JP4873816B2 - ガイドワイヤトラッキング機構を備えた先端部可撓性カテーテル - Google Patents

ガイドワイヤトラッキング機構を備えた先端部可撓性カテーテル Download PDF

Info

Publication number
JP4873816B2
JP4873816B2 JP2001583645A JP2001583645A JP4873816B2 JP 4873816 B2 JP4873816 B2 JP 4873816B2 JP 2001583645 A JP2001583645 A JP 2001583645A JP 2001583645 A JP2001583645 A JP 2001583645A JP 4873816 B2 JP4873816 B2 JP 4873816B2
Authority
JP
Japan
Prior art keywords
ablation
catheter
peripheral
pulmonary vein
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001583645A
Other languages
English (en)
Other versions
JP2003533268A (ja
Inventor
マイケル・ディー・レッシュ
マイケル・アール・ロス
ジェームズ・シー・ピーコック・ザ・サード
ケビン・ジェイ・テイラー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atrionix Inc
Original Assignee
Atrionix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atrionix Inc filed Critical Atrionix Inc
Publication of JP2003533268A publication Critical patent/JP2003533268A/ja
Application granted granted Critical
Publication of JP4873816B2 publication Critical patent/JP4873816B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B17/2202Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00071Electrical conductivity
    • A61B2018/00083Electrical conductivity low, i.e. electrically insulating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00059Material properties
    • A61B2018/00089Thermal conductivity
    • A61B2018/00095Thermal conductivity high, i.e. heat conducting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • A61B2018/00238Balloons porous
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • A61B2018/00285Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00375Ostium, e.g. ostium of pulmonary vein or artery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00898Alarms or notifications created in response to an abnormal condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0108Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mechanical Engineering (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Otolaryngology (AREA)
  • Surgical Instruments (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

