WO2015080324A1 - 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템 및 방법 - Google Patents

분리수를 활용한 에너지 절감형 산성 가스 포집 시스템 및 방법 Download PDF

Info

Publication number
WO2015080324A1
WO2015080324A1 PCT/KR2013/011324 KR2013011324W WO2015080324A1 WO 2015080324 A1 WO2015080324 A1 WO 2015080324A1 KR 2013011324 W KR2013011324 W KR 2013011324W WO 2015080324 A1 WO2015080324 A1 WO 2015080324A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
supplying
water
absorbent
tower
Prior art date
Application number
PCT/KR2013/011324
Other languages
English (en)
French (fr)
Inventor
백일현
유정균
박기태
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to US15/030,559 priority Critical patent/US9579599B2/en
Publication of WO2015080324A1 publication Critical patent/WO2015080324A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/65Employing advanced heat integration, e.g. Pinch technology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1468Removing hydrogen sulfide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an acid gas collection system, and more particularly, to a system capable of saving energy by circulating separated water separated in a water separator during carbon dioxide collection.
  • Carbon Dioxide Capture & Storage (CCS) technology isolates carbon dioxide from power plants, steel and cement plants that emit large amounts of carbon dioxide from fossil fuels.
  • carbon dioxide capture technology is a core technology that accounts for 70 to 80% of the total cost. It is mainly a post-combustion technology, a pre-combustion technology, and an oxygen-fuel combustion technology. combustion technology) (CO2 capture and storage technology, Park Sang-do, physics and advanced technology, June, 2009).
  • Post-combustion technology is a technology that absorbs or reacts carbon dioxide (CO 2 ) from fossil fuel combustion by absorbing or reacting it in various solvents. Pre-combustion technology removes carbon dioxide before combustion. By separating and pre-processing through gasification of fossil fuels such as coal and converting them into CO 2 and hydrogen, the carbon dioxide (CO 2 ) is separated or mixed in a carbon dioxide (CO 2 ) / hydrogen (H 2 ) mixed gas. It is a technology that captures carbon dioxide (CO 2 ) in exhaust gas by burning gas.
  • oxygen-fuel combustion technology is a technology that facilitates the capture of carbon dioxide (CO 2 ) by burning only using oxygen instead of air when burning fossil fuel. Post-combustion capture technology is currently the most widely used.
  • the representative process of the wet absorption technology is a capture process using an amine-based absorbent, which is a technology that has secured the technical reliability that has been applied in the reforming process of the petrochemical process, but in order to be applied to the flue gas containing various pollutants, the performance of the absorbent is improved. This is necessary.
  • the process using an amine-based absorbent is a chemical absorption process using an alkanolamine in which an amine and a hydroxyl group are bonded to an alkyl group as an absorbent, and a regeneration tower that selectively absorbs carbon dioxide from an inflow gas and an absorber that absorbs carbon dioxide. (Heating regeneration tower) and auxiliary facilities.
  • Monoethanol amine the most widely used amine absorbent, provides the cause of acid-base neutralization reactions with acidic carbon dioxide in aqueous solution.
  • bicarbonate is decomposed and regenerated at about 110 to 130 ° C.
  • the amines used as absorbents show a lot of differences in absorption capacity and absorption rate of carbon dioxide according to their structural characteristics.
  • the regeneration process proceeds at about 110 to 130 ° C., so that a part of the absorbent is vaporized and discharged together with carbon dioxide in the regeneration process.
  • a preheating technique that can reduce the amount of heat required to reprocess the process.
  • Korean Patent No. 0983677 relates to an acid gas absorption separation system and method, and discloses a method of utilizing steam generated in a steam generation boiler as a heat source for regenerating an absorbent.
  • this is a limitation of using the generated steam only for regenerating the absorbent.
  • the present invention is to provide an acid gas collection system and acid gas collection method that can reduce the energy consumption by utilizing the separated water generated in the system itself to collect the acid gas for heat exchange of the acid gas collection system.
  • the present inventors utilize the separation water separated by passing through the water separator before the combustion exhaust gas is supplied to the absorption tower, the cooling of the exhaust gas, the washing tower, the absorbent solution and the lean solution in the system of the present invention or
  • the present invention was completed by discovering that energy efficiency can be maximized through preheating.
  • the present invention is an acid gas collection system having an absorption tower that absorbs acid gas using an absorbent and a regeneration tower that separates a processing gas from the absorbent, wherein the collection system absorbs exhaust gas containing acid gas.
  • An exhaust gas supply line which is supplied to the tower and directed to the absorption tower via a first heat exchanger and a water separator before injection of the absorption tower;
  • An absorbent supply line for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower and passing through the second heat exchanger to the regeneration tower;
  • a process gas line for supplying a process gas discharged from the regeneration tower to a condenser, wherein the process gas passes through a third heat exchanger before reaching the condenser;
  • a separation water supply line utilizing the separation water separated from the water separator, wherein the separation water supply line comprises a supply line for directing the separation water to a fourth heat exchanger for heat exchange
  • the present invention also provides an acid gas collection system having an absorption tower for absorbing acid gas using an absorbent and a regeneration tower for separating a processing gas from the absorbent, wherein the collection system absorbs exhaust gas containing acid gas.
  • An exhaust gas supply line supplied to the absorber and directed to the absorption tower via a first heat exchanger and a water separator before injection of the absorption tower;
  • An absorbent supply line for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower and passing through the second heat exchanger to the regeneration tower;
  • a process gas line for supplying a process gas discharged from the regeneration tower to a condenser, wherein the process gas passes through a third heat exchanger before reaching the condenser;
  • a separation water supply line utilizing the separation water separated from the water separator, wherein the separation water supply line directs the separation water to the cleaning tower for use as cooling water of the cleaning tower;
  • the present invention also provides an acid gas collection system having an absorption tower for absorbing acid gas using an absorbent and a regeneration tower for separating a processing gas from the absorbent, wherein the collection system absorbs exhaust gas containing acid gas.
  • An exhaust gas supply line supplied to the absorber and directed to the absorption tower via a first heat exchanger and a water separator before injection of the absorption tower;
  • An absorbent supply line for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower and passing through the second heat exchanger to the regeneration tower;
  • a process gas line for supplying a process gas discharged from the regeneration tower to a condenser, wherein the process gas passes through a third heat exchanger before reaching the condenser;
  • a separation water supply line utilizing the separation water separated from the water separator, wherein the separation water supply line is a line in which condensate generated through the condenser is integrated with the
  • the present invention also provides an acid gas collection system having an absorption tower for absorbing acid gas using an absorbent and a regeneration tower for separating a processing gas from the absorbent, wherein the collection system absorbs exhaust gas containing acid gas.
  • An exhaust gas supply line supplied to the absorber and directed to the absorption tower via a first heat exchanger and a water separator before injection of the absorption tower;
  • An absorbent supply line for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower and passing through the second heat exchanger to the regeneration tower;
  • a process gas line for supplying a process gas discharged from the regeneration tower to a condenser, wherein the process gas passes through a third heat exchanger before reaching the condenser;
  • a separation water supply line utilizing the separation water separated from the water separator, wherein the separation water supply line is a line in which condensate generated through the condenser is integrated with the
  • the present invention also provides an acid gas collection system having an absorption tower for absorbing acid gas using an absorbent and a regeneration tower for separating a processing gas from the absorbent, wherein the collection system absorbs exhaust gas containing acid gas.
  • An exhaust gas supply line supplied to the absorber and directed to the absorption tower via a first heat exchanger and a water separator before injection of the absorption tower;
  • An absorbent supply line for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower and passing through the second heat exchanger to the regeneration tower;
  • a process gas line for supplying a process gas discharged from the regeneration tower to a condenser, wherein the process gas passes through a third heat exchanger before reaching the condenser;
  • a condensate supply line utilizing condensate generated through the condenser;
  • a separation water supply line utilizing separation water separated from the water separator, wherein the separation water supply line supplies the separation water to a first heat exchanger for cooling the combustion exhaust gas; And a
  • the present invention also provides an energy saving acid gas collection system utilizing separation water, wherein the operating temperature of the condenser is 30 to 40 ° C.
  • CO 2 carbon dioxide
  • CH 4 methane
  • H 2 S hydrogen sulfide
  • COS carbonyl sulfide
  • R mercaptan
