WO2023105507A1 - 이산화탄소 포집장치 및 포집공정 - Google Patents

이산화탄소 포집장치 및 포집공정 Download PDF

Info

Publication number
WO2023105507A1
WO2023105507A1 PCT/IB2023/050818 IB2023050818W WO2023105507A1 WO 2023105507 A1 WO2023105507 A1 WO 2023105507A1 IB 2023050818 W IB2023050818 W IB 2023050818W WO 2023105507 A1 WO2023105507 A1 WO 2023105507A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorption tower
hopper
gas
absorbent
Prior art date
Application number
PCT/IB2023/050818
Other languages
English (en)
French (fr)
Other versions
WO2023105507A4 (ko
Inventor
박용기
김기웅
김대진
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2023105507A1 publication Critical patent/WO2023105507A1/ko
Publication of WO2023105507A4 publication Critical patent/WO2023105507A4/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide capture device and a capture process, and more specifically, to a carbon dioxide capture device and a capture process capable of eliminating flow instability due to overcrowding of an absorbent inside an absorption tower hopper and a regeneration tower hopper.
  • CCS carbon capture and storage
  • Carbon dioxide capture technology can be divided into post-combustion capture, pre-combustion capture, and pure oxygen capture depending on the application of the capture stage. Alternatively, it can be divided into a liquid phase separation technique using a liquid absorbent such as ammonia water and a dry phase separation technique using a solid phase absorbent such as alkali or alkaline earth metal.
  • a liquid absorbent such as ammonia water
  • a dry phase separation technique using a solid phase absorbent such as alkali or alkaline earth metal.
  • the dry capture technology largely consists of the development of solid absorbents with carbon dioxide adsorption capacity and the process of capturing carbon dioxide using these solid absorbents. is greatly affected by
  • Solid absorbents are largely classified into organic, inorganic, carbon-based, organic-inorganic hybrid-based, etc. according to the type of material, and are classified into physical absorbents, chemical absorbents, etc. according to the form in which carbon dioxide is absorbed by the absorbent.
  • the process of capturing carbon dioxide using these solid absorbents is a method for desorbing the absorbed carbon dioxide, which is divided into a pressure swing adsorption (PSA) and a temperature swing adsorption (TSA) process using a pressure difference and a temperature difference. can be largely distinguished.
  • PSA pressure swing adsorption
  • TSA temperature swing adsorption
  • the pressure swing adsorption process using a fixed bed absorption tower is advantageous for small-scale carbon dioxide capture, but in the case of a large amount of carbon dioxide emitted, such as in a power plant or a large combustion furnace, a fluidized bed absorption and desorption that is easy to scale-up
  • a temperature swing adsorption process consisting of a tower is advantageous.
  • Korean Patent Registration No. 10-2033745 proposes a carbon dioxide capture device and a capture process for reducing capture costs by effectively desorbing carbon dioxide absorbed from an absorbent with little energy.
  • FIG. 1 is a view showing a carbon dioxide capture device according to the prior art (Korean Patent Registration No. 10-2033745).
  • a fluidizing gas must be supplied to the inside of the hopper of the reaction tower (absorption tower) and the hopper of the desorption tower (regeneration tower) to fluidize the absorbent so as to eliminate flow instability due to overcrowding of the absorbent.
  • PEI Poly Ethylene Imine
  • the present invention has been made to solve the various problems of the prior art as described above, and to provide a carbon dioxide capture device and capture process capable of removing flow instability due to overcrowding of the absorbent inside the hopper of the absorption tower and the hopper of the regeneration tower.
  • one embodiment of the carbon dioxide trapping device includes an absorption tower including a carbon dioxide adsorbing unit or a carbon dioxide absorbing unit for adsorbing or absorbing carbon dioxide from exhaust gas; a regeneration tower connected to the absorption tower and including an adsorbent heating unit for heating the adsorbent circulating therein, or an absorbent heating unit for heating the absorbent circulating therein; and an adsorbent or absorbent that circulates through the absorption tower and the regeneration tower and alternately adsorbs and desorbs carbon dioxide, or absorbs and desorbs carbon dioxide.
  • An exhaust gas discharge line branched from a first dynamic pressure gas line connecting the carbon dioxide line and the absorption tower hopper to supply low-concentration oxygen gas to the absorption tower hopper, and from which carbon dioxide discharged to the outside through the top of the absorption tower is removed; and It is characterized in that it is configured to supply low-concentration oxygen gas to the hopper of the regeneration tower by being branched off from the second dynamic pressure gas line connecting the hopper of the regeneration tower.
  • a portion After passing through the first valve in the first dynamic pressure gas line at the top of the absorption tower hopper, a portion is branched and sequentially passes through the first particle filter and the first pressure booster, and then passes through the first flow meter to the bottom of the absorption tower hopper. Reuse as a fluidizing gas.
  • the first pressure boosting device is a blower.
  • some fluidization gas insufficient in the hopper of the absorption tower may be newly introduced at the rear end of the first pressure increasing device.
  • a part is branched and sequentially passes through the second particle filter and the second pressure booster, and then passes through the second flow meter to the lower part of the regeneration tower hopper. Reuse as a fluidizing gas.
  • the second pressure boosting device is a blower.
  • some fluidization gas insufficient in the hopper of the regeneration tower may be newly introduced at the rear end of the second pressure boosting device.
  • the fluidization gas at the top of the absorption tower hopper is at the same pressure as the carbon dioxide line, when the fluidization gas of low concentration oxygen flows into carbon dioxide, it causes a decrease in carbon dioxide concentration, so to prevent a decrease in carbon dioxide concentration due to the fluidization gas
  • the front end of the first pressure booster is maintained at a weak negative pressure to keep a part of the carbon dioxide gas flowing into the fluidizing gas.
  • Another embodiment of the carbon dioxide trapping device includes an absorption tower including a carbon dioxide adsorbing unit or a carbon dioxide absorbing unit that adsorbs or absorbs carbon dioxide from exhaust gas; a regeneration tower connected to the absorption tower and including an adsorbent heating unit for heating the adsorbent circulating therein, or an absorbent heating unit for heating the absorbent circulating therein; and an adsorbent or absorbent that circulates through the absorption tower and the regeneration tower and alternately adsorbs and desorbs carbon dioxide, or absorbs and desorbs carbon dioxide. It is characterized in that it is configured to branch from the first dynamic pressure gas line connecting the carbon dioxide line and the absorption tower hopper to supply low-concentration oxygen gas to the absorption tower hopper.
  • the fluidized gas that is insufficient in the absorption tower hopper is partially newly introduced at the rear end of the first pressure increasing device.
  • a regeneration tower including a heating unit for adsorbing or absorbing carbon dioxide from exhaust gas in an absorption tower and heating an adsorbent or absorbent circulating therein
  • a carbon dioxide capture process comprising alternately adsorbing and desorbing carbon dioxide, or absorbing and desorbing carbon dioxide while the adsorbent or absorbent circulates through the absorption tower, wherein the carbon dioxide line and absorption desorbed in the regeneration tower Branched from the first dynamic pressure gas line connecting the tower hopper, supplying low-concentration oxygen gas to the absorption tower hopper, passing through the top of the absorption tower and connecting the exhaust gas discharge line from which carbon dioxide discharged to the outside is removed and the regeneration tower hopper It is characterized in that the low-concentration oxygen gas is supplied to the hopper of the regeneration tower by branching from the second dynamic pressure gas line.
  • another embodiment of the carbon dioxide capture process according to the second aspect of the present invention is a regeneration tower including a heating unit for adsorbing or absorbing carbon dioxide from exhaust gas in an absorption tower and heating an adsorbent or absorbent circulating therein. and circulating the adsorbent or absorbent in the absorption tower to alternately perform adsorption and desorption of carbon dioxide, or absorption and desorption of carbon dioxide, wherein the carbon dioxide line desorbed in the regeneration tower and It is characterized in that the low-concentration oxygen gas is supplied to the absorption tower hopper by branching from the first dynamic pressure gas line connecting the absorption tower hopper.
  • the present invention has the following effects.
  • the present invention is configured to supply low-concentration oxygen gas to the regeneration tower hopper by branching from a second dynamic pressure gas line connecting the exhaust gas discharge line from which carbon dioxide discharged to the outside has been removed through the top of the absorption tower and the regeneration tower hopper, Branched from the first dynamic pressure gas line connecting the carbon dioxide line desorbed from the absorption tower hopper and configured to supply low-concentration oxygen gas to the absorption tower hopper, and using the low-concentration oxygen gas as a fluidizing gas, inside the absorption tower hopper and the regeneration tower hopper It has the effect of removing the flow instability caused by the overcrowding of the absorbent.
  • the present invention has the advantage of reducing the cost required for supplying low-concentration oxygen gas when the fluidizing gas is reused.
  • FIG. 1 is a view showing a carbon dioxide capture device according to the prior art.
  • FIG. 2 is a view schematically showing the configuration of a carbon dioxide capture device according to an embodiment of the present invention.
  • FIG 3 is a view showing a carbon dioxide capture device according to an embodiment of the present invention.
  • FIG. 4 is a view showing a carbon dioxide capture device according to another embodiment of the present invention.
  • An absorption tower including a carbon dioxide adsorbing unit or a carbon dioxide absorbing unit for adsorbing or absorbing carbon dioxide from exhaust gas; a regeneration tower connected to the absorption tower and including an adsorbent heating unit for heating the adsorbent circulating therein, or an absorbent heating unit for heating the absorbent circulating therein; and an adsorbent or absorbent that circulates through the absorption tower and the regeneration tower and alternately adsorbs and desorbs carbon dioxide, or absorbs and desorbs carbon dioxide.
  • An exhaust gas discharge line branched from a first dynamic pressure gas line connecting the carbon dioxide line and the absorption tower hopper to supply low-concentration oxygen gas to the absorption tower hopper, and from which carbon dioxide discharged to the outside through the top of the absorption tower is removed; and It is branched off from the second dynamic pressure gas line connecting the regeneration tower hopper and configured to supply low-concentration oxygen gas to the regeneration tower hopper, and captures carbon dioxide that can eliminate flow instability due to overcrowding of the absorbent in the absorption tower hopper and the regeneration tower hopper.