【0001】
関連する出願
35 U.S.C.§119(e)に基づいて、2000年5月16日に出願の米国仮特許出願60/205009の優先権を主張するものである。
【0002】
技術分野
本発明は、体の構造に治療装置を配置するための医療装置に関する。本発明は、特に、肺静脈口内への外周アブレーション装置の前進を容易にするガイドワイヤと共に用いる先端部可撓性カテーテルに関する。
【0003】
発明の背景
心臓における電気伝導の異常なパターンは、不整脈として知られる心臓周期の異常を引き起こし得る。心房細動として知られる不整脈の一般的なタイプは、現代社会に広まっている問題である。心房細動は、特に激しい運動中における心筋虚血症のリスクの増大に関係し、うっ血性心疾患、発作、及び他の血栓塞栓性疾患にも関係する。
【0004】
人の心臓では、正常な心臓のリズムは、右心房の壁部内に位置する洞房(SA)結節として知られるペースメーカー細胞集団によって維持されている。SA結節は反復サイクルの膜脱分極及び再分極を受けることにより、活動電位と呼ばれる連続した一連の電気パルスを発生する。これらの活動電位が、心臓中の心筋細胞の正常な収縮及び弛緩を制御する。活動電位は、心筋細胞間のギャップ結合を介して両心房において細胞から細胞に高速で広がる。SA結節以外の部位を起源とする電気パルスが心房組織に伝わると心房性不整脈が起こる。
【0005】
或る場合には、心房細動は永久遊走性の再入小波により起こり、異常伝導の一定の局所領域が存在しない。心房細動はまた、心房筋組織内の孤立した中心即ち病巣を起源とする膜電位における高速の反復的な変化による局所性の場合もある。これらの病巣は、一貫した電気活性の遠心パターンを示し、心房細動性発作を生じさせたり、房細動を持続させたりする。近年の研究結果は、局所性不整脈は左心房の肺静脈、より具体的には上肺静脈に沿った組織領域から起こる場合が多いと報告している。
【0006】
心房細動の治療のために幾つかの外科的手法が確立されている。例えば、Cox, JLら著、「心房細動の外科的治療I概要(The Surgical Treatment Of Atrial Fibrillation I Summary)」Thoracic and Cardiovascular Surgery 101 (3): 402-405、1991年及び「心房細動の外科的治療IV外科技術(The Surgical Treatment Of Atrial Fibrillation IV Surgical Technique)」Thoracic and Cardiovascular Surgery 101 (4): 584-592、1991年に「maze」法が記載されている。一般に、maze法は、心組織壁を所定のパターンで切除して効果的にSA結節制御を回復させ、心房性不整脈を軽減するものである。maze法の初期の臨床試験では左右両心房において切除を行ったが、近年の報告には、左心房における切除のみで効果があると記載されている(例えば、Suedaら著、「僧帽弁疾患に関連した慢性心房細動のための単純左心房法(Simple Left Atrial Procedure For Chronic Atrial Fibrillation Associated With Mitral Valve Disease)」、Ann Thorac Surg、62: 1796-1800、1996年を参照)。
【0007】
左心房maze法は、2つの上肺静脈から下肺静脈を横断して僧帽弁輪の領域まで至るように垂直方向に切除することを含む。更なる水平方向の切除により、2つの肺静脈上端が連結される。従って、肺静脈口と境をなす心房壁領域が他の心房組織から隔離される。この方法では、心房組織の機械的な切断により、異所性活動電位の伝導がブロックされて心房性不整脈が排除される。
【0008】
maze法及び他の外科的分離法の適度な成功により、心房組織の機械的な隔離によって永久遊走性の再入小波または異所性伝導の局所領域から生じる心房性不整脈、特に心房細動を上手く阻止できるという原理が確認できた。残念ながら、このような侵襲性の高い方法は多くの場合用いることができない。従って、心房細動を治療するための低侵襲性のカテーテルを用いる方法が開発された。
【0009】
このような低侵襲性のカテーテルを用いる治療法では、通常は、カテーテルの先端部分のエネルギーシンクが異所性伝導組織或いはその近傍に配置される経皮的及び経壁的血管法で、カテーテルが心臓の部屋の中に導入される。エネルギーが加えられると、標的組織がアブレーションされ伝導が断たれる。
【0010】
このようなカテーテルを用いる方法は、心房性不整脈の原因により関連する2つのカテゴリーに分類することができる。第1のカテゴリーには、異所性電気活性の病巣を標的にして局所性不整脈を治療するために用いられる様々な局所切除法が含まれる。それに応じて、肺静脈を中心とする局所性の不整脈をアブレーションするための端部に電極が設けられたカテーテルで、エネルギーの点源を用いて異常な電気的活動部位をアブレーションする装置及び方法が開発されている。このような方法では、通常は加える電気エネルギーを増大していき局所外傷を形成する。第2のカテゴリーには、永久遊走性の再入小波により引き起こされる心房細動を治療するための方法が含まれる。このような不整脈は、励起波が局所外傷の周りを回ってしまう場合があるため、通常は局所アブレーション技術の適用できない。従って、第2のカテゴリーのカテーテルを用いる方法は、再入波の前部の伝導をブロックするべく心房組織を完全に分離するために連続的な線状外傷を必要とするmaze法などの前述の外科的分離法に模倣するのが一般的である。
【0011】
肺静脈を起源とする局所性の不整脈のための切除法の例が、Haissaguerreら著、「発作性心房細動の左右心房高周波カテーテル治療法(Right And Left Atrial Radiofrequency Catheter Therapy Of Paroxysmal Atrial Fibrillation)」、J Cardiovasc Electrophys 7 (12): 1132-1144、1996年に記載されている。この文献には、選択された患者集団に対して行われた、催不整脈病巣を標的とする局所アブレーションで補完される心房線状外傷を用いた薬剤不反応の発作性心房細動の高周波カテーテルアブレーションが記載されている。催不整脈惹起部位は、通常は上肺静脈の内部に位置し、標準的な4mm先端の単一アブレーション電極を用いてアブレーションされる。
【0012】
局所的な源から起こる発作性不整脈のための別のアブレーション法が、Jaisら著、「個別の高周波アブレーションによる心房細動の病巣源の治療(A Focal Source Of Atrial Fibrillation Treated By Discrete Radiofrequency Ablation)」、Circulation、95: 572-576、1997年に記載されている。細動発生過程を排除するために、左右両心房の催不整脈組織部位に個別の高周波エネルギー源から幾つかのパルスが加えられる。
【0013】
カテーテルを用いたアブレーション法による再入小波による不整脈の治療には、maze法に用いられているような連続した線形の外傷を生成するための装置及び方法の開発が必要である。初めは、線状外傷を形成するために「薬物焼灼(drug burn)」法に従来のアブレーション先端電極を適用した。この薬物焼灼法の間、エネルギーが加えられているので、心臓内の所定の経路に沿って組織を通ってカテーテルの先端が引き戻される。別法では、順に先端部電極を配置してからエネルギーのパルスを加え、次に所定の線形経路に沿ってこの先端電極を再び配置し、アブレーションの線を形成し得る。
【0014】
次に、従来のカテーテルを改良して複数の電極構造を含むようにする。このようなカテーテルは通常、複数のリング電極を含む。これらのリング電極は、カテーテルの先端部から基端方向に様々な距離においてカテーテルの周りに配置される。このようなカテーテルを用いる組織アブレーション組立体の詳細な例が、Fleischhackerらの米国特許第5,676,662号明細書、Panescuらの米国特許第5,688,267号明細書、及びDesaiらの米国特許第5,693,078号明細書に開示されている。
【0015】
更に、このようなカテーテルを用いる組織アブレーション組立体及び方法の詳細な例が、Swansonらの米国特許第5,575,810号明細書、FleischmanらのPCT国際公開第WO 96/10961号明細書、Avitallの米国特許第5,702,438号明細書、Avitallの米国特許第5,687,723号明細書、Avitallの米国特許第5,487,385号明細書、及びSchaerのPCT国際公開第WO 97/37607号明細書に開示されている。
【0016】
線状アブレーショントラックを形成するための実現可能なカテーテルを上述したが、実際には、これらのカテーテル組立体の殆どは、拍動する心臓に正確に配置してその位置を維持し、十分な時間押圧して、心房壁に沿って分かれた複数の線状外傷を上手く形成することは困難である。実際に上記した多くの方法は、通常は閉じた経壁的外傷を形成するのに失敗し、ポイントアブレーション或いはドラッグ(drag)アブレーション間に残った隙間に再入回路が出現する可能性が残る。
【0017】
線状アブレーション方法には欠点があるため、肺静脈口に沿って外周外傷が形成される心房細動の治療方法が開発された。外周外傷を形成することにより、心房後壁の実質的な部分を肺静脈に位置する不整脈惹起病巣から分離する外周伝導ブロックが形成される。また、この方法の別の例では、遊走性の再入小波により起こる心房細動を治療するために線状外傷と組み合わせ外周外傷を形成てもよい。これらの方法は、Leshらの米国特許第6,024,740号明細書に記載されている。
【0018】
このLeshらの米国特許第6,024,740号明細書には、外周傷害を形成するために用いられる外周アブレーション装置組立体が開示されている。この外周アブレーション装置組立体は、アブレーション要素及びエキスパンド可能な部材を含む。この装置がエキスパンド可能な部材により肺静脈口に固定され、アブレーション要素にエネルギーが加えられて外周傷害が形成される。
【0019】
上記した方法及び装置は、外周傷害を形成することによる心房細動の治療に大きな成功を修めているが、このような方法及び装置の効果を最大に引き出すためには、肺静脈が心房から延びた位置に正確にアブレーション装置を配置しなければならない。現在、肺静脈などの目的の解剖学的部位にアブレーションカテーテルを送るための最も小型の手段が開示されている。
【0020】
当分野では周知のガイドワイヤ配置法が、患者の血管系の困難な領域内にカテーテルを配置するために広く用いられている。ガイドワイヤ配置法は、通常は患者の血管系にガイドワイヤを挿入して目的の解剖学的部位に送り、ガイドワイヤ上をカテーテルを送ることを含む。しかしながら、ガイドワイヤを肺静脈内に配置することさえ困難であるため、ガイドワイヤは肺静脈にカテーテルを配置するのに十分な手段とはなり得ない。
【0021】
当分野で周知の先端部可撓性カテーテルが、カテーテルを配置し易くするためによく用いられる。先端部可撓性カテーテルは1或いは複数のプルワイヤを内部に含む。プルワイヤは、先端部可撓性カテーテルの先端部と、操舵機構を備えた基端側のハンドルに固定されている。通常はカテーテルを患者の血管系を送るときに、この操舵機構を用いて通常は一方向にカテーテルの先端部を曲げる。操舵可能なカテーテル及びその方法についての詳細な例が、Taylorの米国特許第5,702,433号明細書、Randolphの米国特許第5,755,327号明細書、Mirarchiらの米国特許第5,865,800号明細書、Schaerの米国特許第5,882,333号明細書、Willemsの米国特許第6,022,955号明細書、Ponziの米国特許第6,024,739号明細書、及びKleinとTalorの米国特許第6,083,222号明細書に開示されている。
【0022】
先端部可撓性カテーテルは心房内の或る部位には成功しているが、既存の先端部可撓性カテーテルのデザインは、肺静脈内にアブレーションカテーテルを送るのには十分には適していない。実際に、既存の先端部可撓性カテーテルのデザインでは、卵円窩から肺静脈にかけての急な角度を案内するのが極めて困難である。更に、先端部可撓性カテーテルが肺静脈口に到達しても、十分な外周傷害を形成するのに十分な周囲組織との接触をアブレーション装置が維持できない場合がよくある。
【0023】
従って、患者の血管系から肺静脈口に迅速かつ容易に送ることができる改良されたアブレーションカテーテルが要望されている。また、このようなアブレーションカテーテルが、肺静脈を心臓の心房後壁から分離するべく外周外傷を形成するために周囲組織との接触を維持できるのが理想的である。このような目的を達成できる装置は、心房細動の治療に大きな進歩をもたらすであろう。
【0024】
本発明の要約
本発明は、患者の血管を介して血管内装置を送り易いようにするためにガイドワイヤと共に用いられる改良した先端部可撓性カテーテルデザインに関連する。本発明は、外周超音波静脈アブレーション(CUVA)を実施して心房細動を治療するために、肺静脈または肺静脈の枝内にアブレーション要素を送る際に用いるのに特に適している。
【0025】
本発明の先端部可撓性カテーテルは、医師がカテーテルの先端部からガイドワイヤを送る時に、ガイドワイヤの先端部を目的の方向に向けるのが容易になっている。ガイドワイヤを目的の方向に送るのを助けるべく可撓性先端部分を用いることにより、医師がガイドワイヤ(従ってカテーテル)を鋭角に送ることが著しく容易になった。先端部可撓性カテーテルはまた、従来の他の目的にも用いられ得る。例えば、可撓性先端部分を曲げて、患者の血管系内をカテーテルを目的の方向に送ることを助けたり、ガイドワイヤの曲がりに対してカテーテルを進めるときの抵抗を減少させたりする。先端部可撓性ガイドワイヤは、市販の様々な心臓用ガイドワイヤと共に用いることができるようにデザインされるのが好ましい。
【0026】
本発明の先端部可撓性カテーテルは通常、ハンドル部分、細長いカテーテル本体、可撓性先端部分、及びガイドワイヤトラッキング機構を含む。ハンドル部分は、細長いカテーテル本体の基端部に設けられており、患者の血管系内をアブレーション要素を送るための手段を提供する。プルワイヤがハンドル基端部及び可撓性先端部に取り付けられている。プルワイヤに張ることにより、可撓性先端部分が細長いカテーテル本体に対して曲がり得る。ハンドル部分を回動させると、先端部の向きが回動する。
【0027】
細長いカテーテル本体は、ハンドル部分から可撓性先端部分まで延在する。細長いカテーテル本体は、内部カテーテル、ステンレス鋼ブレード、及び外層部で形成されている。内部カテーテルは、ガイドワイヤ内腔、プルワイヤ内腔、膨張用内腔、同軸ケーブル内腔、及び熱電対リード線内腔を含む複数の内腔を含むように形成されるのが好ましい。細長いカテーテル本体は、可撓性先端部分よりも比較的剛性が高い。細長いカテーテル本体はまた、トルクがハンドル部分にかかったときに可撓性先端部分に高忠実度にトルクが伝わるように形成されている。
【0028】
アブレーション要素が、外周領域の組織の少なくとも実質的部分をアブレーションするために、可撓性先端部分に配設されている。好適な実施形態では、アブレーション要素は、エネルギー源に接続された1或いは複数の超音波トランスデューサを含む。別の実施形態では、アブレーション要素は圧電トランスデューサを含む。
【0029】
固定部材が、アブレーションを行う際にカテーテルを固定するために設けられている。この固定装置は、アブレーションを行う際に拍動している心臓に対してアブレーション要素を安定して保持するための手段を提供する。好適な実施形態では、固定部材は、肺静脈口などの外周領域の組織に係合するように適合された膨張可能なバルーンを含む。
【0030】
本発明はまた、心房から肺静脈が延びた位置における外周領域の組織の実質的な部分をアブレーションするための方法に関連する。
【0031】
本発明の他の特徴及び利点は、本発明の特徴を例示する添付の図面を用いた後述の説明から明らかになるであろう。
【0032】
好適な実施形態の詳細な説明
本発明は、ガイドワイヤと共に用いて、カテーテルが患者の血管系内を容易に移動できるようにする先端部可撓性カテーテルに関する。本発明は、カテーテルを用いる治療分野において広範に適用できるが、例示目的のために本発明は、外周アブレーションカテーテルが肺静脈口に送られる心房細動の治療について説明する。図1乃至図18Bを参照しながら肺静脈の分離のための幾つかの実施形態を説明する。図1の線図には、関連する治療法の概略が示されている。図19乃至図28は、本発明の先端部可撓性カテーテル組立体及びその方法が示されている。
【0033】
以下に本明細書に用いる用語を説明する。
【0034】
その派生語を含む用語「体内空間」は、少なくとも一部が組織壁で画定された体内のあらゆる腔或いは管腔を意味するものとする。例えば、心臓の各部屋、子宮、胃腸管領域、及び動脈/静脈血管はすべて、意図する範囲内の体内空間の例である。
【0035】
その派生語を含む用語「体腔即ち体の内腔」は、管状組織壁により長さに沿って囲まれ、かつ体内空間の外側に連通した少なくとも1つの開口において両端のそれぞれが終っている、あらゆる体内空間を意味するものとする。例えば、大腸、小腸、精管、気管、及びファロピー管はすべて、意図する範囲内の内腔の例である。血管もまた体腔であり、分岐点間の血管の領域も体腔に含まれる。より具体的には、肺静脈口を画定する左心室壁組織は通常は固有のテーパ状の内腔形状であるが、左心室壁に沿った肺静脈口の分岐部分間の肺静脈領域を含む肺静脈も意図する範囲内の内腔である。
【0036】
その派生語を含む用語「外周」または「外周の」は、囲んで閉じた空間領域を画定する外側の境即ち周囲を形成する連続経路或いは連続線を含む。このような連続経路は、外側の境即ち周囲に沿った或る位置から始まり、その外側の境即ち周囲に沿って進み元の位置に戻ると、このように画定された空間領域を取り囲む。その派生語を含む関連する用語「周囲を囲む」は、画定された空間領域を囲む、或いは包囲する面を含む。従って、空間領域の周りをトレースする或る位置から始まって実質的に同じ位置で終わる連続線が、その空間領域の「周囲を囲み」、その空間を取り囲む経路に沿って移動した距離を含む「外周」を有する。
【0037】
更に、外周経路即ち外周成分は、幾つかの形状の内1或いは複数の形状をとり、例えば、円形、矩形、卵形、楕円形、またはその他の閉じた平面などがある。外周経路はまた、例えば、平行即ちオフ軸の2つの異なる面における対向した2つの半円形を含む経路などの三次元型でもよい。これらの2つの面は、その2つの面をブリッジする線分によって各端部において連結されている。
【0038】
本発明に従った「外周伝導ブロック」が肺静脈壁に沿った外周経路に続く組織領域に沿って形成され、肺静脈内腔を取り囲み、その肺静脈の長軸に沿った電気伝導を分断する。従って、横断する外周伝導ブロックにより、肺静脈の長軸に沿い、かつその伝導ブロックに対する肺静脈壁上側部分と下側部分との電気伝導が分断される。
【0039】
図2A乃至図2Dに、様々な外周経路A,B,C及びDが例示目的で示されている。これらの外周経路はそれぞれ、肺静脈壁部分に沿って移動し、a,b,c及びdで示される画定された空間領域を取り囲んでいる。更に、図2Dには3次元型の外周経路の例が示されている。図2Eは外周経路Dの分解組立斜視図であって、この外周経路Dは、図2Dに示されている領域dを構成する肺静脈内腔の複数の面、即ちd´、d´´、及びd´´´の各部の外縁を通っている。
【0040】
その派生語を含む用語「分断」は、空間領域を離間した領域に分割することを意味する。従って、図2A乃至図2Dに示されている外周経路によって囲まれた各領域が、その内腔及び壁部を含むそれぞれの肺静脈を分断している。この分断により、それぞれの肺静脈が、例えばその分断領域の一側に位置する図2Aの領域Xなどの第1の長手領域と、例えば図2Aの領域Yなどの分断面の他側に位置する第2の長手領域とに分割される。
【0041】
従って、本発明に従った「外周伝導ブロック」が肺静脈壁に沿った外周経路に続く組織領域に沿って形成され、肺静脈内腔を取り囲み、その肺静脈の長軸に沿った電気伝導を分断する。従って、横断する外周伝導ブロックにより、肺静脈の長軸に沿い、かつその伝導ブロックに対する肺静脈壁上側部分と下側部分との電気伝導が分断される。
【0042】
その派生語を含む用語「アブレーションする」または「アブレーション」は、機械的、電気的、化学的、またはその他の組織の構造的性状を実質的に変えることを含む。以下に例を示す様々な装置の例を参照しながら説明するアブレーションを含む文脈において、「アブレーション」は、アブレーションされた心組織からの電気信号或いは心臓組織内を通る電気信号の伝導を実質的にブロックするように組織の特性を十分に変化させることを含むものとする。
【0043】
その派生語を含む「アブレーション要素」の文脈内の用語「要素」は、組織領域を集合的にアブレーションするべく配置された電極などの独立した要素、または複数の離間した電極などの複数の独立した要素を含むものとする。
【0044】
従って、用語の定義に従った「アブレーション要素」は、指定された組織領域をアブレーションするように適合された様々な特定の構造が含まれる。例えば、本発明に用いられる或る好適なアブレーション要素は、後述する実施形態の開示に従えば、エネルギー源に接続されてエネルギーが加えられると、組織をアブレーションするのに十分なエネルギーを放出するように構成された「エネルギー放射」型構造から形成され得る。従って、本発明に用いられる好適な「エネルギー放射」アブレーション要素としては、高周波(RF)電源などの交流(AC)または直流(DC)電源に接続されるように構成された電極要素と、マイクロ波エネルギーからエネルギーが与えられるアンテナ装置と、対流または伝導による熱交換、電流による抵抗加熱、または光による光加熱などによって、熱を放出するべくエネルギーが加えられる金属要素または他の熱導体などの加熱要素と、レーザなどの光放出装置と、好適な励起源に接続されると組織をアブレーションするのに十分な超音波を発生するように構成された超音波水晶装置などの超音波装置とが挙げられる。
【0045】
更に、後述の本発明の詳細な説明に従って構成されれば、組織の性質を変化させる他の装置も本発明の「アブレーション要素」として適し得る。本発明の開示に従って構成されれば、例えば、組織の構造を実質的に変化させるのに十分に組織を冷却するように構成された低温アブレーション(cryogenic)要素は「アブレーション要素」として適し得る。更に、流体供給源に連通した独立したポートまたは複数のポートなどの流体供給部を用いて、アルコールを含む流体などのアブレーション流体をポートに近接した組織に注入してその組織の性質を実質的に変化させ得る。
【0046】
ここで用いる用語「アンカー」は、外周アブレーション要素及び/または線状アブレーション要素が左心房の後壁に十分に近接して配置されるように、開示するアブレーション装置組立体の少なくとも一部を肺静脈または肺静脈口に固定して、標的組織にアブレーション可能に係合するようにするあらゆる構造を包含するものとする。開示の範囲内の好適なアンカーの例として、従来のガイドワイヤ、バルーンを備えたガイドワイヤ、可撓性/操舵可能ガイドワイヤ、シェープドスタイレット(shaped stylets)、径方向にエキスパンド可能な部材、及び膨張部材などが挙げられる。
【0047】
その派生語を含む用語「診断する」は、心房性不整脈の疑いがある或いは不整脈と推定された患者、並びに心房性不整脈を示唆する特定の症状またはマッピングされた導電性を有する患者を特定すること含むものとする。
【0048】
肺静脈の分離
上記したように、心房細動の治療方法を、図1の流れ図に図表的に広く例示した。診断ステップ(1)に従って心房細動と診断された患者は、治療ステップ(2)に従って外周伝導ブロックで治療される。
【0049】
図1の方法の一態様では、肺静脈の不整脈起源即ち病巣から発生する病巣性不整脈と診断された患者はこの方法に従って治療され、不整脈起源を含む壁部組織か或いは起源と左心房との間に存在する壁部組織の外周経路に沿って外周伝導ブロックが形成される。壁部組織の外周経路が不整脈起点を含む場合は、その焦点を通るように伝導ブロックを形成して起点の不整脈組織を破壊する。後者の場合は、不整脈焦点はなお異常に伝導し得るが、このような異常伝導は、外周伝導ブロックにより心房壁部組織へ伝わらず、影響を与えることがない。
【0050】
この方法の別の態様では、診断ステップ(1)に従って心房壁に沿った複数の領域を起点とする複数の小波による不整脈と診断された患者は、治療ステップ(2)に従って外周伝導ブロックが形成され得ると共に、低侵襲性のmaze型カテーテルアブレーション法で近接する肺静脈口間に細長い線状の伝導ブロック領域が形成され得る。本発明の方法のこの態様の詳細は、図9A乃至図9Fを用いて後述する外周外傷と細長い線状外傷の両方を形成できるアブレーション装置を参照しながら説明する。
【0051】
図1に示されている本発明の更なる態様では、治療ステップ(2)に従って、幾つかある方法の内の1つの方法で外周伝導ブロックが形成され得る。図示していない或る方法では、外周伝導ブロックが、外科切除或いは肺静脈を機械的に横断する別の方法で形成され得る。外周傷害は、maze法では一般的である生理的な創傷反応により自然に治癒するが、一般に傷害部位における電気伝導は回復しない。図示しない別の例では、1或いは複数の肺静脈の外周伝導ブロックが心外膜アブレーション法により形成され得る。この場合、アブレーション要素を、標的肺静脈の回りに配置するか、或いは標的肺静脈の外周をエネルギーが加えられながら移動するようにして、「アウトサイド−イン」法で近接組織をアブレーションする。この代替法は、開胸法の際に行われるか、または他の既知の心外膜アクセス法を用いて行われる。
【0052】
図3は、本発明の外周アブレーション装置組立体を用いて、心房から肺静脈が延びている部位に外周伝導ブロックを形成する一連のステップを図表的に示す。図3に従った外周アブレーション法は、配置ステップ(3)として図3に集合的に示されている一連の各ステップに従って肺静脈に沿ったアブレーション領域に外周アブレーション装置を配置すること、その後にアブレーションステップ(4)に従ってそのアブレーション領域における肺静脈組織の連続する外周領域をアブレーションすることを含む。
【0053】
図3の方法に従った配置ステップ(3)では、詳細を後述するように、先ずカテーテルの先端部を経中隔的アクセス法に従って左心房内に配置する。「セルディンガー」法により、先ず右静脈系に到達させる。この方法では、大腿静脈などの末梢静脈に針で孔を開け、導入シースを受容できる十分な大きさにその孔を拡張器で拡張子し、少なくとも1つの止血弁を備えた導入シースをその孔に配置して適切に止血する。導入シースを配置したら、ガイドカテーテル或いはシースをその導入シースの止血弁から導入して、末梢静脈に沿って大静脈の領域及び右心房内に送る。
【0054】
右心房に到達したら、ガイドカテーテルの先端部を心房内中隔壁の卵円窩に配置する。次に、ブロッケンブラッフニードル或いはトロカールを卵円窩に刺さるまでガイドカテーテル内を先端方向に進める。このニードルと共に別の拡張器を卵円窩を通し、ガイドカテーテルを配置するための隔壁を貫通するアクセスポートを設けることができる。次に隔壁を貫通するニードルをガイドカテーテルに換え、卵円窩を介して左心房に配置し、これにより目的の装置をガイドカテーテルにより左心房内に到達させることができる。
【0055】
しかしながら、他の左心房アクセス法も、本発明の外周アブレーション装置組立体を用いるための適切な代替法となり得ると考えられる。図示しない別の代替法として、ガイドカテーテルが動脈系から左心房内に導入される「逆行(retrograde)」法を用い得る。この方法では、セルディンガー法を用いて、静脈ではなく、例えば大腿動脈の動脈系から血管へのアクセスを得る。ガイドカテーテルを大動脈から挿入して大動脈弓を経て心室内へ、更に僧帽弁を介して左心房内に送る。
【0056】
上記したように左心房への経中隔的アクセスが得られたら、図3に従った配置ステップ(3)の次の過程で、ガイドワイヤを肺静脈内に送る。ガイドワイヤは、ある指向付けカテーテルを用いて、ガイドカテーテルと同軸にあるそのガイドカテーテル内の第2のサブ選択性デリバリカテーテル(sub-selective delivery catheter)(図示せず)でそのガイドワイヤを案内して肺静脈内に送ることが可能である。このような方向付けカテーテルの例は、Swartzに付与された米国特許第5,575,766号に開示されている。或いは、卵円窩に位置するガイドカテーテルの先端側の目的の肺静脈を唯一選択する十分な剛性及び左囲鰓腔における操作性を有するガイドワイヤであっても良い。しかしながら、図19乃至図28を参照しながら後述する先端部可撓性カテーテルを用いてガイドワイヤを肺静脈内に導入するのが好ましい。
【0057】
肺静脈へのアクセスが得られたら、図3の配置ステップ(3)の次の過程で、外周アブレーション装置組立体の先端部分を、ガイドワイヤを利用して肺静脈内に送る。次に、外周伝導ブロックが形成されるべき肺静脈のアブレーション領域に外周アブレーション装置を配置する。
【0058】
外周アブレーション装置及び方法
図4は、図3を用いて説明した配置ステップ(3)及びアブレーションステップ(4)に用いられる外周アブレーション装置組立体100を示す図である。この外周アブレーション装置組立体100は、ガイドカテーテル101、ガイドワイヤ102、及び外周アブレーションカテーテル103を含む。
【0059】
より具体的には、図4は、図3に従って経中隔的アクセス法を行った後のガイドカテーテル101、及び図3のステップ(3)に従って肺静脈内に送られて配置された後のガイドワイヤ102を示す図である。図4は、先端ガイドワイヤトラッキング部材を用いてガイドワイヤ上を同軸的にトラッキングする外周アブレーションカテーテル103を示す図である。この先端ガイドワイヤトラッキング部材はその一部が、細長いカテーテル本体130の先端部分132に位置する第1のガイドワイヤポート142及び第2のガイドワイヤポート144において明確に示されている。ガイドワイヤ内腔(図示せず)が、第1のガイドワイヤポート142と第2のガイドワイヤポート144との間に延在し、スライド可能にガイドワイヤを受容してそのガイドワイヤをトラッキングできるように適合されている。図4の特定の態様では、第2の先端ガイドワイヤポート144は、細長いカテーテル本体130の先端部分132に位置し、かつ第1の先端ガイドワイヤポート142の基端側に位置する。
【0060】
当業者には明らかなように、上記した図4に示す先端ガイドワイヤトラッキング部材は、先ずガイドワイヤが肺静脈に配置された後で、「バックローディング(backloading)」技術により体外のガイドワイヤにスライド可能に取り付けることができる。更に、このガイドワイヤトラッキング部材は、細長いカテーテル本体130の基端部分におけるガイドワイヤ内腔が必要ないため、この領域におけるカテーテル軸の外径を小さくすることが可能となる。しかしながら、例えば図6A乃至図6Bの潅流の実施形態を参照して後述するような、細長いカテーテル本体の基端部分に第2の先端ガイドワイヤポートが設けられる設計でもよい。
【0061】
加えて、図4に示されている第1のポートと第2のポートとの間の細長いカテーテル本体内を通るガイドワイヤ内腔を含めることは、本発明に従った許容できるガイドワイヤトラッキング部材の範囲を限定するものではない。ガイドワイヤをスライド可能に受容しそのガイドワイヤをトラッキングできるように適合された孔を有する他のガイドワイヤトラッキング部材も許容範囲とみなされる。例えば、Arneyに付与された米国特許第5,505,02号に開示されたようなガイドワイヤと係合するように適合された構造などがある。この特許を参照することを以ってこれを本明細書の一部とする。
【0062】
各図面により示される様々な組立体及び方法は、外周アブレーション装置のガイドワイヤトラッキング部材に結合されたガイドワイヤを含むが、他の細部を変更した例も、アブレーション領域に外周伝導ブロックを形成するためにその領域に外周アブレーション装置を配置するのに適している。例えば、代替の外周アブレーションカテーテル(図示せず)には、ガイドワイヤがアブレーションカテーテルと一体となっている「固定ワイヤ」型の設計がある。別の代替の組立体では、上記したSwartzに付与された米国特許第5,575,766号を参照して説明した肺静脈内にガイドワイヤを挿入するための同種のサブ選択性シースを用いて、外周アブレーションカテーテル装置を心房を経て肺静脈内に挿入してもよい。
【0063】
