielectric 3 to the bottom of the plurality of grooves 5 and Z or the plurality of recesses 6 is preferably 1Z3 or less of the average value of the thickness of the ceramic dielectric 3. Better. If the average thickness of the ceramic dielectric 3 exceeds 1Z3, the mechanical strength of the ceramic dielectric 3 is reduced, and there is a possibility that the ceramic dielectric 3 may be damaged. The average value of the thickness of the ceramic dielectric 3 described above is obtained, for example, by calculating the value of the total volume of the ceramic dielectric 3 on one surface of the ceramic dielectric 3, specifically, the surface 21 of the ceramic dielectric 3. It can be calculated by dividing by the area when the surface composed of the longest side and the second longest side is a plane. In addition, since the volume of the conductive film 4 disposed inside the ceramic dielectric 3 is sufficiently small with respect to the volume of the ceramic dielectric 3, when calculating the above-described total volume of the ceramic dielectric 3, It is also possible to approximately use the total volume of the unit electrode 2.
[0036] 本実施の形態のプラズマ発生電極 1に用いられるセラミック誘電体 3は、誘電体とし て好適に用いることができるものであれば特に限定されることはないが、例えば、セラ ミック誘電体 3が、酸ィ匕アルミニウム、酸化マグネシウム、酸化珪素、窒化珪素、窒化 アルミニウム、ムライト、コージヱライト、マグネシウム カルシウム チタン系酸化物、 ノ リウム一チタン一亜鉛系酸ィ匕物、及びバリウム一チタン系酸ィ匕物力 なる群力 選ば れる少なくとも一種の化合物を含むことが好ましい。このような化合物を含むことによ つて、耐熱衝撃性に優れたセラミック誘電体 3を得ることができる。本実施の形態に用 いられるセラミック誘電体 3は、テープ状の未焼成セラミック成形体、例えば、セラミツ クグリーンシート等を用いて形成することができ、また、押出成形で得られたシートを 用いても形成することができる。さらに、粉末乾式プレスで作製した平板を用いること も可能である。 [0036] The ceramic dielectric 3 used in the plasma generating electrode 1 of the present embodiment is not particularly limited as long as it can be suitably used as a dielectric. 3 is aluminum oxide, magnesium oxide, silicon oxide, silicon nitride, aluminum nitride, mullite, cordierite, magnesium calcium titanium-based oxide, norium-titanium-zinc-based oxide, and barium-titanium-based oxide It is preferable to contain at least one compound selected. By including such a compound, a ceramic dielectric 3 having excellent thermal shock resistance can be obtained. The ceramic dielectric 3 used in the present embodiment can be formed using a tape-shaped unfired ceramic molded body, for example, a ceramic green sheet, or a sheet obtained by extrusion molding. Can also be formed. Further, it is also possible to use a flat plate produced by a powder dry press.
[0037] 複数の凹溝 5及び Z又は複数の凹部 6を形成する具体的な方法については、第三 一第六の発明のプラズマ発生電極の製造方法について説明する際に具体的に説明 するが、焼成して得られたセラミック誘電体 3の表面を機械加工、例えば、スライシン グ加工、ダイシンダカ卩ェ、超音波ホーンによる加工等によって形成してもよいし、焼成 する前のセラミックグリーンシート (未焼成セラミック成形体)の表面に、凹溝 5や凹部 6 の形状に対応した押型等を用いて成形してもよい。また、パンチングによって複数の 孔が穿孔されたセラミックグリーンシート(以下、パンチングセラミックグリーンシートと いうことがある)と、単なる板状のセラミックグリーンシートとを積層することにより作製さ れた、その表面に複数の凹部 6が形成された一枚のセラミックグリーンシート (未焼成 セラミック成形体)を用いることもできる。このようなパンチングセラミックグリーンシート を利用して複数の凹部 6を形成する場合には、上述したように、予め、一枚以上の板 状のセラミックグリーンシートと積層したものを用いてもよぐまた、単なる板状のセラミ ックグリーンシートに導電膜 4を配設し、この導電膜 4を配設した表面とは反対側の表 面に、上述したパンチングセラミックグリーンシートや、パンチングセラミックグリーンシ ートとさらに別の板状のセラミックグリーンシートを積層したセラミックグリーンシート等 を積層したものを用いてもよい。さらに、導電膜 4を覆うように二枚の板状のセラミック グリーンシートを積層し、導電膜 4を配設した表面とは反対側の表面の少なくとも一方 にパンチングセラミックグリーンシート等を積層したものを用いてもよい。また、図 9に 示すプラズマ発生電極 1のように、セラミックグリーンシート (未焼成セラミック成形体) の表面に、導電膜 4を、その膜厚方向に貫通した複数の空隙部 10を形成するように 配設し、配設した導電膜 4の空隙部 10にセラミックグリーンシート (未焼成セラミック成 形体)を入り込ませて、空隙部 10の形状に対応した凹部 6を形成してもよい。図 9〖こ お!、ては、セラミック誘電体 3の表面 21に複数の凹部 6が形成されたものを示して ヽ るが、複数の凹溝 5 (図 1参照)を形成するように空隙部 10を溝状に形成してもよい。 さらに、このように構成することによって、導電膜 4の空隙部 10により凹溝 5 (図 1参照 )や凹部 6を形成するだけでなぐ空隙部 10の外周部分に比較的強い放電を生じさ せることが可能となり、このように構成された導電膜 4を有することにより、均一かつ安 定なプラズマを低電力で発生させることができる。 [0037] A specific method of forming the plurality of concave grooves 5 and Z or the plurality of concave portions 6 will be specifically described when the method of manufacturing the plasma generating electrode according to the third to sixth inventions is described. Alternatively, the surface of the ceramic dielectric 3 obtained by firing may be formed by machining, for example, slicing, die cutting, ultrasonic horn, or the like, or a ceramic green sheet (not yet fired). The surface of the fired ceramic molded body) may be formed by using a pressing die or the like corresponding to the shape of the concave groove 5 or the concave portion 6. A ceramic green sheet having a plurality of holes formed by punching (hereinafter referred to as a punched ceramic green sheet) ) And a single ceramic green sheet (unfired ceramic molded body) formed by laminating a simple plate-shaped ceramic green sheet and having a plurality of recesses 6 formed on its surface. It can also be used. In the case where a plurality of recesses 6 are formed using such a punched ceramic green sheet, as described above, a laminate laminated with one or more plate-like ceramic green sheets may be used in advance. However, the conductive film 4 is disposed on a mere plate-shaped ceramic green sheet, and the above-described punched ceramic green sheet or the punched ceramic green sheet is provided on the surface opposite to the surface on which the conductive film 4 is disposed. And a ceramic green sheet in which another plate-shaped ceramic green sheet is laminated. Furthermore, two plate-shaped ceramic green sheets are laminated so as to cover the conductive film 4, and a punched ceramic green sheet or the like is laminated on at least one of the surfaces opposite to the surface on which the conductive film 4 is provided. May be used. Further, as in the plasma generating electrode 1 shown in FIG. 9, the conductive film 4 is formed on the surface of the ceramic green sheet (unfired ceramic molded body) by forming a plurality of voids 10 penetrating in the film thickness direction. A concave portion 6 corresponding to the shape of the void portion 10 may be formed by inserting a ceramic green sheet (unfired ceramic molded body) into the void portion 10 of the conductive film 4 provided and disposed. FIG. 9 shows a state in which a plurality of recesses 6 are formed on the surface 21 of the ceramic dielectric 3, and the voids are formed so as to form a plurality of recesses 5 (see FIG. 1). The part 10 may be formed in a groove shape. Further, with such a configuration, a relatively strong discharge is generated in the outer peripheral portion of the void portion 10 where only the concave groove 5 (see FIG. 1) or the concave portion 6 is formed by the void portion 10 of the conductive film 4. It is possible to generate uniform and stable plasma with low power by having the conductive film 4 configured as described above.
なお、図 1一図 9に示したプラズマ発生電極 1については、板状のセラミック誘電体 3の両方の表面 21に複数の凹溝 5及び Z又は複数の凹部 6が形成されたものを示し ているが、本実施の形態のプラズマ発生電極 1においては、少なくとも一方の表面 21 に複数の凹溝 5及び Z又は複数の凹部 6が形成されていればよい。また、図 1一図 9 に示したプラズマ発生電極 1については、互いに対向する単位電極 2の両方力 少 なくとも一方の表面 21に複数の凹溝 5及び Z又は複数の凹部 6が形成されたもので あるが、図示は省略する力 本実施の形態のプラズマ発生電極においては、互いに 対向する単位電極のうちの少なくとも一方力 その少なくとも一方の表面に複数の凹 溝及び Z又は複数の凹部が形成されていればよい。このような場合には、対向する 他方の単位電極としては、従来公知の金属板等の電極等を好適に用いることができ る。 Note that the plasma generating electrode 1 shown in FIGS. 1 to 9 is one in which a plurality of concave grooves 5 and Z or a plurality of concave portions 6 are formed on both surfaces 21 of a plate-shaped ceramic dielectric 3. However, in the plasma generating electrode 1 of the present embodiment, the plurality of concave grooves 5 and Z or the plurality of concave portions 6 may be formed on at least one surface 21. Further, in the plasma generating electrode 1 shown in FIGS. 1 to 9, a plurality of grooves 5 and a plurality of Zs or a plurality of recesses 6 were formed on at least one surface 21 of both unit electrodes 2 facing each other. Although not shown, the forces are not shown in the plasma generating electrodes of the present embodiment. At least one of the opposing unit electrodes may have a plurality of concave grooves and Z or a plurality of concave portions formed on at least one surface thereof. In such a case, a conventionally known electrode such as a metal plate or the like can be suitably used as the other unit electrode facing the same.
[0039] また、図 1一図 9に示すように、単位電極 2を構成する導電膜 4は、単位電極 2相互 間に電圧を印加することによってプラズマを発生させることが可能なものであればよく 、特に限定されることはないが、例えば、導電膜 4力 タングステン、モリブデン、マン ガン、クロム、チタン、ジルコニウム、ニッケル、鉄、銀、銅、白金、及びパラジウムから なる群力も選ばれる少なくとも一種の金属を含むことが好ましい。  Further, as shown in FIGS. 1 to 9, the conductive film 4 forming the unit electrode 2 is a conductive film capable of generating plasma by applying a voltage between the unit electrodes 2. Although it is not particularly limited, for example, at least one selected from the group consisting of tungsten, molybdenum, manganese, chromium, titanium, zirconium, nickel, iron, silver, copper, platinum, and palladium. It is preferable to include a metal of