  • Devices and collection processes are provided.
  • a component when a component is described as “existing inside or connected to and installed” of another component, this component may be directly connected to or installed in contact with the other component, and a certain It may be installed at a distance, and when it is installed at a certain distance, a third component or means for fixing or connecting the corresponding component to another component may exist, and now It should be noted that the description of the components or means of 3 may be omitted.
  • ... unit means a unit capable of processing one or more functions or operations, which are hardware or software, or a combination of hardware and software.
  • FIG. 2 is a diagram schematically showing the configuration of a carbon dioxide capturing device according to an embodiment of the present invention
  • FIG. 3 is a view showing a carbon dioxide capturing device according to an embodiment of the present invention.
  • the carbon dioxide capture device includes an absorption tower 10, a regeneration tower 20, and an adsorbent or absorbent, and when the adsorbent or absorbent circulates through the absorption tower 10 and the regeneration tower 20, the adsorbent Alternatively, by using the sensible heat possessed by the absorbent, energy efficiency can be increased by inducing direct or indirect heat exchange between adsorbents or between absorbents.
  • the absorption tower 10 includes a carbon dioxide adsorption unit or a carbon dioxide absorption unit that adsorbs or absorbs carbon dioxide from exhaust gas.
  • the regeneration tower 20 includes an adsorbent heating unit for heating the adsorbent circulating therein, or an absorbent heating unit for heating the absorbent circulating therein.
  • the absorption tower 10 and the regeneration tower 20 are connected to each other, and the adsorbent or absorbent is filled and circulated therein, and adsorption and desorption of carbon dioxide or absorption and desorption of carbon dioxide are alternately repeated.
  • the adsorbent or absorbent circulates through the absorption tower 10 and the regeneration tower 20, and alternately adsorbs carbon dioxide and desorbs carbon dioxide, or absorbs carbon dioxide and desorbs carbon dioxide.
  • adsorption means a physical bond between gaseous carbon dioxide and a solid adsorbent
  • absorption means a chemical bond between gaseous carbon dioxide and a solid absorbent
  • the carbon dioxide may be classified according to the adsorbed or absorbed form.
  • the adsorbent may be at least one selected from the group consisting of zeolite-based adsorbents and carbon-based adsorbents.
  • the absorbent may be at least one selected from the group consisting of an amine-based polymer absorbent and a porous silica absorbent grafted with an organic material having an amine group.
  • the present invention is configured to supply low-concentration oxygen gas to the absorption tower hopper 30 by branching from the first dynamic pressure gas line L1 connecting the carbon dioxide line desorbed from the regeneration tower 20 and the absorption tower hopper 30, and at the same time It is branched from the second dynamic pressure gas line (L2) connecting the exhaust gas discharge line from which carbon dioxide discharged to the outside through the top of the absorption tower (10) is removed and the regeneration tower hopper (40), and is supplied with low-concentration oxygen to the regeneration tower hopper (40). Characterized in that it is configured to supply gas.
  • the first pressure boosting device P1 is a blower.
  • some of the insufficient fluidization gas in the absorption tower hopper 30 may be newly introduced at the rear end of the first pressure boosting device P1.
  • the second pressure boosting device P2 is a blower.
  • some fluidization gas insufficient in the hopper 40 of the regeneration tower may be newly introduced at the rear end of the second pressure boosting device P2.
  • the fluidization gas at the top of the absorption tower hopper 30 has the same pressure as the carbon dioxide line, when the fluidization gas of low concentration oxygen is introduced into the carbon dioxide, the carbon dioxide concentration decreases.
  • the front end of the first pressure boosting device P1 is maintained at a weakly negative pressure to keep some of the carbon dioxide gas flowing into the fluidizing gas.
  • the process of capturing carbon dioxide using the carbon dioxide capture device configured as described above is to adsorb or absorb carbon dioxide from exhaust gas such as a power plant in the absorption tower 10, and to heat an adsorbent or absorbent circulating therein.
  • the adsorbent or absorbent circulates through the regeneration tower 20 including the heating unit and the absorption tower 10, and the adsorption and desorption of carbon dioxide, or the absorption and desorption of carbon dioxide are performed alternately, but the desorption in the regeneration tower 20 It is branched from the first dynamic pressure gas line (L1) connecting the carbon dioxide line and the absorption tower hopper (30) to supply low-concentration oxygen gas to the absorption tower hopper (30), and discharges it to the outside through the top of the absorption tower (10).
  • the low-concentration oxygen gas is supplied to the regeneration tower hopper 40 by branching from the second dynamic pressure gas line L2 connecting the exhaust gas discharge line from which carbon dioxide is removed and the regeneration tower hopper 40 .
  • the present invention is branched from the second dynamic pressure gas line (L2) connecting the exhaust gas discharge line from which carbon dioxide discharged to the outside through the top of the absorption tower (10) is removed and the regeneration tower hopper (40), and the regeneration tower hopper (40) ), and is branched from the first dynamic pressure gas line (L1) connecting the carbon dioxide line desorbed from the regeneration tower 20 and the absorption tower hopper 30 to supply the low concentration oxygen gas to the absorption tower hopper 30.
  • It is configured to supply oxygen gas and uses low-concentration oxygen gas as a fluidizing gas, thereby eliminating flow instability due to overcrowding of the absorbent inside the absorption tower hopper 30 and the regeneration tower hopper 40, and when the fluidizing gas is reused, low concentration There is an advantage of reducing the cost required for supplying oxygen gas.
  • FIG. 4 is a view showing a carbon dioxide capture device according to another embodiment of the present invention.
  • the carbon dioxide capture device includes an absorption tower 10, a regeneration tower 20, and an adsorbent or absorbent, and when the adsorbent or absorbent circulates through the absorption tower 10 and the regeneration tower 20, the adsorbent Alternatively, by using the sensible heat possessed by the absorbent, energy efficiency can be increased by inducing direct or indirect heat exchange between adsorbents or between absorbents.
  • the absorption tower 10 includes a carbon dioxide adsorption unit or a carbon dioxide absorption unit that adsorbs or absorbs carbon dioxide from exhaust gas such as a power plant.
  • the regeneration tower 20 includes an adsorbent heating unit for heating the adsorbent circulating therein, or an absorbent heating unit for heating the absorbent circulating therein.
  • the absorption tower 10 and the regeneration tower 20 are connected to each other, and the adsorbent or absorbent is filled and circulated therein, and adsorption and desorption of carbon dioxide or absorption and desorption of carbon dioxide are alternately repeated.
  • the adsorbent or absorbent circulates through the absorption tower 10 and the regeneration tower 20, and alternately adsorbs carbon dioxide and desorbs carbon dioxide, or absorbs carbon dioxide and desorbs carbon dioxide.
  • adsorption means a physical bond between gaseous carbon dioxide and a solid adsorbent
  • absorption means a chemical bond between gaseous carbon dioxide and a solid absorbent
  • the carbon dioxide may be classified according to the adsorbed or absorbed form.
  • the adsorbent may be at least one selected from the group consisting of zeolite-based adsorbents and carbon-based adsorbents.
  • the absorbent may be at least one selected from the group consisting of an amine-based polymer absorbent and a porous silica absorbent grafted with an organic material having an amine group.
  • High-temperature particles from the regeneration tower 20 are introduced into the absorption tower hopper 30 via a cyclone.
  • the temperature of the hopper 30 of the absorption tower is higher than that of the hopper 40 of the regeneration tower, and when the oxygen-containing fluidization gas is introduced, performance of the absorbent is reduced.
  • the regeneration tower hopper 40 does not branch the fluidization gas and only the absorption tower hopper 30 can reuse the fluidization gas.
  • the present invention is branched from the first dynamic pressure gas line L1 connecting the carbon dioxide line desorbed from the regeneration tower 20 and the absorption tower hopper 30 to supply low-concentration oxygen gas to the absorption tower hopper 30. characterized in that it consists of
  • the fluidization gas at the top of the absorption tower hopper 30 has the same pressure as the carbon dioxide line, when the fluidization gas of low concentration oxygen is introduced into the carbon dioxide, the carbon dioxide concentration decreases.
  • the front end of the first pressure boosting device P1 is maintained at a weakly negative pressure to keep some of the carbon dioxide gas flowing into the fluidizing gas.
  • the absorption tower 10 adsorbs or absorbs carbon dioxide from exhaust gas, and includes a heater for heating the adsorbent or absorbent circulating therein.
  • the adsorbent or absorbent circulates through the regeneration tower 20 including the regeneration tower 20 and the absorption tower 10 to alternately perform adsorption and desorption of carbon dioxide, or absorption and desorption of carbon dioxide, in the regeneration tower 20 It is branched from the first dynamic pressure gas line L1 connecting the desorbed carbon dioxide line and the absorption tower hopper 30 to supply low-concentration oxygen gas to the absorption tower hopper 30.
  • the present invention is configured to supply low-concentration oxygen gas to the regeneration tower hopper by branching from a second dynamic pressure gas line connecting the exhaust gas discharge line from which carbon dioxide discharged to the outside has been removed through the top of the absorption tower and the regeneration tower hopper, Branched from the first dynamic pressure gas line connecting the carbon dioxide line desorbed from the absorption tower hopper and configured to supply low-concentration oxygen gas to the absorption tower hopper, and using the low-concentration oxygen gas as a fluidizing gas, inside the absorption tower hopper and the regeneration tower hopper It has industrial applicability in that it provides a carbon dioxide capture device and a capture process that are effective in removing flow instability due to overcrowding of the absorbent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명에 따른 이산화탄소 포집장치의 일 실시예는, 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하는 이산화탄소 흡착부 또는 이산화탄소 흡수부를 포함하는 흡수탑; 상기 흡수탑과 연결되고, 내부에서 순환하는 흡착제를 가열하는 흡착제 가열부, 또는 내부에서 순환하는 흡수제를 가열하는 흡수제 가열부를 포함하는 재생탑; 및 상기 흡수탑과 상기 재생탑을 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착이 교대로 수행되는 흡착제 또는 흡수제;를 포함하는 이산화탄소 포집장치로서, 상기 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압 가스 라인에서 분기되어 상기 흡수탑 호퍼에 저농도 산소 가스를 공급하도록 구성되고, 상기 흡수탑 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스배출 라인과 재생탑 호퍼를 연결하는 제2동압 가스 라인에서 분기되어 상기 재생탑 호퍼에 저농도 산소 가스를 공급하도록 구성된 것을 특징으로 한다.