図4はまた、エキスパンド部材170に設けられた外周アブレーション要素160を備えた外周アブレーションカテーテル103を示す図である。図4に示されているエキスパンド部材170は、図3の配置ステップ(3)に従って肺静脈内に経皮的に内腔内を通すために径方向に膨張する前の状態である。しかしながら、エキスパンド部材170は、図5に示されているように膨張用アクチュエータ175により、径方向に膨張した状態になるように適合されている。膨張用アクチュエータ175は、限定するものではないが圧縮可能な流体源を含み得る。図5に示されている膨張した状態では、エキスパンド部材170は、カテーテル本体の長手軸に対して動作長さLを有し、径方向に膨張する前の状態よりも大きな膨張した外径ODを有する。更に、膨張した外径ODは、肺静脈のアブレーション領域に外周が係合するのに十分な大きさである。従って、用語「動作長さ」は径方向に膨張したときに、次の膨張した外径を有するエキスパンド部材の長さを指す。すなわち、(a)径方向に膨張する前の位置のエキスパンド部材の外径よりも大きく、(b)体内空間の壁部即ち近接するアブレーション領域の少なくとも2つの対向する面において、エキスパンド部材を固定するために十分な表面積をもって、エキスパンド部材を取り囲む前記体内空間の壁部即ち近接するアブレーション領域に十分に係合できる長さである。
【0064】
外周アブレーション部材150は、模式的に図示された細長いカテーテル本体の基端部分でアブレーションアクチュエータ190に接続された、動作長さLの外面の外周バンド(陰影で示された部分)を含む。エキスパンド部材170が、アブレーション領域の肺静脈壁部に動作長さLの少なくとも一部が周方向に係合するように径方向への膨張が調整された後、アブレーションアクチュエータ190により外周アブレーション部材150の外周バンドが肺静脈壁部における外周経路の組織をアブレーションし、肺静脈内腔を取り囲み肺静脈の電気伝導を横断する外周外傷を形成して、肺静脈の長手軸に沿った方向の伝導を遮断する。
【0065】
図6Aは、図3の方法に従って用いられる別の外周アブレーションカテーテル203を示す図である。図6Bに破線で示されている潅流用内腔260が、細長いカテーテル本体230の先端部分232内に形成されている。潅流用内腔260は、この例では第1の先端ガイドワイヤポート242即ち先端潅流ポート242と基端潅流ポート244との間に形成されている。基端側潅流ポート244は、細長いカテーテル本体230の壁部を貫通して形成され、先端ポートと基端ポートとの間に潅流内腔を成すガイドワイヤ内腔(図示せず)と連通している。図示されているこのような設計では、肺静脈内にアブレーション要素を配置するためにガイドワイヤが配置されたら、先端側潅流ポート242内へ血液が順行性に流れるように基端側潅流ポート244の基端側に前記ガイドワイヤを引くことにより、両ポート間の破線で示された内腔を空け、矢印で模式的に示すように血液が潅流内腔に沿って基端側に流れ、基端側潅流ポート244から流れ出て心房に入るようにする。
【0066】
図6A及び図6Bに示す潅流設計では、更に、「オーバーザワイヤ(over the wire)」型の設計でカテーテル本体230の全長に亘って延在するガイドワイヤ内腔の中にガイドワイヤ102が配置される。このような設計では、ガイドワイヤを基端側に引くと潅流が可能になると共に、後にカテーテルの再配置のために第1の先端ガイドワイヤポート242を介してガイドワイヤを先端方向に再び送ることができる。図示しない別の例では、ガイドワイヤを単純に引いて第2の先端ガイドワイヤポートから離す。ただし、外周アブレーションカテーテルは、先端ガイドワイヤトラッキング部材をそのガイドワイヤと再結合するために体から取り出さなければならない。
【0067】
図6Aの実施形態の変更例である図示しない別の代替例では、基端側潅流ポートが、第2の先端ガイドワイヤポートとエキスパンド部材との間に独立したポートとして設けられているため、ガイドワイヤを基端側に引くとことによりガイドワイヤ内腔が空き、第1の先端ガイドワイヤポートと基端潅流ポートとの間に潅流内腔が形成される。しかしながら、この代替例のガイドワイヤは、第2の先端ガイドワイヤポートと基端側潅流ポートとの間のガイドワイヤ内腔内に係合して残存する。
【0068】
エキスパンド部材の拡張時の潅流により、血液の静止を最小に抑えることができ、心房性不整脈治療の際、標的肺静脈が心房に血液を送り続けることが可能となる。更に、より詳細な以降に示す実施形態に記載されているように、アブレーション要素がアブレーション領域において熱伝導で組織をアブレーションする場合、図6A及び図6Bの変更例に従った潅流構造により、エキスパンド部材に近接した血液を含む周りの領域が冷却され得る。
【0069】
更に、図6A及び図6Bを参照しながら説明した特定の潅流構造に加えて、エキスパンド要素の膨張時に潅流を可能とする他の構造の例も、本発明の範囲を逸脱することなく当業者にとって好適な代替となることを理解されたい。
【0070】
図7は、図3乃至図6を用いて段階的に示された外周アブレーション装置組立体の使用方法に従って、肺静脈壁53のアブレーション領域の回りに外周外傷70が形成された後、外周アブレーション装置組立体が除去された肺静脈52を示す。図示されているように、外周傷害70は、肺静脈口54に近接した肺静脈に沿った位置にあり、「経壁的」である。ここで用いる「経壁的」とは、一側から他側にかけて完全に壁部を貫いているという意味である。また、図7に示されているように外周外傷70は、「連続的」な外周バンドを形成している。ここで用いる「連続的」とは、肺静脈壁の回りに隙間なく肺静脈内腔を取り囲んでいるという意味である。
【0071】
しかしながら、本発明に従った外周アブレーション装置を備えた外周カテーテルアブレーションは、傷害の外周或いは壁部内に実際にはアブレーションされていない組織が残り得るが、そのような部分は伝導信号の経路としては実質的に十分ではない。従って、上記したように定義した用語「経壁的」及び「連続的」は機能的制限を有することを意味する。すなわち、アブレーション領域の一部の組織がアブレーションされなくても、症候性催不整脈性信号が伝導ブロックを介して肺静脈から心房内に伝導することを可能にする機能の隙間が存在しない。
【0072】
更に、上記した機能的に経壁的及び連続的外傷の性質は、肺静脈における完全な外周伝導ブロックの特徴である。従って、このような外周伝導ブロックは静脈を横断し、外傷の長手方向における静脈の一側部分と他側部分との間の伝導を遮断する。従って、伝導ブロックの心房側とは反対側の催不整脈性伝導の発生源であるあらゆる病巣からの心房への伝導が伝導ブロックにより遮断され、心房性不整脈の影響が無になる。
【0073】
図8A及び図8Bは、外周アブレーション装置の更なる変更例を示す図である。この例では、外周アブレーション部材350が、肺静脈口54に整合するように適合された径方向に順応性のエキスパンド部材370を含む。このエキスパンド部材370は、左心房においてその少なくとも一部を径方向に膨張した位置に調整してから肺静脈口54に導入して、肺静脈口54に整合するように構成されている。外周アブレーション要素352は、エキスパンド部材370の回りにバンドを形成しており、アブレーションアクチュエータ190に接続されている。図8Aは、左心房50において径方向に膨張した位置に調整された後のエキスパンド部材370を示す図である。更に、図8Bは、外周アブレーション要素352を含む外周アブレーション部材の伸長した動作長さLの少なくとも一部が肺静脈口54に係合するまで肺静脈52内に導入された後のエキスパンド部材を示す図である。図示されているように、エキスパンド部材のテーパ先端部374が肺静脈に整合しており、外周アブレーション要素352が肺静脈口54及び場合によっては左心房の後壁の一部にアブレーション可能に接触するように基端部372が径方向に膨張している。図8Cは、外周外傷を形成するべく外周アブレーション要素が動作された後の、肺静脈口54の領域を包含する外周伝導ブロックを形成する外周外傷72の一部を示す図である。
【0074】
肺静脈口に整合しているのに加えて、図8Bに示されているようにエキスパンド部材の基端部分372が、肺静脈口54を囲む左心房後壁に沿った組織の外周経路にも係合している。更に、外周アブレーション部材の外周バンド352も心房壁組織に係合するように適合されている。従って、図8A及び図8Bを参照しながら連続する各ステップで説明した、一部が図8Cに示されている方法に従った外周伝導ブロックの形成には、心房組織壁及び肺静脈口54を囲む肺静脈壁の外周経路をアブレーションすることを含む。従って、図8A及び図8Bを参照しながら順に説明した、最終的に図8Cの外周外傷72が形成される方法により、肺静脈口を含む全肺静脈が、もう一方の肺静脈口を含む左心房壁の少なくとも実質的な部分から電気的に分離されることは当業者には明らかである。
【0075】
図8D乃至図8Eは、肺静脈及び肺静脈口を左心房壁の実質的な部分から電気的に分離するのに相当有利な別の外周アブレーション装置の実施形態及びその使用方法を示す。しかしながら、図8A乃至図8Cを参照して説明した実施形態とは異なり、図8D乃至図8Eに示す実施形態は、図8Fに示されている形成された外周伝導ブロック72´から明らかなように、肺静脈または肺静脈口の内腔即ち内層に沿った組織をアブレーションしないで肺静脈を分離する。
【0076】
詳細には、図8Dに、図8A及び図8Bに示されているような類似の装置組立体が示されている。ただし、外周バンド352´が、肺静脈口を取り囲む左心房後壁に沿った組織の外周経路のみに係合するように、ある形状(主幅)を有してエキスパンド部材の基端部分372´の回りに配置されている。図示されているように、テーパ先端部分374´が肺静脈52に係合している。本実施形態の一態様では、エキスパンド部材の適合を、外周バンドが適合性のみにより左心房壁組織に対して配置されるように肺静脈口の領域に対して自己適合性とすることができる。
【0077】
別の変更例では、図8Eに例が示されているようなテーパ形状を有する洋ナシ形のエキスパンド部材即ちバルーンが図8Dに従って好適に用いられ得る。このような洋ナシ形状は、まずエキスパンド部材即ちバルーンの中に予備形成したり、また、エキスパンド部材が、例えばバルーン構造内に複合構造などを使用するなどして、膨張するときに制御された適合性によりこの形状に形成されるように適合され得る。いずれの場合も、洋ナシ形の例では、アブレーション部材の外周バンド352´が、図8Dに例示された方法に従って用いられる際に左心房後壁に面するように適合されているテーパ形状の外面に沿って配置されるのが好ましい。更に、アブレーション要素を、図8Eに陰影が付けられて例示されている延長バンド352´´などのテーパの他の部分に沿って延長したり、代わりにその部分に配置することも考えられる。従って、延長バンド352´´を含む図8Eに示されている例は、図8A乃至図8Cに示されている方法に従うなどして肺静脈及び肺静脈口内の組織に沿って外周伝導ブロックを形成するのに用いられるこの装置の実施形態を取り得る。
【0078】
肺静脈や肺静脈口の組織をアブレーションしないで、左心房後壁に沿った組織の外周経路に沿い、かつ肺静脈口を取り囲む外周伝導ブロックを形成する方法は、図8D乃至図8Fに例示された特定の装置の実施形態に限定されるものではない。他の装置の例も、この方法に従って用いられる許容される代替となり得る。好適と思われるある特定の例では、図15を参照して後述される実施形態などの「ループ型」アブレーション部材が、左心房内に「ループ型」アブレーション要素を形成するように適合されており、このループが心房壁に沿い、かつ静脈口を取り囲む外周経路組織に係合するように左心房後壁に向かって進められる。次に、ループ型アブレーション要素を動作させて、後に例を示す肺静脈口の回りに所定のパターンを形成する烙鉄などのように、係合している組織をアブレーションする。更に、他の装置または方法の例も適当な代替となり得ることは当業者には明らかであろう。
【0079】
図9A乃至図9Dは、外周アブレーション装置組立体を用いて、左心房壁に沿った複数の小波による再入型の細動の治療に用いられる前記した低侵襲性のmaze式の方法での細長い線状外傷の形成に対して追加的に外周伝導ブロックを形成する際に用いられる方法をひとまとめに示す。この低侵襲性のmaze式の方法は、前記したように左心房壁に沿った複数の小波による再入型の細動の治療に用いられる方法である。
【0080】
より具体的には、図9Aは、肺静脈間に形成される細長い線状伝導ブロックと交差する外周伝導ブロックを形成して、maze式の方法を実施するためのステップの概要を示す。参照することを以って本明細書の一部とする同時係属米国特許出願第08/853,861号(名称、「組織アブレーション装置及びその使用方法(Tissue Ablation Device and Method of Use)」)に開示されているように、図9Aのステップ(5)及び(6)に一部が示されているように近接する肺静脈口の全ての対におけるアンカー間に線状外傷57,58及び59を形成して、各肺静脈と境界を成して催不整脈性心房壁領域を取り囲むボックス状伝導ブロックを形成し得る。しかしながら、ある種の適用例では、このような線状外傷は肺静脈口の表面積に対して十分に細く形成されることによりそれらが交差しない場合があり、図9Bの線状外傷57と線状外傷58との間に示されているようなボックスに移出入する異常伝導の前不整脈経路が出現し得る隙間が線状外傷間に残存すると考えられる。従って、図9Cに示されているように外周アブレーション部材450を配置して、図9Aのステップ(7)に従った外周伝導ブロックを形成することにより、線状外傷57と線状外傷58が連結されてギャップがなくなる。
【0081】
図9B及び図9Cに示されている実施形態の更なる変更例である、外周アブレーション要素452及び線状アブレーション要素461を含む別の外周アブレーション装置組立体が図9Dに示されている。図示されているように外周アブレーション部材450は、カテーテル軸に対して非対称に径方向に膨張した位置に適合されるエキスパンド部材470を含む。線状アブレーション部材460は、細長いカテーテル本体に沿って外周アブレーション部材450から延出している。膨張して肺静脈壁に十分に係合すると、エキスパンド部材470が、線状アブレーション部材460の第1の端部462に対して少なくとも部分的にアンカー機能を提供する。
【0082】
図9Dに破線で示されているように成形スタイレット466が、線状アブレーション部材460の第2の端部464の領域における細長いカテーテル本体内に配置されている。この成形スタイレット466は、第2の端部464を肺静脈口内に押し込み、線状アブレーション部材460が近接する肺静脈口間の左心房壁に実質的に接触して図9Aの方法に従って線状アブレーションが形成されるようにする。成形スタイレット466の使用に加えて、第2の端部464に近接して異なる第2のアンカーを用いてもよい。このようなアンカーには、例えば図9Eにおいてガイドワイヤ467に係合している中間ガイドワイヤトラッキング部材466´として示されているような、肺静脈内に係合したガイドワイヤ上をトラッキングする中間ガイドワイヤトラッキング部材を用いることができる。
【0083】
図9Dに示されている実施形態の更なる変更例である、外周アブレーション要素452及び線状アブレーション要素461を含む別の外周アブレーション装置組立体が図9Eに示されている。図示されているように外周アブレーション部材450は、カテーテル軸に対して非対称に径方向に膨張した位置に適合されたエキスパンド部材470を含む。線状アブレーション部材460は、細長いカテーテル本体に沿って外周アブレーション部材450から延出している。膨張して肺静脈壁に十分に係合すると、エキスパンド部材470は、線状アブレーション部材460の第1の端部462に対して少なくとも部分的にアンカー機能を提供する。
【0084】
更に、図9Aに模式的に示され、詳細が図9B乃至図9Cに示されている方法は、例示目的の具体的に順を追ったステップを示している。例示された順番に従い、まず線状外傷が形成され、次に外周伝導ブロックに連結される。しかしながら、外周伝導ブロックを、線状外傷即ち伝導ブロックが形成される前に形成してもよいし、最終的に外傷を組み合わせることにより外周ブロックが線状ブロックに交差して連結されるのであれば、連続ステップを別の順に様々に組み合わせてもよい。更に、線状外傷を連結する外周伝導ブロックは、図8Cに関連して図示及び説明した実施形態を考慮した、図9A乃至図9Eを参照しながら図示及び説明した実施形態から考えられるような、肺静脈口を取り囲みその他の左心房壁から電気的に分離する外周経路組織を含む。
【0085】
図9A乃至図9Eを参照して図示及び説明した実施形態に加えて、より侵襲性の低いmaze式の方法を実施するべく、外周伝導ブロックと線状伝導ブロックの組み合わせ装置組立体及びその使用についての他の方法が考えられる。例えば、図9Fは、図8A乃至図8Cの実施形態に従って形成された外周伝導ブロック57と図9Bに例が示された方法に従って形成された線状外傷の対との組み合わせによって得られる特定の外傷パターンの1つを示す。図9Gに示されている更なる例では、図9Bの線状外傷の対と図9D乃至図9Fを参照して例が示された実施形態に従って形成された外周伝導ブロックとの組み合わせによる別の外傷パターンが形成されている。図9Fの最終的な外傷パターンと図9Gの最終的な外傷パターンは、形成された外周伝導ブロックの形状及び位置がやや異なるが、それぞれの外周伝導ブロックが心房壁組織の外周経路を含むという点で類似している。このような外周伝導ブロックが近接する肺静脈口間に形成される場合、maze式の方法の際、短い線状外傷で十分に外周外傷間を連結することができる。
【0086】
この最後に、本発明は更に、複数の外周伝導ブロックが心房壁組織に形成され、各肺静脈口がある外周伝導ブロックに囲まれ、かつその外周伝導ブロックで電気的に分離される、より侵襲性の低いmaze式の方法(図示せず)のための別の変更例も考えられる。一連の4本の線状外傷を、隣接する肺静脈口の複数の対の間に、対応する近接する外周ブロックと交差し連結するように形成し得る。これにより、ボックス状伝導ブロックが4つの外周伝導ブロックと4本の連結した線状外傷によって形成される。第5の線状外傷を、少なくとも一部のボックス状伝導ブロックと、例えば僧帽弁輪などの別の所定の位置との間に形成してもよい。
【0087】
図9Hは、より侵襲性の低いmaze式の手術の際に、肺静脈口を取り囲む心房壁組織に沿って外周伝導ブロックを形成するための更なる別の例を示す。この例に従って、近接する2つの上肺静脈口と下肺静脈口のそれぞれの回りに互いに交わるように形成された外周伝導ブロックが図9Hに示されている。これにより、肺静脈口間に導電ブロックを形成するために線状外傷を形成する必要性が緩和される。更に、心房後壁の右側及び左側の両方における上側肺静脈口と下側肺静脈口との間の距離は、2つの近接する上側肺静脈口間または下側肺静脈口間の距離よりも大幅に短いと考えられる。従って、図9Hは、上記したように近接する左右の肺静脈口の上下の対の間に垂直方向に位置して重なり合う外周導電ブロック、並びに上下の肺静脈口の左右の対を連結する線状外傷を示す。場合によってはこれらの線状外傷は、ある症状の心房性不整脈の治療または予防に必要でないこともある。しかしながら、例えば、maze式の全左心房パターンを形成するために近接する全ての肺静脈口の対間に重なり合う外周伝導ブロックのみを用いる他の組み合わせパターンも可能である。
【0088】
図10は、本発明の外周アブレーション装置組立体を用いる他の方法を模式的に示す図である。この方法では、ステップ(8)及び(9)に従ってアブレーションの前後において肺静脈に沿った電気信号が検出要素でモニタリングされる。選択された肺静脈が心房性不整脈の不整脈起源を含むか否かを確認するために、肺静脈内の信号が、図10のステップ(8)に示されているように伝導ブロックを形成する前にモニタリングされる。特に局所性の不整脈の患者において肺静脈の不整脈起源が確認できなかった場合は、心臓の適正な部位を治療するために別の肺静脈の信号をモニタリングしなければならない。更に、プリアブレーション信号をモニタリングして、心房性不整脈の不整脈起源の位置を表示させる。この情報が、伝導ブロックを形成するのに最適な位置を決定する助けとなる。従って、伝導ブロックが、不整脈の実際の病巣起源を含むようにアブレーションするか、或いは病巣起源から心房壁内への異所性伝導を遮断するために病巣と心房との間にくるようにアブレーションする。
【0089】
アブレーションの前に肺静脈における電気的伝導信号をモニタリングするのに加えて或いはその代替として、図10の方法のステップ(9)に従って外周アブレーションの後に、肺静脈壁に沿った電気信号を検出要素によりモニタリングすることもできる。このモニタリングは、不整脈伝導に対して完全な伝導ブロックを形成する際、アブレーション効果を検査する助けとなる。連続的な外周外傷及び経壁外傷を形成した後、見つかった病巣からの不整脈の発生が肺静脈壁に沿った信号のモニタリングで観察されなければ、外周伝導ブロックの形成が成功したことを意味する。これとは反対に、外傷と心房壁との間にこのような不整脈信号が観察された場合は、アブレーション領域の2回目の外周外傷術などの次の処置が必要であることを示唆する機能の不完全性、または不連続な外周(隙間)、または不連続な深さ(経壁的)を表す。
【0090】
図10のステップ(10)に従った「ポストアブレーション」信号のモニタリングに検査用電極を用いことができる。図示しない別の実施形態では、検査用電極が細長いカテーテル本体の先端部分に設けられ、その検査用電極を局所性の不整脈を刺激するべく外周外傷の先端側即ち上流側に配置して、その検査用電極を取り囲む組織に検査信号を送るために電流源に電気的に接続されている。この検査用信号は一般に、疑わしい静脈に沿って将来に生理的に生成され得るあらゆる異常な活性から生じる心房性不整脈の防止に対する外周外傷の強力さを検査する。
【0091】
信号のモニタリング及び上記した検査刺激の方法では、更に、このような方法を、外周アブレーション要素の領域に近接したカテーテル先端部分に設けられた独立した電極或いは電極対で実施したり、または後述するように外周アブレーション要素自体を成す1或いは複数の電極を用いて実施することができる。
【0092】
エキスパンド部材及び外周アブレーション要素
ここで説明する外周アブレーション装置組立体に用いるためのエキスパンド部材及び外周アブレーション要素の設計を、先述の図面に示されている実施形態を参照しながら説明する。このような組立体に用いられる様々なエキスパンド部材及びアブレーション要素の構造の例及びその使用方法を後述する。
【0093】
これらの詳細はやや模式的であるが、前記図面に示されている外周アブレーション部材は、外周電極要素がエキスパンド部材の外面の周囲を囲むある実施形態を例示している。図示されているこの実施形態のエキスパンド部材は、幾つかある形態の1つを取り得るが、ここでは一般に、エキスパンド部材は加圧可能な流体源であるエキスパンドアクチュエータに接続された膨張可能なバルーンとして示される。バルーンは、ポリマー材料からなり、流体チャンバーを形成するのが好ましい。この流体チャンバーは、細長いカテーテル本体に沿って基端方向に延び、かつ加圧可能な流体源に接続されるように適合された、基端側流体ポートで終わっている流体通路(図示せず)と連通している。
【0094】
膨張バルーンのある変更例では、膨張バルーンは、例えばポリエチレン(「PE」:好ましくは低線密度、高線密度、またはそれらの組み合わせ)、ポリオレフィンコポリマー(「POC」)、ポリエチレンテレフタラート(「PET」)、ポリイミド、またはナイロン材料などの比較的弾性の低いポリマーから形成される。このように形成されたバルーンは、圧力の作動範囲に対して径方向の柔軟性即ち適合性が低く、既知の経皮的カテーテル技術により目的のアブレーション部位にバルーンを導入し易くするべく窄めると、所定の構造にたたまれ得る。この変更例では、1つのバルーンの大きさが全ての肺静脈壁に適切に係合して、手術が必要な全ての患者に対して本発明の外周アブレーション方法を実施できるというわけではない。従って、処置を行う医師が患者の肺静脈構造に見合った特定の装置を選択できるように、それぞれが予め定められた固有の膨張直径を有するバルーン動作長さを備えた複数のアブレーションカテーテルのキットを提供することも考えられる。
【0095】
代替の膨張バルーンの例では、バルーンは、限定するものではないが、例えばシリコーン、ラテックス、ポリウレタン、またはマイラーエラストマーなどの比較的柔軟性を有するエラストマー材料から形成される。このように形成されたバルーンは、膨張する前の膨張していない状態ではチューブ状部材の形態を取り得る。この柔軟なチューブ状カテーテルが上記したような流体で加圧されると、チューブ状部材の壁部を形成する比較的弾性の低い材料が、与えられた膨張圧力に応じて弾性変形により径方向に延び、所定の直径になる。適合性バルーンは、スキンに埋め込まれる、例えば金属、Kevlar、またはナイロンファイバーなどのファイバーを含むラテックスまたはシリコーンのバルーンスキンなどの複合材から形成され得る。メッシュやブレードなどの所定のパターンを有するこのようなファイバーは、好適な軸に沿って制御された適応性、即ち好ましくはエキスパンド部材が径方向に適合できるようにすると共に、長手方向の柔軟性を制限する適合性を提供し得る。
【0096】
他のものに比べ、比較的適合性の高い例は広い動作直径の範囲を提供し、治療を受ける様々な患者、或いはある患者の各静脈に対して1或いは2、または3つの装置で間に合う。更に、この直径の範囲は比較的低い圧力範囲で達成可能であり、より高い圧力での膨張、特にバルーンの血管に対する過度の膨張に付随して現れ得る外傷性血管応答のリスクを排除できる。更に、膨張バルーンの機能の条件は、単にアブレーション要素が肺静脈壁の内面に沿った外周経路に係合することであるため、この例の低圧力膨張特性は本発明に好適である。
【0097】
更に、外周アブレーション部材は、図8A乃至図8Bを参照して前述したように、エキスパンド部材に実質的な適合性を与えることにより、少なくとも一部が肺静脈口の形状に一致するように適合されている。図8A乃至図8Bの設計に含まれているような肺静脈口に対する適合性に加えて、図示されているようにエキスパンド部材の動作長さLは、基端部から先端部にかけて先端方向に外径が小さくなるテーパ形状を有する。適合性バルーン或いは非適合性バルーンでは、そのような先端方向に小さくなるテーパ形状により、肺静脈口の領域に外周アブレーション要素が肺静脈の漏斗形状に適合するため外周伝導ブロックの形成が容易になる。
【0098】
前述の各図面に様々に示された外周電極要素の実施形態は、更に、外周電極要素がアブレーションアクチュエータ190に接続されている。アブレーションアクチュエータ190は通常、高周波(RF)電極要素とRF回路を形成するべく患者に皮膚接触している接地パッチ195との両方に接続されたRF電源(図示せず)を含む。更に、アブレーションアクチュエータ190は、アブレーション時に電極要素から電流が流れるようにするために、フィードバック制御ループにおける温度などの組織パラメータまたはRF回路の電気パラメータの何れかを使用するモニタリング回路(図示せず)及び制御回路(図示せず)を含むのが好ましい。また、あるアブレーション要素において複数のアブレーション要素即ち電極が用いられ、スイッチング手段を利用して、様々な要素間即ち電極間にRF電流を流すことができる。
【0099】
図11A乃至図11Dは電極アブレーション要素などの導電性外周電極バンドの様々なパターンを示し、それぞれのパターンがエキスパンド部材の動作長さの外面の周囲を囲んでいる。図11A及び図11Bは、エキスパンド部材570の外面を囲む連続した外周電極バンド552を含む外周アブレーション部材550を示す。図11Bは、加圧可能な流体源175と連通したバルーンであるエキスパンド部材570を具体的に示す。図11Bは更に、導電リード線554によりアブレーションアクチュエータ190に電気的に接続された電極バンド(外周アブレーション要素)552を具体的に示す。更に、電極バンド552に近接したエキスパンド部材570のバルーンスキン壁に設けられた開口572が示されている。これらの開口572の役目は、生理食塩水や乳酸リンガー液などの液体が電極552を取り囲む組織に流れるようにすることである。このように液体が流れることにより、高周波アブレーションの際に電極を取り巻く組織の温度上昇を抑えることができると考えられる。
【0100】
図11A乃至図11Dに集合的に示されている各形状は、連続的な電極バンドが、膨張した直径の範囲においてエキスパンド部材の動作長さを覆うことが可能であり、この特性は、エキスパンド部材などの比較的適合性を有するバルーンに特に有用であると考えられる。図11A乃至図11Dの特定の実施形態では、この特性は主に、エキスパンド部材の動作長さの長手軸に対して電極バンドに付与される第2の形状により得られる。従って、電極バンド552は、図11A及び図11Bに示されているように、変形ステップ曲線である特定の第2の形状を取る。図11C及び図11Dにそれぞれ示されているヘビ状または鋸歯状の第2の形状などの変形ステップ曲線以外の形状もまた適している。図11A乃至図11Dに示されている形状に加えて、規定された機能の条件を満たす他の形状もまた本発明の範囲内とみなされる。
【0101】
更に、図11C及び図11D並びに図3乃至図6Bに模式的に示されている外周アブレーション要素により提供される電極バンドは、動作長さの長手軸に対して機能的バンド幅を有する。このバンド幅は、動作長さの長手軸に平行な肺静脈壁に沿った伝導に対して、完全な伝導ブロックを形成するのに十分な長さのみを有すればよい。これとは対照的に、それぞれのエキスパンド要素の動作長さLは、先端部分を適正な位置に確実に固定して、アブレーションのためにアブレーション要素が肺静脈の選択した領域に確実に配置されるように構成されている。従って、バンド幅wはエキスパンド部材の動作長さLに対して比較的短く、電極バンドはエキスパンド部材の動作長さの3分の2または2分の1未満のバンド幅の比較的狭い赤道バンド(equatorial band)を形成する。更に、本明細書中において、細いバンドがエキスパンド部材の赤道(中心)ではなく別の部分に配置してもよいが、細いバンドの両側が動作長さLの一部と境をなすのが好ましい。
【0102】
外周アブレーション要素の細い赤道バンドの別の態様では、形成される外周外傷は、それ自体の外周と比べると比較的狭く、膨張した時のエキスパンド要素上のそれ自体の外周の3分の2または2分の1未満であり得る。伝導ブロックとして肺静脈に外周外傷をアブレーションするために好適と考えられる構造では、バンド幅wは1cm未満であり、膨張したときの動作長さの外周の幅は1.5cmを超える。
【0103】
図12A及び図12Bは、膨張した直径の範囲に対して連続的な外周外傷パターンを維持するように適合されていると共に、膨張バルーン部材の動作長さの周りに比較的細い赤道バンドを形成する電極要素を含む外周アブレーション要素の更なる変更例を示す。この変更例では、複数個の電極/アブレーション要素562が外周アブレーション要素に含まれており、それらはエキスパンド部材の動作長さLの外面を取り囲む赤道バンドに沿って離間して配置されている。
【0104】
バルーンが膨張した時の個々の電極要素562の大きさ及びそれらの間隔は、肺静脈が心房から延びてその近傍で内膜接触している部位に連続的な外周外傷を形成するように構成され、かつ動作長さが半径方向に膨張した様々な位置に調節された時のバンド直径の範囲に対してそのような外傷を形成するように構成されている。個々の電極要素562はそれぞれ、長軸LAに沿った2つの端部563及び564、並びに短軸SAを有している。長軸LAは、細長いカテーテル本体及びエキスパンド部材560の長手方向の軸Laに対して鋭角を成している。長軸LAに沿った端部563及び564の少なくとも1つは、別の近接する電極要素の端部とオーバーラップしており、それらの外周の外形に沿ったオーバーラップ領域、即ち周方向座標に沿ったオーバーラップ領域が存在する。ここで用いる用語「それらの周方向座標に沿ったオーバーラップ領域」は、2つの近接する端部のそれぞれが、周方向座標及び長手方向座標を有して動作長さに沿って位置し、前記2つの近接する端部が同一の周方向座標を有することを意味するものである。この構造では、エキスパンド部材の径方向の膨張を伴う動作長さに沿った外周の適合性により、それぞれの電極要素が外周の軸に沿って互いに離れる。しかしながら、上記した離間したオーバーラップ構造により、個々のアブレーション要素が周方向におけるある程度のオーバーラップ、或いは少なくとも互いの十分な近接が維持されるため、各要素間の隙間がなく連続した外傷が形成され得る。
【0105】