[0040] また、導電膜 4を配設する方法にっ 、ては特に限定されることはな 、が、セラミック 誘電体 3に塗工して形成し、配設することが好ましい。具体的な方法としては、例えば 、スクリーン印刷、カレンダーロール、スプレー、静電塗装、ディップ、ナイフコータ、 化学蒸着、物理蒸着等を好適例として挙げることができる。このような方法によれば、 塗工後の導電膜 4表面の平滑性に優れ、かつ厚さの薄 ヽ導電膜 4を容易に形成する ことができる。また、導電膜 4は、単位電極 2の外部からの電圧を直接印加することが できるように、その一部がセラミック誘電体 3に覆われて ヽな 、通電部 11を有すること が好ましい。  The method for disposing the conductive film 4 is not particularly limited. However, it is preferable that the conductive film 4 is formed by coating the ceramic dielectric 3. Specific examples of suitable methods include, for example, screen printing, calender roll, spray, electrostatic coating, dip, knife coater, chemical vapor deposition, physical vapor deposition and the like. According to such a method, a thin conductive film 4 having excellent smoothness on the surface of the conductive film 4 after coating and having a small thickness can be easily formed. In addition, the conductive film 4 preferably has a current-carrying part 11 partially covered with the ceramic dielectric 3 so that a voltage from outside the unit electrode 2 can be directly applied.
[0041] 図 1一図 9に示すように、本実施の形態のプラズマ発生電極 1を構成するそれぞれ の単位電極 2は、その少なくとも一方の端部を保持部材 7によって保持されている。こ の保持部材 7は、単位電極 2相互間を所定間隔に隔てた状態で良好に保持すること ができるものであればよぐその材料等については特に限定されることはないが、例 えば、保持部材 7が、酸ィ匕アルミニウム、酸化マグネシウム、酸化珪素、窒化珪素、ジ ルコユア、ムライト、コージエライト、及び結晶化ガラス力もなる群力 選ばれる少なくと も一種の化合物を含むことが好ましい。また、保持部材 7は、局所的な沿面放電の防 止の観点から、電気絶縁性を有することが好ましい。  As shown in FIG. 1 and FIG. 9, each of the unit electrodes 2 constituting the plasma generating electrode 1 of the present embodiment is held at least one end by a holding member 7. The material of the holding member 7 is not particularly limited as long as it can hold the unit electrodes 2 at a predetermined interval, and the material is not particularly limited. The holding member 7 preferably contains at least one compound selected from the group consisting of aluminum oxide, magnesium oxide, silicon oxide, silicon nitride, zirconia, mullite, cordierite, and crystallized glass. Further, it is preferable that the holding member 7 has electrical insulation properties from the viewpoint of preventing local creeping discharge.
[0042] 次に、第三の発明のプラズマ発生電極の製造方法の一の実施の形態について説 明する。本実施の形態のプラズマ発生電極の製造方法は、互いに対向する二つ以 上の板状の単位電極を備え、単位電極相互間に電圧を印加することによってプラズ マを発生させることが可能なプラズマ発生電極の製造方法であって、セラミック原料 を板状に成形して複数の未焼成セラミック成形体を得、得られた複数の未焼成セラミ ック成形体のうち所定の未焼成セラミック成形体の一方の表面に導電膜を配設して 導電膜配設セラミック成形体を得、得られた導電膜配設セラミック成形体に、その導 電膜を被覆するように他の未焼成セラミック成形体を積層して板状の単位電極前駆 体を得、得られた単位電極前駆体の少なくとも一方の表面に複数の凹溝及び Z又は 複数の凹部を形成して、少なくとも一方の表面に複数の凹溝及び z又は複数の凹部 が形成された凹溝及び Z又は凹部付き単位電極前駆体を得、得られた凹溝及び Z 又は凹部付き単位電極前駆体を焼成して、少なくとも一方の表面に複数の凹溝及びNext, one embodiment of a method for manufacturing a plasma generating electrode according to the third invention will be described. The method of manufacturing a plasma generating electrode according to the present embodiment includes two or more plate-like unit electrodes facing each other, and applies a voltage between the unit electrodes to increase the plasma. A method of manufacturing a plasma generating electrode capable of generating a ceramic, comprising forming a plurality of unfired ceramic molded bodies by forming a ceramic raw material into a plate shape, and forming a plurality of obtained unfired ceramic molded bodies. A conductive film is disposed on one surface of a predetermined unfired ceramic molded body to obtain a ceramic molded body provided with a conductive film, and the obtained ceramic molded body provided with a conductive film is coated with the conductive film. Another unfired ceramic molded body is laminated to obtain a plate-shaped unit electrode precursor, and a plurality of grooves and Z or a plurality of recesses are formed on at least one surface of the obtained unit electrode precursor, Obtaining a groove and Z or a unit electrode precursor with a concave portion having a plurality of concave grooves and z or a plurality of concave portions formed on at least one surface, and firing the obtained groove and Z or a unit electrode precursor with a concave portion. At least one surface Grooves and
Z又は複数の凹部が形成された板状のセラミック誘電体と、そのセラミック誘電体の 内部に配設された導電膜とを有する凹溝及び Z又は凹部付き単位電極を得、得ら れた凹溝及び z又は凹部付き単位電極を、プラズマ発生電極を構成する対向する 単位電極の少なくとも一方として配置する製造方法である。このように構成することに よって、図 1に示すような、高密度なプラズマを発生させることが可能なプラズマ発生 電極 1を、簡便かつ安価に製造することができる。 A concave groove having a plate-shaped ceramic dielectric on which Z or a plurality of concave portions are formed and a conductive film disposed inside the ceramic dielectric, and a Z or a unit electrode with a concave portion are obtained. This is a manufacturing method in which a unit electrode with a groove and z or a concave portion is arranged as at least one of the opposing unit electrodes constituting the plasma generating electrode. With this configuration, the plasma generating electrode 1 capable of generating high-density plasma as shown in FIG. 1 can be easily and inexpensively manufactured.
[0043] 以下、各工程毎に説明する。まず、プラズマ発生電極を構成するセラミック誘電体と なる複数の未焼成セラミック成形体を形成する。この複数の未焼成セラミック成形体 は、従来公知のセラミックグリーンシートを好適に用いることができる。具体的な方法と しては、所定のセラミック粉末に適当なバインダ、焼結助剤、可塑剤、分散剤、有機 溶媒等を配合してスラリーを調製する。上述したセラミック粉末としては、例えば、酸 化アルミニウム、ムライト、コージヱライト、窒化珪素、窒化アルミニウム等の粉末を好 適に用いることができる。また、焼結助剤は、セラミック粉末 100質量部に対して、 3— 10質量部加えることが好ましぐ可塑剤、分散剤及び有機溶媒については、従来公 知のセラミックグリーンシートを形成するためのスラリーに使用されている可塑剤、分 散剤及び有機溶媒を好適に用いることができる。なお、このスラリーはペースト状であ つてもよい。  Hereinafter, each step will be described. First, a plurality of unfired ceramic compacts to be a ceramic dielectric constituting a plasma generating electrode are formed. Conventionally known ceramic green sheets can be suitably used for the plurality of green ceramic bodies. As a specific method, a slurry is prepared by mixing an appropriate binder, a sintering aid, a plasticizer, a dispersant, an organic solvent, and the like with a predetermined ceramic powder. As the above-mentioned ceramic powder, for example, powders of aluminum oxide, mullite, cordierite, silicon nitride, aluminum nitride and the like can be suitably used. The sintering aid is preferably added in an amount of 3 to 10 parts by mass with respect to 100 parts by mass of the ceramic powder. A plasticizer, a dispersant, and an organic solvent are preferably added to form a conventionally known ceramic green sheet. The plasticizer, the dispersant, and the organic solvent used in the slurry can be suitably used. This slurry may be in the form of a paste.
[0044] 次に、得られたスラリーを、ドクターブレード法、カレンダ一法、印刷法、リバース口 ールコータ法等の従来公知の手法に従って、所定の厚さとなるように成形して複数の 未焼成セラミック成形体を形成する。このようにして形成された未焼成セラミック成形 体は、切断、切削、打ち抜き、連通孔の形成等の加工を施したり、複数枚の未焼成セ ラミック成形体を積層した状態で熱圧着等によって一体的な積層物として用いてもよ い。なお、この未焼成セラミック成形体は、導電膜を挟持した状態で二枚以上を積層 し、焼成することによって一つのセラミック誘電体となるものであり、複数の未焼成セラ ミック成形体は、それぞれ略同じ大きさや厚さに形成してもよいし、異なる大きさや厚 さに形成してもよい。 Next, the obtained slurry is formed into a predetermined thickness according to a conventionally known method such as a doctor blade method, a calendar method, a printing method, a reverse roller coater method, etc. An unfired ceramic compact is formed. The unfired ceramic compact formed in this way is subjected to processing such as cutting, cutting, punching, formation of a communication hole, etc., or is integrally formed by laminating a plurality of unfired ceramic compacts by thermocompression bonding or the like. It may be used as a typical laminate. The unfired ceramic molded body is formed into one ceramic dielectric by laminating and firing two or more sheets while sandwiching the conductive film. They may be formed in substantially the same size and thickness, or may be formed in different sizes and thicknesses.
[0045] 一方、導電膜を形成するための導体ペーストを調製する。この導体ペーストは、例 えば、モリブデン粉末にバインダ及びテルビネオール等の溶剤をカ卩え、トリロールミル を用いて十分に混鍊して得ることができる。なお、上述した未焼成セラミック成形体と の密着性及び焼結性を向上させるベぐ必要に応じて導体ペーストに添加剤を加え てもよい。  On the other hand, a conductor paste for forming a conductive film is prepared. This conductor paste can be obtained, for example, by mixing a molybdenum powder with a solvent such as a binder and terbineol and sufficiently mixing the mixture using a triroll mill. Note that an additive may be added to the conductor paste as necessary to improve the adhesion and sinterability with the unfired ceramic molded body.
[0046] このようにして得られた導体ペーストを、複数の未焼成セラミック成形体のうち所定 の未焼成セラミック成形体の表面に、例えば、スクリーン印刷等を用いて配設すること により所定の形状の導電膜を形成して、導電膜配設セラミック成形体を得る。なお、 導電膜の配設方法については、カレンダーロール、スプレー、静電塗装、ディップ、 ナイフコータ、化学蒸着、物理蒸着等の方法であってもよい。  [0046] The conductor paste thus obtained is provided on a surface of a predetermined green ceramic molded body among a plurality of green ceramic molded bodies by, for example, screen printing or the like to form a predetermined shape. Is formed to obtain a ceramic molded body provided with a conductive film. The conductive film may be provided by a method such as calender roll, spray, electrostatic coating, dip, knife coater, chemical vapor deposition, or physical vapor deposition.
[0047] 次に、導電膜配設セラミック成形体と、所定の未焼成セラミック成形体以外の他の 未焼成セラミック成形体とを、導電膜配設セラミック成形体を構成する導電膜を覆うよ うにして積層し、導電膜を内部に配設した単位電極前駆体を得る。このように未焼成 セラミック成形体を積層する際には、温度 100°C、圧力 lOMPaで押圧しながら積層 することが好ましい。  Next, the ceramic molded body provided with the conductive film and the unfired ceramic molded body other than the predetermined green ceramic molded body are covered with the conductive film constituting the ceramic molded body provided with the conductive film. To obtain a unit electrode precursor in which a conductive film is disposed. When laminating the unfired ceramic molded bodies in this way, it is preferable to laminate while pressing at a temperature of 100 ° C and a pressure of lOMPa.
