WO2023132513A1 - 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치 - Google Patents

퍼지 수단이 구비된 농축 2-베드 축열식 연소장치 Download PDF

Info

Publication number
WO2023132513A1
WO2023132513A1 PCT/KR2022/020436 KR2022020436W WO2023132513A1 WO 2023132513 A1 WO2023132513 A1 WO 2023132513A1 KR 2022020436 W KR2022020436 W KR 2022020436W WO 2023132513 A1 WO2023132513 A1 WO 2023132513A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
control unit
concentrator
heat storage
bed
Prior art date
Application number
PCT/KR2022/020436
Other languages
English (en)
French (fr)
Inventor
권세현
조명현
Original Assignee
주식회사 이앤비코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이앤비코리아 filed Critical 주식회사 이앤비코리아
Publication of WO2023132513A1 publication Critical patent/WO2023132513A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to an enriched two-bed regenerative combustion device equipped with a purge means, and more particularly, to a purge means for reprocessing and then discharging gas discharged from a section where a gas movement path is changed in a two-bed regenerative combustion device. It relates to a concentrated two-bed thermal regenerative combustion device equipped with a purge means capable of increasing the decomposition efficiency of volatile organic compounds and operating like a three-bed thermal regenerative combustion device without adding a bed.
  • Volatile Organic Compounds refer to hydrocarbon compounds that volatilize in the air and generate odors or ozone, and are carcinogens that cause disorders in the nervous system through skin contact or respiratory inhalation. These volatile organic compounds collectively refer to benzene, formaldehyde, toluene, xylene, ethylene, styrene, acetaldehyde, and the like.
  • the heat storage type combustion device adopts a direct heat exchange method using heat storage material, so it has high heat recovery efficiency and is an economical combustion device that can significantly reduce the amount of fuel.
  • the regenerative combustion device has two or more regenerative chambers and a combustion chamber in the center. That is, as the volatile organic compound passes through the heat storage chamber and burns in the combustion chamber in a state where its temperature rises, odorous substances are burned and decomposed. Then, the purified high-temperature gas is deprived of heat while passing through another heat storage chamber, and is released to the atmosphere in a state in which the temperature is lowered. Further, the heat storage chambers in the direction in which the volatile organic compound is introduced and the direction in which the purified gas is discharged are changed at regular intervals. Through this operation, volatile organic compounds are removed.
  • Regenerative combustion devices include a two-bed type and a three-bed type.
  • the two-bed type regenerative combustion device uses two regenerative beds to remove volatile organic compounds.
  • the opening and closing of the damper must be performed simultaneously to convert the flow of the inflowing volatile organic compounds, but at the moment the damper is opened and closed, some untreated gas is discharged, which lowers the decomposition efficiency.
  • a three-bed type thermal regenerative combustion device using three thermal storage beds by adding one thermal storage bed is sometimes used, but the decomposition efficiency is increased, but there is a problem in that the cost increases due to the addition of the thermal storage bed.
  • the problem to be solved by the present invention is to increase the decomposition efficiency of volatile organic compounds by providing a purge means for reprocessing and then discharging gas discharged from a section where the gas movement path is changed in a two-bed regenerative combustion device, and It is an object of the present invention to provide a concentrated two-bed regenerative combustion device equipped with a purge means capable of operating like a three-bed regenerative combustion device without adding.
  • the enriched 2-bed thermal regenerative combustion device equipped with a purge unit adsorbs and purifies volatile organic compounds, discharges the purified air to the outside, and purifies the volatile organic compounds.
  • a concentrator that discharges a high-concentration concentrated gas generated while desorbing contaminants adsorbed thereto, a concentrator that burns the concentrated gas discharged from the concentrator and discharges purified combustion gas to the outside through an outlet, and a passage through which the combustion gas moves A regenerative combustion device including a phosphorus first heat storage bed and a second heat storage bed, and a first path is set so that the concentrated gas discharged from the concentrator is transferred to the first heat storage bed and the combustion gas is discharged from the second heat storage bed, or , a first path control unit for setting a second path so that the enriched gas discharged from the concentrator is transferred to the second heat storage bed and the combustion gas is discharged from the first heat storage bed, and the gas discharged from the first path control unit is transferred to the second heat storage bed.
  • the first route control unit changes to a second route in a state where the first route is set or changes to the first route in a state where the second route is set, and the second route control unit changes the first route control unit to the first route.
  • the gas discharged from the first path control unit is controlled to be delivered to the concentrator, and the A first route control unit may control the combustion gas to be delivered to the outlet during a third section set to the first route or the second route.
  • the first path controller includes at least one damper for changing a moving direction of the enriched gas or the combustion gas to set the first path or the second path, and the first section is controlled by the first path controller A section in which the at least one damper operates in order to change from the first route to the second route, and the second section is for the first route controller to change from the second route to the first route.
  • a section in which the at least one damper operates may be included.
  • the first path control unit includes a plurality of dampers that change the moving direction of the enriched gas or the combustion gas to set the first path or the second path, and the first section is one of the plurality of dampers When the first path control unit starts operating first among the plurality of dampers in order to change from the first path to the second path, all of the plurality of dampers complete their operation Including a section up to a point in time, and the second section, when one of the plurality of dampers starts operating first, the first path control unit changes the second path to the first path. It may include a section from a time when the first of the plurality of dampers starts operating to a time when all of the plurality of dampers complete their operations.
  • the first interval starts from a first point in time prior to the point in time at which the first route control unit starts operating to change from the first route to the second route. It is a section up to a second time point, which is later than the point at which the change to the second route is completed, and the second section is the period in which the first route control unit starts to operate to change from the second route to the first route. It may be a section from a third time point, which is earlier than the time point, to a fourth time point, which is later than the time point when the first route control unit completes the change from the second route to the first route.
  • the second path control unit includes a feedback damper for controlling the gas discharged from the first path control unit to be delivered to an outlet or to the concentrator, and while the first path or the second path is set, the first Controls the feedback damper so that the gas discharged from the path control unit is delivered to the outlet, and the first section changed from the first path to the second path or the second path changed from the second path to the first path During the section, the feedback damper may be controlled so that the gas discharged from the first path control unit is transferred to the concentrator.
  • the first path control unit includes a damper installed in a pipe connected between the concentrator, the regenerative combustion device, and the second path control unit, and the damper controls the concentrator and the first thermal storage while the first path is set.
  • Connect between beds connect between the second heat storage bed and the second path control unit, connect between the concentrator and the second heat storage bed while the second path is set, and connect the first heat storage bed and the second path control unit.
  • Path control units can be connected.
  • the first path control unit is a first damper installed in a pipe connected between the concentrator, the first heat storage bed, and the second path control unit, and a pipe connected between the concentrator, the second heat storage bed, and the second path control unit.
  • a second damper is installed, wherein the first damper connects between the concentrator and the first heat storage bed while the first path is set, and the first heat storage bed while the second path is set and the second path control unit, the second damper connects between the concentrator and the second heat storage bed while the second path is set, and the second heat storage while the first path is set It is possible to connect the bed and the second path control unit.
  • the first path control unit includes a first damper installed in a pipe connected between the concentrator and the first heat storage bed, a second damper installed in a pipe connected between the first heat storage bed and the second path control unit, the concentrator, and A third damper installed in a pipe connected between the second heat storage bed and a fourth damper installed in a pipe connected between the second heat storage bed and the second path control unit, wherein the first damper is the first path is connected between the concentrator and the first heat storage bed while being set, and blocks between the concentrator and the first heat storage bed while the second path is set, and the second damper is the first path While it is set, it blocks between the first heat storage bed and the second path control unit, and while the second path is set, it connects between the first heat storage bed and the second path control unit, and the third damper Connecting between the concentrator and the second heat storage bed while the second path is set, blocking between the concentrator and the second heat storage bed while the first path is set, and the fourth damper It is possible to block between the second heat storage bed
  • the enriched two-bed thermal regenerative combustion device equipped with the purge means is coupled between the second path control unit and the concentrator, and includes a storage space in which gas transferred from the second path control unit to the concentrator is stored, A chamber may be further provided to transfer some or all of the gas stored in the storage space to the concentrator.
  • An enrichment 2-bed thermal regenerative combustion device equipped with a purge means feeds back gas discharged from a section in which a gas movement path in the 2-bed regenerative combustion device is changed to a concentrator.
  • a purging means that transfers and then transfers them to the regenerative combustion device for treatment. That is, in the case of a two-bed type regenerative combustion device, the path through which volatile organic compounds are introduced and the path through which the introduced volatile organic compounds are combusted and then discharged must be changed every time a certain period of time passes.
  • the present invention does not discharge the gas discharged from the section where the gas path is changed to the outlet, but transfers it to the concentrator to concentrate it, and then transfers it to the regenerative combustion device to process it, thereby using a two-bed type regenerative combustion device.
  • it has the advantage of increasing the decomposition efficiency as in using a three-bed type regenerative combustion device.
  • the concentrating 2-bed thermal regenerative combustion device equipped with a purge means obtains the same efficiency as the 3-bed type regenerative combustion device and is cheaper than the 3-bed type regenerative combustion device. Since it is possible to use a two-bed type regenerative combustion device that can be installed, it has the advantage of significantly reducing installation cost and installation size.
  • FIG. 1 is a diagram schematically illustrating a two-bed concentrating regenerative combustion apparatus equipped with a purge means according to an embodiment according to the technical spirit of the present invention.
  • FIG. 2 is a view for explaining a case in which the enrichment 2-bed thermal regenerative combustion device equipped with the purge unit of FIG. 1 operates in a state in which a first path is set.
  • FIG. 3 is a view for explaining a case in which the enriched two-bed thermal regenerative combustion apparatus equipped with the purge means of FIG. 1 is converted between a first path and a second path.
  • FIG. 4 is a view for explaining a case in which the enrichment 2-bed thermal regenerative combustion device equipped with the purge means of FIG. 1 operates in a state in which a second path is set.
  • FIG. 5 is for explaining an enriched 2-bed regenerative combustion device with purging means according to an embodiment in which a first path controller includes one damper among the enriched 2-bed regenerative combustion devices with purging means of FIG. 1; FIG. it is a drawing
  • FIG. 6 is for explaining an enriched 2-bed regenerative combustion device with purging means according to an embodiment in which a first path controller includes two dampers among the enriched 2-bed regenerative combustion devices with purging means of FIG. 1 . it is a drawing
  • FIG. 7 is for explaining an enriched 2-bed regenerative combustion device with purging means according to an embodiment in which a first path controller includes four dampers among the enriched 2-bed regenerative combustion devices with purging means of FIG. 1 . It is a drawing
  • FIG. 1 is a diagram schematically showing a two-bed concentrating regenerative combustion device 100 equipped with a purge means according to an embodiment according to the technical idea of the present invention.
  • FIG. 2 is a view for explaining a case where the enriched 2-bed thermal regenerative combustion apparatus 100 equipped with the purge means of FIG. 1 operates in a state in which the first path is set, and
  • FIG. It is a view for explaining the case where the enrichment 2-bed regenerative combustion device 100 is converted between the first path and the second path, and
  • FIG. ) is a diagram for explaining a case where the second path is operated in a set state.
  • the enrichment 2-bed thermal regenerative combustion device 100 equipped with a purge means includes a concentrator 110, a regenerative combustion device 120, a first path control unit 130 and a second path control unit ( 140) may be provided.
  • a regenerative combustion method or a regenerative catalytic combustion method may be applied to the enriched two-bed thermal regenerative combustion device 100 equipped with a purge unit.
  • the concentrator 110 receives the volatile organic compounds, adsorbs and purifies them, discharges the purified air to the outside through an outlet, and desorbs the adsorbed contaminants while the volatile organic compounds are purified, thereby providing the concentrated gas concentrated in a high concentration through the first path. It can be discharged to the control unit 130. That is, the amount of fuel used in the regenerative combustion device 120 can be reduced by adsorbing and treating volatile organic compounds using the concentrator 110 and transferring the high-concentration enriched gas to the regenerative combustion device 120 to be described below. . Since the configuration of the concentrator 110 is the same as or similar to concentrators of various structures generally used, detailed descriptions of the structure and operation of the concentrator 110 will be omitted below.
  • the heat storage type combustion device 120 may include a first heat storage bed 123 and a second heat storage bed 125, which burn the concentrated gas to discharge purified combustion gas and are passages through which the combustion gas moves. Heat storage materials are included in the first heat storage bed 123 and the second heat storage bed 125, and a combustion chamber for burning the concentrated gas is formed on the top of the first heat storage bed 123 and the second heat storage bed 125. do.
  • the regenerative combustion device 120 may be a regenerative thermal oxidizer (RTO) to which a regenerative combustion method is applied or a regenerative catalytic oxidizer (RCO) to which a regenerative catalytic combustion method is applied, It may be another device to which the method is applied.
  • RTO regenerative thermal oxidizer
  • RCO regenerative catalytic oxidizer
  • the heat stored in the first heat storage bed 123 or the second heat storage bed 125 is transferred to the concentrated gas.
  • the temperature of the enriched gas is increased. Therefore, it is possible to minimize fuel consumption in burning the enriched gas in the combustion chamber.
  • the combustion gas burned in the combustion chamber is of high temperature, the first heat storage bed 123 or the second heat storage bed 125 moves while the combustion gas moves through the first heat storage bed 123 or the second heat storage bed 125. As the heat of the combustion gas is taken away, the temperature of the combustion gas is lowered and the temperature of the first heat storage bed 123 or the second heat storage bed 125 is increased.
  • the moving path of the enriched gas and the moving path of the combustion gas must be changed at predetermined time intervals.
  • the movement paths of the enriched gas and the combustion gas are changed.
  • the first path control unit 130 may set a first path such that the concentrated gas discharged from the concentrator 110 is transferred to the first heat storage bed 123 and the combustion gas is discharged from the second heat storage bed 125.
  • the first path controller 130 may set a second path such that the concentrated gas discharged from the concentrator 110 is transferred to the second heat storage bed 125 and the combustion gas is discharged from the first heat storage bed 123. there is.
  • the first route controller 130 may change to the second route in a state where the first route is set, or change to the first route in a state where the second route is set.
  • the first path control unit 130 may include at least one damper that changes the moving direction of the enriched gas or the combustion gas to set the first path or the second path, and the first path control unit 130 Embodiments including the damper will be described in more detail with reference to FIGS. 5 to 7 .
  • the second path control unit 140 may be a purge unit that performs a purge function by controlling the gas discharged from the first path control unit 130 to be delivered to the outlet or to the concentrator 110 .
  • the outlet may be an outlet of the enriched 2-bed thermal regenerative combustion device 100 equipped with a purge unit or may be connected to a chimney or the like.
  • the second path control unit 140 may include a feedback damper that controls the gas discharged from the first path control unit 130 to be delivered to the outlet or to the concentrator 110, and the second path control unit 140 is Embodiments including the feedback damper will be described in more detail with reference to FIGS. 5 to 7 .
  • the second route control unit 140 provides a first section for which the first route control unit 130 changes from the first route to the second route or a second section for changing from the second route to the first route.
  • the gas discharged from the first path control unit 130 is controlled to be delivered to the concentrator 110, and during the third section in which the first path control unit 130 is set to the first path or the second path, the Combustion gas can be controlled to be delivered to the outlet. That is, the second path control unit 140 transfers the gas delivered from the first path control unit 130 to the concentrator 110 during the first or second period in which the first path control unit 130 changes the path.
