WO2022000529A1 - 幅度偏移的校准方法、设备以及存储介质 - Google Patents

幅度偏移的校准方法、设备以及存储介质 Download PDF

Info

Publication number
WO2022000529A1
WO2022000529A1 PCT/CN2020/101103 CN2020101103W WO2022000529A1 WO 2022000529 A1 WO2022000529 A1 WO 2022000529A1 CN 2020101103 W CN2020101103 W CN 2020101103W WO 2022000529 A1 WO2022000529 A1 WO 2022000529A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
test
signals
amplitude
baseband
Prior art date
Application number
PCT/CN2020/101103
Other languages
English (en)
French (fr)
Inventor
栾亦夫
李开
罗丽云
扈立超
Original Assignee
锐迪科创微电子(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐迪科创微电子(北京)有限公司 filed Critical 锐迪科创微电子(北京)有限公司
Publication of WO2022000529A1 publication Critical patent/WO2022000529A1/zh
Priority to US18/149,173 priority Critical patent/US20230147812A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/14Monitoring; Testing of transmitters for calibration of the whole transmission and reception path, e.g. self-test loop-back
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0425Circuits with power amplifiers with linearisation using predistortion

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to an amplitude offset calibration method, device and storage medium.
  • the radio frequency signal to be transmitted in the polar transmitter will inevitably have an amplitude offset, and the existing technology often only calibrates and compensates for the nonlinearity of the amplitude.
  • digital pre-distortion Digital Pre-Distortion, DPD
  • DPD Digital Pre-Distortion
  • DPD calibration cannot handle the amplitude offset, and the presence of the amplitude offset can worsen the nonlinear calibration effect.
  • the present application provides an amplitude offset calibration method, device and storage medium, which can realize accurate calibration of the transmitter amplitude offset.
  • an embodiment of the present application provides an amplitude offset calibration method, which is applied to an electronic device, including:
  • test feedback signals are analog signals obtained by the transmitter according to the test signals in the test mode; at least two test signals corresponding to the at least two test feedback signals one-to-one are the a digital signal pre-generated by the transmitter, the amplitudes of the at least two test signals are different;
  • the baseband signals are digital signals; the baseband signals and the test feedback signals are in one-to-one correspondence;
  • An amplitude offset is determined according to the at least two test signals and the at least two baseband signals; the amplitude offset is used to calibrate the amplitude offset of the transmitter.
  • an electronic device including:
  • test feedback signal acquisition unit configured to acquire at least two test feedback signals;
  • the test feedback signals are analog signals obtained by the transmitter according to the test signals in the test mode; one-to-one correspondence with the at least two test feedback signals
  • the at least two test signals are digital signals pre-generated by the transmitter, and the amplitudes of the at least two test signals are different;
  • the test feedback signal processing unit obtains at least two corresponding baseband signals according to the at least two test feedback signals, and the baseband signals are digital signals; the baseband signals and the test feedback signals are in one-to-one correspondence;
  • an amplitude offset determination unit configured to determine an amplitude offset according to the at least two test signals and the at least two baseband signals; the amplitude offset is used to calibrate the amplitude offset of the transmitter .
  • an embodiment of the present application provides a storage medium, including: a readable storage medium and a computer program, where the computer program is used to implement the method for calibrating the amplitude offset described in the first aspect.
  • an embodiment of the present application provides a chip for running instructions, the chip includes a memory and a processor, where code and data are stored in the memory, the memory is coupled to the processor, and the processor runs Code in the memory causes the chip to perform the steps of the above-described method of calibrating an amplitude offset.
  • an embodiment of the present application provides a program product including instructions, which, when the program product runs on a computer, causes the computer to execute the steps of the above-mentioned method for calibrating an amplitude offset.
  • an embodiment of the present application provides a computer program, which, when the computer program is executed by a processor, is used to execute the steps of the above-mentioned amplitude offset calibration method.
  • the amplitude offset calibration method, device, and storage medium provided by the embodiments of the present application, by acquiring at least two test feedback signals output from the output end of the transmitter, and performing signal processing on the at least two test feedback signals, the at least two test feedback signals are The feedback signal is finally converted into a corresponding baseband signal in the digital domain, and then the amplitude offset of the transmitter is determined according to the at least two baseband signals, so that the transmitter can compensate the amplitude modulation signal according to the amplitude offset.
  • FIG. 1 is a schematic diagram of an emission spectrum provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of an amplitude offset calibration method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of an amplitude offset calibration method provided by an embodiment of the present application.
  • Transmitters are widely used in television, broadcasting, communication, alarm, radar, remote control and other fields.
  • the polar transmitter based on the polar architecture converts the baseband signal in the digital domain into an analog signal through the circuit of the analog part, and performs filtering.
  • the corresponding amplitude modulation (Amplitude Modulator, AM) signal is obtained, and the amplitude modulation signal is used to directly control the collector voltage of the power amplifier (Power Amplifier, PA), which can effectively improve the power amplification efficiency of the PA, and the polar transmitter
  • the circuit set in the chip has a smaller area and lower power consumption.
  • there is inevitably an amplitude offset In order to avoid the amplitude offset of the polar transmitter, the RF signal output by the polar transmitter is distorted and the performance of the transmitter is affected.
  • the amplitude offset produced by the circuit in its analog part needs to be adjusted.
  • the amplitude nonlinear AM-AM feature is calibrated by means of Digital Pre-Distortion (DPD) to realize the calibration of the amplitude nonlinearity of the radio frequency signal.
  • DPD Digital Pre-Distortion
  • the AM signal is converted into
  • the amplitude nonlinear distortion that can be modeled as an AM-AM curve does not apply to amplitude shifts during the input voltage of the PA.
  • FIG. 1 is a schematic diagram of an emission spectrum provided by an embodiment of the present application.
  • the amplitude offset AM offset can be regarded as a fixed offset in the AM channel, which will deteriorate the transmitter performance.
  • the emission spectrum when AM offset exists is shown in the figure
  • the differential error vector magnitude (DEVM) of the baseband signal to be transmitted and the transmit in-band spurs are degraded to varying degrees.
  • the amplitude offset occurs, that is, when the amplitude offset AM offset is 0, the DEVM is 3.5%; when the amplitude offset AM offset is 0.04, the DEVM is 3.8%; when the amplitude offset AM offset is 0.08, the DEVM is 4.2%; AM offset is 0.12, DEVM is 4.7% and so on.
  • the amplitude offset can be calibrated and compensated in the analog domain to achieve the calibration of the amplitude offset, but the added control loop will inevitably Increase the area of the circuit and increase the power consumption of the system.
  • the embodiment of the present application estimates the amplitude offset of the transmitter in the digital domain in advance, and pre-adjusts the amplitude modulated signal that has not undergone digital-to-analog conversion through the transmitter, for example, each data sampling point
  • the difference between the amplitude and the amplitude offset is calculated to compensate the actual amplitude offset of the amplitude modulation signal processed by the analog part.
  • FIG. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the execution body of the embodiment of the present application is an electronic device.
  • the electronic device may be any device with communication functions, such as a mobile phone, a computer, a TV, a tablet computer, a smart wearable, a smart speaker, etc.
  • the electronic device At least a transmitter, such as a polar transmitter, should be deployed in the equipment, and the electronic equipment can also be composed of a receiver, a control chip, an antenna and other devices and a transmitter.
  • the electronic device 001 includes at least a test feedback signal acquisition unit 11 , a test feedback signal processing unit 12 and an amplitude offset determination unit 13 as shown in FIG. 2 .
  • the test feedback signal acquisition unit 11 is electrically connected to the test feedback signal processing unit 12.
  • the test feedback signal acquisition unit 11 can be a signal receiving interface, which can be integrated in the test feedback signal processing unit 12.
  • the amplitude offset determination unit 13 It is respectively connected with the test feedback signal processing unit 13 and the amplitude offset calibration unit 231 .
  • the test feedback signal acquisition unit 11 acquires at least two test feedback signals corresponding to each test signal, and the at least two test feedback signals are in one-to-one correspondence with the at least two test signals.
  • the test feedback signal obtaining unit 11 may directly receive the test feedback signal sent by the signal processing unit of the transmitter, or may obtain the test feedback signal according to the test signal, which is not required in this solution.
  • the transmitter deployed in the electronic device 001 After the electronic device 001 turns on the test mode, the transmitter deployed in the electronic device 001 generates at least two test signals, obtains a test feedback signal corresponding to each test signal according to each test signal, and sends the test feedback signal Feedback signal acquisition unit 11 to the test.
  • the amplitudes of at least two test signals are different.
  • the calibration effect can be improved by setting the amplitudes of the two test signals reasonably, for example, setting the amplitudes of the two test signals to be close, or setting the at least two test signals in the PA is relatively linear region.
  • test feedback signal acquisition unit 11 may be provided in the transmitter of the electronic device 001, or in the receiver of the electronic device 001, or in the control chip of the electronic device 001, which is not required in this solution.
  • test signal is a baseband signal in the digital domain
  • test feedback signal is an analog signal obtained by processing the test signal through digital-to-analog conversion or the like.
  • the test feedback signal acquisition unit 11 sends the test feedback signal to the test feedback signal processing unit 11 .
  • the test feedback signal processing unit 12 obtains at least two corresponding baseband signals according to the at least two test feedback signals.
  • the baseband signals are digital signals, and the baseband signals correspond to the test feedback signals one-to-one. There is also a one-to-one correspondence between signals, so the baseband signal corresponds to the test signal one-to-one.
  • the test feedback signal processing unit 12 may be a circuit provided in the transmitter of the electronic device 001 and connected to the output end of the signal processing unit of the transmitter, or in order to further reduce the volume of the electronic device 001, it may be a multiplexed circuit.
  • the existing receive paths in the receiver such as quadrature down-conversion paths or square circuit paths, are used to process the test feedback signal.