[0048] 次に、得られた単位電極前駆体の表面の少なくとも一方に複数の凹溝及び Z又は 複数の凹部を形成して、少なくとも一方の表面に複数の凹溝及び Z又は複数の凹部 が形成された凹溝及び Z又は凹部付き単位電極前駆体を得る。具体的な方法として は、例えば、単位電極前駆体の少なくとも一方の表面に、凹溝や凹部の形状に対応 した押型等を用いて形成することができる。また、パンチングによって複数の孔が穿 孔された未焼成セラミック成形体を作製し、単位電極前駆体の少なくとも一方の表面 に配設して凹部や凹溝を形成してもよいし、また、複数の孔が穿孔された未焼成セラ ミック成形体を単なる板状の未焼成セラミック成形体と積層して凹部を有する未焼成 セラミック成形体し、これを単位電極前駆体の少なくとも一方の表面に配設してもょ ヽ 。上述したように、複数の孔が穿孔された未焼成セラミック成形体を用いて複数の複 数の凹溝や凹部を形成する際において、複数の孔を穿孔する方法等については特 に限定されることはないが、例えば、特開 2001— 62784号公報に開示されているよう に、パンチングにより微細間隔 aで微細径 dの孔を複数穿孔する場合には、先に、微 細間隔 aの少なくとも二倍の間隔 Aで微細径 dの孔を含む少なくとも二つの孔を金型 のパンチを用いて穿孔開始し、次いで、その穿孔開始したパンチを引き抜くことなぐ その間隔 Aの間において、穿孔済みの微細径 dの孔に対して、少なくとも微細間隔 a の間隔となるように穿孔する方法を好適に用いることができる。また、パンチングの際 の打抜金型としては、特開 2003— 145494号公報に開示されているような、被カロェ 材料を打ち抜くパンチ及びダイと、このパンチを案内するストリッパと、を有し、パンチ を積層軸として、打ち抜いた被加工材料を積層する打抜同時積層加工に用いられる 金型であって、パンチを含む上型とダイを含む下型とが離れているときにおいて、パ ンチとストリッパとの相対位置を変更可能とする調節手段 Aと、及び、打ち抜き時にお けるダイとストリッパとの隙間を変更可能とする調節手段 Bと、を備える打抜同時積層 用打抜金型を好適に用いることができる。このような穿孔方法や、打抜同時積層用打 抜金型を用いることにより、容易に未焼成セラミック成形体に孔等を形成することが可 能となり、凹溝や凹部を簡便に形成することができる。 Next, a plurality of grooves and Z or a plurality of recesses are formed on at least one of the surfaces of the obtained unit electrode precursor, and the plurality of grooves and the Z or the plurality of recesses are formed on at least one surface. A unit electrode precursor with the formed groove and Z or recess is obtained. As a specific method, for example, it can be formed on at least one surface of the unit electrode precursor using a pressing die or the like corresponding to the shape of the concave groove or the concave portion. In addition, an unsintered ceramic molded body having a plurality of holes formed by punching is manufactured, and at least one surface of the unit electrode precursor is formed. May be formed to form a concave portion or a concave groove, or an unfired ceramic formed body having a plurality of holes formed thereon may be laminated with a simple plate-shaped unfired ceramic formed body to form a concave portion. A fired ceramic molded body may be provided on at least one surface of the unit electrode precursor. As described above, when forming a plurality of concave grooves or recesses using an unfired ceramic molded body having a plurality of holes, a method of forming a plurality of holes is particularly limited. However, for example, as disclosed in Japanese Patent Application Laid-Open No. 2001-62784, when a plurality of holes having fine diameters d are formed at fine intervals a by punching, at least At least two holes including a hole with a fine diameter d at a double interval A are started using a die punch, and then, during the interval A, the holes that have been drilled A method of perforating a hole having a fine diameter d so as to have an interval of at least a fine interval a can be suitably used. Further, a punching die for punching includes a punch and a die for punching a material to be caroed, and a stripper for guiding the punch, as disclosed in JP-A-2003-145494. A die used for simultaneous punching and laminating processing in which a punched work material is laminated using a punch as a laminating axis. When the upper die including the punch and the lower die including the die are separated, the punch A punching die for simultaneous punching and lamination comprising adjusting means A for changing the relative position with respect to the stripper and adjusting means B for changing the gap between the die and the stripper at the time of punching is preferable. Can be used. By using such a punching method and a punching die for simultaneous punching and lamination, it is possible to easily form holes and the like in the green ceramic molded body, and to easily form grooves and recesses. Can be.
[0049] 上述したように本実施の形態のプラズマ発生電極の製造方法にお!、ては、焼成前 の単位電極前駆体を構成する比較的に柔らかい状態の未焼成セラミック成形体に加 ェを行うことから、凹溝及び Z又は凹部の形成作業を簡便に行うことができる。なお、 形成する凹溝及び Z又は凹部の形状等については、第一の発明のプラズマ発生電 極の実施の形態において説明した凹溝及び Z又は凹部の形状等と同様に構成され ていることが好ましい。 [0049] As described above, in the method of manufacturing a plasma generating electrode according to the present embodiment, a process is applied to a relatively soft unfired ceramic molded body constituting a unit electrode precursor before firing. Therefore, the operation of forming the concave groove and the Z or the concave portion can be easily performed. The shape of the groove, Z, or recess to be formed may be the same as the shape of the groove, Z, or recess described in the embodiment of the plasma generating electrode of the first invention. preferable.
[0050] このようにして、少なくとも一方の表面に複数の凹溝及び Z又は複数の凹部が形成 された凹溝及び Z又は凹部付き単位電極前駆体を得、得られた凹溝及び Z又は凹 部付き単位電極前駆体を焼成して凹溝及び z又は凹部付き単位電極を形成する。 この凹溝及び Z又は凹部付き単位電極は、プラズマ発生電極を構成する単位電極 の少なくとも一方となるものであり、上述した方法によってプラズマ発生電極に必要な 枚数の凹溝及び z又は凹部付き単位電極を形成する。本実施の形態における焼成 方法としては、例えば、一般的なセラミックを製造する際に行われる焼成方法を好適 に用いることができる。 [0050] In this way, a concave groove and Z or a unit electrode precursor with a concave part having a plurality of concave grooves and Z or a plurality of concave parts formed on at least one surface are obtained, and the obtained concave groove and Z or concave part are obtained. The unit electrode precursor with a part is fired to form a unit electrode with a concave groove and a z or a concave part. The concave groove and the unit electrode with the Z or the concave portion serve as at least one of the unit electrodes constituting the plasma generating electrode. To form As the firing method in the present embodiment, for example, a firing method performed when a general ceramic is manufactured can be suitably used.
[0051] また、別途、プラズマ発生電極を構成する単位電極を所定の間隔に保持するため の保持部材を形成する。本実施の形態のプラズマ発生電極の製造方法にぉ ヽては 、保持部材を形成する方法については特に限定されることはなぐ例えば、ジルコ- ァ粉末と有機バインダの混合粉体を金型プレス成形後、バインダ仮焼、本焼成し、必 要に応じて研削加工により最終寸法仕上げを行うことによって保持部材を形成するこ とがでさる。  Further, separately, a holding member for holding the unit electrodes constituting the plasma generating electrode at a predetermined interval is formed. In the manufacturing method of the plasma generating electrode of the present embodiment, the method for forming the holding member is not particularly limited. For example, a mixed powder of a zirconium powder and an organic binder is subjected to die press molding. Thereafter, the holding member can be formed by calcining the binder, sintering it, and finishing the final dimensions by grinding if necessary.
[0052] 次に、互いに対向する単位電極のうちの少なくとも一方力 得られた凹溝及び Z又 は凹部付き単位電極となるように、得られた保持部材で単位電極を所定の間隔に保 持し、プラズマ発生電極を製造する。この際、互いに対向する単位電極の全てに凹 溝及び Z又は凹部付き単位電極を用いてもょ ヽし、凹溝及び Z又は凹部付き単位 電極は対向する単位電極の一方のみとし、他方の電極は、従来公知の金属板等の 電極を用いてもよい。以上のように構成することにより、図 1に示すようなプラズマ発生 電極 1を簡便かつ低コストに製造することができる。  Next, at least one of the unit electrodes facing each other is held at a predetermined interval by the obtained holding member so that the obtained groove and the unit electrode with the Z or the concave are obtained. Then, a plasma generating electrode is manufactured. At this time, all the unit electrodes facing each other may use a unit electrode with a concave groove and Z or a concave unit, and the unit electrode with a concave groove and Z or a concave unit may be only one of the unit electrodes facing each other and the other electrode. May be a conventionally known electrode such as a metal plate. With the above configuration, the plasma generating electrode 1 as shown in FIG. 1 can be manufactured simply and at low cost.
[0053] 次に、第四の発明のプラズマ発生電極の製造方法の一の実施の形態について説 明する。本実施の形態のプラズマ発生電極の製造方法は、互いに対向する二つ以 上の板状の単位電極を備え、単位電極相互間に電圧を印加することによってプラズ マを発生させることが可能なプラズマ発生電極の製造方法であって、セラミック原料 を板状に成形して複数の未焼成セラミック成形体を得、得られた複数の未焼成セラミ ック成形体のうち所定の未焼成セラミック成形体の一方の表面に複数の凹溝及び Z 又は複数の凹部を形成するとともに、他方の表面に導電膜を配設して凹溝及び Z又 は凹部付き導電膜配設セラミック成形体を得、得られた凹溝及び Z又は凹部付き導 電膜配設セラミック成形体に、その導電膜を被覆するように他の未焼成セラミック成 形体を積層して、少なくとも一方の表面に複数の凹溝及び z又は複数の凹部が形成 された凹溝及び Z又は凹部付き単位電極前駆体を得、得られた凹溝及び Z又は凹 部付き単位電極前駆体を焼成して、少なくとも一方の表面に複数の凹溝及び Z又は 複数の凹部が形成された板状のセラミック誘電体と、そのセラミック誘電体の内部に 配設された導電膜とを有する凹溝及び Z又は凹部付き単位電極を得、得られた凹溝 及び Z又は凹部付き単位電極を、プラズマ発生電極を構成する対向する単位電極 の少なくとも一方として配置する製造方法である。 Next, one embodiment of a method for manufacturing a plasma generating electrode according to the fourth invention will be described. The method of manufacturing a plasma generating electrode according to the present embodiment includes a plasma capable of generating plasma by providing two or more plate-shaped unit electrodes facing each other and applying a voltage between the unit electrodes. A method for producing a generating electrode, comprising forming a plurality of unfired ceramic formed bodies by forming a ceramic raw material into a plate shape, and forming a predetermined unfired ceramic formed body among the obtained plurality of unfired ceramic formed bodies. A plurality of concave grooves and Z or a plurality of concave portions are formed on one surface, and a conductive film is disposed on the other surface to obtain a ceramic molded body provided with a concave groove and a Z or a concave conductive film. Other unfired ceramic components so that the conductive film is covered By laminating the shapes, a unit electrode precursor with a plurality of grooves and z or a plurality of recesses formed on at least one surface to obtain a unit electrode precursor with a groove and a Z or a recess is obtained. A plate-shaped ceramic dielectric in which a plurality of concave grooves and Z or a plurality of concave portions are formed on at least one surface by firing the unit electrode precursor, and a conductive film disposed inside the ceramic dielectric. And a unit electrode having a concave groove and a Z or a concave portion having the following structure, and the obtained unit electrode having the concave groove and a Z or a concave portion is disposed as at least one of the opposing unit electrodes constituting the plasma generating electrode.
