WO2023103476A1 - 一种热室内部全方位观测的装置 - Google Patents

一种热室内部全方位观测的装置 Download PDF

Info

Publication number
WO2023103476A1
WO2023103476A1 PCT/CN2022/115729 CN2022115729W WO2023103476A1 WO 2023103476 A1 WO2023103476 A1 WO 2023103476A1 CN 2022115729 W CN2022115729 W CN 2022115729W WO 2023103476 A1 WO2023103476 A1 WO 2023103476A1
Authority
WO
WIPO (PCT)
Prior art keywords
bellows
lead box
radiation
tail
resistant flexible
Prior art date
Application number
PCT/CN2022/115729
Other languages
English (en)
French (fr)
Inventor
姜潮
董家坤
田万一
许紫洋
Original Assignee
湖南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南大学 filed Critical 湖南大学
Publication of WO2023103476A1 publication Critical patent/WO2023103476A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/24Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other
    • F16M11/38Undercarriages with or without wheels changeable in height or length of legs, also for transport only, e.g. by means of tubes screwed into each other by folding, e.g. pivoting or scissors tong mechanisms

Definitions

  • the hot cell is a place with shielding, sealing, ventilation and isolation in nuclear reprocessing facilities, which is used to observe, contain, shield and perform corresponding process operations on high-radioactive substances to prevent radioactive substances from leaking into the environment and causing pollution , to ensure that the operator will not be exposed to radiation above the maximum allowable dose during operation.
  • the wall of the hot cell is thick, and there are cavities in the thick wall of the hot cell.
  • the wall is usually composed of lead blocks and heavy concrete, which is a biological protection shield;
  • the back wall of the hot cell is equipped with a screen door, which can be accessed, cleaned, installed and dismantled when necessary.
  • Equipment The heat chamber is equipped with a lead box, a power manipulator, a cavity for a camera, a dome cover, a camera and other devices on the inner wall. The function of the camera is to facilitate testing, operation, and observation of the state of radioactive substances in the heat chamber.
  • the power manipulator is used to move the camera and to pick up, transport, and cut radioactive materials.
  • the camera When moving the camera, it will occupy the limited resources of the power manipulator.
  • the power manipulator and the camera are two independent devices, which are prone to circuit breakers when moving. Winding, resulting in damage to the line and other faults;
  • the power manipulator takes it out of the lead box and puts it into the thick-walled cavity of the hot chamber.
  • the surface of the camera will be contaminated with radioactive substances. Putting it in a lead box will cause radiation damage to the camera, and the service life of the camera will be shortened by radiation;
  • the thick observation window is integrated on the wall of the hot chamber for direct visual observation of objects or phenomena in the hot chamber. Due to the thick wall of the hot chamber, there are dead spots in the observation, and some areas cannot be observed, so direct visual observation cannot Precise measurements of distances and spatial dimensions inside the hot cell do not allow to obtain high-quality images of all areas of the hot cell.
  • the purpose of the present invention is to solve the above-mentioned technical defects, and propose a device for all-round observation inside the hot chamber. And the camera is damaged by radiation, prolonging the service life of the camera.
  • a device for all-round observation inside a hot chamber includes: a radiation-resistant flexible mechanism, a bellows replacement mechanism, a lead box door switch mechanism, and a lead box, wherein the lead box is a box with a wheel slide groove and four wheels on the inner bottom surface.
  • the box body, the four wheels are arranged in the wheel chute.
  • the radiation-resistant flexible mechanism is arranged in the lead box above the chute, the radiation-resistant flexible mechanism includes an angle control mechanism, a tail moving mechanism and a camera, the front end of the angle control mechanism is connected to the camera, The rear end is connected to the tail moving mechanism, and the angle control mechanism is composed of a plurality of cylindrical structures and radiation-resistant flexible mechanism cylinders connected in series, and two cylinders of the radiation-resistant flexible mechanism are connected between each cylindrical structure.
  • the cylinder of the flexible mechanism stretches left and right to control the steering of the radiation-resistant flexible mechanism to complete the omnidirectional observation of the camera outside the lead box;
  • the tail moving mechanism is arranged at the rear end of the angle control mechanism, and is connected to the angle control mechanism through two cylinders of the radiation-resistant flexible mechanism.
  • the ring on the tail moving mechanism is clamped between the four wheels, and Move in the wheel chute.
