WO2023104162A1 - 换热器加工方法及用于换热器的加工装置 - Google Patents

换热器加工方法及用于换热器的加工装置 Download PDF

Info

Publication number
WO2023104162A1
WO2023104162A1 PCT/CN2022/137624 CN2022137624W WO2023104162A1 WO 2023104162 A1 WO2023104162 A1 WO 2023104162A1 CN 2022137624 W CN2022137624 W CN 2022137624W WO 2023104162 A1 WO2023104162 A1 WO 2023104162A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
heat exchanger
microchannel flat
microchannel
flat tube
Prior art date
Application number
PCT/CN2022/137624
Other languages
English (en)
French (fr)
Inventor
金俊峰
钟笑鸣
周杭兵
郑立新
叶毕彬
Original Assignee
杭州三花微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花微通道换热器有限公司 filed Critical 杭州三花微通道换热器有限公司
Publication of WO2023104162A1 publication Critical patent/WO2023104162A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the disclosure relates to the technical field of microchannel heat exchangers, in particular to a heat exchanger processing method and a heat exchanger processing device.
  • micro-channel heat exchangers also known as multi-channel heat exchangers
  • the headers and micro-channel flat tubes are often assembled together first, and finally put into the fins and bundled together with iron wire or steel belt for furnace heating. Internal brazing.
  • the headers and microchannel flat tubes on the tooling platform, there may be human errors such as wrong or reverse installation of the microchannel flat tubes at specific positions, and it is not easy to be identified.
  • the microchannel heat exchanger is widely used in the field of air conditioning and refrigeration.
  • the microchannel heat exchanger includes a plurality of microchannel flat tubes, and the microchannel flat tube includes a plurality of channels and a plurality of partitions, and each partition is located adjacent to between the two channels.
  • the refrigerant flows in the channels of multiple micro-channel flat tubes for heat exchange.
  • the structure and size of the channel affect the state change of the refrigerant, which in turn affects the heat transfer performance of the heat exchanger.
  • each channel of the microchannel flat tube is small, the accuracy cannot be guaranteed by manual inspection, and the efficiency of large-scale inspection is low.
  • the embodiment of the present disclosure provides a heat exchanger processing method, which can identify the microchannel flat tubes of the heat exchanger during the heat exchanger processing process, thereby improving the processing efficiency of the heat exchanger.
  • An embodiment of the present disclosure provides a heat exchanger processing method, the heat exchanger includes a plurality of microchannel flat tubes, and the heat exchanger processing method includes:
  • the microchannel flat tubes include a plurality of channels extending in the length direction thereof, and a plurality of the microchannel flat tubes are arranged at intervals along the first direction;
  • the sampling component starts from the initial position, moves along the first direction, sequentially collects specific information of one or more microchannel flat tubes, and transmits the specific information to the control component;
  • the control component compares the specific information with pre-stored information, and sends feedback information according to the comparison result
  • the indication component sends indication information according to the feedback information
  • the sampling component starts from the initial position, moves along the first direction, and sequentially collects specific information of one or more of the microchannel flat tubes, specifically:
  • the sampling component moves to collect end face information of an end face in the length direction of the microchannel flat tube
  • the indication component sends indication information according to the feedback information, specifically:
  • the indication component sends the indication information.
  • the indication component sends out indication information according to the feedback information; adjusts the position of the corresponding microchannel flat tube according to the indication information, specifically:
  • the sampling component stops at a specific position, and sends the indication information through the indication component;
  • the sampling assembly continues to move until the information collection of all the microchannel flat tubes is completed.
  • the heat exchanger processing method further includes that the sampling component collects the specific information of one or more microchannel flat tubes again.
  • the collection of specific information of one or more of the microchannel flat tubes is specifically:
  • the sampling component collects information on an end face in the length direction of the microchannel flat tube, and the information on the end face includes specified width information of one or more channels; in an embodiment of the present disclosure, a plurality refers to Include two or more.
  • the control component compares the specific information with pre-stored information, and sends feedback information according to the comparison result, specifically:
  • the control component compares the width information with pre-stored information, and sends feedback information according to the comparison result.
  • the sampling component collects information on an end face in the length direction of the microchannel flat tube, specifically:
  • the sampling component collects width information of the first channel and/or the last channel in the width direction of the flat tube of the microchannel.
  • the collection of specific information of one or more of the microchannel flat tubes is specifically:
  • the sampling component collects information on the end face of the microchannel flat tube, and the information on the end face includes the width information and arrangement order of a plurality of designated channels;
  • the control component compares the specific information with pre-stored information, and sends feedback information according to the comparison result, specifically:
  • the control component compares the width information and arrangement order with pre-stored information, and sends feedback information according to the comparison result.
  • the collecting specific information of one or more of the microchannel flat tubes specifically includes One or more combinations of the following methods:
  • the sampling component starts from an initial position, moves along the first direction, sequentially collects specific information of one or more of the microchannel flat tubes, and transmits the specific information to the control components, specifically:
  • the sampling component moves along the first direction, and transmits the specific information to the control component after collecting the specific information of all the microchannel flat tubes.
  • the sampling assembly moves synchronously with the indicating assembly.
  • the position of the corresponding microchannel flat tube is adjusted according to the instruction information, specifically:
  • the microchannel flat tube is moved along a second direction, and the second direction is perpendicular to or at an angle to the first direction.
  • An embodiment of the present disclosure also provides a processing device for a heat exchanger, the processing device includes a first assembly, a collection assembly, a control assembly and an indication assembly, the first assembly includes a slide bar, the collection assembly and The indicating assembly can reciprocate along the slide bar, the first assembly further includes a comb-tooth member, the length direction of the comb-tooth member is parallel to the first direction, the comb-tooth member includes a plurality of comb teeth, the The comb teeth are arranged at intervals along the first direction, and the control component is connected to the collecting component and the indicating component respectively.
