WO2023105054A1 - Procédé de fabrication d'un système dans un boitier à plusieurs couches et installation de fabrication associée - Google Patents

Procédé de fabrication d'un système dans un boitier à plusieurs couches et installation de fabrication associée Download PDF

Info

Publication number
WO2023105054A1
WO2023105054A1 PCT/EP2022/085203 EP2022085203W WO2023105054A1 WO 2023105054 A1 WO2023105054 A1 WO 2023105054A1 EP 2022085203 W EP2022085203 W EP 2022085203W WO 2023105054 A1 WO2023105054 A1 WO 2023105054A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic components
depositing
manufacturing
interconnection
technique
Prior art date
Application number
PCT/EP2022/085203
Other languages
English (en)
Inventor
Damien CHALAVOUX
Pierre Eloi
Maxime REY
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Publication of WO2023105054A1 publication Critical patent/WO2023105054A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/105Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4697Manufacturing multilayer circuits having cavities, e.g. for mounting components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/24137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32237Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/821Forming a build-up interconnect
    • H01L2224/82101Forming a build-up interconnect by additive methods, e.g. direct writing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/10All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers
    • H01L2225/1005All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/1011All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement
    • H01L2225/1017All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support
    • H01L2225/1023All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices having separate containers the devices being of a type provided for in group H01L27/00 the containers being in a stacked arrangement the lowermost container comprising a device support the support being an insulating substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4664Adding a circuit layer by thick film methods, e.g. printing techniques or by other techniques for making conductive patterns by using pastes, inks or powders