[0054] 本実施の形態のプラズマ発生電極の製造方法においては、上述した第三の発明 の実施の形態と同様の方法によって、複数の未焼成セラミック成形体を得る。  In the method of manufacturing a plasma generating electrode according to the present embodiment, a plurality of unfired ceramic molded bodies are obtained by the same method as in the above-described third embodiment.
[0055] 次に、得られた複数の未焼成セラミック成形体のうち所定の未焼成セラミック成形体 の一方の表面に複数の凹溝及び Z又は複数の凹部を形成するとともに、他方の表 面に導電膜を配設して凹溝及び Z又は凹部付き導電膜配設セラミック成形体を得る Next, a plurality of grooves and Z or a plurality of recesses are formed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies, and the other surface is formed on the other surface. Arranging a conductive film to obtain a ceramic molded body having a groove and Z or a conductive film provided with a concave portion
。第三の発明の実施の形態においては、単位電極前駆体を得た後に、その少なくと も一方の表面に複数の凹溝及び Z又は複数の凹部を形成するものであつたが、本 実施の形態においては、未焼成セラミック成形体を形成した状態で、その表面に複 数の凹溝及び Z又は複数の凹部を形成する。複数の凹溝及び Z又は複数の凹部を 形成する方法については、第三の発明の実施の形態において説明した方法と同様 の方法を用いることができ、例えば、凹溝や凹部の形状に対応した押型等を用いて 形成してもよいし、また、パンチングによって複数の孔が穿孔された未焼成セラミック 成形体を作製し、この複数の孔が穿孔された未焼成セラミック成形体を板状の未焼 成セラミック成形体と積層して凹溝や凹部を形成してもよ 、。また導電膜にっ ヽても 第三の発明の実施の形態において説明した方法によって導体ペーストを調製し、同 様の方法によって配設することができる。 . In the embodiment of the third invention, a plurality of concave grooves and Z or a plurality of concave parts are formed on at least one surface of the unit electrode precursor after obtaining the unit electrode precursor. In the embodiment, a plurality of concave grooves and Z or a plurality of concave portions are formed on the surface of the green ceramic molded body in a state of being formed. Regarding the method of forming the plurality of concave grooves and Z or the plurality of concave portions, a method similar to the method described in the embodiment of the third invention can be used, for example, corresponding to the shape of the concave groove or the concave portion. It may be formed using a stamping die or the like, or an unsintered ceramic formed body having a plurality of holes formed by punching, and the unsintered ceramic formed body having a plurality of holes formed therein may be formed into a plate-shaped unformed ceramic body. Grooves and recesses may be formed by laminating with the sintered ceramic molded body. Also for the conductive film, a conductive paste can be prepared by the method described in the third embodiment of the present invention, and can be disposed by the same method.
[0056] なお、複数の凹溝及び Z又は複数の凹部を形成する工程と、導電膜を配設するェ 程については、どちらを先に行ってもよぐまた、同時に行ってもよい。  [0056] Regarding the step of forming the plurality of concave grooves and Z or the plurality of concave parts, and the step of disposing the conductive film, either of them may be performed first, or they may be performed simultaneously.
[0057] 次に、このようにして得られた凹溝及び Z又は凹部付き導電膜配設セラミック成形 体に、この導電膜を被覆するように他の未焼成セラミック成形体を積層して、少なくと も一方の表面に複数の凹溝及び Z又は複数の凹部が形成された凹溝及び Z又は 凹部付き単位電極前駆体を得る。他の未焼成セラミック成形体を積層する場合には 、他の未焼成セラミック成形体を板状のまま使用して、一方の表面のみに凹溝及びNext, another unfired ceramic formed body is laminated on the ceramic formed body provided with the conductive film with the grooves and Z or the recesses obtained in this manner so as to cover the conductive film, and Both of which have a plurality of grooves and Z or a plurality of grooves formed with a plurality of recesses on one surface. A unit electrode precursor with concave portions is obtained. When laminating another unfired ceramic formed body, the other unfired ceramic formed body is used in the form of a plate, and a groove and a groove are formed only on one surface.
Z又は凹部が形成された凹溝及び Z又は凹部付き単位電極前駆体を形成してもよ いし、他の未焼成セラミック成形体の積層する表面とは反対側の表面に複数の凹溝 及び Z又は複数の凹部を形成した凹溝及び Z又は凹部付き未焼成セラミック成形 体として積層し、その両方の表面に凹溝及び Z又は凹部が形成された凹溝及び Z 又は凹部付き単位電極前駆体を形成してもよ!/ヽ。 A groove having Z or a concave portion and a unit electrode precursor with a Z or a concave portion may be formed, or a plurality of concave grooves and Z may be formed on a surface opposite to a surface on which another unfired ceramic molded body is laminated. Alternatively, the laminate is laminated as a concave groove having a plurality of concave portions and Z or an unsintered ceramic molded body with concave portions, and a concave groove having both concave surfaces and Z or concave portions formed on both surfaces thereof and a Z or a unit electrode precursor having concave portions. You may form! / ヽ.
[0058] このようにして凹溝及び Z又は凹部付き単位電極前駆体を得た以降の工程にっ ヽ ては、第三の発明の実施の形態と同様方法によってプラズマ発生電極を製造するこ とができる。このように構成すること〖こよって、図 1に示すようなプラズマ発生電極 1を 簡便かつ低コストに製造することができる。 [0058] In the subsequent steps of obtaining the unit electrode precursor with concave grooves and Z or concave parts in this manner, a plasma generating electrode is manufactured by the same method as the embodiment of the third invention. Can be. With this configuration, the plasma generating electrode 1 as shown in FIG. 1 can be manufactured simply and at low cost.
[0059] 次に、第五の発明のプラズマ発生電極の製造方法の一の実施の形態について説 明する。本実施の形態のプラズマ発生電極の製造方法は、互いに対向する二つ以 上の板状の単位電極を備え、単位電極相互間に電圧を印加することによってプラズ マを発生させることが可能なプラズマ発生電極の製造方法であって、セラミック原料 を板状に成形して複数の未焼成セラミック成形体を得、得られた複数の未焼成セラミ ック成形体のうち所定の未焼成セラミック成形体の一方の表面に導電膜を配設して 導電膜配設セラミック成形体を得、得られた導電膜配設セラミック成形体に、導電膜 を被覆するように他の未焼成セラミック成形体を積層して板状の単位電極前駆体を 得、得られた単位電極前駆体を焼成した後にその少なくとも一方の表面に複数の凹 溝及び Z又は複数の凹部を形成して、少なくとも一方の表面に複数の凹溝及び Z 又は複数の凹部が形成された板状のセラミック誘電体と、セラミック誘電体の内部に 配設された導電膜とを有する凹溝及び Z又は凹部付き単位電極を得、得られた凹溝 及び Z又は凹部付き単位電極を、プラズマ発生電極を構成する対向する単位電極 の少なくとも一方として配置する製造方法である。このように構成することによって、図 Next, one embodiment of a method for manufacturing a plasma generating electrode according to the fifth invention will be described. The method of manufacturing a plasma generating electrode according to the present embodiment includes a plasma capable of generating plasma by providing two or more plate-shaped unit electrodes facing each other and applying a voltage between the unit electrodes. A method for producing a generating electrode, comprising forming a plurality of unfired ceramic formed bodies by forming a ceramic raw material into a plate shape, and forming a predetermined unfired ceramic formed body among the obtained plurality of unfired ceramic formed bodies. A conductive film is provided on one surface to obtain a ceramic body provided with a conductive film, and another unfired ceramic formed body is laminated on the obtained ceramic body provided with a conductive film so as to cover the conductive film. After obtaining the plate-shaped unit electrode precursor, firing the obtained unit electrode precursor, forming a plurality of grooves and Z or a plurality of recesses on at least one surface thereof, and forming a plurality of Groove and Z or Is a concave groove and a Z having a plate-shaped ceramic dielectric in which a plurality of concave portions are formed, and a conductive film disposed inside the ceramic dielectric, or a unit electrode with a concave portion. Alternatively, this is a manufacturing method in which a unit electrode with a concave portion is arranged as at least one of opposed unit electrodes constituting a plasma generating electrode. With this configuration,
1に示すようなプラズマ発生電極 1を簡便かつ低コストに得ることができる。前述した 第三の発明の実施の形態の製造方法においては、単位電極前駆体を焼成する前にThe plasma generating electrode 1 as shown in FIG. 1 can be obtained simply and at low cost. In the manufacturing method according to the third embodiment of the present invention, before firing the unit electrode precursor,
、複数の凹溝及び Z又は複数の凹部を形成するものであるが、本実施の形態の製 造方法においては、単位電極前駆体を焼成した後に、その表面に複数の凹溝及び, A plurality of concave grooves and Z or a plurality of concave portions. In the fabrication method, after firing the unit electrode precursor, a plurality of grooves and on the surface thereof
Z又は複数の凹部を形成するものである。このように構成することによって、複数の凹 溝及び Z又は複数の凹部の形状の精度を向上させることができる。なお、複数の凹 溝及び Z又は複数の凹部を形成する方法としては、特に限定されることはないが、機 械加工、例えば、スライシンダカ卩ェ、ダイシンダカ卩ェ、サンドブラスト加工、又は超音 波ホーンによる加工等を好適例として挙げることができる。 Z or a plurality of concave portions are formed. With this configuration, the accuracy of the shapes of the plurality of concave grooves and the Z or the plurality of concave portions can be improved. The method of forming the plurality of grooves and the Z or the plurality of recesses is not particularly limited, but may be mechanical processing, for example, slicing, die slicing, sandblasting, or ultrasonic horn. And the like by way of example.