  • the bellows replacement mechanism is a shell structure, which is connected to the front end of the lead box and is perpendicular to the bottom surface of the lead box.
  • the two inner sides of the shell of the bellows replacement mechanism are provided with penetrating holes close to the position of the lead box.
  • the bellows tail chute, inside the bellows tail chute, a plurality of bellows replacement parts for protecting the camera from radiation are vertically arranged.
  • the lead box door switch mechanism includes a crank, a connecting rod, a door and a door chute, and the lead box door switch mechanism is arranged in front of the radiation-resistant flexible mechanism and on the lead box side wall of the bellows replacement mechanism.
  • the lower end of the side wall of the lead box is provided with a door opening, and door chutes are arranged on both sides of the door opening.
  • a crank and a connecting rod are arranged on the upper part of the door opening. The crank rotates at a constant speed to drive the connecting rod to drive the door to move up and down on the door chute.
  • the radiation-resistant flexible mechanism is freely moved in and out of the lead box.
  • the tail moving mechanism also includes a tail, the tail is a cylindrical structure, the outer wall of the cylinder is provided with a positioning boss, and the positioning boss extends from the end face of the tail connected to the cylinder of the radiation-resistant flexible mechanism to the rear end face of the tail, The inner ring of the ring is inserted into the positioning boss to limit the position, and the end face of the ring is provided with a mounting hole, which is connected and fixed to the front end face of the tail through the mounting hole.
  • the bellows replacement mechanism also includes a hollow casing, a casing partition, a partition chute, a bottom plate of the casing, a bottom chute, a hole, a top protective cover, a side protective cover, a bellows control cylinder, and a bellows tail slide. groove;
  • the hollow shell has a rectangular structure, and the inner walls of both sides of the shell are provided with partition chutes parallel to the top surface, and the partition chute runs through the front and rear walls of the hollow shell, and the shell partitions are placed horizontally In the partition chute, it is used to separate the bellows replacement part and the bottom operation space;
  • the front end cover of the hollow shell is a movable plate
  • the top protective cover is provided at the connection between the front end cover of the shell and the top surface of the shell, and the outer walls of the two sides of the shell are provided with bosses, and the side protective covers are installed.
  • the top protective cover and the side protective cover prevent the radiation-resistant flexible mechanism from entering the bottom operating space, so that the front end cover of the shell moves relative to the hollow shell;
  • the rear wall of the hollow shell is provided with a plurality of holes, the distance between the adjacent holes is the diameter of the tail of the bellows, and the inner side of the connection surface between the lead box and the rear wall of the hollow shell is provided with a plurality of The bellows control cylinder, the number of the bellows control cylinders corresponds to the hole, the bellows control cylinder controls the bellows through the hole and falls to the partition slide along the tail chute of the bellows on the slot;
  • the bottom of the hollow shell is provided with a bottom plate chute parallel to the top surface, and the bottom plate of the shell is horizontally placed in the bottom plate chute;
  • a through hole is provided under the connection surface between the hollow shell and the lead box, and under the front end of the hollow shell. Mechanisms protrude into the hot chamber and back into the channel of the lead box.
  • Described bellows comprises bellows tail and dome cover, and described bellows tail snaps in the described bellows tail chute, and described dome cover is installed on the outer end of described bellows.
  • the bellows control cylinder closest to the housing partition moves backwards, causing the bellows to fall into the housing partition, move out of the housing partition, and the bellows fall based on gravity.
  • the door of the lead box door switch mechanism is opened, the radiation-resistant flexible mechanism passes through the passage, the camera is stuck in the bellows, and is extended into the thermal chamber for observation; the camera observes After completion, take off the bellows through the passage, return to the lead box, and the door of the lead box door switch mechanism is closed; the bottom plate cylinder of the bellows replacement mechanism controls the bottom plate of the housing to move backward, so that the irradiated The polluted bellows fall into the hot chamber; when the camera (1.3) installs a new bellows, the above actions are repeated.
  • the front end of the bellows replacement mechanism is provided with a handle for easy carrying and installation.
  • the technical solution in the present invention provides a device for all-round observation inside the hot chamber, which has the following beneficial effects:
  • the lead box door switch mechanism opens the door, and the radiation-resistant flexible mechanism extends out of the lead box and enters the bellows replacement mechanism.