Description

이산화탄소 포집장치 및 포집공정
본 발명은 이산화탄소 포집장치 및 포집공정에 관한 것으로, 구체적으로는 흡수탑 호퍼와 재생탑 호퍼 내부의 흡수제 과밀화로 인한 유동 불안정성을 제거할 수 있는 이산화탄소 포집장치 및 포집공정에 관한 것이다.
최근 지구 온난화로 인하여 극지방의 빙하가 녹으면서 해수면이 상승하고 있으며, 기후 변화에 의하여 지구 곳곳에서 기상 이변이 발생하고 있다.
이러한 지구 온난화는 이산화탄소와 같은 온실가스 방출에 기인한다고 알려져 있다.
이산화탄소의 방출량을 규제하기 위한 국제적 규약이 체결되고 있고, 탄소 배출권의 도입 등에 의하여 이산화탄소의 방출을 억제하는 것이 각국의 경제 이슈가 되고 있다.
이산화탄소의 배출량을 감소시키기 위한 노력은 태양 에너지와 풍력 에너지 등과 같이 화석 연료를 대체할 수 있는 대체 에너지를 개발하려는 방향과, 화석 연료에서 발생된 이산화탄소를 대기 중으로 방출하지 않고 포집하여 저장하려는 방향으로 진행되고 있다.
후자의 기술을 이산화탄소 포집 및 저장 기술(carbon capture and storage, CCS)이라고 하는데, 크게는 발전소나 제철소에서 발생된 이산화탄소를 포집하는 분야의 기술과, 포집된 이산화탄소를 지중 또는 해양에 저장하는 기술로 나누어진다.
이산화탄소를 포집하는 기술은 포집 단계의 적용에 따라서 연소 후 포집, 연소 전 포집, 순산소 포집으로 나눌 수 있으며, 이산화탄소를 포집하는 원리에 따라서 분리막을 사용하여 농축하는 막 포집 기술(membrane separation), 아민 또는 암모니아수 등의 액체 흡수제를 사용하는 액상 포집 기술(liquid phase separation), 알칼리 또는 알칼리 토금속 등과 같은 고체상의 흡수제를 사용하는 건식 포집 기술(solid phase separation)로 구분할 수 있다.
이산화탄소를 포집하는 기술 중 건식 포집 기술은 크게 이산화탄소 흡착능을 갖는 고상 흡수제의 개발과 이들 고상 흡수제를 사용하여 이산화탄소를 포집하는 공정으로 구성되어 있으며, 이산화탄소 포집 효율은 고상 흡수제의 성능뿐만 아니라 흡착 공정의 구성에 크게 영향을 받는다.
고상 흡수제는 물질의 종류에 따라 크게 유기계, 무기계, 탄소계, 유-무기 하이브리드계 등으로 구분되며, 이산화탄소가 흡수제에 흡수되는 형태에 따라 물리적 흡수제, 화학적 흡수제 등으로 구분된다.
이들 고상 흡수제를 사용하여 이산화탄소를 포집하는 공정은 흡수된 이산화탄소를 탈착하기 위한 방법으로 압력차 및 온도차를 이용하는 압력 스윙 흡착(Pressure Swing Adsorption, PSA)과 온도 스윙 흡착(Temperature Swing Adsorption, TSA) 공정으로 크게 구분할 수 있다.
일반적으로 작은 규모의 이산화탄소 포집에는 고정층 흡수탑을 사용한 압력 스윙 흡착 공정이 유리하나, 발전소나 대형 연소로와 같이 배출되는 이산화탄소가 많은 경우에는 스케일-업(scale-up)이 용이한 유동층 흡수 및 탈착탑으로 구성된 온도 스윙 흡착 공정이 유리하다.
이와 관련된 선행문헌인 한국공개특허 제2005-0003767호와 한국공개특허 제2010-0099929호 등에서는 고체상의 건식흡수제를 사용하여 이산화탄소를 포집하는데 있어 흡수탑 및 탈착탑으로 구성된 온도 스윙 흡착 개념의 이산화탄소 포집공정을 제시한바 있다.
그러나, 이와 같은 온도 스윙 흡착 개념의 건식 포집 공정은 흡수제에 흡수된 이산화탄소를 탈착시키기 위해서 막대한 에너지가 소요되기 때문에 흡수제 비용과 함께 포집비용을 증가시키는 요인으로 작용하고 있다.
이에 따라, 흡수제로부터 흡수된 이산화탄소를 적은 에너지로 효과적으로 탈착시켜 포집비용을 낮추기 위한 이산화탄소 포집장치 및 포집공정이 한국등록특허 제10-2033745호에 제안된 바 있다.
도 1은 종래 기술(한국등록특허 제10-2033745호)에 따른 이산화탄소 포집장치를 나타낸 도면이다.
도 1에 도시된 이산화탄소 포집장치에서 반응탑(흡수탑) 호퍼와 탈착탑(재생탑) 호퍼 내부에는 흡수제의 유동화를 위해 유동화 기체를 공급해야 흡수제의 과밀화로 인한 유동 불안정성을 제거할 수 있게 된다.
흡수제의 특성 상 약 80 ℃의 온도 이상에서 산소와 접촉 시 흡수제 성능 감소를 야기하는 문제점이 있다.
또한, 흡수제의 주요 성분인 PEI (Poly Ethylene Imine) 인화 온도가 110 ℃이기 때문에 고온에서 고농도 산소와 접촉을 방지해야 운전 안전성을 확보할 수 있게 된다.
이를 위해 호퍼 내 산소 농도를 낮게 유지해야 할 필요가 있다.
본 발명은 전술한 바와 같은 종래의 여러 문제점들을 해결하기 위해 안출된 것으로서, 흡수탑 호퍼와 재생탑 호퍼 내부의 흡수제 과밀화로 인한 유동 불안정성을 제거할 수 있는 이산화탄소 포집장치 및 포집공정을 제공하는데 그 목적이 있다.
상기와 같은 목적들을 달성하기 위하여, 본 발명의 제1관점에 따른 이산화탄소 포집장치의 일 실시예는, 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하는 이산화탄소 흡착부 또는 이산화탄소 흡수부를 포함하는 흡수탑; 상기 흡수탑과 연결되고, 내부에서 순환하는 흡착제를 가열하는 흡착제 가열부, 또는 내부에서 순환하는 흡수제를 가열하는 흡수제 가열부를 포함하는 재생탑; 및 상기 흡수탑과 상기 재생탑을 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착이 교대로 수행되는 흡착제 또는 흡수제;를 포함하는 이산화탄소 포집장치로서, 상기 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압 가스 라인에서 분기되어 상기 흡수탑 호퍼에 저농도 산소 가스를 공급하도록 구성되고, 상기 흡수탑 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스배출 라인과 재생탑 호퍼를 연결하는 제2동압 가스 라인에서 분기되어 상기 재생탑 호퍼에 저농도 산소 가스를 공급하도록 구성된 것을 특징으로 한다.
이와 같은 상기 흡수탑 호퍼 상단의 제1동압 가스 라인에서 제1밸브를 거친 후 일부를 분기하여 제1입자 필터, 제1압력 승압 장치를 순차적으로 거친 후 제1유량계를 통해 상기 흡수탑 호퍼 하부의 유동화 가스로 재사용한다.
이때, 상기 제1압력 승압 장치는 블로워(blower)인 것이 바람직하다.
또한, 상기 흡수탑 호퍼의 부족한 유동화 가스는 상기 제1압력 승압 장치 후단에서 일부 신규로 투입될 수 있다.
아울러, 상기 재생탑 호퍼 상단의 제2동압 가스 라인에서 제2밸브를 거친 후 일부를 분기하여 제2입자 필터, 제2압력 승압 장치를 순차적으로 거친 후 제2유량계를 통해 상기 재생탑 호퍼 하부의 유동화 가스로 재사용한다.
이때, 상기 제2압력 승압 장치는 블로워(blower)인 것이 바람직하다.
또한, 상기 재생탑 호퍼의 부족한 유동화 가스는 상기 제2압력 승압 장치 후단에서 일부 신규로 투입될 수 있다.
아울러, 상기 흡수탑 호퍼 상단의 유동화 가스는 상기 이산화탄소 라인과 동압이 되어 있기 때문에 저농도 산소의 유동화 가스가 이산화탄소로 유입될 경우 이산화탄소 농도 감소를 초래하므로, 상기 유동화 가스로 인한 이산화탄소 농도 감소를 방지하기 위해 상기 제1압력 승압 장치 전단을 약한 음압으로 유지하여 이산화탄소 가스의 일부가 유동화 가스로 유입되도록 유지한다.
