WO2023104255A1 - Radar sensor and production method - Google Patents

Radar sensor and production method Download PDF

Info

Publication number
WO2023104255A1
WO2023104255A1 PCT/DE2022/200265 DE2022200265W WO2023104255A1 WO 2023104255 A1 WO2023104255 A1 WO 2023104255A1 DE 2022200265 W DE2022200265 W DE 2022200265W WO 2023104255 A1 WO2023104255 A1 WO 2023104255A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
signals
radar sensor
recess
opening
Prior art date
Application number
PCT/DE2022/200265
Other languages
German (de)
French (fr)
Inventor
Xin Wang
Simon HOLZNER
Jürgen Franz
Rainer STECK
Original Assignee
Continental Autonomous Mobility Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Autonomous Mobility Germany GmbH filed Critical Continental Autonomous Mobility Germany GmbH
Publication of WO2023104255A1 publication Critical patent/WO2023104255A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/0243Printed circuits associated with mounted high frequency components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/144Stacked arrangements of planar printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/04Assemblies of printed circuits
    • H05K2201/042Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09072Hole or recess under component or special relationship between hole and component

Definitions

  • the present invention relates to a radar sensor and a production method for producing a radar sensor according to the invention.
  • Modern means of transport such as motor vehicles or motorcycles are increasingly being equipped with driver assistance systems which use sensor systems to detect the environment, recognize traffic situations and support the driver, e.g. B. by a braking or steering intervention or by the output of a visual or acoustic warning.
  • Radar sensors, lidar sensors, camera sensors or the like are regularly used as sensor systems for detecting the surroundings. From the sensor data determined by the sensors, conclusions can then be drawn about the environment. Environment detection using radar sensors is based on the emission of bundled electromagnetic waves and their reflection, e.g. B. by other road users, obstacles on the road or the edge of the road. Pedestrians are often detected using camera sensors, but radar sensors are also increasingly being used here.
  • Radar sensors are used for systems of the type described above, often in combination with sensors of other technologies, such as e.g. B. camera or lidar sensors. Radar sensors have i.a. the advantage that they work reliably even in poor weather conditions and, in addition to the distance from objects, can also directly measure their radial relative speed using the Doppler effect. As a rule, 24 GHz, 77 GHz and 79 GHz are used as transmission frequencies. Due to the increasing functional scope of such systems, the requirements are constantly increasing, especially with regard to the maximum detection range. At the same time, however, there is a sharp fall in prices. In addition to detecting the surroundings of motor vehicles for systems of the type described above, the interior monitoring of motor vehicles is now also coming into focus, e.g. B. to identify which seats are occupied; frequencies in the 60 GHz range are used.
  • a central element of every radar sensor is the antenna, which largely defines the performance and price of the radar sensor.
  • the antennas are mostly realized in planar technology on a high-frequency circuit board, e.g. B. as patch antennas. Disadvantages of such an antenna implementation are losses in feed lines and antennas (which limits the range) and the high cost of such a circuit board, with z. B. the material and process costs are significantly higher than when using standard PCB materials.
  • Generic antennas usually consist (completely or partially) of a printed circuit board or PCB (Printed Circuit Board) with an etched Meta II structure in particular on an HF substrate and/or a molded part made of plastic.
  • PCB Print Circuit Board
  • the layer thickness of the surface metallization of the molded part is relatively thin (e.g. typically thinner than 5 pm, in particular including adhesion promoter, antioxidant layer, "finishing" for soldering or the like), which can affect the HF performance, the soldering quality or the like, i. H. the radar sensor works less reliably.
  • DE 102018203 106 A1 discloses a radar system that has one or more individual antennas for transmitting and/or receiving radar signals in order to detect the surroundings of a motor vehicle.
  • the antenna is formed by a board and a separate molded part made of plastic (plastic antenna), the board having at least one high-frequency component and at least one opening as a coupling or decoupling point for HF signals.
  • the molded part is made from one piece and is arranged on the opposite side of the circuit board to the at least one high-frequency component.
  • the at least one radiating or receiving element is designed in such a way that it can receive in the direction of the circuit board or radiate from the direction of the circuit board.
  • the object of the present invention is now to provide a radar sensor with improved performance and reliability and a manufacturing method for such a radar sensor, with which the disadvantages of the prior art are overcome in a simple and cost-effective manner. solution of the task
  • the radar sensor according to the invention is used in particular for object recognition and can be used practically in the automotive or vehicle sector.
  • the radar sensor comprises a first circuit board with at least one HF component or high-frequency component for generating and/or receiving HF signals (or radar signals) and at least one opening for coupling and/or decoupling the HF signals, and a second Circuit board, wherein the first circuit board and second circuit board are at least partially metallized, the first circuit board and/or second circuit board have at least one, in particular longitudinal, recess, and the first circuit board or the second circuit board has at least one opening for radiating and/or receiving the RF -Has signals.
  • At least one waveguide is formed by the recess or the recesses in the first circuit board and/or the second circuit board and the arrangement of the circuit boards relative to one another, d. H. the waveguide is created by the space, in particular air-filled, within the recess(es) which is created by the metalized wall of the recess in the first and/or second circuit board.
  • the special arrangement of the circuit boards and the recess(es) therein results in a waveguide antenna or a waveguide slot antenna, which includes the recess and the opening for radiating and/or receiving the HF signals.
  • the printed circuit boards of the radar sensor according to the invention preferably contain no HF substrate. Due to the fact that an HF substrate does not necessarily have to be used for the printed circuit boards, the radar sensor according to the invention can be produced particularly cost-effectively with little outlay in terms of production and time. Furthermore, the recesses can also be produced in a simple manner during the production process of the circuit board, as a result of which the expenditure of time and money is reduced to a particular extent. In addition, the circuit board can thus fulfill mechanical as well as electromagnetic functions.
  • An HF substrate within the meaning of the invention is understood to be a substrate that has constant parameters that are specifically optimized for use in the high-frequency range. These parameters include a constant permittivity and the smallest possible loss angle. The value of the loss angle of common RF substrates is typically 0.005 or less at 10 GHz.
  • All types of printed circuit boards are included as circuit boards within the meaning of the invention, e.g. As circuit boards or printed circuits (PCB, Printed Circuit Board), which are used as a carrier for electronic components.
  • the printed circuit boards comprise an electrically insulating material and, as a rule, conductive connections (so-called conductor tracks) adhering thereto. As an insulating material z. B.
  • fiber-reinforced plastic or laminated paper (especially from phenolic: fiber composite material made of paper and phenol-formaldehyde resin) can be used.
  • the conductor tracks are usually etched from a thin layer of copper with a thickness in the range of e.g. B. 10-50 pm. Components can then be soldered on soldering surfaces (pads) or in soldering eyes, e.g. B. microchips, HF chips or HF components, transmitting and receiving antennas.
  • the circuit board types range from single-sided circuit boards to multilayer and special technologies. All types and/or materials of circuit boards known from the prior art can be used as circuit boards, such as e.g. B.
  • Standard printed circuit boards single-sided and double-sided printed circuit boards, multilayer boards with several layers, Flexlam, thin printed circuit boards, thick copper printed circuit boards, coated printed circuit boards, printed circuit boards on glass, HDI (high-density interconnect) printed circuit boards, SBU (sequential build up) printed circuit boards, LBA (conductor pattern -Construction) circuit boards, IMS (Insulated Metal Substrate) circuit boards or the like.
  • the “CTE mismatch” in the radar sensor can be well balanced through a suitable selection of circuit board substrates or materials; in particular, the first and second circuit boards can be made of the same or different material.
  • the circuit boards may comprise a fire resistant material and/or a bismaleimide trizine resin and/or a polyimide material and/or an epoxy matrix material and/or the like, the loss angles of these materials should be greater than 0.005 at 10 GHz.
  • the first circuit board and the two circuit boards can expediently be connected to one another via soldering points (e.g. solder balls or solder drops, in particular precisely defined by a so-called solder mask), i. H. they are connected to each other by a soldering process.
  • soldering points e.g. solder balls or solder drops, in particular precisely defined by a so-called solder mask
  • soldering quality e.g. B. in terms of soldering width and height, easily controlled and improved.
  • the first circuit board and the two circuit boards can also be connected to one another by means of gluing, pressing, pressing together or the like,
  • the recesses or the wall of the recess or also the circuit boards are preferably at least partially metallized. This results in the advantage that the metal layer of the in particular milled waveguide antenna is more massive or thicker than conventional layers of the molded part applied by means of PVD processes and is easier to produce and implement.
  • the waveguide antenna or the waveguide can be formed or arranged on the side of the first board facing the at least one high-frequency component or on the opposite side, with the at least one radiating or receiving element radiating in the direction of the second board (or to the antenna) or from the direction of the second circuit board (or from the direction of the antenna).
  • the invention thus explicitly includes all configurations in which the antenna is arranged either in the direction of the HF component or in the opposite direction.