  • reprocessing may be performed by allowing the carbon dioxide to flow into the regenerative combustion device 120 again.
  • the first path control unit 130 blocks a flow path (pipe) through which the enriched gas is transferred to the first heat storage bed 123 and opens a flow path (pipe) through which the enriched gas is transferred to the second heat storage bed 125.
  • the first path can be changed to the second path through Or, conversely, the first path control unit 130 blocks the flow path (piping) through which the enriched gas is delivered to the second heat storage bed 125 and closes the flow path (pipe) through which the enriched gas is delivered to the first heat storage bed 123.
  • the second path may be changed to the first path.
  • the flow path is changed in this way, there is a problem in that untreated concentrated gas is discharged from the first path control unit 130 during the time when the flow path is changed.
  • the decomposition efficiency of the volatile organic compounds is lowered. Therefore, in the present invention, the gas discharged from the first route controller 130 during the first section changed from the first route to the second route or the second section changed from the second route to the first route passes through the outlet.
  • the first section is the first route control unit 130 from the first time point prior to the time point at which the first route control unit 130 starts operating to change from the first route to the second route.
  • ) may be a section up to a second time point that is later than the time point at which the change from the first route to the second route is completed.
  • the first route control unit 130 starts to change from the second route to the first route from a third time point prior to the time point at which the first route control unit 130 starts operating to change the second route to the first route. It may be a section up to a fourth time point, which is later than the time point at which the change from the second route to the first route is completed.
  • the first time point prior to the point at which the first route control unit 130 starts to change the route to the second time point after the point at which the route change is completed is completed. It can be set as an interval. Accordingly, the second route control unit 140 controls the gas flowing out from the first route control unit 130 from a time point before the point at which the first route control unit 130 starts to change the route to a time point after the point at which route change is completed.
  • the enriched 2-bed thermal regenerative combustion device 100 equipped with a purge unit with reference to FIGS. 2 to 4, as shown in FIG. 2, when the first path control unit 130 sets the first path, The enriched gas transferred from the concentrator 110 to the regenerative combustion device 120 is transferred to the combustion chamber through the first heat storage bed 123 and receives heat from the first heat storage bed 123 .
  • the high-temperature concentrated gas that receives the heat is burned in the combustion chamber and converted into high-temperature combustion gas.
  • the high-temperature combustion gas is discharged to the outside of the thermal storage type combustion device 120 through the second thermal storage bed 125 and loses heat to the second thermal storage bed 125 .
  • the temperature of the first heat storage bed 123 is lowered and the temperature of the second heat storage bed 125 is increased.
  • the first heat storage bed 123 is converted into the concentrated gas A phenomenon in which heat cannot be transferred and the second heat storage bed 125 cannot receive heat from the combustion gas occurs. Therefore, after a certain period of time has elapsed or when the temperature of the heat storage bed becomes higher than or lower than a threshold value, the first path control unit 130 changes the first path to the second path.
  • the first route controller 130 when the first route controller 130 operates to change from the first route to the second route, the first route controller 130 changes from the first route to the second route.
  • a portion of the enriched gas that has not been purified through the first path control unit 130 may be discharged. Therefore, during the first section, the second path control unit 140 transfers all of the gas discharged from the first path control unit 130 to the concentrator 110 without passing it to the outlet.
  • the concentrator 110 mixes and concentrates the gas delivered through the second path control unit 140 and the introduced volatile organic compound, and then transfers the mixture to the regenerative combustion device 120, whereby the second path control unit 140 converts the concentrator 110 ) can be purified.
  • the enriched gas discharged from the concentrator 110 is transferred to the combustion chamber through the second heat storage bed 125 while the second heat storage bed Heat is transferred from (125).
  • the high-temperature concentrated gas that receives the heat is burned in the combustion chamber and converted into high-temperature combustion gas.
  • the high-temperature combustion gas is discharged to the outside of the thermal storage type combustion device 120 through the first thermal storage bed 123 and loses heat to the first thermal storage bed 123 .
  • the second heat storage bed 125 is converted into the concentrated gas A phenomenon in which heat cannot be transferred and the first heat storage bed 123 cannot receive heat from the combustion gas occurs. Therefore, after a certain period of time has elapsed or when the temperature of the heat storage bed becomes higher than or lower than the threshold value, the first path control unit 130 changes the second path to the first path again.
  • the first route controller 130 when the first route controller 130 operates to change from the second route to the first route, the first route controller 130 changes from the second route to the first route.
  • a portion of the enriched gas that has not been purified through the first path control unit 130 may be discharged. Therefore, during the second section, the second path control unit 140 transfers all of the gas discharged from the first path control unit 130 to the concentrator 110 without passing it to the outlet.
  • the concentrator 110 mixes and concentrates the gas delivered through the second path control unit 140 and the introduced volatile organic compound, and then transfers the mixture to the regenerative combustion device 120, whereby the second path control unit 140 converts the concentrator 110 ) can be purified.
  • the enriched two-bed thermal regenerative combustion device 100 equipped with a purge unit may further include a chamber 150 .
  • the chamber 150 is coupled between the second path control unit 140 and the concentrator 110 and includes a storage space in which gas transferred from the second path control unit 140 to the concentrator 110 is stored. Some or all of the gas stored in may be delivered to the concentrator 110. That is, when the chamber 150 is not formed, all of the gas discharged from the second path controller 140 during the first section or the second section is delivered to the concentrator 110 in real time. Also, when the chamber 150 is formed, gas discharged from the second path control unit 140 during the first section or the second section may be stored in the storage space of the chamber 150 .
  • the chamber 150 may transfer all of the stored gas to the concentrator 110 in real time, or may store a certain amount of gas in the storage space and then transfer some or all of the stored gas to the concentrator 110. , the amount or speed of the gas delivered to the concentrator 110 may be adjusted.
  • FIG. 5 is an enrichment 2 with purging means according to an embodiment in which the first path controller 130 includes one damper 530 among the enrichment 2-bed thermal regenerative combustion apparatus 100 with purging means of FIG. 1 .
  • It is a drawing for explaining the bed thermal regenerative combustion device 500.
  • the enrichment 2-bed regenerative combustion device 500 equipped with a purge means may include a concentrator 510, a regenerative combustion device 520, a damper 530 and a feedback damper 540.
  • the concentrator 510 is the same as the concentrator 110 of FIG. 1 and the regenerative combustion device 520 is the same as the regenerative combustion device 120 of FIG.
  • the damper 530 corresponds to the first path control unit 130 in FIG. 1
  • the feedback damper 540 corresponds to the second path control unit 140 in FIG. Replace with description.
  • the concentrator 510 may include an adsorption unit, a desorption unit, and a cooling unit.
  • volatile organic compounds introduced into the adsorption unit are adsorbed and purified while passing through the adsorption unit, and the purified air is discharged through the outlet.
  • high-temperature air discharged from the regenerative combustion device 520 is introduced, and hot air of an appropriate temperature is supplied to the desorption unit to desorb the adsorbed contaminants, and the high-concentration concentrated gas is transferred to the first path control unit 130.
  • the temperature of the adsorbent in the concentrator 501, which has risen in the desorption unit, is cooled to a low temperature through the cooling unit.
  • the concentrator 510 of the present invention does not necessarily have to have a shape as shown in FIG. 5 and may have a different structure as long as it can discharge the enriched gas by concentrating the introduced volatile organic compounds.
  • the damper 530 may be installed in a pipe connected between the concentrator 510 , the regenerative combustion device 520 and the feedback damper 540 .
  • the damper 530 may connect between the concentrator 510 and the first heat storage bed 523 and connect between the second heat storage bed 525 and the feedback damper 540 while the first path 1 is set. .
  • the damper 530 connects between the concentrator 510 and the second heat storage bed 525 and connects between the first heat storage bed 523 and the feedback damper 540. there is.
  • the feedback damper 540 can transfer the gas introduced from the damper 530 to the outlet, and in the first path (1), In the first section that changes to 2 routes (2) or in the second section that changes from the second route (2) to the first route (1), the feedback damper 540 converts the gas introduced from the damper 530 into the concentrator 510 ) can be transmitted.
  • the enriched two-bed thermal regenerative combustion device 500 equipped with a purge means includes a blower 550 for delivering volatile organic compounds to the concentrator 510 and a damper 530 from the concentrator 510 to deliver the enriched gas.
  • a blower 560 may be further included.
  • the enriched gas discharged from the concentrator 510 moves to the combustion chamber through the first heat storage bed 523 along the first path (1) shown in FIG. 5 and is burned, and the burned combustion gas is burned in the second heat storage bed.
  • the feedback damper 540 After passing to the feedback damper 540 through 525, it can be passed to the outlet.
  • the feedback damper 540 may transfer the gas introduced from the damper 530 to the concentrator 510.
  • the second path (2) is set, the enriched gas discharged from the concentrator 510 moves to the combustion chamber through the second heat storage bed 525 along the second path (2) shown in FIG. 5 and is burned.
  • the burned combustion gas may be delivered to the feedback damper 540 through the first heat storage bed 523 and then delivered to the outlet. Afterwards, in the second section where the second path (2) is changed to the first path (1), the feedback damper 540 may transfer the gas introduced from the damper 530 to the concentrator 510.
  • FIG. 6 is a diagram showing the purging means according to the embodiment in which the first path controller 130 includes two dampers 631 and 632 among the enriched 2-bed thermal regenerative combustion apparatus 100 equipped with the purging means of FIG. 1 . It is a drawing for explaining the concentrated 2-bed thermal regenerative combustion device 600.
  • the enrichment 2-bed thermal regenerative combustion device 600 equipped with a purge means includes a concentrator 610, a regenerative combustion device 620, a first damper 631, and a second damper 632. And a feedback damper 640 may be included. Since the concentrator 610 is the same as the concentrator 110 of FIG. 1 or the concentrator 510 of FIG. 5 and the regenerative combustion device 620 is the same as the regenerative combustion device 120 of FIG. Replaced with the description of FIG. 4 .
  • the first damper 631 and the second damper 632 correspond to the first path control unit 130 in FIG. 1, and the feedback damper 640 corresponds to the second path control unit 140 in FIG. The description is replaced with the description of FIGS. 1 to 4.
  • the first damper 631 may be installed in a pipe connected between the concentrator 610 , the first heat storage bed 623 and the feedback damper 640 .
  • the second damper 632 may be installed in a pipe connected between the concentrator 610 , the second heat storage bed 625 and the feedback damper 640 .
  • the first damper 631 connects between the concentrator 610 and the first heat storage bed 623 while the first path (1) is set, and while the second path (2) is set, the first heat storage bed ( 623) and the feedback damper 640 may be connected.
  • the second damper 632 connects between the concentrator 610 and the second heat storage bed 625 while the second path (2) is set, and while the first path (1) is set, the second heat storage bed ( 625) and the feedback damper 640 may be connected.
  • the feedback damper 640 can deliver the gas introduced from the second damper 632 to the outlet, and in the section where the second path (2) is set, feedback The damper 640 can deliver the gas introduced from the first damper 631 to the outlet, and in the first section or the second path (2) changed from the first path (1) to the second path (2). In the second section changed to the first path 1, the feedback damper 640 may transfer the gas introduced from the first damper 631 and the second damper 632 to the concentrator 610.
  • the enrichment 2-bed regenerative combustion device 600 equipped with a purge means includes a blower 650 for delivering volatile organic compounds to the concentrator 610 and a first damper 631 and a second damper in the concentrator 610 ( 632) may further include a blower 660 for delivering the enriched gas.
  • the enriched gas discharged from the concentrator 610 moves to the combustion chamber through the first heat storage bed 623 along the first path 1 shown in FIG. 6 and is burned, and the burned combustion gas is burned in the second heat storage bed.
  • the feedback damper 640 After passing to the feedback damper 640 through 625, it can be passed to the outlet.
  • the feedback damper 640 transfers the gas introduced from the first damper 621 and the second damper 622 to the concentrator 610. can be forwarded to After that, when the second path (2) is set, the enriched gas discharged from the concentrator 610 moves to the combustion chamber through the second heat storage bed 625 along the second path (2) shown in FIG. 6 and is burned.
  • the burned combustion gas may be transferred to the feedback damper 640 through the first heat storage bed 623 and then to the outlet. Later, in the second section, which is changed from the second path (2) to the first path (1), the feedback damper 640 converts the gas introduced from the first damper 631 and the second damper 632 into the concentrator 610. can be forwarded to
  • the first path controller 130 includes four dampers 731, 732, 733, and 734 among the enriched two-bed thermal regenerative combustion apparatus 100 equipped with the purge means of FIG. 1
  • the enrichment 2-bed thermal regenerative combustion device 700 equipped with a purge means includes a concentrator 710, a regenerative combustion device 720, a first damper 731, and a second damper 732. , a third damper 733, a fourth damper 734 and a feedback damper 640 may be included. Since the concentrator 710 is the same as the concentrator 110 of FIG. 1 or the concentrator 510 of FIG. 5 and the regenerative combustion device 720 is the same as the regenerative combustion device 120 of FIG. Replaced with the description of FIG. 4 .
  • the first damper 731, the second damper 732, the third damper 733, and the fourth damper 734 correspond to the first path control unit 130 of FIG. 1, and the feedback damper 740 is shown in FIG. Corresponds to the second path control unit 140 of , and the overlapping description below is replaced with the description of FIGS. 1 to 4 .
  • the first damper 731 is installed in the pipe connected between the concentrator 710 and the first heat storage bed 723, and the second damper 732 is connected between the first heat storage bed 723 and the feedback damper 740.
  • the third damper 733 is installed in the pipe connected between the concentrator 710 and the second heat storage bed 725, and the fourth damper 734 is connected between the second heat storage bed 735 and the feedback damper 740.
  • the first damper 731 connects the concentrator 710 and the first heat storage bed 723 while the first path (1) is set, and connects the concentrator 710 and the concentrator 710 while the second path (2) is set. A gap between the first heat storage beds 723 may be blocked.
  • the second damper 732 connects the first heat storage bed 723 and the feedback damper 740 while the second path (2) is set, and while the first path (1) is set, the first heat storage bed It is possible to block between the 723 and the feedback damper 740.
  • the third damper 733 connects the concentrator 710 and the second heat storage bed 725 while the second path (2) is set, and the concentrator 710 while the first path (1) is set. and the second heat storage bed 725 may be blocked.
  • the fourth damper 734 blocks between the second heat storage bed 723 and the feedback damper 740 while the second path (2) is set, and the second heat storage while the first path (1) is set.
  • the bed 723 and the feedback damper 740 may be connected.
  • the enrichment 2-bed thermal regenerative combustion device 700 equipped with a purge means includes a blower 750 for delivering volatile organic compounds to the concentrator 710 and first to fourth dampers 731, 732, A blower 760 for delivering the enriched gas to 733 and 734 may be further included.
  • the enriched gas discharged from the concentrator 710 moves to the combustion chamber through the first heat storage bed 723 along the first path (1) shown in FIG. 7 and is burned, and the burned combustion gas is burned in the second heat storage bed.
  • the feedback damper 740 After passing to the feedback damper 740 through 725, it can be passed to the outlet. Later, in the first section, which is changed from the first path (1) to the second path (2), the feedback damper 740 converts the gas introduced from the first to fourth dampers 731, 732, 733, and 734 into the concentrator ( 710). After that, when the second path (2) is set, the enriched gas discharged from the concentrator 710 moves to the combustion chamber through the second heat storage bed 725 along the second path (2) shown in FIG. 7 and is burned.
  • the burned combustion gas may be delivered to the feedback damper 740 through the first heat storage bed 723 and then delivered to the outlet. Later, in the second section where the second path (2) is changed to the first path (1), the feedback damper 740 converts the gas introduced from the first to fourth dampers 731, 732, 733, and 734 into the concentrator ( 710).
  • the plurality of dampers can operate with a time difference, so in setting the first section and the second section, the following can be set together. That is, when one of the plurality of dampers starts operating first, the first section is the first of the plurality of dampers in order for the first path control unit 130 to change from the first path to the second path. It may include a section from the time of starting the operation to the time when all of the plurality of dampers complete their operation. In addition, when one of the plurality of dampers starts operating first, the second section is the first of the plurality of dampers in order for the first path control unit 130 to change from the second path to the first path. It may include a section from the time of starting the operation to the time when all of the plurality of dampers complete their operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Incineration Of Waste (AREA)