図11A乃至図12Bを参照して説明した様々な電極の実施形態などの本発明の高周波の例における好適な外周電極要素の構造は、プラズマ蒸着、スパッタリングコーティング、化学蒸着、またはこの目的に見合った既知の技術などの従来の技術を用いて、動作長さの外面に金属材料を被着すること、或いは既知の接着技術を用いるなどしてエキスパンド部材の外面に金属形状部材を固定することを含み得る。上記したように外周伝導ブロックを形成するのであれば、別のRF電極構造も本発明の範囲内とみなされる。例えば、バルーンスキンは、限定するものではないが金、プラチナ、または銀を含む導電材料をポリマーと混合して化合物、即ちバルーンスキンとしての導電マトリックスを形成するなどして金属化し得る。
【0106】
RF電極の実施形態において更に、別の外周アブレーション部材の変更例(図示せず)は、高張食塩液などの液体がスキンにより画定された内部チャンバーから出て周囲の組織に至るように構成された多孔性スキンを有する膨張可能なバルーンなどのエキスパンド部材を含む。このような多孔性スキンは、機械的穿孔またはレーザエネルギーなどにより連続したポリマー材料に孔を形成するなどのある種の方法に従って形成するか、または単に生得的に多孔性の膜を用いてもよい。何れの場合も、多孔性スキン内の液体をRF電源(好ましくは単極)に電気的に接続し、エキスパンド部材の多孔性領域がRF電極として機能し、RF電流が電解液を介して孔の外側に流れる。更に、多孔性スキンが、別の膨張バルーンなどの別のエキスパンド部材の外側に設けられ、その多孔性スキンとその中に含まれるエキスパンド部材との間の領域に電解液が含まれている。当業者であれば、本発明の開示から上記した以外の様々な「液体電極」のデザインも可能であることを理解できよう。
【0107】
上記したRF電極の例の別法において、或いはその例に加えて、外周アブレーション要素は、他のアブレーションエネルギー源即ちシンクを含み得る。具体的には、エキスパンド部材の動作長さの外面を取り囲む熱導体を含む。好適な熱導体構造の例には、例えば上記したRFの詳細な実施形態において記載したように形成され得る金属要素が含まれる。しかしながら、熱導体の実施形態では、このような金属要素は通常、カテーテル内の閉じたループ回路において抵抗により加熱されるか、或いは熱導体に接続された熱源による伝導により加熱される。後者の熱源を用いる熱導体の伝導による加熱の場合、エキスパンド部材には、例えば、抵抗コイル或いはバイポーラRF電流により加熱される液体で膨張するポリマーバルーンスキンを用いることができる。何れの場合も、エキスパンド部材の外面上の熱導体は、その熱導体に近接した組織を40℃乃至80℃の範囲に加熱するように構成されていれば好適であると考えられる。
【0108】
更に外周アブレーション要素の熱導体の例において、図6A及び図6Bに示されている潅流バルーンの実施形態がこのようなデザインに特に有用である。上記した例により提供される加熱によるアブレーションは、エキスパンド部材に近接した肺静脈における血液の凝固が促されるため、このような潅流機構がなければ血液が停滞し得る。
【0109】
図13に示されている本発明に従った方法を実施するのに極めて有用と思われる更なる外周アブレーション要素のデザインは、エキスパンド部材610の動作長さLの基端部及び先端部のそれぞれを封入する2つの絶縁体602及び604を備えた外周アブレーション部材600を含む。図示されている実施形態では、絶縁体602及び604はテフロン(登録商標)材を含む熱絶縁体などの熱絶縁体である。エキスパンド部材610は加熱された液体で膨張したときに周囲組織に対して熱伝導性であるバルーンスキン612を有する膨張可能なバルーンである。加熱された液体は、放射線不透物質、生理食塩水、乳酸リンガー液、それらの組み合わせ、及び/またはこれらの目的に対して許容できる熱伝導特性を有するその他の生体適合性の液体を含み得る。これらの絶縁体を離間して設けることにより、外周アブレーション要素が、向き合った絶縁体間に位置する絶縁されていないバルーンスキンである赤道バンド603として形成される。この構造では、外周アブレーション要素が、絶縁された部分よりも絶縁されていない赤道バンド603において遥かに効果的にバルーンスキンの外側に熱を伝導することができるため、赤道バンドに近接した肺静脈壁における外周領域の組織のみをアブレートするように構成されている。この実施形態は、アブレーション要素を中心に配置することに限定されるものではない。むしろ、外周バンドは、エキスパンド部材の動作長さにおけるあらゆる部分において、上記したようにエキスパンド部材の長手軸を取り囲むように形成することができる。
【0110】
図13は更に、X線映像化により肺静脈の選択したアブレーション領域に赤道バンド603を配置し易いようにする、その赤道バンドの位置を確認するためのX線不透過性マーカー620を示す。X線不透過性マーカー620はX線下で不透過性であって、例えば金、プラチナ、またはタングステンなどのX線不透過性材料から形成することができ、金属を含むポリマーなどのX線不透過性ポリマーを含み得る。図13は、当業者には明らかなように同軸カテーテルデザインに含まれている内側チューブ部材621に対して同軸上に配置されたX線不透過性マーカー620を示す。このようなX線不透過性マーカーは、ここで図示及び説明した他の実施形態と組み合わせることができる。赤道バンドを形成する外周アブレーション部材は金属電極要素を含む。このような電極は、それ自体がX線不透過性とすることができ、上記したような別個のマーカーを使用しなくてもよい。
【0111】
図13を参照して説明した熱絶縁体の実施形態は広い範囲の実施形態の一例であり、外周アブレーション部材はエキスパンド部材の全動作長さに沿ってアブレーション面を有しているが、覆われていない即ち絶縁されていない赤道バンドに沿った部分以外は、アブレーションエネルギーが周囲組織に対して放出されないように覆われている。従って、絶縁体の実施形態には、エキスパンド部材の全動作長さに沿うと共に、絶縁されていない赤道バンドの周りの組織のみを選択的にアブレーションするように両端部が絶縁されている上記したRFの実施形態などの他のアブレーション要素を用いることができる。
【0112】
外周RF電極の実施形態と組み合わせた絶縁体の実施形態を用いる更なる例では、導電性バルーンスキンを含む金属化バルーンが、動作長さの各端部にポリマーコーティングなどの電気絶縁体を有するようにし、これにより絶縁されていない赤道バンドを流れる電気により組織を選択的にアブレーションすることができるようにし得る。この絶縁体の実施形態及び他の絶縁体の実施形態では、絶縁体が部分的であって、結果として赤道バンドが提供される。例えば、導電性RF電極バルーンの場合、部分的な電気絶縁体により、電流の実質的部分がその領域の低抵抗性による「短絡」のため絶縁されていない部分を流れる。
【0113】
RFアブレーション電極と絶縁体との組み合わせの別の例では、多孔性膜がエキスパンド部材の全バルーンスキンを含む。エキスパンド部材の動作長さの基端部及び先端部を絶縁することにより、露出されていない赤道バンド領域の孔のみにより、アブレーションRF電流を有する電解液の流出が可能となる。
【0114】
本発明に従った外周アブレーション要素に用いられるエキスパンド部材は更に、バルーン以外のエキスパンド部材も適する。例えば、図14に示されているエキスパンド可能なケージの実施形態では、ケージ650は、調整ワイヤ651を含み、肺静脈が心房から延びている理想的なアブレーション領域に係合するように拡張可能である。
【0115】
ケージ650の径方向への拡張は以下のようにして達成される。シース652がケージ650の基端側のワイヤの周りに固定されている。しかしながら、ステンレス鋼などの金属マンドレルとし得るコア653が、シース652及びケージ650の内部を通り、先端部656の中で終わっている。ワイヤ651は、例えば半田、溶接、接着剤、ワイヤ上のポリマー材の熱収縮、またはこれらの方法の組み合わせにより先端部に固定されている。コア653は、シース652内をスライド可能であり、例えばシース652内のチューブ状内腔(図示せず)内に受容され、ワイヤがそのチューブ状内腔とシース652との間の同軸空間内に受容されている。シース652をコア653及び先端部656(図14の矢印で示されている)に対して動かすことにより、ケージ650がその長手軸に沿って閉じることができ、拡張したケージ650の動作長さ(図示せず)となるようにワイヤ651を径方向外向き(図14の矢印で示されている)に組織的に付勢することができるようになっている。
【0116】
図14に示されている拡張可能なケージの実施形態では更に、複数のアブレーション電極655が設けられており、それぞれが複数のワイヤ651の内の1本に配設されると共にケージ650の長手軸に沿って同じ様に配置されている。拡張時におけるワイヤ651の径方向への変位、及びそれに伴うアブレーション電極655の位置により、複数のアブレーション電極/要素655が、ケージ650の拡張した動作長さに沿った外周赤道バンドに沿って配置される。この実施形態に従ったケージを形成するワイヤは、径方向に拡張したときに別の所定の形状を有し得る。例えば、図8Aのエキスパンド部材370について示されたような類似のテーパが、拡張ケージ650によって形成され、アブレーション電極655によって形成されたアブレーション要素がそのテーパの基端部と先端部との間に配置され得る。
【0117】
図14に示されている実施形態の構造では更に、ワイヤ651は好ましくは金属であって、ステンレス鋼や、ニッケルとチタンとの合金などの超弾性金属合金、またはそれらの組み合わせを含み得る。ワイヤ651がニッケルとチタンとの合金からなる場合、周囲組織にアブレーション電流を効果的に流すべくアブレーション電極655を動作させるためには別の電気導体が必要である。ワイヤ651がステンレス鋼からなる場合、アブレーション電極655の電気導体として機能し得る。ステンレス鋼構造では更に、ワイヤ651を電気絶縁体でコーティングして、アブレーション電極655の部位における周囲組織に電流が流れないようにし得る。次に、ステンレス鋼ワイヤの例におけるアブレーション電極655は、分離した領域における電気絶縁体を単に除去することにより形成することができ、その露出した領域のみから組織に電流が流れるようにする。
【0118】
図14に示されている実施形態に対して更なるケージの実施形態(図示せず)では、電極の外周ストリップがケージの長手軸に沿った所定の位置でケージを取り囲むように、外周ストリップをケージに固定し得る。上記したようにケージを拡張することにより、電極のストリップが、拡張したケージの形状に従った外周形状をとるように構成されている。このような電極ストリップは好ましくは可撓性であり、これによりケージが径方向に畳んだ状態及び拡張した状態になるとストリップがその形状に容易に適合し、ストリップが容易に前進し、かつケージと共にデリバリシース内に容易に引き込まれる。更に、電極ストリップは、導電ばねコイルなどの連続した外周電極や、または周方向に沿って離間した幾つかの電極を含む可撓性のストリップとすることができる。後者の場合、可撓性ストリップにより、全ての電極がドライブ回路とのインターフェイスとなる電気リード線に電気的に接続され得る。或いは、それぞれの電極がそのような1或いは複数の電気リード線に個別に接続され得る。
【0119】
図15A及び図15Bは、組織をアブレーションするために超音波エネルギー源を利用する外周アブレーション装置組立体の様々な実施形態を示す。この外周アブレーション装置は、外周伝導ブロックを形成するために、肺静脈口内若しくはその周辺、または肺静脈自体の内部に外周外傷を形成する際に特に有用である。しかしながら、このアブレーション装置の適用は単なる例であって、当業者であればこのアブレーション装置を他の体の部位に容易に適用できることを理解できよう。
【0120】
以降のそれぞれの実施形態には、共通して音響エネルギー源が設けられる。固定機構を備えたデリバリ装置も設けられる。ある態様では、固定装置は、体内に音響エネルギー源を配置するためのエキスパンド部材を含む。しかしながら、例えばバスケット機構などの他の固定装置及び配置装置を用いても良い。より具体的な形態では、音響エネルギー源はエキスパンド部材内に配置され、エキスパンド部材が、左心房壁に沿った肺静脈口の領域において肺静脈に沿った組織或いはその周りの組織の外周経路に係合するように適合されている。音響エネルギー源が、エキスパンド部材の壁部に音響的に接続されているため、音響エネルギードライバにより作動されると、外周及び長手方向にコリメートされた音響信号の放射によって、音響エネルギー源がエキスパンド部材の壁部に係合している外周領域の組織に接続される。音響エネルギー、特に超音波エネルギーを使用することにより、心臓を大量の電流に曝すことなく、心臓内またはその近傍の比較的大きな表面領域を目的の加熱深さまでアブレーションするのに十分な一定量のエネルギーを同時に加えることができるという利点がある。例えば、コリメート超音波トランスデューサは、肺静脈などのような直径が約2.5mm、幅が約1.5mmの内腔を有し、効果的な伝導ブロックを形成するのに十分な深さである外傷を形成することができる。効果的な伝導ブロックは、組織内に経壁的或いは実質的に経壁的な外傷を生成して形成できると考えられる。肺静脈口内の位置はもちろん、患者によっても、外傷の深さは約1mm乃至約10mmの範囲内で様々に異なる。コリメート超音波トランスデューサに電源を入れて上記パラメータを有する外傷を生成して、肺静脈と左心房後壁との間に効果的な伝導ブロックを形成することができる。
【0121】
図15A乃至図15Dに例示されている実施形態を参照すると、外周アブレーション装置組立体800は、基端部分810及び先端部分812を有するカテーテル本体802と、細長いカテーテル本体802の先端部分812に沿って配置された膨張可能なバルーン820と、膨張可能なバルーン820に音響的に接続された外周アブレーション部材を形成する外周超音波トランスデューサ830を含む。図15A乃至図15Cに示されているように、詳細には、細長いカテーテル本体802は、ガイドワイヤ内腔804、膨張用内腔806、及び電気リード線内腔808を含む。しかしながら、アブレーション装置は、オーバーザワイヤ型の装置ではなく自走式とすることができる。
【0122】
複数の内腔が、基端ポート(図示せず)とそれぞれの先端ポートとの間に延在している。各先端ポートは、ガイドワイヤ内腔804用の先端ガイドワイヤポート805、膨張用内腔806のための先端膨張ポート807、及び電気リード線内腔808のための先端リード線ポート809として示されている。ガイドワイヤ内腔、膨張用内腔、及び電気リード線内腔は通常、並んで配置され、細長いカテーテル本体802は、1或いは複数のこれらの内腔を同軸上にして形成してもよいし、当業者には明らかな別の様々な構造にしてもよい。
【0123】
更に、図15A及び図15Cに示されているようにカテーテル本体802はまた、先端膨張ポート807及び先端リード線ポート809を先端方向に越え、膨張可能なバルーン820によって形成された内部チャンバーを経て、更に先端部でカテーテル本体が終わっている膨張可能なバルーン820を先端方向に越えて延在する内部部材803を含む。内部部材803は、膨張ポート及びリード線ポートを越えてガイドワイヤ内腔804のための先端領域を形成し、後述する円筒状超音波トランスデューサ830及び膨張バルーンの先端頸部のための支持部材を提供する。
【0124】
経中隔左心房アブレーション術に好適と考えられる細長いカテーテル本体の部品の詳細な構造を後述する。細長いカテーテル本体802自体の外径は、約1.7mm乃至約3.3mm(約5フレンチ乃至約10フレンチ)の範囲、より好ましくは約2.3mm乃至約3.0mm(約7フレンチ乃至約9フレンチ)の範囲である。ガイドワイヤ内腔は、直径が約0.25mm乃至約0.97mm(約0.010インチ乃至約0.038インチ)の範囲のガイドワイヤをスライド可能に受容するように適合され、より好ましくは直径が約0.46mm乃至約0.89mm(約0.018インチ乃至約0.035インチ)の範囲のガイドワイヤと共に使用できるように適合されている。約0.97mm(0.035インチ)のガイドワイヤを使用する場合、ガイドワイヤ内腔は約1.02mm乃至約1.07mm(約0.040インチ乃至約0.042インチ)の範囲のガイドワイヤ内腔が好ましい。更に、膨張用内腔は、短時間で急速に膨張させることができるように約0.51mm(0.020インチ)の内径を有するのが好ましい。しかしながら、使用する膨張媒体、内腔の長さ、流体の流れ及び圧力に関連する動的因子により異なる。
【0125】
超音波トランスデューサ組立体のために必要な内腔及び支持部材を設けるのに加えて、本実施形態の細長いカテーテル本体802は、経壁的内腔手術、更に好ましくは本明細書の他の部分に記載されている経中隔法においてバルーン及びトランスデューサを備えた先端部分が肺静脈口内に配置されるように、左心房内に導入できるように適合されていなければならない。従って、先端部分812は可撓性であって、標的肺静脈内に配置されたガイドワイヤ上に沿ってそのガイドワイヤ上をトラッキングするように適合されているのが好ましい。好適と考えられる別の詳細な構造では、基端部分は先端部分よりも少なくとも30%高い剛性を有するように構成されている。このため、基端部分は、先端部分にプッシュ伝達を提供するように好適に適合され得る。一方、先端部分は、目的のアブレーション領域に装置の先端部分を生体内に送る際に、曲がりくねった構造内をトラッキングできるように好適に適合されている。
【0126】
特定の装置の構造を説明したが、超音波アブレーション部材を目的のアブレーション領域にデリバリするための他の送達機構も考えられる。例えば、図15Aには「オーバーザワイヤ」型のカテーテル構造として示されているが、代替として他のガイドワイヤトラッキング構造も適し得る。例えば、ガイドワイヤがカテーテルの先端領域のカテーテル内腔内に同軸的に受容された「ラピッドエクスチェンジ」または「モノレイル」として知られるカテーテル装置が適するであろう。別の例では、アブレーションのために目的の肺静脈を個別に選択して、目的の部位にトランスデューサ組立体を導くように適合された可撓性の先端部構造が代替として適し得る。この後者の例は更に、図15Aの例のガイドワイヤ内腔及びガイドワイヤが、「プルワイヤ」内腔及び関連して固定されるプルワイヤで置換され得る。このプルワイヤは、カテーテルの長さに沿って変化する剛性移行部に沿って張力を加えることにより、カテーテル先端部を曲げることができるように適合されている。このプルワイヤの例において、許容できるプルワイヤの直径は、約0.20mm乃至約0.51mm(約0.008インチ乃至約0.020インチ)の範囲であり、テーパの外径が、例えば約0.51mmから約0.20mm(約0.020インチから約0.008インチ)に変化するようなテーパ形状を含み得る。
【0127】
図15A乃至図15Cに様々に詳細が示されている膨張可能なバルーン820はより具体的には、中心領域822は通常、内部部材803と同軸上に配設され、その両側の基端頸部領域で基端側適合部824及び先端側適合部826と境をなしている。基端側適合部824は、先端膨張ポート807及び電気リード線ポート809の基端側の細長いカテーテル本体802をシールするように配設されており、先端側適合部826は内部部材803をシールするように配設されている。この構造では、液密された内部チャンバーが膨張可能なバルーン820内に形成されている。この内部チャンバーは、膨張用内腔806により加圧可能な流体源(図示せず)に連通可能に連結されている。膨張用内腔806に加えて、電気リード線内腔808もまた、膨張可能なバルーン820の内部チャンバーと連通しており、これによりそのチャンバー内において内部部材803上に配置されている超音波トランスデューサ830が、詳細を後述するように超音波ドライブ源即ちアクチュエータに電気的に接続され得る。
【0128】
膨張可能なバルーン820は様々な既知の材料から形成することができるが、好ましくは肺静脈口の形状に一致するように適合されているのが好ましい。このために、バルーンの材料は、圧力が加わったときに材料が細長く伸び、完全に膨張すると体の内腔或いは空間の形状をとるように、適合性の高い様々な材料から形成し得る。好適なバルーンの材料には、限定するものではないが、例えばシリコーン、ラテックス、またはデュロメータ値の低いポリウレタン(例えば、デュロメータ値が約80A)などのエラストマーが含まれる。
【0129】
適合性の高い材料からのバルーンの形成に加えて、或いはその代替として、バルーン820は、バルーンが膨張した状態の体腔の解剖学的形状に概ね一致する十分に膨張した所定の形状(即ち予備成形された)を有するように形成することもできる。例えば、詳細を後述するように、バルーンは、肺静脈口の形状に概ね一致する先端方向にテーパ状になった形状を有し、かつ/または肺静脈口に近接した心房後壁の移行領域に概ね一致するような球状の基端部を有する。この場合、適合性を有する或いは有しないバルーンの例を用いて、肺静脈若しくは肺静脈口の不規則な形状に整合するように理想的に配置することができる。
【0130】
上記したような許容できる代替例であっても、バルーン820は、3気圧で少なくとも300%の膨張率を有し、より好ましくは同一気圧で少なくとも400%の膨張率を有するように形成されるのが好ましい。ここで用いる用語「膨張率」は、膨張した際のバルーン内径を加圧される前のバルーン内径で除した値のことであり、加圧される前のバルーン内径とは、流体が実質的に充填され張った状態になった後の内径とする。換言すれば、ここで用いる「膨張率」は、応力と歪の関係における材料の適合性による直径の変化を表す。肺静脈の領域における殆どの伝導ブロック術に用いるのに好適と考えられる構造の詳細では、バルーンは、外径が径方向に膨張する前の状態の約5mmから径方向に膨張した状態の約25mm(即ち、約500%の膨張率)に変化するような正常な圧力の範囲で膨張するように適合されている。
【0131】
図15A乃至図15Dに例が示されているアブレーション部材は、環状の超音波トランスデューサ830の形態をとる。図示した実施形態では、環状超音波トランスデューサ830は、内部が中空の円筒状(即ち、チューブ状)の単一体であるが、このトランスデューサアプリケータ830は、複数のセグメントから形成される概ね環状の形状にしてもよい。例えば、トランスデューサアプリケータ830は、組み立てると1つの環状の形状を形成する複数のチューブセクターから形成してもよい。これらのチューブセクターが、十分な弧の長さを有するようにして、組み立てたセクター組立体が「クローバ」形になるようにしてもよい。この形状は、近接する要素間の加熱される領域にオーバーラップ部分ができると考えられる。概ね環状の形状は、複数の平坦なトランスデューサセグメントを多角形(例えば六角形)に配置して形成してもよい。更に、図示した実施形態では、超音波トランスデューサは単一のトランスデューサ要素を含むが、トランスデューサアプリケータは、後述するように複数の要素のアレイから形成することができる。
【0132】
図15Dに詳細が示されているように、円筒状のトランスデューサ830は、3層からなる同軸的チューブ層を有するチューブ壁831を含む。中央の層832は、圧電セラミック材または圧電結晶材からなるチューブ状部材である。トランスデューサは、PZT−4型、PZT−5型、またはPZT−8型、クオーツ型またはニオブ酸リチウム(Lithium-Niobate)型の圧電セラミック材から形成して、高出力時の安定性を高めることができる。このようなタイプのトランスデューサ材料は、コネチカット州、East HartfordのStavely Sensors社またはマサチューセッツ州、HopkintonのValpey-Fischer社が販売している。
【0133】
外側チューブ状部材833及び内側チューブ状部材834は導電材料から形成され、それぞれの同軸上の空間内に中間層832を封入している。図示した実施形態では、これらのトランスデューサ要素833及び834は、金属コーティング、好ましくはニッケル、銅、銀、金、プラチナ、またはそれらの合金が好ましい。
【0134】
本適用例に用いられる円筒状超音波トランスデューサのもう1つの詳細な構造は次の通りである。トランスデューサ830またはトランスデューサ組立体(例えば、トランスデューサ要素からなる複数の要素のアレイ)の長さは、臨床例によって選択されるのが好ましい。心静脈壁または肺静脈壁の組織における外周伝導ブロックの形成において、トランスデューサの長さは約2mm乃至約10mm以上の範囲、好ましくは約5mm乃至約10mmの範囲である。適正な大きさのトランスデューサは十分な幅の外傷を形成するため、形成される伝導ブロックはアブレーションされない組織が存在しない完全なものであると考えてよい。
【0135】
同様に、トランスデューサの外径は、特定のアクセス経路(例えば、経皮的及び経中隔的)を通って、特定の体腔内の適正な位置に配置され、理想的なアブレーション効果を達成できるように選択されるのが望ましい。肺静脈口内または近傍の適用例では、トランスデューサ830は、約1.8mm乃至約2.5mmの外径を有するのが好ましい。約2mmの外径を有するトランスデューサが、心筋組織または血管組織内において1cmの放射器につき20W或いはそれ以上に到達するレベルの音響出力を生成することが観察された。この出力は、外径が2cm乃至3cmの範囲のバルーンが係合した組織をアブレーションするのに十分であると考えてよい。他の体腔に適用する場合、トランスデューサアプリケータ830は、約1mm乃至3mmまたは4mm以上(例えば、ある体の空間の適用例では1cm乃至2cmの直径)の範囲内の外径を有し得る。
【0136】
トランスデューサ830の中間層832は、所定の動作周波数を生成するような厚さに選択される。動作周波数はもちろん、許容できるアブレーションの外径及び加熱の深さ、並びにデリバリ経路及び標的部位の大きさによって制限されるトランスデューサの大きさなどの臨床的条件によって異なる。詳細を後述するように、図示した適用例のトランスデューサ830は、好ましくは約5MHz乃至約20MHzの範囲内、更に好ましくは約7MHz乃至約10MHzの範囲内で動作する。従って、例えばトランスデューサは、約7MHzの動作周波数のためには約0.3mmの厚みを有し得る(即ち、厚みは目的の動作周波数における波長の2分の1に概ね等しい)。
【0137】
トランスデューサ830は壁部の厚み全体が振動し、コリメートされた音響エネルギーを径方向に放射する。このために、図15A及び図15Dに最もよく示されているように、電気リード線836及び837の先端部が、例えばリード線を金属コーティングに半田付けするか或いは抵抗溶接によって、トランスデューサ830の外側及び内側のチューブ状部材即ち電極833及び834のそれぞれに電気的に接続されている。図示した実施形態では、電気リード線は、約0.10mm乃至約0.20mm(0.004インチ乃至0.008インチの外径)の銀ワイヤ等である。
【0138】
これらのリード線の基端部は、図15Dに模式的に示されている超音波ドライバ即ちアクチュエータ840に接続されるように適合されている。図15A乃至図15Dは更に、リード線836及び837が電気リード線内腔内の別々のワイヤとして示されている。このような構造では、近接した時にリード線が互いに十分に絶縁されていなければならない。従って、リード線836及び837の別の構造も考えられる。例えば、同軸ケーブルは1本で、インダクタンスの干渉については十分に絶縁された2本のリード線のためのケーブルを提供し得る。或いは、リード線は、細長いカテーテル本体によって分離された別の内腔を介してカテーテル本体の先端部分812に接続され得る。
【0139】
トランスデューサはまた、図15Eに例示されているように、トランスデューサ830の長手軸Lに平行な線に沿ってトランスデューサ電極833の外側及び中間層832の一部に溝を設けて刻み目を付け、扇形に分割し得る。電気リード線を各セクターに個別に接続して、対応するトランスデューサのセクターを個別に励起する専用の出力制御器に各セクターが接続されるようにする。それぞれのセクターに対してドライブ出力及び動作周波数を制御して、超音波ドライバ840がトランスデューサ830の周りの超音波ビームの均一性を高めたり、加熱(即ち、外傷の制御)の角度を変えることができる。
【0140】
上記した超音波トランスデューサは、以下の本実施形態に従った全装置組立体と組み合わせる。組立体において、トランスデューサ830は、当分野で周知のように、より多くのエネルギーを生成すると共にエネルギー分布均一性を高めるために、エアバッキング(air-backed)されるのが望ましい。すなわち、内部部材803が、トランスデューサの内側チューブ状部材834の内面に殆ど接触しない。これは、電流源から電気リード線836及び837を介して圧電結晶の外側チューブ状電極833と内側チューブ状電極及び834との間に交流が加えられると、トランスデューサ830の中間層832を形成する圧電結晶が径方向に収縮及び膨張(即ち、径方向に振動)するためである。この制御された振動により、組織をアブレーションして本実施形態に従った外周伝導ブロックを形成するように適合された超音波エネルギーが放射される。従って、圧電結晶の表面に沿った相当程度の接触により、圧電結晶の振動が減衰して超音波の伝播効率を制限する低減効果が生じる。
【0141】
このために、トランスデューサ830は、内部部材803と同軸上に配置され、かつ内部部材803とトランスデューサの内側チューブ部材834との間に間隙が設けられるように内部部材803の周りに支持される。すなわち、内側チューブ部材834により内部部材803を緩く受容する孔835が画定されている。任意の様々な構造を用いて、内部部材803の周りにトランスデューサ830を支持することができる。例えば、スペーサ或いはスプラインを用いて、内部部材803の周りにトランスデューサ830を同軸上に配置すると共に、これらの間に概ね環状の空間を画成する。代替例では、別の従来の既知の手法によりトランスデューサを支持してもよい。例えば、内部部材803を取り囲むと共に内部部材803とトランスデューサ830との間に延在するOリングを用いて、1997年3月4日にCastellanoに付与された米国特許第5,606,974号(名称、「超音波装置を備えたカテーテル(Catheter Having Ultrasonic Device)」)に開示されているのに類似した要領でトランスデューサ830を支持することができる。上記の代替トランスデューサ支持構造のより詳細な例が、1997年4月15日にDiederichに付与された米国特許第5,620,479号(「腫瘍を熱治療するための装置及び方法(Method and Apparatus for Thermal Therapy of Tumors)」)に開示されている。参照することを以ってこれらの特許の開示を本明細書の一部とする。
【0142】
図示した実施形態では、トランスデューサ830が空気及び/または他の流体で満たされる間隙を画成するべく内部部材803から径方向に離間するように、少なくとも1つのスタンドオフ領域838が内部部材803に沿って設けられている。図15Cに示されている好適な例では、スタンドオフ領域838は、周方向に離間した複数の外側スプライン839を備えたチューブ状部材である。これらのスプライン839により、トランスデューサの内面の大部分がスプライン間のスタンドオフの表面から離間され、トランスデューとカテーテルとの接触から起こる低減効果が最小になる。図15Cの実施形態に従ったような内部部材を形成する別のチューブ状部材の上に同軸的に離れたスタンドオフを設ける実施形態の代替例では、図15Cの実施形態におけるスタンドオフ領域838などのスタンドオフを形成するチューブ状部材が、その内側の孔を、超音波トランスデューサの領域におけるガイドワイヤ内腔として提供する。
【0143】
更なる態様では、細長いカテーテル本体802は、内部部材803とトランスデューサ830との間の空間内に配置されたポートで終わっている、ガイドワイヤ内腔804と並んで配置された或いは同軸上に配置された更なる複数の内腔を含み得る。内部部材803とトランスデューサ830との間のスタンドオフ838によって画定された空間を、更なる複数の内腔を介して冷媒が循環するようにできる。例として、1分当たり5リットルの率で循環する二酸化炭素ガスを、トランスデューサを低い動作温度に維持する好適な冷媒として用いることができる。このように熱を冷却することにより、トランスデューサの材料を劣化させることなく、より高い音響出力を標的組織に伝達することが可能となる。
【0144】
トランスデューサ830は、バルーン820の内側と電気的及び機械的に分離されているのが望ましい。任意の様々なコーティング、シース、シーラント、及びチューブ等がこの目的に適し得る。このような例は、Diederichに付与された米国特許第5,620,479号及びCastellanoに付与された米国特許第5,606,974号に開示されている。図15Cに最もよく例示されているように、図示した実施形態では、従来の音響的に適合した、可撓性の医療用エポキシ842をトランスデューサ830に塗布する。エポキシ840には、例えば、Epoxy Technology販売するEpotek301、Epotek310、またはTracon FDA-8がなどを使用できる。更に、例えばGeneral Electric Silicon IIガスケットグルー及びシーラントなどの従来のシーラントを、内部部材803、ワイヤ836及び837、及びスタンドオフ領域838の露出した部分の周りのトランスデューサ830の基端部及び先端部に塗布して、それらの領域においてトランスデューサ830と内部部材803との間の空間をシールする。