본 발명의 제1관점에 따른 이산화탄소 포집 장치의 다른 실시예는, 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하는 이산화탄소 흡착부 또는 이산화탄소 흡수부를 포함하는 흡수탑; 상기 흡수탑과 연결되고, 내부에서 순환하는 흡착제를 가열하는 흡착제 가열부, 또는 내부에서 순환하는 흡수제를 가열하는 흡수제 가열부를 포함하는 재생탑; 및 상기 흡수탑과 상기 재생탑을 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착이 교대로 수행되는 흡착제 또는 흡수제;를 포함하는 이산화탄소 포집장치로서, 상기 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압 가스 라인에서 분기되어 상기 흡수탑 호퍼에 저농도 산소 가스를 공급하도록 구성된 것을 특징으로 한다.
이러한 흡수탑 호퍼 상단의 제1동압 가스 라인에서 제1밸브를 거친 후 일부를 분기하여 제1입자 필터, 제1압력 승압 장치를 순차적으로 거친 후 제1유량계를 통해 상기 흡수탑 호퍼 하부의 유동화 가스로 재사용하고, 상기 흡수탑 호퍼의 부족한 유동화 가스는 상기 제1압력 승압 장치 후단에서 일부 신규로 투입되는 것이 바람직하다.
한편, 본 발명의 제2관점에 따른 이산화탄소 포집공정의 일 실시예는, 흡수탑에서 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하고, 내부에서 순환하는 흡착제 또는 흡수제를 가열하는 가열부를 포함한 재생탑과 상기 흡수탑을 상기 흡착제 또는 흡수제가 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착을 교대로 수행하는 것을 포함하는 이산화탄소 포집공정으로서, 상기 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압 가스 라인에서 분기되어 상기 흡수탑 호퍼에 저농도 산소 가스를 공급하고, 상기 흡수탑 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스배출 라인과 재생탑 호퍼를 연결하는 제2동압 가스 라인에서 분기되어 상기 재생탑 호퍼에 저농도 산소 가스를 공급하는 것을 특징으로 한다.
대안으로, 본 발명의 제2관점에 따른 이산화탄소 포집공정의 다른 실시예는, 흡수탑에서 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하고, 내부에서 순환하는 흡착제 또는 흡수제를 가열하는 가열부를 포함한 재생탑과 상기 흡수탑을 상기 흡착제 또는 흡수제가 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착을 교대로 수행하는 것을 포함하는 이산화탄소 포집공정으로서, 상기 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압 가스 라인에서 분기되어 상기 흡수탑 호퍼에 저농도 산소 가스를 공급하는 것을 특징으로 한다.
기타 실시예의 구체적인 사항은 "발명을 실시하기 위한 구체적인 내용" 및 첨부 "도면"에 포함되어 있다.
본 발명의 이점 및/또는 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 각종 실시예를 참조하면 명확해질 것이다.
그러나, 본 발명은 이하에서 개시되는 각 실시예의 구성만으로 한정되는 것이 아니라 서로 다른 다양한 형태로도 구현될 수도 있으며, 단지 본 명세서에서 개시한 각각의 실시예는 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구범위의 각 청구항의 범주에 의해 정의될 뿐임을 알아야 한다.
전술한 과제의 해결수단에 의하면 본 발명은 다음과 같은 효과를 가진다.
본 발명은 흡수탑 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스배출 라인과 재생탑 호퍼를 연결하는 제2동압가스 라인에서 분기되어 재생탑 호퍼에 저농도 산소 가스를 공급하도록 구성되고, 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압가스 라인에서 분기되어 흡수탑 호퍼에 저농도 산소 가스를 공급하도록 구성되어 저농도 산소 가스를 유동화 기체로 사용함으로써, 흡수탑 호퍼와 재생탑 호퍼 내부의 흡수제 과밀화로 인한 유동 불안정성을 제거할 수 있는 효과가 있다.
또한, 본 발명은 유동화 기체를 재사용 시 저농도 산소 가스 공급에 필요한 비용을 감소시킬 수 있는 장점이 있다.
도 1은 종래 기술에 따른 이산화탄소 포집장치를 나타낸 도면이다.
도 2는 본 발명의 일 실시예에 따른 이산화탄소 포집장치의 구성을 개략적으로 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따른 이산화탄소 포집장치를 나타낸 도면이다.
도 4는 본 발명의 다른 실시예에 따른 이산화탄소 포집장치를 나타낸 도면이다.
본 발명은 이산화탄소 포집장치의 일 실시예는, 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하는 이산화탄소 흡착부 또는 이산화탄소 흡수부를 포함하는 흡수탑; 상기 흡수탑과 연결되고, 내부에서 순환하는 흡착제를 가열하는 흡착제 가열부, 또는 내부에서 순환하는 흡수제를 가열하는 흡수제 가열부를 포함하는 재생탑; 및 상기 흡수탑과 상기 재생탑을 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착이 교대로 수행되는 흡착제 또는 흡수제;를 포함하는 이산화탄소 포집장치로서, 상기 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압 가스 라인에서 분기되어 상기 흡수탑 호퍼에 저농도 산소 가스를 공급하도록 구성되고, 상기 흡수탑 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스배출 라인과 재생탑 호퍼를 연결하는 제2동압 가스 라인에서 분기되어 상기 재생탑 호퍼에 저농도 산소 가스를 공급하도록 구성되어, 흡수탑 호퍼와 재생탑 호퍼 내부의 흡수제 과밀화로 인한 유동 불안정성을 제거할 수 있는 이산화탄소 포집장치 및 포집공정을 제공한다.
이하, 첨부한 도면을 참고로 하여 본 발명의 바람직한 실시예에 대하여 상세히 설명하면 다음과 같다.
본 발명을 상세하게 설명하기 전에, 본 명세서에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 무조건 한정하여 해석되어서는 아니 되며, 본 발명의 발명자가 자신의 발명을 가장 최선의 방법으로 설명하기 위해서 각종 용어의 개념을 적절하게 정의하여 사용할 수 있고, 더 나아가 이들 용어나 단어는 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 함을 알아야 한다.
즉, 본 명세서에서 사용된 용어는 본 발명의 바람직한 실시예를 설명하기 위해서 사용되는 것일 뿐이고, 본 발명의 내용을 구체적으로 한정하려는 의도로 사용된 것이 아니며, 이들 용어는 본 발명의 여러 가지 가능성을 고려하여 정의된 용어임을 알아야 한다.
또한, 본 명세서에 있어서, 단수의 표현은 문맥상 명확하게 다른 의미로 지시하지 않는 이상, 복수의 표현을 포함할 수 있으며, 유사하게 복수로 표현되어 있다고 하더라도 단수의 의미를 포함할 수 있음을 알아야 한다.