  • the present invention also claims a method for producing a radar sensor, which comprises a first circuit board with at least one high-frequency component for generating/receiving HF signals and a second circuit board, the first circuit board and/or second circuit board preferably being at least partially metalized. At least one recess is created in the first and/or second circuit board and an opening for coupling and/or decoupling the HF signals in the first circuit board, and at least one opening for radiating and/or receiving the HF signals in the first circuit board or the second circuit board is generated.
  • a waveguide is produced by arranging the first circuit board and the second circuit board on one another in such a way that the recess serves as a waveguide for the HF signals.
  • the waveguide antenna or the waveguide which is created by the special arrangement of the circuit boards and the recess, does not have to be provided as a separate component, but is provided in a simple and inexpensive manner by the arrangement of the circuit boards and the recesses in the circuit board(s). formed during the manufacturing process.
  • this has the following method steps:
  • the arrangement of an HF component on the first circuit board is preferred (this can be attached by soldering, for example),
  • the order of the method steps can vary, for example by creating the openings for coupling and/or coupling out the HF signals and the openings for emitting and/or receiving recesses for the HF signals in parallel (e.g. by depth milling) or one after the other become. Or that the RF component is attached to the first board before or after the assembly of the two boards.
  • the at least one recess can expediently be produced by milling, in particular controlled depth milling. This technique offers the advantage that the recesses can be produced particularly easily, inexpensively and quickly.
  • the recesses can be designed in the form of slots, tubes, round and/or rectangular channels.
  • the openings can expediently be produced by means of controlled depth milling, drilling and/or laser technology.
  • first circuit board and the second circuit board can be connected to each other by soldering.
  • solder mask can advantageously be used for the soldering, with several soldering points being provided at definable locations in order to improve the connection process and the later connection to a particular extent.
  • solder mask within the meaning of the invention includes in particular all known configurations such as solder resist, solder resist, solder mask or resist.
  • first circuit board and the second circuit board can also be connected to one another (in particular by means of conductive material) by (low-temperature) sintering and/or welding and/or pressing together and/or gluing.
  • the method can preferably have the method step of metallizing or partially metallizing the recesses.
  • the recess(es) for the waveguide are first produced on the circuit board, followed by the openings and then, after the mechanical work, the metallization.
  • the assembly The circuit board with the HF component (e.g. MMIC - Monolithic Microwave Integrated Circuit) can then optionally take place as a step after the production of the first circuit board, but also after the circuit boards have been connected or soldered/glued together.
  • FIG. 1 is a simplified schematic of a prior art radio frequency board of a radar system
  • FIG. 2 shows a simplified schematic representation of an embodiment of a radar sensor according to the invention
  • FIG. 3 shows a simplified schematic illustration of a further embodiment of a radar sensor according to the invention.
  • FIG. 4 shows a simplified schematic illustration of a further embodiment of a radar sensor according to the invention.
  • FIG. 5 shows a simplified schematic representation of a further embodiment of a radar sensor according to the invention.
  • FIG. 6 shows a simplified illustration of an embodiment of the production method according to the invention.
  • Generic antennas for radar systems for detecting the surroundings are usually implemented as planar antennas on a high-frequency circuit board.
  • 1 shows a high-frequency circuit board with a high-frequency component, a so-called MMIC (Monolithic Microwave Integrated Circuit) and with three transmitting antennas (TX) and four receiving antennas (RX), the antennas each being composed of several individual radiators.
  • the antennas are implemented as planar patch antennas.
  • the antennas and their leads from the high-frequency chip require a special substrate on the top layer of the high-frequency circuit board with material data suitable for high-frequency (e.g. defined thickness, defined dielectric constant, very low loss angle).
  • material data suitable for high-frequency e.g. defined thickness, defined dielectric constant, very low loss angle.
  • the material costs of this special substrate and its processing result in costs that are higher by a factor of a factor compared to a purely low-frequency circuit board of the same size and the same number of layers.
  • the signal losses in the antennas and their feed lines are also disadvantageous.
  • the radar sensor 1 comprises a first circuit board 2 and a second circuit board 3.
  • the first circuit board 2 has a metallization 2a on its surface and an HF component 4 attached thereto for transmitting HF signals or radar signals.
  • the HF component 4 is fastened to the circuit board 2 via solder balls 8 .
  • the second circuit board 3 also has a metallization 3a.
  • the metallization 2a, 3a in FIG. 2 is continuous, but the invention also explicitly includes configurations of the radar sensor 1 in which the metallization 2a, 3a is not implemented circumferentially but only partially on the circuit boards 2, 3.
  • the circuit boards 2, 3 are arranged on one another and connected to one another in a simple manner, for example by soldering them to one another.
  • the circuit board 3 has a solder mask 10, which is used to hold the solder 9, so that the soldered connection takes place at points that are to be defined.
  • the connection also explicitly includes configurations in which the solder mask is not only provided on one of the circuit boards 2, 3, but rather a solder mask 10 is located on both circuit boards 2, 3.
  • the first circuit board 2 includes an opening 5 for coupling and/or coupling out the HF signals.
  • the second circuit board 3 has a recess 6, which has preferably been produced using controlled depth milling technology and serves as a waveguide, the HF signals can thus be generated in the HF component 4, through the opening 5 in the waveguide or the recess 6 are coupled in, passed on through them and finally radiated through the opening 7 .
  • radar signals or HF signals can also be received through the opening 7 , guided through the waveguide or the recess 6 to the opening 5 and finally coupled out through the opening 5 to the HF component 4 .
  • the waveguide antenna of the radar sensor 2 is formed here by the space created by the recess 6 and the adjacent conversions of the circuit boards 2, 3, and the opening 7 for emitting/receiving HF signals.
  • the first printed circuit board 2 which includes the HF component 4
  • the first printed circuit board 2 which includes the HF component 4
  • the circuit board 3 serves only to delimit the space that is created by the recess 6 .
  • the circuit boards 2, 3 are in this case also arranged on one another or connected to one another via solders or solder 9, which are applied in solder masks 10 arranged on both sides of each of the circuit boards 2, 3.
  • the first circuit board 2 and the second circuit board 3 each have a recess 6a, 6b, d. H. the recesses 6a, 6b thus form a common recess 6, which is used for wave guidance.
  • the radar signals or HF signals are emitted starting from the HF component 4 through the opening 5, the space formed by the recesses 6a, 6b, and the opening 7d. H. against the emission direction of the HF component 4.
  • FIG. 5 A further embodiment of a radar sensor 1 according to the invention is shown in FIG. 5 .
  • the opening 7 for emitting and/or receiving the HF signals is not in the first circuit board 2, but in the second circuit board 3.
  • the radar signals are emitted starting from the HF Component 4 through the opening 5, the space formed by the recesses 6a, 6b, and the opening 7, i. H. in the same emission direction of the HF component 4.
  • FIG. 6 shows an embodiment of a method sequence according to the invention for producing a radar sensor.
  • Providing step I) a first circuit board 2 and a second circuit board 3.
  • Creating at least one recess 6, 6a, 6b on the first circuit board 2 and/or the second circuit board 3 (step II), preferably several longitudinal or slotted , Tubular or rectangular recesses 6, 6a, 6b are produced on/in the first circuit board 2 and/or the second circuit board 3 by means of depth milling technology.
  • This is followed by the following method steps: creating a first opening 5 for coupling and/or decoupling the HF signals in the first circuit board (step III) and creating a second opening 7 for radiating and/or receiving the HF signals in the first circuit board or the second board (Step IV).
  • step V the circuit boards 2, 3--alternatively only the walls of the recess(es) 6, 6a, 6b--and the walls of the openings 5, 7 are metallized (step V).
  • a high-frequency component or HF component 4 can be arranged on the first circuit board 1 (step VI), in that it is preferably connected to the first circuit board 2 via solder balls 8 .
  • the waveguide or the waveguide antenna is produced or manufactured by arranging the first circuit board 2 and the second circuit board 3 on one another (step VII) and connecting them (step VIII), e.g. B. through Soldering.
  • step VIII e.g. B. through Soldering.
  • the order of the process steps (steps II-VIII) can be specified explicitly according to the best possible process flow.
  • the production process could include the steps of selective etching, application of the solder mask 10 and finishing of the surface after the provision (step I), the mechanical processing according to steps II-IV and the subsequent metallization (step V), before then the assembly (e.g. with the HF component according to step VI) and the arranging (according to step VII or step VII and step VIII) takes place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The invention relates to a radar sensor, in particular a radar sensor for object recognition for a vehicle, comprising a first circuit board having at least one high-frequency component for generating/receiving HF signals and at least one opening for in- and/or out-coupling the HF signals, and a second circuit board, wherein the first circuit board and/or second circuit board are at least partially metallised, the first circuit board and/or second circuit board have at least one recess, and the first circuit board or second circuit board has at least one opening for emitting and/or receiving the HF signals, and at least one waveguide is formed by the recess in the first circuit board and/or second circuit board and the arrangement of the circuit boards relative to one another. The invention also relates to a method for producing a radar sensor, in particular according to at least one of the preceding claims, comprising a first circuit board having at least one high-frequency component for generating/receiving HF signals and at least one opening for in- and/or out-coupling the HF signals, and a second circuit board, and a waveguide, wherein the waveguide is produced by the first circuit board and the second circuit board being arranged next to one another in such a way that the recess functions as a waveguide for the HF signals.

Description

Radarsensor sowie ein Herstellungsverfahren Radar sensor and a manufacturing process
Die vorliegende Erfindung betrifft einen Radarsensor sowie ein Herstellungsverfahren zum Herstellen eines erfindungsgemäßen Radarsensors. The present invention relates to a radar sensor and a production method for producing a radar sensor according to the invention.
Technologischer Hintergrund Technological background
Moderne Fortbewegungsmittel wie Kraftfahrzeuge oder Motorräder werden zunehmend mit Fahrerassistenzsystemen ausgerüstet, welche mit Hilfe von Sensorsystemen die Umgebung erfassen, Verkehrssituationen erkennen und den Fahrer unterstützen können, z. B. durch einen Brems- oder Lenkeingriff oder durch die Ausgabe einer optischen oder akustischen Warnung. Als Sensorsysteme zur Umgebungserfassung werden regelmäßig Radarsensoren, Lidarsensoren, Kamerasensoren oder dergleichen eingesetzt. Aus den durch die Sensoren ermittelten Sensordaten können anschließend Rückschlüsse auf die Umgebung gezogen werden. Die Umgebungserfassung mittels Radarsensoren basiert auf der Aussendung von gebündelten elektromagnetischen Wellen und deren Reflexion, z. B. durch andere Verkehrsteilnehmer, Hindernissen auf der Fahrbahn oder die Randbebauung der Fahrbahn. Die Erfassung von Fußgängern wird oftmals mit Kamerasensoren durchgeführt, jedoch kommen hierbei auch zunehmend Radarsensoren zum Einsatz. Modern means of transport such as motor vehicles or motorcycles are increasingly being equipped with driver assistance systems which use sensor systems to detect the environment, recognize traffic situations and support the driver, e.g. B. by a braking or steering intervention or by the output of a visual or acoustic warning. Radar sensors, lidar sensors, camera sensors or the like are regularly used as sensor systems for detecting the surroundings. From the sensor data determined by the sensors, conclusions can then be drawn about the environment. Environment detection using radar sensors is based on the emission of bundled electromagnetic waves and their reflection, e.g. B. by other road users, obstacles on the road or the edge of the road. Pedestrians are often detected using camera sensors, but radar sensors are also increasingly being used here.
Für Systeme der oben beschriebenen Art werden Radarsensoren eingesetzt, häufig auch in Fusion mit Sensoren anderer Technologie, wie z. B. Kamera- oder Lidarsensoren. Radarsensoren haben u. a. den Vorteil, dass sie auch bei schlechten Wetterbedingungen zuverlässig arbeiten und neben dem Abstand von Objekten auch direkt deren radiale Relativgeschwindigkeit über den Dopplereffekt messen können. Als Sendefrequenzen werden dabei in der Regel 24 GHz, 77 GHz und 79 GHz eingesetzt. Durch den zunehmenden funktionalen Umfang solcher Systeme erhöhen sich permanent die Anforderungen, insbesondere an die maximale Detektionsreichweite. Gleichzeitig findet aber dennoch ein starker Preisverfall statt. Neben der Umgebungserfassung von Kraftfahrzeugen für Systeme der oben beschriebenen Art rückt mittlerweile auch die Innenraumüberwachung von Kraftfahrzeugen in den Fokus, z. B. zur Erkennung, welche Sitze belegt sind; dabei werden Frequenzen im Bereich 60 GHz eingesetzt. Radar sensors are used for systems of the type described above, often in combination with sensors of other technologies, such as e.g. B. camera or lidar sensors. Radar sensors have i.a. the advantage that they work reliably even in poor weather conditions and, in addition to the distance from objects, can also directly measure their radial relative speed using the Doppler effect. As a rule, 24 GHz, 77 GHz and 79 GHz are used as transmission frequencies. Due to the increasing functional scope of such systems, the requirements are constantly increasing, especially with regard to the maximum detection range. At the same time, however, there is a sharp fall in prices. In addition to detecting the surroundings of motor vehicles for systems of the type described above, the interior monitoring of motor vehicles is now also coming into focus, e.g. B. to identify which seats are occupied; frequencies in the 60 GHz range are used.
Ein zentrales Element jedes Radarsensors ist die Antenne, sie definiert maßgeblich die Performance und den Preis des Radarsensors. Aktuell werden die Antennen meist in Planartechnologie auf einer Hochfrequenzplatine realisiert, z. B. als Patchantennen. Nachteilig an einer solchen Antennenrealisierung sind Verluste in Zuleitungen und Antennen (was die Reichweite limitiert) sowie ein hoher Kostenaufwand einer solchen Platine, wobei z. B. die Material- und Prozesskosten deutlich höher sind als bei der Verwendung von Standard-PCB-Materialen. A central element of every radar sensor is the antenna, which largely defines the performance and price of the radar sensor. Currently, the antennas are mostly realized in planar technology on a high-frequency circuit board, e.g. B. as patch antennas. Disadvantages of such an antenna implementation are losses in feed lines and antennas (which limits the range) and the high cost of such a circuit board, with z. B. the material and process costs are significantly higher than when using standard PCB materials.
Gattungsgemäße Antennen bestehen in der Regel (vollständig oder teilweise) aus einer Leiterplatte bzw. PCB (Printed Circuit Board) mit einer insbesondere geätzten Meta II Struktur auf einem HF-Substrat und/oder einem Formteil aus Kunststoff. Daraus können Nachteile entstehen, wie z. B. hohe Kosten durch spezielle HF-Substrate, schwankende Material Eigenschaften oder sehr anspruchsvolle Fertigungstoleranzen eines Formteiles. Außerdem ist die Schichtdicke der Oberflächenmetallisierung des Formteils relativ dünn (z. B. typischerweise dünner als 5pm insbesondere inklusive Haftvermittler, Antioxidationsschicht, „Finishing“ für Lötung oder dergleichen), wodurch die HF-Performance, die Lötqualität oder dergleichen beeinträchtigt werden können, d. h. der Radarsensor weniger zuverlässig arbeitet. Generic antennas usually consist (completely or partially) of a printed circuit board or PCB (Printed Circuit Board) with an etched Meta II structure in particular on an HF substrate and/or a molded part made of plastic. This can result in disadvantages such as B. high costs due to special HF substrates, fluctuating material properties or very demanding manufacturing tolerances of a molded part. In addition, the layer thickness of the surface metallization of the molded part is relatively thin (e.g. typically thinner than 5 pm, in particular including adhesion promoter, antioxidant layer, "finishing" for soldering or the like), which can affect the HF performance, the soldering quality or the like, i. H. the radar sensor works less reliably.
Druckschriftlicher Stand der Technik Printed state of the art
Aus der DE 102018203 106 A1 ist ein Radarsystem bekannt, das zur Umfelderfassung eines Kraftfahrzeugs eine oder mehrere Einzelantennen zum Senden und/oder Empfangen von Radarsignalen aufweist. Die Antenne wird durch eine Platine und einem separaten Formteil aus Kunststoff gebildet (Kunststoffantenne), wobei die Platine mindestens ein Hochfrequenzbauteil und mindestens eine Öffnung als Ein- bzw. Auskoppelstelle für HF- Signale aufweist. Das Formteil ist dabei aus einem Stück gefertigt und auf der zu dem wenigstens einen Hochfrequenzbauteil gegenüberliegenden Seite der Platine angeordnet. Das mindestens eine abstrahlende bzw. empfangende Element ist dabei derart ausgebildet, dass es in Richtung Platine empfangen bzw. aus Richtung der Platine abstrahlt kann. DE 102018203 106 A1 discloses a radar system that has one or more individual antennas for transmitting and/or receiving radar signals in order to detect the surroundings of a motor vehicle. The antenna is formed by a board and a separate molded part made of plastic (plastic antenna), the board having at least one high-frequency component and at least one opening as a coupling or decoupling point for HF signals. The molded part is made from one piece and is arranged on the opposite side of the circuit board to the at least one high-frequency component. The at least one radiating or receiving element is designed in such a way that it can receive in the direction of the circuit board or radiate from the direction of the circuit board.
Aufgabe der vorliegenden Erfindung Object of the present invention
Ausgehend vom Stand der Technik besteht die Aufgabe der vorliegenden Erfindung nunmehr darin, einen Radarsensor mit verbesserter Performance und Zuverlässigkeit sowie ein Herstellungsverfahren eines derartigen Radarsensors zur Verfügung zu stellen, mit dem die Nachteile aus dem Stand der Technik in einfacher und kostengünstiger Weise überwunden sind. Lösung der Aufgabe Proceeding from the prior art, the object of the present invention is now to provide a radar sensor with improved performance and reliability and a manufacturing method for such a radar sensor, with which the disadvantages of the prior art are overcome in a simple and cost-effective manner. solution of the task
Die vorstehende Aufgabe wird durch die gesamte Lehre des Anspruchs 1 sowie des nebengeordneten Anspruchs gelöst. Zweckmäßige Ausgestaltungen der Erfindung sind in den Unteransprüchen beansprucht. The above object is achieved by the entire teaching of claim 1 and the independent claim. Expedient developments of the invention are claimed in the dependent claims.
Der erfindungsgemäße Radarsensor dient insbesondere zur Objekterkennung und kann praktischerweise im Automotive bzw. Fahrzeugbereich eingesetzt werden. Der Radarsensor umfasst dabei eine erste Platine mit mindestens einem HF-Bauteil bzw. Hochfreguenzbauteil zum Erzeugen und/oder Empfangen von HF-Signalen (bzw. Radarsignale) und mindestens einer Öffnung zum Ein- und/oder Auskoppeln der HF-Signale, und eine zweite Platine, wobei die erste Platine und zweite Platine zumindest teilweise metallisiert sind, die erste Platine und/oder zweite Platine zumindest eine, insbesondere longitudinale, Ausnehmung aufweisen, und die erste Platine oder die zweite Platine zumindest eine Öffnung zum Abstrahlen und/oder Empfangen der HF-Signale aufweist. Ferner wird mindestens ein Wellenleiter durch die Ausnehmung bzw. die Ausnehmungen in der ersten Platine und/oder der zweiten Platine sowie die Anordnung der Platinen zueinander gebildet, d. h. der Wellenleiter entsteht durch den, insbesondere luftgefüllten, Raum innerhalb der Ausnehmung(en), der durch die insbesondere metallisierte Wandung der Ausnehmung in der ersten und/oder zweiten Platine entsteht. Durch die spezielle Anordnung der Platinen und den/der Ausnehmung(en) darin entsteht somit eine Wellenleiterantenne bzw. eine Hohlleiterschlitzantenne, welche die Ausnehmung sowie die Öffnung zum Abstrahlen und/oder Empfangen der HF-Signale umfasst. The radar sensor according to the invention is used in particular for object recognition and can be used practically in the automotive or vehicle sector. The radar sensor comprises a first circuit board with at least one HF component or high-frequency component for generating and/or receiving HF signals (or radar signals) and at least one opening for coupling and/or decoupling the HF signals, and a second Circuit board, wherein the first circuit board and second circuit board are at least partially metallized, the first circuit board and/or second circuit board have at least one, in particular longitudinal, recess, and the first circuit board or the second circuit board has at least one opening for radiating and/or receiving the RF -Has signals. Furthermore, at least one waveguide is formed by the recess or the recesses in the first circuit board and/or the second circuit board and the arrangement of the circuit boards relative to one another, d. H. the waveguide is created by the space, in particular air-filled, within the recess(es) which is created by the metalized wall of the recess in the first and/or second circuit board. The special arrangement of the circuit boards and the recess(es) therein results in a waveguide antenna or a waveguide slot antenna, which includes the recess and the opening for radiating and/or receiving the HF signals.
In bevorzugter Weise beinhalten die Platinen des erfindungsgemäßen Radarsensors kein HF-Substrat. Dadurch, dass für die Platinen nicht zwangsläufig HF-Substrat verwendet werden muss, ist der erfindungsgemäße Radarsensor besonders kostengünstig mit geringem Herstellungs- und Zeitaufwand herzustellen. Ferner können die Ausnehmungen in einfacher Weise während des Herstellungsprozesses der Platine mit gefertigt werden, wodurch der Zeit- und Kostenaufwand in besonderem Maße verringert wird. Zudem kann die Platine dadurch mechanische als auch elektromagnetische Funktionen erfüllen. The printed circuit boards of the radar sensor according to the invention preferably contain no HF substrate. Due to the fact that an HF substrate does not necessarily have to be used for the printed circuit boards, the radar sensor according to the invention can be produced particularly cost-effectively with little outlay in terms of production and time. Furthermore, the recesses can also be produced in a simple manner during the production process of the circuit board, as a result of which the expenditure of time and money is reduced to a particular extent. In addition, the circuit board can thus fulfill mechanical as well as electromagnetic functions.
Als HF-Substrat im Sinne der Erfindung wird ein Substrat verstanden, das speziell auf die Anwendung im Hochfrequenzbereich optimierte und konstante Parameter aufweist. Diese Parameter sind unter anderem eine konstante Permittivität sowie ein möglichst kleiner Verlustwinkel. Der Wert des Verlustwinkels gängiger HF-Substrate beträgt in der Regel bei 10 GHz 0,005 oder weniger. Als Platine im Sinne der Erfindung sind alle Arten von Leiterplatten umfasst, wie z. B. Leiterkarten oder gedruckte Schaltungen (PCB, Printed Circuit Board), welche als Träger für elektronische Bauteile verwendet werden. Die Leiterplatten umfassen dabei ein elektrisch isolierendes Material und in der Regel daran haftende, leitende Verbindungen (sogenannte Leiterbahnen). Als isolierendes Material kann z. B. faserverstärkter Kunststoff oder Hartpapier (insbesondere aus Phenoplast: Faserverbundwerkstoff aus Papier und Phenol- Formaldehyd-Kunstharz) verwendet werden. Die Leiterbahnen werden zumeist aus einer dünnen Schicht Kupfer geätzt, mit einer Dicke im Bereich von z. B. 10-50 pm. Darauf können dann Bauelemente auf Lötflächen (Pads) oder in Lötaugen gelötet werden, z. B. Mikrochips, HF-Chips oder HF-Bauteile, Sende- und Empfangsantennen. Die Leiterplattenarten reichen von einseitigen Leiterplatten über Multilayer bis hin zu Sondertechniken. Als Platinen können dabei sämtliche aus dem Stand der Technik bekannte Platinenarten- und/oder -materialien eingesetzt werden, wie z. B. Standardleiterplatten, einseitige und zweiseitige Leiterplatten, Multilayerplatten mit mehreren Lagen, Flexlam, Dünnstleiterplatten, Dickkupferleiterplatten, beschichtete Leiterplatten, Leiterplatten auf Glas, HDI (High-Density-Interconnect)- Leiterplatten, SBU (Sequential Build Up)-Leiterplatten, LBA (Leiterbild-Aufbau)-Leiterplatten, IMS (Insulated Metal Substrate)-Leiterplatten oder dergleichen. Durch die Auswahl eines verlustbehafteten Leiterplattenmaterials können unerwünschte Substratwellen unterdrückt werden, wodurch es zu weniger Störungen im Bereich der Antenne oder im Richtdiagramm kommt. Ferner kann durch eine geeignete Auswahl von Platinensubstraten bzw. Materialien der „CTE-mismatch“ im Radarsensor gut balanciert werden, insbesondere können erste und zweite Platine aus gleichem oder unterschiedlichem Material gefertigt sein. Gemäß einer bevorzugten Ausgestaltung der Erfindung kann mindestens eine der Platinen ein Feuerwiderstandsmaterial und/oder ein Bismaleimidtrizinharz und/oder ein Polymidmaterial und/oder ein Epoxidmatrixmaterial und/oder dergleichen umfassen, wobei die Verlustwinkel dieser Materialen größer als 0,005 bei 10 GHz sein sollten. An HF substrate within the meaning of the invention is understood to be a substrate that has constant parameters that are specifically optimized for use in the high-frequency range. These parameters include a constant permittivity and the smallest possible loss angle. The value of the loss angle of common RF substrates is typically 0.005 or less at 10 GHz. All types of printed circuit boards are included as circuit boards within the meaning of the invention, e.g. As circuit boards or printed circuits (PCB, Printed Circuit Board), which are used as a carrier for electronic components. The printed circuit boards comprise an electrically insulating material and, as a rule, conductive connections (so-called conductor tracks) adhering thereto. As an insulating material z. B. fiber-reinforced plastic or laminated paper (especially from phenolic: fiber composite material made of paper and phenol-formaldehyde resin) can be used. The conductor tracks are usually etched from a thin layer of copper with a thickness in the range of e.g. B. 10-50 pm. Components can then be soldered on soldering surfaces (pads) or in soldering eyes, e.g. B. microchips, HF chips or HF components, transmitting and receiving antennas. The circuit board types range from single-sided circuit boards to multilayer and special technologies. All types and/or materials of circuit boards known from the prior art can be used as circuit boards, such as e.g. B. Standard printed circuit boards, single-sided and double-sided printed circuit boards, multilayer boards with several layers, Flexlam, thin printed circuit boards, thick copper printed circuit boards, coated printed circuit boards, printed circuit boards on glass, HDI (high-density interconnect) printed circuit boards, SBU (sequential build up) printed circuit boards, LBA (conductor pattern -Construction) circuit boards, IMS (Insulated Metal Substrate) circuit boards or the like. By selecting a lossy circuit board material, unwanted substrate waves can be suppressed, resulting in fewer disturbances in the area of the antenna or in the directivity pattern. Furthermore, the “CTE mismatch” in the radar sensor can be well balanced through a suitable selection of circuit board substrates or materials; in particular, the first and second circuit boards can be made of the same or different material. According to a preferred embodiment of the invention, at least one of the circuit boards may comprise a fire resistant material and/or a bismaleimide trizine resin and/or a polyimide material and/or an epoxy matrix material and/or the like, the loss angles of these materials should be greater than 0.005 at 10 GHz.
Zweckmäßigerweise können die erste Platine und die zwei Platine über Lötstellen (z. B. Lötperlen oder Löttropfen, insbesondere präzise definiert durch eine sogenannte Soldermaske) miteinander verbunden sein, d. h. sie sind durch einen Lötvorgang miteinander verbunden. Insbesondere kann mit einer Standard-Soldermaske die Lötqualität, z. B. in Hinblick auf Löt-Breite und -Höhe, in einfacher Weise kontrolliert und verbessert werden. The first circuit board and the two circuit boards can expediently be connected to one another via soldering points (e.g. solder balls or solder drops, in particular precisely defined by a so-called solder mask), i. H. they are connected to each other by a soldering process. In particular, with a standard solder mask, the soldering quality, e.g. B. in terms of soldering width and height, easily controlled and improved.
Alternativ oder zusätzlich können die erste Platine und die zwei Platine auch mittels Kleben, Verpressen, Zusammendrücken oder dergleichen miteinander verbunden sein, Vorzugsweise sind die Ausnehmungen bzw. die Wandung der Ausnehmung bzw. auch die Platinen zumindest teilweise metallisiert. Daraus resultiert der Vorteil, dass die Metallschicht der insbesondere gefrästen Wellenleiterantenne massiver bzw. dicker im Vergleich zu herkömmlichen mittels PVD-Prozessen aufgebrachten Schichten des Formteils ist sowie einfacher herzustellen und zu implementieren ist. Alternatively or additionally, the first circuit board and the two circuit boards can also be connected to one another by means of gluing, pressing, pressing together or the like, The recesses or the wall of the recess or also the circuit boards are preferably at least partially metallized. This results in the advantage that the metal layer of the in particular milled waveguide antenna is more massive or thicker than conventional layers of the molded part applied by means of PVD processes and is easier to produce and implement.
Ferner kann die Wellenleiterantenne bzw. der Wellenleiter auf der zu dem wenigstens einen Hochfrequenzbauteil gerichteten Seite der ersten Platine oder auf der entgegengesetzten Seite gebildet werden bzw. angeordnet sein, wobei das mindestens eine abstrahlende bzw. empfangende Element in Richtung zur zweiten Platine abstrahlt (oder zur Antenne) bzw. aus Richtung der zweiten Platine (oder aus Richtung Antenne) empfängt. Explizit umfasst die Erfindung somit alle Ausgestaltungen, bei denen die Antenne entweder in Richtung des HF- Bauteils oder entgegengesetzt angeordnet ist. Furthermore, the waveguide antenna or the waveguide can be formed or arranged on the side of the first board facing the at least one high-frequency component or on the opposite side, with the at least one radiating or receiving element radiating in the direction of the second board (or to the antenna) or from the direction of the second circuit board (or from the direction of the antenna). The invention thus explicitly includes all configurations in which the antenna is arranged either in the direction of the HF component or in the opposite direction.
Ferner beansprucht die vorliegende Erfindung ein Verfahren zur Herstellung eines Radarsensors, der eine erste Platine mit mindestens einem Hochfrequenzbauteil zum Erzeugen/Empfangen von HF-Signalen und eine zweite Platine umfasst, wobei die erste Platine und/oder zweite Platine vorzugsweise zumindest teilweise metallisiert sind. Dabei werden mindestens eine Ausnehmung in der ersten und/oder zweiten Platine und eine Öffnung zum Ein- und/oder Auskoppeln der HF-Signale in der ersten Platine erzeugt, und es wird mindestens eine Öffnung zum Abstrahlen und/oder Empfangen der HF-Signale in der ersten Platine oder der zweiten Platine erzeugt. Zudem wird ein Wellenleiter hergestellt, indem die erste Platine und die zweite Platine aneinander angeordnet werden, derart, dass die Ausnehmung als Wellenleiter für die HF-Signale dient. In vorteilhafter Weise muss die Wellenleiterantenne bzw. der Wellenleiter, der durch die spezielle Anordnung der Platinen und der Ausnehmung entsteht, nicht als separates Bauteil vorgesehen werden, sondern wird in einfacher und kostengünstiger Weise durch die Anordnung der Platinen und die Ausnehmungen in der/den Platinen beim Fertigungsprozess gebildet. The present invention also claims a method for producing a radar sensor, which comprises a first circuit board with at least one high-frequency component for generating/receiving HF signals and a second circuit board, the first circuit board and/or second circuit board preferably being at least partially metalized. At least one recess is created in the first and/or second circuit board and an opening for coupling and/or decoupling the HF signals in the first circuit board, and at least one opening for radiating and/or receiving the HF signals in the first circuit board or the second circuit board is generated. In addition, a waveguide is produced by arranging the first circuit board and the second circuit board on one another in such a way that the recess serves as a waveguide for the HF signals. Advantageously, the waveguide antenna or the waveguide, which is created by the special arrangement of the circuit boards and the recess, does not have to be provided as a separate component, but is provided in a simple and inexpensive manner by the arrangement of the circuit boards and the recesses in the circuit board(s). formed during the manufacturing process.
In einer bevorzugten Ausgestaltung des Verfahrens weist dieses die folgenden Verfahrensschritte auf: In a preferred embodiment of the method, this has the following method steps:
Bereitstellen einer ersten Platine und einer zweiten Platine, providing a first circuit board and a second circuit board,
Erzeugen einer Ausnehmung in der ersten Platine und/oder zweiten Platine, und Erzeugen einer Öffnung zum Ein- und/oder Auskoppeln der HF-Signale in der ersten Platine, und Creating a recess in the first circuit board and/or second circuit board, and creating an opening for coupling and/or decoupling the HF signals in the first circuit board, and
Erzeugen einer Öffnung zum Abstrahlen und/oder Empfangen der HF-Signale in der ersten Platine oder der zweiten Platine, und Anordnen der ersten Platine und der zweiten Platine aneinander. creating an opening for radiating and/or receiving the RF signals in the first circuit board or the second circuit board, and arranging the first circuit board and the second circuit board together.
Alternativ aber bevorzugt das Anordnen eines HF-Bauteils auf der ersten Platine (beispielsweise kann dieses durch Löten angebracht werden), Alternatively, however, the arrangement of an HF component on the first circuit board is preferred (this can be attached by soldering, for example),
Insbesondere können die Verfahrensschritte in Ihrer Reihenfolge variieren, indem beispielsweise die Öffnungen zum Ein- und/oder Auskoppeln der HF-Signale und die Öffnungen zum Abstrahlen und/oder Empfangen Ausnehmungen der HF-Signale parallel (z. B. durch Tiefenfräsen) oder nacheinander erzeugt werden. Oder dass das HF-Bauteil vor oder nach der Zusammenanordnung der zwei Platinen an der ersten Platine angebracht wird. In particular, the order of the method steps can vary, for example by creating the openings for coupling and/or coupling out the HF signals and the openings for emitting and/or receiving recesses for the HF signals in parallel (e.g. by depth milling) or one after the other become. Or that the RF component is attached to the first board before or after the assembly of the two boards.
Zweckmäßigerweise kann die mindestens eine Ausnehmung durch Fräsen insbesondere kontrolliertes Tiefenfräsen erzeugt werden. Diese Technik bietet den Vorteil, dass die Ausnehmungen besonders einfach, kostengünstig und schnell erzeugt werden können. Die Ausnehmungen können dabei in Form von Schlitzen, Röhren, runden und/oder rechteckförmigen Kanälen ausgestaltet sein. The at least one recess can expediently be produced by milling, in particular controlled depth milling. This technique offers the advantage that the recesses can be produced particularly easily, inexpensively and quickly. The recesses can be designed in the form of slots, tubes, round and/or rectangular channels.
Zweckmäßigerweise können die Öffnungen mittels kontrolliertem Tiefenfräsen, Bohren und/oder Lasertechnik erzeugt werden. The openings can expediently be produced by means of controlled depth milling, drilling and/or laser technology.
Ferner können die erste Platine und die zweite Platine durch Löten miteinander verbunden werden. Furthermore, the first circuit board and the second circuit board can be connected to each other by soldering.
In vorteilhafter Weise kann für das Löten dabei eine Soldermaske herangezogen werden, wobei mehrere Lötpunkte an festlegbaren Stellen vorgesehen sind, um den Verbindungsvorgang und die spätere Verbindung in besonderem Maße zu verbessern. Der Begriff „Soldermaske“ im Sinne der Erfindung umfasst insbesondere alle bekannten Ausgestaltungen, wie Lötstopplack, Lötstoppmaske, Soldermask oder Stopplack. A solder mask can advantageously be used for the soldering, with several soldering points being provided at definable locations in order to improve the connection process and the later connection to a particular extent. The term "solder mask" within the meaning of the invention includes in particular all known configurations such as solder resist, solder resist, solder mask or resist.
Alternativ oder zusätzlich können die erste Platine und die zweite Platine auch durch (Niedertemperatur-)Versintern und/oder Verschweißen und/oder Zusammendrücken und/oder Kleben (insbesondere mittels leitfähigem Material) miteinander verbunden werden. Alternatively or additionally, the first circuit board and the second circuit board can also be connected to one another (in particular by means of conductive material) by (low-temperature) sintering and/or welding and/or pressing together and/or gluing.
Vorzugsweise kann das Verfahren den Verfahrensschritt Metallisieren oder teilweises Metallisieren der Ausnehmungen aufweisen. In praktischer Weise werden auf der Platine dabei zunächst die Ausnehmung(en) für den Wellenleiter, danach die Öffnungen und anschließend, nach der mechanischen Arbeit, die Metallisierung erzeugt. Die Bestückung der Platine mit dem HF-Bauteil (z. B. MMIC - Monolithic Microwave Integrated Circuit) kann dann wahlweise als Schritt nach der Herstellung der ersten Platine aber auch nach dem Verbinden bzw. Zusammenlöten/Kleben der Platinen erfolgen.
Figure imgf000009_0001
The method can preferably have the method step of metallizing or partially metallizing the recesses. In a practical manner, the recess(es) for the waveguide are first produced on the circuit board, followed by the openings and then, after the mechanical work, the metallization. The assembly The circuit board with the HF component (e.g. MMIC - Monolithic Microwave Integrated Circuit) can then optionally take place as a step after the production of the first circuit board, but also after the circuit boards have been connected or soldered/glued together.
Figure imgf000009_0001
Im Folgenden wird die Erfindung anhand von zweckmäßigen Ausführungsbeispielen näher beschrieben. Es zeigen: In the following, the invention is described in more detail with reference to expedient exemplary embodiments. Show it:
Fig. 1 eine vereinfachte schematische Darstellung einer Hochfrequenzplatine eines Radarsystems nach dem Stand der Technik; 1 is a simplified schematic of a prior art radio frequency board of a radar system;
Fig. 2 eine vereinfachte schematische Darstellung einer Ausgestaltung eines erfindungsgemäßen Radarsensors; 2 shows a simplified schematic representation of an embodiment of a radar sensor according to the invention;
Fig. 3 eine vereinfachte schematische Darstellung einer weiteren Ausgestaltung eines erfindungsgemäßen Radarsensors; 3 shows a simplified schematic illustration of a further embodiment of a radar sensor according to the invention;
Fig. 4 eine vereinfachte schematische Darstellung einer weiteren Ausgestaltung eines erfindungsgemäßen Radarsensors; 4 shows a simplified schematic illustration of a further embodiment of a radar sensor according to the invention;
Fig. 5 eine vereinfachte schematische Darstellung einer weiteren Ausgestaltung eines erfindungsgemäßen Radarsensors, sowie 5 shows a simplified schematic representation of a further embodiment of a radar sensor according to the invention, and
Fig. 6 eine vereinfachte Darstellung einer Ausgestaltung des erfindungsgemäßen Herstellungsverfahrens. 6 shows a simplified illustration of an embodiment of the production method according to the invention.
Gattungsgemäße Antennen für Radarsysteme zur Umfelderfassung werden meist als planare Antennen auf einer Hochfrequenzplatine realisiert. In Fig. 1 ist eine Hochfrequenzplatine mit einem Hochfrequenzbauteil, einem sogenannten MMIC (Monolithic Microwave Integrated Circuit) und mit drei Sendeantennen (TX) sowie vier Empfangsantennen (RX) gezeigt, wobei die Antennen jeweils aus mehreren Einzelstrahlern zusammengesetzt sind. Die Antennen sind als planare Patchantennen realisiert. Generic antennas for radar systems for detecting the surroundings are usually implemented as planar antennas on a high-frequency circuit board. 1 shows a high-frequency circuit board with a high-frequency component, a so-called MMIC (Monolithic Microwave Integrated Circuit) and with three transmitting antennas (TX) and four receiving antennas (RX), the antennas each being composed of several individual radiators. The antennas are implemented as planar patch antennas.
Die Antennen und ihre Zuleitungen vom Hochfrequenzchip benötigen auf der Oberlage der Hochfrequenzplatine ein spezielles Substrat mit für Hochfrequenz geeigneten Materialdaten (z. B. definierte Dicke, definierte Dielektrizitätskonstante, sehr geringer Verlustwinkel). Insbesondere die Materialkosten dieses speziellen Substrats und seine Prozessierung (auch wegen der erforderlichen hohen Strukturgenauigkeiten) führen auf um Faktoren erhöhte Kosten gegenüber einer reinen Niederfrequenzplatine gleicher Größe und gleicher Lagenanzahl. Neben den Kosten sind aber auch die Signalverluste in den Antennen und ihren Zuleitungen nachteilig. The antennas and their leads from the high-frequency chip require a special substrate on the top layer of the high-frequency circuit board with material data suitable for high-frequency (e.g. defined thickness, defined dielectric constant, very low loss angle). In particular, the material costs of this special substrate and its processing (also because of the required high level of structural accuracy) result in costs that are higher by a factor of a factor compared to a purely low-frequency circuit board of the same size and the same number of layers. In addition to the costs, however, the signal losses in the antennas and their feed lines are also disadvantageous.
In Fig. 2 ist eine Ausgestaltung des erfindungsgemäßen Radarsensors 1 bzw. einer Sensorvorrichtung gezeigt. Der Radarsensor 1 umfasst eine erste Platine 2 und eine zweite Platine 3. Die erste Platine 2 weist eine Metallisierung 2a auf ihrer Oberfläche und ein daran angebrachtes HF-Bauteil 4 zum Senden von HF-Signalen bzw. Radarsignalen auf. Das HF- Bauteil 4 ist über Lötperlen 8 an der Platine 2 befestigt. Die zweite Platine 3 weist Ebenfalls eine Metallisierung 3a auf. Die Metallisierungen 2a, 3a in Fig. 2 ist durchgehend, jedoch umfasst die Erfindung explizit auch Ausgestaltungen des Radarsensors 1, bei dem die Metallisierung 2a, 3a nicht umlaufend, sondern nur teilweise auf den Platinen 2, 3 verwirklicht ist. In einfacher Weise werden die Platinen 2, 3 aneinander angeordnet und miteinander verbunden, indem diese beispielsweise aneinander gelötet werden. Für den Lötvorgang weist die Platine 3 eine Soldermaske 10 auf, die dazu dient, das Lot 9 aufzunehmen, so dass die Lötverbindung an festzulegenden Punkten erfolgt. Explizit umfasst die Verbindung jedoch auch Ausgestaltungen, bei denen die Soldermaske nicht nur auf einer der Platinen 2, 3 vorgesehen ist, sondern sich auf beiden Platinen 2, 3 eine Soldermaske 10 befindet. Ferner umfasst die erste Platine 2 eine Öffnung 5 zum Ein- und/oder Auskoppeln der HF-Signale. Darüber hinaus weist die zweite Platine 3 eine Ausnehmung 6 auf, die vorzugsweise mittels kontrollierter Tiefenfrästechnik erzeugt worden ist und als Wellenleiter dient, die HF-Signale können somit im HF-Bauteil 4 erzeugt werden, durch die Öffnung 5 in den Wellenleiter bzw. die Ausnehmung 6 eingekoppelt werden, durch diese weitergeleitet und schließlich durch die Öffnung 7 abgestrahlt werden. In gleicher Weise können auch Radarsignale bzw. HF-Signale durch die Öffnung 7 empfangen, durch den Wellenleiter bzw. die Ausnehmung 6 zur Öffnung 5 geleitet und schließlich durch die Öffnung 5 zum HF-Bauteil 4 hin ausgekoppelt werden. Die Wellenleiterantenne des Radarsensors 2 wird hierbei gebildet durch den Raum, der durch die Ausnehmung 6 und die daran angrenzenden Wandlungen der Platinen 2, 3 entsteht, und die Öffnung 7 zum Abstrahlen/Empfangen Von HF-Signalen. 2 shows an embodiment of the radar sensor 1 according to the invention or a sensor device. The radar sensor 1 comprises a first circuit board 2 and a second circuit board 3. The first circuit board 2 has a metallization 2a on its surface and an HF component 4 attached thereto for transmitting HF signals or radar signals. The HF component 4 is fastened to the circuit board 2 via solder balls 8 . The second circuit board 3 also has a metallization 3a. The metallization 2a, 3a in FIG. 2 is continuous, but the invention also explicitly includes configurations of the radar sensor 1 in which the metallization 2a, 3a is not implemented circumferentially but only partially on the circuit boards 2, 3. The circuit boards 2, 3 are arranged on one another and connected to one another in a simple manner, for example by soldering them to one another. For the soldering process, the circuit board 3 has a solder mask 10, which is used to hold the solder 9, so that the soldered connection takes place at points that are to be defined. However, the connection also explicitly includes configurations in which the solder mask is not only provided on one of the circuit boards 2, 3, but rather a solder mask 10 is located on both circuit boards 2, 3. Furthermore, the first circuit board 2 includes an opening 5 for coupling and/or coupling out the HF signals. In addition, the second circuit board 3 has a recess 6, which has preferably been produced using controlled depth milling technology and serves as a waveguide, the HF signals can thus be generated in the HF component 4, through the opening 5 in the waveguide or the recess 6 are coupled in, passed on through them and finally radiated through the opening 7 . In the same way, radar signals or HF signals can also be received through the opening 7 , guided through the waveguide or the recess 6 to the opening 5 and finally coupled out through the opening 5 to the HF component 4 . The waveguide antenna of the radar sensor 2 is formed here by the space created by the recess 6 and the adjacent conversions of the circuit boards 2, 3, and the opening 7 for emitting/receiving HF signals.
In Fig. 3 ist eine weitere Ausgestaltung eines erfindungsgemäßen Radarsensors 1 gezeigt. Im Gegensatz zur Ausgestaltung nach Fig. 2 weist die erste Platine 2, welche das HF-Bauteil 4 umfasst, neben der Öffnung 5 zum Ein- bzw. Auskoppeln der Radarsignale auch die Ausnehmung 6 und die Öffnung 7 zum Abstrahlen und oder empfangen der HF-Signale auf. Die Platine 3 dient hierbei lediglich zum Begrenzen des Raumes, der durch die Ausnehmung 6 entsteht. Die Platinen 2, 3 werden hierbei ebenfalls über Lote bzw. Lot 9, die in beidseitig an jeder der Platine 2, 3 angeordneten Soldermasken 10 aufgetragen werden, aneinander angeordnet bzw. miteinander verbunden. 3 shows a further embodiment of a radar sensor 1 according to the invention. In contrast to the embodiment according to FIG. 2, the first printed circuit board 2, which includes the HF component 4, has not only the opening 5 for coupling the radar signals in or out, but also the recess 6 and the opening 7 for radiating and/or receiving the HF signals. signals up. The circuit board 3 serves only to delimit the space that is created by the recess 6 . The circuit boards 2, 3 are in this case also arranged on one another or connected to one another via solders or solder 9, which are applied in solder masks 10 arranged on both sides of each of the circuit boards 2, 3.
In Fig. 4 ist eine weitere Ausgestaltung eines Erfindungsgemäßen Radarsensors 1 gezeigt. Im Gegensatz zur Ausgestaltung nach Fig. 3 weisen die erste Platine 2 und die zweite Platine 3 jeweils eine Ausnehmung 6a, 6b auf, d. h. die Ausnehmungen 6a, 6b bilden somit eine gemeinsame Ausnehmung 6, welche zur Wellenleitung dient. Die Abstrahlung der Radarsignale bzw. HF-Signale erfolgt gemäß Fig. 4 ausgehend vom HF-Bauteil 4 durch die Öffnung 5, den Raum, der durch die Ausnehmungen 6a, 6b gebildet wird, und die Öffnung 7 d. h. entgegen der Abstrahlrichtung des HF-Bauteils 4. 4 shows a further embodiment of a radar sensor 1 according to the invention. In contrast to the embodiment according to FIG. 3, the first circuit board 2 and the second circuit board 3 each have a recess 6a, 6b, d. H. the recesses 6a, 6b thus form a common recess 6, which is used for wave guidance. According to FIG. 4, the radar signals or HF signals are emitted starting from the HF component 4 through the opening 5, the space formed by the recesses 6a, 6b, and the opening 7d. H. against the emission direction of the HF component 4.
In Fig. 5 ist eine weitere Ausgestaltung eines Erfindungsgemäßen Radarsensors 1 gezeigt. Im Gegensatz zur Ausgestaltung gemäß Fig. 4 befindet sich die Öffnung 7 zum Abstrahlen und/oder Empfangen der HF-Signale nicht in der ersten Platine 2, sondern in der zweiten Platine 3. Die Abstrahlung der Radarsignale erfolgt gemäß Fig. 5 ausgehend vom HF-Bauteil 4 durch die Öffnung 5 den Raum, der durch die Ausnehmungen 6a, 6b gebildet wird, und die Öffnung 7, d. h. in gleicher Abstrahlrichtung des HF-Bauteils 4. A further embodiment of a radar sensor 1 according to the invention is shown in FIG. 5 . In contrast to the embodiment according to FIG. 4, the opening 7 for emitting and/or receiving the HF signals is not in the first circuit board 2, but in the second circuit board 3. According to FIG. 5, the radar signals are emitted starting from the HF Component 4 through the opening 5, the space formed by the recesses 6a, 6b, and the opening 7, i. H. in the same emission direction of the HF component 4.
Fin Fig. 6 ist eine Ausgestaltung eines erfindungsgemäßen Verfahrensablaufs zur Herstellung eines Radarsensors gezeigt. Bereitstellen (Schritt I) einer ersten Platine 2 und einer zweiten Platine 3. Erzeugen mindestens einer Ausnehmung 6, 6a, 6b auf der ersten Platine 2 und/oder der zweiten Platine 3 (Schritt II), bevorzugt werden hierbei mehrere longitudinale bzw. schlitz-, röhren- oder rechteckförmige Ausnehmungen 6, 6a, 6b mittels Tiefenfrästechnik auf/in der ersten Platine 2 und/oder zweiten Platine 3 erzeugt. Danach erfolgen die Verfahrensschritte: Erzeugen einer ersten Öffnung 5 zum Ein- und/oder Auskoppeln der HF-Signale in der ersten Platine (Schritt III) und Erzeugen einer zweiten Öffnung 7 zum Abstrahlen und/oder Empfangen der HF-Signale in der ersten Platine oder der zweiten Platine (Schritt IV). Danach werden die Platinen 2, 3 - alternativ auch nur die Wände der Ausnehmung(en) 6, 6a, 6b - und die Wände der Öffnungen 5, 7 metallisiert (Schritt V). Ferner kann ein Hochfrequenzbauteil bzw. HF-Bauteil 4 auf der ersten Platine 1 angeordnet werden (Schritt VI), indem dieses vorzugsweise über Lötperlen 8 mit der ersten Platine 2 verbunden wird. Im Anschluss daran wird der Wellenleiter bzw. die Wellenleiterantenne erzeugt bzw. hergestellt, indem die erste Platine 2 und die zweite Platine 3 aneinander angeordnet (Schritt VII) und verbunden (Schritt VIII) werden, z. B. durch Löten. Die Reihenfolge der Verfahrensschritte (Schritt ll-VIII) kann hierbei explizit entsprechend des bestmöglichen Verfahrensablaufes festgelegt werden. FIG. 6 shows an embodiment of a method sequence according to the invention for producing a radar sensor. Providing (step I) a first circuit board 2 and a second circuit board 3. Creating at least one recess 6, 6a, 6b on the first circuit board 2 and/or the second circuit board 3 (step II), preferably several longitudinal or slotted , Tubular or rectangular recesses 6, 6a, 6b are produced on/in the first circuit board 2 and/or the second circuit board 3 by means of depth milling technology. This is followed by the following method steps: creating a first opening 5 for coupling and/or decoupling the HF signals in the first circuit board (step III) and creating a second opening 7 for radiating and/or receiving the HF signals in the first circuit board or the second board (Step IV). Thereafter, the circuit boards 2, 3--alternatively only the walls of the recess(es) 6, 6a, 6b--and the walls of the openings 5, 7 are metallized (step V). Furthermore, a high-frequency component or HF component 4 can be arranged on the first circuit board 1 (step VI), in that it is preferably connected to the first circuit board 2 via solder balls 8 . Subsequently, the waveguide or the waveguide antenna is produced or manufactured by arranging the first circuit board 2 and the second circuit board 3 on one another (step VII) and connecting them (step VIII), e.g. B. through Soldering. The order of the process steps (steps II-VIII) can be specified explicitly according to the best possible process flow.
Gemäß einer anderen Ausgestaltung des Verfahrensablaufes könnte das Herstellungsverfahren nach dem Bereitstellen (Schritt I), der mechanischen Bearbeitung gemäß Schritte ll-IV und der anschließenden Metallisierung (Schritt V) die Schritte Selektives Ätzen, Aufträgen der Soldermaske 10 und Finishing der Oberfläche umfassen, bevor dann die Bestückung (z. B. mit dem HF-Bauteil gemäß Schritt VI) und das aneinander Anordnen (gemäß Schritt VII bzw. Schritt VII und Schritt VIII) erfolgt. According to another embodiment of the process sequence, the production process could include the steps of selective etching, application of the solder mask 10 and finishing of the surface after the provision (step I), the mechanical processing according to steps II-IV and the subsequent metallization (step V), before then the assembly (e.g. with the HF component according to step VI) and the arranging (according to step VII or step VII and step VIII) takes place.
BEZUGSZEICHENLISTE REFERENCE LIST
1 Radarsensor1 radar sensor
2 erste Platine2 first circuit board
2a Metallisierung2a metallization
3 Platine 3 circuit board
3a Metallisierung3a metallization
4 HF-Bauteil4 RF component
5 Öffnung 5 opening
6 Ausnehmung6 recess
6a Ausnehmung6a recess
6b Ausnehmung6b recess
7 Öffnung 7 opening
8 Lotperle 8 solder bead
9 Lot 9 lot
10 Soldermaske 10 Solder Mask

Claims

PATENTANSPRÜCHE PATENT CLAIMS
1. Radarsensor (1), insbesondere zur Objekterkennung für ein Fahrzeug, aufweisend eine erste Platine (2) mit mindestens einem Hochfrequenzbauteil (4) zum Erzeugen/Empfangen von HF-Signalen und mindestens einer Öffnung (5) zum Ein- und/oder Auskoppeln der HF-Signale, und eine zweite Platine (3), wobei die erste Platine (2) und/oder zweite Platine (3) zumindest teilweise metallisiert sind, die erste Platine (2) und/oder zweite Platine (3) zumindest eine Ausnehmung (6, 6a, 6b) aufweisen, und die erste Platine (2) oder zweite Platine (3) zumindest eine Öffnung (7) zum Abstrahlen und/oder Empfangen der HF-Signale aufweist, und ein Wellenleiter durch die Ausnehmung (6, 6a, 6b) in der ersten Platine (2) und/oder zweiten Platine (3) sowie die Anordnung der Platinen (2, 3) zueinander gebildet ist. 1. Radar sensor (1), in particular for object detection for a vehicle, having a first circuit board (2) with at least one high-frequency component (4) for generating/receiving HF signals and at least one opening (5) for coupling and/or decoupling of the HF signals, and a second circuit board (3), the first circuit board (2) and/or second circuit board (3) being at least partially metalized, the first circuit board (2) and/or second circuit board (3) having at least one recess (6, 6a, 6b), and the first circuit board (2) or second circuit board (3) has at least one opening (7) for radiating and/or receiving the HF signals, and a waveguide through the recess (6, 6a , 6b) in the first circuit board (2) and/or second circuit board (3) and the arrangement of the circuit boards (2, 3) relative to each other.
2. Radarsensor (1), nach Anspruch 1, dadurch gekennzeichnet, dass die erste Platine (2) und die zweite Platine (3) über Lötstellen (9) miteinander verbunden sind. 2. Radar sensor (1) according to claim 1, characterized in that the first circuit board (2) and the second circuit board (3) are connected to one another via soldering points (9).
3. Radarsensor (1), nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste Platine (2) und die zweite Platine (3) über mechanischen Druck und/oder Kleben verbunden sind. 3. Radar sensor (1) according to claim 1 or 2, characterized in that the first circuit board (2) and the second circuit board (3) are connected via mechanical pressure and / or gluing.
4. Radarsensor (1), nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ausnehmung (6, 6a, 6b) zumindest teilweise metallisiert ist. 4. Radar sensor (1) according to any one of the preceding claims, characterized in that the recess (6, 6a, 6b) is at least partially metallized.
5. Radarsensor (1), nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Platine (2) und/oder zweite Platine (3) zumindest teilweise metallisiert sind. 5. Radar sensor (1) according to any one of the preceding claims, characterized in that the first board (2) and / or second board (3) are at least partially metallized.
6. Radarsensor (1), nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens eine der Platinen (2, 3) ein Feuerwiderstandsmaterial und/oder ein Bismaleimidtrizinharz und/oder ein Polymidmaterial und/oder ein Epoxidmatrixmaterial und/oder dergleichen umfasst. 6. Radar sensor (1) according to one of the preceding claims, characterized in that at least one of the circuit boards (2, 3) comprises a fire-resistant material and/or a bismaleimide trizine resin and/or a polyimide material and/or an epoxy matrix material and/or the like.
7. Radarsensor (1), nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Soldermaske (10) auf mindestens einer der Platinen (2, 3) vorgesehen ist. 7. Radar sensor (1) according to any one of the preceding claims, characterized in that a solder mask (10) is provided on at least one of the circuit boards (2, 3).
8. Radarsensor (1), nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wellenleiter auf der dem Hochfrequenzbauteil gegenüberliegenden Seite der ersten Platine (1) gebildet wird. 8. Radar sensor (1) according to one of the preceding claims, characterized in that the waveguide is formed on the opposite side of the high-frequency component of the first circuit board (1).
9. Verfahren zur Herstellung eines Radarsensors (1), insbesondere nach mindestens einem der vorhergehenden Ansprüche, umfassend eine erste Platine (2) mit mindestens einem Hochfrequenzbauteil (4) zum Erzeugen/Empfangen von HF-Signalen, und eine zweite Platine (3), wobei mindestens eine Ausnehmung (6, 6a, 6b) in der ersten Platine (2) und/oder in der zweiten Platine (3) erzeugt wird, mindestens eine Öffnung (5) zum Ein- und/oder Auskoppeln der HF-Signale in der ersten Platine (2) erzeugt wird, und mindestens eine Öffnung (7) zum Abstrahlen und/oder Empfangen der HF- Signale in der ersten Platine (2) oder der zweiten Platine (3) erzeugt wird, und ein Wellenleiter hergestellt wird, indem die erste Platine (2) und die zweite Platine (3) aneinander angeordnet werden, derart, dass die Ausnehmung (6, 6a, 6b) als Wellenleiter für die HF-Signale dient. 9. Method for producing a radar sensor (1), in particular according to at least one of the preceding claims, comprising a first circuit board (2) with at least one high-frequency component (4) for generating/receiving HF signals, and a second circuit board (3), wherein at least one recess (6, 6a, 6b) is produced in the first circuit board (2) and/or in the second circuit board (3), at least one opening (5) for coupling and/or decoupling the HF signals in the first circuit board (2) is produced, and at least one opening (7) for radiating and/or receiving the HF signals is produced in the first circuit board (2) or the second circuit board (3), and a waveguide is produced by the the first circuit board (2) and the second circuit board (3) are arranged next to one another in such a way that the recess (6, 6a, 6b) serves as a waveguide for the HF signals.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Verfahren folgende Verfahrensschritte aufweist: 10. The method according to claim 9, characterized in that the method has the following method steps:
- Bereitstellen einer ersten Platine (2) und einer zweiten Platine (3),- Providing a first circuit board (2) and a second circuit board (3),
- Erzeugen einer Ausnehmung (6, 6a, 6b) in der ersten Platine (2) und/oder zweiten Platine (3), und - Creating a recess (6, 6a, 6b) in the first circuit board (2) and/or second circuit board (3), and
- Erzeugen einer Öffnung (5) zum Ein- und/oder Auskoppeln der HF-Signale in der ersten Platine (2), - Creating an opening (5) for coupling and/or decoupling the HF signals in the first circuit board (2),
- Erzeugen einer Öffnung (7) zum Abstrahlen und/oder Empfangen der HF-- Creating an opening (7) for radiating and/or receiving the HF
Signale in der ersten Platine (2) oder der zweiten Platine (3), und Signals in the first board (2) or the second board (3), and
- Anordnen der ersten Platine (2) und der zweiten Platine (3) aneinander. - Arranging the first circuit board (2) and the second circuit board (3) together.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die mindestens eine Ausnehmung (6, 6a, 6b) durch kontrolliertes Tiefenfräsen erzeugt wird. 14 11. The method according to claim 9 or 10, characterized in that the at least one recess (6, 6a, 6b) is produced by controlled depth milling. 14
12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Öffnungen (5, 7) mittels kontrolliertes Tiefenfräsen und/oder Bohren und/oder Lasertechnik erzeugt werden. 12. The method according to any one of claims 9 to 11, characterized in that the openings (5, 7) are produced by means of controlled depth milling and/or drilling and/or laser technology.
13. Verfahren nach einem der Ansprüche 9 bis12, dadurch gekennzeichnet, dass die erste Platine (2) und die zweite Platine (3) durch Löten miteinander verbunden werden. 13. The method according to any one of claims 9 to 12, characterized in that the first circuit board (2) and the second circuit board (3) are connected to one another by soldering.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass für das Löten eine Soldermaske (10) herangezogen wird. 14. The method according to claim 13, characterized in that a solder mask (10) is used for the soldering.
15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass die erste Platine (2) und die zweite Platine (3) durch (Niedertemperatur-)Versintern und/oder Verschweißen und/oder Zusammendrücken und/oder Kleben miteinander verbunden werden. 15. The method according to any one of claims 9 to 14, characterized in that the first circuit board (2) and the second circuit board (3) are connected to one another by (low-temperature) sintering and/or welding and/or pressing together and/or gluing.
16. Verfahren nach einem der Ansprüche 9 bis15, dadurch gekennzeichnet, dass das Verfahren ferner folgenden Verfahrensschritt aufweist: 16. The method according to any one of claims 9 to 15, characterized in that the method further comprises the following method step:
- Metallisieren oder teilweises Metallisieren der Platinen (2, 3) und/oder der Ausnehmung (6, 6a, 6b). - Metallization or partial metallization of the circuit boards (2, 3) and/or the recess (6, 6a, 6b).
PCT/DE2022/200265 2021-12-10 2022-11-14 Radar sensor and production method WO2023104255A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021214166.8A DE102021214166A1 (en) 2021-12-10 2021-12-10 Radar sensor and a manufacturing process
DE102021214166.8 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023104255A1 true WO2023104255A1 (en) 2023-06-15

Family

ID=84462553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2022/200265 WO2023104255A1 (en) 2021-12-10 2022-11-14 Radar sensor and production method

Country Status (2)

Country Link
DE (1) DE102021214166A1 (en)
WO (1) WO2023104255A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117693115A (en) * 2023-07-06 2024-03-12 荣耀终端有限公司 Circuit board and electronic equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130256850A1 (en) * 2012-03-29 2013-10-03 International Business Machines Corporation Electronic package for millimeter wave semiconductor dies
DE102014200660A1 (en) * 2014-01-16 2015-07-16 Conti Temic Microelectronic Gmbh Transmitting and receiving unit for radar signals and method for producing the same
DE102015108267A1 (en) * 2014-05-30 2015-12-03 Toyota Motor Engineering & Manufacturing North America, Inc. Housing for a robust automotive radar subsystem
DE102016111884A1 (en) * 2016-06-29 2018-01-04 Infineon Technologies Ag Apparatus, system and method for automatically testing integrated antennas
DE102018203106A1 (en) 2018-03-01 2019-09-05 Conti Temic Microelectronic Gmbh Radar system for detecting the surroundings of a motor vehicle with a plastic antenna
US20200235453A1 (en) * 2019-01-21 2020-07-23 Infineon Technologies Ag Method for producing a waveguide, circuit device and radar system
DE102020113232A1 (en) * 2020-05-15 2021-11-18 Infineon Technologies Ag Radio frequency devices and related manufacturing processes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130256850A1 (en) * 2012-03-29 2013-10-03 International Business Machines Corporation Electronic package for millimeter wave semiconductor dies
DE102014200660A1 (en) * 2014-01-16 2015-07-16 Conti Temic Microelectronic Gmbh Transmitting and receiving unit for radar signals and method for producing the same
DE102015108267A1 (en) * 2014-05-30 2015-12-03 Toyota Motor Engineering & Manufacturing North America, Inc. Housing for a robust automotive radar subsystem
DE102016111884A1 (en) * 2016-06-29 2018-01-04 Infineon Technologies Ag Apparatus, system and method for automatically testing integrated antennas
DE102018203106A1 (en) 2018-03-01 2019-09-05 Conti Temic Microelectronic Gmbh Radar system for detecting the surroundings of a motor vehicle with a plastic antenna
US20200235453A1 (en) * 2019-01-21 2020-07-23 Infineon Technologies Ag Method for producing a waveguide, circuit device and radar system
DE102020113232A1 (en) * 2020-05-15 2021-11-18 Infineon Technologies Ag Radio frequency devices and related manufacturing processes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117693115A (en) * 2023-07-06 2024-03-12 荣耀终端有限公司 Circuit board and electronic equipment

Also Published As

Publication number Publication date
DE102021214166A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
EP3759512A1 (en) Radar system for detecting the environment of a motor vehicle having a plastic antenna
EP1825561B1 (en) Antenna assembly for a radar transceiver
DE102015108267A1 (en) Housing for a robust automotive radar subsystem
DE112009000784B4 (en) Radio frequency module and method for its manufacture and transmitter, receiver, transceiver and radar device comprising the radio frequency module
DE102020103778A1 (en) INVERTED MICROSTRIP TRAVELING WAVE PATCH ARRAY ANTENNA SYSTEM
EP1754284A1 (en) Waveguide structure
EP2820674B1 (en) Semiconductor module having integrated antenna structures
DE102020103775A1 (en) Integrated cavity-secured slot array antenna system
EP4211748A1 (en) Radar system for detecting surroundings, comprising a waveguide antenna made of a printed circuit board and a molded part
DE60213057T2 (en) Mounting arrangement for high-frequency semiconductor device and associated manufacturing method
WO2023104255A1 (en) Radar sensor and production method
DE102015207186A1 (en) Antenna device for implementing orthogonal antenna characteristics
WO2005034288A1 (en) Device and method for emitting and/or receiving electromagnetic radiation
DE102018213540B3 (en) Radar system with a plastic antenna with a predetermined bending point
DE102020216362A1 (en) Process for manufacturing a radar sensor
DE102005056756A1 (en) Antenna array e.g. for radar sensor, has first part of antenna located on chip and contains some of transceiver units of radar sensor with second radiation-coupled part is located on top of chip at distance to first part
EP3966890B1 (en) Vehicle window
CN114340215A (en) 4D vehicle-mounted radar PCB with small signal loss and manufacturing method thereof
DE4244971C2 (en) Integrated laminated microwave circuit for motor vehicle communication system
DE102018222528A1 (en) Device for transmitting and / or receiving electromagnetic radiation
DE102020127531A1 (en) radar sensor
DE202004019199U1 (en) Fully integrated miniaturized radar sensor in low temperature cofired ceramic multiple layer technology for short range radar monitoring where the entire high frequency part is realized in a monoblock
DE102021209040A1 (en) Radar system for detecting the surroundings with a waveguide antenna formed from a circuit board and a molded part
WO2021110400A1 (en) Glass pane
DE102018215459A1 (en) Radar sensor architecture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22821300

Country of ref document: EP

Kind code of ref document: A1