  • the bellows in the bellows replacement mechanism is inserted into the camera at the front end of the radiation-resistant flexible mechanism.
  • the radiation-resistant flexible mechanism retreats to the bellows replacement mechanism. After breaking away from the irradiated bellows, it enters the lead box, and the lead box door switch mechanism closes the door. The whole process protects the camera from radiation damage and improves the service life of the camera;
  • the radiation-resistant flexible mechanism is set in the lead box, and the lead box is set in the heat chamber.
  • the thick wall of the heat chamber does not need to open a cavity, so that a small amount of radioactive substances pass through the cavity due to the gap between the cavity and the dome cover.
  • the hole flows out to the outside of the heat chamber, which effectively protects the heat chamber from radiation damage to external workers;
  • the camera is installed at the front end of the radiation-resistant flexible mechanism, and the angle control mechanism of the radiation-resistant flexible mechanism drives the camera to turn, and the tail moving mechanism of the radiation-resistant flexible mechanism moves back and forth in the wheel slide groove of the lead box, so that the camera can be used in all directions Observing the interior of the heat chamber, the dome cover on the bellows can increase the observation field of view, accurately measure the spatial size of the objects in the heat chamber, obtain high-quality images of all areas of the heat chamber, and no longer occupy the limited resources of the power manipulator, which solves the problem of existing technologies During the operation of the power manipulator and the camera, faults such as wire winding and damage to equipment parts occur;
  • bellows replacement parts placed in the bellows replacement mechanism, which are used to replace the bellows damaged by radiation, which can reduce the number of times the operator enters the heating chamber for replacement and the number of times the heating chamber is radiated.
  • the bellows replacement mechanism acts as a An integral structure is replaced on the front side of the lead box, which is easy to operate.
  • the inner side of the bellows replacement mechanism is provided with a shell partition, which effectively blocks the contact between the bellows replacement part and the internal environment of the heat chamber, and protects the bellows replacement part from radiation damage.
  • Fig. 1 is a schematic diagram of the overall structure of the present invention
  • Fig. 2 is a schematic diagram of the tail moving mechanism described in the specific implementation of the present invention.
  • Fig. 3 is a schematic diagram of the bellows replacement mechanism described in the specific implementation of the present invention.
  • Fig. 4 is a schematic diagram of the internal structure of the bellows replacement mechanism described in the specific implementation of the present invention.
  • Fig. 5 is a schematic diagram of the tail chute of the bellows described in the specific implementation of the present invention.
  • Fig. 6 is a schematic diagram of the chute of the hollow shell partition described in the specific implementation of the present invention.
  • Fig. 7 is a cross-sectional view of the bellows replacement mechanism in the specific implementation of the present invention.
  • Fig. 8 is a schematic diagram of the internal structure of the hollow shell described in the specific implementation of the present invention.
  • Fig. 9 is a structural schematic diagram of the bellows described in the specific implementation of the present invention.
  • Fig. 10 is a schematic diagram of the lead box door switch mechanism described in the specific implementation of the present invention.
  • 1-radiation-resistant flexible mechanism 1.1-angle control mechanism; 1.1.1-radiation-resistant flexible mechanism cylinder; 1.2-tail moving mechanism; 1.2.1-tail; 1.2.2-ring; 1.3-camera; 2-corrugation Tube replacement mechanism; 2.1-hollow shell; 2.2-shell partition; 2.3-partition chute; 2.4-shell bottom plate; 2.5-bottom plate chute; 2.6-hole; 2.7-top protective cover; 2.8-side Protective cover; 2.9-bellows; 2.9.1-tail of bellows; 2.9.2-dome cover; 2.10-bellows control cylinder; 2.11-chute at the tail of bellows; 2.12-handle; ; 3.1-crank; 3.2-connecting rod; 3.3-door; 3.4-door chute; 4-lead box; 4.1-wheel chute; 4.2-four wheels.
  • a kind of omnidirectional observation device inside the hot chamber provided by the present invention is installed in the hot chamber, and the omnidirectional observation device inside the hot chamber includes a radiation-resistant flexible mechanism 1, a bellows replacement mechanism 2, a lead box Door switch mechanism 3, lead box 4.
  • lead box 4 is the casing that an inner bottom surface is provided with wheel slide groove 4.1 and four wheels 4.2, and four wheels 4.2 are arranged in the wheel slide groove 4.1.