  • the heat exchanger processing method proposed by the embodiment of the present disclosure collects the specific information of each microchannel flat tube through the sampling component along the arrangement direction of the microchannel flat tube, and transmits the specific information to the control component, and then passes the specific information through the control component.
  • the information is compared with the pre-stored information, and feedback information is sent out according to the comparison results, so that the indicating component sends out instruction information according to the feedback information.
  • the micro-channel flat tube installed in reverse ensures the correctness of the installation of the micro-channel flat tube, thereby ensuring the heat transfer performance of the heat exchanger, canceling the time cost of manual inspection, and improving production efficiency.
  • Fig. 1 is a perspective view of a microchannel heat exchanger provided by an embodiment of the present disclosure.
  • FIG. 2a to 2c are cross-sectional views of the microchannel flat tube in FIG. 1 .
  • Fig. 3 is a flowchart of a heat exchanger processing method provided by an embodiment of the present disclosure.
  • FIG. 4 is a further specific flowchart of steps S12 to S15 in FIG. 3 .
  • Fig. 5 is a flowchart of a heat exchanger processing method provided by another embodiment of the present disclosure.
  • Fig. 6 is a schematic structural diagram of a processing device for a heat exchanger provided by an embodiment of the present disclosure.
  • connection can be a fixed connection, a detachable connection, or an integrated Connected, or electrically connected; either directly or indirectly through an intermediary.
  • Fig. 1 is a perspective view of a microchannel heat exchanger provided by an embodiment of the present disclosure.
  • the microchannel heat exchanger 100 includes a first header 101 , a second header 102 , a microchannel flat tube 103 , fins 104 , a liquid inlet pipe 105 and a liquid outlet pipe 106 .
  • a plurality of microchannel flat tubes 103 are provided, and a plurality of microchannel flat tubes 103 are arranged at intervals along the length extension direction of the first header 101 and the second header 102, and the two ends of the plurality of microchannel flat tubes 103 They are respectively connected to the first header 101 and the second header 102 .
  • the liquid inlet pipe 105 is connected to the first collecting pipe 101
  • the liquid outlet pipe 106 is connected to the second collecting pipe 102
  • the fins 104 are arranged between two adjacent microchannel flat pipes 103 .
  • each microchannel flat tube 103 is respectively provided with a plurality of channels 103a, the length of each channel 103a extends along the length extension direction of the microchannel flat tube 103, and runs through the two ends of the microchannel flat tube 103, And each channel 103a is arranged at intervals along the width extension direction of the microchannel flat tube 103 (X direction in the figure), and there is a spacer b between two adjacent channels 103a.
  • each channel 103a When the heat exchanger is working, the refrigerant flows in each channel, and heat exchange is performed while the state changes.
  • the structure and size of each channel 103a will affect the change of the refrigerant in the channel.
  • the working refrigerant may be in a state of high temperature and high pressure, and has a certain pressure.
  • the microchannel flat tube 103 needs to have a certain strength to ensure that the refrigerant does not leak.
  • the cross section of the flat tube is flat, the two sides in the height direction (Y direction in the figure) are parallel, and the shape of the flow cross section of the channel is generally rectangular, or other shapes such as circular or triangular. .
  • the shapes of the flow sections of each channel of a flat tube can also be different, for example, a part of the flow section of the channel is a triangle, and a part of it is a rectangle.
  • the cross section of the flat tube is fan-like, the two sides in the height direction are not parallel, and the sizes of the included channels are also different.
  • the widths of the spacers may be the same or different. According to the requirements of the refrigerant used in the heat exchanger and the requirements of heat transfer performance, the structure and size of the flat tube channel and spacer are designed.
  • Fig. 3 is a flowchart of a heat exchanger processing method provided by an embodiment of the present disclosure.
  • the heat exchanger processing method includes: S13-S15.
  • the microchannel flat tube includes a plurality of channels extending along its length direction, and the two ends of each channel respectively penetrate through the two end faces of the microchannel flat tube, and each channel is arranged along the width extension direction of the microchannel flat tube, There is a spacer between two adjacent channels in the width direction of the channel flat tube.
  • the sampling component moves along the first direction, sequentially collects specific information of each microchannel flat tube, and transmits the specific information to the control component.
  • the sampling assembly starts to move along the slide bar from the initial position, and the initial position can be the position of the first micro-channel flat tube or the last micro-channel flat tube on the slide bar corresponding to the direction in which the micro-channel flat tubes are arranged.
  • the corresponding position of the tube can also be the position corresponding to the specially designated microchannel flat tube on the slide bar, which is not limited here, and moves along the arrangement direction of the microchannel flat tube, and the arrangement direction of the microchannel flat tube is the first direction, Sequentially collect specific information on an end surface or peripheral surface of one or more microchannel flat tubes in the length direction (such as image information of the end surface or peripheral surface of the microchannel flat tube), and transmit the specific information to the control component.
  • the specific information on the end face of the microchannel flat tube includes the width information of one or more specified channels, the width information and arrangement order of multiple specified channels, and the specified channel includes the first channel in the width direction of the microchannel flat tube Or the last channel, or the first channel and the last channel in the width direction of the microchannel flat tube.
  • collecting specific information of each microchannel flat tube includes one or a combination of the following methods:
  • the cross-sectional area information of one or more channels designated by the microchannel flat tube is collected, wherein the cross-sectional area information refers to the size and shape of the cross-sectional area of the channel.
  • the cross-sectional area information and arrangement order of multiple channels designated by the microchannel flat tube are collected, wherein the cross-sectional area information and arrangement order refer to the size of the cross-sectional area and the arrangement order of the size of the cross-sectional area.
  • the information of a spacer designated by the microchannel flat tube is collected, and the spacer is located between two designated channels, wherein the spacer information refers to the width of the spacer.