본 명세서의 전체에 걸쳐서 어떤 구성 요소가 다른 구성 요소를 "포함"한다고 기재하는 경우에는, 특별히 반대되는 의미의 기재가 없는 한 임의의 다른 구성 요소를 제외하는 것이 아니라 임의의 다른 구성 요소를 더 포함할 수도 있다는 것을 의미할 수 있다.
더 나아가서, 어떤 구성 요소가 다른 구성 요소의 "내부에 존재하거나, 연결되어 설치된다"고 기재한 경우에는, 이 구성 요소가 다른 구성 요소와 직접적으로 연결되어 있거나 접촉하여 설치되어 있을 수 있고, 일정한 거리를 두고 이격되어 설치되어 있을 수도 있으며, 일정한 거리를 두고 이격되어 설치되어 있는 경우에 대해서는 해당 구성 요소를 다른 구성 요소에 고정 내지 연결시키기 위한 제 3의 구성 요소 또는 수단이 존재할 수 있으며, 이 제 3의 구성 요소 또는 수단에 대한 설명은 생략될 수도 있음을 알아야 한다.
반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결"되어 있다거나, 또는 "직접 접속"되어 있다고 기재되는 경우에는, 제 3의 구성 요소 또는 수단이 존재하지 않는 것으로 이해하여야 한다.
마찬가지로, 각 구성 요소 간의 관계를 설명하는 다른 표현들, 즉 " ~ 사이에"와 "바로 ~ 사이에", 또는 " ~ 에 이웃하는"과 " ~ 에 직접 이웃하는" 등도 마찬가지의 취지를 가지고 있는 것으로 해석되어야 한다.
또한, 본 명세서에 있어서 "일면", "타면", "일측", "타측", "제 1", "제 2" 등의 용어는, 사용된다면, 하나의 구성 요소에 대해서 이 하나의 구성 요소가 다른 구성 요소로부터 명확하게 구별될 수 있도록 하기 위해서 사용되며, 이와 같은 용어에 의해서 해당 구성 요소의 의미가 제한적으로 사용되는 것은 아님을 알아야 한다.
또한, 본 명세서에서 "상", "하", "좌", "우" 등의 위치와 관련된 용어는, 사용된다면, 해당 구성 요소에 대해서 해당 도면에서의 상대적인 위치를 나타내고 있는 것으로 이해하여야 하며, 이들의 위치에 대해서 절대적인 위치를 특정하지 않는 이상은, 이들 위치 관련 용어가 절대적인 위치를 언급하고 있는 것으로 이해하여서는 아니된다.
더욱이, 본 발명의 명세서에서는, "…부", "…기", "모듈", "장치" 등의 용어는, 사용된다면, 하나 이상의 기능이나 동작을 처리할 수 있는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어, 또는 하드웨어와 소프트웨어의 결합으로 구현될 수 있음을 알아야 한다.
또한, 본 명세서에서는 각 도면의 각 구성 요소에 대해서 그 도면 부호를 명기함에 있어서, 동일한 구성 요소에 대해서는 이 구성 요소가 비록 다른 도면에 표시되더라도 동일한 도면 부호를 가지고 있도록, 즉 명세서 전체에 걸쳐 동일한 참조 부호는 동일한 구성 요소를 지시하고 있다.
본 명세서에 첨부된 도면에서 본 발명을 구성하는 각 구성 요소의 크기, 위치, 결합 관계 등은 본 발명의 사상을 충분히 명확하게 전달할 수 있도록 하기 위해서 또는 설명의 편의를 위해서 일부 과장 또는 축소되거나 생략되어 기술되어 있을 수 있고, 따라서 그 비례나 축척은 엄밀하지 않을 수 있다.
또한, 이하에서, 본 발명을 설명함에 있어서, 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 구성, 예를 들어, 종래 기술을 포함하는 공지 기술에 대한 상세한 설명은 생략될 수도 있다.
도 2는 본 발명의 일 실시예에 따른 이산화탄소 포집장치의 구성을 개략적으로 나타낸 도면이고, 도 3은 본 발명의 일 실시예에 따른 이산화탄소 포집장치를 나타낸 도면이다.
본 발명에 따른 이산화탄소 포집장치는, 흡수탑(10), 재생탑(20) 및 흡착제 또는 흡수제를 포함하여 구성되고, 흡수탑(10)과 재생탑(20)을 흡착제 또는 흡수제가 순환할 때 흡착제 또는 흡수제가 가지고 있는 현열을 이용하는 것으로서, 흡착제간 또는 흡수제간의 직접 또는 간접 열 교환을 유도하여 에너지 효율을 높일 수 있다.
흡수탑(10)은 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하는 이산화탄소 흡착부 또는 이산화탄소 흡수부를 포함하여 이루어진다.
재생탑(20)은 내부에서 순환하는 흡착제를 가열하는 흡착제 가열부, 또는 내부에서 순환하는 흡수제를 가열하는 흡수제 가열부를 포함하여 이루어진다.
흡수탑(10)과 재생탑(20)은 서로 연결되어 있고, 내부에 흡착제 또는 흡수제가 충전되어 순환하며, 이산화탄소의 흡착과 탈착, 또는 이산화탄소의 흡수와 탈착이 교대로 반복된다.
흡착제 또는 흡수제는 흡수탑(10)과 재생탑(20)을 순환하며, 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착을 교대로 수행한다.
이 때, 흡착은 기상의 이산화탄소와 고상의 흡착제의 물리적 결합을 의미하며, 흡수는 기상의 이산화탄소와 고상의 흡수제의 화학적 결합을 의미하는 것으로서, 이산화탄소가 흡착 또는 흡수되는 형태에 따라 구분될 수 있다.
흡착제는 제올라이트계 흡착제 및 카본계 흡착제로 이루어진 군에서 선택되는 1종 이상일 수 있다.
흡수제는 아민계 고분자 흡수제, 아민기를 갖는 유기물로 그래프팅된 다공성 실리카 흡수제로 이루어진 군에서 선택되는 1종 이상일 수 있다.
기타 이산화탄소 포집장치의 흡수탑, 재생탑, 흡착제 및 흡수제 등에 대한 구체적인 내용은 본 출원인의 등록특허인 제10-2033745호에 상세히 기술되어 있으므로 이에 대한 설명은 생략하기로 한다.
본 발명은 재생탑(20)에서 탈착된 이산화탄소 라인과 흡수탑 호퍼(30)를 연결하는 제1동압 가스 라인(L1)에서 분기되어 흡수탑 호퍼(30)에 저농도 산소 가스를 공급하도록 구성됨과 동시에 흡수탑(10) 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스 배출 라인과 재생탑 호퍼(40)를 연결하는 제2동압 가스 라인(L2)에서 분기되어 재생탑 호퍼(40)에 저농도 산소 가스를 공급하도록 구성된 것을 특징으로 한다.
이와 같은 흡수탑 호퍼(30) 상단의 제1동압 가스 라인(L1)에서 제1밸브(V1)를 거친 후 일부를 분기하여 제1입자 필터(F1), 제1압력 승압 장치(P1)를 순차적으로 거친 후 제1유량계(Q1)를 통해 흡수탑 호퍼(30) 하부의 유동화 가스로 재사용한다.
이때, 제1압력 승압 장치(P1)는 블로워(blower)인 것이 바람직하다.
또한, 흡수탑 호퍼(30)의 부족한 유동화 가스는 제1압력 승압 장치(P1) 후단에서 일부 신규로 투입될 수 있다.
아울러, 재생탑 호퍼(40) 상단의 제2동압 가스 라인(L2)에서 제2밸브(V2)를 거친 후 일부를 분기하여 제2입자 필터(F2), 제2압력 승압 장치(P2)를 순차적으로 거친 후 제2유량계(Q2)를 통해 재생탑 호퍼(40) 하부의 유동화 가스로 재사용한다.
이때, 제2압력 승압 장치(P2)는 블로워(blower)인 것이 바람직하다.
또한, 재생탑 호퍼(40)의 부족한 유동화 가스는 제2압력 승압 장치(P2) 후단에서 일부 신규로 투입될 수 있다.
이와 같은 흡수탑 호퍼(30) 상단의 유동화 가스는 이산화탄소 라인과 동압이 되어 있기 때문에 저농도 산소의 유동화 가스가 이산화탄소로 유입될 경우 이산화탄소 농도 감소를 초래하므로, 유동화 가스로 인한 이산화탄소 농도 감소를 방지하기 위해 제1압력 승압 장치(P1) 전단을 약한 음압으로 유지하여 이산화탄소 가스의 일부가 유동화 가스로 유입되도록 유지한다.