  • the test feedback signal processing unit 12 sends the at least two baseband signals to the amplitude offset determination unit 13, and the amplitude offset determination unit 13 determines the amplitude offset according to the at least two test signals and the at least two baseband signals, if If an amplitude offset already exists, the existing amplitude offset is updated.
  • the amplitude offset determination unit 13 may be implemented by a software program, and may be provided in the control chip of the electronic device 001, or in the chip of the transmitter, or in the chip of the receiver, which is not required in this application.
  • the current test mode is terminated after the amplitude offset is obtained, and the transmitter deployed in the electronic device 001 enters the working mode after being turned on, generates the baseband signal to be transmitted, and performs signal processing on the baseband signal, such as digital-to-analog conversion, Filtering, power amplification, etc., to obtain the radio frequency signal to be transmitted, and calibrate the amplitude offset of the transmitter according to the amplitude offset.
  • the electronic device 001 further includes an amplitude offset calibration unit 231 .
  • the amplitude offset compensation is performed on the amplitude modulation signal obtained by the coordinate rotation of the baseband signal, so as to cancel the amplitude modulation signal in the process of digital-to-analog conversion, filtering, power amplification, etc. Amplitude offset that occurs.
  • the amplitude offset calibration unit 231 is generally disposed in the transmitter of the electronic device 001 .
  • the electronic device 001 includes a test feedback signal acquisition unit 11, a test feedback signal processing unit 12, and an amplitude offset determination unit 13.
  • a test feedback signal acquisition unit 11 By acquiring at least two test feedback signals output from the transmitter output, and analyzing the at least two test feedback signals
  • Signal processing is performed on the test feedback signals, and the at least two test feedback signals are finally converted into corresponding baseband signals in the digital domain, and then the amplitude offset of the transmitter is determined according to the at least two test signals and the corresponding baseband signals, so that the transmitter can transmit
  • the computer can compensate the amplitude modulation signal in the digital domain according to the amplitude offset, so as to realize the calibration of the amplitude offset.
  • FIG. 3 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • an electronic device 001 includes a receiver 10 , a transmitter 20 and an antenna 30 .
  • the test feedback signal acquisition unit 11 the test feedback signal processing unit 12 and the amplitude offset determination unit 13 are provided in the receiver 10 .
  • the transmitter 20 is connected to the receiver 10 and the antenna 30, respectively.
  • the transmitter 20 generates and transmits radio frequency signals to the antenna 30 through which it communicates with other devices.
  • the output end of the transmitter 20 is connected to the receiving end of the receiver 10 , for example, the test feedback signal obtaining unit 11 .
  • the test feedback signal obtaining unit 11 may be combined with the test feedback signal processing unit 12 .
  • the transmitter 20 sends a test feedback signal to the receiver 10
  • the receiver 10 obtains the baseband signal according to the test feedback signal, further determines the amplitude offset, and sends the amplitude offset to the transmitter 20, so that the transmission
  • the amplitude offset is calibrated for the amplitude modulation signal according to the amplitude offset.
  • the transmitter 20 includes at least: a signal receiving unit 22 and a signal processing unit 23 .
  • the signal receiving unit 22 can receive the signal sent by any device in the electronic device, or can receive the signal generated by the signal generating unit 21 in the transmitter 20 .
  • the signal generating unit 21 may generate each test signal in sequence.
  • the signal generating unit 21 In the test mode, the signal generating unit 21 generates a test signal, and the signal receiving unit 22 receives the test signal.
  • the signal receiving unit 22 may be a signal receiving interface, which may be combined with the signal processing unit 23 .
  • the signal processing unit 23 is provided with a coordinate rotation digital computing (Coordinate Rotation Digital Computer, CORDIC) module, and the test signal received by the signal receiving unit 22 is subjected to coordinate rotation by the CORDIC module to obtain an AM signal. and Phase Modulator (PM) signals.
  • CORDIC Coordinat Rotation Digital Computer
  • PM Phase Modulator
  • the signal processing unit 23 performs digital-to-analog conversion, filtering, power amplification, etc. on the AM signal to obtain a test feedback signal.
  • the amplitude offset may be a preset amplitude offset or an amplitude determined after the last test mode operation. offset, the AM signal is pre-compensated according to the amplitude offset before the AM signal undergoes digital-to-analog conversion. If there is no amplitude offset currently, the amplitude offset calibration unit 231 does not perform amplitude compensation.
  • the signal processing unit 23 further modulates the PM signal through a sigma-delta modulator (Sigma-Delta Modulation, SDM), inputs the modulated PM signal into the phase-locked loop, and then combines the output signal of the phase-locked loop with the
  • SDM Sigma-Delta Modulation
  • the AM signal is input to the power amplifier together, the RF signal to be output is obtained through the power amplifier, the RF signal is sent to the antenna 30 through the output end of the coupler, and the component of the RF signal is output as a test feedback signal to the receiver through the coupling end of the coupler
  • the receiver 10 determines the amplitude offset according to the test feedback signal.
  • the PM signal is not required. Therefore, after the coordinate rotation of the test signal generated by the signal generating unit 21 is performed, an AM signal is obtained, and a PM signal with a fixed value is obtained.
  • the amplitude offset calibration unit 231 compensates the amplitude offset of the AM signal in the next test mode operation according to the amplitude offset amount, or compensates the amplitude offset of the AM signal in the working mode after the end of the test mode.
  • the electronic device 001 can be set to enter the working mode, at which time the signal generating unit 21 generates a baseband signal (eg, I/Q modulated signal) to be output, and the signal receiving unit 22 receives the baseband signal. Further, the signal processing unit 23 may perform coordinate rotation on the baseband signal through the CORDIC module to obtain the corresponding AM signal and PM signal.
  • a baseband signal eg, I/Q modulated signal
  • the amplitude offset calibration unit 231 in the signal processing unit 23 performs pre-compensation for the amplitude offset of the AM signal, so as to realize the calibration of the amplitude offset of the AM signal and avoid distortion of the radio frequency signal to be output.
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present application. As shown in FIG. 4 , the electronic device 001 further includes a digital predistortion unit 232 and a logic processing unit 40 .
  • the signal receiving unit 22 receives an input training sequence, where the training sequence includes a plurality of training signals.
  • the training sequence may be generated by the signal generating unit 21 .
  • the signal receiving unit 22 sends the training sequence to the signal processing unit 23 .
  • the digital predistortion unit 232 in the signal processing unit 23 obtains a feedback signal corresponding to each training signal, and the feedback signal is an analog signal that has been compensated according to the amplitude offset and output by the power amplifier.
  • the amplitude offset calibration unit in the signal processing unit 23 performs pre-amplitude compensation on each training signal in the training sequence, and performs digital-to-analog conversion, filtering, power amplification, etc. on the amplitude-compensated training signal, get feedback.
  • the digital predistortion unit 232 determines digital predistortion processing coefficients according to the plurality of training signals and corresponding feedback signals.
  • test mode needs to be activated.
  • the content provided in the embodiment determine or update the amplitude offset.
  • the logic processing unit 40 controls the repeated execution of the training process in this embodiment, and judges whether the number of times the training process is performed reaches a preset number of times. When the preset number of times is reached, the digital predistortion processing coefficients trained by the digital predistortion unit 232 are used as Final digital predistortion processing coefficients.
  • the logic processing unit 40 may be disposed in any one of the control chip, the transmitter, and the receiver, which is not required in this solution.
  • the electronic device 001 After the digital pre-distortion processing coefficient is determined, the electronic device 001 enters the working mode.
  • the signal generating unit 21 generates a baseband signal to be output (for example, an I/Q modulated signal), and the signal receiving unit 22 receives the baseband signal and converts the baseband signal to the baseband signal.
  • the signal is sent to the signal processing unit 23 .
  • the signal processing unit 23 may perform coordinate rotation on the baseband signal through the CORDIC module to obtain the corresponding AM signal and PM signal.
  • the digital predistortion unit 232 in the signal processing unit 23 performs digital predistortion processing on the AM signal according to the digital predistortion processing coefficients obtained in the training process, and sends the processed AM signal to the amplitude calibration unit 231′.
  • the amplitude offset calibration unit 231 performs pre-compensation for the amplitude offset of the AM signal, so as to realize the calibration of the amplitude offset of the AM signal and avoid distortion of the radio frequency signal to be output.
  • the digital predistortion unit 232 may also perform digital predistortion processing on the received PM signal.
  • the sequence of the digital predistortion unit 232 and the CORDIC module in the signal processing unit 23 may be different.
  • the signal processing unit 23 may first perform digital predistortion processing on the received baseband signal through the digital predistortion unit 232 according to the digital predistortion processing coefficients obtained in the training process, and use the CORDIC module to coordinate the processed baseband signal. Rotate to get the corresponding AM signal and PM signal. This solution does not require the sequence of digital predistortion processing and coordinate rotation processing.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the signal receiving unit 22 of the electronic device 001 may be a signal receiving interface, which may be incorporated into the signal processing unit 23.
  • the signal processing unit 23 includes a CORDIC module, and the CORDIC module performs coordinate rotation on the received I/Q signal to obtain the AM signal and the PM signal.
  • the signal processing unit 23 also includes a digital predistortion unit 232, which includes a DPD module.
  • a digital predistortion unit 232 which includes a DPD module.
  • this embodiment of the present application does not require the order of the CORDIC module and the DPD module, that is, the DPD module can receive the I/Q signal, perform digital predistortion processing on the I/Q signal, and then process the I/Q signal through the CORDIC module. The coordinate rotation of the I/Q signal is performed to obtain the AM signal and the PM signal.
  • the AM channel is provided with an amplitude offset calibration unit 231.
  • the AM channel is also provided with a digital-to-analog converter (Digital-Analog Converter, DAC) and a low-pass filter (Low Pass Filter, LPF); in the PM channel Set up with SDM and phase locked loop (Phase Locked Loop, PLL).
  • the signal processing unit 23 also includes a PA, and the LPF output end of the AM channel is connected to the collector of the PA.
  • the PA is connected to the coupler, the output end of the coupler is connected to the antenna, and the coupling end of the coupler is connected to the test feedback signal processing unit 12 .