  • the radiation-resistant flexible mechanism 1 is arranged in the lead box 4 above the chute 4.1.
  • the radiation-resistant flexible mechanism 1 includes an angle control mechanism 1.1, a tail moving mechanism 1.2 and a camera 1.3.
  • the front end of the angle control mechanism 1.1 is connected to the camera 1.3, and the rear The end is connected to the tail moving mechanism 1.2, and the angle control mechanism 1.1 is composed of a plurality of cylindrical structures and radiation-resistant flexible mechanism cylinders 1.1.1 connected in series, and two radiation-resistant flexible mechanism cylinders 1.1.1 are connected between each cylindrical structure.
  • the mechanism cylinder 1.1.1 stretches left and right to control the steering of the radiation-resistant flexible mechanism 1, and completes the omnidirectional observation of the camera 1.3 outside the lead box 4.
  • the tail moving mechanism 1.2 is arranged at the rear end of the angle control mechanism 1.1, and is connected with the angle control mechanism 1.1 through two radiation-resistant flexible mechanism cylinders 1.1.1, and the ring 1.2.2 on the tail moving mechanism 1.2 is stuck between the four wheels 4.2 , and move in the wheel slide groove 4.1.
  • the bellows replacement mechanism 2 is a shell structure, which is connected with the front end of the lead box 4 and is perpendicular to the bottom surface of the lead box 4 .
  • the lead box door switch mechanism 3 is arranged in the front of the radiation-resistant flexible mechanism 1 and at the lower end of the side wall of the lead box 4 of the bellows replacement mechanism 2 .
  • the bellows replacement mechanism 2 includes a hollow housing 2.1, a housing partition 2.2, a partition chute 2.3, a housing bottom plate 2.4, a bottom plate chute 2.5, a hole 2.6, a top protective cover 2.7, Side protection cover 2.8, bellows 2.9, bellows control cylinder 2.10, bellows tail chute 2.11.
  • the hollow shell 2.1 has a rectangular structure, and the inner walls of both sides of the shell are provided with partition chute 2.3 parallel to the top surface, and the partition chute 2.3 runs through the hollow shell 2.1
  • the front and rear walls of the housing partition 2.2 are horizontally placed in the partition chute 2.3, which is used to separate the bellows 2.9 replacement parts and the bottom operating space;
  • the front end of the hollow shell 2.1 is provided with a handle 2.12 for easy carrying and installation.
  • the front end cover of the hollow shell 2.1 is a movable plate
  • the top protective cover 2.7 is provided at the connection between the front end cover of the shell and the top surface of the shell, and the outer walls of the two sides of the shell are provided with bosses
  • the side protective cover 2.8 is installed , the top protective cover 2.7 and the side protective cover 2.8 prevent the radiation-resistant flexible mechanism 1 from entering the bottom operating space, so that the front cover of the shell moves relative to the hollow shell 2.1.
  • the rear wall of the hollow housing 2.1 is provided with a plurality of holes 2.6, and the distance between adjacent holes 2.6 is the diameter of the tail of the bellows 2.9, the lead box 4 and the rear wall of the hollow housing 2.1
  • a plurality of bellows control cylinders 2.10 are provided on the inner side of the connecting surface, the number of bellows control cylinders 2.10 corresponds to the hole 2.6, the bellows control cylinder 2.10 controls the bellows 2.9 through the hole 2.6 and falls to the partition along the tail chute 2.11 of the bellows On the chute 2.3.
  • the bottom of the hollow casing 2.1 is provided with a bottom chute 2.5 parallel to the top surface, and the casing bottom 2.4 is horizontally placed in the bottom chute 2.5.
  • the two inner surfaces of the hollow shell 2.1 are provided with bellows tail chute 2.11 penetrating close to the position of the lead box 4, and a plurality of bellows tail chute 2.11 are vertically arranged inside for Replacement bellows 2.9 for camera 1.3 protection from radiation.
  • the bellows 2.9 includes a bellows tail 2.9.1 and a dome 2.9.2, the bellows tail 2.9.1 snaps into the bellows tail chute 2.11, and the dome 2.9.2 is installed on the outer end of the bellows 2.9.
  • a through hole is provided below the connection surface between the hollow shell 2.1 and the lead box 4, and the front end of the hollow shell 2.1, and the hole penetrates with the opening of the lead box door switch mechanism 3 at the same time.