전술한 바와 같은 구성으로 이루어진 이산화탄소 포집장치를 이용하여 이산화탄소를 포집하는 공정은 흡수탑(10)에서 발전소 등의 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하고, 내부에서 순환하는 흡착제 또는 흡수제를 가열하는 가열부를 포함한 재생탑(20)과 흡수탑(10)을 흡착제 또는 흡수제가 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착을 교대로 수행하되, 재생탑(20)에서 탈착된 이산화탄소 라인과 흡수탑 호퍼(30)를 연결하는 제1동압 가스 라인(L1)에서 분기되어 흡수탑 호퍼(30)에 저농도 산소 가스를 공급하고, 흡수탑(10) 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스 배출 라인과 재생탑 호퍼(40)를 연결하는 제2동압 가스 라인(L2)에서 분기되어 재생탑 호퍼(40)에 저농도 산소 가스를 공급하도록 이루어진다.
이처럼 본 발명은 흡수탑(10) 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스배출 라인과 재생탑 호퍼(40)를 연결하는 제2동압 가스 라인(L2)에서 분기되어 재생탑 호퍼(40)에 저농도 산소 가스를 공급하도록 구성되고, 재생탑(20)에서 탈착된 이산화탄소 라인과 흡수탑 호퍼(30)를 연결하는 제1동압 가스 라인(L1)에서 분기되어 흡수탑 호퍼(30)에 저농도 산소 가스를 공급하도록 구성되어 저농도 산소 가스를 유동화 기체로 사용함으로써, 흡수탑 호퍼(30)와 재생탑 호퍼(40) 내부의 흡수제 과밀화로 인한 유동 불안정성을 제거할 수 있고, 유동화 기체를 재사용 시 저농도 산소 가스 공급에 필요한 비용을 감소시킬 수 있는 장점이 있다.
도 4는 본 발명의 다른 실시예에 따른 이산화탄소 포집장치를 나타낸 도면이다.
본 발명에 따른 이산화탄소 포집장치는, 흡수탑(10), 재생탑(20) 및 흡착제 또는 흡수제를 포함하여 구성되고, 흡수탑(10)과 재생탑(20)을 흡착제 또는 흡수제가 순환할 때 흡착제 또는 흡수제가 가지고 있는 현열을 이용하는 것으로서, 흡착제간 또는 흡수제간의 직접 또는 간접 열 교환을 유도하여 에너지 효율을 높일 수 있다.
흡수탑(10)은 발전소 등의 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하는 이산화탄소 흡착부 또는 이산화탄소 흡수부를 포함하여 이루어진다.
재생탑(20)은 내부에서 순환하는 흡착제를 가열하는 흡착제 가열부, 또는 내부에서 순환하는 흡수제를 가열하는 흡수제 가열부를 포함하여 이루어진다.
흡수탑(10)과 재생탑(20)은 서로 연결되어 있고, 내부에 흡착제 또는 흡수제가 충전되어 순환하며, 이산화탄소의 흡착과 탈착, 또는 이산화탄소의 흡수와 탈착이 교대로 반복된다.
흡착제 또는 흡수제는 흡수탑(10)과 재생탑(20)을 순환하며, 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착을 교대로 수행한다.
이 때, 흡착은 기상의 이산화탄소와 고상의 흡착제의 물리적 결합을 의미하며, 흡수는 기상의 이산화탄소와 고상의 흡수제의 화학적 결합을 의미하는 것으로서, 이산화탄소가 흡착 또는 흡수되는 형태에 따라 구분될 수 있다.
흡착제는 제올라이트계 흡착제 및 카본계 흡착제로 이루어진 군에서 선택되는 1종 이상일 수 있다.
흡수제는 아민계 고분자 흡수제, 아민기를 갖는 유기물로 그래프팅된 다공성 실리카 흡수제로 이루어진 군에서 선택되는 1종 이상일 수 있다.
재생탑(20)에서 나온 고온의 입자는 사이클론을 거쳐 흡수탑 호퍼(30)로 유입된다.
따라서, 흡수탑 호퍼(30)가 재생탑 호퍼(40) 대비 온도가 높아 산소가 포함된 유동화 가스를 유입 시 흡수제 성능 감소를 초래하게 된다.
따라서, 재생탑 호퍼(40)는 유동화 가스를 분기하지 않고 흡수탑 호퍼(30)만 유동화 가스를 재사용할 수 있다.
이에 따라, 본 발명은 재생탑(20)에서 탈착된 이산화탄소 라인과 흡수탑 호퍼(30)를 연결하는 제1동압 가스 라인(L1)에서 분기되어 흡수탑 호퍼(30)에 저농도 산소 가스를 공급하도록 구성된 것을 특징으로 한다.
이러한 흡수탑 호퍼(30) 상단의 제1동압 가스 라인(L1)에서 제1밸브(V1)를 거친 후 일부를 분기하여 제1입자 필터(F1), 제1압력 승압 장치(P1)를 순차적으로 거친 후 제1유량계(Q1)를 통해 흡수탑 호퍼 하부의 유동화 가스로 재사용하고, 흡수탑 호퍼(30)의 부족한 유동화 가스는 제1압력 승압 장치(P1) 후단에서 일부 신규로 투입되는 것이 바람직하다.
이와 같은 흡수탑 호퍼(30) 상단의 유동화 가스는 이산화탄소 라인과 동압이 되어 있기 때문에 저농도 산소의 유동화 가스가 이산화탄소로 유입될 경우 이산화탄소 농도 감소를 초래하므로, 유동화 가스로 인한 이산화탄소 농도 감소를 방지하기 위해 제1압력 승압 장치(P1) 전단을 약한 음압으로 유지하여 이산화탄소 가스의 일부가 유동화 가스로 유입되도록 유지한다.
전술한 바와 같은 구성으로 이루어진 이산화탄소 포집장치를 이용하여 이산화탄소를 포집하는 공정은, 흡수탑(10)에서 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하고, 내부에서 순환하는 흡착제 또는 흡수제를 가열하는 가열부를 포함한 재생탑(20)과 흡수탑(10)을 흡착제 또는 흡수제가 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착을 교대로 수행하는 것을 포함하고, 재생탑(20)에서 탈착된 이산화탄소 라인과 흡수탑 호퍼(30)를 연결하는 제1동압 가스 라인(L1)에서 분기되어 흡수탑 호퍼(30)에 저농도 산소 가스를 공급하도록 이루어진다.
이상, 일부 예를 들어서 본 발명의 바람직한 여러 가지 실시예에 대해서 설명하였지만, 본 "발명을 실시하기 위한 구체적인 내용" 항목에 기재된 여러 가지 다양한 실시예에 관한 설명은 예시적인 것에 불과한 것이며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이상의 설명으로부터 본 발명을 다양하게 변형하여 실시하거나 본 발명과 균등한 실시를 행할 수 있다는 점을 잘 이해하고 있을 것이다.
또한, 본 발명은 다른 다양한 형태로 구현될 수 있기 때문에 본 발명은 상술한 설명에 의해서 한정되는 것이 아니며, 이상의 설명은 본 발명의 개시 내용이 완전해지도록 하기 위한 것으로 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이며, 본 발명은 청구범위의 각 청구항에 의해서 정의될 뿐임을 알아야 한다.
본 발명은 흡수탑 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스배출 라인과 재생탑 호퍼를 연결하는 제2동압가스 라인에서 분기되어 재생탑 호퍼에 저농도 산소 가스를 공급하도록 구성되고, 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압가스 라인에서 분기되어 흡수탑 호퍼에 저농도 산소 가스를 공급하도록 구성되어 저농도 산소 가스를 유동화 기체로 사용함으로써, 흡수탑 호퍼와 재생탑 호퍼 내부의 흡수제 과밀화로 인한 유동 불안정성을 제거할 수 있는 효과가 있는 이산화탄소 포집장치 및 포집공정을 제공한다는 점에서 산업상 이용가능성이 있다.