  • the present invention also provides an acid gas collection method comprising an absorption tower that absorbs an acid gas using an absorbent and a regeneration tower that separates the processing gas from the absorbent, wherein the collection method absorbs exhaust gas containing an acid gas. Feeding the tower to absorb the acidic gas into the absorbent; Supplying an absorbent absorbing the acidic gas emitted from the absorption tower to the regeneration tower to separate the acidic gas from the absorbent; Supplying the process gas from the regeneration tower to a condenser to separate condensate from the process gas; And supplying separation water to a separation water supply line utilizing the separation water generated through the water separator, wherein supplying the separation water comprises supplying the separation water to a fourth heat exchanger to recover heat from the lean solution; Recovering heat of the processing gas by supplying the separation water recovering heat from the lean solution to a fifth heat exchanger; And it provides an energy-saving acid gas collection method using the separated water, comprising the step of supplying the separated water recovering the heat of the process gas to the upper end of
  • the present invention also provides an acid gas collection method comprising an absorption tower that absorbs an acid gas using an absorbent and a regeneration tower that separates the processing gas from the absorbent, wherein the collection method absorbs exhaust gas containing an acid gas. Feeding the tower to absorb the acidic gas into the absorbent; Supplying an absorbent absorbing the acidic gas emitted from the absorption tower to the regeneration tower to separate the acidic gas from the absorbent; Supplying the process gas from the regeneration tower to a condenser to separate condensate from the process gas; And supplying the separation water to a separation water supply line utilizing the separation water generated through the water separator, wherein supplying the separation water cools the washing tower by supplying the separation water to the washing tower.
  • Recovering heat of the processing gas by supplying the separation water heat-exchanged in the washing tower to a fifth heat exchanger; And it provides an energy-saving acid gas collection method using the separated water, comprising the step of supplying the separated water recovering the heat of the process gas to the upper end of the regeneration tower.
  • the present invention also provides an acid gas collection method comprising an absorption tower that absorbs an acid gas using an absorbent and a regeneration tower that separates the processing gas from the absorbent, wherein the collection method absorbs exhaust gas containing an acid gas. Feeding the tower to absorb the acidic gas into the absorbent; Supplying an absorbent absorbing the acidic gas emitted from the absorption tower to the regeneration tower to separate the acidic gas from the absorbent; Supplying the process gas from the regeneration tower to a condenser to separate condensate from the process gas; And supplying the separation water to a separation water supply line utilizing the separation water generated through the water separator, and supplying the separation water is supplied to the fourth heat exchanger along with the condensation water generated through the separation water and the condenser. Recovering heat from the; Supplying the separated and condensed water, which has recovered heat from the lean solution, to a fifth heat exchanger to recover heat of the treated gas; And
  • It provides an energy-saving acid gas collection method using the separated water, comprising the step of supplying the separated water and condensed water to recover the heat of the process gas to the upper end of the regeneration tower.
  • the present invention also provides an acid gas collection method comprising an absorption tower that absorbs an acid gas using an absorbent and a regeneration tower that separates the processing gas from the absorbent, wherein the collection method absorbs exhaust gas containing an acid gas. Feeding the tower to absorb the acidic gas into the absorbent; Supplying an absorbent absorbing the acidic gas emitted from the absorption tower to the regeneration tower to separate the acidic gas from the absorbent; Supplying the process gas from the regeneration tower to a condenser to separate condensate from the process gas; And supplying separation water to a separation water supply line using the separation water generated through the water separator, and supplying the separation water is supplied to the sixth heat exchanger along with the condensate generated through the separation water and the condenser.
  • the present invention also provides an acid gas collection method comprising an absorption tower that absorbs an acid gas using an absorbent and a regeneration tower that separates the processing gas from the absorbent, wherein the collection method absorbs exhaust gas containing an acid gas. Feeding the tower to absorb the acidic gas into the absorbent; Supplying an absorbent absorbing the acidic gas emitted from the absorption tower to the regeneration tower to separate the acidic gas from the absorbent; Supplying the process gas from the regeneration tower to a condenser to separate condensate from the process gas; And supplying the separation water to a separation water supply line utilizing the separation water generated through the water separator, wherein supplying the separation water cools the combustion exhaust gas by supplying the separation water to a first heat exchanger; It provides an energy-saving acid gas collection method using the separated water comprising the step of directly injecting the separated water recovering the heat of the exhaust gas into the absorbent solution absorbed the acidic gas in the absorption tower.
  • the present invention also provides an energy saving type acid gas collection method using separated water, wherein the operating temperature of the condenser is 30 to 40 ° C.
  • An energy saving acid gas collection method is provided.
  • the system and method of the present invention have the effect of lowering the amount of heat required for reboiling by preheating the condensed water and then introducing it into a regeneration tower by heat-exchanging the low temperature separated water separated from the water separator with a high temperature treatment gas.
  • a regeneration tower by heat-exchanging the low temperature separated water separated from the water separator with a high temperature treatment gas.
  • by utilizing the low-temperature separation water in the washing tower and lean solution cooling it is easy to save energy in the absorbent regeneration process.
  • FIG 2 shows an acid gas collection system according to an embodiment of the present invention.
  • FIG 3 shows an acidic gas collection system according to another embodiment of the present invention.
  • FIG 4 shows an acidic gas collection system according to another embodiment of the present invention.
  • FIG 5 shows an acidic gas collection system according to another embodiment of the present invention.
  • FIG 6 shows an acidic gas collection system according to another embodiment of the present invention.
  • the lines carrying the absorbent, the process gas or the condensate for exchanging heat in the heat exchanger are expressed as "intersecting" with each other. That is, the two fluid transfer lines exchange heat by "crossing" each other in a heat exchanger.
  • the exhaust gas containing acidic gas such as carbon dioxide is supplied to the absorption tower 10 filled with a filler having a large surface area so that the contact between the gas and the liquid is smooth, and the solution of the sprayed state from the top of the absorption tower Contact with absorbent at atmospheric conditions.
  • the contact proceeds in a temperature range of about 40 to 50 ° C. to absorb acidic gas such as carbon dioxide in the exhaust gas into the absorption solution.
  • the absorbent released from the absorption tower that is, the absorbent absorbed with acidic gas containing carbon dioxide is sent to the regeneration tower 20 and heat treated at a temperature range of about 120 ° C. Emitted to the top, the regenerated absorbent is subjected to a circulating process that is fed back to the absorption tower via the reboiler (40).
  • the treatment gas discharged from the regeneration tower is supplied to the condenser 50 through the treatment gas discharge line 31 so that water is condensed in the condenser, and acid gases such as steam and carbon dioxide, which are not condensed, are obtained as final products.
  • the condensed water is recycled into the regeneration tower along the condensed water supply line 51, and this recirculation has an effect of increasing the separation efficiency of the regeneration tower, but requires reboiler heat duty as the condensed water at low temperature is introduced. It is a factor to increase.
  • the regenerated absorbent travels along the absorbent recycle line to preheat the absorbent absorbing the acidic gas sent to the regeneration tower through the second heat exchanger 12 and is fed back to the absorption tower to absorb the new acidic gas.
  • the absorbent supply line 41 regenerated in the second heat exchanger and the absorbent supply line 21 for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower cross each other.
  • An acid gas collection system having an absorption tower 20 that absorbs an acid gas by using an absorbent and a regeneration tower 30 that separates a processing gas from the absorber, wherein the collection system absorbs exhaust gas including an acid gas.
  • An exhaust gas supply line 61 which is supplied to the tower and is directed to the absorption tower via the first heat exchanger 11 and the water separator 60 before injection of the absorption tower;
  • An absorbent supply line (21) for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower and directed to the regeneration tower via a second heat exchanger (12);
  • a separation water supply line 62 utilizing the separation water separated from the water separator, wherein the separation water supply line includes a supply line for directing the separation water to the fourth heat exchanger 14 for heat exchange with the lean solution;
  • a supply line for directing the separated water heat exchanged in the fourth heat exchanger to the fifth heat exchanger 15 for heat recovery of the process gas discharged from the regeneration
  • the lean solution is an amine solution (absorbent) in which an absorbent absorbing acid gas in an acid gas collection system is supplied to a regeneration tower, and the acid gas is removed from the regeneration tower and regenerated.
  • the regenerated absorbent is fed to the absorption tower via reboiler 40 to absorb the acidic gas again.
  • the separation water is supplied to the separation water supply line to utilize the cooling water.