Definitions

  • TITLE Process for manufacturing a system in a multi-layer package and associated manufacturing facility
  • the present invention relates to a method of manufacturing a system in a multi-layered package.
  • the present invention also relates to a manufacturing installation associated with such a manufacturing process.
  • system in a box corresponds to any system more commonly known as SiP (from the English “System in Package” or “system in a box” in French). Such a system is also known as System-in-a-Package or Multi-Chip Module (or MCM, multi-chip module in French).
  • an SiP designates a system of integrated circuits which are confined in the same box. This type of system is widely used in the field of microelectronics and in particular in the fields of mobile telephony, computers, sensors, etc. In some cases, a SiP can include a stack of layers which makes it particularly compact and therefore attractive for this type of application.
  • PCB printed electrical circuit
  • English “Printed Circuit Board” Printed Circuit Board
  • the substrate on which various electronic components are placed has an interconnection matrix.
  • This matrix presents a large number of possible interconnections which are then chosen according to the electronic components installed and the needs of their interconnection.
  • the method known under the name of Flip Chip (or “chip turned over” in French) proposes, at the last production stage, to turn over the chip and to deposit on the turned over surface balls of solder (“solder bumps”). ”) on the legs of the flea.
  • solder bumps solder
  • the chip is turned over, its legs are placed opposite corresponding legs of the substrate and are heated to be integral with the rest of the substrate. This method is therefore opposed to a wire bonding method according to which the interconnections between the chips and the substrate are made by wires.
  • Wafer-Level Packaging (WLP or “chip-level box” in French) according to which the chips are encapsulated and are always attached to each other. , then we add the solder balls, and we cut only after the wafer to separate the chips.
  • the encapsulated chip has the same surface as the chip alone, which saves space occupied on the circuit compared to a conventional manufacturing method.
  • the subject of the invention is a method for manufacturing a system in a box with several layers comprising, for each current layer, the following steps:
  • the substrate comprising a reception surface the reception surface comprising reception zones configured to receive electronic components
  • the manufacturing method according to the invention thus makes it possible to use a single installation for all of the manufacturing steps.
  • an additive manufacturing technique implemented by this process makes it possible to manufacture a variety of SiPs without any change between each series produced, which makes the unit cost of each SiP very competitive.
  • the method comprises one or more of the following characteristics, taken in isolation or in all technically possible combinations:
  • the step of producing the dielectric substrate comprises its polymerization, preferably its photopolymerization;
  • the additive manufacturing technique includes the stereolithography technique or the molten wire deposition technique
  • the glue deposition step is carried out by an endless screw or by a pressure time distribution system
  • the step of depositing the electronic components is carried out by a deposition head, preferably, the step of depositing the electronic components also comprises the installation of heat sinks bonded to the electronic components;
  • the method further comprising a step of polymerization of the glue implemented after the step of depositing the electronic components and before the step of depositing interconnection elements;
  • the stage of deposition of interconnection elements includes the deposition of conductive wires or conductive ink between electronic components
  • the step of creating at least one interconnection with an adjacent layer comprises the deposition of a conductive glue or a plastic loaded with conductive particles;
  • the step of encapsulating the current layer comprises filling a volume delimited by the dielectric substrate with the filling material
  • the external surface preparation stage includes the implementation of a stripping technique
  • the present invention also relates to an installation for manufacturing a system in a package (SiP) with several layers, the installation comprising a plurality of modules suitable for implementing the method as described above.
  • SiP system in a package
  • Figure 1 is a schematic view of a manufacturing facility according to the invention.
  • Figure 2 is a schematic view of the implementation of different steps of a manufacturing process according to the invention, the process being implemented by the installation of Figure 1.
  • FIG. 1 a manufacturing facility 10 of a system in a box, known as SiP.
  • SiP a manufacturing installation 10 makes it possible to produce SiPs with several layers and of different types.
  • the manufacturing facility 10 comprises an additive manufacturing module 12, a chip fixing module 14, a deposition module 16, an interconnection module 18, a encapsulation 20 and a stripping module 22.
  • the manufacturing installation 10 can comprise other functional modules implementing at least partially at least certain steps of this method.
  • the manufacturing installation 10 can also comprise a heating module and/or a control module making it possible to control the deposition or the installation of components.
  • the manufacturing installation 10 also comprises mechanical means implementing the operation of these various modules 12 to 22, their interconnection as well as their connection to external sources.
  • the manufacturing installation 10 also includes a base capable of receiving the SiP after its manufacture.
  • each SiP can be produced on this base by starting up the aforementioned modules 12 to 22, in accordance with the manufacturing method explained below.
  • the additive manufacturing module 12 presents a 3D printing machine able to implement an additive manufacturing technique to produce a dielectric substrate.