Claims (12)

  1. 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하는 이산화탄소 흡착부 또는 이산화탄소 흡수부를 포함하는 흡수탑; 상기 흡수탑과 연결되고, 내부에서 순환하는 흡착제를 가열하는 흡착제 가열부, 또는 내부에서 순환하는 흡수제를 가열하는 흡수제 가열부를 포함하는 재생탑; 및 상기 흡수탑과 상기 재생탑을 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착이 교대로 수행되는 흡착제 또는 흡수제;를 포함하는 이산화탄소 포집장치로서,
    상기 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압 가스 라인에서 분기되어 상기 흡수탑 호퍼에 저농도 산소 가스를 공급하도록 구성되고,
    상기 흡수탑 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스배출 라인과 재생탑 호퍼를 연결하는 제2동압 가스 라인에서 분기되어 상기 재생탑 호퍼에 저농도 산소 가스를 공급하도록 구성된 것을 특징으로 하는,
    이산화탄소 포집장치.
  2. 청구항 1에 있어서,
    상기 흡수탑 호퍼 상단의 제1동압 가스 라인에서 제1밸브를 거친 후 일부를 분기하여 제1입자 필터, 제1압력 승압 장치를 순차적으로 거친 후 제1유량계를 통해 상기 흡수탑 호퍼 하부의 유동화 가스로 재사용하는 것을 특징으로 하는,
    이산화탄소 포집장치.
  3. 청구항 2에 있어서,
    상기 제1압력 승압 장치는 블로워(blower)인 것을 특징으로 하는,
    이산화탄소 포집장치.
  4. 청구항 3에 있어서,
    상기 흡수탑 호퍼의 부족한 유동화 가스는 상기 제1압력 승압 장치 후단에서 일부 신규로 투입되는 것을 특징으로 하는,
    이산화탄소 포집장치.
  5. 청구항 1에 있어서,
    상기 재생탑 호퍼 상단의 제2동압 가스 라인에서 제2밸브를 거친 후 일부를 분기하여 제2입자 필터, 제2압력 승압 장치를 순차적으로 거친 후 제2유량계를 통해 상기 재생탑 호퍼 하부의 유동화 가스로 재사용하는 것을 특징으로 하는,
    이산화탄소 포집장치.
  6. 청구항 5에 있어서,
    상기 제2압력 승압 장치는 블로워(blower)인 것을 특징으로 하는,
    이산화탄소 포집장치.
  7. 청구항 6에 있어서,
    상기 재생탑 호퍼의 부족한 유동화 가스는 상기 제2압력 승압 장치 후단에서 일부 신규로 투입되는 것을 특징으로 하는,
    이산화탄소 포집장치.
  8. 청구항 2에 있어서,
    상기 흡수탑 호퍼 상단의 유동화 가스는 상기 이산화탄소 라인과 동압이 되어 있기 때문에 저농도 산소의 유동화 가스가 이산화탄소로 유입될 경우 이산화탄소 농도 감소를 초래하므로, 상기 유동화 가스로 인한 이산화탄소 농도 감소를 방지하기 위해 상기 제1압력 승압 장치 전단을 약한 음압으로 유지하여 이산화탄소 가스의 일부가 유동화 가스로 유입되도록 유지하는 것을 특징으로 하는,
    이산화탄소 포집장치.
  9. 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하는 이산화탄소 흡착부 또는 이산화탄소 흡수부를 포함하는 흡수탑; 상기 흡수탑과 연결되고, 내부에서 순환하는 흡착제를 가열하는 흡착제 가열부, 또는 내부에서 순환하는 흡수제를 가열하는 흡수제 가열부를 포함하는 재생탑; 및 상기 흡수탑과 상기 재생탑을 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착이 교대로 수행되는 흡착제 또는 흡수제;를 포함하는 이산화탄소 포집장치로서,
    상기 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압 가스 라인에서 분기되어 상기 흡수탑 호퍼에 저농도 산소 가스를 공급하도록 구성된 것을 특징으로 하는,
    이산화탄소 포집장치.
  10. 청구항 9에 있어서,
    상기 흡수탑 호퍼 상단의 제1동압 가스 라인에서 제1밸브를 거친 후 일부를 분기하여 제1입자 필터, 제1압력 승압 장치를 순차적으로 거친 후 제1유량계를 통해 상기 흡수탑 호퍼 하부의 유동화 가스로 재사용하고,
    상기 흡수탑 호퍼의 부족한 유동화 가스는 상기 제1압력 승압 장치 후단에서 일부 신규로 투입되는 것을 특징으로 하는,
    이산화탄소 포집장치.
  11. 흡수탑에서 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하고, 내부에서 순환하는 흡착제 또는 흡수제를 가열하는 가열부를 포함한 재생탑과 상기 흡수탑을 상기 흡착제 또는 흡수제가 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착을 교대로 수행하는 것을 포함하는 이산화탄소 포집공정으로서,
    상기 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압 가스 라인에서 분기되어 상기 흡수탑 호퍼에 저농도 산소 가스를 공급하고,
    상기 흡수탑 상단을 통과하여 외부로 배출되는 이산화탄소가 제거된 배가스배출 라인과 재생탑 호퍼를 연결하는 제2동압 가스 라인에서 분기되어 상기 재생탑 호퍼에 저농도 산소 가스를 공급하는 것을 특징으로 하는,
    이산화탄소 포집 공정.
  12. 흡수탑에서 배기 가스로부터 이산화탄소를 흡착 또는 이산화탄소를 흡수하고, 내부에서 순환하는 흡착제 또는 흡수제를 가열하는 가열부를 포함한 재생탑과 상기 흡수탑을 상기 흡착제 또는 흡수제가 순환하며 이산화탄소의 흡착 및 이산화탄소의 탈착, 또는 이산화탄소의 흡수 및 이산화탄소의 탈착을 교대로 수행하는 것을 포함하는 이산화탄소 포집공정으로서,
    상기 재생탑에서 탈착된 이산화탄소 라인과 흡수탑 호퍼를 연결하는 제1동압 가스 라인에서 분기되어 상기 흡수탑 호퍼에 저농도 산소 가스를 공급하는 것을 특징으로 하는 이산화탄소 포집 공정.
PCT/IB2023/050818 2021-12-10 2023-01-31 이산화탄소 포집장치 및 포집공정 WO2023105507A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0176528 2021-12-10
KR1020210176528A KR102398216B1 (ko) 2021-12-10 2021-12-10 이산화탄소 포집장치 및 포집공정

