WO2023103986A1 - 套管结构、手术器械以及手术机器人 - Google Patents

套管结构、手术器械以及手术机器人 Download PDF

Info

Publication number
WO2023103986A1
WO2023103986A1 PCT/CN2022/136673 CN2022136673W WO2023103986A1 WO 2023103986 A1 WO2023103986 A1 WO 2023103986A1 CN 2022136673 W CN2022136673 W CN 2022136673W WO 2023103986 A1 WO2023103986 A1 WO 2023103986A1
Authority
WO
WIPO (PCT)
Prior art keywords
swing
tube
closing
opening
push rod
Prior art date
Application number
PCT/CN2022/136673
Other languages
English (en)
French (fr)
Inventor
吴渡江
孙培原
王建辰
Original Assignee
深圳市精锋医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111478088.4A external-priority patent/CN116269769A/zh
Priority claimed from CN202111478111.XA external-priority patent/CN116269537A/zh
Priority claimed from CN202111481146.9A external-priority patent/CN116269540A/zh
Priority claimed from CN202111481143.5A external-priority patent/CN116269539A/zh
Priority claimed from CN202111480884.1A external-priority patent/CN116269770A/zh
Priority claimed from CN202111480874.8A external-priority patent/CN116269538A/zh
Application filed by 深圳市精锋医疗科技股份有限公司 filed Critical 深圳市精锋医疗科技股份有限公司
Publication of WO2023103986A1 publication Critical patent/WO2023103986A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots

Definitions

  • the present application relates to the technical field of medical equipment, in particular to a sleeve structure, surgical instruments and surgical robots.
  • Surgical instruments are widely used in clinical operations. Surgical instruments, such as staplers and vascular occluders, are common instruments in surgical instruments, and are used to cut or close tissues.
  • Common surgical instruments generally include a forceps head and an instrument box.
  • the end of the instrument box is used to receive the user's operation, and a series of transmission components drive the action of the forceps head to complete the corresponding surgical operation, such as opening and closing, swinging, and pushing the knife. (firing), rotation, etc.
  • a series of transmission components drive the action of the forceps head to complete the corresponding surgical operation, such as opening and closing, swinging, and pushing the knife. (firing), rotation, etc.
  • One of the objectives of the embodiments of the present application is to provide a cannula structure, a surgical instrument and a surgical robot to solve the technical problems that the overall structure of the surgical instrument is complex and occupies a large space.
  • a sleeve structure which is used to connect the implement part of the instrument;
  • the sleeve structure includes a push rod, a push rod input shaft, a base tube, a swing tube and an outer tube;
  • the push rod input shaft is connected with the push rod;
  • the push rod The rod input shaft can rotate relative to the base tube and drive the push rod to move linearly, and the linear movement of the push rod pushes the implement part of the instrument to move;
  • the rotation of the base tube drives the implement part of the instrument to rotate;
  • the swing tube can move linearly relative to the base tube and drive the implement part of the instrument to swing;
  • the outer tube can move linearly relative to the base tube and push the implement part of the instrument to shrink into the outer tube to close or expose the outer tube to open; wherein, the push rod, the input shaft of the push rod, the base tube, the swing tube and the outer tube are sequentially arranged from inside to outside suit.
  • a surgical instrument in a second aspect, includes a sleeve structure, a clamp head, and a rotation drive device; the clamp head is connected to the output end of the sleeve structure; the rotation drive device is connected to the input end of the sleeve structure; wherein,
  • the autorotation driving device includes an autorotation tube, an autorotation drive shaft and an autorotation transmission assembly.
  • the autorotation tube is used to drive the tongs to rotate; the autorotation tube is fixedly connected to the substrate tube, and the autorotation drive shaft is arranged parallel to the substrate tube.
  • One end of the autorotation drive shaft is used to receive torque input , the other end is connected with the base tube through the rotation transmission assembly to drive the base tube to rotate, and the rotation of the base tube drives the rotation tube to rotate to drive the pincer head to rotate.
  • a surgical robot in a third aspect, includes a main operation console, a slave operation device, and surgical instruments; the slave operation device is controlled by the master operation console; and the surgical instrument is detachably connected to the slave operation device.
  • the beneficial effect of the sleeve structure provided by the embodiment of the present application is that: by applying the sleeve structure provided by the application, the driving forces of the instrument box end of the surgical instrument can be transmitted to the terminal instrument actuator, and then drive the instrument actuator to realize opening and closing, Oscillation, push knife (firing), rotation each movement, and push rod input shaft, swing tube and outer tube can all move independently relative to the base tube, that is to say, the sleeves at each level have independent motion.
  • the drive of each function is carried out by adopting the structure, the structure is simple, and the space occupation is small.
  • the beneficial effect of the surgical instrument provided by the embodiment of the present application is that: the surgical instrument provided by the present application adopts a rotation drive device, the base pipe is arranged in parallel with the rotation drive shaft, and the axis of the base pipe is the axis of the surgical instrument tool holder assembly
  • the axis of the rotation drive shaft and the axis of the tool bar assembly are arranged in parallel, which reduces the position accuracy requirements compared with the orthogonal layout, that is, the position of the rotation drive shaft, the base tube and the transmission end surface is reduced.
  • Accuracy requirements, and the layout of each component is more flexible to meet the different installation requirements of surgical instruments.
  • the beneficial effect of the surgical robot provided by the embodiment of the present application lies in that the surgical robot provided by the present application includes the above-mentioned cannula structure and surgical instruments, so it has the beneficial effects of the above-mentioned cannula structure and surgical instruments, which will not be repeated here.
  • Fig. 1 is a schematic cross-sectional view of a casing structure provided by an embodiment of the present application
  • Fig. 2 is a partially enlarged schematic diagram of A in Fig. 1;
  • Fig. 3 is a schematic diagram of the internal structure of the instrument box in the embodiment of the present application.
  • Fig. 4 is a partial assembly diagram of the input shaft of the push rod in the embodiment of the present application.
  • Fig. 5 is a schematic diagram of the assembly of the push rod input shaft and the push rod provided by the embodiment of the present application;
  • Fig. 6 is a schematic diagram of the assembly of the push rod input shaft and the push rod in the base pipe provided by the embodiment of the present application;
  • Fig. 7 is a schematic structural view of the surgical instrument provided by the embodiment of the present application.
  • Fig. 8 is a schematic diagram of the exploded structure of the instrument box part in the embodiment of the present application.
  • Fig. 9 is a schematic structural view of the rotation device in the embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of the opening and closing drive device in the embodiment of the present application.
  • Figure 11 is a schematic diagram of the connection of the rotation tube in the embodiment of the present application.
  • Fig. 12 is a partially enlarged schematic diagram of Fig. 11;
  • Figure 13 is a schematic diagram of the assembly structure of the connecting shaft device
  • Fig. 14 is the structural representation of parallelogram crank mechanism
  • Fig. 15 is a schematic diagram of the swing state of the clamp head
  • Figure 16 is a schematic diagram of the connection of the swing rod, the swing drive piece and the swing arm;
  • Figure 17 is a schematic diagram of the connection between the swing rod and the swing arm
  • Fig. 18 is a schematic diagram of cooperation between the oscillating drive piece and the substrate tube;
  • FIG. 19 is a schematic structural diagram of a swing drive device according to an embodiment of the present application.
  • Fig. 20 is another schematic diagram of the cooperation and installation of the swing drive shaft and the swing fork;
  • Fig. 21 is a structural schematic diagram of a state of cooperation between the swing fork and the swing drive shaft
  • Fig. 22 is a structural schematic diagram of the explosive state of the swing shift fork and the swing drive shaft;
  • Fig. 23 is a schematic structural diagram of an opening and closing drive device including a manual drive assembly according to an embodiment of the present application
  • Figure 24 is a schematic diagram of the exploded structure at the connection position between the outer tube and the clamp head
  • Figure 25 is a schematic diagram of the assembly structure of the manual drive assembly
  • Fig. 26 is a schematic structural diagram of the second opening and closing transmission assembly
  • Fig. 27 is a schematic structural view of the third opening and closing transmission assembly
  • Figure 28 is a schematic diagram of the installation structure of the second release mechanism provided by the embodiment of the present application.
  • Fig. 29 is a structural schematic diagram of the cutter head connection position
  • Fig. 30 is a schematic cross-sectional structural view of the central position of the instrument box provided by the embodiment of the present application.
  • Fig. 31 is a schematic structural diagram of the trigger mechanism provided by the embodiment of the present application.
  • Fig. 32 is a schematic structural diagram of the second release mechanism provided by the embodiment of the present application.
  • Fig. 33 is a schematic structural diagram of the main operation console provided by the embodiment of the present application.
  • Fig. 34 is a schematic structural diagram of a slave operating device provided by an embodiment of the present application.
  • 1-sleeve structure 101-push rod; 1011-limiting groove; 102-push rod input shaft; 1021-ring groove; 1022-shaft end gear; 103-base pipe; ;1033-axial limit recess; 1034-guide groove; 104-swing tube; 1041-swing limit groove; 105-outer tube; 106-sliding bearing; 107-sliding bearing; ;1091-gap; 110-sealing ring; 111-sealing ring; 112-sealing ring; 113-sealing ring; 114-guiding structure; 1141-guide rod; ;
  • 2-instrument box 20-bracket assembly; 201-bottom plate; 202-column; 2021-support platform; 203-top plate; 204-middle plate;
  • 3-Push rod drive assembly 301-Drive winch; 302-Push knife drive shaft; 303-Clamping ring; 304-Input gear; 305-First push knife drive gear; 306-Second push knife drive gear;
  • 4-swing drive device 40-swing drive assembly; 401-drive winch; 402-swing drive shaft; 403-swing fork; 4031-swing limit through hole; 4032-hole; Arc feature; 405-guide shaft; 411-swing arm; 4111-rotation shaft; 4112-swing arm pin; 412-swing rod;
  • 5-rotation drive device 501-drive winch; 5011-bearing; 502-rotation drive shaft; 5021-bearing; 503-drive wheel; 5031-forward rotation wire; 504-driven wheel; Cover; 506-bearing; 507-lock nut; 508-coupling; 5081-coupling main body; 50811 first installation hole; 5082-transfer shaft fixing block; 50821-second installation hole;
  • 6-opening and closing drive device 601-opening and closing drive winch; 602-opening and closing drive shaft; 603-opening and closing shift fork; 604-opening and closing limit parts; 605-guide shaft; 6721-the first opening and closing gear shaft; 6722-nut; 6723-the first opening and closing pinion; 6724-the second opening and closing pinion; 6725-the first opening and closing large gear; 6726-the second opening and closing large gear; 6727 -The second opening and closing gear shaft; 6728-the third opening and closing gear shaft; 6729 opening and closing wheel seat; 6731-the first large pulley; 6732-the first small pulley; 6733-the first belt; 6734-the second large pulley; 6735-the second small pulley; 6736-the second belt; 6741-the first large wire wheel; 6742-the first small wire wheel; 6743-the first wire rope; 6744-the second large wire wheel;
  • 7-pliers head 701-staple bin seat; 702-nail anvil; 704-connecting piece; 705-holster pressure ring; 706-swing swivel seat; - knife holder;
  • 9-Second release mechanism 901-Second release part; 9011-Accommodating groove; 902-First release crank; 903-Support main shaft; 9031-Limiting snap ring; The second lifts the crank; 906-the first limiter slide bar; 907-the second slide bar connecting piece; 908-the second limiter slide bar; 911-spring connecting column; 912-return spring; 913-spring seat;
  • 10-trigger mechanism 1001-trigger knob; 1002-rotary shaft, 1003-resetting part; 1004-second triggering part; 1005-first triggering part;
  • the embodiment of the present application provides a sleeve structure for connecting the implement part of the instrument.
  • the sleeve structure 1 includes a push rod 101 and a push rod input shaft 102 that are sequentially fitted from the inside to the outside.
  • the base pipe 103, the swing pipe 104 and the outer pipe 105, each layer of casing can have relative movement with respect to its adjacent layer of casing.
  • the push rod input shaft 102 can rotate relative to the base tube 103
  • the swing tube 104 can move linearly relative to the base tube 103
  • the outer tube 105 can move linearly relative to the base tube 103 .
  • Surgical instruments generally include a forceps head 7, a sleeve structure 1 and an instrument case 2, as shown in FIG. 7 .
  • the connecting part of the instrument is the clamp head 7, the sleeve structure 1 is connected between the instrument box 2 and the clamp head 7, the end of the instrument box 2 receives the input drive, and the sleeve structure 1 drives the forceps head 7 to move to meet surgical needs.
  • the instrument box 2 is provided with a bracket assembly 20 to facilitate the installation of various components. As shown in FIG.
  • the bracket assembly 20 includes a bottom plate 201 , a column 202 , a top plate 203 , a guide cover 205 , and a middle plate 204 , and the plates can be fixedly connected by screws or the like.
  • the column 202 is fixedly connected to the bottom plate 201
  • the top plate 203 is fixedly connected to the top of the column 202 .
  • a support platform 2021 is provided at a middle opposite position of the column 202
  • the middle plate 204 is fixedly connected to the support platform 2021
  • the middle plate 204 is located between the bottom plate 201 and the top plate 203 .
  • the push rod input shaft 102 is connected with the push rod 101, and the rotation of the push rod input shaft 102 drives the push rod 101 to move linearly, and the linear movement of the push rod 101 pushes the jaw blade of the pliers head 7 to move, and pushes the jaw blade of the pliers head 7 to advance and retreat Movement, i.e. pushing the jaw blade to fire or retract.
  • the push rod input shaft 102 can be connected to the push rod driving assembly 3 and driven by the push rod driving assembly 3 to rotate.
  • the rotation of the base tube 103 drives the pliers 7 to rotate, and the base tube 103 can be connected to the rotation driving device 5 to rotate under the driving of the rotation driving device 5 .
  • the swing tube 104 can move linearly relative to the substrate tube 103 and drive the clamp head 7 to swing.
  • the swing tube 104 can be connected to the swing drive device 4 and move linearly under the drive of the swing drive device 4 .
  • the outer tube 105 can move linearly relative to the base tube 103 and push the clamp head 7 to shrink into the outer tube to close or expose the outer tube to open. Move straight down.
  • the sleeve structure 1 can be specifically located in the center of the instrument box 2, and the push rod drive assembly 3, the swing drive device 4, the opening and closing drive device 6, and the rotation drive device 5 are distributed around the sleeve structure 1, and can pass through the bearings on the shaft. Installed in respective corresponding holes on the bracket assembly 20 .
  • one or more of the space between the push rod and the base tube, between the input shaft of the push rod and the base tube, between the base tube and the oscillating tube, and between the oscillating tube and the outer tube are respectively A sealing ring is provided.
  • a sealing ring is provided.
  • Figure 1 In order to make the action of each driving structure smooth, there should be a certain gap between the tubes of each layer, and the above gap will cause the gas in the abdominal cavity to escape along the gap to the outside of the body.
  • ring grooves are provided on the outer surfaces of the sleeves of each level within the outer tube 105, and annular elastomer materials are added into the ring grooves as sealing rings to completely seal the gaps between the layers.
  • a ring groove is provided on the outer surface of the part where the push rod 101 is in contact with the base pipe 103 to accommodate the sealing ring 110, thereby closing the gap between the push rod 101 and the base pipe 103, and further preventing gas from entering from the push rod 101 and the push rod Thread leakage between the shafts 102;
  • an annular groove is provided on the outer surface of the part where the push rod input shaft 102 meets the base pipe 103 to accommodate the sealing ring 111, thereby closing the gap between the push rod input shaft 102 and the base pipe 103 Open a ring groove on the outer surface of the part where the base tube 103 contacts with the swing tube 104 to accommodate the sealing ring 112, and then close the gap between the swing tube 104 and the base tube 103; at the joint between the swing tube 104 and the outer tube 105 An annular groove is formed on the outer surface of the part to accommodate the sealing ring 113 , thereby closing the gap between the swing tube 104 and the outer tube 105 .
  • each sealing ring should be slightly larger than the height of the ring groove cross-section where it is located, that is, there is a certain amount of interference.
  • the interference can cause the sealing ring to be squeezed in the direction of the entire cross-section and elastically deformed, so as to closely fit the adjacent two-layer inner wall and outer wall.
  • an excessive interference will cause the sealing ring to be excessively squeezed and produce unexpected friction on the inner and outer walls. Therefore, in the present invention, considering the manufacturing error, the recommended interference range of the sealing ring is preferably in the range of 0.05-0.15mm.
  • the sealing rings arranged between the push rod and the base tube, between the push rod input shaft and the base tube, between the base tube and the swing tube, and between the swing tube and the outer tube are respectively staggered in the axial direction, so that the overall The sealing effect is better.
  • one or more of the push rod and the push rod input shaft, between the push rod input shaft and the base pipe, and between the push rod and the base pipe are respectively provided with sliding bearings.
  • One or more of the outer surface of the adjacent section of the push rod and the input shaft of the push rod, the outer surface of the adjacent section of the input shaft of the push rod and the base pipe, and the outer surface of the adjacent section of the push rod and the base pipe are provided with annular grooves .
  • the sliding bearing is a self-lubricating material bearing installed in the ring groove.
  • the input shaft of the push rod has relative rotational motion relative to the base tube
  • the push rod has rotational motion and linear motion relative to the input shaft of the push rod
  • the push rod has linear motion relative to the base tube
  • the above relative motion has a relatively high operating speed
  • ring grooves are provided on the outer surfaces of the adjacent sections of the above-mentioned casings, and ring-shaped self-lubricating materials are installed in the ring grooves as sliding bearings.
  • the self-lubricating materials have high smoothness and are more Low coefficient of friction inner/outer surfaces to further improve the friction generated between the various sport layers.
  • annular groove is provided on the outer surface of the part where the push rod 101 is in contact with the push rod input shaft 102 to accommodate the sliding bearing 106, thereby reducing the friction when the push rod 101 slides relative to the push rod input shaft 102 frictional force;
  • the outer surface of the part where the push rod input shaft 102 is in contact with the base pipe 103 is provided with an annular groove to accommodate the sliding bearings 108 and 109, thereby reducing the frictional force when the push rod input shaft 102 slides relative to the base pipe 103;
  • An annular groove is formed on the outer surface of the part where the push rod 101 meets the base tube 103 to accommodate the sliding bearing 107 , thereby reducing the frictional force when the push rod 101 slides relative to the base tube 103 .
  • the self-lubricating material bearing is in the form of an open ring, that is, has a gap 1091 penetrating in the axial direction.
  • the self-lubricating material bearing can be a thin-walled annular part, and through the setting of the through-gap 1091, the self-lubricating material bearing becomes a semi-open ring. Then during installation, the gap 1091 allows the self-lubricating material bearing to produce a small elastic deformation and expand, so that the inner diameter of the ring becomes larger so that it can be inserted from one end of the push rod input shaft 102 until it is inserted into the ring groove 1021.
  • the sliding bearing 106 and the sliding bearing 107 on the push rod 101 also use the same structure and assembly method to complete the connection.
  • the push rod input shaft 102 is rotatably disposed on the bracket assembly 20, and the bracket assembly 20 is a supporting structure.
  • the push rod input shaft 102 is provided with a power input end and a power output end with a distance of a; a>0, the power output end of the push rod input shaft 102 is screwed with the power input end of the push rod 101, and the power output of the push rod 101 The end is used to connect with the implement part of the instrument, and the implement part of the instrument is the clamp head.
  • the power input end of the push rod input shaft 102 provides rotational driving force
  • the power output end of the push rod input shaft 102 is threadedly connected with the power input end of the push rod 101, thereby converting the input rotational driving force of the push rod input shaft 102 into a push rod.
  • the linear motion of the rod 101 and the linear motion of the push rod 101 drive the linear motion of the implement part of the instrument to realize the linear drive of the implement part of the instrument.
  • the push rod input shaft 102 is provided with a power input end and a power output end with a distance a, and a>0, as shown in Figure 5, so that the linear motion distance of the push rod 101 can be compensated by the distance a, and the push rod 101 can be controlled
  • the power input end exceeds the length of the power input end of the push rod input shaft 102 during the movement process, thereby reducing the requirement for the axial space on the side of the power input end of the push rod input shaft 102, and reducing the axial direction on this side
  • the structural dimensions, the axial direction here refers to the axial direction of the push rod input shaft 102 .
  • the distance a between the power input end of the push rod input shaft 102 and the power output end is not less than the maximum stroke of the push rod 101, and like this, the power input end of the push rod 101 can not exceed the power input end of the push rod input shaft 102, so that there is no need to
  • the side of the power input end of the push rod input shaft 102 reserves an axial space for accommodating the stroke of the push rod 101 , which saves the axial space on the side of the power input end of the push rod input shaft 102 .
  • the push rod input shaft 102 is a hollow shaft, and the push rod 101 is sheathed in the push rod input shaft 102 .
  • the push rod input shaft 102 is provided with an internal thread, and the internal thread of the push rod input shaft 102 is the power output end of the push rod input shaft 102 .
  • the end of the push rod 101 close to the push rod input shaft 102 is provided with an external thread, and the external thread on the push rod 101 is the power input end of the push rod 101 .
  • the external thread on the push rod 101 and the internal thread of the push rod input shaft 102 form the screw transmission pair I.
  • the push rod 101 is used to convert the rotation of the push rod input shaft 102 into the linear motion of the implement part of the instrument.
  • the bushing structure 1 also includes a guide structure 114 , and the guide structure 114 includes a guide rod 1141 .
  • the push rod 101 is axially provided with a limiting groove 1011
  • one end of the guide rod 1141 cooperates with the limiting groove 1011 to limit the circumferential direction of the push rod 101
  • the other end is fixedly connected with the bracket assembly 20 .
  • one end of the limiting groove 1011 runs through one end of the push rod 101 , which is the end close to the power input end of the push rod input shaft 102 , and the other end extends along the length direction of the push rod 101 .
  • the length of the limit groove 1011 is greater than the linear motion stroke of the push rod 101 .
  • the maximum axial length of the guide rod 1141 extending into the limit groove 1011 is greater than the linear motion stroke of the push rod 101, thereby ensuring that the limit groove 1011 can limit the movement of the push rod 101 throughout the entire movement stroke of the push rod 101. Circumferential rotation.
  • the bracket assembly 20 is provided with an installation through hole 206 , as shown in FIG. 8 , one end of the guide rod 1141 is fixedly connected in the installation through hole 206 .
  • the limiting groove 1011 is provided on the surface of the push rod 101 .
  • the cross section of the guide rod 1141 is set corresponding to the cross section of the limiting groove 1011 .
  • the cross-section of the limiting slot 1011 is rectangular, square or triangular, or other polygonal shapes, which are not limited here.
  • the push rod drive it specifically includes several stages of push knife drive wheels and a push knife drive shaft arranged in parallel with the push rod input shaft.
  • One end of the push knife drive shaft is used to receive torque input, and the other end is connected to several
  • the first-stage push-knife drive wheel in the first-stage push-knife drive wheel is fixedly connected coaxially, and the last-stage push-knife drive wheel is coaxially fixedly connected with the push rod input shaft.
  • the push rod drive assembly 3 includes a drive winch 301 , a push knife drive shaft 302 , an input gear 304 , and a clamping ring 303 . That is, take the pusher drive wheel as an example, the power input end of the push rod input shaft 102 is the shaft end gear 1022, the shaft end gear 1022 is integrated with the push rod input shaft 102, and the shaft end gear 1022 meshes with the input gear 304; The transmission ratio between the input gear 304 and the shaft end gear 1022 is less than 1, so that the engaged shaft end gear 1022 and the input gear 304 form a speed-up gear set transmission.
  • the outer surface of the upper end of the push rod input shaft 102 is fixed with bearings, and the bearings are located in the ring groove surrounded by the top plate 203 and the double-hole bearing pressure plate, so the axial movement of the push rod input shaft 102 relative to the bracket assembly is restricted, and can only go around The axis of the base pipe 103 rotates relative to the bracket assembly.
  • the upper end of the push rod 101 is passed therethrough and fixed on the guide cover 205 to constrain its rotational movement, so that the push rod 101 can only slide up and down along its own axis.
  • the push rod 101 is adjacent to the inner surface of the substrate tube 103 , and the push rod 101 and the push rod input shaft 102 form a pusher driving mechanism, and the push rod input shaft 102 can rotate relative to the base tube 103 .
  • the external rotational power drives the winch 301 and then drives the push knife drive shaft 302 to rotate, the push knife drive shaft 302 drives the input gear 304 fixed thereon to rotate, and the first push knife drive gear 305 meshed with it is driven by the input gear 304 Rotate with the second pusher drive gear 306 that is coaxially fixedly connected with the first pusher drive gear 305, finally transmit the rotational power to the pusher input shaft 102 and make the pusher input shaft 102 rotate, the pusher 101 and the pusher input
  • the helical motion pair between the shafts 102 will drive the push rod 101 to move relative to the push rod input shaft 102 and the base tube 103 along the axis of the stapler tool bar assembly, and then drive the stapler jaw blade at its end to move forward and backward
  • the embodiment of the present application also provides a surgical instrument, which may be a stapler.
  • the surgical instrument includes a sleeve structure 1, a forceps head 7 and a rotation driving device 5, and the forceps head 7 is connected to the output end of the sleeve structure 1;
  • the rotation driving device 5 is connected to the input end of the sleeve structure 1 ;
  • the rotation driving device 5 includes the rotation tube 115 , the base tube 103 and the rotation drive shaft 502 .
  • the rotation tube 115 is used to drive the pliers head 7 to rotate.
  • the rotation tube 115 and the pliers head 7 at the rear end can be regarded as rigidly connected. When the rotation tube 115 rotates, the pliers head 7 will rotate together.
  • the base pipe 103 is fixedly connected with the rotation pipe 115, and the base pipe 103 can only rotate relative to its own axis, but does not move linearly along the axis.
  • the rotation drive shaft 502 is arranged parallel to the base tube 103, one end of the rotation drive shaft 502 is used to receive torque input, and the other end is connected to the base tube 103 through the rotation transmission assembly to drive the base tube 103 to rotate, and the rotation of the base tube 103 drives the connection with it
  • the rotation tube 115 rotates, so that the selection of the rotation tube 115 drives the pliers head 7 to rotate.
  • the surgical instrument provided by the embodiment of the present application adopts a rotation drive device, and the base tube 103 is arranged in parallel with the rotation drive shaft 502.
  • the axis of the base tube 103 is the axis of the surgical tool holder assembly.
  • the rotation The axis of the drive shaft 502 is arranged parallel to the axis of the cutter bar assembly, which reduces the position accuracy requirements compared with the orthogonal layout, that is, the position accuracy requirements for the self-rotating drive shaft, base pipe and transmission end surface are reduced, and the components
  • the layout is more flexible to meet the different installation needs of surgical instruments.
  • the rotation transmission assembly includes a driving wheel 503 and a driven wheel 504 driven by the driving wheel 503.
  • the driving wheel 503 is fixedly connected to the rotation drive shaft 502.
  • the driven wheel 504 is sleeved on the outer wall of one end of the base pipe 103 through a clamping ring 505 to make the base pipe 103 rotates with the driven wheel 504, and the axial movement of the driven wheel 504 is limited so that the substrate tube 103 remains stationary in the axial direction.
  • the driving wheel 503 is fixedly connected to the autorotation drive shaft 502 , and specifically can be coaxially fixed on the autorotation drive shaft 502 in a clamping manner.
  • the driven wheel 504 is sleeved on the outer wall of one end of the base pipe 103, the axial movement of the driven wheel 504 is limited, and then it can only rotate but cannot move axially, so the base pipe 103 fixedly connected with it can only rotate and move accordingly. It cannot move axially, that is, the axial movement of the base tube 103 relative to the instrument case 2 is restricted, thereby ensuring the reliability that the base tube 103 rotates to drive the forceps head 7 to rotate.