  • the additive manufacturing technique includes, for example, the stereolithography technique or the fused wire deposition technique. This latter technique is also known by the acronym of FDM (from the English “Fused Deposition Modeling”).
  • FDM Fusion Deposition Modeling
  • the chip fixing module 14 comprises for example a machine known under the English name of Die Bonding.
  • a machine can, for example, include a glue deposit robot using an endless screw or a pressure time distribution system.
  • a dispensing system makes it possible to obtain a drop of glue of a repeatable size by controlling the pressure placed in a syringe in which the glue is located. By varying the pressurization time, the size of the drop of glue can be controlled (more or less large).
  • the deposition module 16 comprises for example a volumetric deposition head capable of taking an electronic component to place it on a substrate.
  • a volumetric deposition head capable of taking an electronic component to place it on a substrate.
  • Such a head may be made by a machine known as Pick and Place, or may be part of the Die Bonding machine mentioned earlier.
  • the interconnection module 18 comprises for example a machine known by the English name of W/re Bonding configured to connect various electronic components using a wire.
  • the interconnection module 18 comprises a machine for depositing a conductive ink.
  • Such a machine can for example be adapted for the implementation of the flip chip technique.
  • the encapsulation module 20 comprises for example a machine known by the English name of Dam and FUI allowing the filling of a structure with a filling material.
  • the stripping module 22 comprises a stripping head making it possible to strip a surface using, for example, a plasma.
  • the steps of this method are implemented consecutively for each layer forming the SiP.
  • a control step may be implemented during which the imaging control module may be used to control the deposits or the setting in place and the direction of the components.
  • the additive manufacturing module 12 produces a dielectric substrate by implementing an additive manufacturing technique, as explained above.
  • This substrate is produced directly on the base when it is a first layer of SiP or on a surface etched from another layer when it is an intermediate layer or a last layer.
  • the substrate formed during this step comprises a reception surface comprising reception zones configured to receive electronic components.
  • each reception zone has for example a cavity whose dimensions are adapted to receive a given electronic component.
  • the locations of the reception zones as well as their dimensions are determined for example in accordance with a configuration file specific for example to each layer.
  • a configuration file forms a “map” of each layer.
  • the additive manufacturing module 12 is therefore suitable for reading such a file and depositing layers in accordance with this file.
  • the formed substrate may further include a wall extending along the periphery of the substrate and forming part of the side surface of the SiP. Such a wall can also delimit an internal volume of the substrate receiving the electrical components as well as the filling material as will be explained later.
  • the dielectric substrate can be deposited on a substrate of the printed circuit type.
  • the dielectric substrate can be polymerized, preferably by photopolymerization, to acquire its final properties.
  • the chip fixing module 14 deposits an adhesive in the reception zones formed in the substrate.
  • the glue can for example be chosen so as to have a low expansion or at least an expansion adapted to the substrate.
  • the deposition module 16 deposits electronic components in the corresponding reception zones.
  • electronic component we mean in particular a chip or any other electronic element that is part of a SiP.
  • This step C can also include the placement of heat sinks, for example of the solid type (copper substrate, heat pipes), bonded to the electronic components.
  • heat sinks for example of the solid type (copper substrate, heat pipes), bonded to the electronic components.
  • step D the glue is polymerized.
  • This polymerization is for example implemented by a heating module which implements local or global heating. Alternatively, the polymerization is carried out at room temperature, without heating.
  • the interconnection module 18 deposits interconnection elements between the electronic components.
  • the interconnection elements can then comprise conductive wires or conductive ink.
  • the interconnection module 18 creates an interconnection with at least one upper or lower layer, for example with conductive glue with a module for depositing a glue (syringes with glue) or a plastic, e.g. polymer photopolymerizable, loaded with metallic particles and deposited with the additive manufacturing module 12.
  • the encapsulation module 20 encapsulates the current layer, for example by filling the volume delimited by the walls of the substrate to reach the same level as these walls. After filling, the filling material then forms an outer surface.
  • step H the stripping module 22 prepares the outer surface for receiving the next layer.
  • this step may include stripping the outer surface. Then, when a next layer is to be created, steps A to H are therefore implemented again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'un système dans un boitier (SiP) à plusieurs couches, comprenant pour chaque couche courante les étapes suivantes : - réalisation (A) d'un substrat diélectrique par une technique de fabrication additive; - dépôt (B) d'une colle dans des zones de réception; - dépôt (C) de composants électroniques dans les zones de réception correspondantes; - dépôt (E) d'éléments d'interconnexion entre les composants électroniques; - création (F) d'au moins une interconnexion avec une couche adjacente; - encapsulation (G) de la couche courante par matière de remplissage, la matière de remplissage formant une surface extérieure; - préparation (H) de la surface extérieure pour réception de la couche suivante.