Abstract

퍼지 수단이 구비된 농축 2-베드 축열식 연소장치가 개시된다. 상기 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치는 농축기, 축열식 연소장치, 상기 농축기에서 배출된 농축가스가 상기 제 1 축열베드로 전달되고 상기 제 2 축열베드에서 상기 연소가스가 배출되도록 제 1 경로를 설정하거나, 상기 농축기에서 배출된 농축가스가 상기 제 2 축열베드로 전달되고 상기 제 1 축열베드에서 상기 연소가스가 배출되도록 제 2 경로를 설정하는 제 1 경로제어부 및 상기 제 1 경로제어부에서 배출된 가스가 배출구로 전달되거나 상기 농축기로 전달되도록 제어하는 제 2 경로제어부를 구비할 수 있다. 상기 제 2 경로제어부는 상기 제 1 경로제어부가 경로를 변경하는 구간동안 상기 제 1 경로제어부에서 배출되는 가스가 상기 농축기로 전달되도록 제어할 수 있다.

Description

퍼지 수단이 구비된 농축 2-베드 축열식 연소장치
본 발명은 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치에 관한 것으로, 특히 2-베드 축열식 연소장치에서 가스가 이동하는 경로가 변경되는 구간에서 배출되는 가스를 재처리한 후 배출하는 퍼지 수단을 구비함으로써 휘발성유기화합물의 분해효율을 높이고 베드를 추가하지 않고 3-베드 축열식 연소장치와 같이 동작할 수 있는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치에 관한 것이다.
휘발성유기화합물(VOCs, Volatile Organic Compounds)은 대기중에 휘발되어 악취나 오존을 발생시키는 탄화수소화합물을 일컫는 말로서, 피부접촉이나 호흡기 흡입을 통해 신경계에 장애를 일으키는 발암물질이다. 이러한 휘발성유기화합물은 벤젠이나 포름알데히드, 톨루엔, 자일렌, 에틸렌, 스틸렌, 아세트알데히드 등을 통칭한다.
일반적으로 공장 등에서는 축열식 연소장치를 이용하여 휘발성유기화합물을 제거하여 배출한다. 축열방식 연소장치는 축열재를 이용한 직접적인 열교환법을 채택하여 열회수 효율이 높고 연료량을 대폭적으로 절감할 수 있는 경제적인 연소장치로 에너지절감 효과가 높을 뿐만 아니라 NOx 발생량 억제효과도 높다.
축열식 연소장치는 두개 이상의 축열실이 형성되어 있고 중앙부에 연소실을 갖추고 있다. 즉, 휘발성유기화합물이 축열실을 지나면서 온도가 상승한 상태로 연소실에서 연소되면서 악취물질이 연소 분해된다. 그리고 정화된 고온 가스는 다른 축열실을 지나면서 열을 빼앗겨 온도가 내려간 상태로 대기에 방출된다. 그리고 휘발성유기화합물이 유입되는 방향과 정화된 가스가 유출되는 방향의 축열실은 일정 간격으로 변경되게 된다. 이와 같은 동작을 통해 휘발성유기화합물의 제거가 이루어진다.
축열식 연소장치의 형태로는 2 베드 타입, 3 베드 타입 등이 있다. 2 베드 타입의 축열식연소장치는 2개의 축열베드를 이용하여 휘발성유기화합물을 제거하는 방식이다. 그러나 유입되는 휘발성유기화합물의 흐름을 전환하기 위하여 댐퍼의 개폐가 동시에 이루어져야 하는데, 댐퍼의 개폐가 이루어지는 순간에 일부 미처리된 가스가 배출되어 분해효율이 낮아지는 문제가 있다. 이를 개선하기 위하여 축열베드를 1개 추가하여 3개의 축열베드를 이용하는 3 베드 타입의 축열식 연소장치가 이용되기도 하는데, 분해효율은 높아졌으나 축열베드를 추가함에 따른 비용이 상승하는 문제가 있다.
본 발명이 해결하고자 하는 과제는 2-베드 축열식 연소장치에서 가스가 이동하는 경로가 변경되는 구간에서 배출되는 가스를 재처리한 후 배출하는 퍼지 수단을 구비함으로써 휘발성유기화합물의 분해효율을 높이고 베드를 추가하지 않고 3-베드 축열식 연소장치와 같이 동작할 수 있는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치를 제공하는데 있다.
상기 과제를 달성하기 위한 본 발명의 일 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치는, 휘발성유기화합물을 흡착 정화하여 정화된 공기를 외부로 배출하고, 상기 휘발성유기화합물이 정화되면서 흡착된 오염물질을 탈착시키면서 생성된 고농도의 농축가스를 배출하는 농축기, 상기 농축기에서 배출된 상기 농축가스를 연소시켜 정화된 연소가스를 배출구를 통해 외부로 배출하고, 상기 연소가스가 이동하는 통로인 제 1 축열베드 및 제 2 축열베드를 포함하는 축열식 연소장치, 상기 농축기에서 배출된 농축가스가 상기 제 1 축열베드로 전달되고 상기 제 2 축열베드에서 상기 연소가스가 배출되도록 제 1 경로를 설정하거나, 상기 농축기에서 배출된 농축가스가 상기 제 2 축열베드로 전달되고 상기 제 1 축열베드에서 상기 연소가스가 배출되도록 제 2 경로를 설정하는 제 1 경로제어부 및 상기 제 1 경로제어부에서 배출된 가스가 상기 배출구로 전달되거나 상기 농축기로 전달되도록 제어하는 제 2 경로제어부를 구비할 수 있다. 상기 제 1 경로제어부는 상기 제 1 경로가 설정된 상태에서 제 2 경로로 변경하거나 상기 제 2 경로가 설정된 상태에서 상기 제 1 경로로 변경하고, 상기 제 2 경로제어부는 상기 제 1 경로제어부가 상기 제 1 경로에서 상기 제 2 경로로 변경하는 제 1 구간 또는 상기 제 2 경로에서 상기 제 1 경로로 변경하는 제 2 구간동안 상기 제 1 경로제어부에서 배출되는 가스가 상기 농축기로 전달되도록 제어하고, 상기 제 1 경로제어부가 상기 제 1 경로 또는 상기 제 2 경로로 설정되어 있는 제 3 구간동안 상기 연소가스가 상기 배출구로 전달되도록 제어할 수 있다.
상기 제 1 경로제어부는 상기 제 1 경로 또는 상기 제 2 경로를 설정하도록 상기 농축가스 또는 상기 연소가스의 이동방향을 변경하는 적어도 하나의 댐퍼를 포함하고, 상기 제 1 구간은 상기 제 1 경로제어부가 상기 제 1 경로에서 상기 제 2 경로로 변경하기 위해서 상기 적어도 하나의 댐퍼가 동작하는 구간을 포함하고, 상기 제 2 구간은 상기 제 1 경로제어부가 상기 제 2 경로에서 상기 제 1 경로로 변경하기 위해서 상기 적어도 하나의 댐퍼가 동작하는 구간을 포함할 수 있다.
상기 제 1 경로제어부는 상기 제 1 경로 또는 상기 제 2 경로를 설정하도록 상기 농축가스 또는 상기 연소가스의 이동방향을 변경하는 복수의 댐퍼들을 포함하고, 상기 제 1 구간은 상기 복수의 댐퍼들 중 하나가 먼저 동작을 시작을 하는 경우, 상기 제 1 경로제어부가 상기 제 1 경로에서 상기 제 2 경로로 변경하기 위해서 상기 복수의 댐퍼들 중 먼저 동작을 시작하는 시점부터 상기 복수의 댐퍼들이 모두 동작을 완료한 시점까지의 구간을 포함하고, 상기 제 2 구간은 상기 복수의 댐퍼들 중 하나가 먼저 동작을 시작을 하는 경우, 상기 제 1 경로제어부가 상기 제 2 경로에서 상기 제 1 경로로 변경하기 위해서 상기 복수의 댐퍼들 중 먼저 동작을 시작하는 시점부터 상기 복수의 댐퍼들이 모두 동작을 완료한 시점까지의 구간을 포함할 수 있다.
상기 제 1 구간은 상기 제 1 경로제어부가 상기 제 1 경로에서 상기 제 2 경로로 변경을 하기 위해 동작하기 시작하는 시점보다 이전 시점인 제 1 시점부터 상기 제 1 경로제어부가 상기 제 1 경로에서 상기 제 2 경로로 변경을 완료한 시점보다 이후 시점인 제 2 시점까지의 구간이고, 상기 제 2 구간은 상기 제 1 경로제어부가 상기 제 2 경로에서 상기 제 1 경로로 변경을 하기 위해 동작하기 시작하는 시점보다 이전 시점인 제 3 시점부터 상기 제 1 경로제어부가 상기 제 2 경로에서 상기 제 1 경로로 변경을 완료한 시점보다 이후 시점인 제 4 시점까지의 구간일 수 있다.
상기 제 2 경로제어부는 상기 제 1 경로제어부에서 배출된 가스가 배출구로 전달되거나 상기 농축기로 전달되도록 제어하는 피드백댐퍼를 포함하고, 상기 제 1 경로 또는 상기 제 2 경로가 설정되어 있는 동안 상기 제 1 경로제어부에서 배출된 가스가 배출구로 전달되도록 상기 피드백댐퍼를 제어하고, 상기 제 1 경로에서 상기 제 2 경로로 변경되는 상기 제 1 구간 또는 상기 제 2 경로에서 상기 제 1 경로로 변경되는 상기 제 2 구간 동안 상기 제 1 경로제어부에서 배출된 가스가 상기 농축기로 전달되도록 상기 피드백댐퍼를 제어할 수 있다.
상기 제 1 경로제어부는 상기 농축기, 상기 축열식연소장치 및 상기 제 2 경로제어부 사이의 연결된 배관에 설치되는 댐퍼를 포함하고, 상기 댐퍼는 상기 제 1 경로가 설정되어 있는 동안 상기 농축기와 상기 제 1 축열베드 사이를 연결하고 상기 제 2 축열베드와 상기 제 2 경로제어부 사이를 연결하며, 상기 제 2 경로가 설정되어 있는 동안 농축기와 상기 제 2 축열베드 사이를 연결하고 상기 제 1 축열베드와 상기 제 2 경로제어부 사이를 연결할 수 있다.
상기 제 1 경로제어부는 상기 농축기, 상기 제 1 축열베드 및 상기 제 2 경로제어부 사이의 연결된 배관에 설치되는 제 1 댐퍼 및 상기 농축기, 상기 제 2 축열베드 및 상기 제 2 경로제어부 사이의 연결된 배관에 설치되는 제 2 댐퍼를 포함하고, 상기 제 1 댐퍼는 상기 제 1 경로가 설정되어 있는 동안 상기 농축기와 상기 제 1 축열베드 사이를 연결하고, 상기 제 2 경로가 설정되어 있는 동안 상기 제 1 축열베드와 상기 제 2 경로제어부를 연결하며, 상기 제 2 댐퍼는 상기 제 2 경로가 설정되어 있는 동안 상기 농축기와 상기 제 2 축열베드 사이를 연결하고, 상기 제 1 경로가 설정되어 있는 동안 상기 제 2 축열베드와 상기 제 2 경로제어부를 연결할 수 있다.
상기 제 1 경로제어부는 상기 농축기 및 상기 제 1 축열베드 사이의 연결된 배관에 설치되는 제 1 댐퍼, 상기 제 1 축열베드 및 상기 제 2 경로제어부 사이의 연결된 배관에 설치되는 제 2 댐퍼, 상기 농축기 및 상기 제 2 축열베드 사이의 연결된 배관에 설치되는 제 3 댐퍼 및 상기 제 2 축열베드 및 상기 제 2 경로제어부 사이의 연결된 배관에 설치되는 제 4 댐퍼를 포함하고, 상기 제 1 댐퍼는 상기 제 1 경로가 설정되어 있는 동안 상기 농축기와 상기 제 1 축열베드 사이를 연결하고, 상기 제 2 경로가 설정되어 있는 동안 상기 농축기와 상기 제 1 축열베드 사이를 차단하며, 상기 제 2 댐퍼는 상기 제 1 경로가 설정되어 있는 동안 상기 제 1 축열베드와 상기 제 2 경로제어부 사이를 차단하고, 상기 제 2 경로가 설정되어 있는 동안 상기 제 1 축열베드와 상기 제 2 경로제어부 사이를 연결하며, 상기 제 3 댐퍼는 상기 제 2 경로가 설정되어 있는 동안 상기 농축기와 상기 제 2 축열베드 사이를 연결하고, 상기 제 1 경로가 설정되어 있는 동안 상기 농축기와 상기 제 2 축열베드 사이를 차단하며, 상기 제 4 댐퍼는 상기 제 2 경로가 설정되어 있는 동안 상기 제 2 축열베드와 상기 제 2 경로제어부 사이를 차단하고, 상기 제 1 경로가 설정되어 있는 동안 상기 제 2 축열베드와 상기 제 2 경로제어부 사이를 연결할 수 있다.