  • the width direction of the spacer is parallel to the width direction of the flat tube of the microchannel and the width direction of the channel.
  • the height information of a channel designated by the microchannel flat tube is collected, wherein the height information refers to the numerical value of the height (the height of the channel in the Y direction in the figure).
  • the information in the embodiments of the present disclosure refers to parameters and all information other than parameters.
  • the control component compares the specific information with the pre-stored information, and sends feedback information according to the comparison result.
  • the control component compares the specific information with the pre-stored information. If the specific information is different from the pre-stored information, for example, the detected cross-sectional area of a designated channel is different from the pre-stored designated channel, the comparison result is fed back to the Indicates components.
  • the pre-stored information includes the width information, cross-sectional area information, height information or spacer information of one or more designated channels, or the width information and arrangement order, cross-sectional area information and arrangement order, and spacer information of multiple designated channels. and sort order.
  • the indication component gives indication information according to the feedback information sent by the control component.
  • the sampling assembly stops at a specific position, such as the position where the wrong or reversed microchannel flat tube is located, and
  • the indication information is issued through the indication component, and the indication information is to indicate that the micro-channel flat tube is installed wrongly or reversely.
  • the prompt information can be given by a light source or an alarm sound to adjust the position of the corresponding micro-channel flat tube , after adjusting the position of the corresponding micro-channel flat tube, the sampling component continues to move, and collects specific information of one or more micro-channel flat tubes again, until the information collection of all micro-channel flat tubes is completed and the wrong micro-channel flat tube is installed adjustment.
  • adjusting the position of the corresponding microchannel flat tube according to the indication information includes, according to the indication information, moving the microchannel flat tube along a second direction, the second direction being perpendicular to or at an angle to the first direction.
  • the indicating component moves synchronously with the sampling component. It can be understood that in other embodiments, the indicating component can also be set separately from the sampling component, and the indicating component does not need to move synchronously with the sampling component.
  • FIG. 4 is a further specific flowchart of steps S12-S15 in FIG. 3.
  • the above-mentioned steps S12-S15 further include: S101-S108.
  • the sampling component is started and moves along a first direction.
  • S102 Collect specific information of each microchannel flat tube, and transmit the specific information to the control component.
  • control component compares the specific information with the pre-stored information to determine whether the specific information is consistent with the pre-stored information. If the judgment result is yes, proceed to step S104, and if the judgment result is no, proceed to step S106.
  • step S102 is repeated.
  • the indication component sends indication information.
  • step S101 After adjusting the wrongly or reversely installed microchannel flat tubes, continue to repeat step S101.
  • the embodiments of the present disclosure also propose another heat exchanger processing method.
  • the sampling component must collect all the samples that need to be collected After receiving the specific information of the microchannel flat tubes, the specific information is transmitted to the control component, and the control component compares the specific information of all the collected microchannel flat tubes with the pre-stored information, and gives feedback information according to the comparison results, so that The indication component sends out indication information according to the feedback information given by the control component, and then adjusts all wrongly or reversely installed microchannel flat tubes according to the indication information.
  • the processing method of the heat exchanger includes steps: S201-S205.
  • the sampling component starts and moves along a first direction.
  • S202 Collect the specific information of each microchannel flat tube sequentially, and transmit the collected specific information of all the microchannel flat tubes to the control component.
  • the control component compares the specific information with the pre-stored information, and gives feedback information.
  • the instructing component sends out instruction information.
  • an embodiment of the present disclosure further provides a processing device for a heat exchanger, the processing device is used to implement the heat exchanger processing method of the above embodiment.
  • Figure 4 is a schematic structural view of a processing device provided by an embodiment of the present disclosure, referring to Figure 4, the processing device includes a support frame 1, an installation assembly 2, a sampling assembly 3, a control assembly (not shown in the figure) and an indicating assembly (in the figure not shown), the installation assembly 2 is arranged on the top of the support frame 1, to support the installation assembly 2 by the support frame 1, the installation assembly 2 is used to fix the microchannel flat tube 103, and the sampling assembly 3 is used to sample each microchannel flat tube 103 surface-specific information, the control component is connected to the sampling component 3 and the indicating component respectively, and is used to compare the specific information of each microchannel flat tube 103 collected by the sampling component 3 with the preset information, and give feedback according to the comparison result Information, so that the indication component sends out indication information according to the feedback information given by the control component.
  • the sampling assembly 3 can reciprocate along the arrangement direction of the microchannel flat tubes 103 to collect specific information on the circumferential surface or end face of the microchannel flat tubes 103, and transmit the specific information to the control assembly, and the control assembly After receiving the specific information transmitted by the sampling component 3, compare the specific information with the preset information, and send feedback information to the indicating component according to the comparison result, so that the indicating component can issue indicating information according to the feedback information transmitted by the control component, for example Indicates wrong or reversed microchannel flat tubes.
  • the mounting assembly 2 includes a slide bar 21 and a comb member 22, the length extension direction of the comb member 22 is parallel to the first direction (the arrangement direction of the microchannel flat tubes), and the comb member 22 includes a plurality of comb teeth , a plurality of comb teeth are arranged at intervals along the first direction, and are used for fixing the microchannel flat tube 103 .
  • the length extension direction of the slide bar 21 is parallel to the first direction, and the sampling assembly 3 can move back and forth along the slide bar 21 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