Description

DESCRIPTION
TITRE : Procédé de fabrication d’un système dans un boitier à plusieurs couches et installation de fabrication associée
La présente invention concerne un procédé de fabrication d’un système dans un boitier à plusieurs couches.
La présente invention concerne également une installation de fabrication associée à un tel procédé de fabrication.
Dans le sens de la présente invention, le terme « système dans un boitier » correspond à tout système plus communément appelé SiP (de l’anglais « System in Package » or « système dans un boitier » en français). Un tel système est également connu sous le nom de System-in-a-Package ou de Multi-Chip Module (ou MCM, module multi-chip en français).
De manière connue en soi, un SiP désigne un système de circuits intégrés qui sont confinés dans un même boitier. Ce type de système est largement utilisé dans le domaine de micro-électronique et notamment dans les domaines de la téléphonie mobile, des ordinateurs, des capteurs, etc. Dans certains cas, un SiP peut comprendre un empilement de couches ce qui lui rend particulièrement compact et donc attractif pour ce type d’application.
Généralement, la réalisation d’un SiP demande de forts investissements de machine de p-technologie pour assembler des puces en trois dimensions et compacter ainsi les fonctions électroniques dans un bloc ou boitier plutôt que sur une surface plane.
Ces blocs ont pour but d’être assemblés eux-mêmes sur un circuit électrique imprimé (PCB, de l’anglais « Printed Circuit Board ») pour qu’ils soient interconnectés avec d’autres blocs ou d’autres composants discrets. Les connexions externes sont par exemple réalisées par métallisation dans des bains de dépôt chimique.
Plusieurs méthodes de l’état de la technique ont pour but de simplifier la fabrication d’un SiP ou au moins, de rendre cette fabrication plus universelle pour pouvoir produire des SiP différents.
Ainsi, on connait par exemple des méthodes permettant de rendre le design d’un SiP plus flexible. Selon certaines de ces méthodes, le substrat sur lequel sont posés différents composants électroniques, présente une matrice d’interconnexion. Cette matrice présente un grand nombre d’interconnexions possibles qui sont ensuite choisies en fonction des composants électroniques posés et les besoins de leur interconnexion. Il existe également des méthodes de miniaturisation des cartes. Parmi ces méthodes, la méthode connue sous le nom de Flip Chip (ou « puce retournée » en français) propose, à la dernière étape de production, de retourner la puce et de déposer sur la surface retournée des billes de soudure (« solder bumps ») sur les pattes de la puce. Pour être reliée aux autres composants, la puce est retournée, ses pattes sont mises en regard de pattes correspondantes du substrat et sont chauffées pour être solidaires du reste du substrat. Cette méthode est donc opposée à une méthode de câblage par fil (« wire bonding ») selon laquelle les interconnexions entre les puces et le substrat sont réalisées par des fils.
Parmi les méthodes de miniaturisation des cartes, on connaît également la méthode connue sous le nom de Wafer-Level Packaging (WLP ou « boitier au niveau de la puce» en français) selon laquelle on encapsule les puces qui sont toujours solidaires les unes des autres, puis on ajoute les billes de soudure, et on découpe seulement après la plaquette pour séparer les puces. La puce encapsulée a la même surface que la puce seule, ce qui permet de gagner en place occupée sur le circuit par rapport à une méthode de fabrication classique.
Enfin, il existe également des méthodes d’empilement 3D permettant de fabriquer des SiP en plusieurs couches. Ainsi, par exemple, la méthode connue sous le nom de 3D integrated circuit (3D IC ou « circuit intégré 3D » en français) permet d’empiler plusieurs puces. Les interconnexions sont réalisées le plus souvent par un via traversant (TSV ou « Through-Silicon Vias » en anglais), qui connecte les puces de l’intérieur, à la différence des techniques qui connectent les puces de l’extérieur grâce par exemple à l’emploi de fils.
Les méthodes actuelles de fabrication de SiP demandent donc des installations coûteuses qui sont difficilement adaptables à la fabrication d’autres types de SiP et/ou d’autres types de composants électroniques. Ces méthodes ne peuvent donc pas être utilisées pour fabriquer des SiP pour des séries de millier de pièces.
À cet effet, l’invention a pour objet un procédé de fabrication d’un système dans un boitier à plusieurs couches comprenant pour chaque couche courante les étapes suivantes:
- réalisation d’un substrat diélectrique par une technique de fabrication additive, le substrat comprenant une surface de réception la surface de réception comprenant des zones de réception configurées pour recevoir des composants électroniques ;
- dépôt d’une colle dans les zones de réception ;
- dépôt de composants électroniques dans les zones de réception correspondantes;
- dépôt d’éléments d’interconnexion entre les composants électroniques ;
- création d’au moins une interconnexion avec une couche adjacente ; - encapsulation de la couche courante par matière de remplissage, la matière de remplissage formant une surface extérieure ; et
- préparation de la surface extérieure pour réception de la couche suivante.