상기 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치는, 상기 제 2 경로제어부와 상기 농축기 사이에 결합되고, 상기 제 2 경로제어부에서 상기 농축기로 전달하는 가스가 저장되는 저장공간을 포함하며, 상기 저장공간에 저장되어 있는 가스 중 일부 또는 전부를 상기 농축기로 전달하는 챔버를 더 구비할 수 있다.
본 발명의 기술적 사상에 의한 일 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치는 2-베드 축열식 연소장치에서 가스가 이동하는 경로가 변경되는 구간에서 배출되는 가스를 피드백시켜 농축기로 전달한 후 다시 축열식 연소장치로 전달하여 처리하는 퍼지수단을 구비함으로써 휘발성유기화합물의 분해효율을 높일 수 있는 장점이 있다. 즉, 2 베드타입의 축열식 연소장치의 경우 휘발성유기화합물이 유입되는 경로와 유입된 휘발성유기화합물이 연소된 후 배출되는 경로를 일정 시간이 지날 때마다 변경해줘야 하는데, 이와 같이 가스의 경로를 변경하기 위해 댐퍼를 동작시키는 구간 동안 연소되지 않은 휘발성유기화합물이 배출됨으로써 분해효율이 낮아지는 문제점이 있었다. 본 발명은 이와 같은 문제점을 해결하고자 가스의 경로가 변경되는 구간에서 배출되는 가스를 배출구로 배출하지 않고 농축기로 전달하여 농축시킨 후 축열식 연소장치로 전달하여 처리함으로써 2 베드 타입의 축열식 연소장치를 이용하면서도 3 베드 타입의 축열식 연소장치를 이용하는 것과 같이 분해효율을 높일 수 있는 장점이 있다. 또한, 본 발명의 기술적 사상에 의한 일 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치는 3 베드 타입의 축열식 연소장치와 같은 효율을 얻으면서도 3 베드 타입의 축열식 연소장치보다 저렴하게 설치할 수 있는 2 베드 타입의 축열식 연소장치를 이용할 수 있으므로 설치비용 및 설치크기를 크게 줄일 수 있는 장점이 있다.
본 발명의 상세한 설명에서 인용되는 도면을 보다 충분히 이해하기 위하여 각 도면의 간단한 설명이 제공된다.
도 1은 본 발명의 기술적 사상에 의한 일 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치를 개략적으로 도시한 도면이다.
도 2는 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치가 제 1 경로가 설정된 상태로 동작하는 경우를 설명하기 위한 도면이다.
도 3은 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치가 제 1 경로와 제 2 경로 사이에서 변환되는 경우를 설명하기 위한 도면이다.
도 4는 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치가 제 2 경로가 설정된 상태로 동작하는 경우를 설명하기 위한 도면이다.
도 5는 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치 중 제 1 경로제어부가 하나의 댐퍼를 포함하는 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치를 설명하기 위한 도면이다.
도 6은 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치 중 제 1 경로제어부가 두 개의 댐퍼를 포함하는 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치를 설명하기 위한 도면이다.
도 7은 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치 중 제 1 경로제어부가 네 개의 댐퍼를 포함하는 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치를 설명하기 위한 도면이다.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 도면에 기재된 내용을 참조하여야 한다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명을 상세히 설명한다. 각 도면에 제시된 동일한 참조부호는 동일한 부재를 나타낸다.
도 1은 본 발명의 기술적 사상에 의한 일 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100)를 개략적으로 도시한 도면이다. 도 2는 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100)가 제 1 경로가 설정된 상태로 동작하는 경우를 설명하기 위한 도면이고, 도 3은 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100)가 제 1 경로와 제 2 경로 사이에서 변환되는 경우를 설명하기 위한 도면이며, 도 4는 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100)가 제 2 경로가 설정된 상태로 동작하는 경우를 설명하기 위한 도면이다.
도 1 내지 도 4를 참조하면, 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100)는 농축기(110), 축열식 연소장치(120), 제 1 경로제어부(130) 및 제 2 경로제어부(140)를 구비할 수 있다. 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100)는 축열식 연소방식이 적용될 수도 있고 축열식 촉매 연소방식이 적용될 수도 있다.
농축기(110)는 휘발성유기화합물을 전달받아 흡착 정화시켜 정화된 공기를 배출구를 통해 외부로 배출하고, 상기 휘발성유기화합물이 정화되면서 흡착된 오염물질을 탈착시킴으로써 고농도로 농축된 농축가스를 제 1 경로제어부(130)로 배출할 수 있다. 즉, 농축기(110)를 이용하여 휘발성유기화합물을 흡착처리하고 고농도의 농축가스를 이하에서 설명할 축열식 연소장치(120)로 전달함으로써, 축열식 연소장치(120)에서 사용되는 연료량을 감소시킬 수 있다. 농축기(110)의 구성은 일반적으로 사용되는 다양한 구조의 농축기와 동일 또는 유사하므로 이하 농축기(110)의 구조 및 동작에 대한 구체적인 설명은 생략한다.
축열식 연소장치(120)는 상기 농축가스를 연소시켜 정화된 연소가스를 배출하고, 상기 연소가스가 이동하는 통로인 제 1 축열베드(123) 및 제 2 축열베드(125)를 포함할 수 있다. 제 1 축열베드(123) 및 제 2 축열베드(125)에는 축열재들이 포함되어 있으며, 제 1 축열베드(123) 및 제 2 축열베드(125)의 상부에는 상기 농축가스를 연소시키는 연소실이 형성된다. 축열식 연소장치(120)는 축열식 연소방식이 적용된 축열식 연소산화장치(RTO, Regenerative Thermal Oxidizer)일 수도 있고, 축열식 촉매 연소방식이 적용된 축열촉매 연소산화장치(RCO, Regenerative Catalytic Oxidizer)일 수도 있으며, 유사한 방식이 적용된 다른 장치일 수도 있다.
제 1 축열베드(123) 또는 제 2 축열베드(125)를 통해 상기 농축가스가 이동하는 경우 제 1 축열베드(123) 또는 제 2 축열베드(125)에 축열되어 있는 열을 상기 농축가스로 전달하여 상기 농축가스의 온도가 높아진다. 따라서 상기 연소실에서 상기 농축가스를 연소시킴에 있어 연료 소모를 최소화할 수 있다. 그리고 상기 연소실에서 연소된 연소가스는 고온이므로, 제 1 축열베드(123) 또는 제 2 축열베드(125)를 통해 상기 연소가스가 이동하면서 제 1 축열베드(123) 또는 제 2 축열베드(125)로 상기 연소가스의 열을 빼앗겨 상기 연소가스의 온도는 낮아지고 제 1 축열베드(123) 또는 제 2 축열베드(125)의 온도는 높아지게 된다. 이와 같은 동작이 반복되면서 이상에서 설명한 것과 같은 효과를 얻기 위해서는 상기 농축가스의 이동경로와 상기 연소가스의 이동경로가 소정의 시간 간격을 두고 변경되어야 한다. 이하에서는 상기 농축가스와 상기 연소가스의 이동경로가 변경되는 경우에 대하여 살펴본다.
제 1 경로제어부(130)는 농축기(110)에서 배출된 농축가스가 제 1 축열베드(123)로 전달되고 제 2 축열베드(125)에서 상기 연소가스가 배출되도록 제 1 경로를 설정할 수 있다. 또는, 제 1 경로제어부(130)는 농축기(110)에서 배출된 농축가스가 제 2 축열베드(125)로 전달되고 제 1 축열베드(123)에서 상기 연소가스가 배출되도록 제 2 경로를 설정할 수 있다. 그리고 제 1 경로제어부(130)는 상기 제 1 경로가 설정된 상태에서 상기 제 2 경로로 변경할 수 있고, 또는 상기 제 2 경로가 설정된 상태에서 상기 제 1 경로로 변경할 수 있다. 제 1 경로제어부(130)는 상기 제 1 경로 또는 상기 제 2 경로를 설정하도록 상기 농축가스 또는 상기 연소가스의 이동방향을 변경하는 적어도 하나의 댐퍼를 포함할 수 있으며, 제 1 경로제어부(130)가 댐퍼를 포함하는 실시예들에 대하여는 도 5 내지 도 7을 참조하여 보다 상세하게 설명한다.
제 2 경로제어부(140)는 제 1 경로제어부(130)에서 배출된 가스가 배출구로 전달되거나 농축기(110)로 전달되도록 제어함으로서 퍼지(pruge) 기능을 수행하는 퍼지 수단일 수 있다. 상기 배출구는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100)의 배출구일 수 있고 또는 굴뚝 등과 연결되어 있을 수도 있다. 제 2 경로제어부(140)는 제 1 경로제어부(130)에서 배출된 가스가 배출구로 전달되거나 농축기(110)로 전달되도록 제어하는 피드백댐퍼를 포함할 수 있으며, 제 2 경로제어부(140)가 상기 피드백댐퍼를 포함하는 실시예들에 대하여는 도 5 내지 도 7을 참조하여 보다 상세하게 설명한다.