[0060] 本実施の形態の製造方法においては、上述したように単位電極前駆体を焼成した 後に複数の凹溝及び Z又は複数の凹部を形成する工程以外は、上述した第三の発 明の実施の形態で説明した方法と同様の方法にて実現することが可能である。なお 、形成する凹溝及び Z又は凹部の形状等については、第一の発明のプラズマ発生 電極の実施の形態において説明した凹溝及び Z又は凹部の形状等と同様に構成さ れていることが好ましい。  In the manufacturing method according to the present embodiment, except for the step of forming a plurality of grooves and Z or a plurality of recesses after firing the unit electrode precursor as described above, It can be realized by a method similar to the method described in the embodiment. The shape of the groove and the Z or the concave portion to be formed may be the same as the shape of the groove and the Z or the concave portion described in the embodiment of the plasma generating electrode of the first invention. preferable.
[0061] 次に、第六の発明のプラズマ発生電極の製造方法の一の実施の形態について説 明する。本実施の形態のプラズマ発生電極の製造方法は、互いに対向する二つ以 上の板状の単位電極を備え、単位電極相互間に電圧を印加することによってプラズ マを発生させることが可能なプラズマ発生電極の製造方法であって、セラミック原料 を板状に成形して複数の未焼成セラミック成形体を得、得られた複数の未焼成セラミ ック成形体のうち所定の未焼成セラミック成形体の一方の表面に、その膜厚方向に 貫通した複数の空隙部が形成された導電膜を配設して導電膜配設セラミック成形体 を得、得られた導電膜配設セラミック成形体に、導電膜を被覆するように他の未焼成 セラミック成形体を積層して板状の単位電極前駆体を得、得られた単位電極前駆体 を焼成して、少なくとも一方の表面に、未焼成セラミック成形体に配設した導電膜の 複数の空隙部の形状に対応した複数の凹溝及び Z又は複数の凹部が形成された 板状のセラミック誘電体と、セラミック誘電体の内部に配設された導電膜とを有する凹 溝及び Z又は凹部付き単位電極を得、得られた凹溝及び Z又は凹部付き単位電極 を、プラズマ発生電極を構成する対向する単位電極の少なくとも一方として配置する 製造方法である。このように構成することによって、図 9に示したようなプラズマ発生電 極 1を簡便かつ低コストに製造することができる。 [0062] 本実施の形態のプラズマ発生電極の製造方法にお!、ては、まず、前述した第三の 発明の実施の形態と同様の方法にて、複数の未焼成セラミック成形体を作製する。 Next, one embodiment of a method for manufacturing a plasma generating electrode according to the sixth invention will be described. The method of manufacturing a plasma generating electrode according to the present embodiment includes a plasma capable of generating plasma by providing two or more plate-shaped unit electrodes facing each other and applying a voltage between the unit electrodes. A method for producing a generating electrode, comprising forming a plurality of unfired ceramic formed bodies by forming a ceramic raw material into a plate shape, and forming a predetermined unfired ceramic formed body among the obtained plurality of unfired ceramic formed bodies. On one surface, a conductive film in which a plurality of voids penetrating in the film thickness direction is formed is provided to obtain a ceramic molded body provided with a conductive film. Another unfired ceramic formed body is laminated so as to cover the film to obtain a plate-shaped unit electrode precursor, and the obtained unit electrode precursor is fired, and at least one surface has an unfired ceramic formed body. Conductive placed in A concave groove having a plate-shaped ceramic dielectric formed with a plurality of concave grooves and Z or a plurality of concave parts corresponding to the shapes of the plurality of voids, and a conductive film disposed inside the ceramic dielectric; This is a manufacturing method in which Z or a unit electrode with a concave portion is obtained, and the obtained concave groove and the unit electrode with the Z or concave portion are arranged as at least one of the opposing unit electrodes constituting the plasma generating electrode. With such a configuration, the plasma generating electrode 1 as shown in FIG. 9 can be manufactured simply and at low cost. [0062] In the method of manufacturing a plasma generating electrode according to the present embodiment, first, a plurality of unfired ceramic molded bodies are manufactured in the same manner as in the above-described embodiment of the third invention. .
[0063] 次に、得られた複数の未焼成セラミック成形体のうち所定の未焼成セラミック成形体 の一方の表面に、その膜厚方向に貫通する空隙部が複数形成された導電膜を配設 して導電膜配設セラミック成形体を作製する。導電膜は、スクリーン印刷、カレンダー ロール、スプレー、静電塗装、ディップ、ナイフコータ、化学蒸着、物理蒸着等の方法 によって配設することができる。このように導電膜に空隙部を形成した導電膜配設セ ラミック成形体と、他の未焼成セラミック成形体とを重ね合わせることにより、導電膜の 空隙部を埋めるように未焼成セラミック成形体が成形され、単位電極前駆体の表面 に、導電膜の空隙部の形状に対応した複数の凹溝及び Z又は複数の凹部を形成す ることができる。これ以降の工程は、第三の発明のプラズマ発生電極の製造方法の 実施の形態と同様の方法によって、単位電極前駆体を焼成することにより、図 9に示 すような、少なくとも一方の表面 21に、導電膜 4の複数の空隙部 10の形状に対応し た複数の凹溝及び Z又は複数の凹部 6 (図 8においては、複数の凹部 6のみが形成 されている)が形成された板状のセラミック誘電体 3と、セラミック誘電体 3の内部に配 設された導電膜 4とを有する単位電極 2を備えたプラズマ発生電極を製造することが できる。  Next, a conductive film having a plurality of voids penetrating in the thickness direction is provided on one surface of a predetermined unfired ceramic molded body among the plurality of obtained unfired ceramic molded bodies. Thus, a ceramic molded body provided with a conductive film is produced. The conductive film can be provided by a method such as screen printing, calender roll, spray, electrostatic coating, dip, knife coater, chemical vapor deposition, physical vapor deposition and the like. By laminating the ceramic molded body provided with the conductive film in which the voids are formed in the conductive film and another unfired ceramic molded body, the unfired ceramic molded body is filled so as to fill the voids in the conductive film. A plurality of concave grooves and Z or a plurality of concave portions corresponding to the shape of the void portion of the conductive film can be formed on the surface of the molded unit electrode precursor. In the subsequent steps, the unit electrode precursor is baked by the same method as that of the embodiment of the method for manufacturing a plasma generating electrode according to the third invention, so that at least one surface 21 as shown in FIG. In addition, a plate on which a plurality of concave grooves and Z or a plurality of concave portions 6 corresponding to the shape of the plurality of void portions 10 of the conductive film 4 (only the plurality of concave portions 6 are formed in FIG. 8) is formed. A plasma generating electrode including a unit electrode 2 having a ceramic dielectric 3 in a shape and a conductive film 4 disposed inside the ceramic dielectric 3 can be manufactured.
[0064] 次に、第二の発明のプラズマ反応器の一の実施の形態について説明する。図 10 は、本実施の形態のプラズマ反応器を構成を模式的に示す断面図である。図 10〖こ 示すように、本実施の形態のプラズマ反応器 20は、図 1に示したような本発明のブラ ズマ発生電極の一の実施の形態 (プラズマ発生電極 1)と、所定の成分を含むガスの 流路 (ガス流路 13)を内部に有するケース体 12とを備え、このガスがケース体 12のガ ス流路 13に導入されたときに、プラズマ発生電極 1によって発生したプラズマによりガ スに含まれる所定の成分が反応することが可能なものである。本実施の形態のプラズ マ反応器 20においては、第一の発明の実施の形態のプラズマ発生電極 1を備えて なることから、高密度なプラズマを発生させることが可能となり、例えば、このプラズマ 反応器 20を排気ガス処理装置として用いた場合には、高効率にかつ低エネルギー で排気ガスを処理することができる。 [0065] 本実施の形態のプラズマ反応器 20を構成するケース体 12の材料としては、特に制 限はないが、例えば、優れた導電性を有するとともに、軽量かつ安価であり、熱膨張 による変形の少な 、フェライト系ステンレス等であることが好まし 、。 Next, one embodiment of the plasma reactor of the second invention will be described. FIG. 10 is a cross-sectional view schematically showing a configuration of the plasma reactor of the present embodiment. As shown in FIG. 10, the plasma reactor 20 of the present embodiment is different from the embodiment of the plasma generating electrode (plasma generating electrode 1) of the present invention shown in FIG. And a case body 12 having a gas flow path (gas flow path 13) containing gas therein, and when the gas is introduced into the gas flow path 13 of the case body 12, the plasma generated by the plasma generation electrode 1 is provided. Thus, a predetermined component contained in the gas can react. Since the plasma reactor 20 according to the present embodiment includes the plasma generating electrode 1 according to the first embodiment of the present invention, high-density plasma can be generated. When the device 20 is used as an exhaust gas treatment device, exhaust gas can be treated with high efficiency and low energy. [0065] The material of case body 12 constituting plasma reactor 20 of the present embodiment is not particularly limited. For example, it has excellent conductivity, is lightweight and inexpensive, and is deformed by thermal expansion. It is preferable that ferrite stainless steel or the like be used.
[0066] また、図示は省略するが、本実施の形態のプラズマ反応器にぉ ヽては、プラズマ発 生電極に電圧を印加するための電源をさらに備えて 、てもよ 、。この電源につ!、て は、プラズマを有効に発生させることができる電流を供給することが可能なものであれ ば、従来公知の電源を好適に用いることができる。また上述した電源としては、パルス 電源であることが好ましぐこの電源力 その内部に少なくとも一つの SIサイリスタを有 することがさらに好ましい。このような電源を用いることによって、さらに効率よくプラズ マを発生させることができる。  Although not shown, the plasma reactor of the present embodiment may further include a power supply for applying a voltage to the plasma generation electrode. This power supply! In addition, a conventionally known power source can be suitably used as long as it can supply a current capable of effectively generating plasma. Further, it is more preferable that the power supply is a pulse power supply, and that the power supply has at least one SI thyristor therein. By using such a power supply, plasma can be generated more efficiently.
[0067] また、本実施の形態のプラズマ反応器にぉ ヽては、上述したように電源を備えた構 成とせずに、外部の電源から電流を供給するような構成としてもょ ヽ。  [0067] Further, the plasma reactor of the present embodiment may have a configuration in which a current is supplied from an external power supply instead of the configuration including the power supply as described above.