Le procédé de fabrication selon l’invention permet ainsi d’utiliser une seule installation pour l’ensemble des étapes de fabrication. De plus, une technique de fabrication additive mise en œuvre par ce procédé permet de fabriquer une variété de SiP sans aucun changement entre chaque série produite, ce qui rend le coût unitaire de chaque SiP très compétitif.
Suivant d’autres aspects avantageux de l’invention, le procédé comprend une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toutes les combinaisons techniquement possibles :
- l’étape de réalisation du substrat diélectrique comprend sa polymérisation, de préférence sa photopolymérisation ;
- la technique de fabrication additive comprend la technique de stéréolithographie ou la technique de dépôt de fil fondu ;
- l’étape de dépôt de la colle est réalisée par une vis sans fin ou par un système de distribution temps pression ;
- l’étape de dépôt des composants électroniques est réalisée par une tête de dépôt, de préférence, l’étape de dépôt des composants électroniques comprend en outre la mise en place de drains thermiques collés sur les composants électroniques ;
- le procédé comprenant en outre une étape de polymérisation de la colle mise en œuvre après l’étape de dépôt des composants électroniques et avant l’étape de dépôt d’éléments d’interconnexion ;
- l’étape de dépôt d’éléments d’interconnexion comprend le dépôt de fils conducteurs ou d’une encre conductrice entre composants électroniques ;
- l’étape de création d’au moins une interconnexion avec une couche adjacente comprend le dépôt d’une colle conductrice ou d’un plastique chargé en particules conductrices ;
- l’étape d’encapsulation de la couche courante comprend le remplissage d’un volume délimité par le substrat diélectrique par la matière de remplissage ;
- l’étape de préparation de la surface extérieure comprend la mise en œuvre d’une technique de décapage ;
- le procédé comprenant en outre une étape de contrôle optique mise en œuvre entre au moins certaines desdites étapes. La présente invention a également pour objet une installation de fabrication d’un système dans un boitier (SiP) à plusieurs couches, l’installation comprenant une pluralité de modules adaptés pour la mise en œuvre du procédé tel que décrit précédemment.
Ces caractéristiques et avantages de l’invention apparaitront à la lecture de la description qui va suivre, donnée uniquement à titre d’exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels :
- [Fig 1] la figure 1 est une vue schématique d’une installation de fabrication selon l’invention ; et
- [Fig 2] la figure 2 est une vue schématique de la mise en œuvre de différentes étapes d’un procédé de fabrication selon l’invention, le procédé étant mis en œuvre par l’installation de la Figure 1.
On a en effet illustré sur la figure 1 une installation de fabrication 10 d’un système dans un boitier, connu sous le nom de SiP. En particulier, une telle installation de fabrication 10 permet de produire des SiP à plusieurs couches et de types différents.
Pour ce faire, en référence à la figure 1 , l’installation de fabrication 10 comprend un module de fabrication additive 12, un module de fixage de puce 14, un module de dépôt 16, un module d’interconnexion 18, un module d’encapsulation 20 et un module de décapage 22.
Selon différents modes de réalisation du procédé de fabrication, l’installation de fabrication 10 peut comprendre d’autres modules fonctionnels mettant en œuvre au moins partiellement au moins certaines étapes de ce procédé. Par exemple, l’installation de fabrication 10 peut comprendre en outre un module de chauffage et/ou un module de contrôle permettant de contrôler le dépôt ou la mise en place de composants.
L’installation de fabrication 10 comprend également des moyens mécaniques mettant en œuvre le fonctionnement de ces différents modules 12 à 22, leur interconnexion ainsi que leur connexion à des sources externes.
Enfin, l’installation de fabrication 10 comprend également une embase apte à recevoir le SiP après sa fabrication. En particulier, chaque SiP peut être produit sur cette embase par la mise en marche des modules précités 12 à 22, conformément au procédé de fabrication expliqué ci-dessous.
Le module de fabrication additive 12 présente une machine d’impression 3D apte à mettre en œuvre une technique de fabrication additive pour produire un substrat diélectrique. La technique de fabrication additive comprend par exemple la technique de stéréolithographie ou la technique de dépôt de fil fondu. Cette dernière technique est connue également sous l’acronyme de FDM (de l’anglais « Fused Deposition Modeling »). Ainsi, par exemple, ce module 12 peut fonctionner en faisant, couche par couche, le dépôt de l’encre sous la forme de fines gouttelettes.
Le module de fixage de puce 14 comprend par exemple une machine connue sous le nom anglais de Die Bonding. Une telle machine peut par exemple comprendre un robot de dépôt de colle à l’aide d’une vis sans fin ou d’un système de distribution temps pression. En particulier, un tel système de distribution (ou « dispensing » en anglais) permet d’obtenir une goutte de colle d’une taille répétable en contrôlant la pression mise dans une seringue dans laquelle se trouve la colle. En variant le temps de mise sous pression, la dimension de la goûte de colle peut être maîtrisée (plus ou moins grosse).