  • the driving wheel 503 and the driven wheel 504 may be connected by a belt or a wire rope, or the driving wheel 503 and the driven wheel 504 are respectively meshing gears.
  • the driving wheel 503 and the driven wheel 504 are at the same installation height, and the outer surfaces of the two parts have the characteristics of rope grooves. in the grooves on its surface. Then when the driving wheel 503 is driven to rotate by external power, the steel wire wound on it will pull the driven wheel 504 to rotate.
  • different wheel diameters on the driving wheel 503 and the driven wheel 504 different mechanical speed ratios can be flexibly matched to match the requirements of the input and output ends, thereby improving the versatility of the driving power source.
  • the installation of the driven wheel 504 can specifically be connected to the instrument box 2 through the bearing 506, and the instrument box 2 limits the axial movement of the bearing 506, and the detachable connection with the driven wheel 504 is provided with a shaft end fastener, and the driven wheel 504 has a The radially extending step surface, the two axial ends of the bearing 506 respectively abut against the step surface and the shaft end fastener.
  • the friction between the driven wheel 504 and the instrument case 2 is reduced when the driven wheel 504 rotates; Small footprint.
  • the shaft end fastener can be a locking nut 507 , and the outer wall of the driven wheel 504 is provided with threads, and the locking nut 507 is socketed and locked outside one end of the driven wheel 504 .
  • the bearing 506 is located at the lower end of the driven wheel 504, and the outer surface of the lower tail end of the driven wheel 504 is provided with external threads, which are threadedly connected with the threads on the inner surface of the lock nut 507, thereby constraining the axial movement of the bearing 506 relative to the driven wheel 504.
  • the bearing 506 is accommodated in an annular groove provided on the instrument case 2, so the axial movement of the bearing 506 relative to the instrument case 2 is also restricted.
  • the driven wheel 504 is installed on the upper end of the base tube 103 and fixed with the base tube 103 , which can further effectively constrain the axial movement of the base tube 103 relative to the instrument case 2 .
  • the rotation drive device also includes a radial limiting component, please refer to Figure 11 and Figure 12, the outer peripheral surface of the base pipe 103 is provided with a mounting groove 1031, and the mounting groove 1031 extends to the base pipe 103 close to the rotation pipe 115, the radial limiting part closes the notch of the installation groove 1031 to radially limit, the end of the rotation tube 115 is axially limited in the installation groove 1031, and the outer peripheral surface of the rotation tube 115 has at least one limit
  • the plane 1151, the inner wall of the installation groove 1031 has an abutment surface 1032 that cooperates with the limiting plane 1151 to limit the rotation tube in the circumferential direction.
  • the radial limiting part is used as the outer tube 105 of the stapler, and the outer tube 105 is sheathed outside the base tube 103 and the rotation tube 115 and covers the notch of the installation groove 1031 . That is, the outer tube 105 of the surgical instrument is used as the radial limiting component, and the outer tube 105 is sleeved outside the base tube 103 . Specifically, the outer tube 105 can slide linearly relative to the base tube 103 and drive the forceps 7 to open and close. Through the cooperation between the limiting plane 1151 and the contact surface 1032, the relative rotation between the base tube 103 and the autorotation tube 115 is limited, that is, the rotation of the base tube 103 drives the rotation tube 115 to rotate.
  • the notch of the installation groove 1031 is covered by the outer tube 105 to limit the radial direction of the rotation tube 115 and the base tube 103 to prevent them from being deviated due to slippage in the radial direction.
  • the outer tube 105 can also be replaced with a limiting tube or a limiting plate for radial limiting alone.
  • one of the inner wall surface of the installation groove 1031 and the outer peripheral surface of the rotation pipe 115 has a boss 1152 extending in the radial direction, and the other has a boss 1152 that is consistent with the boss.
  • the platform 1152 cooperates with the axially limiting recess 1033 for axially limiting the rotation tube 115 .
  • an axial limit recess 1033 is provided on the inner wall surface of the installation groove 1031, and a boss 1152 is provided on the rotation tube 115 as an example, and the positions of the two can also be exchanged as required.
  • the limiting plane 1151 is arranged on the outer peripheral surface of the boss 1152, and the abutting surface 1032 is correspondingly arranged on the inner wall of the axial limiting recess 1033, the structure is simpler and more compact, and the assembly is convenient.
  • the rotation tube 115 includes two limiting planes 1151 and two abutting surfaces 1032, the two limiting planes 1151 are arranged in parallel at opposite ends of the boss 1152; the two abutting surfaces 1032 are arranged in parallel at the axial limiting recess 1033 opposite ends. That is, the rotation of the base pipe 103 and the rotation pipe 115 are limited from the two opposite ends, and the effect of the limit is more reliable.
  • a drive winch 501 is provided connected to the rotation drive shaft 502, and the drive winch 501 is used to connect with the robotic arm of the robot, so as to input the rotational motion of an external motor and the like to the instrument box 2 internal.
  • One end of the rotation drive shaft 502 is connected to the drive winch 501 , and after the mechanical arm of the surgical robot is connected to the drive winch 501 , it drives the drive winch 501 to rotate, and then drives the rotation drive shaft 502 to rotate.
  • the specific structure of the driving winch 501 can be set according to the structure of the connecting end of the mechanical arm of the surgical robot, which is not specifically limited here.
  • the driving winch 501 is fixedly connected with the rotation drive shaft 502 through a shaft coupling 508, and the coupling 508 includes a split shaft coupling main body 5081 and an adapter shaft fixing block 5082, and the adapter shaft fixing block 5082 is connected to the coupling shaft.
  • the shaft device main body 5081 is detachably fixedly connected and fixes one of the driving winch 501 and the rotation driving shaft 502 , and the other of the driving winch 501 and the rotation driving shaft 502 is fixedly connected to the shaft coupling main body 5081 .
  • the coupling main body 5081 is fixedly connected with the driving winch 501.
  • the coupling main body 5081 has a connecting shaft
  • the driving winch 501 has a connecting hole.
  • the connecting shaft is inserted into the connecting hole and fixed. Specifically, it can be bonded by an adhesive or used Interference fit and other methods to fix the connection.
  • a first installation hole 50811 is opened on the end surface of the coupling body 5081 facing the rotation drive shaft 502, and a second installation hole 50821 matching the aforementioned first installation hole 50811 is opened on the adapter shaft fixing block 5082.
  • the first installation hole 50811 Together with the second installation hole 50821 , an accommodating space for the rotation drive shaft 502 is formed.
  • the adapter shaft fixing block 5082 and the shaft coupling main body 5081 can be connected by set screws.
  • the self-rotation drive shaft 502 and the drive winch 501 adopt the above-mentioned disconnection design, which can facilitate the zero adjustment of the subsequent transmission system, that is, by disassembling the adapter shaft fixing block 5082 and the coupling main body 5081, the self-rotation drive shaft can be adjusted separately. 502 or drive the capstan 501 to rotate, and when it is adjusted to a proper position, the adapter shaft fixing block 5082 and the shaft coupling main body 5081 can be fixedly connected.
  • the fixed connection between the driving winch 501 and the coupling main body 5081 has been described as an example, and the self-rotating drive shaft 502 can also be fixedly connected to the coupling main body 5081 as required.
  • the connection between the self-rotation drive shaft 502 and the drive winch 501 is not limited to the structure of the coupling 508 described above, and can also be connected by other fixed connection methods.
  • the bearing 506 is accommodated in the annular groove surrounded by the middle plate 204 and the gland 505, so the axial movement of the bearing 506 relative to the bracket is also restricted.
  • a bearing 5021 may be provided between the self-rotation drive shaft 502 and the top plate 203 . If the drive winch 501 is provided, the drive winch 501 may be installed on the bottom plate 201 .
  • a bearing 5011 may be provided between the bottom plate 201 and the driving winch 501 .
  • the surgical instrument further includes a swing driving device, and the swing driving device includes a forceps head 7, a swing tube 104, a swing drive assembly 40 and a swing transmission assembly.
  • the swing driving assembly 40 is connected with the swing tube 104 to drive the swing tube 104 to move linearly.
  • the swing driving assembly 40 can be installed on the instrument box 2, and the swing driving assembly 40 receives the driving force input and converts it into a linear drive, and then drives the swing tube 104 to move linearly.
  • the swing tube 104 is connected to the pliers head 7 through a swing transmission assembly, and the swing drive assembly and the pliers head 7 form a crank mechanism B to drive the pliers head 7 to swing through the linear movement of the swing tube 104 .
  • the swing transmission assembly and the pincer head 7 form a crank mechanism B, and the linear movement of the swing tube 104 drives the crank mechanism B to move, and the crank mechanism B converts the linear movement of the swing tube 104 into the rotation of the pincer head 7, that is, the swing.
  • the specific crank mechanism B can be It is a parallelogram crank mechanism, etc.
  • the swing tube 104 is driven to move linearly through the swing drive assembly 40, and the swing tube 104 passes through the swing transmission assembly and the pincer head. 7 is connected, and the swing transmission assembly and the pliers head 7 form a crank mechanism B, then the linear movement of the swing tube 104 can be converted into the swing of the pliers head 7 .
  • the crank mechanism B has a simple structure and is easy to implement, and the linear movement of the swing tube 104 is used to drive the crank mechanism B to move, so the transmission reliability is high.
  • the swinging tube 104 can make better use of the space, for example, other components such as the cutter bar of the surgical instrument can be arranged inside it, which is beneficial to reduce the overall space occupation of the surgical instrument.
  • the swing transmission assembly includes a swing arm 411 installed in rotation and two swing pull rods 412 respectively corresponding and parallel to the two ends of the swing arm 411, one end of a swing pull rod 412 rotates with one end of the swing arm 411 connection, one end of the other swing pull rod 412 is rotationally connected with the other end of the swing arm 411, and the other ends of the two swing pull rods 412 are respectively rotated and connected with different positions of the pincer head 7, and the swing arm 411, the two swing pull rods 412 and the pincer head 7 constitute Parallelogram crank mechanism, the swing tube 104 is connected with the swing arm 411 or any swing pull rod 412 to push the swing arm 411 to rotate when the swing tube 104 slides.
  • the two swing pull rods 412 are rotationally connected to different positions of the pliers head 7 respectively, and when the two swing pull rods 412 produce relative linear motions in opposite directions, the pliers head 7 is driven to swing accordingly.
  • the connection positions of the two connection positions and the distance between the two connection positions can be set as required, and are not specifically limited here.
  • the swivel arm 411 is rotatably installed, specifically, it can be rotatably connected to the base pipe 103 , and the rotation axis 4111 of the swivel arm 411 is a fixed rotation point of a parallelogram.
  • the swing arm 411 and the pincer head 7 are used as a parallelogram crank.
  • the swing arm 411 When the swing tube 104 moves linearly, under the drive of the swing tube 104, the swing arm 411 will swing. When the swing arm 411 swings, the swing pull rod 412 is driven to move linearly. The linear movement of 412 drives the pincer head 7 to swing, thereby realizing the swing of the joint head at the end of the stapler. As shown in FIG. 15 , the swing of the clamp head 7 is realized by the parallelogram movement of the two swing rods 412 relative to the base pipe 103 .
  • the rotation axis 4111 of the swing arm 411 is located in the middle of the swing arm 411 , that is, the fixed rotation point of the parallelogram structure is located in the middle of the swing arm 411 .
  • the rotating shaft 4111 is relatively fixed to the base tube 103 .
  • the two ends of the swing arm 411 are respectively connected with the swing arm pin 4112, and the two ends of the swing pull rod 412 are respectively provided with the pull bar groove 4121, and the swing arm pin 4112 at the two ends of the swing arm 411 are respectively inserted into the corresponding swing In the pull bar groove 4121 of one end of the pull rod 412.
  • the connection mode between the pincer head 7 and the swing pull rod 412 can be the same as that of the above swing pull rod 412 and the swing arm 411. That is, the pliers head 7 is respectively provided with pliers head pins corresponding to each swing pull rod, and each pliers head pin shaft is respectively inserted into the pull rod strip groove 4121 at the other end of the corresponding swing pull rod 412 .
  • the pin shaft of the pincer moves linearly in the same direction while pushing the pin shaft of the pincer to move linearly along the strip groove 4121 of the pull rod, thereby forming the swing of the pincer 7 .
  • the extending direction of the bar-shaped slot 4121 is perpendicular to the sliding direction of the swinging bar 412 . Then the rotation of the swing arm 411 can be converted into the linear movement of the swing rod 412 to a great extent, and the space utilization rate is high.
  • the swinging pull rod 412 while the swinging pull rod 412 is relatively rotating with the swing arm 411 and the pincer head 7, it can also move relatively linearly, so that the swing pull rod 412 can be kept on a straight line in its extension direction when the swing arm 411 moves linearly under the rotation of the swing arm 411. move, thereby facilitating the installation of the swing rod 412.
  • a mounting groove is provided on the base pipe 103 , and the swing rod 412 is slidably installed in the mounting groove to move along a straight line.
  • the rotating shaft 4111 of the swing arm 411 can also be located at any end of the swing arm 411, and then the swing of the swing arm 411 takes one end as the axis.
  • the swing of the pliers head 7 also takes the end connected to the swing pull rod 412 as the axis.
  • the swing tube 104 In order to facilitate the movement of the above-mentioned parallelogram drive mechanism driven by the swing tube 104, in one embodiment, as shown in FIG. To drive the parallelogram crank mechanism B to move. Then when the swing tube 104 moves linearly, it drives the swing driving piece 413 to move linearly, and the swing driving piece 413 then pushes the swing arm 411 to swing.
  • the swing tube 104 is connected to the swing arm 411 through the swing drive piece 413, and the lengths of the swing drive piece 413 and the swing tube 104 can be adjusted as required, thereby reducing the restrictions on the layout of other components.
  • connection manner between the swing driving piece 413 and the swing arm 411 may be similar to the connection manner between the swing arm 411 and the swing pull rod 412 described above. That is, one end of the swing driving piece 413 close to the pliers head 7 is provided with a driving piece strip-shaped groove, and the swing arm pin 4112 located at one end of the swing arm 411 is inserted into the driving piece strip-shaped groove. Then, when the swing driving piece 413 moves linearly, the swing arm pin 4112 is pushed to move linearly in the same direction, so that the swing arm pin 4112 moves linearly along the strip groove of the drive piece, thereby forming the swing of the swing arm 411 .
  • the extending direction of the strip-shaped groove of the driving piece is perpendicular to the sliding direction of the swinging driving piece 413 . Then the linear movement of the swing driving piece 413 can be converted into the swing of the swing arm 411 to a great extent, and the space utilization rate is high.
  • the swing driving piece 413 is slidably mounted on the base tube 103 , and the base tube 103 is rotatably installed in the swing tube 104 .
  • the base tube 103 is connected with the pincer head 7 to drive the pincer head 7 to rotate.
  • a guide groove 1034 is provided on the outer peripheral surface of the base pipe 103 in the axial direction, and the swing driving piece 413 is movably accommodated in the guide groove 1034 .
  • the base pipe 103 is fixed relative to the axis.
  • the swing tube 104 moves linearly relative to the substrate tube 103 under the drive of the swing drive assembly 40 .
  • the guide groove 1034 can specifically be a square groove, and the two opposite walls of the swing driving piece 413 are attached to the side walls of the guide groove 1034, and the swing tube 104 is connected to the swing driving piece 413, thereby driving the linear movement along the guide groove 1034, thereby giving the parallelogram
  • the crank mechanism provides linear power.
  • connection between the swing driving piece 413 and the swing tube 104 can be connected by a hook. If hooks are provided on the swing driving piece 413 and button holes are correspondingly set on the swing tube 104 , then the hooks are hung in the button holes during assembly to realize the connection between the swing drive piece 413 and the swing tube 104 . With the above connections, it is easy to disassemble and assemble. Other conventional fixed connection methods can also be used for connection as required.
  • the swing drive assembly 40 includes a swing drive shaft 402 arranged parallel to the swing tube 104 and a swing fork 403 connected to the swing drive shaft 402 , the swing drive shaft 402 is used to receive Torque is input, and the rotation of the swing drive shaft 402 drives the swing fork 403 to move linearly, and the swing fork 403 is connected to the swing tube 104 to drive the swing tube 104 to move linearly.
  • the swing drive shaft 402 is arranged parallel to the swing tube 104 for receiving torque input; the swing shift fork 403 is respectively connected with the swing drive shaft 402 and the swing tube 104 for converting the rotation of the swing drive shaft 402 into linear movement and driving the swing
  • the tube 104 moves linearly.
  • the swing drive shaft 402 is parallel to the swing tube 104.
  • the swing drive shaft 402 rotates when receiving the torque automatically input by the mechanical arm of the surgical robot.
  • the rotation of the swing drive shaft 402 acts on the swing fork 403.
  • the rotary motion of 402 is converted into linear motion, which further drives the swing tube 104 to move in a corresponding linear motion.
  • the swing drive shaft 402 is arranged parallel to the swing tube 104, which has less restrictions on the position, facilitates the layout of various components, and occupies less space.
  • the swing drive shaft 402 is threadedly engaged with the swing shift fork 403 .
  • the oscillating drive shaft 402 can specifically be a screw, which is a driving part for rotary motion
  • the oscillating fork 403 is a driving part for linear motion, with a threaded hole on it to form a screw pair with the screw, so that the rotary motion of the screw is converted into the oscillating fork 403. linear motion, thereby driving the swing tube 104 to move linearly.
  • the rotary motion is converted into linear motion, and at the same time, it has a self-locking function, which can effectively ensure the self-locking performance of the joint head of the pliers after swinging.
  • the swing drive assembly 40 also includes a guide shaft 405 arranged parallel to the swing drive shaft 402, a guide through hole is opened on the swing shift fork 403, and the guide shaft 405 passes through the into the through hole.
  • the setting of the guide shaft 405 can not only limit the linear movement direction of the swing fork 403 , but also limit the rotation of the swing fork 403 . This ensures the accuracy and rigidity of the linear motion of the swing fork 403 after the rotary motion is converted into linear motion.
  • the guide shaft 405 and the swing fork 403 can be connected by a linear bearing, and then the linear bearing and the guide shaft 405 form a guide rail pair.
  • the linear guide structure can use a combination of single linear bearing and single optical axis, single linear guide, multiple linear bearings and single optical axis, multiple linear guides, linear bearings and linear guides, etc. Combined linear conduction methods.
  • the rotation of the swing fork 403 can also be limited by other anti-rotation limiting structures as required, so that it can only move linearly along the axis of the swing drive shaft 402 when the swing drive shaft 402 rotates.
  • the swing drive shaft 402 is used to receive torque input.
  • a drive winch 401 is connected to the swing drive shaft 402.
  • the drive winch 401 is used to connect with the mechanical arm of the surgical robot.
  • one end of the swing drive shaft 402 is connected to the drive winch 401 , and after the mechanical arm of the surgical robot is connected to the drive winch 401 , it drives the drive winch 401 to rotate, and then drives the swing drive shaft 402 to rotate.
  • the specific structure of the driving winch 401 can be set correspondingly according to the structure of the connection end of the mechanical arm of the surgical robot, which is not specifically limited here.
  • connection between the swing drive shaft 402 and the drive winch 401 can be specifically connected through a coupling whose structure is the same as that of the coupling 508 , and can refer to the connection mode between the rotation drive shaft 502 and the drive winch 501 for details.
  • the connection between the oscillating drive shaft 402 and the drive winch 401 is not limited to the above coupling structure, and can also be connected by other fixed connection methods.
  • the swing drive shaft 402 and the swing fork 403 realize the conversion of rotary motion and linear motion through the cooperation of the groove wheel structure, that is, the swing drive shaft 402 is a grooved shaft, and the swing fork 403 Cooperate with the grooved shaft to form a grooved wheel pair, through the rotational movement of the grooved shaft, the swinging fork can realize the linear motion along the grooved shaft.
  • the relevant settings in the above embodiments such as guide shafts, driving winches, etc., and will not be repeated here.
  • the connection between the swing fork and the outer tube is specifically set as follows.
  • the swing drive device also includes a swing limiter 404
  • the swing tube 104 is provided with a swing limit groove 1041
  • the swing fork 403 is correspondingly provided with a swing limit through hole 4031
  • the swing limit The component 404 is slidably installed in the swing limit through hole 4031, and when the swing limit component 404 slides to be inserted into the swing limit groove 1041, the swing tube 104 is connected with the swing fork 403 to move linearly synchronously; the swing limit component 404 slides When exiting the swing limiting slot 1041, the swing tube 104 and the swing fork 403 are disengaged to release the synchronous linear movement relationship.
  • the swing limiting component 404 may be a sheet structure, which takes up little space.
  • the shape of the swing limiting through hole 4031 is correspondingly set according to the shape of the swing limiting component 404 to limit and guide the sliding of the swing limiting component 404 .
  • the shape of the swing limiting groove 1041 can be set corresponding to the shape of the insertion end of the swing limiting component 404 .
  • the swinging fork 403 and the swinging tube 104 are connected by the swinging limiting part 404, so that the swinging tube 104 is separated from the linear driving part, which is convenient for installation and removal. Under normal working conditions, the swing limiting component 404 is inserted into the swing limiting groove 1041 to realize normal transmission.
  • the swing limiting part 404 can be pulled out to withdraw from the swing limiting groove 1041, and the synchronous linear movement relationship between the swing tube 104 and the swing shift fork 403 can be released, and then the swinging tube 104 and the swinging fork 403 can be released. Take out the surgical instrument by dismantling the tube 104 for emergency treatment.
  • the swing limiting groove 1041 is an annular groove surrounding the outer circumference of the swing tube 104 , and the profile of the end of the swing limiting member 404 close to the swing limiting groove 1041 is an arc-shaped feature 4041 whose diameter corresponds to the inner diameter of the ring groove.
  • One end of the swing fork 403 has a through hole 4032 to accommodate the swing tube 104, and the side wall of the swing fork 403 is provided with a swing limit through hole 4031 for accommodating the swing limit member 404.
  • the swing limit through hole 4031 can specifically be Square slot.
  • a bearing can be arranged between the swing drive shaft 402 and the top plate 203, and a shaft end lock nut can be connected to the swing drive shaft 402 to press the bearing on the top plate 203 to limit the axial position.
  • the driving winch 401 can be installed on the bottom plate 201 .
  • a bearing may be arranged between the bottom plate 201 and the driving winch 401 .
  • the guide cover in the above embodiments can be fixed to the top plate by screws or the like. If the guide shaft 405 is provided, both ends of the guide shaft 405 can be fixedly connected with the middle plate 204 and the bottom plate 201 by screws or the like.
  • the surgical instrument further includes an opening and closing driving device, and the opening and closing driving device includes an outer tube 105 , an opening and closing driving shaft 602 and an opening and closing shift fork 603 .
  • the outer tube 105 is installed on the clamp head 7 of the surgical instrument, and when the outer tube 105 moves, the clamp head 7 shrinks into the outer tube 105 to close or exposes the outer tube 105 to open. That is, the linear movement of the outer tube 105 drives the pliers head 7 to close or open.
  • the pliers head 7 includes a cartridge seat 701 and an anvil 702 , the cartridge seat 701 has guide grooves, and the two sides of the nail anvil 702 have protruding cylinders for insertion into the guide grooves.
  • the staple cartridge seat 701 is connected to the jaw pushing tube 703, and the jaw pushing tube 703 is connected to the outer tube 105.
  • the linear movement of the outer tube 105 drives the jaw pushing tube 703 to move linearly, thereby pushing the nail anvil 702 to produce a rotary motion, realizing the clamping action.
  • the closing or opening of the mouth At the same time, after the jaw pushing tube 703 pushes the anvil 702 to rotate and close, the further linear motion of the jaw pushing tube 703 pushes the anvil 702 to move linearly accordingly.
  • the outer tube 105 and the jaw pushing tube 703 are specifically connected by a connecting piece 704, the two ends of the connecting piece 704 have protruding shafts, and the outer tube 105 and the jaw pushing tube 703 have a protruding shaft connected to the connecting piece 704. matching holes.
  • One end of the outer tube 105 close to the jaw pushing tube 703 is fixedly connected with a leather sheath pressure ring 705, and the end of the jaw pushing tube 703 close to the outer tube 105 is also fixedly connected with a leather sheath pressure ring 705, between the leather sheath pressure rings 705 at both ends
  • a joint position protection holster is installed.
  • a swinging rotary seat 706 can also be arranged between the outer tube 105 and the jaw pushing tube 703, the staple cartridge seat 701 is connected with the swinging rotary seat 706 through a pin shaft 707, the swinging rotary seat 706 is connected with a knife rest 708, and the knife rest 708 is connected with a base
  • the tube 103 is connected, and the base tube 103 only rotates but does not move on the axis, so that the staple cartridge base 701 moves relatively linearly in the axis direction.
  • the opening and closing drive shaft 602 is arranged parallel to the outer tube 105 for receiving torque input; the opening and closing shift fork 603 is respectively connected with the opening and closing drive shaft 602 and the outer tube 105 for converting the rotation of the opening and closing drive shaft 602 into linear movement , and drive the outer tube 105 to move linearly.
  • the opening and closing drive shaft 602 is parallel to the outer tube 105.
  • the opening and closing drive shaft 602 rotates when receiving the torque manually input by the user or the torque automatically input by the mechanical arm of the surgical robot.
  • the rotation of the opening and closing drive shaft 602 acts on the opening and closing fork 603 , the opening and closing shift fork 603 converts the rotational motion of the opening and closing drive shaft 602 into a linear motion, and then drives the outer tube 105 to move in a corresponding linear motion.
  • the components inside the outer tube can remain stationary, that is, the linear movement of the outer tube does not drive the corresponding linear movement of the internal components.
  • the opening and closing drive shaft 602 when it is necessary to control the closing or opening of the forceps head 7 during the operation, the opening and closing drive shaft 602 is driven to rotate, and the rotation of the opening and closing drive shaft 602 drives the opening and closing shift fork 603 to move linearly, and the opening and closing The shift fork 603 drives the outer tube 105 to move linearly, and the outer tube 105 pushes the jaw 7 to open or close.
  • the opening and closing drive shaft 602 can be used to receive manual input torque, and can also receive automatic input torque through the mechanical arm connected to the surgical robot. The control mode is more diversified, and the automatic control improves the operation accuracy.
  • the opening and closing drive shaft 602 is arranged parallel to the outer tube 105 , which has less restriction on the position, facilitates the layout of various components, and occupies less space.
  • the opening and closing drive shaft 602 is screwed with the opening and closing shift fork 603 .
  • the opening and closing drive shaft 602 can specifically be a screw rod, which is a rotary motion drive part
  • the opening and closing shift fork 603 is a linear motion drive part, with a threaded hole on it to form a screw pair with the screw rod, and convert the rotary motion of the screw rod into opening and closing.
  • the linear movement of the shift fork 603 drives the outer tube 105 to move linearly. Through the thread structure, the rotary motion is converted into linear motion, and at the same time, it has a self-locking function, which can effectively ensure the self-locking performance after the tissue is clamped.
  • the opening and closing shift fork 603 In order to better guide the movement of the opening and closing shift fork 603 , as shown in FIG. 23 , it also includes a guide shaft 605 parallel to the opening and closing drive shaft 602 , and the opening and closing shift fork 603 moves linearly along the guide shaft 605 .
  • the opening and closing shift fork 603 is provided with a guiding through hole, and the guiding shaft 605 is passed through the guiding through hole.
  • the linear movement direction of the opening and closing fork 603 can be limited, and the rotation of the opening and closing fork 603 can be restricted at the same time. This ensures the accuracy and rigidity of the linear motion of the opening and closing shift fork 603 after the rotary motion is converted into linear motion.
  • the guide shaft 605 and the opening and closing shift fork 603 can be connected by a linear bearing 606, and then the linear bearing 606 and the guide shaft 605 form a pair of guide rails.
  • the linear guide structure can use a combination of single linear bearing and single optical axis, single linear guide, multiple linear bearings and single optical axis, multiple linear guides, linear bearings and linear guides, etc. Combined linear conduction methods.
  • other anti-rotation limiting structures can also be used to limit the rotation of the opening and closing fork, so that it can only move linearly along the axis of the opening and closing driving shaft 602 when the opening and closing driving shaft 602 rotates.
  • the opening and closing drive shaft 602 is used to receive torque input.
  • the opening and closing drive shaft 602 is connected with an opening and closing drive winch 601.
  • the opening and closing drive winch 601 is used to connect with the robot arm. As shown in Figure 4 and Figure 5, one end of the opening and closing drive shaft 602 is connected to the opening and closing drive winch 601, and after the mechanical arm of the surgical robot is connected to the opening and closing drive winch 601, it drives the opening and closing drive winch 601 to rotate, and then drives the opening and closing drive winch 601 to rotate.
  • the combined drive shaft 602 rotates.
  • the specific structure of the opening and closing drive winch 601 can be set according to the structure of the connection end of the robotic arm of the surgical robot, which is not specifically limited here.
  • connection between the opening and closing drive shaft 602 and the opening and closing drive winch 601 it can be fixedly connected by a coupling, the structure of which is the same as the structure of the coupling 508, for details, please refer to the rotation drive shaft 502 and the drive winch 501 connection method.
  • the connection between the opening and closing driving shaft 602 and the opening and closing driving winch 601 is not limited to the above coupling structure, and can also be connected by other fixed connection methods.
  • threaded fit may be used between the opening and closing drive shaft 602 and the opening and closing shift fork 603 .
  • the opening and closing drive shaft 602 and the opening and closing shift fork 603 realize the conversion of rotary motion and linear motion through the cooperation of the groove wheel structure, that is, the opening and closing drive shaft 602 is a sheave shaft, and the opening and closing shift fork 603 is connected with the opening and closing shift fork 603.
  • the sheave shaft cooperates with the sheave pair, and through the rotational movement of the sheave shaft, the opening and closing shift fork 603 can realize linear motion along the sheave shaft.
  • the relevant settings in the above embodiments such as the guide shaft, the opening and closing drive winch, etc., and will not be repeated here.
  • connection between the opening and closing shift fork 603 and the outer tube 105 is specifically set as follows.
  • the opening and closing driving device also includes an opening and closing limiting part 604, an opening and closing limiting groove is provided on the outer tube 105, an opening and closing limiting through hole is correspondingly opened on the opening and closing shift fork 603, and the opening and closing limiting part 604 is slidably installed.
  • the opening and closing limiting component 604 may be a sheet structure, which takes up little space.
  • the shape of the opening-closing limiting through hole is correspondingly set according to the shape of the opening-closing limiting component 604 , so as to limit and guide the sliding of the opening-closing limiting component 604 .
  • the shape of the opening and closing limiting groove can be set corresponding to the shape of the insertion end of the opening and closing limiting component 604 .
  • the opening and closing shift fork 603 is connected to the outer tube 105 through the opening and closing limiting part 604, so that the outer tube 105 is separated from the linear driving part, which is convenient for installation and removal. Under normal working conditions, the opening and closing limiting component 604 is inserted into the opening and closing limiting groove to realize normal transmission.
  • the opening and closing limit part 604 can be pulled out to withdraw from the opening and closing limit groove, and the synchronous linear movement relationship between the outer tube 105 and the opening and closing shift fork 603 is released, and then can be passed through Remove the outer tube 105 and take out the surgical instrument for emergency treatment.
  • the structure of the opening and closing shift fork 603 is the same as that of the swinging fork 403; The assembly relationship can refer to Figure 21.
  • the opening and closing limiting groove is an annular groove arranged around the outer peripheral surface of the outer tube 105 , and the profile of the end of the opening and closing limiting member 604 close to the opening and closing limiting groove is arc-shaped with a diameter corresponding to the inner diameter of the annular groove.
  • One end of the opening and closing shift fork 603 has a through hole to accommodate the outer tube 105, and the side wall of the opening and closing shift fork 603 is provided with an opening and closing limit through hole for accommodating the opening and closing limit member 604.
  • the opening and closing limit through hole is specific Can be a square slot.
  • the opening and closing drive device also includes a manual drive assembly
  • the manual drive assembly includes a knob 671
  • the knob 671 is connected to the opening and closing drive shaft 602 through the opening and closing transmission assembly to drive the opening and closing drive shaft 602 rotate.
  • the knob 671 can be rotatably installed on the instrument box 2. By turning the knob 671, the rotation of the knob 671 drives the opening and closing transmission assembly to move, and then drives the opening and closing drive shaft 602 to rotate, thereby realizing manual power input.
  • the opening and closing driving device provided by the present application can be driven manually or by a robot arm, and the working modes are more diversified.
  • the structural form of the opening and closing transmission assembly can specifically adopt various forms such as gear transmission, belt transmission or wire rope transmission.
  • the opening and closing transmission assembly includes several stages of gears that are meshed in sequence, and the first stage gear is coaxially fixedly connected with the knob 671 , and the last stage gear is coaxial with the opening and closing drive shaft 602 Fixed connection.
  • stages of gear transmission are adopted, and the clamping movement can be realized by setting the transmission ratio to realize that the knob is less than one turn, and the precision of the gear transmission is high.
  • the opening and closing transmission assembly includes a first opening and closing gear shaft 6721, a nut 6722, a first opening and closing pinion 6723, a second opening and closing pinion 6724, a first opening and closing large gear 6725, a second opening and closing large gear Gear 6726, second opening and closing gear shaft 6727, third opening and closing gear shaft 6728, opening and closing wheel seat 6729.
  • the whole manual drive assembly can be installed on the guide cover 205, that is, the opening and closing wheel seat 6729, the first opening and closing large gear 6725, the second opening and closing large gear 6726, the knob 671, the first opening and closing gear shaft 6721, the second opening and closing gear Both the gear shaft 6727 and the first opening and closing pinion 6723 are installed thereon.
  • the opening and closing wheel seat 6729 is a fixed seat for the first opening and closing gear shaft 6721 and the second opening and closing gear shaft 6727, which is used to limit the axial positions of the two shafts, and it is fixedly connected with the guide cover 205 by using screws.
  • the first opening and closing large gear 6725, the nut 6722, and the knob 671 are installed on the first opening and closing gear shaft 6721, wherein the knob 671 is fixed to the first opening and closing gear shaft 6721 by set screws.
  • the first opening and closing gear shaft 6721 is specifically provided with a flat position for installing the first opening and closing large gear 6725 and limiting the rotation of the first opening and closing large gear 6725 relative to the first opening and closing gear shaft 6721.
  • the nut 6722 and the first opening and closing gear The thread fit on the shaft 6721 is used to define the axial position of the first opening and closing bull gear 6725.
  • the second opening and closing large gear 6726, the first opening and closing pinion 6723, and the nut 6722 are installed on the second opening and closing gear shaft 6727.
  • the second opening and closing gear shaft 6727 is provided with a flat position for installing the second opening and closing
  • the large gear 6726 and the first opening and closing pinion 6723 also limit the rotation of the second opening and closing large gear 6726 and the first opening and closing pinion 6723 relative to the second opening and closing gear shaft 6727, and the nut 6722 is threaded with the second opening and closing gear shaft 6727
  • the cooperation limits the axial movement of the second opening and closing large gear 6726 and the first opening and closing pinion 6723 .
  • the first opening and closing large gear 6725 meshes with the first opening and closing pinion 6723
  • the second opening and closing large gear 6726 meshes with the second opening and closing pinion 6724 .
  • One end of the opening and closing drive shaft 602 is fixedly connected with the third opening and closing gear shaft 6728, and one end of the third opening and closing gear shaft 6728 close to the opening and closing drive shaft 602 is processed with an inner groove for connecting with the nut 6722, and the other end is processed with a
  • the flat position is used to connect with the second opening and closing pinion 6724, and is provided with an external thread, which cooperates with the nut 6722 to axially fix the second opening and closing pinion 6724.
  • the transmission of the gear shaft 6728 is converted into the rotation of the opening and closing drive shaft 602 , which is converted into the linear movement of the opening and closing fork 603 through the opening and closing fork 603 , and further converted into the linear movement of the outer tube 105 .
  • the opening and closing transmission assembly adopts the form of gears.
  • the opening and closing transmission assembly includes several stages of pulley assemblies connected in sequence, and the driving pulley of the first stage of the pulley assembly is fixedly connected with the knob , the driven pulley of the last stage pulley assembly is coaxially fixedly connected with the opening and closing drive shaft.
  • stages of belt pulley transmission are adopted, and the clamping movement can be realized by setting the transmission ratio to realize that the knob is less than one turn, and the structure of the belt transmission is simple.
  • the knob 671 is coaxially fixedly connected with the first large pulley 6731, the first large pulley 6731 is connected with the first small pulley 6732 through the first belt 6733, and the first small pulley 6732 is connected with the second large pulley 6734.
  • the shaft is fixedly connected, and the second large pulley 6734 is connected with the second small pulley 6735 through the second belt 6736, that is, the first large pulley 6731 is the driving pulley of the first-stage pulley assembly, and the second small pulley 6735 is the driving pulley of the second-stage pulley assembly.
  • the rotation of the knob 671 drives the first large pulley 6731 to rotate, the first large pulley 6731 drives the first small pulley 6732 to rotate, the first small pulley 6732 drives the second large pulley 6734 to rotate synchronously, and the second large pulley 6734 drives the second small
  • the pulley 6735 rotates, and the second small pulley 6735 drives the opening and closing drive shaft 602 to rotate.
  • the opening and closing transmission assembly is driven by a wire rope pulley assembly.
  • the opening and closing transmission assembly includes several stages of wire wheel assemblies connected in sequence, and the driving wheel of the first stage of the wire wheel assembly is fixedly connected with the knob coaxially, and the driven wire wheel of the last stage of the wire wheel assembly is coaxial with the opening and closing drive shaft Fixed connection.
  • stages of wire wheel components are used for transmission, and the clamping movement can be realized by setting the transmission ratio to realize the clamping movement of the knob less than one turn, and the transmission structure is simple.
  • the knob 671 is coaxially fixedly connected with the first large steel wire wheel 6741, the first large steel wire wheel 6741 is connected with the first small steel wire wheel 6742 through the first steel wire rope 6743, and the first small steel wire wheel 6742 is connected with the second small steel wire wheel 6742.
  • the large steel wire wheel 6744 is coaxially fixedly connected, the second large steel wire wheel 6744 is connected with the second small steel wire wheel 6745 through the second steel wire rope 6746, that is, the first large steel wire wheel 6741 is the driving wheel of the first-stage steel wire wheel assembly, and the second small The wire wheel 6745 is the driven wheel of the second-stage wire wheel assembly, the rotation of the knob 671 drives the first large wire wheel 6741 to rotate, the first large wire wheel 6741 drives the first small wire wheel 6742 to rotate, and the first small wire wheel 6742 drives the second The large wire wheel 6744 rotates synchronously, the second large wire wheel 6744 drives the second small wire wheel 6745 to rotate, and the second small wire wheel 6745 drives the opening and closing drive shaft 602 to rotate.
  • a bearing can be provided between the opening and closing drive shaft 602 and the top plate 203, and a nut 6722 can be connected to the opening and closing drive shaft 602 to connect with the third gear shaft in the above embodiment.
  • the opening and closing driving winch 601 can be installed on the base plate 201 .
  • the guide cover in the above embodiment can be fixed to the top plate 203 by screws or the like.
  • both ends of the guide shaft 605 can be fixedly connected with the middle plate 204 and the bottom plate 201 by screws or the like.
  • the surgical instrument also includes an emergency release device, a cutter head transmission mechanism and a pincer head transmission mechanism.
  • the emergency release device includes a first release mechanism 8 and a second release mechanism 9, and the first release mechanism 8 is used to communicate with The cutter head transmission mechanism is in transmission connection, and the second release mechanism 9 is used to cooperate with the pliers head transmission mechanism when it is in the transmission position, so as to realize the transmission chain closure of the pliers head transmission mechanism, and is used to cooperate with the pliers head transmission mechanism when it is in the release position.
  • the pliers transmission mechanism is separated to realize the disconnection of the transmission chain of the pliers transmission mechanism, so that the pliers can freely swing or open and close.
  • It also includes a trigger mechanism 10, which is in driving connection with the first releasing mechanism 8 when in the first position, and is in driving connection with the second releasing mechanism 9 when in the second position.
  • the emergency release device is provided with a trigger mechanism 10.
  • the trigger mechanism 10 When the trigger mechanism 10 is in the first position, it is in transmission connection with the first release mechanism 8. When it is in the second position, it is in transmission connection with the second release mechanism 9.
  • the trigger mechanism 10 It is connected in transmission with different release mechanisms, so as to facilitate the movement of different transmission mechanisms.
  • the trigger mechanism 10 When the trigger mechanism 10 is in the first position, it is in transmission connection with the first releasing mechanism 8, so that the operator can manually operate the cutter head 709 to return in an emergency and avoid the cutter head 709 from damaging the tissue.
  • the push rod 101 is connected with the cutter head 709 through the knife rod 710 , and the push rod 101 is connected with the cutter rod 710 through the rotation tube 115 , as shown in FIG. 29 .
  • the second release mechanism 9 When the trigger mechanism 10 is in the second position, the second release mechanism 9 is driven, and the transmission chain for the jaw transmission mechanism is disconnected, so that the jaws of the surgical instrument can freely swing or open and close, so that the workflow of emergency manual intervention release can only pass
  • One trigger mechanism 10 can be completed, and the work flow of release is carried out in an orderly manner, thereby reducing the pain of the operator in the operation process requiring emergency release, reducing the possibility of the operator making mistakes, simple in structure, easy to use, and improving the operation efficiency.
  • the removal efficiency of the device saves the time required for the removal process.
  • the trigger mechanism 10 is slidably disposed on the instrument box 2, so that the trigger mechanism 10 can be switched between the first position and the second position.
  • the first release mechanism 8 and the second release mechanism 9 are arranged on the bracket assembly 20 .
  • a reset member 1003 is arranged between the trigger mechanism 10 and the instrument case 2 , and when the reset member 1003 is reset, the trigger mechanism 10 is in the first position or the second position. In one embodiment, as shown in FIG. 2 , when the reset member 1003 is reset, the trigger mechanism 10 is in the first position.
  • the trigger mechanism 10 includes a rotating shaft 1002 , a trigger knob 1001 and a first trigger member 1005 .
  • the rotating shaft 1002 is slidably connected to the instrument case 2
  • the trigger knob 1001 is connected to the extended end of the rotating shaft 1002 .
  • the first trigger member 1005 is fixedly connected to one end of the rotating shaft 1002 inside the instrument case 2 .
  • the first release mechanism 8 is provided with a first release member 801 that is drivingly matched with the first trigger member 1005 .
  • the first triggering member 1005 is a first gear
  • the first releasing member 801 is a second gear.
  • Reset member 1003 is a compression spring, and one end of this compression spring is limited by the inner wall of instrument box 2, and the other end is limited by the end face of this first gear.
  • the first release mechanism 8 also includes a connecting piece 802 that is in transmission connection with the cutter head transmission mechanism, and a power input piece 804 that is used for transmission connection with the external push rod drive assembly 3, and the push rod drive assembly 3 is used for In order to provide power to the power input member 804, the connecting member 802 transmits the power to the cutter head transmission mechanism.
  • the connecting part 802 is the third gear
  • the power input part 804 is the fourth gear.
  • the power input member 804 is fixedly connected to one end of the first rotating shaft 803
  • the first releasing member 801 is connected to the other end of the first rotating shaft 803
  • the connecting member 802 is connected to the first rotating shaft 803
  • the first rotating shaft 803 is rotatably connected to the bracket assembly 20 superior.
  • the trigger mechanism 10 further includes a second trigger member 1004 that rotates with the rotating shaft 1002 , and the second release mechanism 9 is provided with a second release member 901 that is in transmission cooperation with the second trigger member 1004 .
  • the second triggering member 1004 is a driving rod arranged on the first triggering member 1005. Since the first triggering member 1005 is a first gear, the driving rod is fixedly connected to the end face of the first gear.
  • the second release member 901 is a release rocker that is swung by the second trigger member 1004 . One end of the release rocker is set corresponding to the lever on the first trigger 1005 , and the other end is fixedly connected to the first trigger 1005 .
  • the release rocker is provided with a receiving groove 9011 for transmission cooperation with the push rod.
  • the depth and width of the accommodating groove 9011 are set by technicians according to actual needs.
  • the receiving groove 9011 is suspended on the upper end of the first gear.
  • the trigger knob 1001 is pulled to the second position, the reset member 1003 is compressed, and the position of the first gear is raised.
  • the height of the driving lever corresponds to the position of the receiving groove 9011.
  • the The driving lever slides in the receiving groove 9011, so that the releasing rocker is subjected to counterclockwise force.
  • the second release mechanism 9 also includes a release clutch mechanism, and the pliers head transmission mechanism includes a disconnected first pliers head transmission mechanism branch chain and a second pliers head transmission mechanism branch chain.
  • the release clutch mechanism When the second release mechanism 9 is in the transmission position, the release clutch mechanism is respectively connected with the branch chain of the first pincer transmission mechanism and the branch chain of the second pincer transmission mechanism, so that the transmission chain of the pincer transmission mechanism is closed.
  • the release clutch mechanism is at least disconnected from one of the branch chain of the first tong head transmission mechanism and the branch chain of the second tong head transmission mechanism, so that the first tong head transmission mechanism
  • the branch chain of the mechanism and the branch chain of the second clamp head transmission mechanism recover the disconnected state.
  • the branch chain of the first pliers transmission mechanism includes a pliers head opening and closing power mechanism and a pliers head swing power mechanism
  • the second pliers head transmission mechanism branch chain includes a pliers head opening and closing drive mechanism and a pliers head swinging drive mechanism.
  • the power mechanism and the pliers head opening and closing drive mechanism form a pliers head opening and closing mechanism chain
  • the pliers head swing power mechanism and the pliers head swing driving mechanism form a pliers head swing mechanism chain.
  • the releasing clutch mechanism includes a swing limiting component 404 and an opening and closing limiting component 604 , both of which are driven by the second releasing member 901 to move in the same direction.
  • the opening and closing limit member 604 When the opening and closing limit member 604 is in the transmission position, the opening and closing power mechanism of the pincers is connected with the drive mechanism of the opening and closing of the pincers, so that the chain of the opening and closing mechanism of the pincers is closed. At this time, the opening and closing power mechanism of the pincers can pass The opening and closing driving mechanism of the pincers drives the opening and closing of the pincers 7 .
  • the pliers swing power mechanism When the swing limiting part 404 is in the transmission position, the pliers swing power mechanism is connected to the pliers swing driving mechanism, so that the pliers swing mechanism chain is closed. At this time, the pliers swing power mechanism can pass through the pliers swing drive mechanism. Drive tongs 7 to swing.
  • the second releasing mechanism 9 includes a rotating supporting main shaft 903, and the end of the supporting main shaft 903 away from the releasing rocker is provided with the releasing clutch mechanism.
  • the supporting spindle 903 is rotatably connected to the bracket assembly 20 .
  • the second releasing member 901 is fixedly connected to the supporting spindle 903 . In order to make the second releasing member 901 drive the supporting main shaft 903 to rotate when it is moved by the lever, the axis of the supporting main shaft 903 and the axis of the second releasing member 901 are staggered.
  • the release rocker when the release rocker is pushed by the driving lever, the release rocker is subjected to counterclockwise force, and the support spindle 903 will rotate counterclockwise at a certain angle, and the support spindle 903 will drive the release clutch mechanism to rotate counterclockwise to realize the release.
  • the releasing operation of the clutch mechanism is to realize the releasing operation of the swing limiting component 404 and the opening and closing limiting component 604 .
  • the second release mechanism 9 also includes a first release crank 902, a support main shaft 903 and a second release member 901 are respectively arranged at two ends of the first release crank 902, and the support main shaft 903 and the second release member 901 are fixed. Connected on the first release crank 902.
  • a reset mechanism is connected to the first release crank 902, and the reset mechanism is used to make the second release member 901 and the support spindle 903 return to their original state when the second trigger member 1004 does not act on the second release member 901, where
  • the original state refers to the position and state of the second releasing member 901 and the supporting spindle 903 when the second triggering member 1004 is not in action.
  • the reset mechanism includes a spring connecting post 911 fixed on the first release crank 902, the spring connecting post 911 is connected to one end of the return spring 912, the other end of the return spring 912 is fixedly connected to the spring seat 913, and the spring The seat 913 is fixed on the bracket assembly 20 .
  • the spring connecting column 911 and the second releasing member 901 are respectively arranged at two ends of the supporting main shaft 903 .
  • the release clutch mechanism also includes a second releasing crank 905 connected on the supporting main shaft 903, as shown in FIG. 5 , the second releasing crank A first limiting piece sliding rod 906 is connected to 905 , and the first limiting piece sliding rod 906 is connected to the second limiting piece sliding rod 908 in rotation.
  • the swing limiter 404 and the opening and closing limiter 604 on the second limiter slide bar 908, the swing limiter 404 and the opening and closing limiter 604 are used for sliding connection with the pincer transmission mechanism to realize Closing or disconnection of the transmission chain of the pliers transmission mechanism.
  • the second release crank 905 is provided with a first connection through hole and a second connection through hole vertically arranged, the first connection through hole is connected with the first limiting plate sliding rod 906, and the second connection through hole is used for connecting with
  • the supporting main shaft 903 is connected, and the side of the second connecting through hole is provided with a threaded through hole, and the internal thread of the threaded through hole is connected with a positioning bolt, and the positioning bolt positions the second release crank 905 at a suitable position of the supporting main shaft 903 .
  • the first limiting piece sliding rod 906 is rotationally connected with the second limiting piece sliding rod 908 through the first sliding rod connecting piece 904 and the second sliding rod connecting piece 907 , and the second limiting piece sliding rod 908
  • a swing limiting component 404 and an opening and closing limiting component 604 are slidably connected.
  • Two slide bar connecting pieces are respectively connected on the upper end and the lower end of the first limiting piece sliding bar 906 and the second limiting piece sliding bar 908, and the two sliding bar connecting pieces are connected with the first limiting piece sliding bar 906, the second limiting piece
  • the slide bar 908 is fixedly connected with a nut.
  • the swing limiting component 404 and the opening and closing limiting component 604 can rotate and slide on the sliding rod 908 of the second limiting piece, so that they can be applied to staplers of different sizes and have a wider application range.
  • the first limiting piece sliding rod 906 is arranged parallel to the second limiting piece sliding rod 908 .
  • the supporting spindle 903 is provided with an annular limit snap ring 9031 , and the support spindle 903 is rotatably connected to the bracket assembly 20 through a limit clamp plate snapped into the limit snap ring 9031 .
  • the embodiment of the present application also provides a surgical robot, including a main operation console 11 and a slave operation device 12 controlled by the main operation console 11.
  • FIG. 33 shows the main operation console 11 according to an embodiment of the present application.
  • Fig. 34 shows a slave operating device 12 according to an embodiment of the present application.
  • a surgical instrument 13 is detachably connected to the slave operating device 12.
  • the surgical instrument 13 is the above-mentioned surgical instrument 13, and the surgical instrument 13 is provided with the above-mentioned emergency release device.
  • the surgeon performs relevant control operations on the slave operating device 12 on the master operating console 11
  • the slave operating device 12 performs surgical operations on the human body according to input instructions of the master operating console 11 .
  • the main operation console 11 and the slave operation equipment 12 can be placed in the same operating room, or in different rooms.
  • the master operation console 11 and the slave operation equipment 12 can transmit data through wired or wireless methods. Carry out data transmission.
  • the operating device 12 includes a mechanical arm 1201 and an actuating device 1202 arranged at the distal end of the mechanical arm 1201.
  • the surgical instrument 13 for performing a surgical operation is connected with the actuating device 1202.
  • the actuating device 1202 passes through a plurality of actuators inside it. The actuator drives the surgical instrument 13 to move.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Surgical Instruments (AREA)

Abstract

一种套管结构(1)、手术器械和手术机器人,套管结构(1)包括由内至外依次套装的推杆(101)、推杆输入轴(102)、基管(103)、摆动管(104)和外管(105),推杆输入轴(102)与推杆(101)连接,推杆输入轴(102)能够相对基管(103)旋转并带动推杆(101)直线移动,摆动管(104)和外管(105)能够相对基管(103)直线移动;手术器械包括套管结构(1)、钳头(7)和自转驱动装置(5),钳头(7)与套管结构(1)的输出端连接,自转驱动装置(5)与套管结构(1)的输入端连接;手术机器人包括主操作控制台(11)、从操作设备(12)和手术器械,从操作设备(12)由主操作控制台(11)控制,手术器械可拆卸连接在从操作设备(12)上。

Description

套管结构、手术器械以及手术机器人
本申请要求于2021年12月06日在中国专利局提交的、申请号为202111478088.4、发明名称为“手术机器人、手术器械及其钳头自转驱动系统”的中国专利申请的优先权,要求于2021年12月06日在中国专利局提交的、申请号为202111481146.9、发明名称为“手术器械驱动机构、手术器械及手术机器人”的中国专利申请的优先权,要求于2021年12月06日在中国专利局提交的、申请号为202111478111.X、发明名称为“手术机器人、手术器械及其钳头摆动驱动系统”的中国专利申请的优先权,要求于2021年12月06日在中国专利局提交的、申请号为202111480884.1、发明名称为“手术机器人、手术器械及其钳口开合驱动系统”的中国专利申请的优先权,要求于2021年12月06日在中国专利局提交的、申请号为202111481143.5、发明名称为“吻合器一键紧急解除机构及手术机器人”的中国专利申请的优先权,要求于2021年12月06日在中国专利局提交的、申请号为202111480874.8、发明名称为“手术机器人及手术器械”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗设备技术领域,具体涉及一种套管结构、手术器械以及手术机器人。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
手术器械在临床手术中有着广泛的使用,手术器械,例如吻合器、血管闭合器是手术器械中常见的器械,用于对组织进行离断或闭合等。
常见的手术器械一般包括钳头和器械盒,器械盒端用于接收用户的操作,通过一系列传动组件带动钳头的动作以完成相应的手术操作,如钳头的开合、摆动、推刀(击发)、自转等。然而为实现上述各种不同功能,需要相应的设置不同的驱动及传动结构,使得器械整体结构复杂,空间占用大。
技术问题
本申请实施例的目的之一在于:提供一种套管结构、手术器械以及手术机器人,以解决手术器械整体结构复杂,空间占用大的技术问题。
技术解决方案
本申请实施例采用的技术方案是:
第一方面,提供了一种套管结构,用于连接器械执行部;套管结构包括推杆、推杆输入轴、基管、摆动管和外管;推杆输入轴与推杆连接;推杆输入轴能够相对基管旋转并带动推杆直线移动,推杆直线移动推动器械执行部移动;基管的转动带动器械执行部自转;摆动管能够相对基管直线移动并带动器械执行部摆动;外管能够相对基管直线移动并推动器械执行部收缩入外管以闭合或者露出外管以张开;其中,推杆、推杆输入轴、基管、摆动管和外管由内至外依次套装。
第二方面,提供了一种手术器械,手术器械包括套管结构、钳头和自转驱动装置;钳头与套管结构的输出端连接;自转驱动装置与套管结构的输入端连接;其中,自转驱动装置包括自转管、自转驱动轴和自转传动组件,自转管用于带动钳头自转;自转管与基管固定连接,自转驱动轴与基管平行设置,自转驱动轴的一端用于接收扭矩输入,另一端通过自转传动组件与基管连接以带动基管旋转,基管的旋转带动自转管旋转从而带动钳头自转。
第三方面,提供一种手术机器人,手术机器人包括主操作控制台、从操作设备和手术器械;从操作设备由主操作控制台控制;手术器械可拆卸连接在从操作设备上。
有益效果
本申请实施例提供的套管结构的有益效果在于:应用本申请提供的套管结构,能够将手术器械的器械盒端的各驱动力向末端器械执行部传递,进而驱动器械执行部实现开合、摆动、推刀(击发)、自转各个运动,且推杆输入轴、摆动管和外管均可相对基管独立运动,也即各层级套管具有独立的运动。采用上述结构进行各功能的驱动,结构简单,空间占用小。
本申请实施例提供的手术器械的有益效果在于:应用本申请提供的手术器械,采用了自转驱动装置,基管与自转驱动轴平行布置,基管的轴心即手术器械刀杆总成的轴心,通过上述设置,将自转驱动轴轴心与刀杆总成轴心平行布局,相较于正交布局方式降低了位置精度要求,即降低了对于自转驱动轴、基 管及传动端面的位置精度要求,且各部件的布局更加灵活,以满足手术器械的不同安装需求。
本申请实施例提供的手术机器人的有益效果在于:本申请提供的手术机器人包括上述套管结构和手术器械,因此具有上述套管结构和手术器械的有益效果,在此不再赘述。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的套管结构的剖面示意图;
图2为图1中的A局部放大示意图;
图3为本申请实施例中的器械盒内部结构示意图;
图4为本申请实施例中推杆输入轴的局部装配示意图。
图5为本申请实施例提供的推杆输入轴与推杆的装配示意图;
图6为本申请实施例提供的推杆输入轴、推杆在基管内的装配示意图;
图7为本申请实施例提供的手术器械的结构示意图;
图8为本申请实施例中器械盒部分的爆炸结构示意图;
图9为本申请实施例中自转装置的结构示意图;
图10为本申请实施例中开合驱动装置的结构示意图;
图11为本申请实施例中自转管的连接示意图;
图12为图11的局部放大示意图;
图13为连接轴器的装配结构示意图;
图14为平行四边形曲柄机构的结构示意图;
图15为钳头摆动状态的示意图;
图16为摆动拉杆、摆动驱动片和旋臂的连接示意图;
图17为摆动拉杆和旋臂的连接示意图;
图18为摆动驱动片与基管的配合示意图;
图19为本申请实施例的摆动驱动装置的结构示意图;
图20为另一种摆动驱动轴与摆动拨叉的配合及安装示意图;
图21为摆动拨叉与摆动驱动轴一种配合状态的结构示意图;
图22为摆动拨叉与摆动驱动轴爆炸状态的结构示意图;
图23为本申请实施例的含手动驱动组件的开合驱动装置结构示意图;
图24为外管与钳头连接位置爆炸结构示意图;
图25为手动驱动组件的组装结构示意图;
图26为第二种开合传动组件的结构示意图;
图27为第三种开合传动组件的结构示意图;
图28为本申请实施例提供的第二解除机构的安装结构示意图;
图29为刀头连接位置的结构示意图;
图30为本申请实施例提供的器械盒沿中心位置的剖视结构示意图;
图31为本申请实施例提供的触发机构的结构示意图;
图32为本申请实施例提供的第二解除机构的结构示意图;
图33是本申请实施例提供的主操作控制台的结构示意图;
图34是本申请实施例提供的从操作设备的结构示意图。
1-套管结构;101-推杆;1011-限位槽;102-推杆输入轴;1021-环槽;1022-轴端齿轮;103-基管;1031-安装槽;1032-抵接面;1033-轴向限位凹部;1034-导向槽;104-摆动管;1041-摆动限位槽;105-外管;106-滑动轴承;107-滑动轴承;108-滑动轴承;109-滑动轴承;1091-间隙;110-密封圈;111-密封圈;112-密封圈;113-密封圈;114-导向结构;1141-导杆;115-自转管;1151-限位平面;1152-凸台;
2-器械盒;20-支架组件;201-底板;202-立柱;2021-支撑台;203-顶板;204--中板;205-导向盖; 206-安装通孔;
3-推杆驱动组件;301-驱动绞盘;302-推刀驱动轴;303-夹持环;304-输入齿轮;305-第一推刀驱动齿轮;306-第二推刀驱动齿轮;
4-摆动驱动装置;40-摆动驱动组件;401-驱动绞盘;402-摆动驱动轴;403-摆动拨叉;4031-摆动限位通孔;4032-孔;404-摆动限位部件;4041-弧形特征;405-导向轴;411-旋臂;4111-转动轴;4112-旋臂销轴;412-摆动拉杆;4121-拉杆条形槽;413-摆动驱动片;
5-自转驱动装置;501-驱动绞盘;5011-轴承;502-自转驱动轴;5021-轴承;503-主动轮;5031-正转钢丝;504-从动轮;5041-反转钢丝;505-压盖;506-轴承;507-锁紧螺母;508-联轴器;5081-联轴器主体;50811第一安装孔;5082-转接轴固定块;50821-第二安装孔;
6-开合驱动装置;601-开合驱动绞盘;602-开合驱动轴;603-开合拨叉;604-开合限位部件;605-导向轴;606-直线轴承;671-旋钮;6721-第一开合齿轮轴;6722-螺母;6723-第一开合小齿轮;6724-第二开合小齿轮;6725-第一开合大齿轮;6726-第二开合大齿轮;6727-第二开合齿轮轴;6728-第三开合齿轮轴;6729开合轮座;6731-第一大皮带轮;6732-第一小皮带轮;6733-第一皮带;6734-第二大皮带轮;6735-第二小皮带轮;6736-第二皮带;6741-第一大钢丝轮;6742-第一小钢丝轮;6743-第一钢丝绳;6744-第二大钢丝轮;6745-第二小钢丝轮;6746-第二钢丝绳;
7-钳头;701-钉仓座;702-钉砧;704-连接片;705-皮套压环;706-摆动旋转座;707-销轴;708-刀架;709-刀头;710-刀杆;
8-第一解除机构;801-第一解除件;802-连接件;803-第一转轴;804-动力输入件;
9-第二解除机构;901-第二解除件;9011-容纳凹槽;902-第一解除曲柄;903-支撑主轴;9031-限位卡环;904-第一滑动杆连接片;905-第二解除曲柄;906-第一限位片滑动杆;907-第二滑动杆连接片;908-第二限位片滑动杆;911-弹簧连接柱;912-复位弹簧;913-弹簧座;
10-触发机构;1001-触发旋钮;1002-旋转轴,1003-复位件;1004-第二触发件;1005-第一触发件;
11-主操作控制台;12-从操作设备;1201机械臂;1202-致动装置;13手术器械。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所提供的技术方案,以下结合具体附图及实施例进行详细说明。
本申请实施例提供了一种套管结构,用于连接器械执行部,请一并参阅图1和图2,套管结构1包括由内至外依次套装的推杆101、推杆输入轴102、基管103、摆动管104和外管105,各层套管相对于其相邻层套管均可以有相对的运动。推杆输入轴102能够相对基管103旋转,摆动管104能够相对基管103直线移动,外管105能够相对基管103直线移动。
手术器械通常包括钳头7、套管结构1和器械盒2,如图7所示。在一个具体实施例中,器械连接部为钳头7,套管结构1连接于器械盒2与钳头7之间,器械盒2端接收输入的驱动,通过套管结构1带动钳头7运动以满足手术需要。器械盒2内设有支架组件20,以便于各部件的安装。如图3所示,支架组件20包括底板201、立柱202、顶板203、导向盖205、中板204,各板件之间可以通过螺钉等固定连接。其中,立柱202固定连接在底板201上,顶板203固定连接在立柱202的顶端。立柱202的中间相对的位置设置有支撑台2021,中板204固定连接在支撑台2021上,且中板204位于底板201和顶板203之间。
推杆输入轴102与推杆101连接,且推杆输入轴102的转动带动推杆101直线移动,推杆101直线 移动推动钳头7的钳口刀片移动,推动钳头7的钳口刀片进退运动,即推动钳口刀片击发或退回。推杆输入轴102具体可以通过与推杆驱动组件3连接并在推杆驱动组件3的驱动下转动。基管103的转动带动钳头7自转,基管103具体可以与自转驱动装置5连接以在自转驱动装置5的驱动下转动。摆动管104能够相对基管103直线移动并带动钳头7摆动,摆动管104具体可以与摆动驱动装置4连接并在摆动驱动装置4的驱动下直线移动。外管105能够相对基管103直线移动并推动钳头7收缩入外管以闭合或者露出外管以张开,外管105具体可以与开合驱动装置6连接并在开合驱动装置6的驱动下直线移动。
套管结构1具体可以位于器械盒2中心,推杆驱动组件3、摆动驱动装置4、开合驱动装置6、自转驱动装置5分布于套管结构1的四周,并可通过其轴上的轴承安装在支架组件20上各自对应的孔内。
应用本发明提供的套管结构,能够将手术器械的器械盒2端的各驱动力向末端器械执行部(钳口7)传递,进而驱动钳头7实现开合、摆动、推刀(击发)、自转各个运动,且推杆输入轴102、摆动管104和外管105均可相对基管103独立运动,也即各层级套管具有独立的运动。采用上述结构进行各功能的驱动,结构简单,空间占用小。
在上述各实施例的基础上,推杆与基管之间、推杆输入轴与基管之间、基管与摆动管之间及摆动管与外管之间中的一者或多者分别设置有密封圈。请参阅图1,为使各个驱动结构的动作平稳顺滑,各层管件之间应存有一定的间隙,而以上间隙将导致腹腔内的气体向顺间隙向体外逸散。为封闭上述间隙,在外管105以内的各层级套管的外表面开设环槽,并在环槽中加入环形的弹性体材料作为密封圈,以完全封闭各层之间的间隙。在推杆101同基管103相接触的部分的外表面开设环槽以容纳密封圈110,进而封闭推杆101和基管103之间的间隙,并进一步防止气体从推杆101和推杆输入轴102之间的螺纹泄露;在推杆输入轴102同基管103相接处的部分的外表面开设环槽以容纳密封圈111,进而封闭推杆输入轴102和基管103之间的间隙;在基管103同摆动管104相接触的部分的外表面开设环槽以容纳密封圈112,进而封闭摆动管104和基管103之间的间隙;在摆动管104同外管105相接处的部分的外表面开设环槽以容纳密封圈113,进而封闭摆动管104和外管105之间的间隙。
需要特别指出的是,每个密封圈的截面直径均应略大于其所在的环槽截面的高度,即存在一定的过盈量。在装配状态下,该过盈量能够使密封圈在全截面方向上均受到挤压而发生弹性变形,从而紧密地贴合相邻的两层内壁和外壁。然而过大的过盈量会导致密封圈受到过量的挤压从而在内壁和外壁上产生预期以外的摩擦力。因此在本发明中,在考虑制造误差的情况下,推荐的密封圈过盈量范围优选为0.05-0.15mm范围。
推杆与基管之间、推杆输入轴与基管之间、基管与摆动管之间及摆动管与外管之间设置的各个密封圈在轴向上分别相互错开分布,进而使得整体的密封效果更好。
在上述各实施例的基础上,推杆与推杆输入轴之间、推杆输入轴与基管之间、推杆与基管之间中的一者或多者分别设置有滑动轴承。推杆与推杆输入轴相邻段的外表面、推杆输入轴与基管相邻段的外表面、推杆与基管相邻段的外表面中的一者或多者开设有环槽,滑动轴承为安装于环槽内的自润滑材料轴承。推杆输入轴相对于基管有相对旋转运动,推杆相对于推杆输入轴有旋转运动和直线运动,且推杆相对于基管有直线运动,上述相对运动具有较高的运行速度,为改善运动件之间的摩擦力,在上述各层级套管相邻段的外表面开设环槽,并在环槽中加装环形的自润滑材料作为滑动轴承,该自润滑材料有高光洁度、更低摩擦系数的内/外表面,以进一步改善各运动层之间产生的摩擦力。具体请参阅图1和图4,在推杆101同推杆输入轴102相接触的部分的外表面开设环槽以容纳滑动轴承106,进而减少推杆101相对于推杆输入轴102滑动时的摩擦力;在推杆输入轴102同基管103相接触的部分的外表面开设环槽以容纳滑动轴承108和109,进而减少推杆输入轴102相对于基管103滑动时的摩擦力;在推杆101同基管103相接处的部分的外表面开设环槽以容纳滑动轴承107,进而减少推杆101相对于基管103滑动时的摩擦力。自润滑材料轴承呈有开口的圆环,即具有沿轴向贯通设置的间隙1091。自润滑材料轴承具体可以为薄壁环状零件,通过贯通间隙1091的设置,使自润滑材料轴承成为一个半开放的圆环。则在安装时,间隙1091使得自润滑材料轴承可以产生小幅度的弹性变形而扩张,使环内径变大从而可以从推杆输入轴102的一端套入,直至装入环槽1021内。推杆101上的滑动轴承106和滑动轴承107也应用相同的结构和装配方法完成连接。
在一个具体实施例中,推杆输入轴102转动设置于支架组件20,支架组件20为支撑结构。推杆输 入轴102上设置有间距为a的动力输入端和动力输出端;a>0,推杆输入轴102的动力输出端与推杆101的动力输入端螺纹连接,推杆101的动力输出端用于与器械执行部连接,器械执行部为钳头。
推杆输入轴102的动力输入端提供转动驱动力,推杆输入轴102的动力输出端与推杆101的动力输入端螺纹连接,从而将推杆输入轴102的输入的转动驱动力转变为推杆101的直线运动,推杆101直线运动带动器械执行部直线运动,实现对器械执行部的直线驱动。推杆输入轴102上设置间距为a的动力输入端和动力输出端,且a>0,如图5所示,从而使推杆101的直线运动距离可以由间距a补偿,能够控制推杆101的动力输入端运动过程中超出推杆输入轴102的动力输入端的长度,从而降低了对推杆输入轴102的动力输入端一侧的轴向空间的要求,减小了在此侧的轴线方向的结构尺寸,此处的轴向方向是指推杆输入轴102的轴线方向。
推杆输入轴102的动力输入端和动力输出端的间距a不小于推杆101的最大行程,这样,推杆101的动力输入端不会超出推杆输入轴102的动力输入端,从而不需要在推杆输入轴102的动力输入端一侧预留容纳推杆101行程的轴向空间,节省了推杆输入轴102的动力输入端一侧的轴向空间。
如图5和图6所示,推杆输入轴102为空心轴,推杆101套设于推杆输入轴102内。推杆输入轴102内设置有内螺纹,推杆输入轴102的内螺纹为推杆输入轴102的动力输出端。推杆101靠近推杆输入轴102的一端设置有外螺纹,推杆101上的外螺纹为推杆101的动力输入端。推杆101上的外螺纹和推杆输入轴102的内螺纹形成螺旋传动副I。推杆101用于将推杆输入轴102的转动转化为器械执行部的直线运动。
套管结构1还包括导向结构114,导向结构114包括导杆1141。请参阅图5,推杆101沿轴向设置有限位槽1011,导杆1141的一端与限位槽1011配合以对推杆101周向限位,另一端与支架组件20固定连接。如图5所示,限位槽1011的一端贯穿推杆101的一端部,此端部为靠近推杆输入轴102的动力输入端的端部,另一端沿推杆101的长度方向延伸设置。为了避免限位槽1011阻挡推杆101的轴向运动,限位槽1011的长度大于推杆101的直线运动行程。同时,导杆1141伸入限位槽1011的最大的轴向长度大于推杆101的直线运动行程,从而保证在推杆101的整个运动行程内,限位槽1011均能起到限制推杆101周向转动的作用。
为了对导杆1141进行安装限位,支架组件20上设置有安装通孔206,如图8所示,导杆1141的一端固定连接在安装通孔206内。
为了方便加工,限位槽1011设置在推杆101的表面。导杆1141的横截面与限位槽1011的横截面对应设置。限位槽1011的横截面为矩形、正方形或者三角形,也可以为其他多边形,此处不做限定。
在上述实施例中,对于推杆驱动,具体的包括若干级推刀传动轮及与推杆输入轴平行设置的推刀驱动轴,推刀驱动轴的一端用于接收扭矩输入,另一端与若干级推刀传动轮中的第一级推刀传动轮同轴固定连接,末级推刀传动轮与推杆输入轴同轴固定连接。
请参阅图3,推杆驱动组件3包括驱动绞盘301、推刀驱动轴302、输入齿轮304、夹持环303。即以推刀传动轮为齿轮为例,推杆输入轴102的动力输入端为轴端齿轮1022,轴端齿轮1022与推杆输入轴102为一体结构,轴端齿轮1022与输入齿轮304啮合;输入齿轮304与轴端齿轮1022的传动比小于1,从而使啮合的轴端齿轮1022与输入齿轮304形成增速齿轮组传动。推杆输入轴102的上端外表面固定有轴承,轴承位于顶板203和双孔轴承压板所围成的环槽中,因而推杆输入轴102相对于支架组件的轴向运动被约束,仅可绕基管103的轴心相对于支架组件做旋转运动。推杆101的上端被穿过其中且固定在导向盖205上约束其旋转运动,使推杆101只能沿其自身的轴线做上下滑动。推杆101和基管103的内表面相邻,且推杆101和推杆输入轴102组成推刀驱动机构,推杆输入轴102可以相对于基管103旋转。外部的旋转动力驱动驱动绞盘301进而带动推刀驱动轴302旋转,推刀驱动轴302带动固定在其上的输入齿轮304旋转,并由输入齿轮304驱动与之啮合的第一推刀驱动齿轮305和与第一推刀驱动齿轮305同轴固定连接的第二推刀驱动齿轮306旋转,最终将旋转动力传递到推杆输入轴102并使推杆输入轴102旋转,推杆101和推杆输入轴102之间的螺旋运动副将驱动推杆101沿吻合器刀杆组件的轴心相对于推杆输入轴102和基管103运动,进而驱动其末端的吻合器钳口刀片做进退运动(未示出)。
本申请实施例还提供了一种手术器械,该手术器械可以是吻合器,手术器械包括套管结构1、钳头7和自转驱动装置5,钳头7与套管结构1的输出端连接;自转驱动装置5与套管结构1的输入端连接; 自转驱动装置5包括自转管115、基管103和自转驱动轴502。
其中,自转管115用于带动钳头7自转,自转管115与其后端的钳头7可视为刚性连接,当自转管115旋转时,钳头7将一同旋转。
基管103与自转管115固定连接,基管103仅可相对自身的轴线旋转,而无沿着轴线进行直线运动。自转驱动轴502与基管103平行设置,自转驱动轴502的一端用于接收扭矩输入,另一端通过自转传动组件与基管103连接以带动基管103旋转,基管103旋转又带动与之连接的自转管115旋转,从而自转管115的选择带动钳头7自转。
应用本申请实施例提供的手术器械,采用了自转驱动装置,基管103与自转驱动轴502平行布置,基管103的轴心即手术器械刀杆总成的轴心,通过上述设置,将自转驱动轴502轴心与刀杆总成轴心平行布局,相较于正交布局方式降低了位置精度要求,即降低了对于自转驱动轴、基管及传动端面的位置精度要求,且各部件的布局更加灵活,以满足手术器械的不同安装需求。
自转传动组件包括主动轮503和受主动轮503驱动的从动轮504,主动轮503与自转驱动轴502固定连接,从动轮504通过夹持环505套接于基管103的一端外壁以使基管103随从动轮504旋转,且从动轮504的轴向移动受限以使基管103在轴向保持静止。如图9和图10所示,主动轮503与自转驱动轴502固定连接,具体可以通过夹持的方式同轴固定于自转驱动轴502上。从动轮504套接于基管103的一端外壁,从动轮504的轴向移动受限,进而其仅能够旋转而不能轴向移动,故与之固定连接的基管103相应的也仅能够旋转而不能轴向移动,即将基管103相对于器械盒2的轴向运动被约束,从而保证基管103转动带动钳头7自转的可靠性。
主动轮503与从动轮504之间可以通过皮带或钢丝绳连接,或者,主动轮503与从动轮504分别为相啮合的齿轮。主动轮503和从动轮504处于同一安装高度上,两个零件的外表面均有绳槽特征,正转钢丝5031和反转钢丝5041的两端分别固定在主动轮503和从动轮504上并缠绕在其表面的绳槽中。则当主动轮503因外部动力驱动旋转时,缠绕其上的钢丝将牵引从动轮504旋转。通过在主动轮503和从动轮504上应用不同轮径可以灵活搭配出不同的机械速比,以匹配输入输出端需求,从而提高驱动动力源的泛用性。
从动轮504的安装具体可以通过轴承506与器械盒2转动连接,且器械盒2限制轴承506的轴向移动,与从动轮504可拆卸连接的设置有轴端紧固件,从动轮504具有沿径向延伸的台阶面,轴承506的轴向两端分别与台阶面和轴端紧固件相抵。通过轴承506的设置,一方面减少从动轮504旋转时与器械盒2之间的摩擦,另一方面与器械盒2及从动轮504配合,实现轴向上的限位,嵌套分布结构紧凑,空间占用小。
轴端紧固件具体可以采用锁紧螺母507,则从动轮504的外壁上设置有螺纹,锁紧螺母507套接并锁紧于从动轮504的一端外。轴承506位于从动轮504的下端,从动轮504下方尾端外表面设置外螺纹,同锁紧螺母507内表面的螺纹形成螺纹连接,进而将约束轴承506相对于从动轮504的轴向运动。轴承506被容纳在器械盒2上设置的环槽中,因此轴承506相对于器械盒2的轴向运动也被约束。从动轮504安装在基管103的上端,并与基管103固定,可以进一步将基管103相对于器械盒2的轴向运动也有效约束。
对于基管103与自转管115的连接,具体可以采用下述方式。在该实施例中,自转驱动装置还包括径向限位部件,请参阅图11和图12,基管103的外周面上开设有安装槽1031,且安装槽1031延伸至基管103靠近自转管115的端面,径向限位部件封闭安装槽1031的槽口以径向限位,自转管115的端部沿轴向限位于安装槽1031内,且自转管115的外周面具有至少一个限位平面1151,安装槽1031的内壁面具有与限位平面1151配合以对自转管周向限位的抵接面1032。径向限位部件用作吻合器的外管105,外管105套设于基管103和自转管115外且覆盖安装槽1031的槽口。也就是采用手术器械的外管105作为径向限位部件,外管105套装于基管103外,具体外管105可相对基管103直线滑动并带动钳头7开合。通过限位平面1151与抵接面1032的配合,基管103与自转管115之间的相对旋转被限制,即基管103转动时带动自转管115转动。同时,通过外管105覆盖安装槽1031的槽口,以对自转管115和基管103的径向进行限位,防止二者因径向方向的滑移而偏离。根据需要,外管105也可以替换为单独用于径向限位的限位管或限位片等结构。
为了对基管103与自转管115的轴向移动进行限位,安装槽1031的内壁面与自转管115的外周面中的一者具有沿径向延伸的凸台1152,另一者具有与凸台1152配合以对自转管115的轴向限位的轴向限位凹部1033。图11和图12中,以在安装槽1031的内壁面上设置轴向限位凹部1033,自转管115上设置凸台1152为例示出,根据需要也可以将二者的位置互换。通过凸台1152与轴向限位凹部1033的设置,自转管115和基管103的轴向移动被限制,从而实现了二者的相对固定。限位平面1151设置于凸台1152的外周面,抵接面1032相应的设置于轴向限位凹部1033的内壁面,结构更为简单紧凑,装配方便。
采用上述固定连接方式,充分考虑了常见手持腔镜吻合器等手术器械的连接接口,对于钳头部分结构无需改变,仅需在自转管端头相应修改凸台与限位平面等匹配特征即可完成适配,通用性好,且成本较低。
自转管115包括两个限位平面1151及两个抵接面1032,两个限位平面1151平行设置于凸台1152相对的两端;两个抵接面1032平行设置于轴向限位凹部1033相对的两端。也就是从基管103及自转管115相对的两端对其旋转进行限位,限位效果更为可靠。
在上述各实施例的基础上,请参阅图9,与自转驱动轴502连接的设置有驱动绞盘501,驱动绞盘501用于与机器人机械臂连接,以将外部电机等旋转运动输入到器械盒2内部。自转驱动轴502的一端与驱动绞盘501连接,则手术机器人的机械臂与驱动绞盘501连接后,带动驱动绞盘501旋转,进而带动自转驱动轴502旋转。驱动绞盘501的具体结构可根据手术机器人机械臂的连接端结构相应设置,此处不作具体限定。
请参阅图13,驱动绞盘501通过联轴器508与自转驱动轴502固定连接,联轴器508包括分体式的联轴器主体5081和转接轴固定块5082,转接轴固定块5082与联轴器主体5081可拆卸的固定连接并将驱动绞盘501和自转驱动轴502中的一者固定,驱动绞盘501和自转驱动轴502中的另一者与联轴器主体5081固定连接。联轴器主体5081与驱动绞盘501固定连接,具体联轴器主体5081上具有连接轴,驱动绞盘501上具有连接孔,连接轴插入连接孔中并固定,具体可以通过粘结剂粘结或者采用过盈配合等方式固定连接。联轴器主体5081朝向自转驱动轴502的端面上开设有第一安装孔50811,转接轴固定块5082上开设有与前述第一安装孔50811配合的第二安装孔50821,第一安装孔50811与第二安装孔50821形成自转驱动轴502的容纳空间。组装时,将自转驱动轴502的端部插入第一安装孔50811,而后将转接轴固定块5082与联轴器主体5081固定连接,从而将自转驱动轴502抱紧。具体转接轴固定块5082与联轴器主体5081可以通过紧定螺丝连接。自转驱动轴502与驱动绞盘501采用上述的断开设计,可便于后续传动系统的零位调节,即通过将转接轴固定块5082与联轴器主体5081拆开,即可单独对自转驱动轴502或驱动绞盘501进行转动,当其调整至合适位置后,再将转接轴固定块5082与联轴器主体5081固定连接即可。该实施例中以与驱动绞盘501与联轴器主体5081固定连接为例进行了说明,根据需要也可以将自转驱动轴502与联轴器主体5081固定连接。自转驱动轴502与驱动绞盘501的连接也并不局限于上述联轴器508结构,也可以通过其他固定连接方式连接。
根据需要,轴承506被容纳在中板204和压盖505所围成的环槽中,因此轴承506相对于支架的轴向运动也被约束。自转驱动轴502与顶板203之间可以设置轴承5021在设置有驱动绞盘501的情况下,则驱动绞盘501可以安装于底板201上。底板201与驱动绞盘501之间可以设置轴承5011。
在一个具体实施例中,手术器械还包括摆动驱动装置,摆动驱动装置包括钳头7、摆动管104、摆动驱动组件40和摆动传动组件。
其中,摆动驱动组件40与摆动管104连接以驱动摆动管104直线移动。摆动驱动组件40具体可以安装于器械盒2上,摆动驱动组件40接收驱动力输入并将其转换为直线驱动,进而带动摆动管104直线移动。
摆动管104通过摆动传动组件与钳头7连接,且摆动传动组件与钳头7形成曲柄机构B以通过摆动管104的直线移动带动钳头7摆动。摆动传动组件与钳头7形成曲柄机构B,则摆动管104的直线移动带动曲柄机构B运动,曲柄机构B将摆动管104的直线移动转换为钳头7的旋转即摆动,具体曲柄机构B可以为平行四边形曲柄机构等。
应用本发明的实施例提供的手术器械的摆动驱动装置,在手术过程中需要控制钳头7摆动时,通过 摆动驱动组件40驱动摆动管104直线移动,摆动管104又通过摆动传动组件与钳头7连接,且摆动传动组件与钳头7形成曲柄机构B,则摆动管104的直线移动可转换为钳头7的摆动。曲柄机构B结构简单,便于实现,且采用摆动管104的直线移动带动曲柄机构B动作,传动可靠性高。另外,摆动管104能够更好的利用空间,如其内部可以布局手术器械的刀杆等其他零部件,有利于减小手术器械整体的空间占用。
请一并参阅图14,摆动传动组件包括转动安装的旋臂411和与旋臂411的两端分别对应且平行设置的两个摆动拉杆412,一个摆动拉杆412的一端与旋臂411的一端转动连接,另一个摆动拉杆412的一端与旋臂411的另一端转动连接,两摆动拉杆412的另一端分别与钳头7的不同位置转动连接,旋臂411、两摆动拉杆412与钳头7构成平行四边形曲柄机构,摆动管104与旋臂411或任一摆动拉杆412连接以在摆动管104滑动时推动旋臂411转动。需要说明的是,两摆动拉杆412分别与钳头7的不同位置转动连接,则在两摆动拉杆412产生方向相反的相对直线运动时,驱动钳头7相应摆动,具体摆动拉杆412与钳头7的连接位置及两连接位置之间的间距均可根据需要设置,此处不作具体限定。旋臂411转动安装,具体可以转动连接于基管103上,旋臂411的转动轴4111为平行四边形固定旋转点。旋臂411和钳头7作为平行四边形曲柄,摆动管104直线移动时,在摆动管104的驱动下,旋臂411会产生摆动,旋臂411摆动时驱动摆动拉杆412直线移动,两个摆动拉杆412的直线移动驱动钳头7摆动,从而实现吻合器端部关节头摆动。如图15所示,通过两摆动拉杆412相对基管103平行四边形运动,从而实现钳头7的摆动。
请参阅图16,旋臂411的转动轴4111位于旋臂411的中部,即该平行四边形结构的固定旋转点位于旋臂411的中部。在旋臂411安装于基管103时,则转动轴4111与基管103相对固定。请参阅图17,旋臂411的两端分别连接有旋臂销轴4112,摆动拉杆412的两端分别设置有拉杆条形槽4121,旋臂411两端的旋臂销轴4112分别插入对应的摆动拉杆412一端的拉杆条形槽4121内。则旋臂411摆动时,两端的旋臂销轴4112的转动可分解为上下方向的运动和左右方向的运动,即旋臂销轴4112上下运动并在拉杆条形槽4121内左右运动,旋臂销轴4112的上下运动带动摆动拉杆412直线移动。
摆动拉杆412的一端与旋臂411连接,另一端与钳头7连接,钳头7与摆动拉杆412的连接方式具体可以与上述摆动拉杆412与旋臂411的连接方式相同。即钳头7上与各摆动拉杆对应的分别设置有钳头销轴,各钳头销轴分别插入对应的摆动拉杆412另一端的拉杆条形槽4121内。则摆动拉杆412直线移动时,推动钳头销轴相同方向直线运动的同时,使得钳头销轴沿拉杆条形槽4121直线移动,从而形成钳头7的摆动。拉杆条形槽4121的延伸方向垂直于摆动拉杆412的滑动方向。则旋臂411的转动能够极大程度的转化为摆动拉杆412的直线移动,空间利用率高。
通过上述设置,摆动拉杆412与旋臂411及钳头7之间相对转动的同时,也可以相对直线移动,从而摆动拉杆412在旋臂411转动下直线移动时能够保持在其延伸方向的直线上移动,从而便于摆动拉杆412的安装。例如,在基管103上开设安装槽,摆动拉杆412滑动安装于该安装槽内以沿其直线移动。
根据需要,旋臂411的转动轴4111也可以位于旋臂411的任意一端,则旋臂411的摆动以其一端为轴心。相应的通过摆动拉杆412的作用,钳头7的摆动也以其与摆动拉杆412连接的一端为轴心。
为了便于摆动管104驱动上述平行四边形驱动机构的运动,在一个实施例中,如图16所示,摆动管104靠近钳头的一端连接有摆动驱动片413,摆动驱动片413与旋臂411连接以驱动平行四边形曲柄机构B运动。则摆动管104直线移动时,带动摆动驱动片413直线移动,摆动驱动片413进而推动旋臂411摆动,旋臂411的摆动通过平行四边形曲柄机构B转换为钳头7的摆动。通过摆动驱动片413将摆动管104与旋臂411连接,可根据需要调整摆动驱动片413及摆动管104的长度等设置,进而降低对其他零部件的布局的限制。
摆动驱动片413与旋臂411的连接方式,具体可以与上述旋臂411与摆动拉杆412的连接方式类似。即摆动驱动片413靠近钳头7的一端开设有驱动片条形槽,位于旋臂411一端的旋臂销轴4112插入于驱动片条形槽内。则在摆动驱动片413直线移动时,推动旋臂销轴4112相同方向直线运动的同时,使得旋臂销轴4112沿驱动片条形槽直线移动,从而形成旋臂411的摆动。驱动片条形槽的延伸方向垂直于摆动驱动片413的滑动方向。则摆动驱动片413的直线移动能够极大程度的转化为旋臂411的摆动,空间利用率高。
摆动驱动片413可滑动安装于基管103,基管103可转动的穿设于摆动管104内,基管103与钳头7连接以带动钳头7自转。请参阅图18,基管103的外周面沿轴向设置有导向槽1034,摆动驱动片413可移动地容置于导向槽1034内。基管103相对轴线固定。摆动管104在摆动驱动组件40的驱动下相对基管103直线运动。导向槽1034具体可以为方形槽,摆动驱动片413相对的两壁面与导向槽1034的侧壁贴合,摆动管104与摆动驱动片413连接,从而带动沿导向槽1034直线移动,从而给平行四边形曲柄机构提供直线动力。通过上述设置,能够为摆动驱动片413的直线运动限位和导向,使得其直线运动更为平顺,同时限制了基管103与摆动驱动片413的相对旋转。
摆动驱动片413与摆动管104的连接,可以通过挂扣连接。如摆动驱动片413上设置挂扣,摆动管104上相应设置扣孔,则组装时将挂扣挂接在扣孔内,即可实现摆动驱动片413与摆动管104的连接。采用上述连接,拆装方便。根据需要也可以采用其他常规的固定连接方式连接。
在上述各实施例的基础上,请参阅图19,摆动驱动组件40包括与摆动管104平行设置的摆动驱动轴402和与摆动驱动轴402连接的摆动拨叉403,摆动驱动轴402用于接收扭矩输入,且摆动驱动轴402的转动带动摆动拨叉403直线移动,摆动拨叉403与摆动管104连接以带动摆动管104直线移动。摆动驱动轴402平行于摆动管104设置,用于接收扭矩输入;摆动拨叉403分别与摆动驱动轴402及摆动管104连接,用于将摆动驱动轴402的转动转换为直线移动,并带动摆动管104直线移动。摆动驱动轴402与摆动管104相平行,摆动驱动轴402在接收到手术机器人机械臂自动输入的扭矩时旋转,摆动驱动轴402的旋转作用于摆动拨叉403,摆动拨叉403将摆动驱动轴402的旋转运动转换为直线运动,进而带动摆动管104相应直线运动。采用上述摆动驱动组件40,摆动驱动轴402与摆动管104平行设置,对位置的限制较小,便于各部件的布局,空间占用小。
摆动驱动轴402与摆动拨叉403螺纹配合。摆动驱动轴402具体可以为螺杆,其为旋转运动驱动零件,摆动拨叉403则为直线运动驱动零件,其上具有螺纹孔以与螺杆构成螺旋副,将螺杆的旋转运动转化为摆动拨叉403的直线运动,从而带动摆动管104直线运动。通过螺纹结构,将旋转运动转化为直线运动的同时,具有自锁功能,可有效保证钳头关节头摆动后的自锁性能。
为了更好的对摆动驱动导向,如图19所示,摆动驱动组件40还包括与摆动驱动轴402平行设置的导向轴405,摆动拨叉403上开设有导向通孔,导向轴405穿设于导向通孔内。通过导向轴405的设置,既能够限定摆动拨叉403的直线运动方向,同时能够限制摆动拨叉403的旋转。进而保证了旋转运动转化为直线运动后,摆动拨叉403直线运动的精度和刚度。为了减小摆动拨叉403与导向轴405之间的摩擦,导向轴405与摆动拨叉403之间可以通过直线轴承连接,则直线轴承与导向轴405构成导轨副。根据需要,直线导向结构具体可使用单直线轴承与单光轴配合,单直线导轨,多直线轴承与单光轴配合,多直线导轨,直线轴承与直线导轨配合等多种组合直线传导方式。另外,根据需要也可以通过其他防转限位结构对摆动拨叉403的旋转进行限位,以使得其在摆动驱动轴402旋转时仅能够沿摆动驱动轴402的轴线直线运动。
摆动驱动轴402用于接收扭矩输入,为了便于其与手术机器人机械臂连接,与摆动驱动轴402连接的设置有驱动绞盘401,驱动绞盘401用于与手术机器人的机械臂连接。如图19所示,摆动驱动轴402的一端与驱动绞盘401连接,则手术机器人的机械臂与驱动绞盘401连接后,带动驱动绞盘401旋转,进而带动摆动驱动轴402旋转。驱动绞盘401的具体结构可根据手术机器人机械臂的连接端结构相应设置,此处不作具体限定。
对于摆动驱动轴402与驱动绞盘401的连接,具体可通过联轴器连接,该联轴器的结构与联轴器508的结构相同,具体可以参考自转驱动轴502与驱动绞盘501的连接方式。摆动驱动轴402与驱动绞盘401的连接也并不局限于上述联轴器结构,也可以通过其他固定连接方式连接。
以上实施例中详细阐述了旋转运动的动力输入部分,摆动驱动轴402和摆动拨叉403之间具体可采用螺纹配合。在另一个实施例中,请参阅图20,摆动驱动轴402和摆动拨叉403之间通过槽轮结构配合实现旋转运动与直线运动的转换,即摆动驱动轴402为槽轴,摆动拨叉403与槽轴配合形成槽轮副,通过槽轴的旋转运动,摆动拨叉可实现沿槽轴的直线运动。对于动力输入部分的其他各部件均可参考上述实施例中的相关设置,如导向轴、驱动绞盘等,此处不再赘述。
在上述各实施例中,摆动拨叉与外管的连接具体采用如下设置。请参阅图21和图22,该摆动驱动 装置还包括摆动限位部件404,摆动管104上开设有摆动限位槽1041,摆动拨叉403上相应开设有摆动限位通孔4031,摆动限位部件404滑动安装于摆动限位通孔4031内,且摆动限位部件404滑动至插入摆动限位槽1041内时将摆动管104与摆动拨叉403连接以同步直线移动;摆动限位部件404滑动至退出摆动限位槽1041时,摆动管104与摆动拨叉403脱开解除同步直线移动关系。摆动限位部件404具体可以为片状结构,空间占用小。摆动限位通孔4031的形状根据摆动限位部件404的形状相应设置,以对摆动限位部件404的滑动进行限位及导向。摆动限位槽1041的形状可以与摆动限位部件404的插入端形状相应设置。通过摆动限位部件404连接摆动拨叉403与摆动管104,实现了摆动管104与直线驱动部件的分隔,便于安装于拆除。正常工况下,摆动限位部件404插入至摆动限位槽1041中,实现正常的传动。而当发生手术器械卡顿等紧急情况时,可以通过将摆动限位部件404拔出,退出摆动限位槽1041,摆动管104与摆动拨叉403的同步直线移动关系解除,进而能够通过将摆动管104拆卸等方式将手术器械取出以应急处理。
摆动限位槽1041为环绕摆动管104的外周设置的环槽,摆动限位部件404靠近摆动限位槽1041的一端轮廓呈直径与环槽的内径对应的弧形特征4041。当摆动限位部件404插入到摆动管104的摆动限位槽1041中时,摆动拨叉403与摆动管104不能发生相对轴向运动,但是可以相对转动;当摆动限位部件404从摆动管104的摆动限位槽1041中拔出时,摆动拨叉403与摆动管104可相对轴线运动,也可以相对转动。摆动拨叉403的一端有贯通的孔4032以容纳摆动管104,摆动拨叉403的侧壁上设有容纳摆动限位部件404的摆动限位通孔4031,摆动限位通孔4031具体可以为方形槽孔。当摆动拨叉403与摆动管104不能发生相对轴向运动,但是可以相对转动时,摆动管104装入到摆动拨叉的孔中,摆动限位部件404沿摆动限位通孔4031插入,并且其上的弧形特征4041抵在摆动管104上的摆动限位槽1041内。上述连接共同形成一个榫卯结构,该榫卯结构的意义在于保持自转和摆动的运动的独立性。即在自转运动中摆动管104相应旋转时,摆动管104可以相对于摆动拨叉403相对旋转,摆动拨叉403保持原位;而当摆动驱动组件工作时,摆动拨叉403沿着刀杆组件的轴心运动,此时将带动插在其上的摆动限位部件404运动,进一步的通过相结合的环槽带动摆动管104运动,从而驱动末端钳口的摆动运动。
根据需要,摆动驱动轴402与顶板203之间可以设置轴承,摆动驱动轴402上可以连接轴端锁紧螺母将轴承压紧于顶板203上以轴向限位。在设置有驱动绞盘401的情况下,则驱动绞盘401可以安装于底板201上。底板201与驱动绞盘401之间可以设置轴承。上述实施例中的导向盖具体可以通过螺钉等固定于顶板。在设置有导向轴405的情况下,则导向轴405的两端可以与中板204和底板201通过螺钉等固定连接。
在一个具体实施例中,手术器械还包括开合驱动装置,开合驱动装置包括外管105、开合驱动轴602和开合拨叉603。
其中,外管105安装于手术器械的钳头7,外管105移动时钳头7收缩入外管105以闭合或者露出外管105以张开。也就是通过外管105的直线移动带动钳头7闭合或张开。如图24所示,钳头7包括钉仓座701和钉砧702,钉仓座701上具有导向槽,钉砧702两侧具有凸出的圆柱以插入导向槽。钉仓座701与钳口推动管703连接,钳口推动管703与外管105连接,外管105的直线移动,带动钳口推动管703直线移动,从而推动钉砧702产生旋转运动,实现钳口的闭合或张开。同时,钳口推动管703在推动钉砧702旋转闭合后,钳口推动管703进一步的直线运动推动钉砧702相应的直线移动。外管105与钳口推动管703之间具体通过连接片704连接,连接片704两端带有凸起的轴,外管105和钳口推动管703带有与连接片704上凸起的轴配合的孔。外管105靠近钳口推动管703的一端固定连接有皮套压环705,钳口推动管703靠近外管105的一端也固定连接有皮套压环705,两端的皮套压环705之间安装有关节位置保护皮套。外管105沿轴向直线运动时,推动连接片704直线运动,连接片704的直线运动推动钳口推动管703直线运动。外管105与钳口推动管703之间还可以设置摆动旋转座706,钉仓座701与摆动旋转座706通过销轴707连接,摆动旋转座706与一刀架708连接,刀架708与一基管103连接,该基管103仅旋转而不在轴线上移动,从而在轴线方向,钉仓座701为相对直线运动。
开合驱动轴602平行于外管105设置,用于接收扭矩输入;开合拨叉603分别与开合驱动轴602及外管105连接,用于将开合驱动轴602的转动转换为直线移动,并带动外管105直线移动。开合驱动轴602与外管105相平行,开合驱动轴602在接收到用户手动输入的扭矩或者手术机器人机械臂自动输入 的扭矩时旋转,开合驱动轴602的旋转作用于开合拨叉603,开合拨叉603将开合驱动轴602的旋转运动转换为直线运动,进而带动外管105相应直线运动。
外管直线移动过程中,外管内部的零部件可以保持静止,即外管的直线移动并不带动其内的零部件相应直线移动。
应用本发明提供的开合驱动装置,在手术过程中需要控制钳头7闭合或张开时,通过驱动开合驱动轴602旋转,开合驱动轴602的转动带动开合拨叉603直线移动,开合拨叉603又带动外管105直线移动,外管105推动钳头7运动以打开或闭合。一方面,开合驱动轴602既能够用于接收手动输入的扭矩,同时也能够通过连接手术机器人的机械臂等接收自动输入扭矩,控制模式更为多样化,且自动控制提升了操作精度。另一方面,开合驱动轴602与外管105平行设置,对位置的限制较小,便于各部件的布局,空间占用小。
请一并参阅图23,开合驱动轴602与开合拨叉603螺纹配合。开合驱动轴602具体可以为螺杆,其为旋转运动驱动零件,开合拨叉603则为直线运动驱动零件,其上具有螺纹孔以与螺杆构成螺旋副,将螺杆的旋转运动转化为开合拨叉603的直线运动,从而带动外管105直线运动。通过螺纹结构,将旋转运动转化为直线运动的同时,具有自锁功能,可有效保证组织夹持后的自锁性能。
为了更好的对开合拨叉603的运动导向,如图23所示,还包括与开合驱动轴602平行设置的导向轴605,开合拨叉603沿导向轴605直线移动。开合拨叉603上开设有导向通孔,导向轴605穿设于导向通孔内。通过导向轴605的设置,既能够限定开合拨叉603的直线运动方向,同时能够限制开合拨叉603的旋转。进而保证了旋转运动转化为直线运动后,开合拨叉603直线运动的精度和刚度。为了减小开合拨叉603与导向轴605之间的摩擦,导向轴605与开合拨叉603之间可以通过直线轴承606连接,则直线轴承606与导向轴605构成导轨副。根据需要,直线导向结构具体可使用单直线轴承与单光轴配合,单直线导轨,多直线轴承与单光轴配合,多直线导轨,直线轴承与直线导轨配合等多种组合直线传导方式。另外,根据需要也可以通过其他防转限位结构对开合拨叉的旋转进行限位,以使得其在开合驱动轴602旋转时仅能够沿开合驱动轴602的轴线直线运动。
开合驱动轴602用于接收扭矩输入,为了便于其与手术机器人机械臂连接,与开合驱动轴602连接的设置有开合驱动绞盘601,开合驱动绞盘601用于与机器人机械臂连接。如图4和图5所示,开合驱动轴602的一端与开合驱动绞盘601连接,则手术机器人的机械臂与开合驱动绞盘601连接后,驱动开合驱动绞盘601旋转,进而带动开合驱动轴602旋转。开合驱动绞盘601的具体结构可根据手术机器人机械臂的连接端结构相应设置,此处不作具体限定。
对于开合驱动轴602与开合驱动绞盘601的连接,具体可通过联轴器固定连接,该联轴器的结构与联轴器508的结构相同,具体可以参考自转驱动轴502与驱动绞盘501的连接方式。开合驱动轴602与开合驱动绞盘601的连接也并不局限于上述联轴器结构,也可以通过其他固定连接方式连接。
在一个实施例中,开合驱动轴602和开合拨叉603之间具体可采用螺纹配合。在另一个实施例中,开合驱动轴602和开合拨叉603之间通过槽轮结构配合实现旋转运动与直线运动的转换,即开合驱动轴602为槽轮轴,开合拨叉603与轮槽轴配合槽轮副,通过槽轮轴的旋转运动,开合拨叉603可实现沿槽轮轴的直线运动。对于动力输入部分的其他各部件均可参考上述实施例中的相关设置,如导向轴、开合驱动绞盘等,此处不再赘述。
在上述各实施例中,开合拨叉603与外管105的连接具体采用如下设置。该开合驱动装置还包括开合限位部件604,外管105上开设有开合限位槽,开合拨叉603上相应开设有开合限位通孔,开合限位部件604滑动安装于开合限位通孔内,且开合限位部件604滑动至插入开合限位槽内时将外管105与开合拨叉603连接以同步直线移动;开合限位部件604滑动至退出开合限位槽时,外管105与开合拨叉603脱开解除同步直线移动关系。开合限位部件604具体可以为片状结构,空间占用小。开合限位通孔的形状根据开合限位部件604的形状相应设置,以对开合限位部件604的滑动进行限位及导向。开合限位槽的形状可以与开合限位部件604的插入端形状相应设置。通过开合限位部件604连接开合拨叉603与外管105,实现了外管105与直线驱动部件的分隔,便于安装和拆除。正常工况下,开合限位部件604插入至开合限位槽中,实现正常的传动。而当发生手术器械卡顿等紧急情况时,可以通过将开合限位部件604拔出,退出开合限位槽,外管105与开合拨叉603的同步直线移动关系解除,进而能够通过将外管 105拆卸等方式将手术器械取出以应急处理。开合拨叉603的结构与摆动拨叉403的结构相同;开合限位部件604的结构与摆动限位部件404的结构相同,开合拨叉603、开合限位部件604和外管105的装配关系可参考图21。
开合限位槽为环绕外管105的外周面设置的环槽,开合限位部件604靠近开合限位槽的一端轮廓呈直径与环槽的内径对应的弧形特征。当开合限位部件604插入到外管105的开合限位槽中时,开合拨叉603与外管105不能发生相对轴向运动,但是可以相对转动;当开合限位部件604从外管105的开合限位槽中拔出时,开合拨叉603与外管105可相对轴线运动,也可以相对转动。开合拨叉603的一端有贯通的孔以容纳外管105,开合拨叉603的侧壁上设有容纳开合限位部件604的开合限位通孔,开合限位通孔具体可以为方形槽孔。当开合拨叉603与外管105不能发生相对轴向运动,但是可以相对转动时,外管105装入到开合拨叉603的孔中,开合限位部件604沿开合限位通孔插入,并且其上的弧形特征抵在外管105上的开合限位槽内。上述连接共同形成一个榫卯结构,该榫卯结构的意义在于保持自转和开合的运动的独立性。即在自转运动中的外管105旋转时,外管105可以相对于开合拨叉603相对旋转,开合拨叉603保持原位;而当开合驱动组件工作时,开合拨叉603沿着刀杆组件的轴心上下运动,此时将带动插在其上的开合限位部件604运动,进一步的通过相结合的环槽带动外管105上下运动,从而驱动末端钳口的开合运动。
为了便于手动操作,如图23所示,该开合驱动装置还包括手动驱动组件,手动驱动组件包括旋钮671,旋钮671通过开合传动组件与开合驱动轴602连接以带动开合驱动轴602旋转。旋钮671可以转动安装于器械盒2上,用户通过转动旋钮671,旋钮671的转动驱动开合传动组件动作,进而带动开合驱动轴602转动,从而实现手动动力输入。综上,本申请提供的开合驱动装置,既可以手动驱动,也可以通过机器人机械臂驱动,工作模式更为多样化。
开合传动组件的结构形式具体可以采用齿轮传动、皮带传动或者钢丝绳传动等多种形式。在一种实施方式中,请参阅图25,开合传动组件包括依次相啮合的若干级齿轮,且第一级齿轮与旋钮671同轴固定连接,最末级齿轮与开合驱动轴602同轴固定连接。采用若干级齿轮传动,可通过传动比的设置实现旋钮小于一圈即可实现夹持运动,且齿轮传动的精度较高。如图25中,开合传动组件包括第一开合齿轮轴6721、螺母6722、第一开合小齿轮6723、第二开合小齿轮6724、第一开合大齿轮6725、第二开合大齿轮6726、第二开合齿轮轴6727、第三开合齿轮轴6728、开合轮座6729。
手动驱动组件整体可以安装于导向盖205上,即开合轮座6729、第一开合大齿轮6725、第二开合大齿轮6726、旋钮671、第一开合齿轮轴6721、第二开合齿轮轴6727、第一开合小齿轮6723均安装在其上。
开合轮座6729为第一开合齿轮轴6721和第二开合齿轮轴6727的固定座,用于限定两个轴的轴向位置,其使用螺丝与导向盖205固定连接。第一开合大齿轮6725、螺母6722、旋钮671安装在第一开合齿轮轴6721上,其中旋钮671通过紧定螺钉与第一开合齿轮轴6721固定。第一开合齿轮轴6721上具体设有扁位用于安装第一开合大齿轮6725并限定第一开合大齿轮6725相对第一开合齿轮轴6721转动,螺母6722与第一开合齿轮轴6721上的螺纹配合,用于限定第一开合大齿轮6725轴向位置。
第二开合大齿轮6726、第一开合小齿轮6723、螺母6722安装在第二开合齿轮轴6727轴上,具体第二开合齿轮轴6727设有扁位,用于安装第二开合大齿轮6726、第一开合小齿轮6723并限定第二开合大齿轮6726、第一开合小齿轮6723相对第二开合齿轮轴6727的转动,螺母6722与第二开合齿轮轴6727螺纹配合限定第二开合大齿轮6726、第一开合小齿轮6723的轴向移动。第一开合大齿轮6725与第一开合小齿轮6723啮合,第二开合大齿轮6726与第二开合小齿轮6724啮合。
开合驱动轴602的一端与第三开合齿轮轴6728固定连接,第三开合齿轮轴6728靠近开合驱动轴602的一端加工有内槽孔,用于与螺母6722连接,另一端加工有扁位用于与第二开合小齿轮6724连接,且设置有外螺纹,与螺母6722配合以轴向固定第二开合小齿轮6724。
旋钮671旋转时,通过第一开合大齿轮6725、第一开合小齿轮6723、第二开合齿轮轴6727、第二开合大齿轮6726、第二开合小齿轮6724、第三开合齿轮轴6728传动,转化为开合驱动轴602转动,通过开合拨叉603转化为开合拨叉603的直线运动,并进一步转化为外管105的直线移动。
以上实施例说明了开合传动组件采用齿轮的形式,在另一个实施例中,开合传动组件包括依次相连 接的若干级皮带轮组件,且第一级皮带轮组件的主动轮与旋钮同轴固定连接,最末级皮带轮组件的从动轮与开合驱动轴同轴固定连接。采用若干级皮带轮传动,可通过传动比的设置实现旋钮小于一圈即可实现夹持运动,且皮带传动的结构简单。如图26所示,旋钮671具体与第一大皮带轮6731同轴固定连接,第一大皮带轮6731与第一小皮带轮6732通过第一皮带6733连接,第一小皮带轮6732与第二大皮带轮6734同轴固定连接,第二大皮带轮6734与第二小皮带轮6735通过第二皮带6736连接,即第一大皮带轮6731为第一级皮带轮组件的主动轮,第二小皮带轮6735为第二级皮带轮组件的从动轮,旋钮671转动带动第一大皮带轮6731转动,第一大皮带轮6731带动第一小皮带轮6732转动,第一小皮带轮6732带动第二大皮带轮6734同步转动,第二大皮带轮6734带动第二小皮带轮6735转动,第二小皮带轮6735则带动开合驱动轴602转动。
在另外一个实施例中,开合传动组件采用钢丝绳丝轮组件传动。开合传动组件包括依次相连接的若干级钢丝轮组件,且第一级钢丝轮组件的主动轮与旋钮同轴固定连接,最末级钢丝轮组件的从动丝轮与开合驱动轴同轴固定连接。采用若干级钢丝轮组件传动,可通过传动比的设置实现旋钮小于一圈即可实现夹持运动,且传动结构简单。如图27所示,旋钮671具体与第一大钢丝轮6741同轴固定连接,第一大钢丝轮6741与第一小钢丝轮6742通过第一钢丝绳6743连接,第一小钢丝轮6742与第二大钢丝轮6744同轴固定连接,第二大钢丝轮6744与第二小钢丝轮6745通过第二钢丝绳6746连接,即第一大钢丝轮6741为第一级钢丝轮组件的主动轮,第二小钢丝轮6745为第二级钢丝轮组件的从动轮,旋钮671转动带动第一大钢丝轮6741转动,第一大钢丝轮6741带动第一小钢丝轮6742转动,第一小钢丝轮6742带动第二大钢丝轮6744同步转动,第二大钢丝轮6744带动第二小钢丝轮6745转动,第二小钢丝轮6745则带动开合驱动轴602转动。
根据需要,开合驱动轴602与顶板203之间可以设置轴承,开合驱动轴602上可以连接螺母6722以与上述实施例中的第三齿轮轴连接。在设置有开合驱动绞盘601的情况下,则开合驱动绞盘601可以安装于底板201上。上述实施例中的导向盖具体可以通过螺钉等固定于顶板203。在设置有导向轴605的情况下,则导向轴605的两端可以与中板204和底板201通过螺钉等固定连接。
在一个具体实施例中,手术器械还包括紧急解除装置、刀头传动机构和钳头传动机构,该紧急解除装置包括第一解除机构8和第二解除机构9,第一解除机构8用于与该刀头传动机构传动连接,第二解除机构9在处于传动位置时,用于与该钳头传动机构配合,以实现该钳头传动机构的传动链闭合,在处于解除位置时,用于与该钳头传动机构分离以实现钳头传动机构的传动链断开,从而使钳头自由摆动或者开合。还包括触发机构10,触发机构10在处于第一位置时,与第一解除机构8传动连接,在处于第二位置时,与第二解除机构9传动连接。
该紧急解除装置,通过设置一个触发机构10,触发机构10在处于第一位置时,与第一解除机构8传动连接,在处于第二位置时,与第二解除机构9传动连接,触发机构10与不同的解除机构传动连接,从而便于操控不同的传动机构运动。触发机构10在处于第一位置时,与第一解除机构8传动连接,便于操作者在紧急情况下手动操作刀头709回位,避免刀头709损伤组织。推杆101通过刀杆710与刀头709连接,推杆101通过自转管115与刀杆710连接,如图29所示。触发机构10第二位置时,驱动第二解除机构9,用于该钳头传动机构的传动链断开,使得手术器械的钳头自由摆动或者开合,使得紧急人工干预解除的工作流程仅通过一个触发机构10即可完成,解除的工作流程有次序地进行,从而减少术者在需紧急解除的操作流程中的痛苦,减小了操作者犯错的可能,结构简单,使用方便,提高了手术器械的解除效率,节省了解除过程需要的时间。
参照图30和图31,触发机构10滑动设置于器械盒2上,从而使触发机构10在该第一位置和第二位置之间切换。第一解除机构8和第二解除机构9设置在支架组件20上。
其中,触发机构10与器械盒2之间设置有复位件1003,复位件1003复位时,触发机构10处于该第一位置或第二位置。在一实施例中,如图2所示,复位件1003复位时,触发机构10处于该第一位置。
如图31所示,触发机构10包括旋转轴1002、触发旋钮1001和第一触发件1005。旋转轴1002滑动连接在器械盒2上,触发旋钮1001连接在旋转轴1002的外伸端。第一触发件1005固定连接在旋转轴1002位于器械盒2内的一端。第一解除机构8设置有与第一触发件1005传动配合的第一解除件801。第一触发件1005为第一齿轮,第一解除件801为第二齿轮。复位件1003为压缩弹簧,该压缩弹簧的一 端由器械盒2的内壁限位,另一端由该第一齿轮的端面限位。
如图30所示,第一解除机构8还包括与刀头传动机构传动连接的连接件802,以及用于与外部的推杆驱动组件3传动连接的动力输入件804,推杆驱动组件3用于给动力输入件804提供动力,连接件802将动力传递给该刀头传动机构。连接件802为第三齿轮,动力输入件804为第四齿轮。动力输入件804固定连接在第一转轴803的一端,第一解除件801连接在第一转轴803的另一端,连接件802连接在第一转轴803上,第一转轴803转动连接在支架组件20上。
如图31所示,触发机构10还包括随旋转轴1002转动的第二触发件1004,第二解除机构9设置有与第二触发件1004传动配合的第二解除件901。
第二触发件1004为设置于第一触发件1005上的拨杆,由于第一触发件1005为第一齿轮,该拨杆固定连接在该第一齿轮的端面上。第二解除件901为受第二触发件1004拨动而摆动的解除摇杆。该解除摇杆的一端与第一触发件1005上的该拨杆对应设置,另一端固定连接在第一触发件1005上。
为了方便该解除摇杆与该拨杆传动连接,如图32所示,该解除摇杆上设置有容纳凹槽9011,容纳凹槽9011用于与该拨杆传动配合。容纳凹槽9011的深度和宽度由技术人员根据实际使用需要设定。容纳凹槽9011悬置在该第一齿轮的上端。当将触发旋钮1001拉到第二位置时,复位件1003压缩,该第一齿轮的位置提高,此时,该拨杆的高度与容纳凹槽9011的位置对应,该第一齿轮转动后,该拨杆在容纳凹槽9011内滑动,从而该解除摇杆受到逆时针方向的力。
第二解除机构9还包括解除离合机构,该钳头传动机构包括断开的第一钳头传动机构支链和第二钳头传动机构支链。在第二解除机构9处于传动位置时,该解除离合机构分别与该第一钳头传动机构支链和第二钳头传动机构支链传动连接,使该钳头传动机构的传动链闭合。在第二解除机构9处于解除位置时,该解除离合机构至少与该第一钳头传动机构支链和该第二钳头传动机构支链之一断开连接,从而使该第一钳头传动机构支链和第二钳头传动机构支链恢复断开状态。
该第一钳头传动机构支链包括钳头开合动力机构和钳头摆动动力机构,该第二钳头传动机构支链包括钳头开合驱动机构和钳头摆动驱动机构,钳头开合动力机构与该钳头开合驱动机构形成钳头开合机构链,钳头摆动动力机构与该钳头摆动驱动机构形成钳头摆动机构链。
其中,该解除离合机构包括摆动限位部件404和开合限位部件604,二者由第二解除件901带动同向运动。当开合限位部件604处于传动位置时,钳头开合动力机构与该钳头开合驱动机构传动连接,使该钳头开合机构链闭合,此时,钳头开合动力机构能够通过该钳头开合驱动机构驱动钳头7开合。摆动限位部件404处于传动位置时,钳头摆动动力机构与该钳头摆动驱动机构传动连接,使该钳头摆动机构链闭合,此时,钳头摆动动力机构能够通过该钳头摆动驱动机构驱动钳头7摆动。
在一实施例中,第二解除机构9包括转动设置的支撑主轴903,支撑主轴903远离该解除摇杆的一端设置该解除离合机构。支撑主轴903转动连接在支架组件20上。第二解除件901固定连接在支撑主轴903上。为了使第二解除件901受到该拨杆的拨动时能带动支撑主轴903转动,支撑主轴903的轴线与第二解除件901的轴线错开设置。这样该解除摇杆受到该拨杆的推动力时,该解除摇杆受到逆时针方向的力,支撑主轴903会逆时针转动一定角度,支撑主轴903带动该解除离合机构逆时针转动,实现该解除离合机构的解除操作,即实现摆动限位部件404和开合限位部件604的解除操作。
如图28所示,第二解除机构9还包括第一解除曲柄902,支撑主轴903和第二解除件901分设在第一解除曲柄902的两端,支撑主轴903和第二解除件901均固定连接在第一解除曲柄902上。第一解除曲柄902上连接有复位机构,该复位机构用于在第二触发件1004不作用在第二解除件901上时,使得第二解除件901和支撑主轴903回复到原始状态,此处的原始状态是指第二触发件1004未作用时,第二解除件901和支撑主轴903的位置和状态。
如图28所示,该复位机构包括固设于第一解除曲柄902的弹簧连接柱911,弹簧连接柱911与复位弹簧912的一端连接,复位弹簧912的另一端与弹簧座913固接,弹簧座913固设在支架组件20上。弹簧连接柱911与第二解除件901(该解除摇杆)分设在支撑主轴903的两端。在非解除状态时,复位弹簧912为初始状态,在解除状态时,复位弹簧912为拉伸状态,此时,如果作用在第二解除件901(该解除摇杆)上的拨动力消失时,复位弹簧912的回复力作用在弹簧连接柱911上,拉动弹簧连接柱911回位,由于弹簧连接柱911与第一解除曲柄902固定连接,支撑主轴903为转动设置,从而带动支撑主 轴903反向转动回位。
为了方便将支撑主轴903与摆动限位部件404、开合限位部件604连接,该解除离合机构还包括连接在支撑主轴903上的第二解除曲柄905,如图5所示,第二解除曲柄905上连接有第一限位片滑动杆906,第一限位片滑动杆906与第二限位片滑动杆908转动连接。第二限位片滑动杆908上滑动连接有摆动限位部件404和开合限位部件604,摆动限位部件404和开合限位部件604用于与该钳头传动机构滑动连接,以实现该钳头传动机构的传动链的闭合或者断开。
其中,第二解除曲柄905上设置有竖直方向设置的第一连接通孔和第二连接通孔,第一连接通孔连接第一限位片滑动杆906,第二连接通孔用于与支撑主轴903连接,第二连接通孔的侧面设置有螺纹通孔,螺纹通孔内螺纹连接有定位螺栓,该定位螺栓将第二解除曲柄905定位在支撑主轴903的合适位置。
如图32所示,第一限位片滑动杆906通过第一滑动杆连接片904和第二滑动杆连接片907与第二限位片滑动杆908转动连接,第二限位片滑动杆908滑动连接有摆动限位部件404和开合限位部件604。两个滑动杆连接片分别连接在第一限位片滑动杆906和第二限位片滑动杆908的上端和下端,两个滑动杆连接片与第一限位片滑动杆906、第二限位片滑动杆908使用螺母固定连接。摆动限位部件404和开合限位部件604能够在第二限位片滑动杆908上转动和滑动,从而可以适用于不同尺寸的吻合器,适用范围更广。第一限位片滑动杆906与第二限位片滑动杆908平行设置。支撑主轴903上设置有环状的限位卡环9031,支撑主轴903通过卡接在限位卡环9031内的限位卡板转动连接在支架组件20上。
本申请的实施例还提供了一种手术机器人,包括主操作控制台11及由主操作控制台11控制的从操作设备12,图33所示为本申请一实施例的主操作控制台11,图34所示为本申请一实施例的从操作设备12,从操作设备12上可拆卸连接有手术器械13,手术器械13为上述的手术器械13,手术器械13设置有上述的紧急解除装置。
由于该手术机器人采用了上述实施例中的手术器械13,所以该手术机器人的有益效果请参考上述实施例。
具体而言,外科医生在主操作控制台11上进行对从操作设备12的相关控制操作,从操作设备12根据主操作控制台11的输入指令执行对人体的外科手术。
主操作控制台11和从操作设备12可以置于一个手术室内,也可以置于不同的房间,主操作控制台11与从操作设备12可以通过有线的方式进行数据的传输,也可以通过无线方式进行数据的传输。
从操作设备12包括机械臂1201和设置在机械臂1201远端的致动装置1202,用于执行外科手术的手术器械13与致动装置1202相连接,致动装置1202通过其内部的多个致动器驱动手术器械13运动。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (20)

  1. 一种套管结构,用于连接器械执行部,其特征在于,所述套管结构包括:
    推杆(101);
    推杆输入轴(102);所述推杆输入轴(102)与所述推杆(101)连接,
    基管(103);所述推杆输入轴(102)能够相对所述基管(103)旋转并带动所述推杆(101)直线移动,所述推杆(101)直线移动推动所述器械执行部移动;所述基管(103)的转动带动所述器械执行部自转;
    摆动管(104);所述摆动管(104)能够相对所述基管(103)直线移动并带动所述器械执行部摆动;以及
    外管(105);所述外管(105)能够相对所述基管(103)直线移动并推动所述器械执行部收缩入所述外管(105)以闭合或者露出所述外管(105)以张开;
    其中,所述推杆(101)、所述推杆输入轴(102)、所述基管(103)、所述摆动管(104)和所述外管(105)由内至外依次套装。
  2. 根据权利要求1所述的套管结构,其特征在于,所述推杆输入轴(102)包括间隔设置的动力输入端和动力输出端,所述推杆输入轴(102)的动力输出端与所述推杆(101)的动力输入端螺纹连接,所述推杆(101)的动力输出端用于与所述器械执行部连接,并触发所述器械执行部做相应运动。
  3. 根据权利要求1所述的套管结构,其特征在于,所述推杆输入轴(102)的动力输入端和动力输出端间隔的距离大于或等于所述推杆(101)的最大行程。
  4. 根据权利要求2所述的套管结构,其特征在于,所述推杆输入轴(102)为空心轴,所述推杆(101)套设于所述推杆输入轴(102)内,所述推杆(101)用于将所述推杆输入轴(102)的转动转化为所述器械执行部的直线运动。
  5. 根据权利要求1所述的套管结构,其特征在于,所述套管结构还包括导向结构(114),所述导向结构(114)包括导杆(1141);所述推杆(101)沿轴向设置有限位槽(1011),所述导杆(1141)的一端与所述限位槽(1011)配合以对所述推杆(101)周向限位。
  6. 一种手术器械,其特征在于,包括:
    如权利要求1所述的套管结构(1);
    钳头(7),所述钳头(7)与所述套管结构(1)的输出端连接;以及
    自转驱动装置(5),所述自转驱动装置(5)与所述套管结构(1)的输入端连接;
    其中,所述自转驱动装置(5)包括自转管(115)、自转驱动轴(502)和自转传动组件,所述自转管(115)用于带动所述钳头(7)自转;所述自转管(115)与所述基管(103)固定连接,所述自转驱动轴(502)与所述基管(103)平行设置,所述自转驱动轴(502)的一端设置有驱动绞盘(501),所述驱动绞盘(501)用于与机器人机械臂连接,并接收转化所述机械臂的动力为旋转驱动力,另一端通过自转传动组件与所述基管(103)连接以带动所述基管(103)旋转,所述基管(103)的旋转带动所述自转管(115)旋转从而带动所述钳头(7)自转。
  7. 根据权利要求6所述的手术器械,其特征在于,所述自转传动组件包括主动轮(503)和受所述主动轮(503)驱动的从动轮(504),所述主动轮(503)与所述自转驱动轴(502)固定连接,所述从动轮(504)套接于所述基管(103)的一端外壁以使所述基管(103)随所述从动轮(504)旋转,且所述从动轮(504)的轴向移动受限以使所述基管(103)在轴向保持静止。
  8. 根据权利要求7所述的手术器械,其特征在于,所述自转驱动装置(5)还包括径向限位部件,所述基管(103)的外周面上开设有安装槽(1031),且所述安装槽(1031)延伸至所述基管(103)靠近所述自转管(115)的端面,所述径向限位部件封闭所述安装槽(1031)的槽口封闭以径向限位,所述自转管(115)的端部沿轴向限位于所述安装槽(1031)内,且所述自转管(115)的外周面具有至少一个限位平面(1151),所述安装槽(1031)的内壁面具有与所述限位平面(1151)配合以对所述自转管(115)周向限位的抵接面(1032)。
  9. 根据权利要求8所述的手术器械,其特征在于,所述安装槽(1031)的内壁面与所述自转管(115)的外周面中的一者具有沿径向延伸的凸台(1152),另一者具有与所述凸台(1152)配合以对所述自转管(115)的轴向限位的轴向限位凹部(1033)。
  10. 根据权利要求9所述的手术器械,其特征在于,所述手术器械还包括摆动驱动装置(4),所述摆动驱动装置(4)包括摆动驱动组件(40)和摆动传动组件,所述摆动驱动组件(40)与所述摆动管(104)连接以驱动所述摆动管(104)直线移动,所述摆动管(104)通过所述摆动传动组件与所述钳头(7)连接,且所述摆动传动组件与所述钳头(7)形成曲柄机构以通过所述摆动管(104)的直线移动带动所述钳头(7)摆动。
  11. 根据权利要求10所述的手术器械,其特征在于,所述摆动传动组件包括转动安装的旋臂(411)和与所述旋臂(411)的两端分别对应且平行设置的两个摆动拉杆(412),一个所述摆动拉杆(412)的一端与所述旋臂(411)的一端转动连接,另一个所述摆动拉杆(412)的一端与所述旋臂(411)的另一端转动连接,两所述摆动拉杆(412)的另一端分别与所述钳头(7)的不同位置转动连接,所述旋臂(411)、两所述摆动拉杆(412)与所述钳头(7)构成平行四边形曲柄机构,所述摆动管(104)与所述旋臂(411)或任一所述摆动拉杆(412)连接以在所述摆动管(104)滑动时推动所述旋臂(411)转动。
  12. 根据权利要求11所述的手术器械,其特征在于,所述摆动驱动组件(40)包括与所述摆动管(104)平行设置的摆动驱动轴(402)和与所述摆动驱动轴(402)连接的摆动拨叉(403),所述摆动驱动轴(402)用于接收扭矩输入,且所述摆动驱动轴(402)的转动带动所述摆动拨叉(403)直线移动,所述摆动拨叉(403)与所述摆动管(104)连接以带动所述摆动管(104)直线移动。
  13. 根据权利要求12所述的手术器械,其特征在于,所述摆动驱动装置(4)还包括摆动限位部件(404),所述摆动管(104)上开设有摆动限位槽(1041),所述摆动拨叉(403)上相应开设有摆动限位通孔(4031),所述摆动限位部件(404)滑动安装于所述摆动限位通孔(4031)内,且所述摆动限位部件(404)滑动至插入所述摆动限位槽(1041)内时将所述摆动管(104)与所述摆动拨叉(403)连接以同步直线移动;所述摆动限位部件(404)滑动至退出所述摆动限位槽(1041)时,所述摆动管(104)与所述摆动拨叉(403)脱开解除同步直线移动关系。
  14. 根据权利要求13所述的手术器械,其特征在于,所述手术器械还包括开合驱动装置(6);所述开合驱动装置(6)包括与所述外管(105)平行设置的开合驱动轴(602)和与所述开合驱动轴(602)传动连接的开合拨叉(603),所述开合驱动轴(602)用于接收扭矩输入,所述开合驱动轴(602)的转动带动所述开合拨叉(603)直线移动,所述开合拨叉(603)与所述外管(105)连接以带动所述外管(105)直线移动,所述外管(105)移动时推动所述钳头(7)闭合或者张开。
  15. 根据权利要求14所述的手术器械,其特征在于,所述开合驱动装置(6)还包括开合限位部件(604),所述外管(105)上开设有开合限位槽,所述开合拨叉(603)上相应开设有开合限位通孔,所述开合限位部件(604)滑动安装于所述开合限位通孔内,且所述开合限位部件(604)滑动至插入所述开合限位槽内时将所述外管(105)与所述开合拨叉(603)连接以同步直线移动;所述开合限位部件(604)滑动至退出所述开合限位槽时,所述外管(105)与所述开合拨叉(603)脱开解除同步直线移动关系。
  16. 根据权利要求15所述的手术器械,其特征在于,所述开合驱动装置(6)还包括与所述开合驱动轴(602)平行设置的导向轴(605),所述开合拨叉(603)沿所述导向轴(605)直线移动。
  17. 根据权利要求16所述的手术器械,其特征在于,所述手术器械还包括紧急解除装置、刀头传动机构和钳头传动机构,所述紧急解除装置包括:
    第一解除机构(8),用于与所述刀头传动机构传动连接;
    第二解除机构(9),在处于传动位置时,用于与所述钳头传动机构配合以实现所述钳头传动机构的传动链闭合,在处于解除位置时,用于与所述钳头传动机构分离以实现钳头传动机构的传动链断开;
    触发机构(10),在处于第一位置时,与所述第一解除机构(8)传动连接,在处于第二位置时,与所述第二解除机构(9)传动连接。
  18. 根据权利要求17所述的手术器械,其特征在于,所述触发机构(10)包括旋转轴(1002)和第一触发件(1005),所述第一触发件(1005)设置于所述旋转轴(1002),所述第一解除机构(8)设置 有与所述第一触发件(1005)传动配合的第一解除件(801)。
  19. 根据权利要求18所述的手术器械,其特征在于,所述触发机构(10)还包括随所述旋转轴(1002)转动的第二触发件(1004),所述第二解除机构(9)设置有与所述第二触发件(1004)传动配合的第二解除件(901)。
  20. 一种手术机器人,包括主操作控制台(11)及由所述主操作控制台(11)控制的从操作设备(12),其特征在于,所述从操作设备(12)上可拆卸连接有如权利要求6所述的手术器械。
PCT/CN2022/136673 2021-12-06 2022-12-05 套管结构、手术器械以及手术机器人 WO2023103986A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN202111478088.4A CN116269769A (zh) 2021-12-06 2021-12-06 手术机器人、手术器械及其钳头自转驱动系统
CN202111481143.5 2021-12-06
CN202111478111.XA CN116269537A (zh) 2021-12-06 2021-12-06 手术机器人、手术器械及其钳头摆动驱动系统
CN202111480884.1 2021-12-06
CN202111481146.9A CN116269540A (zh) 2021-12-06 2021-12-06 手术器械驱动机构、手术器械及手术机器人
CN202111481143.5A CN116269539A (zh) 2021-12-06 2021-12-06 紧急解除装置、手术器械及手术机器人
CN202111478088.4 2021-12-06
CN202111480884.1A CN116269770A (zh) 2021-12-06 2021-12-06 手术机器人、手术器械及其钳口开合驱动系统
CN202111480874.8A CN116269538A (zh) 2021-12-06 2021-12-06 手术机器人及手术器械
CN202111478111.X 2021-12-06
CN202111481146.9 2021-12-06
CN202111480874.8 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023103986A1 true WO2023103986A1 (zh) 2023-06-15

Family

ID=86729614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136673 WO2023103986A1 (zh) 2021-12-06 2022-12-05 套管结构、手术器械以及手术机器人

Country Status (1)

Country Link
WO (1) WO2023103986A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116784908A (zh) * 2023-07-14 2023-09-22 南京普立蒙医疗科技有限公司 一种腹腔镜缝合器的摆转结构及其制动装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682572A (zh) * 2013-10-01 2016-06-15 伊西康内外科有限责任公司 为外科器械的使用者提供接近实时反馈
US20160287279A1 (en) * 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
CN107334530A (zh) * 2017-07-31 2017-11-10 成都中科博恩思医学机器人有限公司 一种用于微创手术机器人的手术器械及微创手术机器人
US20190038282A1 (en) * 2017-08-03 2019-02-07 Ethicon Llc Surgical system bailout
CN110236676A (zh) * 2018-03-09 2019-09-17 深圳市精锋医疗科技有限公司 手术机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682572A (zh) * 2013-10-01 2016-06-15 伊西康内外科有限责任公司 为外科器械的使用者提供接近实时反馈
US20160287279A1 (en) * 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
CN107334530A (zh) * 2017-07-31 2017-11-10 成都中科博恩思医学机器人有限公司 一种用于微创手术机器人的手术器械及微创手术机器人
US20190038282A1 (en) * 2017-08-03 2019-02-07 Ethicon Llc Surgical system bailout
CN110236676A (zh) * 2018-03-09 2019-09-17 深圳市精锋医疗科技有限公司 手术机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116784908A (zh) * 2023-07-14 2023-09-22 南京普立蒙医疗科技有限公司 一种腹腔镜缝合器的摆转结构及其制动装置
CN116784908B (zh) * 2023-07-14 2024-03-08 南京普立蒙医疗科技有限公司 一种腹腔镜缝合器的摆转结构及其制动装置

Similar Documents

Publication Publication Date Title
US10130364B2 (en) Surgical instrument and drive mechanism thereof
JP6383223B2 (ja) 不適切な使用防止のための、手動による後退機構、ロックアウト機構、および接続機構を有するアダプター直結駆動
RU2647778C2 (ru) Конфигурации дифференциальной блокировки для поворотных хирургических инструментов с электропитанием
EP3011913B1 (en) Adapter direct drive with manual retraction, lockout and connection
RU2408306C2 (ru) Хирургический инструмент для наложения скобок, включающий механизм запуска множественными пусковыми нажатиями, имеющий роторную передачу с предохранительной фрикционной муфтой
RU2461364C2 (ru) Ротационный изогнутый режуще-сшивающий аппарат
US20240081849A1 (en) End effector and end effector drive apparatus
JP2018158106A (ja) 内視鏡外科用クリップアプライヤ
WO2023103986A1 (zh) 套管结构、手术器械以及手术机器人
JPH1043189A (ja) 外科器械用の関節運動伝達機構
WO2024109714A1 (zh) 应急装置及外科手术器械
CN110537945A (zh) 微创手术器械
WO2024032495A1 (zh) 微创手术器械组件
CN116269538A (zh) 手术机器人及手术器械
CN116269539A (zh) 紧急解除装置、手术器械及手术机器人
WO2023103982A1 (zh) 手术器械及手术机器人
CN116269770A (zh) 手术机器人、手术器械及其钳口开合驱动系统
CN116269769A (zh) 手术机器人、手术器械及其钳头自转驱动系统
CN116269807A (zh) 手术器械、从操作设备和机器人
CN116269772A (zh) 手术器械和手术机器人
CN116831651A (zh) 一种瓣夹操作手柄
CN116269773A (zh) 手术器械、从操作设备和手术机器人
CN116269802A (zh) 手术器械及手术机器人
CN116269540A (zh) 手术器械驱动机构、手术器械及手术机器人
CN116269537A (zh) 手术机器人、手术器械及其钳头摆动驱动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903408

Country of ref document: EP

Kind code of ref document: A1