[0068] プラズマ反応器を構成するプラズマ発生電極に供給する電流については、発生さ せるプラズマの強度によって適宜選択して決定することができる。例えば、プラズマ反 応器を自動車の排気系中に設置する場合には、プラズマ発生電極に供給する電流 力 電圧が lkV以上の直流電流、ピーク電圧が lkV以上かつ 1秒あたりのノ ルス数 が 100以上(100Hz以上)であるパルス電流、ピーク電圧が lkV以上かつ周波数が 100以上(100Hz以上)である交流電流、又はこれらのいずれか二つを重畳してなる 電流であることが好ましい。このように構成することによって、効率よくプラズマを発生 させることがでさる。  [0068] The current supplied to the plasma generating electrode constituting the plasma reactor can be appropriately selected and determined depending on the intensity of the generated plasma. For example, when a plasma reactor is installed in the exhaust system of a car, the DC voltage supplied to the plasma generating electrode is lkV or more, the peak voltage is lkV or more, and the number of pulses per second is 100. It is preferable that the current be a pulse current having the above (100 Hz or more), an AC current having a peak voltage of lkV or more and a frequency of 100 or more (100 Hz or more), or a current obtained by superposing any two of them. With this configuration, plasma can be generated efficiently.
[0069] また、自動車等のエンジン力も排出されるガスが通過する排気形に本実施の形態 のプラズマ反応器と触媒とを組合わせて配設することにより、排気ガスに含まれる窒 素酸ィ匕物等の有害物質をより有効に除去することができる。  [0069] Further, by arranging the plasma reactor of the present embodiment and the catalyst in combination in an exhaust form through which a gas that also discharges engine power of an automobile or the like passes, the nitrogen contained in the exhaust gas is reduced. It is possible to more effectively remove harmful substances such as dashi.
[0070] 上述したように本実施の形態のプラズマ反応器とともに用いられる触媒としては、例 えば、白金(Pt)、パラジウム (Pd)、ロジウム (Rh)、金 (Au)、銀 (Ag)、銅 (Cu)、鉄 ( Fe)、ニッケル (Ni)、イリジウム (Ir)、ガリウム (Ga)等力も選択させる一種又は二種以 上の組合わせからなり、これらの金属を多孔質担体に担持して構成された触媒を好 適に用いることができる。 実施例 [0070] As described above, examples of the catalyst used with the plasma reactor of the present embodiment include platinum (Pt), palladium (Pd), rhodium (Rh), gold (Au), silver (Ag), Copper (Cu), iron (Fe), nickel (Ni), iridium (Ir), gallium (Ga), etc. can be selected from one or a combination of two or more, and these metals are supported on a porous carrier. The catalyst constituted as described above can be suitably used. Example
[0071] 以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定 されるものではない。  Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the following examples.
[0072] (実施例 1) (Example 1)
図 11に示すような、表面に複数の凹溝 5が形成された板状のセラミック誘電体 3と、 セラミック誘電体 3の内部に配設された導電膜 4とを有してなる単位電極 2を備えたプ ラズマ発生電極丄を作製し、このプラズマ発生電極 1を、所定の成分を含むガスの流 路を有するケース体の内部に配設してプラズマ反応器 (実施例 1)を製造した。本実 施例に用いたプラズマ発生電極 1は、 1mmの厚さのセラミック誘電体 3の両側に表面 のそれぞれに、幅 100 μ m、深さ 100 μ mの凹溝 5を、セラミック誘電体 3の表面を平 面とした面積の 50%に相当する領域に形成した。なお、本実施例に用いられるブラ ズマ発生電極 1を構成するセラミック誘電体 3の厚さの平均値は 0. 9mmである。  As shown in FIG. 11, a unit electrode 2 having a plate-shaped ceramic dielectric 3 having a plurality of concave grooves 5 formed on its surface, and a conductive film 4 disposed inside the ceramic dielectric 3 A plasma reactor (Example 1) was manufactured by fabricating a plasma generation electrode を having a plasma generation electrode 1 disposed inside a case body having a gas flow path containing a predetermined component. . The plasma generating electrode 1 used in the present embodiment has a ceramic dielectric 3 having a thickness of 1 mm, and a concave groove 5 having a width of 100 μm and a depth of 100 μm formed on each side of the surface of the ceramic dielectric 3. It was formed in a region corresponding to 50% of the area where the surface was flat. The average value of the thickness of the ceramic dielectric 3 constituting the plasma generating electrode 1 used in the present embodiment is 0.9 mm.
[0073] 本実施例のプラズマ反応器に、ガス流量が 1. ONm3Zminとなる条件で、プロパン ガスパーナ燃焼排気ガスを通気したところ、排気ガスに含まれる一酸化窒素を、 82 体積%の割合で二酸ィ匕窒素に変換し、また、同様に排気ガスに含まれる煤を、 58質 量%の割合で除去 (酸化処理)することができた。 [0073] Propane gas burner exhaust gas was passed through the plasma reactor of this example under the condition that the gas flow rate was 1. ONm 3 Zmin. Nitrogen monoxide contained in the exhaust gas was reduced to 82% by volume. Thus, the soot contained in the exhaust gas could be removed (oxidized) at a rate of 58% by mass.
[0074] (比較例 1)  (Comparative Example 1)
その表面が平坦な、板状のセラミック誘電体と、セラミック誘電体の内部に配設され た導電膜とを有してなる単位電極を備えたプラズマ発生電極を作製し、このプラズマ 発生電極を、所定の成分を含むガスの流路を有するケース体の内部に配設してブラ ズマ反応器 (比較例 1 )を製造した。比較例 1に用 ヽたプラズマ発生電極を構成する セラミック誘電体の厚さは、 1mmである。  A plasma generating electrode including a unit electrode including a plate-shaped ceramic dielectric having a flat surface and a conductive film disposed inside the ceramic dielectric is manufactured. A plasma reactor (Comparative Example 1) was manufactured by disposing it inside a case body having a gas flow path containing a predetermined component. The thickness of the ceramic dielectric constituting the plasma generating electrode used in Comparative Example 1 was 1 mm.
[0075] 実施例 1と同様の方法で、プラズマ反応器の排気ガスを通気したところ、一酸化窒 素は 68体積%の割合で変換され、煤は 41質量%の割合で除去することができたが 、実施例 1のプラズマ反応器と比較すると、共に低い値であり、排気ガスを処理するも のとしては、十分なものではなかった。  When the exhaust gas of the plasma reactor was ventilated in the same manner as in Example 1, nitrogen monoxide was converted at a rate of 68% by volume, and soot could be removed at a rate of 41% by mass. However, when compared with the plasma reactor of Example 1, both values were low, and were not sufficient for treating exhaust gas.
[0076] (比較例 2)  (Comparative Example 2)
その表面に、凸状の突起を形成した板状のセラミック誘電体と、セラミック誘電体の 内部に配設された導電膜とを有してなる単位電極を備えたプラズマ発生電極を作製 し、このプラズマ発生電極を、所定の成分を含むガスの流路を有するケース体の内 部に配設してプラズマ反応器 (比較例 1)を製造した。比較例 2に用いたプラズマ発 生電極を構成するセラミック誘電体の厚さは lmmであり、突起の高さは、 100 /z mで ある。 A plate-like ceramic dielectric having convex protrusions formed on its surface, and a ceramic dielectric A plasma generating electrode including a unit electrode having a conductive film disposed therein is manufactured, and the plasma generating electrode is disposed inside a case body having a gas flow path containing a predetermined component. Then, a plasma reactor (Comparative Example 1) was manufactured. The thickness of the ceramic dielectric constituting the plasma generating electrode used in Comparative Example 2 was 1 mm, and the height of the protrusion was 100 / zm.
[0077] 実施例 1と同様の方法で、プラズマ反応器の排気ガスを通気したところ、一酸化窒 素は 70体積%の割合で変換され、煤は 42質量%の割合で除去することができたが 、実施例 1のプラズマ反応器と比較すると、共に低い値であり、排気ガスを処理するも のとしては、十分なものではなかった。  When the exhaust gas of the plasma reactor was ventilated in the same manner as in Example 1, nitrogen monoxide was converted at a rate of 70% by volume, and soot could be removed at a rate of 42% by mass. However, when compared with the plasma reactor of Example 1, both values were low, and were not sufficient for treating exhaust gas.
[0078] (実施例 2)  (Example 2)
実施例 1のプラズマ反応器の後流に触媒を配設し、 NO浄化性能を評価した。触 媒は、市販の 0 -A1 Oに白金 (Pt)を 5質量%含浸した触媒粉末をコーディエライト  A catalyst was provided downstream of the plasma reactor of Example 1 to evaluate NO purification performance. The catalyst is a cordierite obtained by impregnating commercially available 0-A1 O with 5% by mass of platinum (Pt).
2 3  twenty three
製のセラミックハ-カム構造体に担持したものを用いた。この触媒の大きさは、直径 1 インチ(約 2. 54cm)、長さ 60mmの円柱状である。また、セラミックハ-カム構造体は 400セルで、セルを区画する隔壁の厚さ(リブ厚)が 4ミル (約 0. lmm)である。なお、 プラズマを発生させる条件、及び排気ガスの通気条件については、実施例 1と同様 である。  What was carried by the ceramic honeycomb structure made from this product was used. The size of this catalyst is 1 inch (approx. 2.54 cm) in diameter and 60 mm long. Further, the ceramic honeycomb structure has 400 cells, and the thickness (rib thickness) of the partition partitioning the cells is 4 mil (about 0.1 mm). The conditions for generating the plasma and the ventilation conditions for the exhaust gas are the same as those in the first embodiment.
[0079] その結果、排気ガスに含まれる NOが、排気ガスをプラズマ反応器と触媒とを通過し た後に NOとして 80体積%浄ィ匕した。  [0079] As a result, 80% by volume of NO contained in the exhaust gas was purified as NO after passing the exhaust gas through the plasma reactor and the catalyst.
[0080] (比較例 3) (Comparative Example 3)
比較例 1のプラズマ反応器の後流に触媒を配設し、 NO浄化性能を評価した。触 媒は、実施例 2に用いた触媒を同様の触媒を用いた。また、プラズマを発生させる条 件、及びガスの通気条件については、比較例 1と同様である。  A catalyst was provided downstream of the plasma reactor of Comparative Example 1, and the NO purification performance was evaluated. As the catalyst, the same catalyst as used in Example 2 was used. The conditions for generating plasma and the conditions for gas ventilation are the same as in Comparative Example 1.
[0081] 比較例 3においては、排気ガスに含まれる NOが NOとして 65体積%し力浄ィ匕しな かった。 [0081] In Comparative Example 3, the NO contained in the exhaust gas was 65% by volume as NO and was not subjected to power purification.
産業上の利用可能性  Industrial applicability
[0082] 本発明のプラズマ発生電極及びプラズマ反応器は、エネルギー状態の高い高密 度なプラズマを発生させることができることから、排気ガス等に含まれる所定の成分を 処理する排気ガス処理装置等に好適に用いることができる。また、本発明のプラズマ 発生電極の製造方法は、簡便かつ低コストに上述したプラズマ発生電極を製造する ことができる。 [0082] Since the plasma generating electrode and the plasma reactor of the present invention can generate high-density plasma having a high energy state, a predetermined component contained in exhaust gas or the like can be generated. It can be suitably used for an exhaust gas processing device for processing. Further, the method for manufacturing a plasma generating electrode of the present invention can manufacture the above-described plasma generating electrode simply and at low cost.