【0145】
次に、極薄の壁部を含むポリエステル熱収縮チューブ844などによりエポキシコーティングされたトランスデューサをシールする。或いは、代わりに、スタンドオフ領域838に沿った内部部材803、エポキシコーティングされたトランスデューサ830を、Teflon(登録商標)、ポリエチレン、ポリウレタン、またはシラスティックなどの材料から形成される密で薄いウォールラバーまたはプラスチックチューブ内に挿入してもよい。チューブは、約0.013mm乃至約0.078mm(0.0005インチ乃至0.003インチ)の厚みを有するのが好ましい。
【0146】
アブレーション装置組立体を組み立てる場合、チューブをエポキシでコーティングされたトランスデューサ830上に配置した後で、追加のエポキシをチューブ内に注入する。チューブが収縮すると、余剰のエポキシが流出し、トランスデューサ830と熱収縮チューブ844との間に薄いエポキシ層が残る。これらの層842及び844がトランスデューサの表面を保護し、トランスデューサ830と負荷とが音響的に一致するのを助けてアブレーション装置をより強力にし、かつエアバッキング(air backing)の気密完全性を高める。
【0147】
図を明瞭にするために図15Aには例示されていないが、チューブ844が、トランスデューサ830の端部を越えて延在し、トランスデューサ830の何れかの端部における内部部材803の一部を取り囲んでいる。充填材(図示せず)を用いてチューブ844の端部を支持し得る。好適な充填材として、限定するものではないが、例えばエポキシ、Teflon(登録商標)テープ等の可撓性材料が挙げられる。
【0148】
超音波アクチュエータ840は交流を生成してトランスデューサ830を作動させる。超音波アクチュエータ840は、約5MHz乃至約20MHzの範囲内の周波数、図示した適用例では、好ましくは約7MHz乃至約10MHzの範囲内の周波数でトランスデューサ830が動作するようにする。加えて、超音波ドライバは、生成されるコリメート超音波ビームをスムーズ即ち均一にするために、ドライブ周波数を調整し、かつ/または出力を変更することができる。例えば、超音波アクチュエータ840の関数発生器が、約6.8MHz乃至約7.2MHzの範囲内の周波数で連続的或いは不連続的に掃引することにより、トランスデューサをこれらの範囲内で動作させることができる。
【0149】
この実施形態の超音波トランスデューサ830は、後述するように心房から肺静脈が延びる位置に外周伝導ブロックが形成されるようにバルーン820のスキンを音響的に接続する。先ず、超音波トランスデューサが、その長手軸Lに対するトランスデューサの長さに沿って高度にコリメートされた外周パターンでエネルギーを放出すると考えられる。従って、外周バンドが、トランスデューサにおける源から離れた相当な直径範囲に対してその幅及び外周パターンを維持する。また、バルーンは、例えばガス抜きした水などの音響的に比較的透明な流体で膨張させられるのが好ましい。従って、バルーン820が膨張している間にトランスデューサ830を動作させることにより、外周バンドのエネルギーが膨張用流体中を移動して、最終的にバルーン820を取り囲んでいるバルーンスキンの外周バンドと音響的に接続される。更に、バルーンが肺静脈壁、肺静脈口、または心房壁の領域内で膨張して係合している場合、バルーンスキンの外周バンドの材料が、バルーンを取り囲む外周経路の組織に沿って係合し得る。従って、バルーンが比較的音響的に透明な材料から形成されている場合、外周バンドの超音波エネルギーが、バルーンスキンを通過して、係合している組織の外周経路に伝播され、その外周経路組織のアブレーションが可能となる。
【0150】
上記したトランスデューサとバルーンとの関係において、更に、エネルギーは、主に膨張用流体及びバルーンスキンを介して組織に伝播される。本発明を生体内で使用する場合、エネルギーが組織に伝播される効率、即ちアブレーションの効率は、バルーンと組織との接触不良及び整合不良が存在する場合は著しく低下する。従って、アブレーションする組織の特定の領域に対して特定の形状を選択できるように、異なる組織構造をアブレーションするために幾つかの異なったバルーンのタイプを提供するということが考えられる。
【0151】
図15A及び図17Aに示されているバルーンとトランスデューサの組み合わせでは、超音波トランスデューサは、超音波的に接続されたバルーンスキンのバンドの長さがコリメートされた超音波信号に従ったdに類似し且つバルーンの動作長さDよりも短くなるような長さを有する。この関係のこの点に従えば、トランスデューサは、バルーンの外周バンドに沿ってアブレーション要素を形成するようにバルーンに接続された外周アブレーション部材として構成されているため、バルーンを取り囲む外周アブレーション要素バンドを形成している。トランスデューサは、好ましくはバルーンの動作長さの3分の2未満の長さ、より好ましくはバルーンの動作長さの2分の1未満の長さを有する。超音波トランスデューサの長さdをバルーン820の動作長さDよりも短く、従ってバルーン820と体の空間(例えば、肺静脈口)の壁部との間の係合領域の長手方向の長さよりも短くし、バルーンの動作長さD内においてトランスデューサ830を概ね中心に配置することにより、トランスデューサ830が血液プールから分離した領域で動作する。バルーンの動作長さの両端に対して概ね中心にトランスデューサ830を配置することは、血液プールからトランスデューサ830を分離する一助となる。このようにしてトランスデューサを配置することにより、外傷部位、特に左心房において発生し得る血栓形成の予防となり得ると考えられる。
【0152】
様々な程度に詳細を説明した超音波トランスデューサには、好適なレベルのX線不透過性部材が設けられ、導電ブロックを生成するべく目的の部位にエネルギー源を配置するために観察される。しかしながら、細長いカテーテル本体802は、X線画像により肺静脈の選択したアブレーション領域にトランスデューサを配置し易くするべく、超音波トランスデューサ830の位置を確認するために追加の1或いは複数のX線不透過性マーカー(図示せず)を含み得る。X線下で不透明であるX線不透過性マーカーは、例えば金、プラチナ、またはタングステンなどのX線不透過性金属から形成してもよいし、また金属を含むポリマーなどのX線不透過性ポリマーを含むようにしてもよい。X線不透過性マーカーは、内部チューブ状部材803の上に同軸的に配置される。
【0153】
上記した要領で、本外周アブレーション装置を左心房の肺静脈内に導入する。肺静脈或いは肺静脈口内に配置したら、加圧流体源によりバルーン820を膨張させて、肺静脈口の内腔の内面に係合させる。適正に配置したら、超音波ドライバ840にエネルギーを供給してトランスデューサ830を動作させる。超音波トランスデューサ830を、動作周波数7MHz、音響パワーレベル20Wで動作させて、比較的短時間(例えば、1分乃至2分未満)で肺静脈口の周りに外周的に十分な大きさの外傷を形成できると考えられる。超音波カテーテルの先端領域に設けた電極或いは超音波カテーテル内を通るガイドワイヤなどの別の装置から制御レベルのエネルギーを送って、肺静脈における検査用刺激で外傷形成を検査する。従って、この方法では、タイミングを合わせて第1のレベルのエネルギーでアブレーションし、次に形成された外傷による伝導ブロックの効果を検査し、更に完全な伝導ブロックが形成されるまでアブレーション及び検査を行う。別法では、例えばバルーン外面に沿って形成された外周要素に熱電対が設けられた場合、外周アブレーション装置はフィードバック制御を含み得る。この位置の温度のモニタリングにより外傷の進行が分かる。このフィードバック制御を、上記した複数のステップからなる方法の代わりとしたり、その方法に追加したりできる。
【0154】
図16A乃至図16Cは、上記した本発明の超音波トランスデューサとバルーンとの関係を例示するために本発明の様々な代替の実施形態を示す。より具体的には、図16Aに示されているようにバルーン820は、基端側テーパ824と先端側テーパ826との間の比較的一定な直径X、及び動作長さDを有する直線状の構造を含む。また図16Aに示されているように、この例は、肺静脈壁を取り囲んで横断する外周経路組織に沿った外周伝導ブロックの形成に用いるように特別に構成されている。しかしながら、バルーンが高い適合性及び順応性を有する材料から形成されていない場合は、この形状では、組織の目的の外周バンドとバルーン820の動作長さに沿ったバルーンスキンの外周バンドとの間の接触に隙間が発生し得る。
【0155】
図16Aに示されているバルーン820は、細長いカテーテル本体802の長手軸に対して同心円上に配置されている。しかしながら、細長いカテーテル本体に対して非対称に配置でき、アブレーション装置が2つ以上のバルーンを含み得ることを理解されたい。
【0156】
図16Bは、本発明に従った別の組立体を示す。この組立体は、基端側の外径X2から先端側の小さい外径X1になるテーパ状の外径を有するバルーン820を含む(それぞれの実施形態において、各実施形態における概ね共通の要素には同一の参照符号を付して概ね共通の要素を分かり易くした)。この態様に従えば、このテーパ形状は、空間の他のテーパ領域に十分に整合し、特に肺静脈口に沿った外周経路組織との係合及びアブレーションに有用である。
【0157】
図16Cは、図16Bに例示したバルーンと類似の形状を示すが、このバルーン820が球根状の基端部846を有する点が異なっている。図示した実施形態では、中心領域822の基端側の球根状端部846により、バルーン820が洋ナシ形になっている。より具体的には、外面848は、テーパ状の動作長さLに沿って、バルーン820の基端側肩部824と先端側の小さな肩部826との間に位置する。図16Cに示されているように、この洋ナシ形の実施形態は、肺静脈口を取り囲みその肺静脈口を含み得る心房壁組織の外周経路に沿った外周伝導ブロックを形成する際に有利であると考えられる。例えば、図16Cに示されている装置は、図16Dに示されている外周外傷850に類似の外傷を形成するのに適していると考えられる。外周外傷850により、肺静脈852が左心房壁の実質的部分から電気的に切断されている。図16Cに示されている装置は、肺静脈口854の実質的部分、例えば図示した外傷850の基端部とこの細長い外傷850の先端部を模式的に示す破線856との間に沿って延在する細長い外傷を形成するのに適していると考えられる。
【0158】
上記したように、トランスデューサ830は、直列かつ同軸上に配置された複数のトランスデューサ要素のアレイから形成され得る。このトランスデューサは、複数の長手方向のセクターを含むように形成され得る。これらの形態のトランスデューサは、図32B及び図32Cに例示するテーパバルーンデザインに特に有用である。これらの場合、トランスデューサと標的組織との間のトランスデューサの長さに沿った距離が異なるため、トランスデューサが一定の出力で動作すると、加熱深さが不均一となると考えられる。トランスデューサ組立体の長さに沿った標的組織を均一に加熱するためには、水中では出力が源(即ちトランスデューサ)から1/半径低下するため先端側よりも基端側における出力を高める必要がある。更に、トランスデューサ830が減衰する流体中で動作する場合、流体により生じる減衰を補償するためには理想的な出力レベルが必要となり得る。従って、先端部に近いバルーン直径が小さい領域は、基端部に近いバルーン直径の大きい領域よりも小さいトランスデューサ出力とする必要がある。この前提に加え、より具体的な実施形態では、個別にエネルギーが加えられるトランスデューサ要素即ちセクターが設けられ、テーパ状の超音波出力が与えられる。すなわち、基端側トランスデューサ要素即ちセクターは、先端側トランスデューサ要素即ちセクターよりも高い出力で動作するようにし、標的組織に対してトランスデューサが斜めに配置された場合の加熱の均一性が高くなるようにする。
【0159】
外周アブレーション装置800は、加熱の深さを制御するべく更なる機構を含み得る。例えば、細長いカテーテル本体802は、閉じた系内を膨張用流体が循環するようにそのカテーテル本体に設けられる追加の内腔を含み得る。熱交換器により膨張用流体からの熱を除去し、閉じた系内の流速を制御して膨張用流体の温度を調整し得る。従って、バルーン820内の冷却した膨張用流体がヒートシンクとして作用し、標的組織から熱の一部を伝導により奪い去り、組織を所定の温度(例えば、90℃)未満に維持して深くまで加熱する。すなわち、バルーンと組織の境における組織の温度を目的の温度未満に維持して、より多くの出力を組織に蓄積させて深くまで浸透するようにする。逆に流体は暖められる。このような機構を用いて、所定の適用例或いは患者に対してアブレーションの程度を調整するために、手術の種類によってまたは手術の最中に膨張用流体の温度を変えることができる。
【0160】
加熱の深さはまた、所定の吸収特性を有するように膨張用材料を選択して制御することもできる。例えば、水よりも高い吸収性を有する膨張用材料を選択した場合、バルーン壁に到達するエネルギーは少なくなり、これにより組織内への熱の浸透が制限される。このような例に適した流体は、植物油及びシリコーン油などである。
【0161】
バルーン内でトランスデューサを回転させることによっても、加熱の均一性を高めることができる。このために、トランスデューサ830を、細長いカテーテル本体802に設けられた内腔内に移動可能に係合し且つトルクをかけることができる部材に取り付ける。
【0162】
本実施形態のバルーンとトランスデューサとの関係についての別の点が図17A及び図17Bに例示されている。一般に、これらの図面に具体化された例では、組織外傷パターンに対する3次制御が得られるように外周超音波エネルギー信号がバルーンの結合レベルで変更され得る(1次制御は、例えばトランスデューサ結晶の長さ、幅、または形状などの信号放射に影響を与えるトランスデューサ特性であり、組織外傷パターンに対する2次制御は、図16A乃至図16Cのそれぞれのバルーン形状である)。
【0163】
組織外傷パターンに対するこの3次制御は、シールド即ちフィルター860を含むバルーン820を示す図17Aを参照すれば詳細が分かるであろう。フィルター860は、例えば超音波信号を吸収或いは反射することにより超音波信号から組織を保護するように構成されたバルーン面に沿った所定のパターンを有する。図17Aに示されている例では、フィルター860は、バルーン壁を通過するエネルギーバンドがバルーン820の内部からトランスデューサ830が放射するバンドよりも狭くなるようなパターンを有する。フィルター860は、例えば、金属などの超音波を反射する材料或いはポリウレタンエラストマーなどの超音波を吸収する材料でバルーン820をコーティングして形成され得る。或いは、バルーンの長さに比べると長手方向に狭い外周バンド862が周囲領域よりも径方向において薄くなるようにバルーン壁の厚さを変えて、信号がバンド862を選択的に通過できるようにして、フィルターを形成することもできる。バンド862のバルーン820の両側は、超音波エネルギーがこれらの位置においてバルーンスキンを通って伝播されない肉厚を有する。
【0164】
様々な理由から、図18Aの「狭い通過フィルター」の実施形態は、本発明に従った左心房壁及び肺静脈組織に外周伝導ブロックを形成するの際に特に有用である。圧電トランスデューサからの超音波送信効率はトラスデューサの長さによって制限される。この制限が、放射された信号の波長の新たな機能となる。従って、ある適用例では、トランスデューサ830は、形成する外傷に適した長さよりも長くする必要があり得る。左心房或いは肺静脈に導電ブロックを形成するための多くの方法、例えば低侵襲性のmaze法は、機能的な電気ブロックを形成して組織領域を電気的に分離するのに十分な外傷幅のみを必要とする。更に、たとえ制御されたアブレーション法であっても、左心房壁に沿って形成される損傷の程度を限定することは一般的な関心事として広がっている。しかしながら、伝導ブロックの形成に必要であるいか或いは他の理由から理想的なトランスデューサは、大幅に長い長さを必要とし、更にブロックのために機能的に必要な幅よりも相当幅の広い外傷を形成し得る。バルーンに沿った「狭い通過」フィルターは、そのような目的に対する解決策の1つである。
【0165】
図17Bは、本発明に従った超音波アブレーション組立体におけるバルーンとトランスデューサとの関係の別の例を示す。図17Bは、図18Aに示されている例とは異なり、バルーン820に沿って、トランスデューサ860から放射されるエネルギー信号の中心領域に直接配置された、超音波吸収バンド864を示す。この例に従えば、超音波吸収バンド864は、超音波信号により超音波的にトランスデューサに接続された時の著しい温度上昇による加熱に対して適合されている。あるアブレーション法は、標的外周バンド組織において超音波伝導方式と熱伝導方式のアブレーションを組み合わせることで利点が得られる場合がある。この例の別の態様では、超音波吸収バンド864は、生の超音波エネルギーを組織に直接伝播して程度に形成するアブレーションよりもアブレーションの程度が傷害性及び侵襲性が低くなるように制御する助けとしてのエネルギーシンクとして機能する。換言すれば、吸収バンド864を加熱して、組織のアブレーションがより制御された深さを有するようなレベルまで信号を弱めることができる。この点について更に、吸収バンド864は、代替例として吸収バンド864の陰影が付けられた部分のように、トランスデューサの幅により一致した幅を有するようにしてもよい。
【0166】
図15A乃至図17Bに例示された実施形態のそれぞれでは、超音波トランスデューサは、バルーンの全外周の周りに超音波エネルギーを放射するように環状形となっている。しかしながら、本外周アブレーション装置は、コリメートされた超音波エネルギーのビームが特定の角度で露出するように放射し得る。例えば、図18Aに示されているように、トランスデューサは1つのアクティブなセクターのみを有するように形成してもよい(例えば、180度の露出)。トランスデューサは平面型にしてもよい。細長いカテーテル本体102を回動させることにより、トランスデューサ830は360度回転して外周アブレーションを形成することができる。この目的のために、トランスデューサ830が、上記した要領でトルクをかけることができる部材803に取り付けられ得る。
【0167】
図18Bは、バルーン820内のトルクをかけることができる部材803に取り付けることができる別のタイプの超音波トランスデューサを例示する。トランスデューサ830は、曲線セクションによって形成され、その凹面を径方向外向きに向けて内部部材803に取り付けられている。内部部材803は、トランスデューサ830の凹面の部分と実質的に一致する凹部を有するように形成されるのが望ましい。内部部材803はまた、内部部材の上側のトランスデューサを支持する凹部の縁に長手方向のリッジが設けられている。この構造では、トランスデューサはエアバッキングされている。この空間は、図18A乃至図18Eを参照しながら説明した要領でシールされて閉じられる。
【0168】
先端部可撓性カテーテル組立体
肺静脈が心房壁から延びた部分へのアブレーションカテーテルの配置には、特に、経中隔的に心房へのアクセスする従来のガイドワイヤトラッキングが用いられる場合に顕著なポジショニングの問題がある。選択された肺静脈が、入口の軸から極めて鋭角に位置し得るため、ガイドワイヤの配置は、ガイドワイヤが経中隔シースから出て一旦心房に入ると非常に困難である。更に、ガイドワイヤが選択した肺静脈に適正に配置された後も、ガイドワイヤにおけるアブレーションカテーテルのトラッキングに問題がある。アブレーションカテーテルは、肺静脈に向かう鋭角な屈曲に逆らう。更に、ガイドワイヤは、カテーテルの逆らう力により逆もどりし、場合によっては肺静脈から完全に抜けてしまうこともある。従って、外周アブレーションを形成するべく、医師がアブレーション要素を経中隔シースから選択された肺静脈内へ鋭角に容易に進めることができるような改良されたアブレーションカテーテルのデザインが要望されている。
【0169】
図19を参照すると、例示目的のために、本発明が本発明の一態様に従った先端部可撓性カテーテルで具現されている。先端部可撓性カテーテル910は通常、ハンドル部分912、細長いカテーテル本体914、及び可撓性先端部分916を含む。アブレーション要素918は、肺静脈口などの選択された解剖学的部位にカテーテルを固定するために用いられるエキスパンド部材920に囲まれている。
【0170】
先端部可撓性カテーテル910はガイドワイヤ上をトラッキングできるように構成されている。ガイドワイヤ922は、ガイドワイヤ内腔(図示せず)にスライド可能に配設されている。ガイドワイヤ内腔は、ハンドル912のガイドワイヤ内腔延長チューブ944の基端部に位置する基端ポート942から可撓性先端部分916の基端ポート942に至っている。本発明の先端部可撓性カテーテルは、市販の様々な心臓用ガイドワイヤと共に用いることができるのが好ましい。
【0171】
図示した、カテーテルの全長に亘って延在するガイドワイヤ内腔の例では、ガイドワイヤ内腔は、先端ポート940からハンドルの先端側の基端ポートまで延在し得る。実際に、「モノレイル」或いは「ラピッドエクスチェンジ」ガイドワイヤトラッキング機構を可撓性先端部分に沿った任意の位置に配設し得る。
【0172】
ハンドル912は、可撓性先端部分916の曲げを制御する機構を含む。ハンドル912は、可撓性先端部分916に取り付けられたプルワイヤ(図示せず)を張ることで操作する。ハンドル912上の拇指スライド950は、細長いカテーテル本体914の基端部916に取り付けられている。拇指スライド950が先端側に移動すると、細長いカテーテル本体914はプルワイヤに対して先端方向に押され、プルワイヤに張力が生じて可撓性先端部分916が曲がる。可撓性先端部は、カテーテルを患者の血管内を進める時にそのカテーテルの舵を取るため、或いはカテーテルからガイドワイヤが選択された解剖学的部位に向かうようにするために用いることができる。
【0173】
図20は、本発明の一実施形態に従った先端部可撓性カテーテル910の可撓性先端部分916の動きを例示する。ハンドル912の拇指スライド950が位置Aから位置A´(破線で図示)に先端側に移動すると、細長い本体914の先端部分916が位置B(曲げ率:0)から位置B´に曲がる。更に、ハンドル部分912のある実施形態では、ハンドル912の拇指スライド950が位置Aから位置A´´(破線で図示)に移動すると、細長いカテーテル本体914の先端部分916が位置B(曲げ率:0)から位置B´´に曲がる。図20に例示目的で示されているように、先端部可撓性カテーテル910は、例えば、導入用シース970にスライド可能に係合している経中隔シースなどの左心房ガイドカテーテル960にスライド可能に係合している。可撓性先端部分916の先端ポート940から突き出たガイドワイヤ922が例示されている。
【0174】
図19に示されている先端部可撓性カテーテル910の好適な実施形態では、ハンドル912は、Johnson & Johnsonが販売しているBIOSENSEハンドルに手を加えたものである。元のハンドルには後端部に、約2.41mm(約0.95インチ)の貫通孔のみが設けられていたが、その貫通孔を2.75mm(0.110インチ)に広げ、約3.30mm(約0.130インチ)の第2の貫通穴を形成した。これらの孔により、ガイドワイヤ内腔及び膨張用内腔がハンドルを越えて延在している(延長チューブ944及び946を参照)。複数の内腔を有する細長いカテーテル本体914の基端部に約1.07mm/約0.89mm(0.042インチ/0.035インチ)のハイポチューブ(hypotube)(長さ4cm)が連結されており、そのハイポチューブにPVCエクステンションが取り付けられている(PVCエクステンションは約914cmの長さで、約1.14mm/約3.18mm(0.045インチ/0.125インチ))。細長いカテーテル本体の基端部に約1.19mm/約1.45mm(0.047インチ/0.057インチ)のポリイミドチューブが連結されている。約0.66mm/約0.33mm(0.026インチ/0.013インチ)のテフロン(登録商標)チューブがプルワイヤ内腔に挿入されており、基端部分から先端部に延在している。PTFEコーティングされたマンドレル(約0.20mm(0.008インチ))がテフロン(登録商標)チューブに挿入され、その先端部で固定されている。BIOSENSEハンドルは内径も変更した。元は、約2.92mm(0.115インチ)の丸い第1の貫通孔と約1.91mm(0.075インチ)の丸い第2の貫通孔が設けられていた。両方の孔を拡張して繋げ、1つの孔にした。この大きな孔を用いて、電気及び流体用の内腔を基端結合部まで延ばす。
【0175】
先端部可撓性カテーテル910の代替の実施形態では、新型のBIOSENSEハンドルを用い得る。この新型のハンドルを用いることにより、1方向或いは2方向の曲げが可能であって、このハンドルでは、カテーテル軸ではなくプルワイヤが移動するようにデザインされている。
【0176】
図21を参照すると、図19に示されている先端部可撓性カテーテル910の線21−21に沿って見た細長いカテーテル本体910の断面図が示されている。例示されているように、細長いカテーテル本体910は通常、内部カテーテル924、好ましくはステンレス鋼ブレードを含む中間層926、及び外部層928を含むのが好ましい。細長いカテーテル本体914内には、例えばガイドワイヤ内腔930、プルワイヤ内腔932、膨張用内腔934、同軸ケーブル内腔936、及び熱電対リード線内腔938を含む幾つかの内腔が設けられている。必要な内腔を設けるのに加えて、経中隔的方法で先端部分916を肺静脈口に配置できるように、細長いカテーテル本体914は左心房内に導入され得るように構成されている。
【0177】
図19及び図21を参照すると、先端部可撓性カテーテル910のガイドワイヤ内腔930は、ガイドワイヤ内腔の延長チューブ944の基端ポート942から可撓性先端部分916の先端ポート940まで延在している。ガイドワイヤ内腔930は、約0.25mm乃至約0.97mm(約0.010インチ乃至約0.038インチ)の範囲の直径のガイドワイヤ、より好ましくは約0.46mm乃至約0.89mm(約0.018インチ乃至約0.035インチ)の範囲の直径のガイドワイヤをスライド可能に受容するように構成されている。約0.89mm(0.035インチ)のガイドワイヤを用いる場合、ガイドワイヤ内腔930の内径は、好ましくは約1.02mm乃至約1.32mm(約0.040インチ乃至約0.052インチ)である。
【0178】
プルワイヤ内腔932は、細長いカテーテル本体914内に長手方向に延在しており、ハンドル912から可撓性先端部分916まで延在しているプルワイヤをスライド可能に受容するように形成されている。プルワイヤは、カテーテルの長さに沿った剛性移行部に沿って張力をかけることにより、可撓性先端部分が曲がるように構成されている。許容できるプルワイヤは、約0.20mm乃至約0.51mm(約0.008インチ乃至約0.020インチ)の範囲内の直径を有し得、更に例えばテーパ外径が約0.51mm乃至約0.20mm(約0.020インチ乃至約0.008インチ)であるようなテーパを含み得る。
【0179】
細長いカテーテル本体914の膨張用内腔934により、加圧可能な流体源(図示せず)とエキスパンド部材920が機能的に連結されている。この膨張用内腔934はカテーテル本体914内において長手方向に延在し、エキスパンド部材から膨張用内腔の延長チューブ946の基端部の基端ポート948まで延在している。医師は、基端ポート948から流体を導入して、当分野で周知のようにエキスパンド部材920を膨張及び収縮させることができる。膨張用内腔934は、膨張時間を短くするために約0.51mm(約0.020インチ)の内径を有し得るが、使用する膨張媒体の粘度、内腔の長さ、及び流体の流れや圧力に関連する他の動的な因子によって異なる。
【0180】
細長いカテーテル本体914は、温度フィードバックのために熱電対リード線内腔938を含み得る。エキスパンド部材920は、その外部或いは内部に設けられた1或いは複数の温度センサを含み得る。その位置の温度をモニタリングすれば、アブレーション形成の進行状態が分かる。温度センサがエキスパンド部材920の内部に設けられている場合は、フィードバック制御において、そのエキスパンド部材の壁部を介して起こる温度勾配を考慮する必要があり得る。熱電対リード線は、温度センサから細長いカテーテル本体914の熱電対リード線内腔938を通って、好適な外部装置を用いて信号がモニタリングされる装置の基端部に至っている。
【0181】
図19及び図21を再度参照すると、細長いカテーテル本体914の外部層928は薄い壁部を有する弾性チューブを含む。外部層928は、カテーテルに一般的に用いられている任意の生体適合性の弾性プラスチックから形成され得る。好適な材料には、PEBAX(商標)(ニュージャージー州、Glen RockのAtochem)で販売されているポリイミド及びポリウレタンがある。
【0182】
外部層928の内側であって内部カテーテル924の径方向外側に配設されている中間層296は、カテーテルに十分な可撓性を提供すると共に、細長いカテーテル本体920に沿った忠実性の高いトルク伝達を維持するように構成されている。中間層926の好適な材料は、交互配置ステンレス鋼からなる金属ブレードである。ステンレス鋼ブレード926はポリウレタン(PEBAXなどの)で被覆され、これにより外部層928が形成される。外部層928が内部カテーテル924に結合され、一体カテーテル構造が形成される。細長いカテーテル本体914は、約100cm乃至約140cmの範囲の長さを有するのが好ましい。
【0183】
細長いカテーテル本体914は、可撓性先端部分916よりも剛性が少なくとも30%高くなるように構成されている。この関係により、細長いカテーテル本体914は、可撓性先端部分916にプッシュ伝達できるように構成されており、可撓性先端部分916は、生体内において目的のアブレーション領域に送られる際に曲がっている解剖学的構造を通過できるように好適に構成されている。経中隔左心房アブレーション術に用いられるように構成されている場合は、細長いカテーテル本体914は、約1.67mm乃至約5.00mm(約5フレンチ乃至約15フレンチ)の範囲、より好ましくは約2.33mm乃至約4.00mm(約7フレンチ乃至約12フレンチ)の範囲の外径を有するのが望ましい。
【0184】
図22を参照すると、図19に示されている先端部可撓性カテーテル910の線22−22に沿って見た可撓性先端部分916の断面図が示されている。細長いカテーテル本体914の断面図において上記のように詳述したのと同様の内腔が可撓性先端部分916内に存在する。しかしながら、中間のトルク伝達ブレード(図21の926)は、外部層(図21の928)内には存在しない。更に、外部層自体が薄く、先端部領域の可撓性が高められている。従って、例示目的で、先端領域のカテーテル壁929の厚さが比較的薄いため、壁部(内面と外面)には1つの参照符号929を付すことにした。
【0185】
図23を参照すると、可撓性先端部分916に配設されたエキスパンド部材920は、膨張する前の状態では細長いカテーテル本体914の直径とほぼ同じ直径を有する膨張バルーンを含むのが好ましい。このバルーンは、周囲領域組織に概ね一致する直径、好ましくは約2cm乃至約3cmまで膨張することができ、肺静脈口及び/または様々な大きさの肺静脈に一致するように複数の膨張位置に膨張し得る。上記したエキスパンド部材は膨張バルーンであるが、アブレーションカテーテルは、本発明の範囲から逸脱しない、例えばバスケット及びケージなどの拡張可能な構造などの別のエキスパンド部材を含む。
【0186】
アブレーション要素918は可撓性先端部分916に配設されており、標的周囲領域の組織に対してアブレーション要素918が固定されるようにエキスパンド部材920と協働する。好適な実施形態では、アブレーション要素918は、好適な励起源に接続されると標的周囲領域の組織をアブレーションするのに十分な超音波を放射するように構成された超音波トランスデューサである。アブレーション要素は、エキスパンド部材の外部または内部に、或いは少なくとも一部がエキスパンド部材の外部に配置され得る。ある形態では、アブレーション要素はエキスパンド部材の一部を含む。例えば、図23に例示されているように、先端部可撓性カテーテル組立体は、エキスパンド部材920内に配置された超音波トランスデューサを含む。ある好適な実施形態では、超音波トランスデューサが、アブレーション中にエキスパンド部材920の一部を励起し、エキスパンド部材の熱が周囲組織に伝導される。
【0187】