  • the embodiment of the present application provides the following two possible implementation manners for obtaining at least two corresponding baseband signals according to at least two test feedback signals:
  • each test feedback signal is subjected to quadrature down-conversion processing according to the carrier signal sent by the phase-locked loop of the transmitter to obtain a baseband signal corresponding to each test feedback signal.
  • the quadrature down-conversion path 121 is provided in the test feedback signal processing unit 12. As shown in FIG. 5, the coupling end of the coupler is connected to the input end of the quadrature down-conversion path 121, and the phase-locked loop of the PM path is The other input end of the quadrature down-conversion path 121 is connected, and the quadrature down-conversion path 121 includes a quadrature down-conversion circuit 1211 .
  • the quadrature down-conversion circuit 1211 divides the test feedback signal into two channels for quadrature down-conversion according to the carrier signal output by the phase-locked loop, removes the intermediate frequency carrier in the test feedback signal, and extracts the I/Q signal.
  • the PM signal is controlled to have a fixed value, so the signal output by the phase-locked loop is a carrier signal.
  • the at least two test signals include a first test signal and a second test signal
  • the two test feedback signals include a first test feedback signal corresponding to the first test signal and a second test signal corresponding to the first test signal.
  • the signal corresponds to a second test feedback signal
  • the at least two baseband signals include a first baseband signal corresponding to the first test signal and a second baseband signal corresponding to the second test signal.
  • determining the amplitude offset according to the at least two test signals and the at least two baseband signals includes: using the amplitude offset determination unit 13 according to the amplitude A t1 of the first test signal, the amplitude A t2 of the second test signal, the the amplitude of a baseband signal the mean amplitude a r1 and a second baseband signal mean a r2, by the equation Get the amplitude offset AM offset .
  • the transmitter transmits the amplitude of the amplitude signal A T1 and the signal amplitude of the amplitude A T2, the receiver is calculated and A R1 A R2, A provided reasonable t1 and A t2 can make A′ P1 ⁇ A′ P2 , and then according to the formula Calculate the amplitude offset AM offset .
  • the electronic device has completed the calibration of IQ imbalance and DC offset.
  • Mode 2 Through the square transformation path, square transformation is performed on each test feedback signal respectively to obtain a baseband signal corresponding to each test feedback signal.
  • the square transformation path 122 is provided in the test feedback signal processing unit 12, and as shown in FIG. Exemplarily, the square transformation path 122 is also provided with an LPF and an analog-digital converter (Analog-Digital Converter, ADC), which performs low-pass filtering and analog-to-digital conversion on the squared-transformed signal to obtain baseband signals r i , r i .
  • ADC Analog-Digital Converter
  • g loop is the loop gain
  • d sq is the DC offset value of the square circuit.
  • the at least two test signals include a first test signal and a second test signal
  • the at least two test feedback signals include a first test feedback signal corresponding to the first test signal, and a second test feedback signal corresponding to the first test signal.
  • the at least two baseband signals include a first baseband signal corresponding to the first test signal and a second test signal corresponding to the second test signal A baseband signal and a third baseband signal corresponding to the third test signal.
  • determining the amplitude offset according to the at least two test signals and the at least two baseband signals includes: using the amplitude offset determination unit 13 according to the amplitude A t1 of the first test signal, the amplitude A t2 of the second test signal, the third The amplitude A t3 of the test signal, the amplitude average value A r1 of the first baseband signal, the amplitude average value A r2 of the second baseband signal, and the amplitude average value A r3 of the third baseband signal are obtained by formula Get the amplitude offset AM offset . It should be understood that A' P1 ⁇ A' P2 can also be made by reasonably setting A t1 and A t2 .
  • the method for calibrating an amplitude offset provided by the embodiment of the present application can be applied to the electronic device in any of the foregoing embodiments. Specific descriptions are given below through several embodiments.
  • FIG. 6 is a schematic flowchart of an amplitude offset calibration method provided by an embodiment of the present application. As shown in Figure 6, the method includes:
  • S101 Acquire at least two test feedback signals.
  • the test feedback signal is an analog signal obtained by the transmitter according to the test signal in the test mode; the at least two test signals corresponding to the at least two test feedback signals one-to-one are digital signals pre-generated by the transmitter, and between the at least two test signals. of different magnitudes.
  • S102 Obtain at least two corresponding baseband signals according to the at least two test feedback signals.
  • S103 Determine an amplitude offset according to at least two test signals and at least two baseband signals.
  • the baseband signal is a digital signal, and the baseband signal and the test feedback signal are in one-to-one correspondence.
  • obtaining the corresponding at least two baseband signals according to the at least two test feedback signals includes: performing quadrature down-conversion processing on each test feedback signal according to the carrier signal sent by the phase-locked loop of the transmitter, respectively, A baseband signal corresponding to each test feedback signal is obtained.
  • the at least two test signals include a first test signal and a second test signal
  • the at least two baseband signals include a first baseband signal corresponding to the first test signal and a second baseband signal corresponding to the second test signal
  • the amplitude offset is determined according to the at least two test feedback signals and the at least two baseband signals, including:
  • the amplitude A t1 of the first test signal, the amplitude of the second test signal amplitude A t2, the amplitude of the first baseband signal and a second mean value A r1 baseband signals mean A r2, by the equation Get the amplitude offset AM offset .
  • obtaining the corresponding at least two baseband signals according to the at least two test feedback signals includes: respectively performing square transformation on each test feedback signal to obtain a baseband signal corresponding to the test feedback signal.
  • the at least two test signals include a first test signal, a second test signal and a third test signal
  • the at least two baseband signals include a first baseband signal corresponding to the first test signal, and a first baseband signal corresponding to the second test signal.
  • the amplitude offset is determined according to the at least two test signals and the at least two baseband signals, including:
  • the amplitude offset is used to calibrate the transmitter's amplitude offset.
  • the at least two test feedback signals are finally converted into corresponding baseband signals in the digital domain , and then determine the amplitude offset of the transmitter according to at least two baseband signals, so that the transmitter can compensate the amplitude modulation signal according to the amplitude offset, and realize the calibration of the amplitude offset.
  • the method further includes: performing amplitude offset compensation on the amplitude modulation signal according to the amplitude offset,
  • the amplitude modulation signal is obtained by performing coordinate rotation on the baseband signal generated by the transmitter.
  • the method before performing amplitude offset compensation on the amplitude modulation signal according to the amplitude offset, the method further includes: performing digital predistortion processing on the baseband signal according to the digital predistortion processing coefficient obtained in advance.
  • the method before performing digital predistortion processing on the amplitude modulation signal according to the pre-acquired digital predistortion processing coefficients, the method further includes: receiving an input training sequence, where the training sequence includes multiple training signals; responding In the received training sequence, start the test mode to obtain the amplitude offset; obtain the feedback signal corresponding to each training signal, the feedback signal is an analog signal that has been compensated according to the amplitude offset and is output by the power amplifier; According to a plurality of training signals and corresponding feedback signals, digital pre-distortion processing coefficients are determined; the above-mentioned training process is repeatedly performed until a preset number of times is reached, and the final digital pre-distortion processing coefficients are obtained.
  • FIG. 7 is a schematic flowchart of an amplitude offset calibration method provided by an embodiment of the present application.
  • the training process of combining DPD and amplitude offset to improve the accuracy of the two it includes:
  • step S5 If i is less than N, add 1 to i, and return to step S2; if i is greater than N, execute step S5.
  • the amplitude offset calibration unit is made to perform amplitude compensation for each training sequence number in the training sequence according to the amplitude offset.
  • the DPD module performs calibration training of DPD according to the training sequence and the feedback signal corresponding to each training signal in the training sequence.
  • the existence of the amplitude offset AM offset will affect the effect of DPD calibration for PA nonlinearity, and the PA nonlinearity will also affect the calibration effect of AM offset.
  • the calibration training method of the amplitude offset provided by the present invention can be combined with the common DPD calibration training method, and the calibration accuracy of the two can be improved through iteration. Combined with the DPD calibration training process, DPD calibration training is performed after AM offset calibration and compensation is enabled, and the DPD calibration training results are applied to the AM offset calibration training in the next iteration.
  • the preset number of iterations is recorded as K. In addition to stopping the iteration when the number of times is reached, the iteration can also be terminated early when the difference between the two AM offset calibration training results is less than the set threshold value.
  • the embodiment of the present application further provides a non-transitory computer-readable storage medium, when the instructions in the storage medium are executed by the processor, the method for calibrating the amplitude offset provided by the foregoing embodiment can be executed.
  • An embodiment of the present application further provides a chip for running instructions, the chip includes a memory and a processor, where code and data are stored in the memory, the memory is coupled with the processor, and the processor runs the memory
  • the code in causes the chip to perform the steps of the amplitude offset calibration method described above.
  • the embodiments of the present application also provide a computer program product containing instructions, which, when running on a computer, cause the computer to execute the method for calibrating the amplitude offset provided by the above embodiments.
  • the embodiment of the present application further provides a computer program, when the computer program runs on a computer, the computer is made to execute the above-mentioned method for calibrating the amplitude offset.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供一种幅度偏移的校准方法、设备以及存储介质。该方法通过获取至少两个测试反馈信号,该测试反馈信号为在测试模式下发射机根据测试信号得到的模拟信号,与至少两个测试反馈信号一一对应的至少两个测试信号为发射机预先生成的数字信号,至少两个测试信号之间的幅度不同,并根据至少两个测试反馈信号,得到对应的至少两个基带信号,该基带信号为数字信号,且基带信号和所述测试反馈信号一一对应,再根据至少两个测试信号和至少两个基带信号,确定幅度偏移量,使发射机根据幅度偏移量在数字域对幅度偏移进行校准。