公开了一种换热器加工方法及用于换热器的加工装置,该换热器加工方法包括:提供多个微通道扁管,将多个微通道扁管沿第一方向间隔设置;采样组件从初始位置出发,沿第一方向移动,依次采集一个或者多个微通道扁管的特定信息,并将特定信息传递给控制组件;控制组件将特定信息与预存信息进行对比,并根据对比结果发出反馈信息;指示组件根据反馈信息,发出指示信息,根据指示信息调整对应的微通道扁管的位置。

Description

换热器加工方法及用于换热器的加工装置
相关申请的交叉引用
本申请要求在2021年12月9日在中国提交的中国专利申请号202111498239.2的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及微通道换热器技术领域,具体涉及一种换热器加工方法及用于换热器的加工装置。
背景技术
微通道换热器(也称多通道换热器)在生产过程中,往往先把集流管和微通道扁管组装在一起,最后放入翅片后用铁丝或钢带捆扎在一起进行炉内钎焊。但是在工装平台上组装集流管和微通道扁管的时候,可能会产生特定位置微通道扁管装错、装反等人为错误,且不易被识别。
而相关技术中,微通道换热器在空调制冷领域应用广泛,微通道换热器包括多个微通道扁管,微通道扁管包括多个通道和多个间隔部,各间隔部位于相邻两个通道之间。在换热器工作时,制冷剂在多个微通道扁管的通道内流动进行换热。通道的结构和尺寸影响制冷剂的状态变化,进而影响换热器的换热性能。
微通道扁管各通道的尺寸较小,靠人工检测无法保证精度,且大规模检测效率较低。
发明内容
本公开实施例提供了一种换热器加工方法,在换热器加工过程中可对换热器的微通道扁管进行识别,提高了换热器的加工效率。
本公开一方面实施例提供了一种换热器加工方法,所述换热器包括多个微通道扁管,所述换热器加工方法包括:
提供多个微通道扁管,所述微通道扁管包括在其长度方向上延伸的多个通道,将多个所述微通道扁管沿第一方向间隔设置;
采样组件从初始位置出发,沿所述第一方向移动,依次采集一个或者多个所述微通道扁管的特定信息,并将所述特定信息传递给所述控制组件;
所述控制组件将所述特定信息与预存信息进行对比,并根据对比结果发出反馈信息;
指示组件根据所述反馈信息,发出指示信息;
根据所述指示信息调整对应的所述微通道扁管的位置。
在一些实施例中,所述采样组件从初始位置出发,沿所述第一方向移动,依次采集一个或者多个所述微通道扁管的特定信息,具体为:
所述采样组件移动,采集所述微通道扁管长度方向上的一个端面的端面信息;
所述指示组件根据所述反馈信息,发出指示信息,具体为:
根据所述反馈信息,如果采集的某一所述微通道扁管的端面信息与所述预存信息不一致,则所述指示组件发出所述指示信息。
在一些实施例中,所述指示组件根据所述反馈信息,发出指示信息;根据所述指示信息调整对应的所述微通道扁管的位置,具体为:
根据所述反馈信息,所述采样组件停止在特定位置处,并通过所述指示组件发出所述指示信息;
根据所述指示信息调整对应的所述微通道扁管的位置;
所述采样组件继续移动,直到完成所有所述微通道扁管的信息采集。
在一些实施例中,所述换热器加工方法还包括,所述采样组件再次采集一个或者多个所述微通道扁管的所述特定信息。
在一些实施例中,所述采集一个或者多个所述微通道扁管的特定信息,具体为:
所述采样组件采集所述微通道扁管长度方向上的一个端面的信息,所述端面的信息包括指定的一个或多个所述通道的宽度信息;在本公开实施例中,多个是指包括两个或两个以上。
所述控制组件将所述特定信息与预存信息进行对比,并根据对比结果发出反馈信息,具体为:
所述控制组件将所述宽度信息与预存的预存信息进行对比,并根据对比结果,发出反馈信息。
在一些实施例中,所述采样组件采集所述微通道扁管长度方向上的一个端面的信息,具体为:
所述采样组件采集所述微通道扁管宽度方向上的第一个通道和/或最后一个通道的宽度信息。
在一些实施例中,所述采集一个或者多个所述微通道扁管的特定信息,具体为:
所述采样组件采集所述微通道扁管端面上的信息,所述端面上的信息包括指定的多个所述通道的宽度信息及排列顺序;
所述控制组件将所述特定信息与预存信息进行对比,并根据对比结果发出反馈信息,具体为:
所述控制组件将所述宽度信息及排列顺序与预存信息进行对比,并根据对比结果,发出反馈信息。
在一些实施例中,在所述微通道扁管的宽度方向上相邻的两个所述通道之间具有间隔部,所述采集一个或者多个所述微通道扁管的特定信息,具体包括下列方式中的一种或者多种组合:
采集所述微通道扁管指定的一个或多个所述通道的截面积信息;
采集所述微通道扁管指定的多个所述通道的截面积信息和排列顺序;
采集所述微通道扁管指定的一个所述间隔部的信息,所述间隔部位于指定的两个所述通道之间;
采集所述微通道扁管指定的多个所述间隔部的信息和排列顺序;
采集所述微通道扁管指定的一个或多个所述通道的高度信息。
在一些实施例中,所述采样组件从初始位置出发,沿所述第一方向移动,依次采集一个或者多个所述微通道扁管的特定信息,并将所述特定信息传递给所述控制组件,具体为:
所述采样组件沿所述第一方向移动,完成所有所述微通道扁管的所述特定信息的采集后,将所述特定信息传递给所述控制组件。
在一些实施例中,所述采样组件与所述指示组件同步移动。
在一些实施例中,根据所述指示信息调整对应的所述微通道扁管的位置,具体为:
根据所述指示信息,沿第二方向移动所述微通道扁管,所述第二方向与所述第一方向垂直或者成角度。
本公开实施例还提供了一种用于换热器的加工装置,所述加工装置包括第一组件、采集组件、控制组件和指示组件,所述第一组件包括滑杆,所述采集组件和所述指示组件能够沿所述滑杆往复移动,所述第一组件还包括梳齿件,所述梳齿件的长度方向与第一方向平行,所述梳齿件包括多个梳齿,所述梳齿沿第一方向间隔设置,所述控制组件与所述采集组件、所述指示组件分别连接。
本公开实施例提出的换热器加工方法通过采样组件沿微通道扁管的排布方向采集各微通道扁管的特定信息,并将该特定信息传递给控制组件,再通过控制组件将该特定信息与预存的信息进行对比,并根据对比结果发出反馈信息,使指示组件根据反馈信息发出指示信息,该指示信息包括装错/装反的微通道扁管信息,进而引导人工去纠正装错或装反的微通道扁管,保证了微通道扁管安装的正确性,进而保证了换热器的换热性能,同时取消了人工检查的时间成本,提高了生产效率。
附图说明
图1为本公开实施例提供的微通道换热器的立体图。
图2a~图2c为图1中微通道扁管的截面图。
图3为本公开实施例提供的换热器加工方法的流程图。
图4为图3中步骤S12~S15的进一步具体流程图。
图5为本公开另一实施提供的换热器加工方法的流程图。
图6为本公开实施例提供的用于换热器的加工装置的结构示意图。
附图标识:
1、支撑架;2、安装组件;21、滑杆;22、梳齿件;3、采样组件;100、微通道换热器;101、第一集流管;102、第二集流管;103、微通道扁管;103a、通道;104、翅片;105、进液管;106、出液管。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在本公开的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个或两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
本说明书的描述中,需要理解的是,本公开实施例所描述的“上”、“下”等方位词是以附图所示的角度来进行描述的,不应理解为对本公开实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
图1为本公开实施例提供的微通道换热器的立体图。参照图1,该微通道换热器100包括第一集流管101、第二集流管102、微通道扁管103、翅片104、进液管105和出液管106。微通道扁管103设置有多个,多个微通道扁管103沿第一集流管101、第二集流管102的长度延伸方向间隔排布,且多个微通道扁管103的两端分别与第一集流管101、第二集流管102连接。进液管105连接于第一集流管101,出液管106连接于第二集流管102,翅片104设置于相邻的两个微通道扁管103之间。
图2a至图2c为图1中微通道扁管的截面图。参照图2a至图2c,各微通道扁管103分别设有多个通道103a,各通道103a的长度沿微通道扁管103的长度延伸方向延伸,并贯通于微通道扁管103的两端面,且各通道103a沿微通道扁管103的宽度延伸方向(图中X方向)间隔排布,相邻两个通道103a间具有间隔部b。
换热器工作时,制冷剂在各个通道内流动,状态发生变化的同时进行换热,各通道103a的结构和尺寸对通道内制冷剂的变化会有影响。另一方面工作中的制冷剂可能是高温高压的状态,具有一定的压力,微通道扁管103需要具有一定的强度,确保制冷剂不泄露。
在一些实施例中,扁管的横截面为扁平状,高度方向(图中Y方向)上的两个侧面平行,通道的流通截面的形状为大体矩形,也可以是圆形或三角形等其他形状。一个扁管的各个通道流通截面的形状也可以不同,例如一部分为通道的流通截面为三角 形,一部分为矩形。在另外一些实施例中,扁管横截面为类扇形,高度方向上的两个侧面不平行,所包括的各个通道的尺寸也各不相同。
在上述的实施例中,间隔部的宽度可以是相同的,也可以是不同的。依照换热器使用的制冷剂要求和换热性能的要求,进行扁管通道和间隔物的结构和尺寸设计。
图3为本公开实施例提供的换热器加工方法的流程图。参照图3,该换热器加工方法包括:S13-S15。
S11、提供多个微通道扁管,并将多个微通道扁管沿第一方向间隔设置。
其中,微通道扁管包括沿其长度方向延伸的多个通道,各通道的两端分别贯通于微通道扁管的两端面,且各通道沿微通道扁管的宽度延伸方向排布,在微通道扁管宽度方向上相邻的两个通道之间具有间隔部。
S12、采样组件从初始位置出发,沿第一方向移动,依次采集各微通道扁管的特定信息,并将该特定信息传递给控制组件。
在一些实施例中,采样组件从初始位置沿着滑杆开始移动,初始位置可以是滑杆上对应微通道扁管排列方向上的第一个微通道扁管的位置或者是最后一个微通道扁管的对应位置,也可以是滑杆上对应特别指定的微通道扁管的位置,在此不做限定,沿微通道扁管的排列方向移动,微通道扁管的排列方向为第一方向,依次采集一个或者多个微通道扁管长度方向上的一个端面或者外周表面的特定信息(例如微通道扁管端面或外周表面的影像信息),并将该特定信息传递给控制组件。其中,微通道扁管端面上的特定信息包括指定的一个或多个通道的宽度信息、指定的多个通道的宽度信息及排列顺序,指定的通道包括微通道扁管宽度方向上的第一通道或最后一个通道,或者微通道扁管宽度方向上的第一通道及最后一个通道。
在一些实施例中,采集各微通道扁管的特定信息包括下列方式中的一种或者多种的组合:
采集微通道扁管指定的一个或多个通道的截面积信息,其中,截面积信息是指通道的截面积大小和形状。
采集微通道扁管指定的多个通道的截面积信息和排列顺序,其中,截面积信息和排列顺序是指截面积大小和截面积大小的排列顺序。
采集微通道扁管指定的一个间隔部的信息,间隔部位于指定的两个通道之间,其中,间隔部信息是指间隔部的宽度。间隔部的宽度方向与微通道扁管的宽度方向、通道的宽度方向平行。
采集微通道扁管指定的多个间隔部的信息和排列顺序,其中,间隔部的信息和排列顺序是指间隔部的宽度及间隔部宽度数值大小的排列顺序。
采集微通道扁管指定的一个通道的高度信息,其中,高度信息是指高度的数值大小(通道在图中Y方向上的高度)。本公开实施例中的信息是指包含了参数和参数以外的所有信息。
S13、控制组件将特定信息与预存信息进行对比,并根据对比结果发出反馈信息。
具体地,控制组件将特定信息与预存信息进行对比,如果特定信息与预存信息不同,例如检测到的某一指定通道的截面面积与预存的指定通道的截面面积不同,则将该对比结果反馈给指示组件。其中,预存信息包括指定的一个或多个通道的宽度信息、截面积信息、高度信息或间隔部信息,或者指定的多个通道的宽度信息及排列顺序、截面积信息及排列顺序、间隔部信息及排列顺序。
S14、指示组件根据控制组件发出的反馈信息,给出指示信息。
S15、根据指示信息调整对应微通道扁管的位置。
具体地,根据反馈信息,如果采集的某一微通道扁管的特定信息与预存信息不一致,则采样组件停止在特定位置,特定位置如装错或装反的微通道扁管所在的位置,并通过指示组件发出指示信息,该指示信息为指示装错或装反微通道扁管,进一步的,该提示信息可以是通过光源或者警鸣声给出提示,以调整对应的微通道扁管的位置,在调整好对应的微通道扁管的位置之后,采样组件继续移动,再次采集一个或多个微通道扁管的特定信息,直到完成所有微通道扁管的信息采集及装错微通道扁管的调整。
举例说明,如果采样组件采集到微通道扁管宽度方向上的第一通道的宽度为L,则控制组件将该第一通道的宽度L与预存的对应微通道扁管的第一通道的宽度L'进行对比,若L=L',表示对应的微通道扁管安装正确,若L≠L',表示对应的微通道扁管安装错误。或者,如果采样到微通道扁管宽度方向上的第一通道至第三通道的宽度分别为L1、L2和L3,则控制组件将该第一通道至第三通道的宽度与预存的对应微通道扁管的第一通道至第三通道的宽度L1'、L2'和L3'进行对比,若L1=L1'、L2=L2'、L3=L3',则表示对应的微通道扁管安装正确,否则为安装错误。
进一步地,根据指示信息调整对应的微通道扁管的位置包括,根据指示信息,沿第二方向移动微通道扁管,该第二方向与第一方向垂直或者成角度。
在本公开实施例中,指示组件与采样组件同步移动,可以理解,在其他实施例中,指示组件也可以与采样组件分别设置,且指示组件无需与采样组件同步移动。
图4为图3中步骤S12~S15的进一步具体流程图,参照图4,上述步骤S12~S15进一步包括:S101-S108。
S101、采样组件启动,沿第一方向移动。
S102、采集各微通道扁管的特定信息,并将该特定信息传递给控制组件。
S103、控制组件将特定信息与预存信息进行对比,以判断该特定信息与预存信息是否一致?若判断结果为是,进行步骤S104,若判断结果为否,进行步骤S106。
S104、采样组件继续移动。
其中,采样组件继续移动,并重复步骤S102。
S105、采样组件行程结束。
S106、采样组件停止移动。
S107、指示组件发出指示信息。
S108、调整装错或装反的微通道扁管。
其中,在调整了装错或装反的微通道扁管之后,继续重复步骤S101。
基于上述实施例的基础上,本公开实施例还提出了另一种换热器加工方法,本实施例与上述实施例的区别在于,在本实施例中,采样组件要采集完所有需要采集的微通道扁管的特定信息后,再将该特定信息传递给控制组件,由控制组件将采集到的所有微通道扁管的特定信息与预存信息进行对比,并根据对比结果给出反馈信息,使指示组件根据控制组件给出的反馈信息发出指示信息,进而根据指示信息调整所有装错或装反的微通道扁管。
在本实施例中,该换热器的加工方法包括步骤:S201-S205。
S201、采样组件启动,沿第一方向移动。
S202、依次采集完各微通道扁管的特定信息,并将采集到的所有微通道扁管的特定信息传递给控制组件。
S203、控制组件将特定信息与预存信息进行对比,并给出反馈信息。
S204、根据反馈信息,指示组件发出指示信息。
S205、根据指示信息,调整装错或装反的微通道扁管。
基于上述实施例的基础上,本公开实施例还提供了一种用于换热器的加工装置,该加工装置用于实现上述实施例的换热器加工方法。图4为本公开实施例提供的加工装置的结构示意图,参照图4,该加工装置包括支撑架1、安装组件2、采样组件3、控制组件(图中未示出)和指示组件(图中未示出),安装组件2设于支撑架1的上部,以通过支撑架1支撑安装组件2,该安装组件2用于固定微通道扁管103,采样组件3用于采样各微通道扁管103的表面特定信息,控制组件与采样组件3、指示组件分别连接,用于将采样组件3采集到的各微通道扁管103的特定信息与预设信息进行对比,并根据对比结果给出反馈信息,使指示组件根据控制组件给出的反馈信息发出指示信息。
具体地,采样组件3能够沿微通道扁管103的排布方向往复移动,以采集微通道扁管103的周向表面或端面的特定信息,并将该特定信息传递给控制组件,控制组件在接收到采样组件3传递来的特定信息后,将该特定信息与预设信息进行对比,并根据对比结果发出反馈信息至指示组件,使指示组件根据控制组件传递来的反馈信息发出指示信息,例如指出装错或装反的微通道扁管。
进一步地,安装组件2包括滑杆21和梳齿件22,梳齿件22的长度延伸方向与第一方向(微通道扁管的排布方向)平行,且梳齿件22包括多个梳齿,多个梳齿沿第一方向间隔设置,用于固定微通道扁管103。滑杆21的长度延伸方向平于第一方向,采样组件3能够沿滑杆21往复移动。
以上所述,仅为本公开较佳的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应该以权利要求的保护范围为准。

Claims (13)

  1. 一种换热器加工方法,所述换热器包括多个微通道扁管,其中所述换热器加工方法包括:
    提供多个微通道扁管,所述微通道扁管包括在其长度方向上延伸的多个通道,将多个所述微通道扁管沿第一方向间隔设置;
    采样组件从初始位置出发,沿所述第一方向移动,依次采集一个或者多个所述微通道扁管的特定信息,并将所述特定信息传递给所述控制组件;
    所述控制组件将所述特定信息与预存信息进行对比,并根据对比结果发出反馈信息;
    指示组件根据所述反馈信息,发出指示信息;和
    根据所述指示信息调整对应的所述微通道扁管的位置。
  2. 根据权利要求1所述的换热器加工方法,其中,所述采样组件从初始位置出发,沿所述第一方向移动,依次采集一个或者多个所述微通道扁管的特定信息,具体为:
    所述采样组件移动,采集所述微通道扁管长度方向上的一个端面的端面信息;
    所述指示组件根据所述反馈信息,发出指示信息,具体为:
    根据所述反馈信息,基于采集的某一所述微通道扁管的端面信息与所述预存信息不一致,所述指示组件发出所述指示信息。
  3. 根据权利要求1或2所述的换热器加工方法,其中,所述指示组件根据所述反馈信息,发出指示信息;根据所述指示信息调整对应的所述微通道扁管的位置,具体为:
    根据所述反馈信息,所述采样组件停止在特定位置处,并通过所述指示组件发出所述指示信息;
    根据所述指示信息调整对应的所述微通道扁管的位置;
    所述采样组件继续移动,直到完成所有所述微通道扁管的信息采集。
  4. 根据权利要求1至3中任一项所述的换热器加工方法,其中,所述换热器加工方法还包括,所述采样组件再次采集一个或者多个所述微通道扁管的所述特定信息。
  5. 根据权利要求1至4中任一项所述的换热器加工方法,其中,所述采集一个或者多个所述微通道扁管的特定信息,具体为:
    所述采样组件采集所述微通道扁管长度方向上的一个端面的信息,所述端面的信息包括指定的一个或多个所述通道的宽度信息;
    所述控制组件将所述特定信息与预存信息进行对比,并根据对比结果发出反馈信息,具体为:
    所述控制组件将所述宽度信息与预存的预存信息进行对比,并根据对比结果,发出反馈信息。
  6. 根据权利要求5所述的换热器加工方法,其中,所述采样组件采集所述微通道扁管长度方向上的一个端面的信息,具体为:
    所述采样组件采集所述微通道扁管宽度方向上的第一个通道和/或最后一个通道的宽度信息。
  7. 根据权利要求1至6中任一项所述的换热器加工方法,其中,所述采集一个或者多个所述微通道扁管的特定信息,具体为:
    所述采样组件采集所述微通道扁管端面上的信息,所述端面上的信息包括指定的多个所述通道的宽度信息及排列顺序;
    所述控制组件将所述特定信息与预存信息进行对比,并根据对比结果发出反馈信息,具体为:
    所述控制组件将所述宽度信息及排列顺序与预存信息进行对比,并根据对比结果,发出反馈信息。
  8. 根据权利要求1至7中任一项所述的换热器加工方法,其中,在所述微通道扁管的宽度方向上相邻的两个所述通道之间具有间隔部,所述采集一个或者多个所述微通道扁管的特定信息,具体包括下列方式中的一种或者多种组合:
    采集所述微通道扁管指定的一个或多个所述通道的截面积信息;
    采集所述微通道扁管指定的多个所述通道的截面积信息和排列顺序;
    采集所述微通道扁管指定的一个所述间隔部的信息,所述间隔部位于指定的两个所述通道之间;
    采集所述微通道扁管指定的多个所述间隔部的信息和排列顺序;
    采集所述微通道扁管指定的一个或多个所述通道的高度信息。
  9. 根据权利要求1或2所述的换热器加工方法,其中,所述采样组件从初始位置出发,沿所述第一方向移动,依次采集一个或者多个所述微通道扁管的特定信息,并将所述特定信息传递给所述控制组件,具体为:
    所述采样组件沿所述第一方向移动,完成所有所述微通道扁管的所述特定信息的采集后,将所述特定信息传递给所述控制组件。
  10. 根据权利要求1至9中任一项所述的换热器加工方法,其中,所述采样组件与所述指示组件同步移动。
  11. 根据权利要求1至10中任一项所述的换热器加工方法,其中,根据所述指示信息调整对应的所述微通道扁管的位置,具体为:
    根据所述指示信息,沿第二方向移动所述微通道扁管,所述第二方向与所述第一方向垂直或者成角度。
  12. 一种换热器加工方法,所述换热器包括多个微通道扁管,其中所述换热器加工方法包括:
    提供多个微通道扁管,所述微通道扁管包括在其长度方向上延伸的多个通道,将多个所述微通道扁管沿第一方向间隔设置;
    所述多个微通道扁管从初始位置出发,沿所述第一方向移动,采样组件依次采集一个或者多个所述微通道扁管的特定信息,并将所述特定信息传递给所述控制组件;
    所述控制组件将所述特定信息与预存信息进行对比,并根据对比结果发出反馈信息;
    指示组件根据所述反馈信息,发出指示信息;和
    根据所述指示信息调整对应的所述微通道扁管的位置。
  13. 一种用于换热器的加工装置,其中所述加工装置包括第一组件、采集组件、控制组件和指示组件,所述第一组件包括滑杆,所述采集组件和所述指示组件能够沿所述滑杆往复移动,所述第一组件还包括梳齿件,所述梳齿件的长度方向与第一方向平行,所述梳齿件包括多个梳齿,所述梳齿沿第一方向间隔设置,所述控制组件与所述采集组件、所述指示组件分别连接。
PCT/CN2022/137624 2021-12-09 2022-12-08 换热器加工方法及用于换热器的加工装置 WO2023104162A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111498239.2A CN116255839A (zh) 2021-12-09 2021-12-09 换热器加工方法及用于换热器的加工装置
CN202111498239.2 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023104162A1 true WO2023104162A1 (zh) 2023-06-15