  • the radiation-resistant flexible mechanism 1 stretches into the hot chamber and returns to the channel of the lead box 4 .
  • the lead box door switch mechanism 3 includes a crank 3.1, a connecting rod 3.2, a door 3.3 and a door chute 3.4.
  • the lower end of the side wall of the lead box 4 is provided with a door opening
  • the door chute 3.4 is arranged on both sides of the door opening
  • the upper part of the door opening is provided with a crank 3.1 and a connecting rod 3.2
  • the crank 3.1 rotates at a uniform speed to drive the connecting rod 3.2 to drive the door 3.3.
  • the door chute 3.4 moves up and down, so that the radiation-resistant flexible mechanism 1 can freely enter and exit in the lead box 4.
  • the operating principle of the omni-directional observation device inside the hot chamber of the present invention is as follows:
  • the bellows closest to the shell partition 2.2 controls the cylinder 2.10 to move backward, so that the bellows 2.9 falls onto the shell partition 2.2, and moves out of the shell partition 2.2, and the bellows 2.9 extends the tail of the bellows based on gravity
  • the chute 2.11 falls into the shell bottom plate 2.4
  • the radiation-resistant flexible mechanism 1 is stuck between the four wheels 4.2 through the ring 1.2.2 on the tail moving mechanism 1.2, and moves forward in the wheel chute 4.1
  • the lead box door switch mechanism 3 The door is opened, and the radiation-resistant flexible mechanism 1 passes through the lower channel of the hollow shell 2.1, and the camera 1.3 is inserted into the bellows 2.9, and then extends into the thermal chamber, and passes through the radiation-resistant flexible mechanism cylinder 1.1.1 on the radiation-resistant flexible mechanism 1.
  • the telescopic control camera 1.3 turns, the camera 1.3 turns at different angles, and observes the interior of the heat chamber in all directions.
  • the dome cover 2.9.1 on the bellows 2.9 can increase the observation field of view of the camera 1.3, accurately measure the space size of objects in the heat chamber, and obtain heat High-quality images of all areas of the room;