アブレーション制御システムからのエネルギーは通常、導体リード線によってアブレーション要素に送られる。アブレーション制御システムは、アブレーション要素、モニタリング回路、及び制御回路に給電するための電流源を含む。電流源が、複数のリード線によってアブレーション要素に接続されている(ある方式では接地パッチにも)。モニタリング回路は、アブレーション要素の動作を監視する1或いは複数のセンサ(例えば、温度センサ及び/または電流センサ)に接続されているのが望ましい。制御回路が、検出した状態(例えば、検出した温度と所定の設定温度との関係)に基づいてアブレーション要素を動作させる電流の出力レベルを調整するために、モニタリング回路及び電流源に接続されている。
【0188】
先端部可撓性カテーテルはまた、外傷形成の進行状態をモニタリングするために温度フィードバックを含むのが望ましい。例えば、エキスパンド部材は、エキスパンド部材の内部或いは外部に設けられる1或いは複数の熱センサ(例えば、熱電対やサーミスタなど)を含み得る。温度センサがエキスパンド部材の内部に設けられている場合は、フィードバック制御において、そのエキスパンド部材の壁部により生じる温度勾配を考慮する必要があり得る。温度センサがエキスパンド部材の外部に設けられている場合は、信号処理ユニットの異なるポートに各信号リード線を再接続して、これらの温度センサを用いてエレクトログラム信号を記録する。このような信号は、アブレーションの前後において標的組織をマッピングするのに有用であり得る。
【0189】
熱電対及び/または電極は、プロフィールがスムーズになるようにエキスパンド部材内に含めるのが望ましい。接着性ポリマー或いは溶融ポリマーをチューブ状にして形成される移行領域は、表面がエキスパンド部材の外面から熱電対面に移るときのエキスパンド部材の表面をスムーズにしている。熱電対及び/または電極をエキスパンド部材に一体化するための様々な構造、並びに熱電対及び電極をエキスパンド部材と共に用いる方法を後述する。
【0190】
本先端部可撓性カテーテルのある態様では、アブレーション部材の配置を容易にするために位置モニタリングシステムを用い得る。この位置モニタリングシステムはセンサ制御システム及びディスプレイを含む。センサ制御システムは、エキスパンド部材に、或いはその近傍に位置する1或いは複数のセンサ要素に接続されている。ある例では、アブレーション要素とセンサ要素とが結合されて1つの要素となり、検知及びアブレーション能力の両方を有する。別の例では、アブレーション要素及びセンサ要素のために別々の要素が用いられる。
【0191】
超音波位置モニタリングシステムは、周方向に対称な単一の超音波トランスデューサを用いる。センサには、超音波アブレーション要素、または超音波アブレーション要素に加えて別の超音波トランスデューサが用いられ得る。このトランスデューサはセンサ制御システムに機能的に接続されており、肺静脈に配置される。ある装置では、センサ制御システムは、Panametrics Model 5073PRである。センサ制御システムは、送信機、受信機、及びダイプレクサを含む。送信機からの出力はダイプレクサの送信機ポート(ポート1)に送られる。ダイプレクサの受信機ポート(ポート3)からの出力は受信機の入力に送られる。ダイプレクサのトランスデューサポート(ポート2)はコネクタを介してトランスデューサに送られる。受信機からの出力はディスプレイに送られる。
【0192】
ダイプレクサは、送信機の出力と受信機の入力とを分離するためにレーダ及びソナーシステムに一般的に用いられている。ダイプレクサの送信機ポート(ポート1)に送られたエネルギーは、ダイプレクサのトランスデューサポート(ポート2)に送られるが、ダイプレクサの受信機ポート(ポート3)には送られない。トランスデューサからダイプレクサのトランスデューサポート(ポート2)に送られるエネルギーは、ダイプレクサの受信機ポート(ポート3)には送られるが、ダイプレクサの送信機ポート(ポート3)には送られない。
【0193】
ダイプレクサには、タイミング発生器によって制御される電気制御スイッチまたはサーキュレータを用いることができる。タイミング発生器は、第1の時間スイッチが送信機とトランスデューサとを接続しているようにセットする。次にタイミング発生器は、第2の時間スイッチが受信機とトランスデューサとを接続しているようにセットする。トランスデューサを送信機から受信機及びその逆に切り替えることにより、ダイプレクサが受信機と送信機との間でトランスデューサを効果的に時分割する。
【0194】
送信機はトランスデューサを作動させる信号を生成する。ダイプレクサが送信機とトランスデューサとを接続している場合、送信機からのドライブ信号によりトランスデューサが超音波を放射する。この超音波が、エキスパンド部材内部及びエキスパンド部材壁部を伝播して、肺静脈口の内壁で反射される。反射された超音波エネルギーはトランスデューサに戻り、それによりトランスデューサがエコー信号を生成する。エコー信号がダイプレクサを介して受信機に送られる。受信機はエコー信号を増幅及び処理してディスプレイ信号を生成する。このディスプレイ信号がディスプレイに送られる。
【0195】
トランスデューサは放射波を放射する。対称な円筒状トランスデューサの場合、放射波はトランスデューサから広がる円筒波に近似している。円筒波が肺静脈口に到達すると、実質的に円筒状に対称に反射され、円筒波に類似した反射波が生成される。反射波がトランスデューサに戻る。
【0196】
媒体中を伝播している超音波が媒体の音響特性における移行部(インターフェイス)に衝当すると反射が起こる。異なった音響特性を有する材料間のインターフェイスにより波の一部が反射される。
【0197】
送信パルスにより、リングダウンの時間中にトランスデューサが振動し(ベルに類似した要領で)、これによりリングダウン信号が生成される。肺静脈口から反射されてトランスデューサに戻った超音波によりエコーパルスが生成される。反射により生成される信号は通常、振幅が相対的に小さく、リングダウン信号の相対的に大きな振幅部分に容易にマスクされてしまうため、リングダウンの時間中に反射(信号など)により生成される信号を確認することは困難である。従って、リングダウンの時間中に標的組織からの反射がトランスデューサに戻るほどトランスデューサに近い標的からの反射を検出するのは困難である。
【0198】
送信機が整形送信パルス(shaped transmit pulse)を送信するように構成して、トランスデューサのリングダウンの時間を短くすることができる。整形送信パルスにより、リンギングの振幅を小さくし、かつリングダウン時間を短くなる方式でトランスデューサを動作させる。リングダウン時間が短いため、整形送信パルスにより、トランスデューサを用いて短い距離で標的を検出することが可能となる。
【0199】
トランスデューサがアブレーション要素としても用いられる装置では、送信機が位置測定用の低出力モードとアブレーション用の高出力モードの2つの出力モードを提供する。アブレーションが望ましい場合、ダイプレクサが受信機と送信機の切り替えを停止し、送信機に固定して送信機を高出力モードで動作させる。
【0200】
超音波アブレーションでは、トランスデューサが比較的出力の高い超音波を生成する必要がある。一般に、高出力の超音波を生成するためには、物理的に大きなトランスデューサが必要になる。大きなトランスデューサは、長いリングダウン時間を有する場合が多い。整形送信パルスの使用によりリングダウン時間が短くなるが、あるトランスデューサでは、アブレーション要素を位置センサとして使用できるほどにはリングダウン時間が短くならない。更に、ある装置では、アブレーション要素は超音波トランスデューサではないため、位置センサとしては適さない場合がある。従って、ある装置では、位置センサのために1或いは複数の超音波トランスデューサを追加するのが望ましい。
【0201】
先端部可撓性カテーテル組立体の構造
再び図19を参照されたい。可撓性先端部が動作し易いようにするために、先端部可撓性カテーテル910は次の仕様で形成するのが好ましい。第1の先端部可撓性カテーテルデザインでは、細長いカテーテル本体914は約2.67mm(8フレンチ)の外径を有し、外層部は63D PEBAXを含む。可撓性先端部分916(約3cm)は約2.67mm(8フレンチ)の外径を有し、外層部は40D PEBAXを含む。細長いカテーテル本体914は、詳細を上記したように少なくとも5つの内腔(ガイドワイヤ内腔、膨張用内腔、プルワイヤ内腔、同軸出力ケーブル内腔、及びセンサ用リード線内腔)を有し、それぞれのワイヤ、ケーブル、またはリード線は図22を参照して説明したように5つの内腔の内の1つを用いる。ハンドル912の拇指スライド950により、曲げ用プルワイヤに対してカテーテル本体914を移動させ、一方向に曲げることができる。拇指スライド950の先端側への移動により、プルワイヤに対して軸が押され、可撓性先端部分916が曲がる。ガイドワイヤ内腔、バルーン膨張/収縮用内腔、出力ケーブル内腔、及び熱電対内腔は、それぞれが個別にハンドルの基端部から独立してスライドできるようにハンドル内を通っている。
【0202】
第2の代替のデザインでは、細長いカテーテル本体914は約3.33mm(10フレンチ)の外径を有し、外層部は63D PEBAXを含む。可撓性先端部分916(約3cm)は約3.33mm(10フレンチ)の外径を有し、外層部は40D PEBAXを含む。ガイドワイヤ及びバルーン膨張のためのそれぞれの内腔は、別々のポリイミドまたはテフロン(登録商標)のチューブから形成され、カテーテル軸の全長に亘って延在し、可撓性先端部に熱接着されている。ハンドル部分912の拇指スライド950を用いて、曲げ用プルワイヤに対してカテーテル本体914を押し、一方向に曲げることができる。先端部を曲げる際に曲げ用プルワイヤに対してカテーテル本体914を押すため、全ての内側のワイヤ及び内腔が、細長いカテーテル本体914から自由であって、ハンドルの移動しない部分及びカテーテルの先端部に固定されている。
【0203】
第3の代替のデザインでは、細長いカテーテル本体914は約3.00+mm(9+フレンチ)の外径を有し、外層部は55D PEBAXを含む。可撓性先端部分916(約3cm)は約3.00+mm(9+フレンチ)の外径を有し、外層部は40D PEBAXを含む。細長いカテーテル本体914は、詳細を上記したように5つの内腔(ガイドワイヤ内腔、膨張用内腔、プルワイヤ内腔、同軸出力ケーブル内腔、及びセンサ用リード線内腔)を有し、それぞれのワイヤ、ケーブル、及びリード線は図22を参照して説明したように5つの内腔の内の1つを用いる。ハンドル部分912の拇指スライド950により、曲げ用プルワイヤに対して軸を押して、一方向に曲げることができる。先端部を曲げる際にプルワイヤに対してカテーテル本体914を押すため、ガイドワイヤ内腔、バルーン膨張/収縮用内腔、出力ケーブル内腔、及び熱電対内腔は、それぞれが個別にハンドルの基端部から独立してスライドできるようにハンドル内を通っている。チューブ材料(上記した)の混合物を用いて、ハンドル内を通る内腔経路を延長する。
【0204】
第4の代替のデザインでは、細長いカテーテル本体914は約3.33mm乃至約4.00mm(10フレンチ乃至12フレンチ)の範囲の外径を有し、外層部は55D PEBAXを含む。先端部分916(約3cm)は約3.33mm乃至約4.00mm(10フレンチ乃至12フレンチ)の範囲の外径を有し、外層部は40D PEBAXを含む。細長いカテーテル本体914は、詳細を上記したように5つの内腔(ガイドワイヤ内腔、膨張用内腔、プルワイヤ内腔、同軸出力ケーブル内腔、及びセンサ用リード線内腔)を有する。曲げ用プルワイヤを移動させて一方向或いは二方向に曲げることができる。このデザインでは、カテーテル軸の剛性が高い。細長いカテーテル本体内のプルワイヤを移動させて先端部を曲げるため、このデザインでは、可撓性先端部916が真直ぐな位置(0位置)に戻る可能性が高い。
【0205】
膨張バルーンは様々な既知の材料から形成され得るが、バルーンは肺静脈口及び/または肺静脈壁の外形に整合するように構成されるのが好ましい。このために、バルーン材料は、圧力が加えられると材料が伸長し、十分に膨張した時に体の内腔や空間の形状をとるように、高い適合性を有する様々な材料から形成する。好適なバルーン材料には、限定するものではないが、シリコーン、ラテックス、またはデュロメータ値の低いポリウレタン(例えば、デュロメータ値が約80A)などのエラストマーが挙げられる。
【0206】
高い適合性を有する膨張バルーンの構造に加えて、或いはその代替例では、膨張バルーンは、所定の十分に膨張した形状(即ち、予備成形)を有するように形成され得る。膨張バルーンは、そのバルーンが膨張される体腔の解剖学的形状に概ね一致するように形成されている。例えば、膨張バルーンは、肺静脈口の形状に概ね一致するように先端方向にテーパ状の形状を有し得、かつ/または肺静脈口に近接した心房後壁の移行領域に概ね一致するように球根状基端部を有し得る。このデザインでは、肺静脈または肺静脈口の不規則な形状内への理想的な配置は、適合性を有する或いは有しないバルーンの両方の例で達成することができる。
【0207】
先端部可撓性カテーテルの別の例は、取り外し可能なハンドルを用いてもよい。可撓性カテーテルは、可動プルワイヤを取り囲む巻線コイルから形成されたチューブ部材からなる。プルワイヤの先端部は、チューブ部材の先端部の内部に取り付けられている。外面にねじが設けられているチューブ部材の基端部を越えて延在するプルワイヤの基端部は、引きノブの軸の凹部内に係合している拡大ストップ或いはボールを有する。引きノブの軸は、ハンドルの基端領域の孔にスライド可能に係合している。ハンドルの先端領域はテーパ状であって、外面にねじが設けられているチューブ部材の基端部を受容するように適合されたねじ孔を含む。引きノブを引くと、チューブ部材が曲がる。
【0208】
図19に示されている先端部可撓性カテーテル910の好適な実施形態では、ハンドル912は、Johnson & Johnsonが販売しているBIOSENSEハンドルに手を加えたものである。元のハンドルには後端部に、約2.41mm(約0.95インチ)の貫通孔のみが設けられていたが、その貫通孔を2.75mm(0.110インチ)に広げ、約3.30mm(約0.13インチ)の第2の貫通穴を形成した。これらの孔により、ガイドワイヤ内腔及び膨張用内腔がハンドルを越えて延在している(延長チューブ944及び946を参照)。複数の内腔を有する細長いカテーテル本体914の基端部に約1.07mm/約0.89mm(0.042インチ/0.035インチ)のハイポチューブ(hypotube)(長さ4cm)が連結されており、そのハイポチューブにPVCエクステンションが取り付けられている(PVCエクステンションは約14cmの長さで、約1.14mm/約3.18mm(0.045インチ/0.125インチ))。細長いカテーテル本体の基端部に約1.19mm/約1.45mm(0.047インチ/0.057インチ)のポリイミドチューブが連結されている。約0.66mm/約0.33mm(0.026インチ/0.013インチ)のテフロン(登録商標)チューブがプルワイヤ内腔に挿入されており、基端部分から先端部に延在している。PTFEコーティングされたマンドレル(約0.20mm(0.008インチ))がテフロン(登録商標)チューブ内に挿入され、その先端部で固定されている。BIOSENSEハンドルは内径も変更した。元は、約2.92mm(0.115インチ)の丸い第1の貫通孔と約1.91mm(0.075インチ)の丸い第2の貫通孔が設けられていた。両方の孔を拡張して繋げ、1つの孔にした。この大きな孔を用いて、電気及び流体用の内腔を基端側結合部まで延長する。
【0209】
図24を参照すると、細長いカテーテル本体914の基端部980の好適な変更例の拡大模式図が例示されている。しかしながら、当業者が想到する範囲内のあらゆる他の伸長及び変更も本開示の範囲に含まれることを理解されたい。ここで、基端部分を取り囲んでいるシュリンクラップ層984は、例えばPETなどの約3.18mm(1/8インチ)のプラスチックシュリンクラップから形成されている。ガイドワイヤ内腔のエクステンションは、例えば、基端部分982を約16.5cm越えて延在する約1.45mm/約1.22mm(0.057インチ/0.048インチ)のポリイミドチューブなどのプラスチックチューブ986を用いて形成される。単一のポリイミド/PEBAX内腔スリーブ988でエクステンションを覆うことができる。膨張用内腔も、好ましくは約1.07mm/0.89mm(0.042インチ/0.035インチ)のハイポチューブ990を用いて約16.5cm延長される。約0.20mm(0.008インチ)のPTFEコーティングしたマンドレルが、約0.66mm/約0.33mm(0.026インチ/0.013インチ)のテフロン(登録商標)チューブ966にスライド可能に係合している曲げ用プルワイヤ994のために用いられる。テフロン(登録商標)チューブ996は、基端部分の先約1cmまで延在しているが、プルワイヤ994は基端部分の先約4cmまで延び、ハンドル(図示せず)に連結されている。
【0210】
上記のように特定の装置の構造を説明したが、他の実施形態も可能である。例えば、図面に「オーバーザワイヤ」カテーテル構造を例示したが、他のガイドワイヤトラッキングデザイン、例えばガイドワイヤがカテーテルの先端領域のカテーテル内腔内に同軸的に受容される「ラピッドエクスチェンジ」または「モノレイル」型として知られるカテーテル装置などが好適な代替となる。
【0211】
使用方法
図25乃至図28を参照して、本発明の先端部可撓性カテーテルの動作を説明する。図25の流れ図に、肺静脈にアクセスして外周外傷を形成するための先端部可撓性カテーテルの使用方法が概略的に例示されている。
【0212】
図25に記載の方法に従えば、図26に例示されているように、医師がハンドルを操作して、拇指スライドにより可撓性先端部の舵を取って、アブレーションカテーテル組立体を左心房内に導入する。先端部可撓性カテーテルは、卵円窩に配置された経中隔シース970内の同軸のガイドカテーテル960の中を通すのが好ましい。可撓性先端部分916が左心房内に到達したら、図27に例示されているように、ハンドルの拇指スライドを操作して可撓性先端部分を曲げ、選択された肺静脈を向くようにする。次に医師が、先端部可撓性カテーテルを介してガイドワイヤ922を先端方向に進める。ガイドワイヤ922を、可撓性先端部分916の先端ポート940から突出させ、曲げにより選択された肺静脈内に送り、適切な固定位置に至るようにする。
【0213】
ガイドワイヤ922の先端部が肺静脈に配置されたら、エキスパンド部材920が選択された肺静脈口54に配置されるまで、先端部可撓性カテーテルをガイドワイヤを介して送る。カテーテルがガイドワイヤ922上を進むとき、可撓性先端部分916を曲げて先端部可撓性カテーテルとガイドワイヤとの抵抗を低減し得る。エキスパンド部材920が、外周組織の標的領域に対して適切な位置に配置されたら、更に先の肺静脈または肺静脈枝内までガイドワイヤ922を進めて一層支持されるようにする。次にエキスパンド部材920を膨張させて、図28に示されているように組織に係合させてアブレーション要素918を肺静脈口54に固定する。エキスパンド部材920の膨張によりアブレーション要素918が固定されたら、エネルギー(熱、高周波、超音波、または電気など)を供給し始め、少なくとも外周領域の組織の実質的部分をアブレーションする。
【0214】
別法では、エキスパンド部材が肺静脈口に係合して、ガイドワイヤが肺静脈の先端側に配置されたら、ガイドワイヤをアブレーションカテーテルの先端部内に引き戻す。次に、可撓性先端部分を操作して、ガイドワイヤを別の先端側の静脈枝に送り、アブレーション要素の向きを変えてアブレーションのために位置決めし易いようにする。
【0215】
更なる別法では、エキスパンド部材が膨張して外周領域の組織と係合した後に、可撓性先端部分を肺静脈内で曲げる。配置されたカテーテルの可撓性先端部分を曲げることにより、アブレーション要素の向き及び周囲組織との接触を調整してアブレーションを最適化することができる。
【0216】
本発明の幾つかの例を図示し、詳細に説明してきたが、本発明の範囲内で考えられるその他の変更及び使用方法は、本明細書の開示内容から当業者には明らかであろう。特定の実施形態の様々な組み合わせ及び部分的な組み合わせが可能であり、これらは本発明の範囲内である。例えば、上記した実施形態を変更すれば、体の他の組織、特に冠状静脈洞及び周囲領域などの心臓の他の領域の治療に有用である。更に、開示した組立体は、例えば心房粗動などの異常伝導に関連する他の症状を治療するのにも有用である。実際に、カテーテルを用いる組織のアブレーションに関連する症状、例えば卵管嚢胞のアブレーションにおいて有用である。従って、本発明の概念または先述の請求の範囲から逸脱することなく、様々な適用、変更、及び置換が可能であることを理解されたい。
【図面の簡単な説明】
【図1】 肺静脈の分離により心房性不整脈を治療するための方法における各ステップを概略的に示す流れ図である。
【図2A】 外周アブレーション装置組立体により肺静脈が心房から延びた位置に形成される外周伝導ブロックを示す模式図である。
【図2B】 外周アブレーション装置組立体により肺静脈が心房から延びた位置に形成される別の外周伝導ブロックを示す模式図である。
【図2C】 外周アブレーション装置組立体により肺静脈が心房から延びた位置に形成される別の外周伝導ブロックを示す模式図である。
【図2D】 外周アブレーション装置組立体により肺静脈が心房から延びた位置に形成される別の外周伝導ブロックを示す模式図である。
【図2E】 外周アブレーション装置組立体により肺静脈が心房から延びた位置に形成される別の外周伝導ブロックを示す模式図である。
【図3】 外周アブレーション装置組立体を用いて肺静脈が心房から延びた位置に外周伝導ブロックを形成するための方法を示す流れ図である。
【図4】 図3の方法に従った経中隔的アクセス及びガイドワイヤ配置のステップの後の左心房内にある外周アブレーション装置組立体の斜視図である。
【図5】 図4に示されている外周アブレーション装置組立体に類似の斜視図であって、図3の方法に従って肺静脈に外周伝導ブロックを形成するべく外周領域の組織をアブレーションする際に用いられる外周アブレーションカテーテルを示す。
【図6A】 図5と類似の斜視図であるが、図3の流れ図に示されている外周部レーション法を行っている間、肺静脈から心房内に血液が流れるように適合された外周アブレーションカテーテルを示す。
【図6B】 図6Aに示されている外周アブレーションカテーテルの部分拡大図であって、潅流用内腔が破線で示されている。
【図7】 図3乃至図5に示されているものに類似の左心房の斜視図であるが、図3の方法に従って外周アブレーションカテーテルにより形成された外周外傷を示す。
【図8A】 図3の方法に従って用いられている心房内の別の外周アブレーションカテーテルの斜視図であって、心房に配置され、径方向に膨張した位置に適合した動作長さを備えた径方向適応性エキスパンド部材を示す。
【図8B】 図3の方法に従って用いられている心房内の別の外周アブレーションカテーテルの斜視図であって、径方向に膨張した状態で肺静脈口内に送られてその肺静脈口内に係合したエキスパンド部材を示す。
【図8C】 図8A及び図8Bに示されている左心房と同様の斜視図であるが、図3の外周アブレーション形成方法に従って外周伝導ブロックを形成して、左心房から外周アブレーション装置組立体が除去された後の図である。
【図8D】 左心房に配置されている別の外周アブレーションカテーテルを示し、エキスパンド部材の周囲を囲んでいる外周アブレーション要素の外周バンドが肺静脈口を囲む左心房後壁に沿った外周経路の組織に係合するように、肺静脈口内に係合している径方向に膨張した状態のエキスパンド部材を示す図である。
【図8E】 図8Dに示されている使用方法に従って使用するために適合されたある特定のエキスパンド部材及び外周アブレーション要素を示す図である。
【図8F】 図8Dに示されている方法に従って図8D及び図8Eの組立体で形成し得る外周導電ブロック即ち外傷を示す図である。
【図9A】 低侵襲性のmaze法で肺静脈口間に線状外傷を形成するための方法と共に、外周アブレーション装置組立体を用いて肺静脈が心房から延びた位置に外周伝導ブロックを形成するための方法を模式的に示す流れ図である。
【図9B】 図9Aの方法に従って近接する肺静脈口の各対の間に幾つかの線状外傷を形成した後のセグメント化された左心房の斜視図である。
【図9C】 図9Bに示されているものと類似の斜視図であるが、図9Aの方法に従って、肺静脈内に延在する2つの線状外傷と交差する肺静脈が心房から延びた位置に外周伝導ブロックを形成する際に用いられる外周アブレーション装置を示す。
【図9D】 図9Cに示されているものと類似の斜視図であるが、2つのアンカーとの間に延在する線状アブレーション部材と、図9Aの方法に従って、少なくとも1つの線状外傷と交差する外周外傷を形成するために用いられる外周アブレーション部材とが組み合わせられた別のアブレーションカテーテルを示す図である。
【図9E】 図9Aの方法に従って、少なくとも1つの線状外傷と交差する外周外傷を形成するために用いられる別の外周アブレーションカテーテルの斜視図である。
【図9F】 図9Bに従った2つの線状外傷の形成と図8A乃至図8Cに示されている装置及び方法に従った外周伝導ブロックの形成とを組み合わせて得られた外傷パターンを備えたセグメント化された左心房後壁の斜視図である。
【図9G】 図9Bに従った2つの線状外傷の形成と図8D乃至図8Fに示されている装置及び方法に従った外周伝導ブロックの形成とを組み合わせて得られた外傷パターンを備えたセグメント化された左心房後壁の斜視図である。
【図9H】 ある低侵襲性のmaze法における1つの完全な外傷パターンを有する左心房後壁の模式的な斜視図であって、それぞれの外周伝導ブロックが肺静脈口を取り囲むように、外周伝導ブロックが左心房後壁に沿った外周経路の組織に沿って形成されており、垂直方向に近接する外周伝導ブロックのそれぞれの対が互いに交わっており、水平方向に近接する外周伝導ブロックのそれぞれの対が、水平方向に近接する肺静脈口のそれぞれの対の間に延在する関連する一方の線状外傷により連結されている。
【図10】 信号のモニタリングをして肺静脈壁に沿った不整脈起源の位置を決定し、「アブレーション後」検査を実施してその肺静脈壁に形成された外周伝導ブロックの効果を調べることを含む、外周アブレーション装置を用いて肺静脈が心房から延びた位置に外周伝導ブロックを形成するための方法を示す流れ図である。
【図11A】 外周アブレーション装置組立体に用いられる或る外周アブレーション部材の斜視図であって、エキスパンド部材の動作長さを囲むと共に、変更されたステップで形成された動作長さの長手軸に沿った第2形状を有する外周アブレーション電極を示し、エキスパンド部材は径方向に膨張する前の状態である。
【図11B】 外周アブレーション装置組立体に用いられる或る外周アブレーション部材の斜視図であって、エキスパンド部材の動作長さを囲むと共に、変更されたステップで形成された動作長さの長手軸に沿った第2形状を有する外周アブレーション電極を示し、エキスパンド部材は径方向に膨張した状態である。
【図11C】 赤道に配置されるか或いは他の方法で外周に配置されると共に、エキスパンド部材の動作長さを囲み径方向に膨張した状態ではエキスパンド部材の長手軸に対してヘビ状のバンドを形成する外周アブレーション電極の斜視図である。
【図11D】 赤道に配置されるか或いは他の方法で外周に配置されると共に、エキスパンド部材の動作長さを囲み径方向に膨張した状態ではエキスパンド部材の長手軸に対して鋸歯状のバンドを形成する外周アブレーション電極の斜視図である。
【図12A】 エキスパンド部材の動作長さにより先端方向及び基端方向の両方向において画定されると共に、赤道の外周位置或いは他の外周位置においてその動作長さを囲む赤道バンドを形成する、周方向に離間した複数のアブレーション電極を含み、かつ動作長さが径方向に膨張した状態で連続した外周外傷を形成するように適合されている別の外周アブレーション要素の斜視図である。
【図12B】 エキスパンド部材の動作長さにより先端方向及び基端方向の両方向において画定されると共に、赤道の外周位置或いは他の外周位置においてその動作長さを囲む赤道バンドを形成する、周方向に離間した複数のアブレーション電極を含み、かつ動作長さが径方向に膨張した状態で連続した外周外傷を形成するように適合されている別の外周アブレーション要素の斜視図である。
【図13】 外周アブレーション装置組立体に用いられる別の外周アブレーション部材の断面図であって、エキスパンド部材の動作長さに沿ってエキスパンド部材の外面を実質的に取り囲む外周アブレーション要素が、その動作長さの基端部及び先端部の両方で絶縁されることにより、動作長さの両端部により基端方向及び先端方向の両方向に画定されている、動作長さの中心領域或いは動作長さの別の外周領域における絶縁されていない赤道外周バンドが形成されており、外周アブレーション要素が、赤道外周バンドに近接した肺静脈壁の外周経路の組織をアブレーションするように適合されている。
【図14】 外周アブレーション装置組立体に用いられる別の外周アブレーション部材の斜視図であって、エキスパンド部材が、コーディネイティングワイヤ上の電極要素が心房から肺静脈が延びた位置における外周組織に係合するように径方向に閉じた位置から径方向に拡張した位置に変形できるように適合されたコーディネイティングワイヤのケージである。
【図15A】 径方向に膨張した状態で示されている膨張バルーン内の内部部材に沿って配置された単一の円筒状超音波トランスデューサを有するアブレーション要素を備えた別の外周アブレーションカテーテルの長手方向の断面図である。
【図15B】 図15Aの線15B−15Bに沿って見た外周アブレーションカテーテルの断面図である。
【図15C】 図15Aの線15C−15Cに沿って見た外周アブレーションカテーテルの断面図である。
【図15D】 取り外された図15Aの超音波トランスデューサの斜視図である。
【図15E】 個別の駆動セクターを備えた図15Dの超音波トランスデューサの例の斜視図である。
【図16A】 図15Aのカテーテルに類似した外周アブレーションカテーテルの斜視図であって、左心房壁に沿った肺静脈口の領域の肺静脈が心房から延びた位置(破線で示す断面)に外周伝導ブロックを形成する時の外周アブレーションカテーテルの先端部が示されている。
【図16B】 図16Aの斜視図に類似した外周アブレーションカテーテルの斜視図及び斜めの点線で示す肺静脈口の断面図であるが、バルーンがテーパ状の外径を有する別の外周アブレーションカテーテルを示す。
【図16C】 図16A及び図16Bに類似の斜視図であるが、バルーンが肺静脈口に整合するテーパに沿った外面を有する洋ナシ形の外径を備えた別の外周アブレーションカテーテルを示す。
【図16D】 図16Cに示されたような外周アブレーションカテーテルを用いて形成され得る或る外周伝導ブロックの断面図である。
【図17A】 別の外周アブレーションカテーテルの先端部分の断面図であって、内部の超音波トランスデューサからの音波の伝播により形成される外周アブレーション要素の所定の形状を形成するべく、バルーンの外面に外側シールド即ちフィルターが設けられている。
【図17B】 図17Aに類似の断面図であるが、内部のトランスデューサからのエネルギー放射の外周経路内の赤道バンドとしてヒートシンクを含む別の外周アブレーションカテーテルの先端部分を示す。
【図18A】 径方向に膨張した状態の膨張バルーン内の内部部材に沿って配置された単一のトランスデューサセクター部分を有するアブレーション要素を備えた別の外周アブレーションカテーテルの断面図である。
【図18B】 凹面が径方向外向きに配置されるように配設された単一のトランスデューサセクター部分を有するアブレーション要素を備えた別の外周アブレーションカテーテルの断面図である。
【図19】 本発明の一態様に従った、可撓性を有する外周超音波アブレーションカテーテルの立面図である。
【図20】 先端部分が複数の位置に示されている図19の先端部可撓性カテーテルの側面図である。
【図21】 図19に示されている可撓性を有する外周超音波アブレーションカテーテルの線21−21に沿って見た断面図である。
【図22】 図19に示されている可撓性を有する外周超音波アブレーションカテーテルの線22−22に沿って見た断面図である。
【図23】 外周超音波アブレーションカテーテルの先端部分を例示する図である。
【図24】 本発明の基端部分が部分的に切断された図である。
【図25】 本発明の先端部可撓性カテーテルを用いて心房性不整脈を治療するための方法におけるステップを概略的に示す流れ図である。
【図26】 左心房内に導入された図19の先端部可撓性カテーテルを示す斜視図である。
【図27】 目的の肺静脈にガイドワイヤを送るべく可撓性先端部分が曲げられている図19の先端部可撓性カテーテルの斜視図である。
【図28】 図25に従った経中隔的アクセスステップ及びガイドワイヤ送りステップの後の左心房内にある外周アブレーション装置組立体の斜視図である。