보다 구체적으로, 제 2 경로제어부(140)는 제 1 경로제어부(130)가 상기 제 1 경로에서 상기 제 2 경로로 변경하는 제 1 구간 또는 상기 제 2 경로에서 상기 제 1 경로로 변경하는 제 2 구간동안 제 1 경로제어부(130)에서 배출되는 가스가 농축기(110)로 전달되도록 제어하고, 제 1 경로제어부(130)가 상기 제 1 경로 또는 상기 제 2 경로로 설정되어 있는 제 3 구간동안에는 상기 연소가스가 상기 배출구로 전달되도록 제어할 수 있다. 즉, 제 2 경로제어부(140)는 제 1 경로제어부(130)가 경로를 변경하는 구간인 제 1 구간 또는 제 2 구간동안 제 1 경로제어부(130)에서 전달되는 가스를 농축기(110)로 전달하여 농축시킨 후 다시 축열식 연소장치(120)로 유입되도록 하여 재처리를 수행할 수 있다. 제 1 경로제어부(130)는 상기 농축가스가 제 1 축열베드(123)로 전달되는 유로(배관)을 막고 상기 농축가스가 제 2 축열베드(125)로 전달되는 유로(배관)을 열어주는 동작을 통해 상기 제 1 경로를 상기 제 2 경로로 변경할 수 있다. 또는, 반대로 제 1 경로제어부(130)는 상기 농축가스가 제 2 축열베드(125)로 전달되는 유로(배관)을 막고 상기 농축가스가 제 1 축열베드(123)로 전달되는 유로(배관)을 열어주는 동작을 통해 상기 제 2 경로를 상기 제 1 경로로 변경할 수 있다. 그러나 이와 같이 유로를 변경하는 경우 유로를 변경하는 시간동안 미처리된 농축가스가 제 1 경로제어부(130)에서 배출되는 문제가 있다. 이와 같이 배출된 미처리된 농축가스가 휘발성유기화합물이 분해된 연소가스와 섞여 배출됨으로써 휘발성유기화합물의 분해효율이 낮아지게 된다. 따라서 본 발명에서는 상기 제 1 경로에서 상기 제 2 경로로 변경되는 제 1 구간 또는 상기 제 2 경로에서 상기 제 1 경로로 변경되는 제 2 구간동안 제 1 경로제어부(130)에서 배출되는 가스는 상기 배출구로 전달하지 않고 농축기(110)로 피드백 시킴으로써 2 베드 타입의 축열식 연소장치에서 분해효율이 낮아지는 문제점을 해결할 수 있는 장점이 있다.
이상의 설명에서, 상기 제 1 구간은 제 1 경로제어부(130)가 상기 제 1 경로에서 상기 제 2 경로로 변경을 하기 위해 동작하기 시작하는 시점보다 이전 시점인 제 1 시점부터 제 1 경로제어부(130)가 상기 제 1 경로에서 상기 제 2 경로로 변경을 완료한 시점보다 이후 시점인 제 2 시점까지의 구간일 수 있다. 그리고 상기 제 2 구간은 제 1 경로제어부(130)가 상기 제 2 경로에서 상기 제 1 경로로 변경을 하기 위해 동작하기 시작하는 시점보다 이전 시점인 제 3 시점부터 제 1 경로제어부(130)가 상기 제 2 경로에서 상기 제 1 경로로 변경을 완료한 시점보다 이후 시점인 제 4 시점까지의 구간일 수 있다. 즉, 제 1 경로제어부(130)가 경로의 변경하는 시작하는 시점 및 종료하는 시점과 제 2 경로제어부(140)가 가스를 농축기(110)로 전달하도록 제어하는 시점을 정확하게 맞추기 위해서는 매우 정밀한 제어가 필요하므로, 본 발명의 경우 제 1 경로제어부(130)가 경로를 변경하기 시작하는 시점보다 이전 시점인 제 1 시점부터 경로의 변경을 완료한 완료시점보다 이후 시점인 제 2 시점까지를 상기 제 1 구간으로 설정할 수 있다. 따라서 제 2 경로제어부(140)는 제 1 경로제어부(130)가 경로를 변경하기 시작하는 시점보다 이전 시점부터 경료 변경을 완료한 시점보다 이후 시점까지 제 1 경로제어부(130)에서 유출되는 가스를 농축기(110)로 전달함으로써 휘발성유기화합물의 분해효율을 극대화할 수 있다.
도 2 내지 도 4를 참조하여 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100)의 동작에 대하여 살펴보면, 도 2와 같이 제 1 경로제어부(130)가 상기 제 1 경로를 설정한 경우, 농축기(110)에서 축열식 연소장치(120)로 전달된 농축가스는 제 1 축열베드(123)를 통해 상기 연소실로 전달되면서 제 1 축열베드(123)로부터 열을 전달받게 된다. 이와 같이 열을 전달받아 고온이 된 농축가스는 상기 연소실에서 연소되어 고온의 연소가스로 변환된다. 그리고 상기 고온의 연소가스는 제 2 축열베드(125)를 통해 축열식 연소장치(120)의 외부로 배출되면서 제 2 축열베드(125)에 열을 뺏기게 된다. 이와 같은 동작이 일정시간 일어나게 되면 제 1 축열베드(123)의 온도는 낮아지고 제 2 축열베드(125)의 온도는 높아지게 되어, 이상에서 설명한 것과 같이 제 1 축열베드(123)가 상기 농축가스로 열을 전달할 수 없게 되고 제 2 축열베드(125)가 상기 연소가스로부터 열을 전달받을 수 없게 되는 현상이 발생한다. 따라서 일정 시간이 경과한 후 또는 상기 축열베드의 온도가 임계값 이상 또는 이하가 되는 경우 제 1 경로제어부(130)는 상기 제 1 경로에서 상기 제 2 경로로 변경시키게 된다.
도 3과 같이 상기 제 1 경로에서 상기 제 2 경로로 변경하기 위하여 제 1 경로제어부(130)가 동작하는 경우, 제 1 경로제어부(130)가 상기 제 1 경로에서 상기 제 2 경로로 변경하는 제 1 구간동안 제 1 경로제어부(130)를 통해 정화되지 않은 상기 농축가스가 일부 유출될 수 있다. 따라서 상기 제 1 구간동안 제 2 경로제어부(140)는 제 1 경로제어부(130)에서 배출되는 가스를 상기 배출구로 전달하지 않고 전부 농축기(110)로 전달하게 된다. 농축기(110)는 제 2 경로제어부(140)를 통해 전달받은 가스와 유입되는 휘발성유기화합물을 혼합하여 농축시킨 후 축열식 연소장치(120)로 전달함으로써, 제 2 경로제어부(140)에서 농축기(110)로 전달된 가스는 정화가 이루어질 수 있다.
도 4와 같이 상기 제 1 구간이 경과하여 상기 제 2 경로가 안정적으로 유지되는 경우, 농축기(110)에서 배출된 농축가스는 제 2 축열베드(125)를 통해 상기 연소실로 전달되면서 제 2 축열베드(125)로부터 열을 전달받게 된다. 이와 같이 열을 전달받아 고온이 된 농축가스는 상기 연소실에서 연소되어 고온의 연소가스로 변환된다. 그리고 상기 고온의 연소가스는 제 1 축열베드(123)를 통해 축열식 연소장치(120)의 외부로 배출되면서 제 1 축열베드(123)에 열을 뺏기게 된다. 이와 같은 동작이 일정시간 일어나게 되면 제 2 축열베드(125)의 온도는 낮아지고 제 1 축열베드(123)의 온도는 높아지게 되어, 이상에서 설명한 것과 같이 제 2 축열베드(125)가 상기 농축가스로 열을 전달할 수 없게 되고 제 1 축열베드(123)가 상기 연소가스로부터 열을 전달받을 수 없게 되는 현상이 발생한다. 따라서 일정 시간이 경과한 후 또는 상기 축열베드의 온도가 임계값 이상 또는 이하가 되는 경우 제 1 경로제어부(130)는 다시 상기 제 2 경로에서 상기 제 1 경로로 변경시키게 된다.
도 3과 같이 상기 제 2 경로에서 상기 제 1 경로로 변경하기 위하여 제 1 경로제어부(130)가 동작하는 경우, 제 1 경로제어부(130)가 상기 제 2 경로에서 상기 제 1 경로로 변경하는 제 2 구간동안 제 1 경로제어부(130)를 통해 정화되지 않은 상기 농축가스가 일부 유출될 수 있다. 따라서 상기 제 2 구간동안 제 2 경로제어부(140)는 제 1 경로제어부(130)에서 배출되는 가스를 상기 배출구로 전달하지 않고 전부 농축기(110)로 전달하게 된다. 농축기(110)는 제 2 경로제어부(140)를 통해 전달받은 가스와 유입되는 휘발성유기화합물을 혼합하여 농축시킨 후 축열식 연소장치(120)로 전달함으로써, 제 2 경로제어부(140)에서 농축기(110)로 전달된 가스는 정화가 이루어질 수 있다. 상기 제 2 구간이 경과하여 상기 제 1 경로가 안정적으로 유지되는 경우, 다시 도 2와 같은 상태로 동작하면서 이상에서 설명한 것과 같은 동작을 반복하여 수행하게 된다.
퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100)는 챔버(150)를 더 구비할 수 있다. 챔버(150)는 제 2 경로제어부(140)와 농축기(110) 사이에 결합되고, 제 2 경로제어부(140)에서 농축기(110)로 전달하는 가스가 저장되는 저장공간을 포함하며, 상기 저장공간에 저장되어 있는 가스 중 일부 또는 전부를 농축기(110)로 전달할 수 있다. 즉, 챔버(150)가 형성되지 않는 경우에는 상기 제 1 구간 또는 상기 제 2 구간 동안 제 2 경로제어부(140)에서 배출되는 가스가 전부 실시간으로 농축기(110)로 전달되게 된다. 그리고 챔버(150)가 형성되어 있는 경우에는 상기 제 1 구간 또는 상기 제 2 구간 동안 제 2 경로제어부(140)에서 배출되는 가스가 챔버(150)의 저장공간에 저장될 수 있다. 그리고, 챔버(150)는 실시간으로 저장되는 가스를 전부 농축기(110)로 전달할 수도 있고, 상기 저장공간에 일정한 양의 가스를 저장한 후 저장된 가스의 일부 또는 전부를 농축기(110)로 전달할 수 있으며, 농축기(110)에 전달되는 가스의 양 또는 속도를 조절할 수도 있다.
도 5는 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100) 중 제 1 경로제어부(130)가 하나의 댐퍼(530)를 포함하는 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(500)를 설명하기 위한 도면이다.
도 1 내지 도 5를 참조하면, 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(500)은 농축기(510), 축열식 연소장치(520), 댐퍼(530) 및 피드백댐퍼(540)를 포함할 수 있다. 농축기(510)는 도 1의 농축기(110)와 동일하고 축열식 연소장치(520)는 도 1의 축열식 연소장치(120)와 동일하므로 이하 중복되는 설명은 도 1 내지 도 4의 설명으로 대체한다. 댐퍼(530)는 도 1의 제 1 경로제어부(130)에 대응되고, 피드백댐퍼(540)는 도 1의 제 2 경로제어부(140)에 대응되며, 이하 중복되는 설명은 도 1 내지 도 4의 설명으로 대체한다.
농축기(510)는 흡착부, 탈착부 및 냉각부를 구비할 수 있다. 예를 들어, 상기 흡착부로 유입된 휘발성유기화합물은 흡착부를 거치면서 흡착 정화되고, 정화된 공기는 상기 배출구를 통해 배출된다. 그리고 축열식 연소장치(520)에서 배출되는 고온의 공기를 유입하여 적정온도의 열풍이 상기 탈착부에 공급되어 흡착된 오염물질을 탈착시켜 고농도의 농축가스가 제 1 경로제어부(130)로 전달된다. 상기 탈착부에서 상승된 농축기(501)의 흡착제 온도는 냉각부를 거치면서 낮은 온도로 냉각된다. 본 발명의 농축기(510)가 반드시 도 5와 같은 형상을 가져야 하는 것은 아니고 유입된 휘발성유기화합물을 농축하여 농축가스를 배출할 수 있다면 다른 구조를 가질 수도 있다.
댐퍼(530)는 농축기(510), 축열식 연소장치(520) 및 피드백댐퍼(540) 사이의 연결된 배관에 설치될 수 있다. 댐퍼(530)는 제 1 경로(①)가 설정되어 있는 동안 농축기(510)와 제 1 축열베드(523) 사이를 연결하고 제 2 축열베드(525)와 피드백댐퍼(540) 사이를 연결할 수 있다. 그리고 댐퍼(530)는 제 2 경로(②)가 설정되어 있는 동안 농축기(510)와 제 2 축열베드(525) 사이를 연결하고 제 1 축열베드(523)와 피드백댐퍼(540) 사이를 연결할 수 있다. 그리고 제 1 경로(①) 또는 제 2 경로(②)가 설정되어 있는 구간에서 피드백댐퍼(540)는 댐퍼(530)에서 유입되는 가스를 상기 배출구로 전달할 수 있고, 제 1 경로(①)에서 제 2 경로(②)로 변경되는 제 1 구간 또는 제 2 경로(②)에서 제 1 경로(①)로 변경되는 제 2 구간에서 피드백댐퍼(540)는 댐퍼(530)에서 유입되는 가스를 농축기(510)로 전달할 수 있다. 그리고 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(500)은 농축기(510)로 휘발성유기화합물을 전달하기 위한 송풍기(550) 및 농축기(510)에서 댐퍼(530)로 상기 농축가스를 전달하기 위한 송풍기(560) 등이 더 포함될 수 있다.
