WO2023103976A1 - 本振泄露的校准方法、装置、电子设备及存储介质 - Google Patents

本振泄露的校准方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023103976A1
WO2023103976A1 PCT/CN2022/136637 CN2022136637W WO2023103976A1 WO 2023103976 A1 WO2023103976 A1 WO 2023103976A1 CN 2022136637 W CN2022136637 W CN 2022136637W WO 2023103976 A1 WO2023103976 A1 WO 2023103976A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
local oscillator
value
oscillator leakage
special sequence
Prior art date
Application number
PCT/CN2022/136637
Other languages
English (en)
French (fr)
Inventor
王毅
张哲�
王梓铭
刘祥鹏
周红星
张作锋
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023103976A1 publication Critical patent/WO2023103976A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the technical fields of digital signal processing and communication, and in particular to a calibration method, device, electronic equipment, and storage medium for local oscillator leakage.
  • Modern communication systems have higher and higher bandwidth requirements for RF transceivers, such as 5G low-frequency broadband zero-IF system and 5G high-frequency ultra-wideband system.
  • conventional RF analog devices are far from meeting the requirements of communication systems.
  • Digitally assisted analog calibration can Optimizing LO leakage error in quadrature modulation systems to increase the bandwidth of RF transceivers.
  • the accuracy of local oscillator leakage calibration through analog adjustment is low, and it is difficult to meet the requirements of 5G transceivers. Therefore, it is necessary to perform local oscillator leakage calibration through digital assistance. Calibration of local oscillator leakage through digital assistance can greatly suppress spurs at the transmitter Leakage, and improve receiving sensitivity at the receiving end, etc.
  • the channel parameters of the transceiver must be obtained.
  • the existing methods for obtaining channel parameters mainly include:
  • the channel parameters are extracted by using the adaptive filter blind iteration method by using the signal characteristics, and then the extracted channel parameters are optimized to obtain the final channel parameters.
  • the first method of obtaining channel parameters is suitable for stable environment scenarios, and cannot adapt to the error changes caused by changes in the external environment.
  • the parameters cannot be corrected with the environment, and it cannot be realized during the system working stage, and the effect of real-time processing cannot be achieved.
  • the second method for obtaining channel parameters uses blind iteration to extract channel parameters. In the case of sudden signal changes, the channel parameters obtained by iteration are very unstable, which will cause performance degradation and result in system performance degradation.
  • the third method of obtaining channel parameters cannot be realized in the working phase of the system, and must be calibrated in the foreground.
  • the main purpose of the embodiments of the present application is to provide a calibration method, device, electronic equipment and storage medium for local oscillator leakage, which can extract channel parameters in real time in a signal-free environment, thereby performing calibration for local oscillator leakage.
  • an embodiment of the present application provides a method for calibrating local oscillator leakage, including: obtaining a feedback signal of a transmit signal; converting the transmit signal based on a service signal and a pre-input special sequence signal;
  • the input special sequence signal is a special sequence signal generated by the longest linear shift register sequence; determine the channel parameters of the service signal through the feedback signal and the special sequence signal; obtain the service signal according to the channel parameters
  • the local oscillator leakage value of the signal the service signal is calibrated according to the local oscillator leakage value.
  • an embodiment of the present application also provides a calibration device for local oscillator leakage, including: a signal acquisition module, configured to acquire a feedback signal of a transmission signal; the transmission signal is based on a service signal and a pre-input special sequence signal Converted; the pre-input special sequence signal is a special sequence signal generated by the longest linear shift register sequence; a determination module is used to determine the channel parameters of the service signal through the feedback signal and the special sequence signal A data acquisition module, configured to acquire a local oscillator leakage value of the service signal according to the channel parameter; a calibration module, configured to calibrate the service signal according to the local oscillator leakage value.
  • an embodiment of the present application further provides an electronic device, including: at least one processor; and a memory connected to the at least one processor in communication; wherein, the memory stores information that can be used by the Instructions executed by at least one processor, where the instructions are executed by the at least one processor, so that the at least one processor can execute the above method for calibrating local oscillator leakage.
  • an embodiment of the present application further provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the above method for calibrating local oscillator leakage is implemented.
  • FIG. 1 is a flow chart of a calibration method for local oscillator leakage provided according to an embodiment of the present application
  • Fig. 2 is a frame diagram of a local oscillator leakage calibration method provided according to an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of a special sequence generation module provided according to an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a special sequence injection module provided according to an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a special sequence and feedback correlation module provided according to another embodiment of the present application.
  • Fig. 6 is a schematic diagram of a calibration device for local oscillator leakage provided according to another embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of an electronic device provided according to another embodiment of the present application.
  • An embodiment of the present application relates to a method for calibrating local oscillator leakage, which is applied to electronic equipment, where the electronic equipment may be but not limited to a radio frequency transceiver such as a zero-IF transceiver.
  • the implementation flowchart of the calibration method for local oscillator leakage in the embodiment of the present application is shown in Figure 1, including:
  • Step 101 acquire a feedback signal of a transmitted signal.
  • Step 102 determine the channel parameters of the service signal through the feedback signal and the special sequence signal.
  • Step 103 obtain the local oscillator leakage value of the service signal.
  • Step 104 calibrate the service signal according to the local oscillator leakage value.