Le module de dépôt 16 comprend par exemple une tête de dépôt volumétrique apte à prendre un composant électronique pour le poser sur un substrat. Une telle tête peut être réalisée par une machine connue sous le nom anglais de Pick and Place, ou peut faire partie de la machine de Die Bonding mentionnée précédemment.
Le module d’interconnexion 18 comprend par exemple une machine connue sous le nom anglais de W/re Bonding configurée pour connecter différents composants électroniques à l’aide d’un fil. Alternativement, le module d’interconnexion 18 comprend une machine de dépôt d’une encre conductrice. Une telle machine peut par exemple être adaptée pour la mise en œuvre de la technique de puce retournée.
Le module d’encapsulation 20 comprend par exemple une machine connue sous le nom anglais de Dam and FUI permettant le remplissage d’une structure par une matière de remplissage.
Enfin, le module de décapage 22 comprend une tête de décapage permettant de décaper une surface à l’aide par exemple d’un plasma.
Le procédé de fabrication d’un SiP mis en œuvre par l’installation de fabrication 10 sera désormais expliqué en référence à la figure 2.
Les étapes de ce procédé sont mises en œuvre de manière consécutive pour chaque couche formant le SiP.
Dans certains modes de réalisation, entre chaque étape expliquée ci-dessous ou au moins entre certaines de ces étapes, une étape de contrôle pourra être mise en œuvre lors de laquelle le module de contrôle par imagerie pourra être utilisé pour contrôler les dépôts ou la mise en place et le sens des composants.
Lors d’une étape initiale A, le module de fabrication additive 12 réalise un substrat diélectrique en mettant en œuvre une technique de fabrication additive, comme expliqué précédemment. Ce substrat est réalisé directement sur l’embase lorsqu’il s’agit d’une première couche du SiP ou sur une surface décapée d’une autre couche lorsqu’il s’agit d’une couche intermédiaire ou d’une dernière couche. Le substrat formé lors de cette étape comprend une surface de réception comprenant des zones de réception configurées pour recevoir des composants électroniques.
En particulier, chaque zone de réception présente par exemple une cavité dont les dimensions sont adaptées pour recevoir un composant électronique donné. Les emplacements des zones de réception ainsi que leurs dimensions sont déterminées par exemple conformément à un fichier de configuration spécifique par exemple à chaque couche. Autrement dit, un tel fichier de configuration forme une « carte » de chaque couche. Le module de fabrication additive 12 est donc adapté pour lire un tel fichier et déposer des couches conformément à ce fichier.
Le substrat formé peut comprendre en outre une paroi s’étendant le long de la périphérie du substrat et formant une partie de la surface latérale du SiP. Une telle paroi peut délimiter en outre un volume interne du substrat recevant les composants électriques ainsi que la matière de remplissage comme cela sera expliqué par la suite.
Le substrat diélectrique peut être déposé sur un substrat de type circuit imprimé.
À la fin de l’étape A, le substrat diélectrique peut être polymérisé, de préférence par photopolymérisation, pour acquérir ses propriétés finales.
Lors de l’étape B, le module de fixage de puce 14 dépose une colle dans les zones de réception formées dans le substrat. La colle peut par exemple être choisie de sorte à avoir une faible dilatation ou tout du moins une dilatation adaptée au substrat.
Lors de l’étape C, le module de dépôt 16 dépose des composants électroniques dans les zones de réception correspondantes. Par composant électronique, on entend notamment une puce ou tout autre élément électronique faisant partie d’un SiP.
Cette étape C peut comprendre également la mise en place de drains thermiques, par exemple de type massif (substrat de cuivre, caloducs), collés sur les composants électroniques.
Lors de l’étape D, la colle est polymérisée. Cette polymérisation est par exemple mise en œuvre par un module de chauffage qui met en œuvre un chauffage local ou global. En variante, la polymérisation est faite à température ambiante, sans chauffage.
Lors de l’étape E, le module d’interconnexion 18 dépose des éléments d’interconnexion entre les composants électroniques. Les éléments d’interconnexion peuvent alors comprendre des fils conducteurs ou une encre conductrice.
Lors de l’étape F, le module d’interconnexion 18 crée une interconnexion avec au moins une couche supérieur ou inférieur, par exemple avec de la colle conductrice avec un module de dépôt d’une colle (seringues avec colle) ou d’un plastique, par exemple polymère photopolymérisable, chargé de particules métalliques et ce déposé avec le module de fabrication additive 12.
Lors de l’étape G, le module d’encapsulation 20 fait l’encapsulation de la couche courante par exemple par remplissage du volume délimité par les parois du substrat pour atteindre le même niveau que ces parois. Après le remplissage, la matière de remplissage forme alors une surface extérieure.
Lors de l’étape H, le module de décapage 22 prépare la surface extérieure pour réception de la couche suivante. En particulier, comme expliqué précédemment, cette étape peut comprendre un décapage de la surface extérieure. Ensuite, lorsqu’une couche suivante est à créer, les étapes A à H sont donc à nouveau mises en œuvre.
Bien entendu, d’autres modes de réalisation de l’invention sont également possibles.