즉, 농축기(510)에서 배출된 농축가스는 도 5에 도시된 제 1 경로(①)를 따라 제 1 축열베드(523)를 통해 연소실로 이동하여 연소되고, 연소된 연소가스는 제 2 축열베드(525)를 통해 피드백댐퍼(540)로 전달된 후 배출구로 전달될 수 있다. 이후에 제 1 경로(①)에서 제 2 경로(②)로 변경되는 제 1 구간에서 피드백댐퍼(540)는 댐퍼(530)에서 유입되는 가스를 농축기(510)로 전달할 수 있다. 이후에 제 2 경로(②)가 설정되면, 농축기(510)에서 배출된 농축가스는 도 5에 도시된 제 2 경로(②)를 따라 제 2 축열베드(525)를 통해 연소실로 이동하여 연소되고, 연소된 연소가스는 제 1 축열베드(523)를 통해 피드백댐퍼(540)로 전달된 후 배출구로 전달될 수 있다. 이후에 제 2 경로(②)에서 제 1 경로(①)로 변경되는 제 2 구간에서 피드백댐퍼(540)는 댐퍼(530)에서 유입되는 가스를 농축기(510)로 전달할 수 있다.
도 6은 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100) 중 제 1 경로제어부(130)가 두 개의 댐퍼(631, 632)를 포함하는 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(600)를 설명하기 위한 도면이다.
도 1 내지 도 6을 참조하면, 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(600)는 농축기(610), 축열식 연소장치(620), 제 1 댐퍼(631), 제 2 댐퍼(632) 및 피드백댐퍼(640)를 포함할 수 있다. 농축기(610)는 도 1의 농축기(110) 또는 도 5의 농축기(510)와 동일하고 축열식 연소장치(620)는 도 1의 축열식 연소장치(120)와 동일하므로 이하 중복되는 설명은 도 1 내지 도 4의 설명으로 대체한다. 제 1 댐퍼(631) 및 제 2 댐퍼(632)는 도 1의 제 1 경로제어부(130)에 대응되고, 피드백댐퍼(640)는 도 1의 제 2 경로제어부(140)에 대응되며, 이하 중복되는 설명은 도 1 내지 도 4의 설명으로 대체한다.
제 1 댐퍼(631)는 농축기(610), 제 1 축열베드(623) 및 피드백댐퍼(640) 사이의 연결된 배관에 설치될 수 있다. 제 2 댐퍼(632)는 농축기(610), 제 2 축열베드(625) 및 피드백댐퍼(640) 사이의 연결된 배관에 설치될 수 있다.
제 1 댐퍼(631)는 제 1 경로(①)가 설정되어 있는 동안 농축기(610)와 제 1 축열베드(623) 사이를 연결하고 제 2 경로(②)가 설정되어 있는 동안 제 1 축열베드(623)와 피드백댐퍼(640)를 연결할 수 있다. 제 2 댐퍼(632)는 제 2 경로(②)가 설정되어 있는 동안 농축기(610)와 제 2 축열베드(625) 사이를 연결하고 제 1 경로(①)가 설정되어 있는 동안 제 2 축열베드(625)와 피드백댐퍼(640)를 연결할 수 있다. 그리고 제 1 경로(①)가 설정되어 있는 구간에서 피드백댐퍼(640)는 제 2 댐퍼(632)에서 유입되는 가스를 상기 배출구로 전달할 수 있고, 제 2 경로(②)가 설정되어 있는 구간에서 피드백댐퍼(640)는 제 1 댐퍼(631)에서 유입되는 가스를 상기 배출구로 전달할 수 있으며, 제 1 경로(①)에서 제 2 경로(②)로 변경되는 제 1 구간 또는 제 2 경로(②)에서 제 1 경로(①)로 변경되는 제 2 구간에서 피드백댐퍼(640)는 제 1 댐퍼(631) 및 제 2 댐퍼(632)에서 유입되는 가스를 농축기(610)로 전달할 수 있다. 그리고 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(600)은 농축기(610)로 휘발성유기화합물을 전달하기 위한 송풍기(650) 및 농축기(610)에서 제 1 댐퍼(631) 및 제 2 댐퍼(632)로 상기 농축가스를 전달하기 위한 송풍기(660) 등이 더 포함될 수 있다.
즉, 농축기(610)에서 배출된 농축가스는 도 6에 도시된 제 1 경로(①)를 따라 제 1 축열베드(623)를 통해 연소실로 이동하여 연소되고, 연소된 연소가스는 제 2 축열베드(625)를 통해 피드백댐퍼(640)로 전달된 후 배출구로 전달될 수 있다. 이후에 제 1 경로(①)에서 제 2 경로(②)로 변경되는 제 1 구간에서 피드백댐퍼(640)는 제 1 댐퍼(621) 및 제 2 댐퍼(622)에서 유입되는 가스를 농축기(610)로 전달할 수 있다. 이후에 제 2 경로(②)가 설정되면, 농축기(610)에서 배출된 농축가스는 도 6에 도시된 제 2 경로(②)를 따라 제 2 축열베드(625)를 통해 연소실로 이동하여 연소되고, 연소된 연소가스는 제 1 축열베드(623)를 통해 피드백댐퍼(640)로 전달된 후 배출구로 전달될 수 있다. 이후에 제 2 경로(②)에서 제 1 경로(①)로 변경되는 제 2 구간에서 피드백댐퍼(640)는 제 1 댐퍼(631) 및 제 2 댐퍼(632)에서 유입되는 가스를 농축기(610)로 전달할 수 있다.
도 7은 도 1의 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(100) 중 제 1 경로제어부(130)가 네 개의 댐퍼(731, 732, 733, 734)를 포함하는 실시예에 따른 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(700)를 설명하기 위한 도면이다.
도 1 내지 도 7을 참조하면, 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(700)는 농축기(710), 축열식 연소장치(720), 제 1 댐퍼(731), 제 2 댐퍼(732), 제 3 댐퍼(733), 제 4 댐퍼(734) 및 피드백댐퍼(640)를 포함할 수 있다. 농축기(710)는 도 1의 농축기(110) 또는 도 5의 농축기(510)와 동일하고 축열식 연소장치(720)는 도 1의 축열식 연소장치(120)와 동일하므로 이하 중복되는 설명은 도 1 내지 도 4의 설명으로 대체한다. 제 1 댐퍼(731), 제 2 댐퍼(732), 제 3 댐퍼(733) 및 제 4 댐퍼(734)는 도 1의 제 1 경로제어부(130)에 대응되고, 피드백댐퍼(740)는 도 1의 제 2 경로제어부(140)에 대응되며, 이하 중복되는 설명은 도 1 내지 도 4의 설명으로 대체한다.
제 1 댐퍼(731)는 농축기(710) 및 제 1 축열베드(723) 사이의 연결된 배관에 설치되고, 제 2 댐퍼(732)는 제 1 축열베드(723) 및 피드백댐퍼(740) 사이의 연결된 배관에 설치될 수 있다. 제 3 댐퍼(733)는 농축기(710) 및 제 2 축열베드(725) 사이의 연결된 배관에 설치되고, 제 4 댐퍼(734)는 제 2 축열베드(735) 및 피드백댐퍼(740) 사이의 연결된 배관에 설치될 수 있다.
제 1 댐퍼(731)는 제 1 경로(①)가 설정되어 있는 동안 농축기(710)와 제 1 축열베드(723)를 연결하고, 제 2 경로(②)가 설정되어 있는 동안 농축기(710)와 제 1 축열베드(723) 사이를 차단할 수 있다. 제 2 댐퍼(732)는 제 2 경로(②)가 설정되어 있는 동안 제 1 축열베드(723)와 피드백댐퍼(740)를 연결하고, 제 1 경로(①)가 설정되어 있는 동안 제 1 축열베드(723)와 피드백댐퍼(740) 사이를 차단할 수 있다. 제 3 댐퍼(733)는 제 2 경로(②)가 설정되어 있는 동안 농축기(710)와 제 2 축열베드(725) 사이를 연결하고, 제 1 경로(①)가 설정되어 있는 동안 농축기(710)와 제 2 축열베드(725) 사이를 차단할 수 있다. 제 4 댐퍼(734)는 제 2 경로(②)가 설정되어 있는 동안 제 2 축열베드(723)와 피드백댐퍼(740) 사이를 차단하고, 제 1 경로(①)가 설정되어 있는 동안 제 2 축열베드(723)와 피드백댐퍼(740)를 연결할 수 있다. 그리고 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치(700)은 농축기(710)로 휘발성유기화합물을 전달하기 위한 송풍기(750) 및 농축기(710)에서 제 1 내지 제 4 댐퍼(731, 732, 733, 734)로 상기 농축가스를 전달하기 위한 송풍기(760) 등이 더 포함될 수 있다.
즉, 농축기(710)에서 배출된 농축가스는 도 7에 도시된 제 1 경로(①)를 따라 제 1 축열베드(723)를 통해 연소실로 이동하여 연소되고, 연소된 연소가스는 제 2 축열베드(725)를 통해 피드백댐퍼(740)로 전달된 후 배출구로 전달될 수 있다. 이후에 제 1 경로(①)에서 제 2 경로(②)로 변경되는 제 1 구간에서 피드백댐퍼(740)는 제 1 내지 제 4 댐퍼(731, 732, 733, 734)에서 유입되는 가스를 농축기(710)로 전달할 수 있다. 이후에 제 2 경로(②)가 설정되면, 농축기(710)에서 배출된 농축가스는 도 7에 도시된 제 2 경로(②)를 따라 제 2 축열베드(725)를 통해 연소실로 이동하여 연소되고, 연소된 연소가스는 제 1 축열베드(723)를 통해 피드백댐퍼(740)로 전달된 후 배출구로 전달될 수 있다. 이후에 제 2 경로(②)에서 제 1 경로(①)로 변경되는 제 2 구간에서 피드백댐퍼(740)는 제 1 내지 제 4 댐퍼(731, 732, 733, 734)에서 유입되는 가스를 농축기(710)로 전달할 수 있다.
도 6 및 도 7과 같이 도 1의 제 1 경로제어부(130)가 복수의 댐퍼들을 포함하는 경우 복수의 댐퍼들이 시간차를 두고 동작할 수 있으므로 상기 제 1 구간 및 상기 제 2 구간을 설정함에 있어서 아래와 같이 설정할 수 있다. 즉, 복수의 댐퍼들 중 하나가 먼저 동작을 시작을 하는 경우, 상기 제 1 구간은 제 1 경로제어부(130)가 상기 제 1 경로에서 상기 제 2 경로로 변경하기 위해서 상기 복수의 댐퍼들 중 먼저 동작을 시작하는 시점부터 상기 복수의 댐퍼들이 모두 동작을 완료한 시점까지의 구간을 포함할 수 있다. 또한, 복수의 댐퍼들 중 하나가 먼저 동작을 시작을 하는 경우, 상기 제 2 구간은 제 1 경로제어부(130)가 상기 제 2 경로에서 상기 제 1 경로로 변경하기 위해서 상기 복수의 댐퍼들 중 먼저 동작을 시작하는 시점부터 상기 복수의 댐퍼들이 모두 동작을 완료한 시점까지의 구간을 포함할 수 있다.
이상에서와 같이 도면과 명세서에서 최적 실시예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (9)