Family

ID=86684800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137624 WO2023104162A1 (zh) 2021-12-09 2022-12-08 换热器加工方法及用于换热器的加工装置

Country Status (2)

Country Link
CN (1) CN116255839A (zh)
WO (1) WO2023104162A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337821A (ja) * 1999-05-25 2000-12-08 Kobe Steel Ltd パネル面外変位測定装置
JP2006208372A (ja) * 2004-12-28 2006-08-10 Showa Denko Kk コルゲートフィンの検査装置
US20100027872A1 (en) * 2008-08-01 2010-02-04 Denso Corporation Method and system for inspection of tube width of heat exchanger
CN103128519A (zh) * 2013-03-14 2013-06-05 上海交通大学 微通道换热器制造方法和装置
CN104864762A (zh) * 2014-02-24 2015-08-26 珠海格力电器股份有限公司 微通道换热器的固定工装
CN111007101A (zh) * 2019-12-05 2020-04-14 广州大学 一种倾角可持续改变的平板热管测试装置及方法
CN111922218A (zh) * 2020-07-31 2020-11-13 珠海格力电器股份有限公司 一种扁管与翅片卡装压合装置及制造方法和微通道换热器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337821A (ja) * 1999-05-25 2000-12-08 Kobe Steel Ltd パネル面外変位測定装置
JP2006208372A (ja) * 2004-12-28 2006-08-10 Showa Denko Kk コルゲートフィンの検査装置
US20100027872A1 (en) * 2008-08-01 2010-02-04 Denso Corporation Method and system for inspection of tube width of heat exchanger
CN103128519A (zh) * 2013-03-14 2013-06-05 上海交通大学 微通道换热器制造方法和装置
CN104864762A (zh) * 2014-02-24 2015-08-26 珠海格力电器股份有限公司 微通道换热器的固定工装
CN111007101A (zh) * 2019-12-05 2020-04-14 广州大学 一种倾角可持续改变的平板热管测试装置及方法
CN111922218A (zh) * 2020-07-31 2020-11-13 珠海格力电器股份有限公司 一种扁管与翅片卡装压合装置及制造方法和微通道换热器

Also Published As

Publication number Publication date
CN116255839A (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2016091021A1 (zh) 换热器、换热模块、换热装置以及热源单元
US20020195240A1 (en) Condenser for air cooled chillers
JP2001241884A (ja) 自動車用熱交換モジュール
JPWO2013150818A1 (ja) 伝熱管とそれを用いた熱交換器
JP7218354B2 (ja) ヘッダプレートレス型熱交換器
WO2023104162A1 (zh) 换热器加工方法及用于换热器的加工装置
JP2022502618A (ja) マイクロチャネル熱交換器管支持ブラケット
CN112595562B (zh) 可灵活布置的质谱同温原位采样接口和质谱同温原位采样方法
WO2015014255A1 (zh) 换热器及其加工方法
US8061415B2 (en) Plate fin with hybrid hole pattern
JP2011089710A (ja) 冷媒熱交換器
US4102152A (en) Heat exchange device for air conditioners
CN103890522B (zh) 包含热交换器的设备、空调设备和将热敏元件安装到热交换器上的方法
CN208350139U (zh) 冷凝器堵塞检测装置
EP3137836B1 (en) Improved heat exchanger
CN111380394B (zh) 换热器
KR20010082041A (ko) 열 교환 튜브 위빙장치와 그 방법
US20180195815A1 (en) Heat exchanger header tank
JP2000018873A (ja) 熱交換器のヘッダパイプ
CN103557739A (zh) 感温包安装装置、热交换器及制造方法
CN218065524U (zh) 一种制冷设备热气化霜管连接结构
CN211781782U (zh) 一种空调感温包固定装置及空调
CN215177140U (zh) 一种微通道换热器的折弯结构
GB920251A (en) Improvements in and relating to plate type heat exchangers
CN203550347U (zh) 一种防掉片平行流冷凝器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903580

Country of ref document: EP

Kind code of ref document: A1