Claims

請求の範囲 The scope of the claims
[1] 互いに対向する二つ以上の板状の単位電極を備え、前記単位電極相互間に電圧 を印加することによってプラズマを発生させることが可能なプラズマ発生電極であつ て、  [1] A plasma generation electrode comprising two or more plate-shaped unit electrodes facing each other, and capable of generating plasma by applying a voltage between the unit electrodes,
互いに対向する前記単位電極のうちの少なくとも一方力 少なくとも一方の表面に 複数の凹溝及び Z又は複数の凹部が形成された板状のセラミック誘電体と、前記セ ラミック誘電体の内部に配設された導電膜とを有してなり、前記単位電極相互間に電 圧を印力!]した際に、前記セラミック誘電体の表面と、複数の前記凹溝及び Z又は複 数の前記凹部の側面とによって構成されるエッジ部分近傍に、前記エッジ部分近傍 以外の前記単位電極相互間に発生するプラズマよりも密度の高いプラズマを発生さ せることが可能なプラズマ発生電極。  At least one force of the unit electrodes facing each other, a plate-shaped ceramic dielectric having at least one surface formed with a plurality of concave grooves and Z or a plurality of concave portions, and disposed inside the ceramic dielectric; When a voltage is applied between the unit electrodes!], The surface of the ceramic dielectric and the side surfaces of the plurality of concave grooves and Z or the plurality of concave portions are formed. And a plasma generating electrode capable of generating a plasma having a higher density in the vicinity of the edge portion than in the vicinity of the edge portion and higher than the plasma generated between the unit electrodes.
[2] 複数の前記凹溝及び Z又は複数の前記凹部が、前記セラミック誘電体の表面を平 面とした面積の 20— 80%に相当する領域に形成されてなる請求項 1に記載のブラ ズマ発生電極。  [2] The bra according to claim 1, wherein the plurality of concave grooves and the Z or the plurality of concave portions are formed in a region corresponding to 20 to 80% of the area of the surface of the ceramic dielectric as a flat surface. Zuma generating electrode.
[3] 複数の前記凹溝及び Z又は複数の前記凹部の、前記セラミック誘電体の表面から 複数の前記凹溝及び Z又は複数の前記凹部の底部までのそれぞれの深さが、 3— 2 00 μ mである請求項 1又は 2に記載のプラズマ発生電極。  [3] The depth of each of the plurality of concave grooves and Z or the plurality of concave portions from the surface of the ceramic dielectric to the bottom of the plurality of concave grooves and Z or the plurality of concave portions is 3 to 200. 3. The plasma generating electrode according to claim 1, which has a diameter of μm.
[4] 複数の前記凹溝及び Z又は複数の前記凹部の、前記セラミック誘電体の表面から 複数の前記凹溝及び Z又は複数の前記凹部の底部までのそれぞれの深さが、前記 セラミック誘電体の厚さの平均値の 1Z3以下である請求項 1一 3のいずれかに記載 のプラズマ発生電極。  [4] The depth of each of the plurality of concave grooves and Z or the plurality of concave portions from the surface of the ceramic dielectric to the bottom of the plurality of concave grooves and Z or the plurality of concave portions is the same as that of the ceramic dielectric. 14. The plasma generating electrode according to claim 13, wherein the thickness of the plasma generating electrode is 1Z3 or less.
[5] 請求項 1一 4のいずれかに記載のプラズマ発生電極と、所定の成分を含むガスの 流路 (ガス流路)を内部に有するケース体とを備え、前記ガスが前記ケース体の前記 ガス流路に導入されたときに、前記プラズマ発生電極で発生したプラズマにより前記 ガスに含まれる前記所定の成分が反応することが可能なプラズマ反応器。  [5] A plasma generating electrode according to any one of [14] to [14], and a case body having a gas flow path (gas flow path) containing a predetermined component therein, wherein the gas is a gas of the case body. A plasma reactor capable of reacting the predetermined component contained in the gas with plasma generated by the plasma generation electrode when introduced into the gas flow path.
[6] 前記プラズマ発生電極に電圧を印加するためのパルス電源をさらに備えた請求項 5に記載のプラズマ反応器。  6. The plasma reactor according to claim 5, further comprising a pulse power supply for applying a voltage to the plasma generating electrode.
[7] 前記ノ ルス電源力 その内部に少なくとも一つの SIサイリスタを有する請求項 6に 記載のプラズマ反応器。 [7] The power supply according to claim 6, wherein the power supply has at least one SI thyristor therein. A plasma reactor as described.
[8] 互いに対向する二つ以上の板状の単位電極を備え、前記単位電極相互間に電圧 を印加することによってプラズマを発生させることが可能なプラズマ発生電極の製造 方法であって、セラミック原料を板状に成形して複数の未焼成セラミック成形体を得、 得られた複数の前記未焼成セラミック成形体のうち所定の前記未焼成セラミック成形 体の一方の表面に導電膜を配設して導電膜配設セラミック成形体を得、得られた前 記導電膜配設セラミック成形体に、前記導電膜を被覆するように他の前記未焼成セ ラミック成形体を積層して板状の単位電極前駆体を得、得られた前記単位電極前駆 体の少なくとも一方の表面に複数の凹溝及び Z又は複数の凹部を形成して、少なく とも一方の表面に複数の前記凹溝及び Z又は複数の前記凹部が形成された凹溝及 び Z又は凹部付き単位電極前駆体を得、得られた前記凹溝及び Z又は凹部付き単 位電極前駆体を焼成して、少なくとも一方の表面に複数の前記凹溝及び Z又は複 数の前記凹部が形成された板状のセラミック誘電体と、前記セラミック誘電体の内部 に配設された前記導電膜とを有する凹溝及び Z又は凹部付き単位電極を得、得ら れた前記凹溝及び Z又は凹部付き単位電極を、前記単位電極の少なくとも一方とし て配置するプラズマ発生電極の製造方法。  [8] A method for manufacturing a plasma generating electrode comprising two or more plate-shaped unit electrodes facing each other and capable of generating plasma by applying a voltage between the unit electrodes, comprising: Is formed into a plate shape to obtain a plurality of unfired ceramic molded bodies, and a conductive film is disposed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies. A ceramic molded body provided with a conductive film is obtained, and the obtained ceramic molded body provided with the conductive film is laminated with another unfired ceramic molded body so as to cover the conductive film. A precursor is obtained, and a plurality of grooves and Z or a plurality of recesses are formed on at least one surface of the obtained unit electrode precursor, and the plurality of grooves and Z or a plurality of grooves are formed on at least one surface. The recess is formed The obtained groove and Z or the unit electrode precursor with a concave portion is obtained, and the obtained concave groove and Z or the unit electrode precursor with a concave portion are fired to form a plurality of the concave grooves and Z or Z or A unit electrode with a concave groove, a Z or a concave having a plate-shaped ceramic dielectric having a plurality of the recesses formed thereon and the conductive film disposed inside the ceramic dielectric was obtained. A method for manufacturing a plasma generating electrode, wherein the concave groove, the Z or the unit electrode with the concave portion is disposed as at least one of the unit electrodes.
[9] 互いに対向する二つ以上の板状の単位電極を備え、前記単位電極相互間に電圧 を印加することによってプラズマを発生させることが可能なプラズマ発生電極の製造 方法であって、セラミック原料を板状に成形して複数の未焼成セラミック成形体を得、 得られた複数の前記未焼成セラミック成形体のうち所定の前記未焼成セラミック成形 体の一方の表面に複数の凹溝及び Z又は複数の凹部を形成するとともに、他方の 表面に導電膜を配設して凹溝及び Z又は凹部付き導電膜配設セラミック成形体を得 、得られた前記凹溝及び Z又は凹部付き導電膜配設セラミック成形体に、前記導電 膜を被覆するように他の前記未焼成セラミック成形体を積層して、少なくとも一方の表 面に複数の前記凹溝及び Z又は複数の前記凹部が形成された凹溝及び Z又は凹 部付き単位電極前駆体を得、得られた前記凹溝及び Z又は凹部付き単位電極前駆 体を焼成して、少なくとも一方の表面に複数の前記凹溝及び Z又は複数の前記凹 部が形成された板状のセラミック誘電体と、前記セラミック誘電体の内部に配設され た前記導電膜とを有する凹溝及び z又は凹部付き単位電極を得、得られた前記凹 溝及び Z又は凹部付き単位電極を、前記単位電極の少なくとも一方として配置する プラズマ発生電極の製造方法。 [9] A method for manufacturing a plasma generating electrode comprising two or more plate-shaped unit electrodes facing each other and capable of generating plasma by applying a voltage between the unit electrodes, comprising: Into a plate shape to obtain a plurality of unfired ceramic molded bodies, and among the obtained plurality of unfired ceramic molded bodies, a plurality of concave grooves and Z or A plurality of recesses are formed, and a conductive film is provided on the other surface to obtain a ceramic molded body provided with the grooves and the Z or the conductive film with the recesses. Another unsintered ceramic formed body is laminated on the ceramic formed body so as to cover the conductive film, and a plurality of the recessed grooves and Z or a plurality of the recessed parts are formed on at least one surface. Groove and Z Alternatively, a unit electrode precursor with a concave portion is obtained, and the obtained groove and Z or the unit electrode precursor with a concave portion is fired, so that at least one surface has a plurality of the concave grooves and Z or a plurality of the concave portions. A formed plate-shaped ceramic dielectric, and disposed inside the ceramic dielectric. A method for producing a plasma generating electrode, comprising: obtaining a concave groove and z or a unit electrode with a concave portion having the above conductive film, and disposing the obtained concave groove and Z or a unit electrode with a concave portion as at least one of the unit electrodes.
[10] 互いに対向する二つ以上の板状の単位電極を備え、前記単位電極相互間に電圧 を印加することによってプラズマを発生させることが可能なプラズマ発生電極の製造 方法であって、セラミック原料を板状に成形して複数の未焼成セラミック成形体を得、 得られた複数の前記未焼成セラミック成形体のうち所定の前記未焼成セラミック成形 体の一方の表面に導電膜を配設して導電膜配設セラミック成形体を得、得られた前 記導電膜配設セラミック成形体に、前記導電膜を被覆するように他の前記未焼成セ ラミック成形体を積層して板状の単位電極前駆体を得、得られた前記単位電極前駆 体を焼成した後にその少なくとも一方の表面に複数の凹溝及び Z又は複数の凹部 を形成して、少なくとも一方の表面に複数の前記凹溝及び Z又は複数の前記凹部が 形成された板状のセラミック誘電体と、前記セラミック誘電体の内部に配設された前 記導電膜とを有する凹溝及び Z又は凹部付き単位電極を得、得られた前記凹溝及 び Z又は凹部付き単位電極を、前記単位電極の少なくとも一方として配置するブラ ズマ発生電極の製造方法。  [10] A method for manufacturing a plasma generating electrode comprising two or more plate-shaped unit electrodes facing each other and capable of generating plasma by applying a voltage between the unit electrodes, comprising: Is formed into a plate shape to obtain a plurality of unfired ceramic molded bodies, and a conductive film is disposed on one surface of a predetermined unfired ceramic molded body among the obtained plurality of unfired ceramic molded bodies. A ceramic molded body provided with a conductive film is obtained, and the obtained ceramic molded body provided with the conductive film is laminated with another unfired ceramic molded body so as to cover the conductive film. After obtaining a precursor and firing the obtained unit electrode precursor, a plurality of grooves and Z or a plurality of recesses are formed on at least one surface thereof, and the plurality of grooves and Z are formed on at least one surface. Or multiple A concave groove and a Z or a unit electrode with a concave having a plate-shaped ceramic dielectric on which a concave portion is formed and the conductive film disposed inside the ceramic dielectric are obtained, and the concave groove obtained is obtained. And a method of manufacturing a plasma generating electrode, wherein Z or a unit electrode with a concave portion is disposed as at least one of the unit electrodes.
[11] 互いに対向する二つ以上の板状の単位電極を備え、前記単位電極相互間に電圧 を印加することによってプラズマを発生させることが可能なプラズマ発生電極の製造 方法であって、セラミック原料を板状に成形して複数の未焼成セラミック成形体を得、 得られた複数の前記未焼成セラミック成形体のうち所定の前記未焼成セラミック成形 体の一方の表面に、その膜厚方向に貫通した複数の空隙部が形成された導電膜を 配設して導電膜配設セラミック成形体を得、得られた前記導電膜配設セラミック成形 体に、前記導電膜を被覆するように他の前記未焼成セラミック成形体を積層して板状 の単位電極前駆体を得、得られた前記単位電極前駆体を焼成して、少なくとも一方 の表面に、前記導電膜の複数の前記空隙部の形状に対応した複数の前記凹溝及 び Z又は複数の前記凹部が形成された板状のセラミック誘電体と、前記セラミック誘 電体の内部に配設された前記導電膜とを有する凹溝及び Z又は凹部付き単位電極 を得、得られた前記凹溝及び Z又は凹部付き単位電極を、前記単位電極の少なくと も一方として配置するプラズマ発生電極の製造方法。 [11] A method for manufacturing a plasma generating electrode comprising two or more plate-like unit electrodes facing each other and capable of generating plasma by applying a voltage between the unit electrodes, comprising: Into a plate shape to obtain a plurality of unfired ceramic formed bodies, and penetrate through one surface of a predetermined unfired ceramic formed body among the obtained plurality of unfired ceramic formed bodies in the thickness direction thereof. The conductive film having a plurality of voids formed therein is provided to obtain a ceramic molded body provided with a conductive film, and the obtained ceramic molded body provided with a conductive film is coated with the other conductive film so as to cover the conductive film. An unfired ceramic molded body is laminated to obtain a plate-shaped unit electrode precursor, and the obtained unit electrode precursor is fired to form a shape of the plurality of voids of the conductive film on at least one surface. Corresponding multiple A unit electrode with a groove, a Z, or a concave having the plate-shaped ceramic dielectric on which the concave and the Z or the plurality of concaves are formed, and the conductive film disposed inside the ceramic dielectric. And obtaining the obtained unit electrode with the groove and Z or the concave by at least the unit electrode. A method for manufacturing a plasma generating electrode to be disposed as one of them.
PCT/JP2004/018287 2003-12-08 2004-12-08 Plasma generating electrode, its manufacturing method, and plasma reactor WO2005055678A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04819967A EP1701597B1 (en) 2003-12-08 2004-12-08 Plasma generating electrode, its manufacturing method, and plasma reactor
US10/581,748 US20070119828A1 (en) 2003-12-08 2004-12-08 Plasma generating electrode, its manufacturing method, and plasma reactor
JP2005516027A JPWO2005055678A1 (en) 2003-12-08 2004-12-08 Plasma generating electrode, manufacturing method thereof, and plasma reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003408712 2003-12-08
JP2003-408712 2003-12-08