Claims (16)

  1. 先端部可撓性カテーテルであって、
    基端部分及び先端部分を有する細長いカテーテル本体と、
    ガイドワイヤにスライド可能に係合するように形成されたガイドワイヤ内腔であって、少なくとも前記先端部分の一部に沿って延在し、かつ先端ポートで終わっている、前記ガイドワイヤ内腔と、
    前記先端部分に沿って位置する可撓性先端部と、
    体の組織をアブレーションするために前記先端部分に設けられたアブレーション要素と、
    前記細長いカテーテル本体の前記基端部分に連結されると共に取り外し可能である、前記可撓性先端部を制御するためのハンドルと、
    基端部及び先端部を有するプルワイヤと、を含み、
    前記プルワイヤの前記基端部が前記ハンドルに連結されており、前記プルワイヤの前記先端部が前記可撓性先端部に連結されており、前記ハンドルにより、前記細長いカテーテル本体と前記プルワイヤとを互いに相対的に移動させて前記可撓性先端部を曲げることができ、
    前記ガイドワイヤが前記先端ポートから先に進められるときに、前記ハンドルの操作により前記細長いカテーテル本体と前記プルワイヤとを互いに相対的に移動させて前記可撓性先端部を曲げることで、前記ガイドワイヤが人体内の目的の部位に向かうように、前記可撓性先端部は前記ガイドワイヤの進行方向を案内することができる、ことを特徴とする先端部可撓性カテーテル。
  2. 前記細長いカテーテル本体内を通るトルクに抵抗する部材を更に含み、前記トルク抵抗部材が、トルクを前記細長いカテーテル本体の前記基端部分から前記細長いカテーテル本体の前記先端部分に伝達するように形成されていることを特徴とする請求項1に記載の先端部可撓性カテーテル。
  3. 更に、前記細長いカテーテル本体に設けられた外部層を含み、前記外部層が生体適合性材料から形成されていることを特徴とする請求項1に記載の先端部可撓性カテーテル。
  4. 前記細長いカテーテル本体内を長手方向に貫通する電気リード線内腔を更に含むことを特徴とする請求項1に記載の先端部可撓性カテーテル。
  5. 前記細長いカテーテル本体を体の構造に取り外し可能に固定するための、前記細長いカテーテル本体に設けられた固定部材を更に含むことを特徴とする請求項1に記載の先端部可撓性カテーテル。
  6. 前記固定部材がバスケット機構を含むことを特徴とする請求項5に記載の先端部可撓性カテーテル。
  7. 前記固定部材がケージ機構を含むことを特徴とする請求項5に記載の先端部可撓性カテーテル。
  8. 前記固定部材がエキスパンド可能な部材を含むことを特徴とする請求項5に記載の先端部可撓性カテーテル。
  9. 更に、前記細長いカテーテル本体を長手方向に貫通する膨張用内腔を含み、前記エキスパンド可能な部材が膨張可能なバルーンを含み、前記膨張用内腔が前記膨張可能なバルーンと連通していることを特徴とする請求項8に記載の先端部可撓性カテーテル。
  10. 前記アブレーション要素が超音波トランスデューサであることを特徴とする請求項1に記載の先端部可撓性カテーテル。
  11. 前記超音波トランスデューサが円筒状であって、前記細長いカテーテル本体の回りを囲む孔を画成している内面を有することを特徴とする請求項10に記載の先端部可撓性カテーテル。
  12. 前記アブレーション要素が超音波トランスデューサのアレイを含むことを特徴とする請求項1に記載の先端部可撓性カテーテル。
  13. 前記アブレーション要素が、少なくとも1つの圧電トランスデューサを含み、前記圧電トランスデューサが、その外面に露出した少なくとも1つの電極を有することを特徴とする請求項1に記載の先端部可撓性カテーテル。
  14. 前記アブレーション要素が光放射トランスデューサを含むことを特徴とする請求項1に記載の先端部可撓性カテーテル。
  15. 前記光放射トランスデューサがレーザであることを特徴とする請求項14に記載の先端部可撓性カテーテル。
  16. 前記アブレーション要素が低温アブレーション装置であることを特徴とする請求項1に記載の先端部可撓性カテーテル。
JP2001583645A 2000-05-16 2001-05-16 ガイドワイヤトラッキング機構を備えた先端部可撓性カテーテル Expired - Lifetime JP4873816B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US20500900P 2000-05-16 2000-05-16
US60/205,009 2000-05-16
PCT/US2001/015947 WO2001087174A1 (en) 2000-05-16 2001-05-16 Deflectable tip catheter with guidewire tracking mechanism