  1. 휘발성유기화합물을 흡착 정화하여 정화된 공기를 외부로 배출하고, 상기 휘발성유기화합물이 정화되면서 흡착된 오염물질을 탈착시키면서 생성된 고농도의 농축가스를 배출하는 농축기;
    상기 농축기에서 배출된 상기 농축가스를 연소시켜 정화된 연소가스를 배출구를 통해 외부로 배출하고, 상기 연소가스가 이동하는 통로인 제 1 축열베드 및 제 2 축열베드를 포함하는 축열식 연소장치;
    상기 농축기에서 배출된 농축가스가 상기 제 1 축열베드로 전달되고 상기 제 2 축열베드에서 상기 연소가스가 배출되도록 제 1 경로를 설정하거나, 상기 농축기에서 배출된 농축가스가 상기 제 2 축열베드로 전달되고 상기 제 1 축열베드에서 상기 연소가스가 배출되도록 제 2 경로를 설정하는 제 1 경로제어부; 및
    상기 제 1 경로제어부에서 배출된 가스가 상기 배출구로 전달되거나 상기 농축기로 전달되도록 제어하는 제 2 경로제어부를 구비하고,
    상기 제 1 경로제어부는,
    상기 제 1 경로가 설정된 상태에서 제 2 경로로 변경하거나 상기 제 2 경로가 설정된 상태에서 상기 제 1 경로로 변경하고,
    상기 제 2 경로제어부는,
    상기 제 1 경로제어부가 상기 제 1 경로에서 상기 제 2 경로로 변경하는 제 1 구간 또는 상기 제 2 경로에서 상기 제 1 경로로 변경하는 제 2 구간동안 상기 제 1 경로제어부에서 배출되는 가스가 상기 농축기로 전달되도록 제어하고, 상기 제 1 경로제어부가 상기 제 1 경로 또는 상기 제 2 경로로 설정되어 있는 제 3 구간동안 상기 연소가스가 상기 배출구로 전달되도록 제어하는 것을 특징으로 하는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치.
  2. 제1항에 있어서, 상기 제 1 경로제어부는,
    상기 제 1 경로 또는 상기 제 2 경로를 설정하도록 상기 농축가스 또는 상기 연소가스의 이동방향을 변경하는 적어도 하나의 댐퍼를 포함하고,
    상기 제 1 구간은,
    상기 제 1 경로제어부가 상기 제 1 경로에서 상기 제 2 경로로 변경하기 위해서 상기 적어도 하나의 댐퍼가 동작하는 구간을 포함하고,
    상기 제 2 구간은,
    상기 제 1 경로제어부가 상기 제 2 경로에서 상기 제 1 경로로 변경하기 위해서 상기 적어도 하나의 댐퍼가 동작하는 구간을 포함하는 것을 특징으로 하는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치.
  3. 제1항에 있어서, 상기 제 1 경로제어부는,
    상기 제 1 경로 또는 상기 제 2 경로를 설정하도록 상기 농축가스 또는 상기 연소가스의 이동방향을 변경하는 복수의 댐퍼들을 포함하고,
    상기 제 1 구간은,
    상기 복수의 댐퍼들 중 하나가 먼저 동작을 시작을 하는 경우, 상기 제 1 경로제어부가 상기 제 1 경로에서 상기 제 2 경로로 변경하기 위해서 상기 복수의 댐퍼들 중 먼저 동작을 시작하는 시점부터 상기 복수의 댐퍼들이 모두 동작을 완료한 시점까지의 구간을 포함하고,
    상기 제 2 구간은,
    상기 복수의 댐퍼들 중 하나가 먼저 동작을 시작을 하는 경우, 상기 제 1 경로제어부가 상기 제 2 경로에서 상기 제 1 경로로 변경하기 위해서 상기 복수의 댐퍼들 중 먼저 동작을 시작하는 시점부터 상기 복수의 댐퍼들이 모두 동작을 완료한 시점까지의 구간을 포함하는 것을 특징으로 하는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치.
  4. 제1항에 있어서, 상기 제 1 구간은,
    상기 제 1 경로제어부가 상기 제 1 경로에서 상기 제 2 경로로 변경을 하기 위해 동작하기 시작하는 시점보다 이전 시점인 제 1 시점부터 상기 제 1 경로제어부가 상기 제 1 경로에서 상기 제 2 경로로 변경을 완료한 시점보다 이후 시점인 제 2 시점까지의 구간이고,
    상기 제 2 구간은,
    상기 제 1 경로제어부가 상기 제 2 경로에서 상기 제 1 경로로 변경을 하기 위해 동작하기 시작하는 시점보다 이전 시점인 제 3 시점부터 상기 제 1 경로제어부가 상기 제 2 경로에서 상기 제 1 경로로 변경을 완료한 시점보다 이후 시점인 제 4 시점까지의 구간인 것을 특징으로 하는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치.
  5. 제1항에 있어서, 상기 제 2 경로제어부는,
    상기 제 1 경로제어부에서 배출된 가스가 배출구로 전달되거나 상기 농축기로 전달되도록 제어하는 피드백댐퍼를 포함하고,
    상기 제 1 경로 또는 상기 제 2 경로가 설정되어 있는 동안 상기 제 1 경로제어부에서 배출된 가스가 배출구로 전달되도록 상기 피드백댐퍼를 제어하고, 상기 제 1 경로에서 상기 제 2 경로로 변경되는 상기 제 1 구간 또는 상기 제 2 경로에서 상기 제 1 경로로 변경되는 상기 제 2 구간 동안 상기 제 1 경로제어부에서 배출된 가스가 상기 농축기로 전달되도록 상기 피드백댐퍼를 제어하는 것을 특징으로 하는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치.
  6. 제1항에 있어서, 상기 제 1 경로제어부는,
    상기 농축기, 상기 축열식연소장치 및 상기 제 2 경로제어부 사이의 연결된 배관에 설치되는 댐퍼를 포함하고,
    상기 댐퍼는,
    상기 제 1 경로가 설정되어 있는 동안 상기 농축기와 상기 제 1 축열베드 사이를 연결하고 상기 제 2 축열베드와 상기 제 2 경로제어부 사이를 연결하며, 상기 제 2 경로가 설정되어 있는 동안 농축기와 상기 제 2 축열베드 사이를 연결하고 상기 제 1 축열베드와 상기 제 2 경로제어부 사이를 연결하는 것을 특징으로 하는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치.
  7. 제1항에 있어서, 상기 제 1 경로제어부는,
    상기 농축기, 상기 제 1 축열베드 및 상기 제 2 경로제어부 사이의 연결된 배관에 설치되는 제 1 댐퍼; 및
    상기 농축기, 상기 제 2 축열베드 및 상기 제 2 경로제어부 사이의 연결된 배관에 설치되는 제 2 댐퍼를 포함하고,
    상기 제 1 댐퍼는,
    상기 제 1 경로가 설정되어 있는 동안 상기 농축기와 상기 제 1 축열베드 사이를 연결하고, 상기 제 2 경로가 설정되어 있는 동안 상기 제 1 축열베드와 상기 제 2 경로제어부를 연결하며,
    상기 제 2 댐퍼는,
    상기 제 2 경로가 설정되어 있는 동안 상기 농축기와 상기 제 2 축열베드 사이를 연결하고, 상기 제 1 경로가 설정되어 있는 동안 상기 제 2 축열베드와 상기 제 2 경로제어부를 연결하는 것을 특징으로 하는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치.
  8. 제1항에 있어서, 상기 제 1 경로제어부는,
    상기 농축기 및 상기 제 1 축열베드 사이의 연결된 배관에 설치되는 제 1 댐퍼;
    상기 제 1 축열베드 및 상기 제 2 경로제어부 사이의 연결된 배관에 설치되는 제 2 댐퍼;
    상기 농축기 및 상기 제 2 축열베드 사이의 연결된 배관에 설치되는 제 3 댐퍼; 및
    상기 제 2 축열베드 및 상기 제 2 경로제어부 사이의 연결된 배관에 설치되는 제 4 댐퍼를 포함하고,
    상기 제 1 댐퍼는,
    상기 제 1 경로가 설정되어 있는 동안 상기 농축기와 상기 제 1 축열베드 사이를 연결하고, 상기 제 2 경로가 설정되어 있는 동안 상기 농축기와 상기 제 1 축열베드 사이를 차단하며,
    상기 제 2 댐퍼는,
    상기 제 1 경로가 설정되어 있는 동안 상기 제 1 축열베드와 상기 제 2 경로제어부 사이를 차단하고, 상기 제 2 경로가 설정되어 있는 동안 상기 제 1 축열베드와 상기 제 2 경로제어부 사이를 연결하며,
    상기 제 3 댐퍼는,
    상기 제 2 경로가 설정되어 있는 동안 상기 농축기와 상기 제 2 축열베드 사이를 연결하고, 상기 제 1 경로가 설정되어 있는 동안 상기 농축기와 상기 제 2 축열베드 사이를 차단하며,
    상기 제 4 댐퍼는,
    상기 제 2 경로가 설정되어 있는 동안 상기 제 2 축열베드와 상기 제 2 경로제어부 사이를 차단하고, 상기 제 1 경로가 설정되어 있는 동안 상기 제 2 축열베드와 상기 제 2 경로제어부 사이를 연결하는 것을 특징으로 하는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치.
  9. 제1항에 있어서, 상기 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치는,
    상기 제 2 경로제어부와 상기 농축기 사이에 결합되고, 상기 제 2 경로제어부에서 상기 농축기로 전달하는 가스가 저장되는 저장공간을 포함하며, 상기 저장공간에 저장되어 있는 가스 중 일부 또는 전부를 상기 농축기로 전달하는 챔버를 더 구비하는 것을 특징으로 하는 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치.
PCT/KR2022/020436 2022-01-07 2022-12-15 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치 WO2023132513A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0002747 2022-01-07
KR1020220002747A KR102436711B1 (ko) 2022-01-07 2022-01-07 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치