  • the separated water is separated water separated through a water separator before injection of flue gas into the absorption tower, and used as cooling water for cooling the lean solution through heat exchange in a fourth heat exchanger.
  • the separated water recovering the heat of the lean solution is supplied to the fifth heat exchanger to recover the heat of the processing gas of the high temperature (90 to 100 °C) generated in the regeneration tower, and then injected into the top of the regeneration tower.
  • the introduction of conventional cold condensate into the regeneration tower is a factor that increases the reboiler heat duty of the reboiler. Therefore, the acid gas collection system process illustrated in FIG. 2 has the effect of lowering the required amount of heat for reboiling since heat is recovered from the lean solution and the processing gas and the preheated separated water is injected together with the cold condensate.
  • by cooling the processing gas it is possible to reduce the cooling load of the condenser located above the regeneration tower.
  • the operating temperature of the condenser is 30 to 40 ° C.
  • FIG. 3 shows an acidic gas collection system according to another embodiment of the present invention.
  • An acid gas collection system having an absorption tower 20 that absorbs an acid gas by using an absorbent and a regeneration tower 30 that separates a processing gas from the absorber, wherein the collection system absorbs exhaust gas including an acid gas.
  • An exhaust gas supply line 61 which is supplied to the tower and is directed to the absorption tower via the first heat exchanger 11 and the water separator 60 before injection of the absorption tower;
  • An absorbent supply line (21) for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower and directed to the regeneration tower via a second heat exchanger (12);
  • a separation water supply line 62 utilizing the separation water separated from the water separator, wherein the separation water supply line is directed to the cleaning tower for use as cooling water of the cleaning tower 26;
  • the separation water may be used as the cooling water of the scrubber to cool the exhaust gas discharged from the absorption tower. Separation water used as the cooling water of the scrubber tower is supplied to the fifth heat exchanger to recover heat by heat exchange with the process gas generated in the regeneration tower and then injected into the upper part of the regeneration tower.
  • the introduction of the conventional cold condensate into the regeneration tower is a factor of increasing the reboiler heat duty of the reboiler 40. Therefore, the acid gas collection system process illustrated in FIG.
  • the operating temperature of the condenser is 30 to 40 ° C.
  • An acid gas collection system having an absorption tower 20 that absorbs an acid gas by using an absorbent and a regeneration tower 30 that separates a processing gas from the absorber, wherein the collection system absorbs exhaust gas including an acid gas.
  • An exhaust gas supply line 61 which is supplied to the tower and is directed to the absorption tower via the first heat exchanger 11 and the water separator 60 before injection of the absorption tower;
  • An absorbent supply line (21) for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower and directed to the regeneration tower via a second heat exchanger (12);
  • a process gas line for supplying a process gas discharged from the regeneration tower to a condenser 50, wherein the process gas passes through a third heat exchanger 13 before reaching the condenser;
  • a separation water supply line 62 utilizing the separation water separated from the water separator, wherein the separation water supply line includes a line 71 integrating condensate generated through the condenser with the separation water;
  • a feed line directing the integrated separated and condensed water to a fourth heat exchanger (14) for heat exchange with the lean solution;
  • a supply line for directing
  • the system of FIG. 4 is a heat integration process using both separation water and condensate simultaneously, integrating the separation water generated in the water separator and the condensate generated in the condenser through the separation water supply line and the condensation water supply line, respectively, and then supplying to the fourth heat exchanger and simultaneously lean solution.
  • the separated water and the condensed water that recovers the heat of the whitening solution are supplied to a fifth heat exchanger, and the heat is recovered by heat exchange with a high temperature (90 to 100 ° C.) process gas generated in the regeneration tower and then injected into the upper part of the regeneration tower.
  • the acidic gas collection system process shown in FIG. 2 has the effect of lowering the required amount of reboiling heat by recovering heat from the lean solution and the processing gas and injecting the preheated separated and condensed water together.
  • by cooling the processing gas it is possible to reduce the cooling load of the condenser located above the regeneration tower.
  • the operating temperature of the condenser is 30 to 40 ° C.
  • An acid gas collection system having an absorption tower 20 that absorbs an acid gas by using an absorbent and a regeneration tower 30 that separates a processing gas from the absorber, wherein the collection system absorbs exhaust gas including an acid gas.
  • An exhaust gas supply line 61 which is supplied to the tower and is directed to the absorption tower via the first heat exchanger 11 and the water separator 60 before injection of the absorption tower;
  • An absorbent supply line (21) for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower and directed to the regeneration tower via a second heat exchanger (12);
  • a process gas line for supplying a process gas discharged from the regeneration tower to a condenser 50, wherein the process gas passes through a third heat exchanger 13 before reaching the condenser;
  • a separation water supply line 62 utilizing the separation water separated from the water separator, wherein the separation water supply line includes a line 71 integrating condensate generated through the condenser with the separation water;
  • a feed line passing through the sixth heat exchanger 16 for using the integrated separated and condensed water as cooling water of the exhaust gas;
  • the system of FIG. 5 is a heat integration process using both the separating water and the condensate at the same time to supply the separation water generated in the water separator and the condensate generated in the condenser to the sixth heat exchanger through the separation water supply line and the condensate water supply line, respectively, and the exhaust gas discharged from the absorption tower To use as coolant. It is supplied to the fifth heat exchanger to recover heat by heat exchange with a high temperature (90 to 100 ° C.) process gas generated in the regeneration tower, and then injected into the top of the regeneration tower.
  • the introduction of the conventional cold condensate into the regeneration tower is a factor of increasing the reboiler heat duty of the reboiler 40.
  • the acidic gas collection system process shown in FIG. 2 has the effect of lowering the required amount of reboiling heat by recovering heat from the lean solution and the processing gas and injecting the preheated separated and condensed water together.
  • the processing gas it is possible to reduce the cooling load of the condenser located above the regeneration tower.
  • the operating temperature of the condenser is 30 to 40 ° C.
  • An acid gas collection system having an absorption tower 20 that absorbs an acid gas by using an absorbent and a regeneration tower 30 that separates a processing gas from the absorber, wherein the collection system absorbs exhaust gas including an acid gas.
  • An exhaust gas supply line 61 which is supplied to the tower and is directed to the absorption tower via the first heat exchanger 11 and the water separator 60 before injection of the absorption tower;
  • An absorbent supply line (21) for supplying the absorbent absorbing the acidic gas in the absorption tower to the regeneration tower and directed to the regeneration tower via a second heat exchanger (12);
  • a process gas line for supplying a process gas discharged from the regeneration tower to a condenser 50, wherein the process gas passes through a third heat exchanger 13 before reaching the condenser;
  • a separation water supply line 62 utilizing the separation water separated from the water separator, wherein the separation water supply line supplies the separation water to the first heat exchanger 11 to cool the combustion exhaust gas.
  • the acid gas supplied to the exhaust gas supply line can be cooled, and the separated water recovered from the acid gas is directly injected into the absorbent solution absorbing the acid gas emitted from the absorption tower.
  • the absorbent solution preheated by the separated water is preheated to a high temperature (100 ° C.) while crossing the lean solution (100 to 120 ° C.) regenerated in the second heat exchanger and then injected into the regeneration tower.
  • the operating temperature of the condenser is 30 to 40 ° C.
  • an acid gas collection method having an absorption tower that absorbs an acid gas using an absorbent and a regeneration tower that separates a processing gas from the absorbent, wherein the collection method is an exhaust gas containing an acid gas.
  • an acid gas collection method includes an absorption tower that absorbs acid gas using an absorbent and a regeneration tower that separates a processing gas from the absorber, wherein the collection method includes an exhaust gas containing acid gas.
  • Recovering heat of the processing gas by supplying the separation water heat-exchanged in the washing tower to a fifth heat exchanger; And supplying the separated water recovering the heat of the process gas to an upper part of a regeneration tower.
  • an acid gas collection method includes an absorption tower that absorbs acid gas using an absorbent and a regeneration tower that separates a processing gas from the absorber, wherein the collection method includes an exhaust gas containing acid gas.
  • an acid gas collection method includes an absorption tower that absorbs acid gas using an absorbent and a regeneration tower that separates a processing gas from the absorber, wherein the collection method includes an exhaust gas containing acid gas.
  • an acid gas collection method includes an absorption tower that absorbs acid gas using an absorbent and a regeneration tower that separates a processing gas from the absorber, wherein the collection method includes an exhaust gas containing acid gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