Claims

8 REVENDICATIONS
1. Procédé de fabrication d’un système dans un boitier (SiP) à plusieurs couches, le procédé de fabrication comprenant pour chaque couche courante les étapes suivantes :
- réalisation (A) d’un substrat diélectrique par une technique de fabrication additive, le substrat comprenant une surface de réception la surface de réception comprenant des zones de réception configurées pour recevoir des composants électroniques ;
- dépôt (B) d’une colle dans les zones de réception ;
- dépôt (C) de composants électroniques dans les zones de réception correspondantes ;
- dépôt (E) d’éléments d’interconnexion entre les composants électroniques ;
- création (F) d’au moins une interconnexion avec une couche adjacente ;
- encapsulation (G) de la couche courante par matière de remplissage, la matière de remplissage formant une surface extérieure ;
- préparation (H) de la surface extérieure pour réception de la couche suivante.
2. Procédé selon la revendication 1 , dans lequel l’étape (A) de réalisation du substrat diélectrique comprend sa polymérisation, de préférence sa photopolymérisation.
3. Procédé selon la revendication 1 ou 2, dans lequel la technique de fabrication additive comprend la technique de stéréolithographie ou la technique de dépôt de fil fondu.
4. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape (B) de dépôt de la colle est réalisée par une vis sans fin ou par un système de distribution temps pression.
5. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape (C) de dépôt des composants électroniques est réalisée par une tête de dépôt ; de préférence, l’étape (C) de dépôt des composants électroniques comprend en outre la mise en place de drains thermiques collés sur les composants électroniques.
6. Procédé selon l’une quelconque des revendications précédentes, comprenant en outre une étape (D) de polymérisation de la colle mise en œuvre après 9 l’étape (C) de dépôt des composants électroniques et avant l’étape (E) de dépôt d’éléments d’interconnexion.
7. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape (E) de dépôt d’éléments d’interconnexion comprend le dépôt de fils conducteurs ou d’une encre conductrice entre composants électroniques.
8. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape (F) de création d’au moins une interconnexion avec une couche adjacente comprend le dépôt d’une colle conductrice ou d’un plastique chargé en particules conductrices.
9. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape (G) d’encapsulation de la couche courante comprend le remplissage d’un volume délimité par le substrat diélectrique par la matière de remplissage.
10. Procédé selon l’une quelconque des revendications précédentes, dans lequel l’étape (H) de préparation de la surface extérieure comprend la mise en œuvre d’une technique de décapage.
11. Procédé selon l’une quelconque des revendications précédentes, comprenant en outre une étape de contrôle optique mise en œuvre entre au moins certaines desdites étapes.
12. Installation de fabrication (10) d’un système dans un boitier (SiP) à plusieurs couches, l’installation comprenant une pluralité de modules (12, ... , 22) adaptés pour la mise en œuvre du procédé selon l’une quelconque des revendications précédentes
PCT/EP2022/085203 2021-12-10 2022-12-09 Procédé de fabrication d'un système dans un boitier à plusieurs couches et installation de fabrication associée WO2023105054A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2113285A FR3130448A1 (fr) 2021-12-10 2021-12-10 Procédé de frabrication d'un système dans un boitier à plusieurs couches et installation de fabrication associée
FRFR2113285 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023105054A1 true WO2023105054A1 (fr) 2023-06-15

Family

ID=81346059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/085203 WO2023105054A1 (fr) 2021-12-10 2022-12-09 Procédé de fabrication d'un système dans un boitier à plusieurs couches et installation de fabrication associée

Country Status (2)