Publications (2)

Publication Number Publication Date
JP2003533268A JP2003533268A (ja) 2003-11-11
JP4873816B2 true JP4873816B2 (ja) 2012-02-08

Family

ID=22760406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001583645A Expired - Lifetime JP4873816B2 (ja) 2000-05-16 2001-05-16 ガイドワイヤトラッキング機構を備えた先端部可撓性カテーテル

Country Status (8)

Country Link
US (1) US7089063B2 (ja)
EP (1) EP1286624B1 (ja)
JP (1) JP4873816B2 (ja)
AT (1) ATE400231T1 (ja)
AU (2) AU2001263221A1 (ja)
CA (1) CA2409719C (ja)
DE (1) DE60134739D1 (ja)
WO (1) WO2001087174A1 (ja)

Families Citing this family (213)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723063B1 (en) * 1998-06-29 2004-04-20 Ekos Corporation Sheath for use with an ultrasound element
US6974463B2 (en) 1999-02-09 2005-12-13 Innercool Therapies, Inc. System and method for patient temperature control employing temperature projection algorithm
US7458984B2 (en) 1998-01-23 2008-12-02 Innercool Therapies, Inc. System and method for inducing hypothermia with active patient temperature control employing catheter-mounted temperature sensor and temperature projection algorithm
US7128073B1 (en) 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
US7914564B2 (en) 1999-02-09 2011-03-29 Innercool Therapies, Inc. System and method for patient temperature control employing temperature projection algorithm
CA2388861C (en) 1999-11-16 2013-09-03 Robert A. Ganz System and method of treating abnormal tissue in the human esophagus
US20060095032A1 (en) 1999-11-16 2006-05-04 Jerome Jackson Methods and systems for determining physiologic characteristics for treatment of the esophagus
US20040215235A1 (en) 1999-11-16 2004-10-28 Barrx, Inc. Methods and systems for determining physiologic characteristics for treatment of the esophagus
US6672312B2 (en) * 2001-01-31 2004-01-06 Transurgical, Inc. Pulmonary vein ablation with myocardial tissue locating
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
US20040243118A1 (en) * 2001-06-01 2004-12-02 Ayers Gregory M. Device and method for positioning a catheter tip for creating a cryogenic lesion
US7674245B2 (en) 2001-06-07 2010-03-09 Cardiac Pacemakers, Inc. Method and apparatus for an adjustable shape guide catheter
US20040019318A1 (en) * 2001-11-07 2004-01-29 Wilson Richard R. Ultrasound assembly for use with a catheter
ATE319378T1 (de) 2001-12-03 2006-03-15 Ekos Corp Katheter mit mehreren ultraschall-abstrahlenden teilen
DE10160594A1 (de) * 2001-12-10 2003-06-26 Vitalux Gmbh Interventionelles Instrument
US6741878B2 (en) * 2001-12-14 2004-05-25 Biosense Webster, Inc. Basket catheter with improved expansion mechanism
JP4167178B2 (ja) 2001-12-14 2008-10-15 イコス コーポレイション 血液の流れの再開の判定
US7717899B2 (en) 2002-01-28 2010-05-18 Cardiac Pacemakers, Inc. Inner and outer telescoping catheter delivery system
WO2003072165A2 (en) * 2002-02-28 2003-09-04 Ekos Corporation Ultrasound assembly for use with a catheter
US8226629B1 (en) 2002-04-01 2012-07-24 Ekos Corporation Ultrasonic catheter power control
US7617005B2 (en) * 2002-04-08 2009-11-10 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
US7756583B2 (en) 2002-04-08 2010-07-13 Ardian, Inc. Methods and apparatus for intravascularly-induced neuromodulation
US8347891B2 (en) 2002-04-08 2013-01-08 Medtronic Ardian Luxembourg S.A.R.L. Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen
US7191015B2 (en) * 2002-04-11 2007-03-13 Medtronic Vascular, Inc. Devices and methods for transluminal or transthoracic interstitial electrode placement
AU2007234502B8 (en) * 2002-05-17 2011-02-10 Ethicon Endo-Surgery, Inc. Gerd treatment apparatus and method
US20130197555A1 (en) * 2002-07-01 2013-08-01 Recor Medical, Inc. Intraluminal devices and methods for denervation
US20040082859A1 (en) * 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
TWI235073B (en) 2002-08-20 2005-07-01 Toray Industries Catheter for treating cardiac arrhythmias
US20040039371A1 (en) * 2002-08-23 2004-02-26 Bruce Tockman Coronary vein navigator
US8979923B2 (en) 2002-10-21 2015-03-17 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
MXPA05003924A (es) 2002-10-21 2005-10-19 Mitralign Inc Metodo y aparato para realizar anuloplastia basada en cateter, usando plicaciones locales.
US7195625B2 (en) * 2002-12-11 2007-03-27 Cryocor, Inc. Catheter system for performing a single step cryoablation
US7771372B2 (en) 2003-01-03 2010-08-10 Ekos Corporation Ultrasonic catheter with axial energy field
JP4067976B2 (ja) * 2003-01-24 2008-03-26 有限会社日本エレクテル 高周波加温バルーンカテーテル
US20040199052A1 (en) 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
EP1619995A2 (en) 2003-04-22 2006-02-01 Ekos Corporation Ultrasound enhanced central venous catheter
US7344543B2 (en) * 2003-07-01 2008-03-18 Medtronic, Inc. Method and apparatus for epicardial left atrial appendage isolation in patients with atrial fibrillation
AU2004284941B2 (en) * 2003-10-20 2011-09-22 Johns Hopkins University Catheter and method for ablation of atrial tissue
US7166127B2 (en) 2003-12-23 2007-01-23 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
US8864822B2 (en) 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US7150745B2 (en) 2004-01-09 2006-12-19 Barrx Medical, Inc. Devices and methods for treatment of luminal tissue
US20050165312A1 (en) * 2004-01-26 2005-07-28 Knowles Heather B. Acoustic window for ultrasound probes
CA2553165A1 (en) 2004-01-29 2005-08-11 Ekos Corporation Method and apparatus for detecting vascular conditions with a catheter
JP2007520281A (ja) * 2004-01-29 2007-07-26 イコス コーポレイション 小血管用超音波カテーテル
US7371231B2 (en) * 2004-02-02 2008-05-13 Boston Scientific Scimed, Inc. System and method for performing ablation using a balloon
US8007495B2 (en) 2004-03-31 2011-08-30 Biosense Webster, Inc. Catheter for circumferential ablation at or near a pulmonary vein
WO2005115226A2 (en) * 2004-05-17 2005-12-08 C.R.Bard, Inc. Mapping and ablation method for the treatment of ventricular tachycardia
US20050283146A1 (en) * 2004-06-17 2005-12-22 Lentz David J Thermally extended spiral cryotip for a cryoablation catheter
CN1754870A (zh) * 2004-09-30 2006-04-05 淮北市辉克药业有限公司 辛伐他汀的制备方法
US8409191B2 (en) 2004-11-04 2013-04-02 Boston Scientific Scimed, Inc. Preshaped ablation catheter for ablating pulmonary vein ostia within the heart
EP1876985B1 (en) 2005-05-05 2016-08-31 Boston Scientific Scimed, Inc. System for graphically reconstructing pulmonary vein ostia with preshaped localization catheter
US20090118612A1 (en) * 2005-05-06 2009-05-07 Sorin Grunwald Apparatus and Method for Vascular Access
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
CN101247766B (zh) * 2005-08-25 2011-03-02 皇家飞利浦电子股份有限公司 用于电生理学恢复支持以继续线和环消融的系统
CA2625162C (en) 2005-10-11 2017-01-17 Carnegie Mellon University Sensor guided catheter navigation system
CA2865410C (en) 2005-11-18 2022-04-26 Mark Gelfand System and method to modulate phrenic nerve to prevent sleep apnea
US7621908B2 (en) * 2005-11-18 2009-11-24 Miller Steven W Catheter for manipulation of the esophagus
US10406366B2 (en) * 2006-11-17 2019-09-10 Respicardia, Inc. Transvenous phrenic nerve stimulation system
US9931108B2 (en) * 2005-11-18 2018-04-03 Steven Miller System and method for influencing an anatomical structure
US7959627B2 (en) * 2005-11-23 2011-06-14 Barrx Medical, Inc. Precision ablating device
US8702694B2 (en) 2005-11-23 2014-04-22 Covidien Lp Auto-aligning ablating device and method of use
US7997278B2 (en) 2005-11-23 2011-08-16 Barrx Medical, Inc. Precision ablating method
EP2021846B1 (en) 2006-05-19 2017-05-03 Koninklijke Philips N.V. Ablation device with optimized input power profile
US9119633B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US11389232B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US7774039B2 (en) 2006-09-05 2010-08-10 Boston Scientific Scimed, Inc. Multi-bend steerable mapping catheter
US8036757B2 (en) 2006-09-10 2011-10-11 Seth Worley Pacing lead and method for pacing in the pericardial space
AU2007216674A1 (en) * 2006-09-21 2008-04-10 Cathrx Ltd A catheter assembly
US8728073B2 (en) * 2006-10-10 2014-05-20 Biosense Webster, Inc. Multi-region staged inflation balloon
US8192363B2 (en) 2006-10-27 2012-06-05 Ekos Corporation Catheter with multiple ultrasound radiating members
WO2008070863A2 (en) 2006-12-07 2008-06-12 Interventional Spine, Inc. Intervertebral implant
US10182833B2 (en) 2007-01-08 2019-01-22 Ekos Corporation Power parameters for ultrasonic catheter
US7867227B2 (en) 2007-02-22 2011-01-11 A David Slater Bipolar cardiac ablation system and method
US8911461B2 (en) 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
WO2008112870A2 (en) 2007-03-13 2008-09-18 University Of Virginia Patent Foundation Epicardial ablation catheter and method of use
WO2008118737A1 (en) 2007-03-22 2008-10-02 University Of Virginia Patent Foundation Electrode catheter for ablation purposes and related method thereof
US20080228266A1 (en) 2007-03-13 2008-09-18 Mitralign, Inc. Plication assistance devices and methods
US11058354B2 (en) 2007-03-19 2021-07-13 University Of Virginia Patent Foundation Access needle with direct visualization and related methods
US9468396B2 (en) 2007-03-19 2016-10-18 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
WO2008115745A2 (en) 2007-03-19 2008-09-25 University Of Virginia Patent Foundation Access needle pressure sensor device and method of use
US8579886B2 (en) * 2007-05-01 2013-11-12 Covidien Lp Accordion style cable stand-off
US8641711B2 (en) 2007-05-04 2014-02-04 Covidien Lp Method and apparatus for gastrointestinal tract ablation for treatment of obesity
US8216221B2 (en) * 2007-05-21 2012-07-10 Estech, Inc. Cardiac ablation systems and methods
US8784338B2 (en) * 2007-06-22 2014-07-22 Covidien Lp Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size
PL2170181T3 (pl) 2007-06-22 2014-08-29 Ekos Corp Sposób i aparat do leczenia wylewów wewnątrzczaszkowych
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
WO2009009444A1 (en) 2007-07-06 2009-01-15 Barrx Medical, Inc. Ablation in the gastrointestinal tract to achieve hemostasis and eradicate lesions with a propensity for bleeding
US8251992B2 (en) * 2007-07-06 2012-08-28 Tyco Healthcare Group Lp Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation
US20090177192A1 (en) * 2007-07-13 2009-07-09 Scimed Life Systems, Inc. Method for ablating tissue to facilitate implantation and apparatus and kit for use therewith
US8646460B2 (en) 2007-07-30 2014-02-11 Covidien Lp Cleaning device and methods
US8273012B2 (en) * 2007-07-30 2012-09-25 Tyco Healthcare Group, Lp Cleaning device and methods
BRPI0814936A2 (pt) * 2007-08-23 2015-02-03 Saint Gobain Abrasives Inc Concepção otimizada de condidionador de cmp para cmp óxido/metal da próxima geração
WO2009062061A1 (en) 2007-11-09 2009-05-14 University Of Virginia Patent Foundation Steerable epicardial pacing catheter system placed via the subxiphoid process
US8906011B2 (en) 2007-11-16 2014-12-09 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
WO2009079545A1 (en) * 2007-12-19 2009-06-25 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
US20090163942A1 (en) * 2007-12-20 2009-06-25 Cuevas Brian J Tracheostomy punch dilator
CA2710142A1 (en) 2008-01-17 2009-07-23 Beat Lechmann An expandable intervertebral implant and associated method of manufacturing the same
WO2009094511A1 (en) * 2008-01-24 2009-07-30 Boston Scientific Scimed, Inc. Structure for use as part of a medical device
US8382829B1 (en) 2008-03-10 2013-02-26 Mitralign, Inc. Method to reduce mitral regurgitation by cinching the commissure of the mitral valve
WO2009120622A1 (en) * 2008-03-24 2009-10-01 Boston Scientific Scimed, Inc. Flexible endoscope with core member
US9949794B2 (en) 2008-03-27 2018-04-24 Covidien Lp Microwave ablation devices including expandable antennas and methods of use
BRPI0910325A8 (pt) 2008-04-05 2019-01-29 Synthes Gmbh implante intervertebral expansível
US20090320834A1 (en) * 2008-06-27 2009-12-31 Cuevas Brian J Dilator Loading Catheter
US8585695B2 (en) * 2008-07-22 2013-11-19 Hue-Teh Shih Systems and methods for noncontact ablation
US9795442B2 (en) 2008-11-11 2017-10-24 Shifamed Holdings, Llc Ablation catheters
WO2010080886A1 (en) 2009-01-09 2010-07-15 Recor Medical, Inc. Methods and apparatus for treatment of mitral valve in insufficiency
JP5784506B2 (ja) * 2009-02-20 2015-09-24 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 中間部の剛性を備えた移行領域を有する操作可能なカテーテル
US8915908B2 (en) * 2009-03-20 2014-12-23 Atricure, Inc. Cryogenic probe
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
US9642534B2 (en) 2009-09-11 2017-05-09 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
US11998266B2 (en) 2009-10-12 2024-06-04 Otsuka Medical Devices Co., Ltd Intravascular energy delivery
US8409098B2 (en) * 2009-10-14 2013-04-02 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for collection of cardiac geometry based on optical or magnetic tracking
EP2995350B1 (en) * 2009-10-30 2016-08-03 ReCor Medical, Inc. Apparatus for treatment of hypertension through percutaneous ultrasound renal denervation
US8469953B2 (en) 2009-11-16 2013-06-25 Covidien Lp Twin sealing chamber hub
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
WO2011100706A2 (en) * 2010-02-12 2011-08-18 Sukhjit Gill Guidewire positioning device
EP2537149B1 (en) 2010-02-18 2017-10-25 University Of Virginia Patent Foundation System, method, and computer program product for simulating epicardial electrophysiology procedures
US20110208180A1 (en) * 2010-02-25 2011-08-25 Vivant Medical, Inc. System and Method for Monitoring Ablation Size
US9655677B2 (en) 2010-05-12 2017-05-23 Shifamed Holdings, Llc Ablation catheters including a balloon and electrodes
WO2011143468A2 (en) 2010-05-12 2011-11-17 Shifamed, Llc Low profile electrode assembly
US8798721B2 (en) 2010-05-26 2014-08-05 Dib Ultrasound Catheter, Llc System and method for visualizing catheter placement in a vasculature
US9282979B2 (en) * 2010-06-24 2016-03-15 DePuy Synthes Products, Inc. Instruments and methods for non-parallel disc space preparation
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
WO2012003175A1 (en) 2010-06-29 2012-01-05 Synthes Usa, Llc Distractible intervertebral implant
US8679105B2 (en) 2010-07-28 2014-03-25 Medtronic Cryocath Lp Device and method for pulmonary vein isolation
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US8560086B2 (en) 2010-12-02 2013-10-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter electrode assemblies and methods of construction therefor
US11246653B2 (en) * 2010-12-07 2022-02-15 Boaz Avitall Catheter systems for cardiac arrhythmia ablation
US9492190B2 (en) 2011-02-09 2016-11-15 Covidien Lp Tissue dissectors
US9744349B2 (en) 2011-02-10 2017-08-29 Respicardia, Inc. Medical lead and implantation
US20140163540A1 (en) * 2011-02-18 2014-06-12 Recor Medical, Inc. Apparatus for effecting renal denervation using ultrasound
US10278774B2 (en) * 2011-03-18 2019-05-07 Covidien Lp Selectively expandable operative element support structure and methods of use
EP3485851B1 (en) 2011-03-22 2021-08-25 DePuy Synthes Products, LLC Universal trial for lateral cages
WO2012161875A1 (en) 2011-04-08 2012-11-29 Tyco Healthcare Group Lp Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery
CA2832593A1 (en) 2011-04-08 2012-07-18 Joseph D. Brannan Flexible microwave catheters for natural or artificial lumens
CN103930061B (zh) 2011-04-25 2016-09-14 美敦力阿迪安卢森堡有限责任公司 用于限制导管壁低温消融的有关低温球囊限制部署的装置及方法
US11458290B2 (en) 2011-05-11 2022-10-04 Ekos Corporation Ultrasound system
US8992413B2 (en) 2011-05-31 2015-03-31 Covidien Lp Modified wet tip antenna design
US8870860B2 (en) 2011-08-09 2014-10-28 Covidien Lp Microwave antenna having a coaxial cable with an adjustable outer conductor configuration
US20130090649A1 (en) * 2011-10-11 2013-04-11 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation
CA2856732A1 (en) 2011-12-09 2013-06-13 Metavention, Inc. Therapeutic neuromodulation of the hepatic system
US9113931B2 (en) 2012-01-06 2015-08-25 Covidien Lp System and method for treating tissue using an expandable antenna
US9119648B2 (en) 2012-01-06 2015-09-01 Covidien Lp System and method for treating tissue using an expandable antenna
US10213187B1 (en) 2012-01-25 2019-02-26 Mubin I. Syed Method and apparatus for percutaneous superficial temporal artery access for carotid artery stenting
US10076383B2 (en) 2012-01-25 2018-09-18 Covidien Lp Electrosurgical device having a multiplexer
US20150201900A1 (en) * 2012-01-25 2015-07-23 Mubin I. Syed Multi-pane imaging transducer associated with a guidewire
US8702647B2 (en) 2012-04-19 2014-04-22 Medtronic Ablation Frontiers Llc Catheter deflection anchor
US9198592B2 (en) 2012-05-21 2015-12-01 Kardium Inc. Systems and methods for activating transducers
US10827977B2 (en) 2012-05-21 2020-11-10 Kardium Inc. Systems and methods for activating transducers
US9017320B2 (en) 2012-05-21 2015-04-28 Kardium, Inc. Systems and methods for activating transducers
US9127989B2 (en) 2012-06-22 2015-09-08 Covidien Lp Microwave thermometry for microwave ablation systems
US9993295B2 (en) 2012-08-07 2018-06-12 Covidien Lp Microwave ablation catheter and method of utilizing the same
US9173667B2 (en) 2012-10-16 2015-11-03 Med-Sonics Corporation Apparatus and methods for transferring ultrasonic energy to a bodily tissue
US9339284B2 (en) 2012-11-06 2016-05-17 Med-Sonics Corporation Systems and methods for controlling delivery of ultrasonic energy to a bodily tissue
US9549666B2 (en) 2012-11-10 2017-01-24 Curvo Medical, Inc. Coaxial micro-endoscope
US9233225B2 (en) 2012-11-10 2016-01-12 Curvo Medical, Inc. Coaxial bi-directional catheter
US10639179B2 (en) 2012-11-21 2020-05-05 Ram Medical Innovations, Llc System for the intravascular placement of a medical device
US9717601B2 (en) 2013-02-28 2017-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10076384B2 (en) 2013-03-08 2018-09-18 Symple Surgical, Inc. Balloon catheter apparatus with microwave emitter
WO2014159273A1 (en) 2013-03-14 2014-10-02 Recor Medical, Inc. Methods of plating or coating ultrasound transducers
CN106178294B (zh) 2013-03-14 2018-11-20 瑞蔻医药有限公司 一种血管内的基于超声波的消融系统
CN105073052B (zh) 2013-03-29 2017-09-01 柯惠有限合伙公司 下降式共轴微波消融施加器及其制造方法
US10098694B2 (en) 2013-04-08 2018-10-16 Apama Medical, Inc. Tissue ablation and monitoring thereof
CN105228547B (zh) 2013-04-08 2019-05-14 阿帕玛医疗公司 心脏消融导管
US10349824B2 (en) 2013-04-08 2019-07-16 Apama Medical, Inc. Tissue mapping and visualization systems
EP2804151B1 (en) 2013-05-16 2020-01-08 Hexagon Technology Center GmbH Method for rendering data of a three-dimensional surface
WO2014197295A2 (en) * 2013-06-04 2014-12-11 NaviSonics, Inc. Method and apparatus for positioning medical device
CA2913346A1 (en) 2013-06-05 2014-12-11 Metavention, Inc. Modulation of targeted nerve fibers
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10568686B2 (en) 2013-11-21 2020-02-25 Biosense Webster (Israel) Ltd. Multi-electrode balloon catheter with circumferential and point electrodes
JP2017501843A (ja) 2014-01-10 2017-01-19 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. フレキシブル回路アセンブリを有する医療装置
US10709490B2 (en) 2014-05-07 2020-07-14 Medtronic Ardian Luxembourg S.A.R.L. Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods
US10624697B2 (en) 2014-08-26 2020-04-21 Covidien Lp Microwave ablation system
US10092742B2 (en) 2014-09-22 2018-10-09 Ekos Corporation Catheter system
US10813691B2 (en) 2014-10-01 2020-10-27 Covidien Lp Miniaturized microwave ablation assembly
US10722184B2 (en) 2014-11-17 2020-07-28 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10368936B2 (en) 2014-11-17 2019-08-06 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
CN104720752B (zh) * 2015-02-13 2017-09-15 亚太仿生学有限公司 一种用于空腔结构内部热成像的探测器及系统装置
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9763684B2 (en) 2015-04-02 2017-09-19 Med-Sonics Corporation Devices and methods for removing occlusions from a bodily cavity
US9636244B2 (en) 2015-04-09 2017-05-02 Mubin I. Syed Apparatus and method for proximal to distal stent deployment
US20180168721A1 (en) * 2015-05-07 2018-06-21 Persistent Afib Solutions, Inc. Non-Occlusive Circumferential Vascular Ablation Device
WO2016201136A1 (en) 2015-06-10 2016-12-15 Ekos Corporation Ultrasound catheter
US9895073B2 (en) 2015-07-29 2018-02-20 Biosense Webster (Israel) Ltd. Dual basket catheter
JP2017063985A (ja) * 2015-09-29 2017-04-06 日本ライフライン株式会社 バルーンカテーテルおよびケミカルアブレーション装置
US10779976B2 (en) 2015-10-30 2020-09-22 Ram Medical Innovations, Llc Apparatus and method for stabilization of procedural catheter in tortuous vessels
US10327929B2 (en) 2015-10-30 2019-06-25 Ram Medical Innovations, Llc Apparatus and method for stabilization of procedural catheter in tortuous vessels
US11020256B2 (en) 2015-10-30 2021-06-01 Ram Medical Innovations, Inc. Bifurcated “Y” anchor support for coronary interventions
US10492936B2 (en) 2015-10-30 2019-12-03 Ram Medical Innovations, Llc Apparatus and method for improved access of procedural catheter in tortuous vessels
WO2017087549A1 (en) 2015-11-16 2017-05-26 Apama Medical, Inc. Energy delivery devices
US10813692B2 (en) 2016-02-29 2020-10-27 Covidien Lp 90-degree interlocking geometry for introducer for facilitating deployment of microwave radiating catheter
US10524859B2 (en) 2016-06-07 2020-01-07 Metavention, Inc. Therapeutic tissue modulation devices and methods
US10173031B2 (en) 2016-06-20 2019-01-08 Mubin I. Syed Interchangeable flush/selective catheter
JP7019616B2 (ja) 2016-06-28 2022-02-15 イーアイティー・エマージング・インプラント・テクノロジーズ・ゲーエムベーハー 関節運動式継手を備えた拡張可能かつ角度調節可能な椎間ケージ
US11510788B2 (en) 2016-06-28 2022-11-29 Eit Emerging Implant Technologies Gmbh Expandable, angularly adjustable intervertebral cages
US11197715B2 (en) 2016-08-02 2021-12-14 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US11065053B2 (en) 2016-08-02 2021-07-20 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
US10376309B2 (en) 2016-08-02 2019-08-13 Covidien Lp Ablation cable assemblies and a method of manufacturing the same
WO2018028805A1 (en) * 2016-08-12 2018-02-15 Medical Development Technologies S.A. Blood-flow interrupting means for insulating an implant device for ablation
JP7033142B2 (ja) * 2017-01-06 2022-03-09 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド 肺静脈隔離バルーンカテーテル
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10765475B2 (en) * 2017-10-31 2020-09-08 Biosense Webster (Israel) Ltd. All-in-one spiral catheter
US10857014B2 (en) 2018-02-18 2020-12-08 Ram Medical Innovations, Llc Modified fixed flat wire bifurcated catheter and its application in lower extremity interventions
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
EP3930583B1 (en) * 2019-02-26 2023-11-29 Percassist, Inc. Systems for percutaneous pneumatic cardiac assistance
US11559669B2 (en) 2019-04-04 2023-01-24 Medtronic, Inc. Cannula delivery catheter and procedure method
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
CN116490239A (zh) 2020-11-09 2023-07-25 敏捷设备有限公司 用于操纵导管的装置
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688329A (en) * 1953-03-19 1954-09-07 American Cystoscope Makers Inc Catheter
US4529400A (en) * 1984-03-23 1985-07-16 Scholten James R Apparatus for naso and oroendotracheal intubation
JPS60187737U (ja) * 1984-05-23 1985-12-12 オリンパス光学工業株式会社 留置チユ−ブガイド装置
US4960134A (en) * 1988-11-18 1990-10-02 Webster Wilton W Jr Steerable catheter
EP0415553B1 (en) * 1989-07-31 1996-01-17 Kabushiki Kaisha Machida Seisakusho Bending device
US5195968A (en) * 1990-02-02 1993-03-23 Ingemar Lundquist Catheter steering mechanism
US5254088A (en) * 1990-02-02 1993-10-19 Ep Technologies, Inc. Catheter steering mechanism
US5368557A (en) * 1991-01-11 1994-11-29 Baxter International Inc. Ultrasonic ablation catheter device having multiple ultrasound transmission members
US5409453A (en) * 1992-08-12 1995-04-25 Vidamed, Inc. Steerable medical probe with stylets
US5766151A (en) * 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
US5168864A (en) * 1991-09-26 1992-12-08 Clarus Medical Systems, Inc. Deflectable endoscope
US5275151A (en) * 1991-12-11 1994-01-04 Clarus Medical Systems, Inc. Handle for deflectable catheter
AU4026793A (en) * 1992-04-10 1993-11-18 Cardiorhythm Shapable handle for steerable electrode catheter
US5318525A (en) * 1992-04-10 1994-06-07 Medtronic Cardiorhythm Steerable electrode catheter
US5342299A (en) 1992-07-06 1994-08-30 Catheter Imaging Systems Steerable catheter
US5472017A (en) * 1992-11-17 1995-12-05 Life Medical Technologies, Inc. Deflectable catheter
WO1994016633A1 (en) * 1993-01-29 1994-08-04 United States Of America, As Represented By The Secretary, Department Of Health And Human Services Multifinger topocatheter tip for multilumen catheter for angioplasty and manipulation
DE69417465T2 (de) * 1993-02-05 1999-07-22 Joe W And Dorothy Dorsett Brow Ultraschallballonkatheter für Angioplastik
US5487757A (en) * 1993-07-20 1996-01-30 Medtronic Cardiorhythm Multicurve deflectable catheter
US5562619A (en) * 1993-08-19 1996-10-08 Boston Scientific Corporation Deflectable catheter
US5562617A (en) * 1994-01-18 1996-10-08 Finch, Jr.; Charles D. Implantable vascular device
US5395328A (en) * 1994-01-19 1995-03-07 Daig Corporation Steerable catheter tip having an X-shaped lumen
US5395329A (en) * 1994-01-19 1995-03-07 Daig Corporation Control handle for steerable catheter
US5547469A (en) * 1994-05-13 1996-08-20 Boston Scientific Corporation Apparatus for performing diagnostic and therapeutic modalities in the biliary tree
US5882333A (en) * 1994-05-13 1999-03-16 Cardima, Inc. Catheter with deflectable distal section
US6006755A (en) * 1994-06-24 1999-12-28 Edwards; Stuart D. Method to detect and treat aberrant myoelectric activity
WO1996026675A1 (en) * 1995-02-28 1996-09-06 Boston Scientific Corporation Deflectable catheter for ablating cardiac tissue
US5676653A (en) * 1995-06-27 1997-10-14 Arrow International Investment Corp. Kink-resistant steerable catheter assembly
US5702433A (en) * 1995-06-27 1997-12-30 Arrow International Investment Corp. Kink-resistant steerable catheter assembly for microwave ablation
US6036687A (en) * 1996-03-05 2000-03-14 Vnus Medical Technologies, Inc. Method and apparatus for treating venous insufficiency
US5755760A (en) 1996-03-11 1998-05-26 Medtronic, Inc. Deflectable catheter
US5800428A (en) * 1996-05-16 1998-09-01 Angeion Corporation Linear catheter ablation system
US6083170A (en) * 1996-05-17 2000-07-04 Biosense, Inc. Self-aligning catheter
US6311692B1 (en) * 1996-10-22 2001-11-06 Epicor, Inc. Apparatus and method for diagnosis and therapy of electrophysiological disease
US6042581A (en) * 1996-11-08 2000-03-28 Thomas J. Fogarty Transvascular TMR device and method
US5919188A (en) * 1997-02-04 1999-07-06 Medtronic, Inc. Linear ablation catheter
US5876373A (en) * 1997-04-04 1999-03-02 Eclipse Surgical Technologies, Inc. Steerable catheter
US5971983A (en) * 1997-05-09 1999-10-26 The Regents Of The University Of California Tissue ablation device and method of use
US5827278A (en) * 1997-05-20 1998-10-27 Cordis Webster, Inc. Deflectable tip electrode catheter with nylon stiffener and compression coil
IL133901A (en) * 1997-07-08 2005-09-25 Univ Emory Circumferential ablation device assembly and method
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US5964757A (en) * 1997-09-05 1999-10-12 Cordis Webster, Inc. Steerable direct myocardial revascularization catheter
US6063082A (en) * 1997-11-04 2000-05-16 Scimed Life Systems, Inc. Percutaneous myocardial revascularization basket delivery system and radiofrequency therapeutic device
US6602276B2 (en) * 1998-03-31 2003-08-05 Innercool Therapies, Inc. Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6059739A (en) * 1998-05-29 2000-05-09 Medtronic, Inc. Method and apparatus for deflecting a catheter or lead
US6290697B1 (en) * 1998-12-01 2001-09-18 Irvine Biomedical, Inc. Self-guiding catheter system for tissue ablation
US6325797B1 (en) * 1999-04-05 2001-12-04 Medtronic, Inc. Ablation catheter and method for isolating a pulmonary vein
EP2305161B1 (en) * 1999-05-11 2018-03-21 Atrionix, Inc. Positioning system for a medical device
US6283959B1 (en) * 1999-08-23 2001-09-04 Cyrocath Technologies, Inc. Endovascular cryotreatment catheter

Also Published As

Publication number Publication date
CA2409719A1 (en) 2001-11-22
AU2001263221A1 (en) 2001-11-26
WO2001087174A1 (en) 2001-11-22
ATE400231T1 (de) 2008-07-15
AU2006213956A1 (en) 2006-10-05
AU2006213956B2 (en) 2010-04-29
US20020165535A1 (en) 2002-11-07
EP1286624B1 (en) 2008-07-09
DE60134739D1 (de) 2008-08-21
JP2003533268A (ja) 2003-11-11
EP1286624A1 (en) 2003-03-05
US7089063B2 (en) 2006-08-08
CA2409719C (en) 2012-05-08

Similar Documents

Publication Publication Date Title
JP4873816B2 (ja) ガイドワイヤトラッキング機構を備えた先端部可撓性カテーテル
EP1009303B1 (en) Circumferential ablation device assembly
US6383151B1 (en) Circumferential ablation device assembly
EP1289439B1 (en) Surgical ablation probe for forming a circumferential lesion
US7340307B2 (en) Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US6966908B2 (en) Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
US6997925B2 (en) Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
AU770477B2 (en) Apparatus and method incorporating an ultrasound transducer onto a delivery member
AU2001266824A1 (en) Surgical ablation probe for forming a circumferential lesion

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110610

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term