본 발명은 이산화탄소를 비롯한 산성 가스 포집 시스템에서, 흡수제 재생을 위한 재생탑에 제공해야 하는 열량을 감축시킬 수 있는 시스템 및 그 방법에 관한 것으로, 산성 가스를 포집하는 시스템에서 발생하는 자체의 열을 활용하여 에너지 소모를 줄일 수 있는 산성 가스 포집 시스템 및 산성 가스 포집 방법을 제공한다. 본 발명의 시스템 및 방법은 포집 공정에서 발생하는 온도가 낮은 분리수를 고온의 처리 가스와 열교환시킴으로써 처리가스 응축시, 응축기의 냉각용량을 낮추고, 저온의 분리수를 예열된 상태로 재생탑에 유입시키므로 재비기 요구 열량을 낮추는 효과가 있다. 또한, 공정 자체에서 발생하는 응축수와 열통합 공정으로 저온의 분리수를 세정탑 및 희박용액 냉각에도 활용함으로써 흡수제 재생공정의 에너지 절감에 용이하다.

Description

분리수를 활용한 에너지 절감형 산성 가스 포집 시스템 및 방법
본 발명은 산성 가스 포집 시스템에 관한 것으로, 특히 이산화탄소 포집시 물분리기에서 분리된 분리수를 순환시켜 에너지를 절감할 수 있는 시스템에 관한 것이다.
화석연료의 사용에 따라 대기 중에 이산화탄소(CO2), 메탄(CH4), 황화수소(H2S), 카보닐 설파이드(COS) 등 산성 가스 농도가 증가하여, 이로 인한 지구 온난화가 문제되고 있다. 특히 대기 중 이산화탄소는 1992년 리우 환경회의 이후 그 저감을 위한 여러 방안이 세계적으로 활발히 논의되고 있다.
이산화탄소 포집 및 저장(CCS; Carbon Dioxide Capture& Storage) 기술은 화석연료를 사용하여 이산화탄소를 대량 배출하는 발전소, 철강, 시멘트 공장 등에서 배출되는 이산화탄소를 대기로부터 격리시키는 기술이다.
CCS 기술 중 이산화탄소 포집기술은 전체 비용의 70 내지 80%를 차지하는 핵심 기술로 크게 연소 후 포집기술(Post-combustion technology), 연소 전 포집기술(Pre-combustion technology) 및 순산소 연소기술(Oxy-fuel combustion technology)로 구분(이산화탄소 포집 및 저장기술, 박상도, 물리학과 첨단기술, June, 2009)된다.
연소 후 포집기술(Post-combustion technology)은 화석연료 연소에서 나온 이산화탄소(CO2)를 여러 용매에 흡수시키거나 반응시켜 제거하는 기술이며, 연소 전 포집기술(Pre-combustion technology)은 연소 전에 이산화탄소를 분리해 내는 것으로 석탄과 같은 화석연료를 가스화 시키는 과정을 통해 사전 처리하여 CO2와 수소로 전환시킨 후에 이산화탄소(CO2)/수소(H2)혼합가스 중에서 이산화탄소(CO2)를 분리하거나 또는 혼합가스를 연소시켜서 배기가스 중의 이산화탄소(CO2)를 포집하는 기술이다. 또한, 순 산소 연소기술(Oxy-fuel combustion technology)은 화석연료를 연소시킬 때 공기 대신 산소만을 이용하여 연소시켜 이산화탄소(CO2) 포집을 용이하게 하는 기술이다. 위 기술 중 연소 후 포집기술이 현재 가장 폭넓게 사용되고 있다.
기존 이산화탄소 발생원에 적용하기 가장 용이한 기술은 연소 후 포집기술이다. 흡수제를 이용하여 이산화탄소를 흡탈착하여 이산화탄소를 분리하는 방법으로 흡수제 성능향상과 이에 따른 공정 개선 등에 초점이 맞추어져 있다. 이 기술은 요소비료 생산, 자동용접, 탄산음료 등에 필요한 이산화탄소를 공급하기 위하여 습식 흡수기술과 건식 흡착기술이 상용화되어 가동되고 있으며, 습식 흡수기술의 효율이 높은 편이다.
습식 흡수기술의 대표적인 공정은 아민계 흡수제를 사용하는 포집공정으로 석유화학공정 중 개질공정에서 적용된 바 있는 기술적 신뢰성이 확보된 기술이지만, 다양한 오염물이 포함된 연도가스에 적용하기 위해서는 흡수제 성능 및 공정 개선이 필요하다. 아민계 흡수제를 사용하는 공정은, 알킬기에 아민과 hydroxyl기가 결합된 알칸올아민을 흡수제로 이용하는 화학흡수공정으로 유입 가스로부터 이산화탄소를 선택적으로 흡수하는 흡수탑과 이산화탄소를 흡수한 흡수제를 재생하는 재생탑(가열 재생탑) 및 부대설비로 구성되어 있다.
아민계 흡수제로 가장 널리 이용되고 있는 MEA(Mono Ethanol Amine)는 아민기의 비공유 전자에 의하여 형성되는 알칼리성이 수용액에서 산성인 이산화탄소와 산-염기 중화반응의 원인을 제공하며, 생성된 염(carbamate 또는 bicarbonate)은 약 110 내지 130℃에서 분해되어 재생된다. 흡수제로 사용되는 아민들은 각각의 구조적인 특성에 따라 이산화탄소의 흡수능과 흡수 속도 등에 많은 차이를 보이고 있다.
이산화탄소를 흡수하는 공정은 약 40 내지 50℃에서 이루어지는데 비해, 재생공정은 약 110 내지 130℃에서 진행되므로 재생공정에서 흡수제의 일부가 증기화되어 이산화탄소와 함께 배출되므로 이를 냉각응축시키기 위한 냉각기 및 재생공정의 재비기의 요구 열량을 줄일 수 있는 예열 기술이 필요하다.
대한민국 등록특허 제 0983677호는 산성 가스 흡수 분리 시스템 및 방법에 관한것으로, 증기 발생용 보일러에서 발생된 증기를 흡수제 재생용 열원으로 활용하는 방법을 개시한다. 하지만 이는 발생된 증기를 흡수제 재생용으로만 활용하는 것의 한계가 있다.
따라서 재생공정을 위한 가열과 냉각에 따른 에너지의 소모가 많으므로 이를 감소시키기 위한 기술개발이 요구된다.
[선행기술문헌]
[특허문헌]
(0001) 대한민국 등록특허 0983677
[비특허문헌]
(0001) 이산화탄소 포집 및 저장기술, 박상도, 물리학과 첨단기술, June, 2009
본 발명은 산성 가스를 포집하는 시스템자체에서 발생하는 분리수를 산성 가스 포집 시스템의 열교환에 활용하여 에너지 소모를 줄일 수 있는 산성 가스 포집 시스템 및 산성 가스 포집 방법을 제공하고자 한다.
상기 과제를 해결하기 위하여, 본 발명자들은 연소 배기가스가 흡수탑으로 공급되기 전에 물분리기를 거치면서 분리되는 분리수를 활용하여, 본 발명의 시스템에서 배가스, 세정탑, 흡수제 용액 및 희박용액의 냉각 또는 예열을 통해 에너지 효율을 극대화할 수 있음을 발견하여 본 발명을 완성하였다.
한 양태에서 본 발명은 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 시스템으로, 상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기 및 물분리기를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인; 상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인; 상기 재생탑에서 방출되는 처리가스를 응축기로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기를 거치는 처리가스 라인; 상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인; 및 상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인을 포함하고, 상기 분리수 공급 라인은 분리수가 희박용액과 열교환하기 위해 제4 열교환기로 향하도록 하는 공급라인; 상기 제4 열 교환기에서 열교환된 분리수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기로 향하도록하는 공급라인; 및 상기 제5 열교환기를 거친 분리수를 상기 재생탑 상단으로 공급하는 라인을 포함하는, 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템을 제공한다.
본 발명은 또한, 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 시스템으로, 상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기 및 물분리기를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인; 상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인; 상기 재생탑에서 방출되는 처리가스를 응축기로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기를 거치는 처리가스 라인; 상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인; 및 상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인을 포함하고, 상기 분리수 공급 라인은 분리수를 세정탑의 냉각수로 사용하기 위해 세정탑으로 향하도록 하는 공급 라인; 상기 세정탑에서 열교환된 분리수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기로 향하도록하는 공급라인; 및 상기 제5 열교환기를 거친 분리수를 상기 재생탑 상단으로 공급하는 라인을 포함하는, 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템을 제공한다.
본 발명은 또한, 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 시스템으로, 상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기 및 물분리기를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인; 상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인; 상기 재생탑에서 방출되는 처리가스를 응축기로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기를 거치는 처리가스 라인; 상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인; 및 상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인을 포함하고, 상기 분리수 공급 라인은 상기 응축기를 거쳐 생성된 응축수가 상기 분리수와 통합하는 라인; 상기 통합된 분리수 및 응축수를 희박용액과 열교환하기 위해 제4 열교환기로 향하도록 하는 공급 라인; 상기 제4 열 교환기에서 열교환된 분리수 및 응축수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기로 향하도록하는 공급라인; 및 상기 제5 열교환기를 거친 분리수를 상기 재생탑 상단으로 공급하는 라인을 포함하는, 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템을 제공한다.
본 발명은 또한, 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 시스템으로, 상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기 및 물분리기를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인; 상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인; 상기 재생탑에서 방출되는 처리가스를 응축기로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기를 거치는 처리가스 라인; 상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인; 및 상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인을 포함하고, 상기 분리수 공급 라인은 상기 응축기를 거쳐 생성된 응축수가 상기 분리수와 통합하는 라인; 상기 통합된 분리수 및 응축수를 배가스의 냉각수로 사용하기 위해 제6 열교환기를 거치는 공급라인; 상기 제6 열교환기를 거친 분리수 및 응축수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기로 향하도록하는 공급라인; 및 상기 제5 열교환기를 거친 응축수를 상기 재생탑 상단으로 공급하는 라인을 포함하는, 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템을 제공한다.
본 발명은 또한, 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 시스템으로, 상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기 및 물분리기를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인; 상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인; 상기 재생탑에서 방출되는 처리가스를 응축기로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기를 거치는 처리가스 라인; 상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인; 및 상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인을 포함하고, 상기 분리수 공급 라인은 분리수를 연소 배가스를 냉각하기 위해 제1 열교환기로 공급하는 라인; 및 상기 제1 열교환기를 거친 분리수를 흡수탑에서 배출되는 산성가스 흡수용액의 열회수를 위해 직접 상기 흡수용액으로 공급되는 라인을 포함하는, 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템을 제공한다.
본 발명은 또한, 상기 응축기의 작동 온도는 30 내지 40℃인, 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템을 제공한다.
본 발명은 또한, 상기 산성 가스는, 이산화탄소(CO2), 메탄(CH4), 황화수소(H2S), 카보닐 설파이드(COS) 또는 머캡탄(RSH, R= 탄화수소)인, 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템을 제공한다.
본 발명은 또한, 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로, 상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계; 흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계; 상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및 상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고, 상기 분리수를 공급하는 단계는 상기 분리수를 제4 열교환기로 공급하여 희박용액으로부터 열을 회수하는 단계; 상기 희박용액으로부터 열을 회수한 분리수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및 상기 처리가스의 열을 회수한 분리수를 재생탑 상단부로 공급하는 단계를 포함하는, 분리수를 활용한 에너지 절감형 산성 가스 포집 방법을 제공한다.