  • the transmission signal is converted based on the service signal and the pre-input special sequence signal, and the special sequence signal is a special sequence signal generated by the longest linear shift register
  • the special sequence signal is a special sequence signal generated by the longest linear shift register
  • the embodiment of the present application directly obtains the service signal of the radio frequency transceiver and the feedback signal of the special sequence signal, and determines the channel parameters through the feedback signal and the special sequence signal, which can adaptively match the working bandwidth of the current radio frequency transceiver, and when there is no signal In the environment, the channel parameters can also be extracted in real time, so as to calibrate the leakage of the local oscillator, which has the advantages of high performance, low power consumption, and high flexibility.
  • step 101 before the transmission signal is sent out, one signal of the transmission signal is connected to a feedback (FeedBack, FB) channel through a feedback line to obtain a feedback signal of the transmission signal.
  • FB Feedback
  • the transmission signal is converted based on the service signal and the pre-transmitted special sequence signal. Specifically, after the chip generates the service signal and before the service signal is converted, the special sequence signal is input into the transmission digital link, and after being combined with the service, it is converted into a transmission signal. Signal.
  • the pre-input special sequence signal is a special sequence signal generated by the longest linear shift register sequence (ie m sequence).
  • period length of the special sequence signal in this embodiment is greater than or equal to 2 23 .
  • the temperature change of the chip generating the service signal exceeds a preset threshold.
  • the temperature of the chip is detected by the on-chip sensor, and the value of the preset threshold is an empirical value.
  • the local oscillator leakage value of the service signal exceeds the preset threshold, thereby triggering the calibration of the local oscillator leakage, that is, before the transmission signal is sent, all the signals of the transmission signal will be Connect to the FB channel through the feedback line to obtain the feedback signal of the transmitted signal.
  • the temperature change of the chip generating the service signal is less than or equal to the preset threshold, it means that the leakage value of the local oscillator is within the preset range, which will not affect the bandwidth of the radio frequency transceiver, and thus will not obtain the transmission signal feedback signal.
  • step 102 after obtaining the feedback signal of the transmitted signal, determine the channel parameters of the service signal according to the feedback signal and the special sequence signal.
  • the feedback signal is multiplied by the special sequence signal to obtain the time delay value of the service signal, and then the channel parameters are determined according to the time delay value.
  • the special sequence signal before multiplying the feedback signal and the special sequence signal to obtain the delay value of the service signal, the special sequence signal is first input into multiple delayers to obtain multiple delayed special sequence signals, and the feedback signal Multiply with multiple delayed special sequence signals respectively to obtain multiple delay values of business signals, and calculate the average value of multiple delay values and the average value of the square of multiple delay values respectively, that is, Obtain the delay value of the service signal.
  • a more accurate delay value is obtained by obtaining multiple delay values of the service signal, and calculating the average value and the average value of the square of the multiple delay values.
  • the DC value of the feedback signal and the DC value of the transmitted signal it is necessary to obtain the DC value of the feedback signal and the DC value of the transmitted signal, and according to the DC value of the feedback signal, the DC value of the transmitted signal, and the delay value, Determine channel parameters. Specifically, in the case of obtaining the delay value, the DC value of the feedback signal is used, and the DC value of the transmitted signal is used to calculate the channel parameters.
  • the DC values of the feedback signals of the I-channel signal and the Q-channel signal are Efb1 and Efb2 respectively
  • the special sequence signal is PN
  • ETX DC is the DC value of the transmitted signal
  • is the channel parameter
  • A is the amplitude of the special sequence signal.
  • step 103 according to the channel parameters, the local oscillator leakage value of the service signal can be obtained, wherein the calculation formula of the local oscillator leakage value is as follows:
  • ETX cal (Efb1+Efb2)/2/ ⁇ -ETX DC
  • ETX cal is the local oscillator leakage value.
  • the service signal is calibrated according to the local oscillator leakage value.
  • the local oscillator leakage value may be compensated according to the calibration value of the local oscillator leakage, so as to realize the calibration of the local oscillator leakage.
  • EI and EQ are the calibration values of the I-channel signal and the Q-channel signal, respectively, where EI and EQ are:
  • the service signal is calibrated according to the leakage value of the local oscillator, it is confirmed whether the temperature change of the chip generating the service signal exceeds the preset threshold, and if the temperature change of the chip generating the service signal exceeds the preset threshold, Repeat the method for calibrating the LO leakage value of this embodiment. That is, after the local oscillator leakage is calibrated, if the local oscillator leakage value does not meet the calibration conditions, that is, the calibration value of the local oscillator leakage is not reached, the above steps 101 and 104 are repeated.
  • the iterative formula of the local oscillator leakage calibration value is:
  • the embodiment of the present application is applied in the framework structure shown in Figure 2, including: digital baseband 201, digital analog converter 202 (Digital Analog Convert, DAC), low-pass filter 203, local oscillator modulator 204, a radio frequency bandpass filter 205, a power amplifier module 206, a local oscillator modulator 207, a low-pass filter 208, and an analog-to-analog digital converter 209 (Analog Digital Converter, ADC).
  • digital baseband 201 digital analog converter 202 (Digital Analog Convert, DAC), low-pass filter 203, local oscillator modulator 204, a radio frequency bandpass filter 205, a power amplifier module 206, a local oscillator modulator 207, a low-pass filter 208, and an analog-to-analog digital converter 209 (Analog Digital Converter, ADC).
  • digital analog converter 202 Digital Analog Convert, DAC
  • ADC Analog Digital Converter
  • FIG. 2 is only for illustration, and in a specific implementation, some attenuation and matching devices may also be included in the link, which are not shown in the figure.
  • the digital baseband module 201 includes: a baseband signal, a special sequence generation module, a special sequence injection module, a transmission digital link, a feedback digital link, and a special sequence and feedback correlation module.
  • the baseband signal is a service signal generated by a radio frequency transceiver, such as an I-channel signal and a Q-channel signal.
  • the special sequence generation module that is, the longest linear shift register sequence, is used to generate special sequence signals.
  • the structural diagram of the special sequence generation module is shown in FIG. 3 , including a modulo 2 adder 301 , a feedback line connection module 302 , and an output module 303 .
  • the input terminal of the longest linear shift register is controlled by the output signal. Every time it is shifted, a state will appear. After shifting several times, the previous certain state must be repeated. Once the state is established, the subsequent process repeats itself.
  • the special sequence injection module is used to input and transmit the digital link through the special sequence injection module after the special sequence signal is generated.
  • the structural diagram of the special sequence injection module is shown in Figure 4, including: special sequence signals, such as PN sequence signals, adder 1, adder 2, and service signals of the transmission link, such as I-channel signal S1I and Q signal S1Q.
  • special sequence signals such as PN sequence signals
  • adder 1 adder 2
  • service signals of the transmission link such as I-channel signal S1I and Q signal S1Q.
  • the PN sequence signal is added to the I-channel signal S1I and the Q-channel signal S1Q through the adder 1 and the adder 2 respectively, and outputs S2I and S2Q.
  • the transmit digital link is used for inputting digital signals, ie, baseband signals, into the digital-to-analog converter 102 .
  • the feedback digital link is used to receive a feedback signal of the transmitted signal, wherein the feedback signal is a digital signal.
  • the special sequence and feedback correlation module is used to process the feedback signal and special sequence to obtain the data required for local oscillator leakage calibration.
  • FIG. 5 the structural diagram of the special sequence and feedback related modules is shown in Figure 5, including:
  • the special sequence signal is input into the Cdelay delayer, and after passing through the small delayer, it is multiplied by the feedback signal, and then enters the adder and accumulator to obtain the delay value.
  • the number of small delayers is greater than or equal to 1, and in specific implementation, those skilled in the art can set the number of small delayers according to actual needs.
  • the number of small delayers is set according to the characteristics and power consumption of the device, and the number shown in the figure is 32, that is, D1 to D32.
  • DAC102 for converting digital signal to analog signal.
  • the low-pass filter 103 is used for filtering the analog signal.
  • the local oscillator modulator 104 is configured to modulate the received analog signal into a radio frequency signal, wherein the analog signal is a feedback signal of the transmitted signal.
  • the radio frequency bandpass filter 105 is used for filtering radio frequency signals.
  • the power amplifier module 106 is configured to amplify and transmit radio frequency signals, that is, transmit signals.
  • the local oscillator modulator 107 is used to demodulate the radio frequency signal into an analog signal.
  • the low-pass filter 108 is used for filtering the analog signal.
  • ADC109 is used to convert the analog signal into a digital signal and input the digital signal into the feedback digital link.
  • step division of the above various methods is only for the sake of clarity of description. During implementation, it can be combined into one step or some steps can be split and decomposed into multiple steps. As long as they include the same logical relationship, they are all within the scope of protection of this patent. ; Adding insignificant modifications or introducing insignificant designs to the algorithm or process, but not changing the core design of the algorithm and process are all within the scope of protection of this patent.
  • FIG. 6 is a schematic diagram of a calibration device for local oscillator leakage described in this embodiment, including: a signal acquisition module 601 , a determination module 602 , a data acquisition module 603 and a calibration module 604 .
  • the signal acquisition module 601 is used to obtain the feedback signal of the transmission signal; wherein, the transmission signal is converted based on the service signal and the pre-input special sequence signal; the pre-input special sequence signal is generated by the longest linear shift register sequence special sequence signal.
  • the determination module 602 is configured to determine the channel parameters of the service signal through the feedback signal and the special sequence signal.
  • the determining module 602 is further configured to multiply the feedback signal and the special sequence signal to obtain a time delay value of the service signal; and determine channel parameters according to the time delay value.
  • the determining module 602 is further configured to multiply the feedback signal by the multiple delayed special sequence signals after inputting the special sequence signal into multiple delayers to obtain multiple delayed special sequence signals , to obtain multiple time delay values of the service signal; calculating the average value of the multiple time delay values and the average value of the squares of the multiple time delay values to obtain the time delay value of the service signal.
  • the determining module 602 is further configured to determine channel parameters according to the DC value of the feedback signal, the DC value of the transmitting signal, and the delay value after obtaining the DC value of the feedback signal and the DC value of the transmitting signal.
  • the data acquisition module 603 is configured to acquire the local oscillator leakage value of the service signal according to the channel parameters.
  • the data acquisition module 603 is further configured to acquire the local oscillator leakage value of the service signal according to the DC value of the feedback signal, the DC value of the transmitted signal, and the channel parameters.
  • the calibration module 604 is configured to calibrate the service signal according to the local oscillator leakage value.
  • this embodiment is an apparatus embodiment corresponding to the above method embodiment, and this embodiment can be implemented in cooperation with the above method embodiment.
  • the relevant technical details and technical effects mentioned in the above embodiments are still valid in this embodiment, and will not be repeated here to reduce repetition.
  • the relevant technical details mentioned in this embodiment can also be applied in the above embodiments.
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • FIG. 7 Another embodiment of the present application relates to an electronic device, as shown in FIG. 7 , including: at least one processor 701; and a memory 702 communicatively connected to the at least one processor 701; wherein, the memory 702 stores Instructions that can be executed by the at least one processor 701, the instructions are executed by the at least one processor 701, so that the at least one processor 701 can execute the method for calibrating local oscillator leakage in the foregoing embodiments.
  • the memory and the processor are connected by a bus
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus may also connect together various other circuits such as peripherals, voltage regulators, and power management circuits, all of which are well known in the art and therefore will not be further described herein.
  • the bus interface provides an interface between the bus and the transceivers.
  • a transceiver may be a single element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices over a transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interface, voltage regulation, power management, and other control functions. Instead, memory can be used to store data that the processor uses when performing operations.
  • Another embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are realized when the computer program is executed by the processor.
  • a storage medium includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .
  • the method for calibrating local oscillator leakage proposed in this application obtains the feedback signal of the transmission signal, wherein the transmission signal is converted based on the service signal and the pre-input special sequence signal, and the special sequence signal is a special sequence generated by the longest linear shift register.
  • the channel parameters of the service signal can be determined through the feedback signal and the special sequence signal, and then according to the channel parameters, the local oscillator leakage value of the service signal can be obtained, and the service signal can be calibrated through the local oscillator leakage value.
  • the embodiment of the present application directly obtains the service signal of the radio frequency transceiver and the feedback signal of the special sequence signal, and determines the channel parameters through the feedback signal and the special sequence signal, which can adaptively match the working bandwidth of the current radio frequency transceiver, and when there is no signal In the environment, the channel parameters can also be extracted in real time, so as to calibrate the leakage of the local oscillator, which has the advantages of high performance, low power consumption, and high flexibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Transmitters (AREA)

Abstract

本申请公开了一种本振泄露的校准方法、装置、电子设备及存储介质。所述本振泄露的校准方法包括:获取发射信号的反馈信号(101);所述发射信号基于业务信号和预输入的特殊序列信号转换得到;所述预输入的特殊序列信号为最长线性移位寄存器序列产生的特殊序列信号;通过所述反馈信号以及所述特殊序列信号,确定所述业务信号的信道参数(102);依据所述信道参数,获取所述业务信号的本振泄露值(103);根据所述本振泄露值对所述业务信号进行校准(104)。

Description

本振泄露的校准方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请基于申请号为202111500480.4、申请日为2021年12月9日的中国专利申请提出,并要求该中国专利申请的优先权。该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及数字信号处理和通信技术领域,特别涉及一种本振泄露的校准方法、装置、电子设备及存储介质。
背景技术
现代通信系统对射频收发器的带宽要求越来越高,例如5G低频宽带零中频系统,5G高频超宽带系统,但是,常规的射频模拟器件远无法达到通信系统的指标要求,通过数字辅助模拟校准能够对正交调制系统中本振泄露误差进行优化,以提升射频收发器的带宽。一般通过模拟调节进行本振泄露校准精度低,难以满足5G收发信机的要求,所以要通过数字辅助进行本振泄露校准,通过数字辅助对本振泄露进行校准可以在发射端极大的抑制杂散泄露,并在接收端提高接收灵敏度等。
通过数字辅助进行本振泄露误差校准的方法很多,首先必须得到收发信机的信道参数,现有的获取信道参数方法主要有:
(1)采用离线参数计算调节,采用信号源、频谱仪以及计算机进行离线测试,对特定模块进行详细量测,最终得到固定的信道参数。
(2)利用信号特性采用自适应滤波器盲迭代方式进行信道参数提取,再对提取的信道参数进行优化得到最终的信道参数。
(3)通过数字域发射单音或者宽带信号,以获取信道参数。
然而,第一种获取信道参数的方法适合环境稳定场景,无法适应外界环境产生变化带来的误差改变,参数无法随环境进行修正,且在系统工作阶段是无法实现的,无法达到实时处理的效果;第二种获取信道参数的方法采用盲迭代的方式提取信道参数,在信号突变的情况下,其迭代得到的信道参数很不稳定,会引起性能恶化,导致系统性能降低。第三种获取信道参数的方法在系统工作阶段无法实现,必须在前台进行校准操作。
发明内容
本申请实施例的主要目的在于提出一种本振泄露的校准方法、装置、电子设备及存储介质,在无信号的环境下,可以实时地提取信道参数,从而进行本振泄露的校准。
为至少实现上述目的,本申请实施例提供了一种本振泄露的校准方法,包括:获取发射信号的反馈信号;所述发射信号基于业务信号和预输入的特殊序列信号转换得到;所述预输入的特殊序列信号为最长线性移位寄存器序列产生的特殊序列信号;通过所述反馈信号以及所述特殊序列信号,确定所述业务信号的信道参数;依据所述信道参数,获取所述业务信号的本振泄露值;根据所述本振泄露值对所述业务信号进行校准。
为至少实现上述目的,本申请实施例还提供一种本振泄露的校准装置,包括:信号获取模块,用于获取发射信号的反馈信号;所述发射信号基于业务信号和预输入的特殊序列信号转换得到;所述预输入的特殊序列信号为最长线性移位寄存器序列产生的特殊序列信号;确定模块,用于通过所述反馈信号以及所述特殊序列信号,确定所述业务信号的信道参数;数据获取模块,用于依据所述信道参数,获取所述业务信号的本振泄露值;校准模块,用于根据所述本振泄露值对所述业务信号进行校准。
为至少实现上述目的,本申请实施例还提供了一种电子设备,包括:至少一个处理器;以及,与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的本振泄露的校准方法。
为至少实现上述目的,本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现上述的本振泄露的校准方法。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标识的元件表示为类似的元件,除非有特别的申明,附图中的图不构成比例限制。
图1是根据本申请一个实施例提供的一种本振泄露的校准方法的流程图;
图2是根据本申请一个实施例提供的一种本振泄露校准方法的框架图;
图3是根据本申请一个实施例提供的一种特殊序列产生模块的结构示意图;
图4是根据本申请一个实施例提供的一种特殊序列注入模块的结构示意图;
图5是根据本申请另一个实施例提供的一种特殊序列和反馈相关模块的结构示意图;
图6是根据本申请另一个实施例提供的一种本振泄露的校准装置示意图;
图7是根据本申请另一个实施例提供的一种电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请的一个实施例涉及一种本振泄露的校准方法,应用于电子设备,其中,电子设备可以是但不限于如零中频收发信机的射频收发信机。本申请实施例的本振泄露的校准方法的实现流程图如图1所示,包括:
步骤101,获取发射信号的反馈信号。
步骤102,通过反馈信号以及特殊序列信号,确定业务信号的信道参数。
步骤103,依据信道参数,获取业务信号的本振泄露值。
步骤104,根据本振泄露值对业务信号进行校准。
本实施例中,通过获取发射信号的反馈信号,其中,发射信号基于业务信号和预输入的特殊序列信号转换得到,且特殊序列信号为最长线性移位寄存器产生的特殊序列信号,通过反馈信号和特殊序列信号可以确定业务信号的信道参数,然后根据信道参数,可以获取业务信号的本振泄露值,通过本振泄露值,对业务信号进行校准。本申请实施例直接获取射频收发信机的业务信号与特殊序列信号的反馈信号,并通过反馈信号和特殊序列信号确定信道参数,可以自适应匹配当前射频收发信机的工作带宽,并且在无信号的环境下,也可以实时地提取信道参数,从而进行本振泄露的校准,具有高性能、低功耗、高灵活性的优点。
下面对本实施例的本振泄露的校准方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
在步骤101中,在发射信号发出之前,将发射信号的一路信号通过反馈线连接到反馈(FeedBack,FB)通道,获取发射信号的反馈信号。
其中,发射信号基于业务信号和预输的特殊序列信号转换得到,具体为在的芯片生成业务信号之后,在业务信号转换之前,将特殊序列信号输入发射数字链路,与业务结合后转换为发射信号。
其中,预输入的特殊序列信号为最长线性移位寄存器序列(即m序列)产生的特殊序列信号。m序列可由二进制线性反馈移位寄存器产生,主要通过n个串联的寄存器、移位脉冲产生器和模2加法器组成。反馈线位置不同将出现不同周期的不同序列,通过改变线性反馈的位置,能使移存器产生的序列最长,可以到P=2 n-1。
需要说明的是,本实施例中的特殊序列信号的周期长度大于或等于2 23
在一个例子中,在获取发射信号的反馈信号之前,首先需要确认生成业务信号的芯片的温度变化超过预设门限。例如,通过片上传感器检测芯片的温度,预设门限的值为经验值。通过确认生成业务信号的芯片的温度变化超过预设门限,以确认业务信号的本振泄露值超过预设门限,从而触发本振泄露的校准,即在发射信号发出之前,将发射信号的一路信号通过反馈线连接到FB通道,获取发射信号的反馈信号。
可以理解的是,若生成业务信号的芯片的温度变化小于或等于预设门限,则表示本振泄露值在预设范围内,不会对射频收发信机的带宽造成影响,因而不会获取发射信号的反馈信号。
在步骤102中,在获取到发射信号的反馈信号之后,根据反馈信号和特殊序列信号,确定业务信号的信道参数。
具体地,将反馈信号和特殊序列信号相乘,得到业务信号的时延值,然后根据时延值,确定信道参数。
在一个例子中,在将反馈信号和特殊序列信号相乘,得到业务信号的时延值之前,首先将特殊序列信号输入多个时延器,得到多个延时的特殊序列信号,将反馈信号分别与多个延时的特殊序列信号相乘,得到业务信号的多个时延值,并分别计算出计算多个时延值的平均值和多个时延值的平方的平均值,即可得到业务信号的时延值。通过获取业务信号的多个时延值,并计算出多个时延值的平均值和平方的平均值,以得到更精确的时延值。
在一个例子中,在根据时延值,确定信道参数之前,需获取反馈信号的直流值,以及发射信号的直流值,并根据反馈信号的直流值,发射信号的直流值,以及时延值,确定信道参数。具体地,在得到时延值的情况下,采用反馈信号的直流值,发射信号的直流值计算得到 信道参数。
例如,I路信号和Q路信号的反馈信号的直流值分别为Efb1和Efb2,特殊序列信号为PN,ETX DC为发射信号的直流值,φ为信道参数,A为特殊序列信号的幅度。
当特殊序列信号为正时,即A为A PN+时,Efb1=(ETX DC+A PN+)*φ;
当特殊序列信号为负时,即A为A PN-时,Efb2=(ETX DC-A PN-)*φ;
根据上述公式,可以得出,(Efb1+Efb2)/2=ETX DC*φ;
因此,信道参数φ=(Efb1+Efb2)/2/A。
在步骤103中,根据信道参数,可以获取业务信号的本振泄露值,其中,本振泄露值的计算公式如下:
ETX cal=(Efb1+Efb2)/2/φ-ETX DC
其中,ETX cal为本振泄露值。
在步骤104中,根据本振泄露值对业务信号进行校准。具体地,可根据本振泄露校准值对本振泄露值进行补偿,以实现本振泄露的校准。
在一个例子中,EI和EQ分别为I路信号和Q路信号的校准值,其中,EI和EQ为:
EI=ETX Cal.real
EQ=ETX Cal.imag
在一个例子中,在根据本振泄露值对业务信号进行校准之后,确认生成业务信号的芯片的温度变化是否超过预设门限,在生成业务信号的芯片的温度变化超过预设门限的情况下,重复执行本实施例的本振泄露值得校准方法。即在对本振泄露进行校准之后,若本振泄露值不满足校准条件,即为未达到本振泄露校准值,则重复执行上述步骤101值步骤104。
其中,本振泄露校准值的迭代公式为:
LOL n=LOL n-1+[EI EQ]
LOL 0=[0 0]
在一个例子中,本申请实施例应用在如图2所示的框架结构中,包括:数字基带201,数字模拟转换器202(Digital Analog Convert,DAC),低通滤波器203,本振调制器204,射频带通滤波器205,功放模块206,本振调制器207,低通滤波器208,以及模拟模拟数字转换器209(Analog Digital Converter,ADC)。
本领域技术人员可以理解的是,图2中示出的各种器件仅为举例说明,具体实现中,链路中还会包括一些衰减和匹配器件,图中未示出。
具体而言,数字基带模块201包括:基带信号,特殊序列产生模块,特殊序列注入模块,发射数字链路,反馈数字链路,以及特殊序列和反馈相关模块。
其中,基带信号为射频收发信机生成的业务信号,如,I路信号和Q路信号。
特殊序列产生模块,即最长线性移位寄存器序列,用于产生特殊序列信号。
在一个例子中,特殊序列产生模块的结构示意图如图3所示,包括模2加法器301,反馈线的连接模块302,以及输出模块303。
其中,反馈线的连接模块302中反馈线的连接状态用c i表示,c i=1表示此线接通,即生成业务信号的芯片的温度变化超过预设门限,需要进行本振泄露的校准,则获取发射信号的反馈信号;c i=0表示此线断开,即生成业务信号的芯片的温度变化小于或等于预设门限,无需获取发射信号的反馈信号。
输出模块303中第n-i级输出的状态用a n-i表示(a i=0或a i=1,i=整数)。
由于需要获取发射信号的反馈信号,最长线性移位移存器的输入端受控于输出信号,每移位一次,就出现一种状态,在移位若干次后,一定能重复出现前某一状态,其后的过程便周而复始。
特殊序列注入模块,用于在特殊序列信号产生后通过特殊序列注入模块输入发射数字链路。
在一个例子中,特殊序列注入模块的结构示意图如图4所示,包括:特殊序列信号,例如PN序列信号,加法器1,加法器2,以及发射链路的业务信号,例如I路信号S1I和Q路信号S1Q。
具体地,PN序列信号分别经过加法器1和加法器2,与I路信号S1I和Q路信号S1Q相加,并输出S2I和S2Q。
发射数字链路,用于将数字信号,即基带信号输入数字模拟转换器102。
反馈数字链路,用于接收发射信号的反馈信号,其中,反馈信号为数字信号。
特殊序列和反馈相关模块,用于对反馈信号和特殊序列进行处理,得到本振泄露校准所需的数据。
在一个例子中,特殊序列和反馈相关模块的结构示意图如图5所示,包括:
Cdelay延时器,小延时器,乘法器,加法器,以及累加器。
具体地,特殊序列信号输入Cdelay延时器,再经过小延时器后,与反馈信号相乘,然后进入加法器,以及累加器,得到时延值。
其中,小延时器的数量大于等于1,具体实现中,本领域技术人员可根据实际需要设置小延时器的数量。例如,根据器件的特性与功耗设置小延时器的数量,图中示出的数量为32个,即D1至D32。
DAC102,用于将数字信号转换为模拟信号。
低通滤波器103,用于过滤模拟信号。
本振调制器104,用于将接收的模拟信号调制为射频信号,其中,模拟信号为发射信号的反馈信号。
射频带通滤波器105,用于过滤射频信号。
功放模块106,用于将射频信号,即发射信号放大发射出去。
本振调制器107,用于将射频信号解调为模拟信号。
低通滤波器108,用于过滤模拟信号。
ADC109,用于将模拟信号转换为数字信号,并将数字信号输入反馈数字链路。
需要说明的是,本实施方式中的上述各示例均为方便理解进行的举例说明,并不对本申请的技术方案构成限定。
上面各种方法的步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对算法中或者流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其算法和流程的核心设计都在该专利的保护范围内。
本申请的另一个实施例涉及一种本振泄露的校准装置,下面对本实施例的本振泄露的校准装置的细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本例的必 须,图6是本实施例所述的本振泄露的校准装置的示意图,包括:信号获取模块601、确定模块602、数据获取模块603和校准模块604。
具体而言,信号获取模块601,用于获取发射信号的反馈信号;其中,发射信号基于业务信号和预输入的特殊序列信号转换得到;预输入的特殊序列信号为最长线性移位寄存器序列产生的特殊序列信号。
确定模块602,用于通过反馈信号以及特殊序列信号,确定业务信号的信道参数。
在一个例子中,确定模块602,还用于将反馈信号和特殊序列信号相乘,得到业务信号的时延值;根据时延值,确定信道参数。
在一个例子中,确定模块602,还用于在将特殊序列信号输入多个时延器,得到多个延时的特殊序列信号之后,将反馈信号分别与多个延时的特殊序列信号相乘,得到业务信号的多个时延值;计算多个时延值的平均值和多个时延值的平方的平均值,得到业务信号的时延值。
在一个例子中,确定模块602,还用于在获取反馈信号的直流值,以及发射信号的直流值之后,根据反馈信号的直流值,发射信号的直流值,以及时延值,确定信道参数。
数据获取模块603,用于依据信道参数,获取业务信号的本振泄露值。
在一个例子中,数据获取模块603,还用于依据反馈信号的直流值,发射信号的直流值,以及信道参数,获取业务信号的本振泄露值。
校准模块604,用于根据本振泄露值对业务信号进行校准。
不难发现,本实施例为与上述方法实施例对应的装置实施例,本实施例可以与上述方法实施例互相配合实施。上述实施例中提到的相关技术细节和技术效果在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请另一个实施例涉及一种电子设备,如图7所示,包括:至少一个处理器701;以及,与所述至少一个处理器701通信连接的存储器702;其中,所述存储器702存储有可被所述至少一个处理器701执行的指令,所述指令被所述至少一个处理器701执行,以使所述至少一个处理器701能够执行上述各实施例中的本振泄露的校准方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的 数据。
本申请另一个实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请提出的本振泄露的校准方法,通过获取发射信号的反馈信号,其中,发射信号基于业务信号和预输入的特殊序列信号转换得到,且特殊序列信号为最长线性移位寄存器产生的特殊序列信号,通过反馈信号和特殊序列信号可以确定业务信号的信道参数,然后根据信道参数,可以获取业务信号的本振泄露值,通过本振泄露值,对业务信号进行校准。本申请实施例直接获取射频收发信机的业务信号与特殊序列信号的反馈信号,并通过反馈信号和特殊序列信号确定信道参数,可以自适应匹配当前射频收发信机的工作带宽,并且在无信号的环境下,也可以实时地提取信道参数,从而进行本振泄露的校准,具有高性能、低功耗、高灵活性的优点。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的原理和范围。

Claims (10)

  1. 一种本振泄露的校准方法,包括:
    获取发射信号的反馈信号;所述发射信号基于业务信号和预输入的特殊序列信号转换得到;所述预输入的特殊序列信号为最长线性移位寄存器序列产生的特殊序列信号;
    通过所述反馈信号以及所述特殊序列信号,确定所述业务信号的信道参数;
    依据所述信道参数,获取所述业务信号的本振泄露值;
    根据所述本振泄露值对所述业务信号进行校准。
  2. 根据权利要求1所述的本振泄露的校准方法,其中,在所述获取发射信号的反馈信号之前,还包括:
    确认生成所述业务信号的芯片的温度变化超过预设门限。
  3. 根据权利要求2所述的本振泄露的校准方法,其中,所述通过所述反馈信号以及所述特殊序列信号,确定所述业务信号的信道参数,包括:
    将所述反馈信号和所述特殊序列信号相乘,得到所述业务信号的时延值;
    根据所述时延值,确定所述信道参数。
  4. 根据权利要求3所述的本振泄露的校准方法,其中,在所述将所述反馈信号和所述特殊序列信号相乘,得到所述业务信号的时延值之前,还包括:
    将所述特殊序列信号输入多个时延器,得到多个延时的特殊序列信号;
    所述将所述反馈信号和所述特殊序列信号相乘,得到所述业务信号的时延值,包括:
    将所述反馈信号分别与所述多个延时的特殊序列信号相乘,得到所述业务信号的多个时延值;
    计算所述多个时延值的平均值和所述多个时延值的平方的平均值,得到所述业务信号的时延值。
  5. 根据权利要求2所述的本振泄露的校准方法,其中,在所述根据所述时延值,确定所述信道参数之前,还包括:
    获取所述反馈信号的直流值,以及所述发射信号的直流值;
    所述根据所述时延值,确定所述信道参数,包括:
    根据所述反馈信号的直流值,所述发射信号的直流值,以及所述时延值,确定所述信道参数。
  6. 根据权利要求5所述的本振泄露的校准方法,其中,所述依据所述信道参数,获取所述业务信号的本振泄露值,包括:
    依据所述反馈信号的直流值,所述发射信号的直流值,以及所述信道参数,获取所述业务信号的本振泄露值。
  7. 根据权利要求1至6中任一项所述的本振泄露的校准方法,其中,在所述根据所述本振泄露值对所述业务信号进行校准之后,还包括:
    确认生成所述业务信号的芯片的温度变化是否超过预设门限;
    在生成所述业务信号的芯片的温度变化超过所述预设门限的情况下,重复执行所述方法。
  8. 一种本振泄露的校准装置,包括:
    信号获取模块,用于获取发射信号的反馈信号;所述发射信号基于业务信号和预输入的特殊序列信号转换得到;所述预输入的特殊序列信号为最长线性移位寄存器序列产生的特殊序列信号;
    确定模块,用于通过所述反馈信号以及所述特殊序列信号,确定所述业务信号的信道参数;
    数据获取模块,用于依据所述信道参数,获取所述业务信号的本振泄露值;
    校准模块,用于根据所述本振泄露值对所述业务信号进行校准。
  9. 一种电子设备,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至7中任一项所述的本振泄露的校准方法。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的本振泄露的校准方法。
PCT/CN2022/136637 2021-12-09 2022-12-05 本振泄露的校准方法、装置、电子设备及存储介质 WO2023103976A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111500480.4 2021-12-09
CN202111500480.4A CN116318239A (zh) 2021-12-09 2021-12-09 本振泄露的校准方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023103976A1 true WO2023103976A1 (zh) 2023-06-15

Family

ID=86729607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136637 WO2023103976A1 (zh) 2021-12-09 2022-12-05 本振泄露的校准方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN116318239A (zh)
WO (1) WO2023103976A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610090A (zh) * 2008-06-20 2009-12-23 大唐移动通信设备有限公司 一种零中频发射机和校准零中频发射信号的方法
US20120281550A1 (en) * 2010-01-20 2012-11-08 Huawei Technologies Co., Ltd. Receiver, transmitter, feedback device, transceiver and signal processing method
US20150092825A1 (en) * 2013-09-27 2015-04-02 Qualcomm Incorporated Self-test using internal feedback for transmit signal quality estimation
CN107659322A (zh) * 2016-07-26 2018-02-02 北京展讯高科通信技术有限公司 一种射频终端的发射检测装置及其控制方法
WO2021052459A1 (zh) * 2019-09-19 2021-03-25 三维通信股份有限公司 数字预失真处理方法及装置、计算机设备和可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101610090A (zh) * 2008-06-20 2009-12-23 大唐移动通信设备有限公司 一种零中频发射机和校准零中频发射信号的方法
US20120281550A1 (en) * 2010-01-20 2012-11-08 Huawei Technologies Co., Ltd. Receiver, transmitter, feedback device, transceiver and signal processing method
US20150092825A1 (en) * 2013-09-27 2015-04-02 Qualcomm Incorporated Self-test using internal feedback for transmit signal quality estimation
CN107659322A (zh) * 2016-07-26 2018-02-02 北京展讯高科通信技术有限公司 一种射频终端的发射检测装置及其控制方法
WO2021052459A1 (zh) * 2019-09-19 2021-03-25 三维通信股份有限公司 数字预失真处理方法及装置、计算机设备和可读存储介质

Also Published As

Publication number Publication date
CN116318239A (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
JP4206090B2 (ja) 送信機および送信方法
KR102500150B1 (ko) 낮은 복잡성의 주파수 의존형 iq 불균형 보상을 위한 방법 및 장치
US9537520B2 (en) Method and apparatus for calibrating distortion of signals
CN101119357A (zh) 传送器以及传送器误差补偿方法
CN112291173B (zh) 一种iq不平衡系数获取方法及装置、可读存储介质
US10374643B2 (en) Transmitter with compensating mechanism of pulling effect
US9806919B2 (en) System and method for clock spur artifact correction
US20140355714A1 (en) Configurable pre-emphasis component for transmission circuitry
CN108156103B (zh) 一种iq信号校准方法及装置
CN115001913A (zh) 一种基于数字辅助的全双工频域自干扰消除方法
TWI677202B (zh) 能夠抵銷內部訊號洩漏的無線收發機
US9698840B2 (en) Receiver and a method for reducing a distortion component related to a baseband transmit signal in a baseband receive signal
WO2022000529A1 (zh) 幅度偏移的校准方法、设备以及存储介质
WO2023103976A1 (zh) 本振泄露的校准方法、装置、电子设备及存储介质
CN116633441A (zh) 基于iq调制器的发射机校准方法、系统及介质
US20110051843A1 (en) Transmission circuit
CN110830064A (zh) 一种高无杂散动态范围的信号接收装置与方法
CN114726455A (zh) 终端设备自校准方法及装置
CN113258966B (zh) 基于多天线无线通信系统的通道同步方法、装置
US8639199B1 (en) System and method for high performance coherent peak compression estimation
US10142041B2 (en) Homodyne receiver calibration
US10003415B1 (en) Method to remove measurement receiver counter intermodulation distortion for transmitter calibration
US20220103403A1 (en) System and Method Using Adjunct Signals to Increase Wideband Receiver Performance
CN113079117B (zh) 一种接收链路iq失配估计的方法及装置
CN110677201B (zh) 频域补偿及校准方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903398

Country of ref document: EP

Kind code of ref document: A1