Publications (2)

Publication Number Publication Date
WO2023105507A1 true WO2023105507A1 (ko) 2023-06-15
WO2023105507A4 WO2023105507A4 (ko) 2023-08-24

Family

ID=81799431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/050818 WO2023105507A1 (ko) 2021-12-10 2023-01-31 이산화탄소 포집장치 및 포집공정

Country Status (2)

Country Link
KR (1) KR102398216B1 (ko)
WO (1) WO2023105507A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102398216B1 (ko) * 2021-12-10 2022-05-16 한국화학연구원 이산화탄소 포집장치 및 포집공정

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130137953A (ko) * 2012-06-08 2013-12-18 한국전력기술 주식회사 송풍장치를 구비한 이산화탄소 포집장치 및 이를 이용한 이산화탄소 포집방법
KR101351134B1 (ko) * 2012-09-27 2014-01-15 한국전력공사 이산화탄소 흡수제 반응평가 시스템
KR102033745B1 (ko) * 2019-06-28 2019-10-17 한국화학연구원 이산화탄소 포집장치 및 포집공정
JP2019198825A (ja) * 2018-05-16 2019-11-21 株式会社東芝 二酸化炭素回収システムおよびその運転方法
JP2021159892A (ja) * 2020-04-02 2021-10-11 三菱重工エンジニアリング株式会社 Co2回収装置及びco2回収方法
KR102398216B1 (ko) * 2021-12-10 2022-05-16 한국화학연구원 이산화탄소 포집장치 및 포집공정

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100527420B1 (ko) 2003-07-04 2005-11-09 한국에너지기술연구원 Co2 분리회수장치
KR101069191B1 (ko) 2009-03-04 2011-09-30 한국에너지기술연구원 수송 재생반응기를 갖는 co₂회수장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130137953A (ko) * 2012-06-08 2013-12-18 한국전력기술 주식회사 송풍장치를 구비한 이산화탄소 포집장치 및 이를 이용한 이산화탄소 포집방법
KR101351134B1 (ko) * 2012-09-27 2014-01-15 한국전력공사 이산화탄소 흡수제 반응평가 시스템
JP2019198825A (ja) * 2018-05-16 2019-11-21 株式会社東芝 二酸化炭素回収システムおよびその運転方法
KR102033745B1 (ko) * 2019-06-28 2019-10-17 한국화학연구원 이산화탄소 포집장치 및 포집공정
JP2021159892A (ja) * 2020-04-02 2021-10-11 三菱重工エンジニアリング株式会社 Co2回収装置及びco2回収方法
KR102398216B1 (ko) * 2021-12-10 2022-05-16 한국화학연구원 이산화탄소 포집장치 및 포집공정

Also Published As

Publication number Publication date
WO2023105507A4 (ko) 2023-08-24
KR102398216B1 (ko) 2022-05-16

Similar Documents

Publication Publication Date Title
WO2020262795A1 (ko) 이산화탄소 포집장치 및 포집공정
WO2014051221A1 (ko) 이산화탄소 포집장치
WO2023105507A1 (ko) 이산화탄소 포집장치 및 포집공정
JP6498483B2 (ja) ガス回収濃縮装置
WO2015111821A1 (ko) 마이크로웨이브를 이용한 휘발성 유기화합물 제거시스템
US8500854B1 (en) Regenerable sorbent technique for capturing CO2 using immobilized amine sorbents
ES2602988T3 (es) Desulfuración en un sistema de ciclo de calcio regenerativo
WO2014142556A1 (ko) 이산화탄소 포집장치
WO2016108322A1 (en) Air cleaning system
WO2018062968A1 (ko) 전기 연소기 및 에너지 재활용 수단을 구비한 실내 농축 연소 시스템
CN103394284B (zh) 移动富集-固定催化氧化式有机废气处理装置
WO2017039131A1 (ko) 산성가스 포집 시스템 및 이를 이용한 산성가스 포집방법
CN111203083A (zh) 一种烧结烟气脱硫脱硝工艺
WO2015080324A1 (ko) 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템 및 방법
CN103492048A (zh) 用于干燥剂的低nox排放再生的系统和方法
KR20230010405A (ko) VOCs의 효율적 처리가 가능한 자동차 도장 시설
WO2012153999A2 (en) Air purification system including adsorption unit provided with catalyst and method of manufacturing the adsorption unit
JP7481859B2 (ja) ガス分離回収装置
WO2023132513A1 (ko) 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치
JP5291794B2 (ja) 再生塔及び乾式排ガス処理装置
WO2015076449A1 (ko) 응축수를 활용한 에너지 절감형 산성 가스 포집 시스템 및 방법
CN111318147B (zh) 一种烧结烟气脱硫脱硝循环系统
JP2002022140A (ja) 石炭焚きボイラー用排ガス処理装置
JP2021169097A (ja) 有機溶剤ガス濃縮装置
CN112933860A (zh) 一种用于云母绝缘材料生产过程的尾气溶剂回收系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23729641

Country of ref document: EP

Kind code of ref document: A1