Description

幅度偏移的校准方法、设备以及存储介质
本申请要求于2020年07月03日提交中国专利局、申请号为202010629784.X、申请名称为“幅度偏移的校准方法、设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种幅度偏移的校准方法、设备以及存储介质。
背景技术
随着无线通信技术的不断发展,人们期望通信设备的功耗越来越低,极性发射机相比常用的直接正交变频发射机具有功耗和面积上的优势,有着广泛的应用前景。
由于极性发射机自身的电路构造以及环境因素的影响,极性发射机中的待发射的射频信号不可避免的会发生幅度偏移,而现有技术往往只针对幅度的非线性进行校准补偿,例如数字预失真(Digital Pre-Distortion,DPD)技术。
然而,DPD校准无法处理幅度偏移,且幅度偏移的存在会恶化非线性的校准效果。
发明内容
本申请提供一种幅度偏移的校准方法、设备以及存储介质,能够实现对发射机幅度偏移的准确校准。
第一方面,本申请实施例提供一种幅度偏移的校准方法,应用于电子设备,包括:
获取至少两个测试反馈信号;所述测试反馈信号为在测试模式下所述发射机根据测试信号得到的模拟信号;与所述至少两个测试反馈信号一一对应的至少两个测试信号为所述发射机预先生成的数字信号,所述至少两 个测试信号的幅度不同;
根据所述至少两个测试反馈信号,得到对应的至少两个基带信号,所述基带信号为数字信号;所述基带信号和所述测试反馈信号一一对应;
根据所述至少两个测试信号和所述至少两个基带信号,确定幅度偏移量;所述幅度偏移量用于对发射机的幅度偏移进行校准。
第二方面,本申请实施例提供一种电子设备,包括:
测试反馈信号获取单元,用于获取至少两个测试反馈信号;所述测试反馈信号为在测试模式下所述发射机根据测试信号得到的模拟信号;与所述至少两个测试反馈信号一一对应的至少两个测试信号为所述发射机预先生成的数字信号,所述至少两个测试信号的幅度不同;
测试反馈信号处理单元,根据所述至少两个测试反馈信号,得到对应的至少两个基带信号,所述基带信号为数字信号;所述基带信号和所述测试反馈信号一一对应;
幅度偏移确定单元,用于根据所述至少两个测试信号和所述至少两个基带信号,确定幅度偏移量;所述幅度偏移量用于对所述发射机的幅度偏移进行校准。
第三方面,本申请实施例提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现第一方面所述的幅度偏移的校准方法。
第四方面,本申请实施例提供了一种运行指令的芯片,所述芯片包括存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述芯片用于执行上述的幅度偏移的校准方法的步骤。
第五方面,本申请实施例提供了一种包含指令的程序产品,当所述程序产品在计算机上运行时,使得所述计算机执行上述的幅度偏移的校准方法的步骤。
第六方面,本申请实施例提供了一种计算机程序,当所述计算机程序被处理器执行时,用于执行上述的幅度偏移的校准方法的步骤。
本申请实施例提供的幅度偏移的校准方法、设备以及存储介质,通过获取发射机输出端输出的至少两个测试反馈信号,并对至少两个测试反馈信号进行信号处理,将至少两个测试反馈信号最终转换为数字域的对应的 基带信号,再根据至少两个基带信号确定该发射机的幅度偏移量,使得发射机能够根据幅度偏移量对幅度调制信号进行补偿。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种发射谱示意图;
图2为本申请实施例提供的一种电子设备的结构示意图;
图3为本申请实施例提供的一种电子设备的结构示意图;
图4为本申请实施例提供的一种电子设备的结构示意图;
图5为本申请实施例提供的一种电子设备的结构示意图;
图6为本申请实施例提供的一种幅度偏移的校准方法的流程示意图;
图7为本申请实施例提供的一种幅度偏移的校准方法的流程示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
发射机广泛应用于电视、广播、通信、报警、雷达、遥控等领域,目前基于极性架构实现的极性发射机,通过模拟部分的电路将数字域的基带信号转换为模拟信号,并进行滤波等的处理,得到对应的幅度调制(Amplitude Modulator,AM)信号,以幅度调制信号直接控制功率放大器(Power Amplifier,PA)的集电极电压,可以有效提升PA的功率放大效率,并且极性发射机相比于正交变频(Direct Quadrature Up-conversion)发射机而言,芯片中设置的电路的面积更小,功耗也更小。而极性发射机在应用的过程中,不可避免的存在幅度偏移,为了避免极性发射机的幅度偏 移,造成的极性发射机输出的射频信号失真,影响发射机的性能的问题,需要对其模拟部分的电路所产生的幅度偏移进行调整。
例如,通过数字预失真(Digital Pre-Distortion,DPD)方式对幅度非线性AM-AM特征进行校准,以实现对射频信号的幅度非线性的校准,然而,由于模拟部分电路中将AM信号转换为PA的输入电压的过程中,可建模为AM-AM曲线的幅度非线性失真不适用于幅度偏移。图1为本申请实施例提供的一种发射谱示意图。在Polar发射机中,幅度偏移量AM offset可视为AM通路存在的固定偏移,会恶化发射机性能,以蓝牙协议中的EDR-3信号为例,存在AM offset时的发射谱如图1所示,待发射的基带信号的差分误差向量幅度(DEVM)与发射带内杂散均有不同程度恶化。例如为发生幅度偏移,即幅度偏移量AM offset为0时,DEVM为3.5%;幅度偏移量AM offset为0.04时,DEVM为3.8%;幅度偏移量AM offset为0.08时,DEVM为4.2%;幅度偏移量AM offset为0.12时,DEVM为4.7%等等。
再例如,可通过在发射机的模拟部分增加控制环路,实现在模拟域中对幅度偏移量进行校准及补偿,以实现幅度偏移的校准,但是所增加的控制环路不可避免的会增大电路的面积,增加系统的功耗。
为了解决上述问题,本申请实施例预先在数字域对发射机的幅度偏移量进行估计,并通过发射机对未经过数模转换的幅度调制信号进行预先的调节,例如将每个数据采样点的幅值与幅度偏移量求差,以补偿经过模拟部分处理后的幅度调制信号实际存在的幅度偏移量。
图2为本申请实施例提供的一种电子设备的结构示意图。本申请实施例的执行主体为一种电子设备,示例性的,该电子设备可以是手机、电脑、电视、平板电脑、智能可穿戴、智能音箱等任一具有通信功能的设备,应理解,电子设备中至少应部署有发射机,例如极性发射机,该电子设备还可由接收机、控制芯片、天线等器件和发射机共同组成。
示例性的,该电子设备001至少包括如图2所示的测试反馈信号获取单元11、测试反馈信号处理单元12和幅度偏移确定单元13。测试反馈信号获取单元11与测试反馈信号处理单元12电连接,可选的,测试反馈信号获取单元11可以是信号的接收接口,可集成于测试反馈信号处理单元12中,幅度偏移确定单元13分别与测试反馈信号处理单元13和幅度偏移校准单元231连接。
测试反馈信号获取单元11获取与每个测试信号对应的至少两个测试反馈信号,该至少两个测试反馈信号与至少两个测试信号一一对应。示例性的,测试反馈信号获取单元11可直接接收经过发射机的信号处理单元发送的测试反馈信号,或者可根据测试信号得到测试反馈信号,本方案对此不做要求。例如,当电子设备001开启测试模式后,电子设备001中部署的发射机生成至少两个测试信号,并根据每个测试信号得到与每个测试信号对应的测试反馈信号,并将测试反馈信号发送给测试反馈信号获取单元11。其中,至少两个测试信号的幅度不同,可选的,可通过合理设置两个测试信号的幅度,提高校准效果,例如设置两个测试信号的幅值接近,或者设置的至少两个测试信号处于PA较为线性的区域。
应理解,测试反馈信号获取单元11可设置于电子设备001的发射机中,或者设置于电子设备001的接收机中,或者设置于电子设备001的控制芯片中,本方案对此不做要求。
示例性的,测试信号为数字域的基带信号,测试反馈信号为测试信号经过数模转换等处理得到的模拟信号。
测试反馈信号获取单元11将测试反馈信号发送至测试反馈信号处理单元11。测试反馈信号处理单元12根据至少两个测试反馈信号,得到对应的至少两个基带信号,应理解,该基带信号为数字信号,且基带信号与测试反馈信号一一对应,因测试反馈信号与测试信号也存在一一对应的关系,因此基带信号与测试信号一一对应。
示例性的,测试反馈信号处理单元12可以是设置于电子设备001的发射机中与发射机的信号处理单元的输出端连接的电路,或者为了进一步减小电子设备001的体积,可以是复用接收机中现有的接收通路,例如正交下变频通路或平方电路通路等,实现对测试反馈信号进行处理。
进一步地,测试反馈信号处理单元12将至少两个基带信号发送至幅度偏移确定单元13,幅度偏移确定单元13根据至少两个测试信号和至少两个基带信号,确定幅度偏移量,若已存在幅度偏移量,则对现有的幅度偏移量进行更新。示例性的,幅度偏移确定单元13可由软件程序实现,可设置于电子设备001的控制芯片中、或者发射机的芯片中、或者接收机的芯片中,本申请对此不做要求。
应理解,得到幅度偏移量后结束当前的测试模式,电子设备001中部 署的发射机开启后进入工作模式,生成待发射的基带信号,并对该基带信号进行信号处理,例如数模转换、滤波、功率放大等,得到待发射的射频信号,并根据幅度偏移量对发射机的幅度偏移进行校准。示例性的,如图2所示,电子设备001还包括幅度偏移校准单元231。通过幅度偏移校准单元231,根据幅度偏移量,对基带信号经过坐标旋转得到的幅度调制信号进行幅度偏移的补偿,以抵消幅度调制信号在数模转换、滤波、功率放大等处理过程中发生的幅度偏移。
其中,幅度偏移校准单元231一般设置于电子设备001的发射机中。
本申请实施例中,电子设备001包括测试反馈信号获取单元11、测试反馈信号处理单元12和幅度偏移确定单元13,通过获取发射机输出端输出的至少两个测试反馈信号,并对至少两个测试反馈信号进行信号处理,将至少两个测试反馈信号最终转换为数字域的对应的基带信号,再根据至少两个测试信号和对应的基带信号确定该发射机的幅度偏移量,使得发射机能够根据幅度偏移量在数字域对幅度调制信号进行补偿,实现对幅度偏移的校准。
为了简化电子设备001的结构设计,本申请实施例中的测试信号处理单元可通过复用接收机中的接收通路来实现。图3为本申请实施例提供的一种电子设备的结构示意图。如图3所示,本申请实施例中,电子设备001包括接收机10、发射机20和天线30。图2所示实施例中的测试反馈信号获取单元11、测试反馈信号处理单元12和幅度偏移确定单元13设置于接收机10。
发射机20分别与接收机10和天线30连接。发射机20生成并发射射频信号至天线30,通过天线30与其他设备进行通信。
发射机20的输出端与接收机10的接收端,例如测试反馈信号获取单元11连接,示例性的,测试反馈信号获取单元11可合并于测试反馈信号处理单元12。在测试模式下,发射机20向接收机10发送测试反馈信号,接收机10根据测试反馈信号得到基带信号,再进一步确定幅度偏移量,并将幅度偏移量发送至发射机20,使发射机在工作模式下,根据幅度偏移量对幅度调制信号进行幅度偏移的校准。
示例性的,发射机20至少包括:信号接收单元22和信号处理单元23。 信号接收单元22可接收电子设备中任一器件发送的信号,或者可以接收发射机20中的信号生成单元21生成的信号。在需多个测试信号时,信号生成单元21可以依次生成每个测试信号。
在测试模式下,信号生成单元21生成测试信号,信号接收单元22接收该测试信号。示例性的,信号接收单元22可以是信号的接收接口,可合并于信号处理单元23。
示例性的,信号处理单元23中设置有坐标旋转数字计算(Coordinate Rotation Digital Computer,CORDIC)模块,将通过信号接收单元22接收的测试信号,通过CORDIC模块对该测试信号进行坐标旋转,得到AM信号和相位调制(Phase Modulator,PM)信号。
进一步地,信号处理单元23对AM信号,进行数模转换、滤波、功率放大等处理,得到测试反馈信号。示例性的,信号处理单元23中的幅度偏移校准单元231若已存在幅度偏移量,该幅度偏移量可以是预设的幅度偏移量或者可以是上一次测试模式运行后确定的幅度偏移量,则在AM信号进行数模转换之前,根据幅度偏移量对AM信号进行预先的补偿。若当前不存在幅度偏移量,则幅度偏移校准单元231不进行幅度补偿。
示例性的,信号处理单元23还通过∑-△调制器(Sigma-Delta Modulation,SDM)对PM信号进行调制,并将调制后的PM信号输入锁相环,再将锁相环输出的信号和AM信号一起输入功率放大器,通过功率放大器得到待输出的射频信号,通过耦合器的输出端将射频信号发送至天线30,并通过耦合器的耦合端将射频信号的分量作为测试反馈信号输出至接收机10,使接收机10根据测试反馈信号确定幅度偏移量。示例性的,在测试模式下,不需要PM信号,因此,信号生成单元21生成的测试信号经过坐标旋转后,得到AM信号,并得到具有固定值的PM信号。
幅度偏移校准单元231根据幅度偏移量在下一次测试模式运行时,对AM信号的幅度偏移进行补偿,或者在测试模式结束后的工作模式中对AM信号的幅度偏移进行补偿。
确定幅度偏移量之后,可设置电子设备001进入工作模式,此时信号生成单元21生成待输出的基带信号(例如I/Q调制信号),信号接收单元22接收该基带信号。进一步地,信号处理单元23可通过CORDIC模块对基带信号进行坐标旋转,得到对应的AM信号和PM信号。
信号处理单元23中的幅度偏移校准单元231对AM信号的幅度偏移进行预先的补偿,以实现对AM信号幅度偏移的校准,避免待输出的射频信号的发生失真。
本申请实施例为了增加对发射机幅度校准的准确性,在DPD的训练过程中结合幅度偏移量的确定过程,提高DPD校准和幅度偏移量估计的准确性,再通过训练后的DPD和幅度偏移量对发射机的幅度进行校准。图4为本申请实施例提供的一种电子设备的结构示意图。如图4所示,电子设备001还包括数字预失真单元232和逻辑处理单元40。
电子设备001在数字预失真训练模式下,信号接收单元22接收输入的训练序列,该训练序列包括多个训练信号,示例性的,训练序列可以是信号生成单元21生成的。信号接收单元22将训练序列发送至信号处理单元23。
信号处理单元23中的数字预失真单元232获取每个训练信号对应的反馈信号,该反馈信号为根据幅度偏移量进行过补偿的,并由功率放大器输出的模拟信号。示例性的,信号处理单元23中的幅度偏移校准单元对训练序列中的每个训练信号进行预先的幅度补偿,并将经过幅度补偿的训练信号进行数模转换、滤波、功率放大等处理,得到反馈信号。
数字预失真单元232根据多个训练信号和对应的反馈信号,确定数字预失真处理系数。
应理解,在每次需要根据所述训练序列进行数字预失真系数的确定之前,需要启动测试模式,可通过逻辑处理单元40在电子设备001接收到训练序列后,启动测试模式,通过上述任一实施例中提供的内容,确定或者更新幅度偏移量。
由逻辑处理单元40控制重复执行本实施例中的训练过程,判断执行训练过程的次数是否达到预设次数,在达到预设次数时,将数字预失真单元232训练得到的数字预失真处理系数作为最终的数字预失真处理系数。
示例性的,逻辑处理单元40可设置于控制芯片、发射机、接收机中的任意一个,本方案对此不做要求。
确定了数字预失真处理系数后,电子设备001进入工作模式,此时信号生成单元21生成待输出的基带信号(例如I/Q调制信号),信号接收单 元22接收该基带信号,并将该基带信号发送至信号处理单元23。进一步地,信号处理单元23可通过CORDIC模块对基带信号进行坐标旋转,得到对应的AM信号和PM信号。
信号处理单元23中的数字预失真单元232根据训练过程中获取的数字预失真处理系数,对AM信号进行数字预失真处理,并将处理后的AM信号发送至幅度校准单元231,。幅度偏移校准单元231对AM信号的幅度偏移进行预先的补偿,以实现对AM信号幅度偏移的校准,避免待输出的射频信号发生失真。可选的,数字预失真单元232也可对接收到的PM信号进行数字预失真处理。
可选的,根据实际应用场景,信号处理单元23中的数字预失真单元232和CORDIC模块的先后顺序可以不同。例如,信号处理单元23可先通过数字预失真单元232根据训练过程中获取的数字预失真处理系数,对接收到的基带信号进行数字预失真处理,并通过CORDIC模块对处理后的基带信号进行坐标旋转,得到对应的AM信号和PM信号。本方案对于数字预失真处理和坐标旋转处理的先后顺序不做要求。
在上述实施例的基础上,图5为本申请实施例提供的一种电子设备的结构示意图。
作为一种具体的实现方式,本申请实施例中,结合图5所示,电子设备001的信号接收单元22可以是信号的接收接口,可合并于信号处理单元23.
示例性的,信号处理单元23包括CORDIC模块,CORDIC模块将接收到的I/Q信号进行坐标旋转得到AM信号和PM信号。
信号处理单元23还包括数字预失真单元232,该数字预失真单元232包括DPD模块。可选的,本申请实施例对于CORDIC模块与DPD模块的先后顺序不做要求,即DPD模块可接收I/Q信号,并对I/Q信号进行数字预失真处理,再通过CORDIC模块将处理后的I/Q信号进行坐标旋转,得到AM信号和PM信号。
进一步地,与DPD模块连接的有AM通路和PM通路。AM通路中设置有幅度偏移校准单元231,示例性的,AM通路中还设置有数模转换器(Digital-Analog Converter,DAC)和低通滤波器(Low Pass Filter,LPF); PM通路中设置有SDM和锁相环(Phase Locked Loop,PLL)。进一步地,信号处理单元23还包括PA,AM通路的LPF输出端与PA的集电极连接。
PA与耦合器连接,耦合器的输出端连接至天线,耦合器的耦合端连接至测试反馈信号处理单元12。
在上述任一实施例的基础上,本申请实施例对于根据至少两个测试反馈信号,得到对应的至少两个基带信号提供以下两种可能的实现方式:
方式一:通过正交下变频通路,根据发射机的锁相环发送的载波信号,分别对每个测试反馈信号进行正交下变频处理,得到与每个测试反馈信号对应的基带信号。
示例性的,正交下变频通路121设置于测试反馈信号处理单元12,结合图5所示,耦合器的耦合端与正交下变频通路121的输入端连接,且PM通路的锁相环与正交下变频通路121的另一输入端连接,正交下变频通路121包括正交下变频电路1211。正交下变频电路1211根据锁相环输出的载波信号,测试反馈信号分为两路进行正交下变频,去除测试反馈信号中的中频载波,提取出I/Q信号。示例性的,本申请中在测试模式下,控制PM信号具有固定值,因此经锁相环输出的信号为载波信号。在正交下变频电路1211中每路接收通路中,分别设置有LPF以及模数转换器(Analog-Digital Converter,ADC),分别对每路信号进行低通滤波和模数转换,得到基带信号r i,r i可表示为
Figure PCTCN2020101103-appb-000001
其中,A ti,i=1,2…,为至少两个测试信号的幅度,g loop为环路增益,A′ Pi为PA在当前幅度对应发送功率下的等效非线性幅度系数,
Figure PCTCN2020101103-appb-000002
为接收相位,j为虚数。
在方式一的基础上,假设至少两个测试信号包括第一测试信号和第二测试信号,相应的,两个测试反馈信号包括与第一测试信号对应的第一测试反馈信号以及和第二测试信号对应的第二测试反馈信号,至少两个基带信号包括与第一测试信号对应的第一基带信号以及与所述第二测试信号对 应的第二基带信号。那么,根据至少两个测试信号和至少两个基带信号,确定幅度偏移量,包括:通过幅度偏移确定单元13根据第一测试信号的幅度A t1、第二测试信号的幅度A t2、第一基带信号的幅度均值A r1以及第二基带信号的幅度均值A r2,通过公式
Figure PCTCN2020101103-appb-000003
得到幅度偏移量AM offset。应理解,对r i的幅度取均值可得A ri,在发射机发送幅度为A t1的幅度信号和幅度为A t2的幅度信号后,接收机计算得到A r1和A r2,通过合理设置A t1与A t2,可以使A′ P1≈A′ P2,进而可根据公式
Figure PCTCN2020101103-appb-000004
计算得到幅度偏移量AM offset。可选的,在确定幅度偏移量之前,电子设备已完成IQ不平衡及DC offset的校准。
方式二:通过平方变换通路,分别对每个测试反馈信号进行平方变换,得到与每个测试反馈信号对应的基带信号。
示例性的,平方变换通路122设置于测试反馈信号处理单元12,结合图5所示,耦合器的耦合端与平方变换通路122中的平方电路连接,平方电路对测试反馈信号进行平方变换。示例性的,平方变换通路122中还设置有LPF以及模数转换器(Analog-Digital Converter,ADC),对经过平方变换的信号进行低通滤波和模数转换,得到基带信号r i,r i可表示为
Figure PCTCN2020101103-appb-000005
其中,A ti,i=1,2,3…为至少两个测试信号的幅度,g loop为环路增益,d sq为平方电路DC offset值。
在方式二的基础上,假设至少两个测试信号包括第一测试信号和第二测试信号,相应的,至少两个测试反馈信号包括与第一测试信号对应的第一测试反馈信号、与第二测试信号对应的第二测试反馈信号和与第三测试信号对应的第三测试反馈信号,至少两个基带信号包括与第一测试信号对应的第一基带信号、与第二测试信号对应的第二基带信号以及与第三测试信号对应的第三基带信号。那么根据至少两个测试信号和至少两个基带信号,确定幅度偏移量,包括:通过幅度偏移确定单元13根据第一测试信号的幅度A t1、第二测试信号的幅度A t2、第三测试信号的幅度A t3、第一基带信 号的幅度均值A r1、第二基带信号的幅度均值A r2以及第三基带信号的幅度均值A r3,通过公式
Figure PCTCN2020101103-appb-000006
得到幅度偏移量AM offset。应理解,同样通过合理设置A t1与A t2,可以使A′ P1≈A′ P2
本申请实施例提供的一种幅度偏移的校准方法,可应用于上述任一实施例中的电子设备。下面通过几个实施例进行具体说明。
图6为本申请实施例提供的一种幅度偏移的校准方法的流程示意图。如图6所示,该方法包括:
S101:获取至少两个测试反馈信号。
测试反馈信号为在测试模式下发射机根据测试信号得到的模拟信号;与至少两个测试反馈信号一一对应的至少两个测试信号为发射机预先生成的数字信号,至少两个测试信号之间的幅度不同。
S102:根据至少两个测试反馈信号,得到对应的至少两个基带信号。
S103:根据至少两个测试信号和至少两个基带信号,确定幅度偏移量。
该基带信号为数字信号,且基带信号和测试反馈信号一一对应。
作为一种示例,根据至少两个测试反馈信号,得到对应的至少两个基带信号,包括:根据发射机的锁相环发送的载波信号,分别对每个测试反馈信号进行正交下变频处理,得到与每个测试反馈信号对应的基带信号。
进一步地,假设至少两个测试信号包括第一测试信号和第二测试信号,至少两个基带信号包括与第一测试信号对应的第一基带信号以及与第二测试信号对应的第二基带信号,则根据至少两个测试反馈信号和至少两个基带信号,确定幅度偏移量,包括:
根据所述第一测试信号的幅度A t1、第二测试信号的幅度A t2、第一基带信号的幅度均值A r1以及第二基带信号的幅度均值A r2,通过公式
Figure PCTCN2020101103-appb-000007
得到幅度偏移量AM offset
作为另一种示例,根据至少两个测试反馈信号,得到对应的至少两个基带信号,包括:分别对每个测试反馈信号进行平方变换,得到与测试反馈信号对应的基带信号。
进一步地,假设至少两个测试信号包括第一测试信号、第二测试信号 和第三测试信号,至少两个基带信号包括与第一测试信号对应的第一基带信号、与第二测试信号对应的第二基带信号以及与第三测试信号对应的第三基带信号,则根据至少两个测试信号和至少两个基带信号,确定幅度偏移量,包括:
根据第一测试信号的幅度A t1、第二测试信号的幅度A t2、第三测试信号的幅度A t3、第一基带信号的幅度均值A r1、第二基带信号的幅度均值A r2以及第三基带信号的幅度均值A r3,通过公式
Figure PCTCN2020101103-appb-000008
得到幅度偏移量AM offset
幅度偏移量用于对发射机的幅度偏移进行校准。
本申请实施例中,通过获取发射机输出端输出的至少两个测试反馈信号,并对至少两个测试反馈信号进行信号处理,将至少两个测试反馈信号最终转换为数字域的对应的基带信号,再根据至少两个基带信号确定该发射机的幅度偏移量,使得发射机能够根据幅度偏移量对幅度调制信号进行补偿,实现对幅度偏移的校准。
在一种具体的实现方式中,在根据至少两个测试信号和至少两个基带信号,确定幅度偏移量之后,还包括:根据幅度偏移量,对幅度调制信号进行幅度偏移的补偿,该幅度调制信号为对发射机生成的基带信号进行坐标旋转得到的。
在一种具体的实现方式中,在根据幅度偏移量,对幅度调制信号进行幅度偏移的补偿之前,还包括:根据预先获取的数字预失真处理系数,对基带信号进行数字预失真处理。
在一种具体的实现方式中,在根据预先获取的数字预失真处理系数,对幅度调制信号进行数字预失真处理之前,还包括:接收输入的训练序列,该训练序列包括多个训练信号;响应于接收到的训练序列,启动测试模式,得到幅度偏移量;获取每个训练信号对应的反馈信号,该反馈信号为根据幅度偏移量进行过补偿的,并由功率放大器输出的模拟信号;根据多个训练信号和对应的反馈信号,确定数字预失真处理系数;重复执行上述训练过程,直至达到预设次数时,得到最终的数字预失真处理系数。
图7为本申请实施例提供的一种幅度偏移的校准方法的流程示意图。在上述实施例的基础上,如图7所示,在DPD与幅度偏移量结合以提高二者的准确度的训练过程中,包括:
S1:响应于接收到的训练序列,将i和k的值均设为1。
S2:获取发射机的输出端输出的幅度为A ti的测试反馈信号。
S3:根据测试反馈信号,计算得到A r1
计算过程在上述实施例中已经说明,此处不再赘述。
S4:判断i是否小于预设值N。
若i小于N,则i加1,并返回至步骤S2;若i大于N,则执行步骤S5.
S5:计算得到幅度偏移量AM offset
S6:使能幅度偏移校准单元。
使幅度偏移校准单元根据幅度偏移量对训练序列中的每个训练序号进行幅度补偿。
S7:DPD校准训练。
DPD模块根据训练序列和与训练序列中每个训练信号对应的反馈信号进行DPD的校准训练。
S8:判断DPD的校准训练的次数k是否小于预设次数K。
若k小于K,则k加1,设置i=1,使能DPD模块,并返回执行步骤S2;若k=K,则执行步骤S9。
S9:结束训练过程,并得数字预失真系数。
幅度偏移量AM offset的存在会影响针对PA非线性的DPD校准的效果,同时PA非线性也会影响到AM offset的校准效果。本发明给出的幅度偏移量的校准训练方法,可与常见的DPD校准训练方法相结合,通过迭代来提升两者的校准精度。结合DPD的校准训练流程,在完成AM offset校准并开启补偿后进行DPD校准训练,并将DPD校准训练结果应用在下一次迭代中的AM offset校准训练。预设的迭代次数记为K,除达到次数停止迭代外,也可在两次AM offset校准训练结果之差小于设定的门限值时提前结束迭代。
本申请实施例还提供了一种非临时性计算机可读存储介质,当所述存储介质中的指令由处理器执行时,能够执行上述实施例提供的幅度偏移的校准方法。
本申请实施例还提供了一种运行指令的芯片,所述芯片包括存储器、处理器,所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述芯片用于执行上述的幅度偏移的校准方法的步骤。
本申请实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述实施例提供的幅度偏移的校准方法。
本申请实施例还提供一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述幅度偏移的校准方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种幅度偏移的校准方法,其特征在于,应用于电子设备,包括:
    获取至少两个测试反馈信号;所述测试反馈信号为在测试模式下所述发射机根据测试信号得到的模拟信号;与所述至少两个测试反馈信号一一对应的至少两个测试信号为所述发射机预先生成的数字信号,所述至少两个测试信号的幅度不同;
    根据所述至少两个测试反馈信号,得到对应的至少两个基带信号,所述基带信号为数字信号;所述基带信号和所述测试反馈信号一一对应;
    根据所述至少两个测试信号和所述至少两个基带信号,确定幅度偏移量;所述幅度偏移量用于对所述发射机的幅度偏移进行校准。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述至少两个测试信号,得到对应的至少两个基带信号,包括:
    根据所述发射机的锁相环发送的载波信号,分别对每个测试反馈信号进行正交下变频处理,得到与每个测试反馈信号对应的基带信号。
  3. 根据权利要求2所述的方法,其特征在于,所述至少两个测试信号包括第一测试信号和第二测试信号,所述至少两个基带信号包括与所述第一测试信号对应的第一基带信号以及与所述第二测试信号对应的第二基带信号,则所述根据所述至少两个测试信号和所述至少两个基带信号,确定幅度偏移量,包括:
    根据所述第一测试信号的幅度A t1、所述第二测试信号的幅度A t2、所述第一基带信号的幅度均值A r1以及所述第二基带信号的幅度均值A r2,通过公式
    Figure PCTCN2020101103-appb-100001
    得到所述幅度偏移量AM offset
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述至少两个测试反馈信号,得到对应的至少两个基带信号,包括:
    分别对每个测试反馈信号进行平方变换,得到与所述测试反馈信号对应的基带信号。
  5. 根据权利要求4所述的方法,其特征在于,所述至少两个测试信号包括第一测试信号、第二测试信号和第三测试信号,所述至少两个基带信号包括与所述第一测试信号对应的第一基带信号、与所述第二测试信号对应的第二基带信号以及与所述第三测试信号对应的第三基带信号,则所述 根据所述至少两个测试信号和所述至少两个基带信号,确定幅度偏移量,包括:
    根据所述第一测试信号的幅度A t1、所述第二测试信号的幅度A t2、所述第三测试信号的幅度A t3、所述第一基带信号的幅度均值A r1、所述第二基带信号的幅度均值A r2以及所述第三基带信号的幅度均值A r3,通过公式
    Figure PCTCN2020101103-appb-100002
    得到所述幅度偏移量AM offset
  6. 根据权利要求1至5任一项所述的方法,其特征在于,在所述根据所述至少两个测试信号和所述至少两个基带信号,确定幅度偏移量之后,所述方法还包括:
    根据所述幅度偏移量,对幅度调制信号进行幅度偏移的补偿,所述幅度调制信号为对所述发射机的信号生成单元生成的基带信号进行坐标旋转得到的。
  7. 根据权利要求6所述的方法,其特征在于,在所述根据所述幅度偏移量,对所述幅度调制信号进行幅度偏移的补偿之前,所述方法还包括:
    根据预先获取的数字预失真处理系数,对所述发射机的信号生成单元生成的基带信号进行数字预失真处理。
  8. 根据权利要求7所述的方法,其特征在于,在所述根据预先获取的数字预失真处理系数,对所述发射机的信号生成单元生成的基带信号进行数字预失真处理之前,所述方法还包括:
    接收输入的训练序列,所述训练序列包括多个训练信号;
    响应于接收到所述训练序列,启动所述测试模式,得到所述幅度偏移量;
    获取每个训练信号对应的反馈信号,所述反馈信号为根据所述幅度偏移量进行过补偿的,并由功率放大器输出的模拟信号;
    根据所述多个训练信号和对应的反馈信号,确定所述数字预失真处理系数;
    重复执行上述训练过程,直至达到预设次数时,得到最终的数字预失真处理系数。
  9. 一种电子设备,其特征在于,包括:
    测试反馈信号获取单元,用于获取至少两个测试反馈信号;所述测试反馈信号为在测试模式下所述发射机根据测试信号得到的模拟信号;与所述至少两个测试反馈信号一一对应的至少两个测试信号为所述发射机预先生成的幅度数字信号,所述至少两个测试信号的幅度不同;
    测试反馈信号处理单元,根据所述至少两个测试反馈信号,得到对应的至少两个基带信号,所述基带信号为数字信号;所述基带信号和所述测试反馈信号一一对应;
    幅度偏移确定单元,用于根据所述至少两个测试信号和所述至少两个基带信号,确定幅度偏移量;所述幅度偏移量用于对所述发射机的幅度偏移进行校准。
  10. 根据权利要求9所述的设备,其特征在于,所述测试反馈信号处理单元具体用于:
    根据所述发射机的锁相环发送的载波信号,分别对每个测试反馈信号进行正交下变频处理,得到与每个测试反馈信号对应的基带信号。
  11. 根据权利要求10所述的设备,其特征在于,所述至少两个测试信号包括第一测试信号和第二测试信号,所述至少两个基带信号包括与所述第一测试信号对应的第一基带信号以及与所述第二测试信号对应的第二基带信号,则所述幅度偏移确定单元具体用于:
    根据所述第一测试信号的幅度A t1、所述第二测试信号的幅度A t2、所述第一基带信号的幅度均值A r1以及所述第二基带信号的幅度均值A r2,通过公式
    Figure PCTCN2020101103-appb-100003
    得到所述幅度偏移量AM offset
  12. 根据权利要求9所述的设备,其特征在于,所述测试反馈信号处理单元具体用于:
    分别对每个测试反馈信号进行平方变换,得到与所述测试反馈信号对应的基带信号。
  13. 根据权利要求12所述的设备,其特征在于,所述至少两个测试信号包括第一测试信号、第二测试信号和第三测试信号,所述至少两个基带信号包括与所述第一测试信号对应的第一基带信号、与所述第二测试信号对应的第二基带信号以及与所述第三测试信号对应的第三基带信号,则所述幅度偏移确定单元具体用于:
    根据所述第一测试信号的幅度A t1、所述第二测试信号的幅度A t2、第三测试信号的幅度A t3、所述第一基带信号的幅度均值A r1、所述第二基带信号的幅度均值A r2以及所述第三基带信号的幅度均值A r3,通过公式
    Figure PCTCN2020101103-appb-100004
    得到所述幅度偏移量AM offset
  14. 根据权利要求9至13任一项所述的设备,其特征在于,所述设备还包括:
    幅度偏移校准单元,用于根据所述幅度偏移量,对幅度调制信号进行幅度偏移的补偿,所述幅度调制信号为对所述发射机的信号生成单元生成的基带信号进行坐标旋转得到的。
  15. 根据权利要求14所述的设备,其特征在于,所述设备还包括:
    数字预失真单元,用于根据预先获取的数字预失真处理系数,对所述发射机的信号生成单元生成的基带信号进行数字预失真处理。
  16. 根据权利要求15所述的设备,其特征在于,还包括:
    信号接收单元,用于接收输入的训练序列,所述训练序列包括多个训练信号;
    逻辑处理单元,还用于响应于接收到所述训练序列,启动所述测试模式,得到所述幅度偏移量;
    信号处理单元,用于获取每个训练信号对应的反馈信号,所述反馈信号为经过所述幅度偏移校准单元进行过补偿的,并由功率放大器输出的模拟信号;所述信号处理单元包括所述幅度偏移校准单元和所述数字预失真单元;
    所述数字预失真单元还用于根据所述多个训练信号和对应的反馈信号,确定所述数字预失真处理系数;
    所述逻辑处理单元还用于重复执行上述训练过程,直至达到预设次数时,得到最终的数字预失真处理系数。
  17. 一种存储介质,其特征在于,包括:可读存储介质和计算机程序,所述计算机程序用于实现权利要求1至8任一项所述的幅度偏移的校准方法。
  18. 一种运行指令的芯片,其特征在于,所述芯片包括存储器、处理器, 所述存储器中存储代码和数据,所述存储器与所述处理器耦合,所述处理器运行所述存储器中的代码使得所述芯片用于执行权利要求1至8任一项所述的幅度偏移的校准方法。
  19. 一种包含指令的程序产品,其特征在于,当所述程序产品在计算机上运行时,使得所述计算机执行权利要求1至8任一项所述的幅度偏移的校准方法。
  20. 一种计算机程序,其特征在于,当所述计算机程序被处理器执行时,用于执行权利要求1至8任一项所述的幅度偏移的校准方法。
PCT/CN2020/101103 2020-07-03 2020-07-09 幅度偏移的校准方法、设备以及存储介质 WO2022000529A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/149,173 US20230147812A1 (en) 2020-07-03 2023-01-03 Amplitude offset calibration method, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010629784.XA CN111901261B (zh) 2020-07-03 2020-07-03 幅度偏移的校准方法、设备以及存储介质
CN202010629784.X 2020-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/149,173 Continuation US20230147812A1 (en) 2020-07-03 2023-01-03 Amplitude offset calibration method, device, and storage medium

Publications (1)

Publication Number Publication Date
WO2022000529A1 true WO2022000529A1 (zh) 2022-01-06

Family

ID=73191432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101103 WO2022000529A1 (zh) 2020-07-03 2020-07-09 幅度偏移的校准方法、设备以及存储介质

Country Status (3)

Country Link
US (1) US20230147812A1 (zh)
CN (1) CN111901261B (zh)
WO (1) WO2022000529A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208487A (zh) * 2022-09-16 2022-10-18 北京天地一格科技有限公司 幅相校准方法和系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11190285B1 (en) * 2020-11-09 2021-11-30 Hangzhou Geo-Chip Technology Co., Ltd. Transmitter, receiver, signal transceiver and methods therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090141830A1 (en) * 2006-05-30 2009-06-04 Huawei Technologies Co., Ltd. Receiver and method for receiving wireless signals
CN101635697A (zh) * 2009-08-04 2010-01-27 京信通信系统(中国)有限公司 一种发射机及发射机处理信号的方法
CN202121602U (zh) * 2011-05-19 2012-01-18 乐鑫信息科技(上海)有限公司 一种调制解调器失配的校准装置
CN102340467A (zh) * 2011-05-19 2012-02-01 乐鑫信息科技(上海)有限公司 一种调制解调器失配的校准装置及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6373909B2 (en) * 1999-10-22 2002-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Communications terminal having a receiver and method for removing known interferers from a digitized intermediate frequency signal
EP2002632B1 (en) * 2006-03-28 2015-10-21 Nxp B.V. Delay Mismatch Compensation Using a Low Complexity Structure in Signal Transmitters with Digital and Analog Components
CN101080031B (zh) * 2006-05-26 2011-02-02 大唐移动通信设备有限公司 基带拉远技术的智能天线校准系统及其方法
US8295371B2 (en) * 2006-07-14 2012-10-23 Qualcomm Incorporated Multi-carrier receiver for wireless communication
CN102231620A (zh) * 2010-09-06 2011-11-02 刘郁林 一种基于基带数字预失真技术的功放线性化方法和装置
US8798194B2 (en) * 2011-12-15 2014-08-05 Intel Mobile Communications GmbH Adaptive compensation of nonlinear frequency distortion in polar transmitters based on a least squares estimation
CN102638319B (zh) * 2012-04-23 2014-05-28 北京空间飞行器总体设计部 一种导航卫星二进制偏移载波信号的调制性能测试方法
CN106330802A (zh) * 2015-06-30 2017-01-11 天津创融科技有限公司 一种移动通信系统的数字预失真处理装置及方法
WO2018157321A1 (zh) * 2017-02-28 2018-09-07 华为技术有限公司 发射机及数字预失真校准方法
CN108776330B (zh) * 2018-08-17 2020-02-07 湖南时变通讯科技有限公司 一种fmcw雷达多接收通道的高精度校准方法和装置
CN109617560B (zh) * 2018-11-13 2020-03-31 浙江大学 一种iq信号校准补偿方法
CN110708082B (zh) * 2019-10-10 2021-12-07 中科睿微(宁波)电子技术有限公司 一种无线通信发射机及发射方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090141830A1 (en) * 2006-05-30 2009-06-04 Huawei Technologies Co., Ltd. Receiver and method for receiving wireless signals
CN101635697A (zh) * 2009-08-04 2010-01-27 京信通信系统(中国)有限公司 一种发射机及发射机处理信号的方法
CN202121602U (zh) * 2011-05-19 2012-01-18 乐鑫信息科技(上海)有限公司 一种调制解调器失配的校准装置
CN102340467A (zh) * 2011-05-19 2012-02-01 乐鑫信息科技(上海)有限公司 一种调制解调器失配的校准装置及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115208487A (zh) * 2022-09-16 2022-10-18 北京天地一格科技有限公司 幅相校准方法和系统

Also Published As

Publication number Publication date
CN111901261A (zh) 2020-11-06
US20230147812A1 (en) 2023-05-11
CN111901261B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
US9054642B2 (en) Systems and methods to provide compensated feedback phase information
US8447245B2 (en) Radio frequency transmitter having an amplifier with power supply modulation
KR100694788B1 (ko) 무선 통신 신호가 생성된 송신기의 진폭 및 위상 특성을기지국의 전송 전력 제어 신호 및 송신기의 알려진 증폭기특성에 응답하여 조정하는 방법 및 시스템
US20230147812A1 (en) Amplitude offset calibration method, device, and storage medium
EP3066752B1 (en) Reduced power amplifier load impact for open loop envelope tracking
WO2012113292A1 (zh) 一种实现数字基带预失真的方法及装置
JP2003513498A (ja) 電力増幅器の適応線形化
US7570928B2 (en) System and method for low delay corrective feedback power amplifier control
US8781414B2 (en) Envelope detector and method for detecting an envelope of a signal to be amplified by a power amplifier
US20080031383A1 (en) Replica Linearized Power Amplifier
WO2008116402A1 (fr) Appareil de prédistorsion, émetteur et procédé correspondant
CN109120265B (zh) 一种信号的校正方法、装置、芯片和存储介质
WO2006118317A1 (en) Polar modulation transmitter circuit and communications device
CN112291173A (zh) 一种iq不平衡系数获取方法及装置、可读存储介质
US20230275614A1 (en) Transceiver With Auxiliary Receiver Calibration Apparatus and Methodology
CN107005527B (zh) 信号发送设备及信号发送方法
CN115499022A (zh) 宽带发射电路
US11516054B2 (en) Polar transmitter with feedthrough compensation
US9900016B1 (en) Compensation of non-linearity at digital to analog converters
US20130052960A1 (en) Calibration systems for wireless electronic devices
US8532590B2 (en) Digital phase feedback for determining phase distortion
US7983632B2 (en) Feedback control loop for amplitude modulation in a polar transmitter with a translational loop
CN109617563B (zh) 一种基于互补网络的正交调制器失真校正方法
WO2019205171A1 (zh) 一种射频接收机、射频发射机及通信设备
CN203800956U (zh) 离线估计预失真系数的数字预失真系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20943094

Country of ref document: EP

Kind code of ref document: A1