본 발명은 또한, 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로, 상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계; 흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계; 상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및 상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고, 상기 분리수를 공급하는 단계는 분리수를 세정탑으로 공급하여 상기 세정탑을 냉각하는 단계; 상기 세정탑에서 열교환된 분리수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및 상기 처리가스의 열을 회수한 분리수를 재생탑 상단부로 공급하는 단계를 포함하는, 분리수를 활용한 에너지 절감형 산성 가스 포집 방법을 제공한다.
본 발명은 또한, 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로, 상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계; 흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계; 상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및 상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고, 상기 분리수를 공급하는 단계는 분리수 및응축기를 거쳐 생성된 응축수와 함께 제4 열교환기로 공급하여 희박용액으로부터 열을 회수하는 단계; 상기 희박용액으로부터 열을 회수한 분리수 및 응축수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및
상기 처리가스의 열을 회수한 분리수 및 응축수를 재생탑 상단부로 공급하는 단계를 포함하는, 분리수를 활용한 에너지 절감형 산성 가스 포집 방법을 제공한다.
본 발명은 또한, 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로, 상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계; 흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계; 상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및 상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고, 상기 분리수를 공급하는 단계는 분리수 및 응축기를 거쳐 생성된 응축수와 함께 제6 열교환기로 공급하여 흡수탑에서 방출되는 배가스를 냉각하는 단계; 상기 배가스로부터 열을 회수한 분리수 및 응축수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및 상기 처리가스의 열을 회수한 분리수 및 응축수를 재생탑 상단부로 공급하는 단계를 포함하는, 분리수를 활용한 에너지 절감형 산성 가스 포집 방법을 제공한다.
본 발명은 또한, 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로, 상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계; 흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계; 상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및 상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고, 상기 분리수를 공급하는 단계는 분리수를 제1 열교환기로 공급하여 연소 배가스를 냉각하는 단계; 상기 배가스의 열을 회수한 분리수를 상기 흡수탑에서 산성 가스를 흡수한 흡수제용액으로 직접 주입하는 단계를 포함하는, 분리수를 활용한 에너지 절감형 산성 가스 포집 방법을 제공한다.
본 발명은 또한, 상기 응축기의 작동 온도는 30 내지 40℃인, 분리수를 활용한 에너지 절감형 산성 가스 포집 방법을 제공한다.
본 발명은 또한, 상기 산성 가스는, 이산화탄소(CO2), 메탄(CH4),황화수소(H2S), 카보닐 설파이드(COS) 또는 머캡탄(RSH, R= 탄화수소)인, 분리수를 활용한 에너지 절감형 산성 가스 포집 방법을 제공한다.
본 발명의 시스템 및 방법은 물분리기에서 분리된 온도가 낮은 분리수를 고온의 처리 가스와 열교환시킴으로써 응축된 물을 예열시킨 후 재생탑에 유입시키므로 재비기 요구 열량을 낮추는 효과가 있다. 또한, 저온의 분리수를 세정탑 및 희박용액 냉각에도 활용함으로써 흡수제 재생공정의 에너지 절감에 용이하다.
도 1은 종래의 산성 가스 분리 회수 시스템을 나타낸다.
도 2는 본 발명의 일 실시예에 따른 산성 가스 포집 시스템을 나타낸다.
도 3는 본 발명의 또 다른 실시예에 따른 산성 가스 포집 시스템을 나타낸다.
도 4는 본 발명의 또 다른 실시예에 따른 산성 가스 포집 시스템을 나타낸다.
도 5는 본 발명의 또 다른 실시예에 따른 산성 가스 포집 시스템을 나타낸다.
도 6은 본 발명의 또 다른 실시예에 따른 산성 가스 포집 시스템을 나타낸다.
이하, 첨부된 도면을 참조하여 본 발명의 산성 가스 분리 회수 시스템 및 방법에 대하여 설명하면 다음과 같다.
본 발명의 상세한 설명에 앞서, 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 된다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
여기서, 본 발명의 실시 형태를 설명하기 위한 전체 도면에 있어서, 동일한 기능을 갖는 것은 동일한 부호를 붙이고, 그에 대한 상세한 설명은 생략하기로 한다. 본 발명에서는 열교환기에서 열을 교환하는 흡수제, 처리 가스 또는 응축수를 운송하는 라인은 서로 "교차"한다고 표현하였다. 즉, 두 유체 운송라인은 열교환기에서 서로 "교차"하여 열을 교환한다.
도 1은 종래의 산성 가스 포집 시스템을 나타낸다. 이산화탄소 등 산성 가스를 포함하고 있는 배기가스를 기체와 액체 사이의 접촉이 원활히 이루어지도록 넓은 표면적을 갖는 충전물이 충전되어 있는 흡수탑(10)에 공급하여, 상기 흡수탑의 상부에서 살포되는 용액 상태의 흡수제와 대기압 조건에서 접촉시킨다. 상기 접촉은 약 40 내지 50℃의 온도범위에서 진행되어, 배기가스 내의 이산화탄소 등 산성 가스를 흡수용액에 흡수시킨다.
상기 흡수탑에서 방출되는 흡수제, 즉 이산화탄소를 포함하는 산성 가스가 흡수된 흡수제는 재생탑(20)으로 보내져 약 120℃ 전후의 온도범위에서 가열 처리된 후 흡수제에서 유리된 처리 가스는 상기 재생탑의 상부로 방출하고, 재생된 흡수제는 재비기(Reboiler)(40)를 거쳐 흡수탑으로 다시 공급되는 순환과정을 거친다. 상기 재생탑에서 방출된 처리가스는 처리가스 배출라인(31)을 통해 응축기(50)로 공급되어 응축기에서 물은 응축되고 응축되지 않은 수증기와 이산화탄소 등 산성 가스는 최종산물로 얻어진다. 상기 응축된 물은 응축수 공급라인(51)을 따라 재생탑 안으로 재순환되고, 이러한 재순환은 재생탑의 분리효율을 높이는 효과가 있으나 저온의 응축된 물이 유입됨에 따라 재비기 요구 열량(Reboiler heat duty)을 증가시키는 요인이 된다. 상기 재생된 흡수제는 흡수제 재순환 라인을 따라 이동해 제2 열교환기(12)를 통해 상기 재생탑으로 보내지는 산성 가스를 흡수한 흡수제를 예열하고, 새로운 산성 가스를 흡수하기 위해 흡수탑에 다시 공급된다. 상기 제2 열교환기에서 재생된 흡수제 공급라인(41)과 흡수탑에서 산성 가스를 흡수한 흡수제를 재생탑으로 공급하는 흡수제 공급라인(21)이 서로 교차한다.
도 2는 본 발명의 한 구현예에 따른 산성 가스 포집 시스템을 나타낸 것이다. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑(20) 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑(30)을 구비한 산성 가스 포집 시스템으로, 상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기(11) 및 물분리기(60)를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인(61); 상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기(12)를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인(21); 상기 재생탑에서 방출되는 처리가스를 응축기(50)로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기(13)를 거치는 처리가스 라인; 상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인(51); 및 상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인(62)을 포함하고, 상기 분리수 공급 라인은 분리수가 희박용액과 열교환하기 위해 제4 열교환기(14)로 향하도록 하는 공급라인; 상기 제4 열 교환기에서 열교환된 분리수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기(15)로 향하도록하는 공급라인; 및 상기 제5 열교환기를 거친 분리수를 상기 재생탑 상부로 공급하는 라인을 포함한다.
상기 희박용액이란 산성 가스 포집 시스템 중 산성 가스를 흡수한 흡수제가 재생탑에 공급되고, 상기 재생탑에서 산성 가스를 탈거하여 재생한 아민용액(흡수제)이다. 재생된 흡수제는 산성 가스를 다시 흡수하기위해 재비기(40)를 거쳐 흡수탑으로 공급된다. 본 발명에서는 상기 분리수를 분리수 공급라인으로 공급하여 냉각수로 활용한다. 상기 분리수는 흡수탑으로 연소 배가스를 주입전에 물분리기를 통해 분리해낸 분리수로써, 제4 열교환기에서 열교환을 통해 희박용액을 냉각하는 냉각수로 사용한다. 상기 희박용액의 열을 회수한 상기 분리수는 제 5열교환기로 공급되어 재생탑에서 발생하는 고온(90 내지 100℃)의 처리가스의 열을 회수한 후, 재생탑 상부로 주입된다. 종래의 차가운 응축수를 재생탑으로 유입하는 것은 재비기(Reboiler)의 요구 열량(Reboiler heat duty)을 증가시키는 요인이 된다. 따라서 도 2에 도시된 산성 가스 포집 시스템 공정은 희박용액 및 처리가스에서 열을 회수하여 예열된 분리수를 차가운 응축수와 함께 주입하기 때문에 재비기 요구 열량을 낮추는 효과를 갖는다. 또한 처리가스를 냉각함으로써 재생탑 상부에 위치한 응축기의 냉각부하를 줄일 수 있다.
본 발명의 한 구현예에서 상기 응축기의 작동 온도는 30 내지 40℃이다. 또한 상기 산성 가스는 이산화탄소(CO2), 메탄(CH4), 황화수소(H2S), 카보닐 설파이드(COS) 또는 머캡탄(RSH, R= 탄화수소) 등이 선택될 수 있으나 이로 제한되는 것은 아니다.
도 3은 본 발명의 또 다른 구현예에 따른 산성 가스 포집 시스템을 나타낸 것이다. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑(20) 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑(30)을 구비한 산성 가스 포집 시스템으로, 상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기(11) 및 물분리기(60)를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인(61); 상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기(12)를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인(21); 상기 재생탑에서 방출되는 처리가스를 응축기(50)로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기(13)를 거치는 처리가스 라인; 상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인(51); 및 상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인(62)을 포함하고, 상기 분리수 공급 라인은 세정탑(26)의 냉각수로 사용하기 위해 세정탑으로 향하도록 하는 공급 라인; 상기 세정탑에서 열교환된 분리수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기(15)로 향하도록하는 공급라인; 및 상기 제5 열교환기를 거친 분리수를 상기 재생탑 상부로 공급하는 라인을 포함한다.
흡수탑 상부에 아민 회수를 위한 물세척부(water washing)를 구비한 흡수탑의 경우에는 흡수탑에서 방출되는 배가스 중의 불순물을 세정하기 위해 상기 배가스의 냉각이 선행되어야 한다. 따라서 분리수를 상기 흡수탑에서 방출되는 배가스를 냉각하기 위해 세정탑의 냉각수로 사용할 수 있다. 상기 세정탑의 냉각수로 사용한 분리수는 제5 열교환기로 공급되어 재생탑에서 발생하는 처리가스와의 열교환으로 열을 회수한 후 재생탑 상부로 주입된다. 종래의 차가운 응축수를 재생탑으로 유입하는 것은 재비기(Reboiler)(40)의 요구 열량(Reboiler heat duty)을 증가시키는 요인이 된다. 따라서 도 2에 도시된 산성 가스 포집 시스템 공정은 희박용액 및 처리가스에서 열을 회수하여 예열된 분리수를 차가운 응축수와 함께 주입하기 때문에 재비기 요구 열량을 낮추는 효과를 갖는다. 또한 처리가스를 냉각함으로써 재생탑 상부에 위치한 응축기의 냉각부하를 줄일 수 있다.
본 발명의 한 구현예에서 상기 응축기의 작동 온도는 30 내지 40℃이다. 또한 상기 산성 가스는 이산화탄소(CO2), 메탄(CH4), 황화수소(H2S), 카보닐 설파이드(COS) 또는 머캡탄(RSH, R= 탄화수소) 등이 선택될 수 있으나 이로 제한되는 것은 아니다.