  • the radiation-resistant flexible mechanism 1 moves backward along the wheel chute 4.1 and enters the operating space between the shell bottom plate 2.4 and the shell partition plate 2.2, and the bottom plate cylinder of the bellows replacement mechanism 2 controls the shell bottom plate 2.3 to move backward , after the corrugated pipe 2.9 polluted by radiation leaves the camera, it falls into the hot chamber, and the radiation-resistant flexible mechanism 1 continues to move backward along the wheel slide groove 4.1 and returns to the lead box 4.
  • the lead box door switch mechanism 3 Closed to block the radiation-resistant flexible mechanism 1 and the internal environment of the heat chamber, thereby protecting the camera 1.3 from radiation damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明涉及核燃料后处理以及核工业中热室观测技术领域,具体涉及一种热室内部全方位观测装置,包括耐辐射柔性机构、波纹管更换机构、铅箱门开关机构、铅箱,其中,耐辐射柔性机构前端设有摄像机,尾部设有与铅箱内底面的轮滑槽连接的尾部移动机构,通过耐辐射柔性机构的角度控制机构左右气缸的伸缩控制摄像头转向,铅箱前端面上设有可开启关闭的的铅箱门开关机构,铅箱前端外侧面与波纹管更换机构连接,波纹管更换机构内设有多个竖直排列、且用于保护所述摄像机免受辐照的波纹管替换件;通过本发明,摄像机可以全方位观测热室内部,获得热室所有区域的高质量图像,铅箱门开关机构能够保护摄像机免受热室内部辐射环境污染,提高摄像机使用寿命。

Description

一种热室内部全方位观测的装置
相关申请
本申请主张于2021年12月09日提交的、名称为“一种热室内部全方位观测的装置”的中国发明专利申请:202111497636.8的优先权。
背景技术
核设施中产生的乏燃料组件或沾染放射性物质的部件由于具有高放射性,在储运至后处理设施后,需在热室内进行相应的物理、化学操作,以达到减容和资源回收利用的目的,热室是核后处理设施中一种具备屏蔽、密封、通风和隔离的场所,用于对高放射性物质进行观察、包容、屏蔽以及进行相应的工艺操作,防止放射性物质泄漏到环境中造成污染,保证操作人员在操作时不会遭受最大容许剂量以上的辐照。
热室壁为厚壁,热室厚壁设有腔洞,壁通常由铅块和重混凝土组成,是生物防护屏蔽体;热室后墙设有屏蔽门,必要时进入,清洗、安装和拆卸设备;热室设有铅箱、动力机械手、内壁设有放摄像机的腔洞、穹形罩、摄像机等装置,其中摄像机作用是便于试验、操作、观测热室内放射性物质的状态。
现有技术存在以下缺陷:
第一、动力机械手用于移动摄像机以及对放射性物夹取、搬运、切割等作业,移动摄像机时会占用动力机械手的有限资源,动力机械手与摄像机为两个相互独立的设备,移动时易发生线路缠绕,导致线路受损等故障;
第二、摄像机工作时,动力机械手从铅箱中拿出放入热室厚壁的腔洞,摄像机表面会沾染到放射性物质,不使用摄像机时,由动力机械手收入铅箱,沾染的放射性物质被收入铅箱内,对摄像机造成辐照损伤,摄像机使用寿命受到辐射而缩短;
第三、热室厚壁设有腔洞,用于放置摄像机,腔洞外装有穹形罩,移动摄像机通过穹形罩调节镜头变焦,由于腔洞空间的局限性,摄像机在通道内只能前后平移,不能旋转角度,导致观测范围有限,腔洞与穹形罩的装配存在间隙,少量放射性物 质通过间隙经腔洞向热室外流出,不仅辐照摄像机,对外部工作人员或仪器同样产生辐射侵害;
第四、厚观察窗集成在热室壁上,用于直接目视观察热室内的物体或现象,由于热室壁为厚壁,导致观测存在死角,部分区域无法观测,直接目视观察不能对热室内距离和空间尺寸精确测量,不允许获得热室所有区域的高质量图像。
发明内容
本发明的目的为解决上述技术缺陷,提出一种热室内部全方位观察的装置,该装置可实现摄像机不同角度观测,从而获得热室所有区域的高质量图像,装置密封性好,避免操作人员和摄像机受到辐照侵害,延长摄像机使用寿命。