Country Link
FR (1) FR3130448A1 (fr)
WO (1) WO2023105054A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110051352A1 (en) * 2009-09-02 2011-03-03 Kim Gyu Han Stacking-Type USB Memory Device And Method Of Fabricating The Same
KR20130127855A (ko) * 2012-05-15 2013-11-25 전자부품연구원 몰딩 패키지 및 그 제조방법
US20160198576A1 (en) * 2013-06-24 2016-07-07 President And Fellows Of Harvard College Printed three-dimensional (3d) functional part and method of making
US20170042034A1 (en) * 2014-04-21 2017-02-09 Cornell University System and methods for additive manufacturing of electromechanical assemblies
EP3474639A1 (fr) * 2017-10-20 2019-04-24 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Incorporation d'un composant dans un support de composant en transférant le composant dans une cavité déjà remplie de matériau de remplissage
US20190228986A1 (en) * 2018-01-24 2019-07-25 Institute Of Geology And Geophysics Chinese Academy Of Sciences System-level packaging method and packaging system based on 3d printing
US20210195751A1 (en) * 2018-08-28 2021-06-24 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Electronic device and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110051352A1 (en) * 2009-09-02 2011-03-03 Kim Gyu Han Stacking-Type USB Memory Device And Method Of Fabricating The Same
KR20130127855A (ko) * 2012-05-15 2013-11-25 전자부품연구원 몰딩 패키지 및 그 제조방법
US20160198576A1 (en) * 2013-06-24 2016-07-07 President And Fellows Of Harvard College Printed three-dimensional (3d) functional part and method of making
US20170042034A1 (en) * 2014-04-21 2017-02-09 Cornell University System and methods for additive manufacturing of electromechanical assemblies
EP3474639A1 (fr) * 2017-10-20 2019-04-24 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Incorporation d'un composant dans un support de composant en transférant le composant dans une cavité déjà remplie de matériau de remplissage
US20190228986A1 (en) * 2018-01-24 2019-07-25 Institute Of Geology And Geophysics Chinese Academy Of Sciences System-level packaging method and packaging system based on 3d printing
US20210195751A1 (en) * 2018-08-28 2021-06-24 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Electronic device and method of manufacturing the same

Also Published As

Publication number Publication date
FR3130448A1 (fr) 2023-06-16

Similar Documents

Publication Publication Date Title
JP6789219B2 (ja) 画像センサデバイス
JP5584474B2 (ja) 貫通ビアによって前面接点に接続された後面接点を有するチップ
US8304285B2 (en) Array-molded package-on-package having redistribution lines
US11139229B2 (en) Package-on-package semiconductor assemblies and methods of manufacturing the same
US20210098437A1 (en) Integrated circuit module with integrated discrete devices
US20150279829A1 (en) Wafer package process
CN101339927A (zh) 半导体器件
CN1241032A (zh) 高集成度芯片上芯片封装
FR2938970A1 (fr) Procede pour empiler et interconnecter des circuits integres
KR20120068985A (ko) 본드 패드를 통과하여 연장된 비아를 갖는 마이크로전자 소자를 포함하는 적층형 마이크로전자 어셈블리
KR20130118757A (ko) 3차원 집적 회로를 제조하는 방법
JP5714112B2 (ja) PoP−mWLPとしての多機能センサ
TW202145465A (zh) 模組化之堆疊式矽封裝組件
US10181411B2 (en) Method for fabricating a carrier-less silicon interposer
US9929081B2 (en) Interposer fabricating process
WO2020134588A1 (fr) Structure d'encapsulation de mems et son procédé de fabrication
FR3035739A1 (fr) Composant electronique, notamment hyperfrequence, resistant a l'humidite, et procede de packaging d'un tel composant
WO2023105054A1 (fr) Procédé de fabrication d'un système dans un boitier à plusieurs couches et installation de fabrication associée
US10403510B2 (en) Method of fabricating a carrier-less silicon interposer using photo patterned polymer as substrate
US20180122762A1 (en) Semiconductor devices with underfill control features, and associated systems and methods
FR2928225A1 (fr) Realisation d'interconnexions verticales conductrices a base d'un polymere conducteur.
FR2818804A1 (fr) Procede de realisation d'un module multi-composants enterres et module obtenu par ce procede
FR3036531A1 (fr) Procede de realisation d'un circuit microfluidique au sein d'une structure integree tridimensionnelle, et structure correspondante
EP1732127B1 (fr) Procédé pour fixation et dispositif fabriqué par le procédé.
FR2968834A1 (fr) Procede de realisation de structures integrees tridimensionnelles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22834612

Country of ref document: EP

Kind code of ref document: A1