도 4는 본 발명의 또 다른 구현예에 따른 산성 가스 포집 시스템을 나타내는 것이다. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑(20) 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑(30)을 구비한 산성 가스 포집 시스템으로, 상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기(11) 및 물분리기(60)를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인(61); 상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기(12)를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인(21); 상기 재생탑에서 방출되는 처리가스를 응축기(50)로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기(13)를 거치는 처리가스 라인; 상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인(51); 및 상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인(62)을 포함하고, 상기 분리수 공급 라인은 상기 응축기를 거쳐 생성된 응축수가 상기 분리수와 통합하는 라인(71); 상기 통합된 분리수 및 응축수를 희박용액과 열교환하기 위해 제4 열교환기(14)로 향하도록 하는 공급 라인; 상기 제4 열 교환기에서 열교환된 분리수 및 응축수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기(15)로 향하도록하는 공급라인; 및 상기 제5 열교환기를 거친 분리수를 상기 재생탑 상부로 공급하는 라인을 포함한다.
상기 도 4의 시스템은 분리수 및 응축수를 동시에 이용한 열 통합공정으로 물분리기에서 발생한 분리수 및 응축기에서 발생한 응축수를 각각 분리수 공급라인 및 응축수 공급라인을 통하여 통합한 후, 제4 열교환기로 공급하고 동시에 희박용액의 냉각수로 활용하는 것이다. 상기 희백용액의 열을 회수한 상기 분리수 및 응축수는 제 5열교환기로 공급되어 재생탑에서 발생하는 고온(90 내지 100℃)의 처리가스와열교환으로 열을 회수한 후, 재생탑 상부로 주입된다. 종래의 차가운 응축수를 재생탑으로 유입하는 것은 재비기(Reboiler)(40)의 요구 열량(Reboiler heat duty)을 증가시키는 요인이 된다. 따라서 도 2에 도시된 산성 가스 포집 시스템 공정은 희박용액 및 처리가스에서 열을 회수하여 예열된 분리수 및 응축수를 함께 주입하기 때문에 재비기 요구 열량을 낮추는 효과를 갖는다. 또한 처리가스를 냉각함으로써 재생탑 상부에 위치한 응축기의 냉각부하를 줄일 수 있다.
본 발명의 한 구현예에서 상기 응축기의 작동 온도는 30 내지 40℃이다. 또한 상기 산성 가스는 이산화탄소(CO2), 메탄(CH4), 황화수소(H2S), 카보닐 설파이드(COS) 또는 머캡탄(RSH, R= 탄화수소) 등이 선택될 수 있으나 이로 제한되는 것은 아니다.
도 5는 본 발명의 한 구현예에 따른 산성 가스 포집 시스템을 나타내는 것이다. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑(20) 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑(30)을 구비한 산성 가스 포집 시스템으로, 상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기(11) 및 물분리기(60)를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인(61); 상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기(12)를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인(21); 상기 재생탑에서 방출되는 처리가스를 응축기(50)로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기(13)를 거치는 처리가스 라인; 상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인(51); 및 상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인(62)을 포함하고, 상기 분리수 공급 라인은 상기 응축기를 거쳐 생성된 응축수가 상기 분리수와 통합하는 라인(71); 통합된 분리수 및 응축수를 배가스의 냉각수로 사용하기 위해 제6 열교환기(16)를 거치는 공급라인; 및 상기 제6 열교환기를 거친 분리수 및 응축수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기(15)로 향하도록하는 공급라인; 및 상기 제5 열교환기를 거친 응축수를 상기 재생탑 상부로 공급하는 라인을 포함한다.
상기 도 5의 시스템은 분리수 및 응축수를 동시에 이용한 열 통합공정으로 물분리기에서 발생한 분리수 및 응축기에서 발생한 응축수를 각각 분리수 공급라인 및 응축수 공급라인을 통하여 제6 열교환기로 공급하고 동시에 흡수탑에서 방출된 배가스의 냉각수로 활용하는 것이다. 제 5열교환기로 공급되어 재생탑에서 발생하는 고온(90 내지 100℃)의 처리가스와열교환으로 열을 회수한 후, 재생탑 상부로 주입된다. 종래의 차가운 응축수를 재생탑으로 유입하는 것은 재비기(Reboiler)(40)의 요구 열량(Reboiler heat duty)을 증가시키는 요인이 된다. 따라서 도 2에 도시된 산성 가스 포집 시스템 공정은 희박용액 및 처리가스에서 열을 회수하여 예열된 분리수 및 응축수를 함께 주입하기 때문에 재비기 요구 열량을 낮추는 효과를 갖는다. 또한 처리가스를 냉각함으로써 재생탑 상부에 위치한 응축기의 냉각부하를 줄일 수 있다.
본 발명의 한 구현예에서 상기 응축기의 작동 온도는 30 내지 40℃이다. 또한 상기 산성 가스는 이산화탄소(CO2), 메탄(CH4), 황화수소(H2S), 카보닐 설파이드(COS) 또는 머캡탄(RSH, R= 탄화수소) 등이 선택될 수 있으나 이로 제한되는 것은 아니다.
도 6은 본 발명의 한 구현예에 따른 산성 가스 포집 시스템을 나타내는 것이다. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑(20) 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑(30)을 구비한 산성 가스 포집 시스템으로, 상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기(11) 및 물분리기(60)를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인(61); 상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기(12)를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인(21); 상기 재생탑에서 방출되는 처리가스를 응축기(50)로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기(13)를 거치는 처리가스 라인; 상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인(51); 및 상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인(62)을 포함하고, 상기 분리수 공급 라인은 분리수를 연소 배가스를 냉각하기 위해 제1 열교환기(11)로 공급하는 라인; 및 상기 제1 열교환기를 거친 분리수를 흡수탑에서 배출되는 산성가스 흡수용액의 열회수를 위해 직접 상기 흡수용액으로 공급되는 라인을 포함한다.
상기 분리수를 제1 열교환기로 공급함으로써 배기가스 공급라인으로 공급되는 산성 가스를 냉각할 수 있으며, 상기 산성가스에서 열을 회수한 분리수는 흡수탑에서 방출되는 산성가스를 흡수한 흡수제 용액으로 직접 주입한다. 분리수로 인해 예열된 흡수제 용액은 제2 열교환기에서 재생된 희박용액(100 내지 120℃)과 교차하면서 고온(100℃)으로 예열된 후 재생탑으로 주입된다.
본 발명의 한 구현예에서 상기 응축기의 작동 온도는 30 내지 40℃이다. 또한 상기 산성 가스는 이산화탄소(CO2), 메탄(CH4), 황화수소(H2S), 카보닐 설파이드(COS) 또는 머캡탄(RSH, R= 탄화수소) 등이 선택될 수 있으나 이로 제한되는 것은 아니다.
본 발명의 한 구현예에서는 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로, 상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계; 흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계; 상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및 상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고, 상기 분리수를 공급하는 단계는 상기 분리수를 제4 열교환기로 공급하여 희박용액으로부터 열을 회수하는 단계; 상기 희박용액으로부터 열을 회수한 분리수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및 상기 처리가스의 열을 회수한 분리수를 재생탑 상부로 공급하는 단계를 포함한다.
본 발명의 또 다른 구현예에서는 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로, 상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계; 흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계; 상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및 상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고, 상기 분리수를 공급하는 단계는 분리수를 세정탑으로 공급하여 상기 세정탑을 냉각하는 단계; 상기 세정탑에서 열교환된 분리수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및 상기 처리가스의 열을 회수한 분리수를 재생탑 상부로 공급하는 단계를 포함한다.
본 발명의 또 다른 구현예에서는 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로, 상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계; 흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계; 상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및 상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고, 상기 분리수를 공급하는 단계는 분리수 및 응축기를 거쳐 생성된 응축수와 함께 제4 열교환기로 공급하여 희박용액으로부터 열을 회수하는 단계; 상기 희박용액으로부터 열을 회수한 분리수 및 응축수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및 상기 처리가스의 열을 회수한 분리수 및 응축수를 재생탑 상부로 공급하는 단계를 포함한다.
본 발명의 또 다른 구현예에서는 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로, 상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계; 흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계; 상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및 상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고, 상기 분리수를 공급하는 단계는 분리수 및 응축기를 거쳐 생성된 응축수와 함께 제6 열교환기로 공급하여 흡수탑에서 방출되는 배가스를 냉각하는 단계; 상기 배가스로부터 열을 회수한 분리수 및 응축수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및 상기 처리가스의 열을 회수한 분리수 및 응축수를 재생탑 상부로 공급하는 단계를 포함한다.
본 발명의 또 다른 구현예에서는 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로, 상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계; 흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계; 상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및 상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고, 상기 분리수를 공급하는 단계는 분리수를 제1 열교환기로 공급하여 연소 배가스를 냉각하는 단계; 상기 배가스의 열을 회수한 분리수를 상기 흡수탑에서 산성 가스를 흡수한 흡수제용액으로 직접 주입하는 단계를 포함한다.
이상에서 본원의 예시적인 실시예에 대하여 상세하게 설명하였지만 본원의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본원의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본원의 권리범위에 속하는 것이다.
본 발명에서 사용되는 모든 기술용어는, 달리 정의되지 않는 이상, 본 발명의 관련 분야에서 통상의 당업자가 일반적으로 이해하는 바와 같은 의미로 사용된다. 본 명세서에 참고문헌으로 기재되는 모든 간행물의 내용은 본 발명에 도입된다.
[부호의 설명]
11. 제1 열교환기
12. 제2 열교환기
13. 제3 열교환기
14. 제4 열교환기
15. 제5 열교환기
16. 제6 열교환기
20. 흡수탑
21. 흡수제 공급라인
26. 세정탑
30. 재생탑
31. 처리가스 라인
40. 재비기
41. 재생된 흡수제 공급라인
50. 응축기
51. 응축수 공급라인
60. 물 분리기
61. 배기가스 공급라인
62. 분리수 공급라인
71. 분리수 및 응축수 통합 공급라인