Publications (1)

Publication Number Publication Date
WO2023132513A1 true WO2023132513A1 (ko) 2023-07-13

Family

ID=83113283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020436 WO2023132513A1 (ko) 2022-01-07 2022-12-15 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치

Country Status (2)

Country Link
KR (1) KR102436711B1 (ko)
WO (1) WO2023132513A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102436711B1 (ko) * 2022-01-07 2022-08-26 주식회사 이앤비코리아 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144416A (ja) * 1997-07-28 1999-02-16 Trinity Ind Corp 蓄熱型排ガス処理装置及びその運転方法
US5941073A (en) * 1997-04-22 1999-08-24 Schedler; Johannes Method for adsorptive waste gas cleaning
KR100222778B1 (ko) * 1997-02-24 1999-10-01 오석인 2상형 열재생식 소각방법 및 장치
JP6191832B2 (ja) * 2012-08-29 2017-09-06 新東工業株式会社 排ガス浄化設備及びその運転制御方法
KR20200112423A (ko) * 2019-03-22 2020-10-05 주식회사 신성엔지니어링 연소 배가스를 이용한 재생 공기 공급 시스템 및 방법
KR102436711B1 (ko) * 2022-01-07 2022-08-26 주식회사 이앤비코리아 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100222778B1 (ko) * 1997-02-24 1999-10-01 오석인 2상형 열재생식 소각방법 및 장치
US5941073A (en) * 1997-04-22 1999-08-24 Schedler; Johannes Method for adsorptive waste gas cleaning
JPH1144416A (ja) * 1997-07-28 1999-02-16 Trinity Ind Corp 蓄熱型排ガス処理装置及びその運転方法
JP6191832B2 (ja) * 2012-08-29 2017-09-06 新東工業株式会社 排ガス浄化設備及びその運転制御方法
KR20200112423A (ko) * 2019-03-22 2020-10-05 주식회사 신성엔지니어링 연소 배가스를 이용한 재생 공기 공급 시스템 및 방법
KR102436711B1 (ko) * 2022-01-07 2022-08-26 주식회사 이앤비코리아 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치

Also Published As

Publication number Publication date
KR102436711B1 (ko) 2022-08-26

Similar Documents

Publication Publication Date Title
WO2015111821A1 (ko) 마이크로웨이브를 이용한 휘발성 유기화합물 제거시스템
WO2019066399A1 (ko) 능동적인 농축률 제어수단을 구비한 농축 촉매 연소 시스템
WO2023132513A1 (ko) 퍼지 수단이 구비된 농축 2-베드 축열식 연소장치
CN104487153B (zh) 废气净化设备及其运转控制方法
CN106196100A (zh) 一种节能型有机废气处理系统
CN105618019A (zh) 包括余热利用的活性炭热解析方法及其装置
EP0603178A1 (en) Apparatus and process for removing organic compounds from a gas stream
CN107899415B (zh) 一种焦炉烟气宽负荷脱硝装置
WO2014051221A1 (ko) 이산화탄소 포집장치
WO2018062968A1 (ko) 전기 연소기 및 에너지 재활용 수단을 구비한 실내 농축 연소 시스템
CN108930968A (zh) 一种平衡RTO/RCO进口废气VOCs浓度的方法
CN110585855A (zh) 移动式废气处理装置
JP2007181788A (ja) 排ガス浄化設備における運転制御方法および排ガス浄化設備
CN105444189B (zh) 降低蓄热式焚化炉的尾气浓度凸波的挥发性有机物焚化设备及方法
CN206176412U (zh) 节能型有机废气余热利用装置
WO2023210923A1 (ko) 소각장폐열을 이용하여 활성탄허니컴필터를 재생 처리하기 위한 휘발성유기화합물 처리시스템
WO2023105507A4 (ko) 이산화탄소 포집장치 및 포집공정
CN216171156U (zh) 一种节能环保的rto应急废气处理装置
CN206176411U (zh) 一种节能型有机废气处理装置
CN213492841U (zh) 一种基于分子筛吸附的含苯乙烯废气处理系统
CN113713764A (zh) 一种节能型活性炭脱附处理系统
CN113856400A (zh) 一种节能环保的rto应急废气处理装置及处理方法
CN209857087U (zh) 一种高效脱附催化燃烧设备
CN215823090U (zh) 一种节能型活性炭脱附处理系统
KR20240118494A (ko) 서브축열부를 구비하는 축열식 연소산화장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE