WO2023104164A1 - 一种用于血管钙化破碎治疗的微孔电极 - Google Patents

一种用于血管钙化破碎治疗的微孔电极 Download PDF

Info

Publication number
WO2023104164A1
WO2023104164A1 PCT/CN2022/137651 CN2022137651W WO2023104164A1 WO 2023104164 A1 WO2023104164 A1 WO 2023104164A1 CN 2022137651 W CN2022137651 W CN 2022137651W WO 2023104164 A1 WO2023104164 A1 WO 2023104164A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive wire
discharge
balloon
hole
anode
Prior art date
Application number
PCT/CN2022/137651
Other languages
English (en)
French (fr)
Inventor
黄逸凡
张赟阁
江敏
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023104164A1 publication Critical patent/WO2023104164A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating

Definitions

  • the invention belongs to the field of medical devices and relates to a microporous electrode used for the treatment of blood vessel calcification fragmentation.
  • Vascular calcification refers to a lesion in which calcium is deposited on the vessel wall, which can lead to hardening of the vessel wall and a decrease in compliance, and can also easily lead to death from myocardial ischemia, left ventricular hypertrophy, heart failure, thrombosis, plaque rupture, etc. Diseases with high rates of death and disability.
  • Vascular calcification often runs through various complex vascular lesions, and calcified lesions are often accompanied by vascular angulation and twisting lesions. At the same time, calcified lesions respond poorly to vasodilation.
  • vascular calcification Traditional methods for treating vascular calcification mainly include: non-compliant balloon, cutting balloon, scored balloon, rotational atherectomy, and excimer laser. These methods are usually only applicable to mild and moderate calcification lesions, and can only deal with superficial calcifications, but are helpless for severe and deep calcifications. There are even risks of complications such as coronary artery dissection, coronary artery perforation, bradycardia and atrioventricular block, coronary artery spasm, slow blood flow/no-reflow, and distal embolism. It can be seen that for vascular calcification, there are still major clinical pain points and many unmet needs.
  • Liquid-phase pulse discharge plasma technology is a technology that uses high-voltage pulse discharge in water to generate plasma. Along with the generation of liquid-phase pulse discharge plasma, mechanical waves such as shock waves and sound waves are also generated. Put the liquid-phase discharge device into the blood vessel, and use the shock wave and sound wave generated by the liquid-phase pulse discharge to break the calcified layer of the blood vessel, which can not only achieve the effect of the traditional treatment method for vascular calcification, but also the shock wave and sound wave can directly reach the deep calcified area to break the calcified layer . At the same time, since the liquid-phase pulse discharge shock wave and sound wave are in flexible contact with human tissues such as blood vessels, they will not cause damage to normal organ tissues.
  • the existing intravascular shock wave technology for intravascular calcification and the electrode structure of the device are complex, expensive and difficult to manufacture.
  • the present invention proposes a microporous electrode for the treatment of vascular calcification fragmentation, which is easy to manufacture, low in cost, longer in service life, and capable of stable discharge.
  • a microporous electrode for the treatment of vascular calcification fragmentation which is special in that:
  • It includes a balloon filled with a liquid medium; a catheter runs through the balloon, and a cathode conductive wire and an anode conductive wire are arranged in the catheter, and an insulating layer is provided on the outer surface of the anode conductive wire; the catheter wall is provided with There are a first through hole and a second through hole, the first through hole is a cathode discharge hole; the insulating layer is provided with a third through hole, the second through hole and the third through hole are connected to form an anode discharge hole; the cathode The conductive wire communicates with the liquid medium in the balloon through the cathode discharge hole; the anode conductive wire communicates with the liquid medium in the balloon through the anode discharge hole.
  • the cathode conductive wire and the anode conductive wire are arranged in parallel in the catheter.
  • the cathode discharge hole and the anode discharge hole are arranged opposite to each other.
  • both the cathode conductive wire and the anode conductive wire are metal conductive wires with a high melting point.
  • the cathode conductive wire and the anode conductive wire are connected to a pulse power supply, and under the drive of the pulse power supply, the cathode conductive wire and the anode conductive wire discharge in the liquid medium in the balloon to generate mechanical waves.
  • the present invention also proposes another microporous electrode for the treatment of vascular calcification fragmentation, which is characterized in that:
  • It includes a balloon filled with a liquid medium; the balloon runs through a catheter, and the catheter is provided with an anode conductive wire, and the outer surface of the anode conductive wire is provided with an insulating layer; the outer surface of the insulating layer is provided with a metal coating.
  • the metal coating is the discharge cathode. It also includes a first discharge microhole and a second discharge microhole; the first discharge microhole and the second discharge microhole all pass through the catheter, the metal coating and the insulating layer; the anode conductive wire passes through the anode discharge hole and the balloon The liquid medium inside is connected.
  • the first discharge microhole and the second discharge microhole are arranged opposite to each other.
  • the anode conductive wire is a metal conductive wire with a high melting point.
  • the discharge cathode and anode conductive wires are connected to a pulse power supply, and the discharge cathode and anode conductive wires can discharge in the liquid medium in the balloon to generate mechanical waves under the drive of the pulse power supply.
  • the conduit, the metal coating, the insulating layer and the anode conductive wire are arranged coaxially.
  • the microporous electrode proposed by the present invention has simple structure, low manufacturing cost and stable discharge.
  • the microporous electrode proposed by the present invention has a longer service life and reduces the cost of use.
  • the microporous electrode proposed by the present invention has high electrical energy conversion efficiency, and can generate mechanical waves with higher energy efficiency for the treatment of vascular calcification.
  • Fig. 1 is a cross-sectional structure diagram of a parallel microporous electrode
  • Figure 2 is an effect diagram of parallel microporous electrodes
  • Fig. 3 is an effect diagram of the parallel microporous electrodes contained in the balloon
  • Fig. 4 is a cross-sectional structure diagram of parallel microporous electrodes
  • Figure 5 is an effect diagram of parallel microporous electrodes
  • Fig. 6 is an effect diagram of the parallel microporous electrodes accommodated in the balloon.
  • the present invention proposes a microporous electrode that utilizes liquid-phase pulse discharge plasma technology to break the vascular calcification layer.
  • microporous electrode proposed by the present invention for the treatment of vascular calcification fragmentation includes two structures, parallel and coaxial.
  • a microporous electrode for the treatment of vascular calcification fragmentation see Figures 1 to 3, this is a parallel microporous electrode, including a balloon 1 filled with a liquid medium; the balloon 1 runs through a catheter 2.
  • the catheter 2 is provided with a cathode conductive wire 3 and an anode conductive wire 4 , and the outer surface of the anode conductive wire 4 is wrapped with an insulating layer 5 .
  • the cathode conductive wire 3 and the anode conductive wire 4 are arranged in parallel in the conduit 2 .
  • a first through hole 6 and a second through hole 7 are arranged on the wall of the conduit 2, and the first through hole 6 is a cathode discharge hole; the insulating layer 5 is provided with a third through hole 8, the second through hole 7, the third through hole
  • the through hole 8 communicates to form an anode discharge hole;
  • the cathode conductive wire 3 communicates with the liquid medium in the balloon 1 through the cathode discharge hole;
  • the anode conductive wire 4 communicates with the liquid medium in the balloon 1 through the anode discharge hole .
  • the cathode conductive wire 3 and the anode conductive wire 4 are connected to a pulse power supply. Driven by the pulse power supply, the cathode conductive wire 3 and the anode conductive wire 4 are discharged in the liquid medium in the balloon 1 to generate mechanical waves, including shock waves and sound waves. Mechanical waves are transmitted to the calcified layer via the balloon.
  • the cathode discharge hole and the anode discharge hole are arranged opposite to each other.
  • both the cathode conductive wire 3 and the anode conductive wire 4 are metal conductive wires with a high melting point.
  • a microporous electrode for vascular calcification fragmentation treatment includes a balloon 1 , a catheter 2 runs through the balloon 1 , and the inside of the balloon 1 is filled with a liquid medium.
  • the conduit 2 is provided with a cathode conductive wire 3 and an anode conductive wire 4 , and the outer surface of the anode conductive wire 4 is wrapped with an insulating layer 5 .
  • Both the cathode conductive wire 3 and the anode conductive wire 4 are metal conductive wires with high melting point, and they are arranged in parallel in the conduit 2 .
  • a first through hole 6 and a second through hole 7 are arranged on the wall of the conduit 2, and the first through hole 6 is a cathode discharge hole; the insulating layer 5 is provided with a third through hole 8, the second through hole 7, the third through hole
  • the through hole 8 communicates to form an anode discharge hole;
  • the cathode conductive wire 3 communicates with the liquid medium in the balloon 1 through the cathode discharge hole;
  • the anode conductive wire 4 communicates with the liquid medium in the balloon 1 through the anode discharge hole .
  • the cathode discharge hole and the anode discharge hole are arranged oppositely.
  • the cathode conductive wire 3 and the anode conductive wire 4 are connected to a pulse power supply. Driven by the pulse power supply, the cathode conductive wire 3 and the anode conductive wire 4 are discharged in the liquid medium in the balloon 1 to generate mechanical waves, including shock waves and sound waves. Mechanical waves are transmitted to the calcified layer via the balloon.
  • FIG. 4 Another microporous electrode used for the treatment of vascular calcification fragmentation, see Figure 4 to Figure 6, this is a coaxial microporous electrode, including a balloon 1 filled with a liquid medium; the balloon 1 runs through
  • the conduit 2 is provided with an anode conductive wire 4 inside the conduit 2, and the outer surface of the anode conductive wire 4 is provided with an insulating layer 5; the outer surface of the insulating layer 5 is provided with a metal coating 9, and the metal coating 9 is a discharge cathode. It also includes a first discharge microhole 10 and a second discharge microhole 11 .
  • Both the first discharge microhole 10 and the second discharge microhole 11 pass through the catheter 2, the metal coating 9 and the insulating layer 5; the anode conductive wire 4 communicates with the liquid medium in the balloon 1 through the anode discharge hole.
  • the conduit 2, the metal coating 9, the insulating layer 5 and the anode conductive wire 4 are arranged coaxially.
  • the first discharge microhole 10 and the second discharge microhole 11 are arranged opposite to each other.
  • the anode conductive wire 4 is a metal conductive wire with a high melting point.
  • the discharge cathode and anode conductive wire 4 are connected to a pulse power supply, and the discharge cathode and anode conductive wire 4 can discharge in the liquid medium in the balloon 1 to generate mechanical waves under the drive of the pulse power supply.
  • a microporous electrode for the treatment of vascular calcification fragmentation includes a balloon 1 filled with a liquid medium; a catheter 2 runs through the balloon 1, and the catheter 2 is From the inside to the outside, there are: an anode conductive wire 4, an insulating layer 5, and a metal coating 9.
  • the metal coating 9 is a discharge cathode.
  • the first discharge micropore 10 and the second discharge micropore 11 are arranged oppositely, and both pass through the catheter 2, the metal coating 9 and the insulating layer 5; the anode conductive wire 4 passes through the anode discharge hole and the balloon
  • the liquid medium in 1 is connected.
  • the conduit 2, the metal coating 9, the insulating layer 5 and the anode conductive wire 4 are arranged coaxially.
  • the anode conductive wire 4 is a metal conductive wire with a high melting point.
  • the discharge cathode and anode conductive wires 4 are connected to a common pulse power supply. Driven by the pulse power supply, the discharge cathode and anode conductive wires 4 can discharge in the liquid medium in the balloon 1 to generate mechanical waves.
  • the microporous electrode proposed by the present invention can generate mechanical waves such as shock waves and sound waves in blood vessels by using liquid-phase pulse discharge plasma.
  • the microporous electrode is mounted inside the balloon.
  • the inside of the balloon is filled with the required solution medium, the inside of the balloon is filled with pressure, and the mechanical wave generated by the liquid-phase pulse discharge plasma is transmitted to the vascular calcification layer through the balloon. Due to the characteristics of shock wave and sound wave propagation, the shock wave generated by liquid-phase pulse discharge can be transmitted to the superficial, middle and deep layers of vascular calcification, and then the whole vascular calcification can be crushed and treated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

一种用于血管钙化破碎治疗的微孔电极,属于医疗器械领域,包括球囊(1),球囊(1)内填充液体介质;球囊(1)内贯穿有导管(2),导管(2)内设有阴极导电丝(3)和阳极导电丝(4),阳极导电丝(4)的外表设有绝缘层(5);导管(2)壁上设有第一通孔(6)和第二通孔(7),第一通孔(6)为阴极放电孔;绝缘层(5)上设有第三通孔(8),第二通孔(7)、第三通孔(8)连通,共同构成阳极放电孔;阴极导电丝(3)通过阴极放电孔与球囊(1)内的液体介质连通;阳极导电丝(4)通过阳极放电孔与球囊(1)内的液体介质连通。提出的一种用于血管钙化破碎治疗的微孔电极,便于制造、成本低廉、使用寿命更久,且能够稳定放电。

Description

一种用于血管钙化破碎治疗的微孔电极 技术领域
本发明属于医疗器械领域,涉及一种用于血管钙化破碎治疗的微孔电极。
背景技术
血管钙化是指钙质物沉积在血管壁的一种病变,其会导致血管壁变硬,顺应性降低,也易于引发心肌缺血、左心室肥大、心力衰竭、血栓形成、斑块破裂等致死率与致残率较高的疾病。血管钙化经常贯穿于各种复杂的血管病变,且钙化病变往往伴随血管成角、扭曲病变。同时,钙化病变部位对血管扩张的反应较差。
处理血管钙化病变的传统方法主要包括:非顺应性球囊、切割球囊、刻痕球囊、斑块旋磨术,准分子激光。这些方法通常只能适用于轻、中度的钙化病变,只能对浅层钙化进行处理,而对重度、深层钙化无能为力。甚至还存在引发冠状动脉夹层、冠状动脉穿孔、心动过缓及房室传导阻滞、冠状动脉痉挛、慢血流/无复流、远端栓塞现象等并发症的风险。可以看到,对于血管钙化,临床仍存在较大的痛点,有较多未被满足的需求。
液相脉冲放电等离子体技术是一种利用在水中高压脉冲放电进而产生等离子体的技术。伴随着液相脉冲放电等离子体的生成,还会产生冲击波和声波等机械波。将液相放电装置放入血管中,利用液相脉冲放电产生的冲击波和声波破碎血管钙化层,不仅可实现血管钙化传统治疗方法的效果,同时冲击波及声波还可直达深层钙化区域进行钙化层破碎。同时,由于液相脉冲放电冲击波及声波与血管等人体组织为柔性接触,因此不会对正常器官组织造成损伤。
技术问题
现有的血管内钙化的血管内冲击波技术及装置的电极结构复杂,造价高昂,且难以制造。
技术解决方案
为了克服上述现有技术中存在的问题,本发明提出一种用于血管钙化破碎治疗的微孔电极,便于制造、成本低廉、使用寿命更久,且能够稳定放电。
本发明解决上述问题的技术方案是:一种用于血管钙化破碎治疗的微孔电极,其特殊之处在于:
包括球囊,球囊内填充液体介质;所述球囊内贯穿有导管,导管内设有阴极导电丝和阳极导电丝,所述阳极导电丝的外表设有绝缘层;所述导管壁上设有第一通孔和第二通孔,第一通孔为阴极放电孔;绝缘层上设有第三通孔,第二通孔、第三通孔连通,共同构成阳极放电孔;所述阴极导电丝通过阴极放电孔与球囊内的液体介质连通;所述阳极导电丝通过阳极放电孔与球囊内的液体介质连通。
优选的,所述所述阴极导电丝和阳极导电丝在导管内平行设置。
优选的,所述阴极放电孔、阳极放电孔相对设置。
优选的,所述阴极导电丝和阳极导电丝均为高熔点的金属导电丝。
优选的,所述阴极导电丝和阳极导电丝连接脉冲电源,阴极导电丝和阳极导电丝在脉冲电源驱动下,在球囊内的液体介质中放电产生机械波。
本发明还提出另一种用于血管钙化破碎治疗的微孔电极,其特征在于:
包括球囊,球囊内填充液体介质;所述球囊内贯穿导管,导管内设有阳极导电丝,所述阳极导电丝的外表设有绝缘层;绝缘层外表设有金属涂层,所述金属涂层为放电阴极。还包括第一放电微孔和第二放电微孔;第一放电微孔和第二放电微孔均是穿过导管、金属涂层和绝缘层;所述阳极导电丝通过阳极放电孔与球囊内的液体介质连通。
优选的,所述第一放电微孔和第二放电微孔相对设置。
优选的,所述阳极导电丝为高熔点的金属导电丝。
优选的,所述放电阴极和阳极导电丝连接脉冲电源,放电阴极和阳极导电丝在脉冲电源驱动下,可在球囊内的液体介质中放电产生机械波。
优选的,所述导管、金属涂层、绝缘层和阳极导电丝同轴设置。
有益效果
本发明的优点:
(1)本发明提出的微孔电极结构简单,制造成本低廉,放电稳定。
(2)本发明提出的微孔电极使用寿命更长,降低使用成本。
(3)本发明提出的微孔电极电能转化效率高,可以更高的能量效率产生机械波以用于血管钙化治疗。
附图说明
图1为平行式微孔电极剖面结构图;
图2为平行式微孔电极效果图;
图3为平行式微孔电极容纳在球囊中的效果图;
图4为平行式微孔电极剖面结构图;
图5为平行式微孔电极效果图;
图6为平行式微孔电极容纳在球囊中的效果图。
其中:1-球囊,2-导管,3-阴极导电丝,4-阳极导电丝,5-绝缘层,6-第一通孔,7-第二通孔,8-第三通孔,9-金属涂层,10-第一放电微孔,11-第二放电微孔。
本发明的实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。
针对血管钙化治疗需求,本发明提出一种利用液相脉冲放电等离子体技术破碎血管钙化层的微孔电极。
本发明提出的用于血管钙化破碎治疗的微孔电极包括两种结构,分别平行式和同轴式。
一种用于血管钙化破碎治疗的微孔电极,参见图1至图3,此为平行式微孔电极,包括球囊1,球囊1内填充液体介质;所述球囊1内贯穿有导管2,导管2内设有阴极导电丝3和阳极导电丝4,所述阳极导电丝4的外表包裹有绝缘层5。所述阴极导电丝3和阳极导电丝4在导管2内平行设置。
所述导管2壁上设有第一通孔6和第二通孔7,第一通孔6为阴极放电孔;绝缘层5上设有第三通孔8,第二通孔7、第三通孔8连通,共同构成阳极放电孔;所述阴极导电丝3通过阴极放电孔与球囊1内的液体介质连通;所述阳极导电丝4通过阳极放电孔与球囊1内的液体介质连通。
所述阴极导电丝3和阳极导电丝4连接脉冲电源,阴极导电丝3和阳极导电丝4在脉冲电源驱动下,在球囊1内的液体介质中放电产生机械波,包括冲击波和声波。机械波经由球囊传导至钙化层。
作为本发明的一个优选实施例,所述阴极放电孔、阳极放电孔相对设置。
作为本发明的一个优选实施例,所述阴极导电丝3和阳极导电丝4均为高熔点的金属导电丝。
实施例1
参见图1至图3,一种用于血管钙化破碎治疗的微孔电极,包括球囊1,所述球囊1内贯穿有导管2,球囊1内部充满液体介质。导管2内设有阴极导电丝3和阳极导电丝4,所述阳极导电丝4的外表包裹有绝缘层5。所述阴极导电丝3和阳极导电丝4均为高熔点的金属导电丝,且二者在导管2内平行设置。
所述导管2壁上设有第一通孔6和第二通孔7,第一通孔6为阴极放电孔;绝缘层5上设有第三通孔8,第二通孔7、第三通孔8连通,共同构成阳极放电孔;所述阴极导电丝3通过阴极放电孔与球囊1内的液体介质连通;所述阳极导电丝4通过阳极放电孔与球囊1内的液体介质连通。所述阴极放电孔、阳极放电孔相对设置。
所述阴极导电丝3和阳极导电丝4连接脉冲电源,阴极导电丝3和阳极导电丝4在脉冲电源驱动下,在球囊1内的液体介质中放电产生机械波,包括冲击波和声波。机械波经由球囊传导至钙化层。
另一种用于血管钙化破碎治疗的微孔电极,参见图4至图6,此为同轴式微孔电极,包括球囊1,球囊1内填充液体介质;所述球囊1内贯穿导管2,导管2内设有阳极导电丝4,所述阳极导电丝4的外表设有绝缘层5;绝缘层5外表设有金属涂层9,所述金属涂层9为放电阴极。还包括第一放电微孔10和第二放电微孔11。第一放电微孔10和第二放电微孔11均是穿过导管2、金属涂层9和绝缘层5;所述阳极导电丝4通过阳极放电孔与球囊1内的液体介质连通。所述导管2、金属涂层9、绝缘层5和阳极导电丝4同轴设置。
作为本发明的一个优选实施例,所述第一放电微孔10和第二放电微孔11相对设置。
作为本发明的一个优选实施例,所述阳极导电丝4为高熔点的金属导电丝。
作为本发明的一个优选实施例,所述放电阴极和阳极导电丝4连接脉冲电源,放电阴极和阳极导电丝4在脉冲电源驱动下,可在球囊1内的液体介质中放电产生机械波。
实施例2
参见图4至图6,一种用于血管钙化破碎治疗的微孔电极,包括球囊1,球囊1内填充满液体介质;所述球囊1内贯穿有一根导管2,导管2内从内到外依次设有:阳极导电丝4、绝缘层5、金属涂层9。所述金属涂层9为放电阴极。所述第一放电微孔10和第二放电微孔11相对设置,且二者均是穿过导管2、金属涂层9和绝缘层5;所述阳极导电丝4通过阳极放电孔与球囊1内的液体介质连通。所述导管2、金属涂层9、绝缘层5和阳极导电丝4同轴设置。所述阳极导电丝4为高熔点的金属导电丝。
所述放电阴极和阳极导电丝4连接常见脉冲电源,放电阴极和阳极导电丝4在脉冲电源驱动下,可在球囊1内的液体介质中放电产生机械波。
本发明提出的微孔电极可利用液相脉冲放电等离子体在血管内产生冲击波和声波等机械波。该微孔电极被安装在球囊内。球囊内部充满所需溶液介质,球囊内部充满压力,液相脉冲放电等离子体产生的机械波经由球囊向血管钙化层传导。由于冲击波和声波传播的特性,液相脉冲放电所产生冲击波可传导至血管钙化浅层、中层和深层,进而对全部血管钙化进行破碎治疗。
以上所述仅为本发明的实施例,并非以此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的系统领域,均同理包括在本发明的保护范围内。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (10)

  1. 一种用于血管钙化破碎治疗的微孔电极,其特征在于:
    包括球囊(1),球囊(1)内填充液体介质;
    所述球囊(1)内贯穿有导管(2),导管(2)内设有阴极导电丝(3)和阳极导电丝(4),所述阳极导电丝(4)的外表设有绝缘层(5);
    所述导管(2)壁上设有第一通孔(6)和第二通孔(7),第一通孔(6)为阴极放电孔;绝缘层(5)上设有第三通孔(8),第二通孔(7)、第三通孔(8)连通,共同构成阳极放电孔;
    所述阴极导电丝(3)通过阴极放电孔与球囊(1)内的液体介质连通;
    所述阳极导电丝(4)通过阳极放电孔与球囊(1)内的液体介质连通。
  2. 根据权利要求1所述的一种用于血管钙化破碎治疗的微孔电极,其特征在于:
    所述阴极导电丝(3)和阳极导电丝(4)在导管(2)内平行设置。
  3. 根据权利要求2所述的一种用于血管钙化破碎治疗的微孔电极,其特征在于:
    所述阴极放电孔、阳极放电孔相对设置。
  4. 根据权利要求3所述的一种用于血管钙化破碎治疗的微孔电极,其特征在于:
    所述阴极导电丝(3)和阳极导电丝(4)均为高熔点的金属导电丝。
  5. 根据权利要求4所述的一种用于血管钙化破碎治疗的微孔电极,其特征在于:
    所述阴极导电丝(3)和阳极导电丝(4)连接脉冲电源,阴极导电丝(3)和阳极导电丝(4)在脉冲电源驱动下,在球囊(1)内的液体介质中放电产生机械波。
  6. 一种用于血管钙化破碎治疗的微孔电极,其特征在于:
    包括球囊(1),球囊(1)内填充液体介质;
    所述球囊(1)内贯穿导管(2),导管(2)内设有阳极导电丝(4),所述阳极导电丝(4)的外表设有绝缘层(5);绝缘层(5)外表设有金属涂层(9),所述金属涂层(9)为放电阴极;
    还包括第一放电微孔(10)和第二放电微孔(11);
    第一放电微孔(10)和第二放电微孔(11)均是穿过导管(2)、金属涂层(9)和绝缘层(5);
    所述阳极导电丝(4)通过阳极放电孔与球囊(1)内的液体介质连通。
  7. 根据权利要求6所述的一种用于血管钙化破碎治疗的微孔电极,其特征在于:
    所述第一放电微孔(10)和第二放电微孔(11)相对设置。
  8. 根据权利要求7所述的一种用于血管钙化破碎治疗的微孔电极,其特征在于:
    所述阳极导电丝(4)为高熔点的金属导电丝。
  9. 根据权利要求8所述的一种用于血管钙化破碎治疗的微孔电极,其特征在于:
    所述放电阴极和阳极导电丝(4)连接脉冲电源,放电阴极和阳极导电丝(4)在脉冲电源驱动下,可在球囊(1)内的液体介质中放电产生机械波。
  10. 根据权利要求9所述的一种用于血管钙化破碎治疗的微孔电极,其特征在于:
    所述导管(2)、金属涂层(9)、绝缘层(5)和阳极导电丝(4)同轴设置。
PCT/CN2022/137651 2021-12-09 2022-12-08 一种用于血管钙化破碎治疗的微孔电极 WO2023104164A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111500131.2 2021-12-09
CN202111500131.2A CN114305652A (zh) 2021-12-09 2021-12-09 一种用于血管钙化破碎治疗的微孔电极

Publications (1)

Publication Number Publication Date
WO2023104164A1 true WO2023104164A1 (zh) 2023-06-15

Family

ID=81050615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137651 WO2023104164A1 (zh) 2021-12-09 2022-12-08 一种用于血管钙化破碎治疗的微孔电极

Country Status (2)

Country Link
CN (1) CN114305652A (zh)
WO (1) WO2023104164A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114305652A (zh) * 2021-12-09 2022-04-12 深圳先进技术研究院 一种用于血管钙化破碎治疗的微孔电极

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104540459A (zh) * 2012-08-17 2015-04-22 冲击波医疗公司 具有弧预处理的冲击波导管系统
CN104582597A (zh) * 2012-06-27 2015-04-29 冲击波医疗公司 具有多个冲击波源的冲击波球囊导管
US20160184570A1 (en) * 2014-12-30 2016-06-30 The Spectranetics Corporation Electrically-induced fluid filled balloon catheter
CN108452426A (zh) * 2018-03-16 2018-08-28 上海心至医疗科技有限公司 一种基于液电效应的球囊导管
CN109303586A (zh) * 2017-07-26 2019-02-05 波士顿科学国际有限公司 冲击波发生装置
US20190365400A1 (en) * 2008-06-13 2019-12-05 Shockwave Medical, Inc. Two-stage method for treating calcified lesions within the wall of a blood vessel
CN113648048A (zh) * 2021-07-15 2021-11-16 深圳市赛禾医疗技术有限公司 一种放电可控的冲击波球囊导管系统
CN114305652A (zh) * 2021-12-09 2022-04-12 深圳先进技术研究院 一种用于血管钙化破碎治疗的微孔电极

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125915A (ja) * 1992-10-21 1994-05-10 Inter Noba Kk カテーテル式医療機器
US10709462B2 (en) * 2017-11-17 2020-07-14 Shockwave Medical, Inc. Low profile electrodes for a shock wave catheter
CN111388086B (zh) * 2020-06-08 2020-08-25 上海微创医疗器械(集团)有限公司 电极球囊导管
CN214966283U (zh) * 2020-12-16 2021-12-03 深圳市赛禾医疗技术有限公司 一种压力波球囊导管
CN112971914B (zh) * 2021-02-09 2022-08-02 哈尔滨医科大学 一种血管内灌注冲击波碎石导管系统
CN113317845B (zh) * 2021-03-23 2023-03-14 上海百心安生物技术股份有限公司 一种内壁做接地处理的脉冲球囊

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190365400A1 (en) * 2008-06-13 2019-12-05 Shockwave Medical, Inc. Two-stage method for treating calcified lesions within the wall of a blood vessel
CN104582597A (zh) * 2012-06-27 2015-04-29 冲击波医疗公司 具有多个冲击波源的冲击波球囊导管
CN104540459A (zh) * 2012-08-17 2015-04-22 冲击波医疗公司 具有弧预处理的冲击波导管系统
US20160184570A1 (en) * 2014-12-30 2016-06-30 The Spectranetics Corporation Electrically-induced fluid filled balloon catheter
CN109303586A (zh) * 2017-07-26 2019-02-05 波士顿科学国际有限公司 冲击波发生装置
CN108452426A (zh) * 2018-03-16 2018-08-28 上海心至医疗科技有限公司 一种基于液电效应的球囊导管
CN113648048A (zh) * 2021-07-15 2021-11-16 深圳市赛禾医疗技术有限公司 一种放电可控的冲击波球囊导管系统
CN114305652A (zh) * 2021-12-09 2022-04-12 深圳先进技术研究院 一种用于血管钙化破碎治疗的微孔电极

Also Published As

Publication number Publication date
CN114305652A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
JP4873816B2 (ja) ガイドワイヤトラッキング機構を備えた先端部可撓性カテーテル
US20210338258A1 (en) Shockwave valvuloplasty catheter system
WO2023284213A1 (zh) 一种放电可控的冲击波球囊导管系统
US8709075B2 (en) Shock wave valvuloplasty device with moveable shock wave generator
WO2022127509A1 (zh) 一种压力波球囊导管
WO2019174625A1 (zh) 一种基于液电效应的球囊导管
WO2022127508A1 (zh) 一种压力波球囊导管
WO2023072154A1 (zh) 电极球囊导管
WO2023104164A1 (zh) 一种用于血管钙化破碎治疗的微孔电极
CN114533198A (zh) 一种冲击波球囊导管装置以及医疗设备
CN114366237B (zh) 一种电极结构及球囊
WO2023246550A1 (zh) 一种复合球囊式冲击波发生系统及其定向送药方法
CN215899865U (zh) 一种放电可控的冲击波球囊导管系统
CN115192122A (zh) 震波球囊导管装置
CN114504361A (zh) 一种冲击波装置及球囊导管
CN217853181U (zh) 一种冲击波球囊导管装置以及医疗设备
Mitchell et al. Experience with the electrohydraulic disintegrator
WO2024021159A1 (zh) 爆裂波球囊导管
CN115105158B (zh) 一种封闭电极脉冲球囊扩张导管
CN118161228A (zh) 冲击波球囊导管
WO2022127507A1 (zh) 一种压力波球囊导管及医疗器械
WO2024066203A1 (zh) 一种冲击波球囊导管装置
Allam Acoustic energy and cardiac electrophysiology: Ultrasonic cardiac pacing and novel shockwave ablation catheters
CN115252049A (zh) 治疗闭塞性病变的前向爆裂波发生系统
WO2023197367A1 (zh) 用于血管成形术的爆裂波发生方法及爆裂波发生系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903582

Country of ref document: EP

Kind code of ref document: A1