Claims (14)

  1. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 시스템으로,
    상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기 및 물분리기를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인;
    상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인;
    상기 재생탑에서 방출되는 처리가스를 응축기로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기를 거치는 처리가스 라인;
    상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인; 및
    상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인을 포함하고,
    상기 분리수 공급 라인은 분리수가 희박용액과 열교환하기 위해 제4 열교환기로 향하도록 하는 공급라인;
    상기 제4 열 교환기에서 열교환된 분리수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기로 향하도록하는 공급라인; 및
    상기 제5 열교환기를 거친 분리수를 상기 재생탑 상부로 공급하는 라인을 포함하는,
    분리수를 활용한 에너지 절감형 산성 가스 포집 시스템.
  2. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 시스템으로,
    상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기 및 물분리기를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인;
    상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인;
    상기 재생탑에서 방출되는 처리가스를 응축기로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기를 거치는 처리가스 라인;
    상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인; 및
    상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인을 포함하고,
    상기 분리수 공급 라인은 분리수를 세정탑의 냉각수로 사용하기 위해 세정탑으로 향하도록 하는 공급 라인;
    상기 세정탑에서 열교환된 분리수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기로 향하도록하는 공급라인; 및
    상기 제5 열교환기를 거친 분리수를 상기 재생탑 상부로 공급하는 라인을 포함하는,
    분리수를 활용한 에너지 절감형 산성 가스 포집 시스템.
  3. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 시스템으로,
    상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기 및 물분리기를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인;
    상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인;
    상기 재생탑에서 방출되는 처리가스를 응축기로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기를 거치는 처리가스 라인;
    상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인; 및
    상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인을 포함하고,
    상기 분리수 공급 라인은 상기 응축기를 거쳐 생성된 응축수가 상기 분리수와 통합하는 라인;
    상기 통합된 분리수 및 응축수를 희박용액과 열교환하기 위해 제4 열교환기로 향하도록 하는 공급 라인;
    상기 제4 열 교환기에서 열교환된 분리수 및 응축수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기로 향하도록하는 공급라인; 및
    상기 제5 열교환기를 거친 분리수를 상기 재생탑 상부로 공급하는 라인을 포함하는,
    분리수를 활용한 에너지 절감형 산성 가스 포집 시스템.
  4. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 시스템으로,
    상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기 및 물분리기를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인;
    상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인;
    상기 재생탑에서 방출되는 처리가스를 응축기로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기를 거치는 처리가스 라인;
    상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인; 및
    상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인을 포함하고,
    상기 분리수 공급 라인은 상기 응축기를 거쳐 생성된 응축수가 상기 분리수와 통합하는 라인;
    상기 통합된 분리수 및 응축수를 배가스의 냉각수로 사용하기 위해 제6 열교환기를 거치는 공급라인;
    상기 제6 열교환기를 거친 분리수 및 응축수가 재생탑에서 배출되는 처리가스의 열회수를 위해 제5 열교환기로 향하도록하는 공급라인; 및
    상기 제5 열교환기를 거친 응축수를 상기 재생탑 상부로 공급하는 라인을 포함하는,
    분리수를 활용한 에너지 절감형 산성 가스 포집 시스템.
  5. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 시스템으로,
    상기 포집 시스템은 산성 가스를 포함하는 배기가스를 흡수탑으로 공급하되 흡수탑 주입 전에 제 1열교환기 및 물분리기를 거쳐 상기 흡수탑으로 향하도록 하는 배기가스 공급라인;
    상기 흡수탑 내에서 산성 가스를 흡수한 상기 흡수제를 상기 재생탑에 공급하되 제2 열교환기를 거쳐 상기 재생탑으로 향하도록 하는 흡수제 공급 라인;
    상기 재생탑에서 방출되는 처리가스를 응축기로 공급하되 상기 처리가스는 상기 응축기에 도달하기 전에 제3 열교환기를 거치는 처리가스 라인;
    상기 응축기를 거쳐 생성된 응축수를 활용하는 응축수 공급 라인; 및
    상기 물분리기에서 분리된 분리수를 활용하는 분리수 공급 라인을 포함하고,
    상기 분리수 공급 라인은 분리수를 연소 배가스를 냉각하기 위해 제1 열교환기로 공급하는 라인; 및
    상기 제1 열교환기를 거친 분리수를 흡수탑에서 배출되는 산성가스 흡수용액의 열회수를 위해 직접 상기 흡수용액으로 공급되는 라인을 포함하는,
    분리수를 활용한 에너지 절감형 산성 가스 포집 시스템.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 응축기의 작동 온도는 30 내지 40℃인,
    분리수를 활용한 에너지 절감형 산성 가스 포집 시스템.
  7. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 산성 가스는, 이산화탄소(CO2), 메탄(CH4), 황화수소(H2S), 카보닐 설파이드(COS) 또는 머캡탄(RSH, R= 탄화수소)인,
    분리수를 활용한 에너지 절감형 산성 가스 포집 시스템.
  8. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로,
    상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계;
    흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계;
    상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및
    상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고,
    상기 분리수를 공급하는 단계는 상기 분리수를 제4 열교환기로 공급하여 희박용액으로부터 열을 회수하는 단계;
    상기 희박용액으로부터 열을 회수한 분리수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및
    상기 처리가스의 열을 회수한 분리수를 재생탑 상부로 공급하는 단계를 포함하는,
    분리수를 활용한 에너지 절감형 산성 가스 포집 방법.
  9. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로,
    상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계;
    흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계;
    상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및
    상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고,
    상기 분리수를 공급하는 단계는 분리수를 세정탑으로 공급하여 상기 세정탑을 냉각하는 단계;
    상기 세정탑에서 열교환된 분리수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및
    상기 처리가스의 열을 회수한 분리수를 재생탑 상부로 공급하는 단계를 포함하는,
    분리수를 활용한 에너지 절감형 산성 가스 포집 방법.
  10. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로,
    상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계;
    흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계;
    상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및
    상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고,
    상기 분리수를 공급하는 단계는 분리수 및 응축기를 거쳐 생성된 응축수와 함께 제4 열교환기로 공급하여 희박용액으로부터 열을 회수하는 단계;
    상기 희박용액으로부터 열을 회수한 분리수 및 응축수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및
    상기 처리가스의 열을 회수한 분리수 및 응축수를 재생탑 상부로 공급하는 단계를 포함하는,
    분리수를 활용한 에너지 절감형 산성 가스 포집 방법.
  11. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로,
    상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계;
    흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계;
    상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및
    상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고,
    상기 분리수를 공급하는 단계는 상기 분리수 및 응축기를 거쳐 생성된 응축수와 함께 제6 열교환기로 공급하여 흡수탑에서 방출되는 배가스를 냉각하는 단계;
    상기 배가스로부터 열을 회수한 분리수 및 응축수를 제5 열교환기로 공급하여 상기 처리가스의 열을 회수하는 단계; 및
    상기 처리가스의 열을 회수한 분리수 및 응축수를 재생탑 상부로 공급하는 단계를 포함하는,
    분리수를 활용한 에너지 절감형 산성 가스 포집 방법.
  12. 흡수제를 이용하여 산성 가스를 흡수하는 흡수탑 및 상기 흡수제로부터 처리 가스를 분리하는 재생탑을 구비한 산성 가스 포집 방법으로,
    상기 포집 방법은 산성 가스를 함유하고 있는 배기가스를 흡수탑에 공급하여 산성 가스를 흡수제에 흡수시키는 단계;
    흡수탑에서 방출되는 산성 가스를 흡수한 흡수제를 재생탑으로 공급하여 상기 흡수제로부터 산성 가스를 분리하는 단계;
    상기 재생탑에서 나온 처리가스를 응축기로 공급하여 상기 처리가스로부터 응축수를 분리하는 단계; 및
    상기 물분리기를 거쳐 생성된 분리수를 활용하는 분리수 공급 라인으로 분리수를 공급하는 단계를 포함하고,
    상기 분리수를 공급하는 단계는 분리수를 제1 열교환기로 공급하여 연소 배가스를 냉각하는 단계;
    상기 배가스의 열을 회수한 분리수를 상기 흡수탑에서 산성 가스를 흡수한 흡수제용액으로 직접 주입하는 단계를 포함하는,
    분리수를 활용한 에너지 절감형 산성 가스 포집 방법.
  13. 제 8 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 응축기의 작동 온도는 30 내지 40℃인,
    분리수를 활용한 에너지 절감형 산성 가스 포집 방법.
  14. 제 8 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 산성 가스는, 이산화탄소(CO2), 메탄(CH4), 황화수소(H2S), 카보닐 설파이드(COS) 또는 머캡탄(RSH, R= 탄화수소)인,
    분리수를 활용한 에너지 절감형 산성 가스 포집 방법.
PCT/KR2013/011324 2013-11-27 2013-12-09 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템 및 방법 WO2015080324A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/030,559 US9579599B2 (en) 2013-11-27 2013-12-09 Energy-saving system and method of capturing acidic gas by using separated water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130145380A KR101498460B1 (ko) 2013-11-27 2013-11-27 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템 및 방법
KR10-2013-0145380 2013-11-27