Publications (1)

Publication Number Publication Date
WO2005055678A1 true WO2005055678A1 (en) 2005-06-16

Family

ID=34650404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018287 WO2005055678A1 (en) 2003-12-08 2004-12-08 Plasma generating electrode, its manufacturing method, and plasma reactor

Country Status (4)

Country Link
US (1) US20070119828A1 (en)
EP (1) EP1701597B1 (en)
JP (1) JPWO2005055678A1 (en)
WO (1) WO2005055678A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012559A (en) * 2009-06-30 2011-01-20 Acr Co Ltd Exhaust emission control device using plasma discharge
JP2012079429A (en) * 2010-09-30 2012-04-19 Ngk Insulators Ltd Plasma processing apparatus
JP2012130914A (en) * 2007-02-23 2012-07-12 Ceramatec Inc Ceramic electrode for gliding electric arc
JP2017107717A (en) * 2015-12-09 2017-06-15 日本特殊陶業株式会社 Plasma reactor and plasma electrode plate
JP2020159265A (en) * 2019-03-26 2020-10-01 ダイハツ工業株式会社 Plasma reactor
JP7289608B1 (en) 2021-12-10 2023-06-12 東芝三菱電機産業システム株式会社 Active gas generator

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100675752B1 (en) * 2006-09-14 2007-01-30 (주) 씨엠테크 Plasma reactor
JP5252931B2 (en) 2008-01-16 2013-07-31 日本碍子株式会社 Ceramic plasma reactor and plasma reactor
CN103250470A (en) * 2010-12-09 2013-08-14 韩国科学技术院 Plasma generator
DE102011000261A1 (en) * 2011-01-21 2012-07-26 Hochschule für angewandte Wissenschaft und Kunst Fachhochschule Hildesheim/Holzminden/Göttingen Dielectric coplanar discharge source for surface treatment under atmospheric pressure
JP5795065B2 (en) * 2011-06-16 2015-10-14 京セラ株式会社 Plasma generator and plasma generator
KR101241049B1 (en) 2011-08-01 2013-03-15 주식회사 플라즈마트 Plasma generation apparatus and plasma generation method
KR101246191B1 (en) 2011-10-13 2013-03-21 주식회사 윈텔 Plasma generation apparatus and substrate processing apparatus
EP2960358A1 (en) * 2014-06-25 2015-12-30 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Plasma source and surface treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494493A (en) * 1978-01-11 1979-07-26 Hitachi Ltd Electrode for ozonizer
JP2001274103A (en) * 2000-01-20 2001-10-05 Sumitomo Electric Ind Ltd Gas shower member for semiconductor manufacturing apparatus
JP2001314752A (en) * 2000-05-12 2001-11-13 Hokushin Ind Inc Plasma reaction vessel and method for decomposing gas by plasma
JP2003135582A (en) * 2001-11-06 2003-05-13 Denso Corp Air cleaner
JP2003286829A (en) * 2002-03-19 2003-10-10 Hyundai Motor Co Ltd Plasma reactor and its manufacturing method and exhaust gas reducing device for vehicle provided with plasma reactor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6049086A (en) * 1998-02-12 2000-04-11 Quester Technology, Inc. Large area silent discharge excitation radiator
US6774335B2 (en) * 2000-05-12 2004-08-10 Hokushin Corporation Plasma reactor and gas modification method
US7091481B2 (en) * 2001-08-08 2006-08-15 Sionex Corporation Method and apparatus for plasma generation
US7274015B2 (en) * 2001-08-08 2007-09-25 Sionex Corporation Capacitive discharge plasma ion source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5494493A (en) * 1978-01-11 1979-07-26 Hitachi Ltd Electrode for ozonizer
JP2001274103A (en) * 2000-01-20 2001-10-05 Sumitomo Electric Ind Ltd Gas shower member for semiconductor manufacturing apparatus
JP2001314752A (en) * 2000-05-12 2001-11-13 Hokushin Ind Inc Plasma reaction vessel and method for decomposing gas by plasma
JP2003135582A (en) * 2001-11-06 2003-05-13 Denso Corp Air cleaner
JP2003286829A (en) * 2002-03-19 2003-10-10 Hyundai Motor Co Ltd Plasma reactor and its manufacturing method and exhaust gas reducing device for vehicle provided with plasma reactor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1701597A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130914A (en) * 2007-02-23 2012-07-12 Ceramatec Inc Ceramic electrode for gliding electric arc
JP2011012559A (en) * 2009-06-30 2011-01-20 Acr Co Ltd Exhaust emission control device using plasma discharge
JP2012079429A (en) * 2010-09-30 2012-04-19 Ngk Insulators Ltd Plasma processing apparatus
JP2017107717A (en) * 2015-12-09 2017-06-15 日本特殊陶業株式会社 Plasma reactor and plasma electrode plate
WO2017099011A1 (en) * 2015-12-09 2017-06-15 日本特殊陶業株式会社 Plasma reactor and plasma electrode plate
JP2020159265A (en) * 2019-03-26 2020-10-01 ダイハツ工業株式会社 Plasma reactor
JP7267800B2 (en) 2019-03-26 2023-05-02 ダイハツ工業株式会社 plasma reactor
JP7289608B1 (en) 2021-12-10 2023-06-12 東芝三菱電機産業システム株式会社 Active gas generator
WO2023105753A1 (en) * 2021-12-10 2023-06-15 東芝三菱電機産業システム株式会社 Active gas generation apparatus

Also Published As

Publication number Publication date
EP1701597B1 (en) 2012-08-22
JPWO2005055678A1 (en) 2007-12-06
EP1701597A4 (en) 2009-07-01
US20070119828A1 (en) 2007-05-31
EP1701597A1 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
US7635824B2 (en) Plasma generating electrode, plasma generation device, and exhaust gas purifying device
EP1638377B1 (en) Plasma generating electrode, plasma generation device, and exhaust gas purifying apparatus
WO2005055678A1 (en) Plasma generating electrode, its manufacturing method, and plasma reactor
JP4448094B2 (en) Plasma generating electrode, plasma reactor, and exhaust gas purification device
EP1643093B1 (en) Plasma generating electrode and plasma reactor
US7727488B2 (en) Plasma generating electrode and plasma reactor
KR20090079180A (en) Ceramic plasma reactor and plasma reaction apparatus
JP4494955B2 (en) Plasma generating electrode and plasma reactor
JP2005123034A (en) Plasma generating electrode and plasma reactor
JP5150482B2 (en) Exhaust gas purification device
JP4268484B2 (en) Plasma generating electrode and plasma reactor
US7589296B2 (en) Plasma generating electrode and plasma reactor
JP2005093423A (en) Plasma generating electrode and plasma reactor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005516027

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007119828

Country of ref document: US

Ref document number: 10581748

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004819967

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004819967

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10581748

Country of ref document: US