Publications (1)

Publication Number Publication Date
WO2015080324A1 true WO2015080324A1 (ko) 2015-06-04

Family

ID=53026167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011324 WO2015080324A1 (ko) 2013-11-27 2013-12-09 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템 및 방법

Country Status (3)

Country Link
US (1) US9579599B2 (ko)
KR (1) KR101498460B1 (ko)
WO (1) WO2015080324A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101767140B1 (ko) 2016-05-19 2017-08-24 한국에너지기술연구원 공정자체에서 발생된 에너지를 이용하여 수분공급이 가능한 건식 이산화탄소 포집시스템, 수분공급방법 및 그 포집시스템의 운전방법
WO2019095371A1 (zh) * 2017-11-20 2019-05-23 江苏宏大环保科技有限公司 一种废气排放设备
KR102209400B1 (ko) * 2019-04-25 2021-02-01 주식회사 포스코 코크스 오븐 가스 정제 장치 및 정제 방법
KR102233842B1 (ko) * 2019-12-09 2021-03-30 한국에너지기술연구원 공정열을 활용한 이산화탄소 포집 시스템 및 그를 이용한 이산화탄소 포집 방법
CN114517846B (zh) * 2020-11-20 2024-05-28 中国石油化工股份有限公司 用于酸性气的水封系统和火炬燃烧系统
CN114405246B (zh) * 2021-12-28 2022-11-01 中国矿业大学 一种适用于低分压co2捕集纯化的节能工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008270A (ko) * 2006-03-23 2009-01-21 유니버서티 오브 레지나 열 복구 가스 흡수 프로세스
KR20100092967A (ko) * 2007-12-13 2010-08-23 알스톰 테크놀러지 리미티드 흡수 용액을 재생시키는 시스템 및 방법
JP2012500713A (ja) * 2008-08-22 2012-01-12 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Co2枯渇煙道ガスの処理
KR20120029523A (ko) * 2010-09-17 2012-03-27 한국전력공사 혼합가스 중 산성가스를 분리하는 분리장치 및 분리방법
KR20130023484A (ko) * 2011-08-29 2013-03-08 한국전력공사 에너지 효율이 증대된 발전소 이산화탄소 포집장치 및 포집방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008255555B2 (en) * 2007-05-29 2012-05-03 University Of Regina Method and absorbent composition for recovering a gaseous component from a gas stream
KR100983677B1 (ko) 2009-06-30 2010-09-24 한국전력공사 산성 가스 흡수 분리 시스템 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008270A (ko) * 2006-03-23 2009-01-21 유니버서티 오브 레지나 열 복구 가스 흡수 프로세스
KR20100092967A (ko) * 2007-12-13 2010-08-23 알스톰 테크놀러지 리미티드 흡수 용액을 재생시키는 시스템 및 방법
JP2012500713A (ja) * 2008-08-22 2012-01-12 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション Co2枯渇煙道ガスの処理
KR20120029523A (ko) * 2010-09-17 2012-03-27 한국전력공사 혼합가스 중 산성가스를 분리하는 분리장치 및 분리방법
KR20130023484A (ko) * 2011-08-29 2013-03-08 한국전력공사 에너지 효율이 증대된 발전소 이산화탄소 포집장치 및 포집방법

Also Published As

Publication number Publication date
US20160263518A1 (en) 2016-09-15
US9579599B2 (en) 2017-02-28
KR101498460B1 (ko) 2015-03-05

Similar Documents

Publication Publication Date Title
WO2015080324A1 (ko) 분리수를 활용한 에너지 절감형 산성 가스 포집 시스템 및 방법
WO2011002198A2 (ko) 산성 가스 흡수 분리 시스템 및 방법
JP5881617B2 (ja) 二酸化炭素捕捉プロセス用の水洗法及びシステム
WO2017039131A1 (ko) 산성가스 포집 시스템 및 이를 이용한 산성가스 포집방법
US8470077B2 (en) Low pressure stripping in a gas purification process and systems thereof
WO2018048032A1 (ko) 코크스 오븐 가스 정제 방법 및 정체 장치
WO2015133666A1 (ko) 흡수제 재순환을 이용한 저에너지형 산성가스 포집 시스템 및 방법
WO2015076449A1 (ko) 응축수를 활용한 에너지 절감형 산성 가스 포집 시스템 및 방법
WO2015083865A1 (ko) 산성 가스 분리 회수 시스템 및 방법
WO2015133665A1 (ko) 재비기를 거친 흡수제를 응축수로 냉각하여 에너지를 절감하는 산성 기체 포집 시스템 및 방법
WO2012073552A1 (ja) Co2回収システム
KR20130035638A (ko) 저에너지 소비형 산성가스 회수장치 및 회수방법
WO2015083866A1 (ko) 에너지 절감형 산성 가스 포집 시스템 및 방법
US9987587B2 (en) Method and device for the treatment of a gas stream, in particular for the treatment of a natural gas stream
WO2019103235A1 (ko) 가스처리장치 및 그 방법
WO2015102136A1 (ko) 암모니아수에 의한 전처리를 통한 에너지 절감형 산성가스 제거 방법
KR20170114802A (ko) 탈거탑 탑상증기의 열에너지를 재활용한 이산화탄소 포집방법과 그 장치
KR20150035170A (ko) 산성 가스 포집 장치
KR20190014632A (ko) 열병합 방법을 이용한 저에너지형 산성 가스 분리 시스템 및 방법
KR101583459B1 (ko) 처리가스를 이용한 에너지 절감형 산성 기체 포집 시스템 및 방법
KR101583461B1 (ko) 흡수제 중간 냉각을 이용한 에너지 절감형 산성기체 포집 시스템 및 방법
WO2021045455A1 (ko) 배기관 장치 및 그를 포함하는 선박
CN116531918B (zh) 一种节能低分压二氧化碳捕集系统及方法
WO2020022606A1 (ko) 산성가스 포집 장치 및 이를 이용한 산성가스 포집 방법
WO2015046659A1 (ko) 흡수속도를 개선한 3차 아민 이산화탄소 흡수제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15030559

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13898090

Country of ref document: EP

Kind code of ref document: A1