一种热室内部全方位观察的装置包括:耐辐射柔性机构、波纹管更换机构、铅箱门开关机构、铅箱,其中,所述铅箱是一个内底面设有轮滑槽和四个轮子的箱体,所述四个轮子设置在所述轮滑槽内。
所述耐辐射柔性机构设置于所述铅箱内、所述滑槽的上方,所述耐辐射柔性机构包括角度控制机构、尾部移动机构和摄像机,所述角度控制机构的前端连接所述摄像机,后端连接所述尾部移动机构,所述角度控制机构由多个圆柱结构及耐辐射柔性机构气缸串联组成,每个圆柱结构之间连接两个所述耐辐射柔性机构气缸,通过所述耐辐射柔性机构气缸左右伸缩控制所述耐辐射柔性机构的转向,完成所述摄像机在所述铅箱外的全方位观测;
所述尾部移动机构设置在角度控制机构的后端,通过两个所述耐辐射柔性机构气缸与角度控制机构连接,所述尾部移动机构上的环卡在所述四个轮子之间、且在所述轮滑槽内移动。
所述波纹管更换机构为壳体结构,与所述铅箱前端连接、垂直于所述铅箱底面,所述波纹管更换机构壳体两内侧面、靠近与所述铅箱位置设有贯穿的波纹管尾部滑槽,所述波纹管尾部滑槽内部竖直排列多个用于保护所述摄像机免受辐照的波纹管替换件。
所述铅箱门开关机构包括曲柄、连杆、门和门滑槽,所述铅箱门开关机构设置 于所述耐辐射柔性机构的前方、所述波纹管更换机构的所述铅箱侧壁下端,所述铅箱侧壁下端设有门洞,门洞两侧均设置门滑槽,门洞上部设有曲柄和连杆,所述曲柄匀速转动带动所述连杆驱动门在门滑槽上下移动,使所述耐辐射柔性机构在所述铅箱内自由进出。
所述尾部移动机构还包括尾部,所述尾部为圆柱结构,圆柱外壁设有定位凸台,定位凸台从所述尾部与所述耐辐射柔性机构气缸连接的端面延伸至所述尾部后端面,所述环内圈套入定位凸台进行限位,所述环的端面设有安装孔,通过安装孔与所述尾部的前端面连接固定。
所述波纹管更换机构还包括空心壳体、壳体隔板、隔板滑槽、壳体底板、底板滑槽、孔、顶部保护套、侧边保护套、波纹管控制气缸、波纹管尾部滑槽;
所述空心壳体为长方形结构,壳体两侧面内壁设置有与顶面平行的隔板滑槽,所述隔板滑槽贯穿所述空心壳体的前后壁,所述壳体隔板水平放置于所述隔板滑槽中,用于分隔所述波纹管替换件和底部操作空间;
所述空心壳体前端盖为活动板,壳体前端盖与壳体顶面连接处设有所述顶部保护套,壳体两侧面外壁设有凸台,安装所述侧边保护套,所述顶部保护套和所述侧边保护套防止所述耐辐射柔性机构进入底部操作空间,使壳体前端盖相对空心壳体移动;
所述空心壳体后壁设有多个孔,相邻所述孔之间的距离为所述波纹管尾部直径,所述铅箱与所述空心壳体后壁的连接面内侧设有多个波纹管控制气缸,所述波纹管控制气缸的数量与所述孔对应,所述波纹管控制气缸通过所述孔控制所述波纹管且延所述波纹管尾部滑槽落到所述隔板滑槽上;
所述空心壳体底部设置有与顶面平行的底板滑槽,所述壳体底板水平放置于所述底板滑槽中;
所述空心壳体与所述铅箱连接面的下方、所述空心壳体前端面下方设置有贯穿的孔,该孔同时与所述铅箱门开关机构的门洞贯穿,是所述耐辐射柔性机构伸入热室内和回到所述铅箱的通道。
所述波纹管包括波纹管尾部和穹形罩,所述波纹管尾部卡入所述波纹管尾部滑 槽内,所述穹形罩安装于所述波纹管的外端。
离所述壳体隔板最近的所述波纹管控制气缸向后移动,使所述波纹管落入所述壳体隔板上,移出所述壳体隔板,所述波纹管基于重力,落入所述壳体底板上,所述铅箱门开关机构门开启,所述耐辐射柔性机构穿过通道,所述摄像机卡进所述波纹管中,伸入热室内进行观测;所述摄像机观测完毕,穿过通道脱下所述波纹管,回到铅箱内,所述铅箱门开关机构门关闭;所述波纹管更换机构的底板气缸控制所述壳体底板后移,使受到辐照污染的所述波纹管落入热室;所述摄像机(1.3)安装新的波纹管时,重复上述动作。
另外,所述波纹管更换机构的前端面设有便于携带和安装的把手。
本发明中的技术方案提供一种热室内部全方位观测的装置,具备以下有益效果:
第一、热室内部全方位观测的装置只有一个通道,作为耐辐射柔性机构伸入热室内部及收回到铅箱内,该通道设有铅箱门开关机构,用于阻隔铅箱内部和热室空间,观测作业时,铅箱门开关机构开启门,耐辐射柔性机构伸出铅箱进入波纹管更换机构,波纹管更换机构中的波纹管套入耐辐射柔性机构前端的摄像机,观测完毕,耐辐射柔性机构退至波纹管更换机构中,脱离受辐照的波纹管后,进入到铅箱内,铅箱门开关机构关闭门,整个过程使摄像机免受辐照侵害,提高摄像机使用寿命;
第二、耐辐射柔性机构设置于铅箱中,铅箱设置于热室内,热室厚壁无需开设腔洞,解决由于腔洞与穹形罩的装配存在间隙,使少量放射性物质通过间隙经腔洞向热室外流出,有效保护热室对外部工作人员不受辐射侵害;
第三、摄像机安装在耐辐射柔性机构的前端,通过耐辐射柔性机构的角度控制机构驱动摄像机转向,和耐辐射柔性机构的尾部移动机构在铅箱的轮滑槽中前后移动,使摄像机可以全方位观测热室内部,波纹管上的穹形罩可以增大观察视野,精准测量热室内物体的空间尺寸,获得热室所有区域的高质量图像,不再占用动力机械手的有限资源,解决现有技术动力机械手与摄像机操作过程发生线路缠绕,损坏设备零件等故障;
第四、波纹管更换机构中放置有多个波纹管替换件,用于更换受到辐照侵害的波纹管,可以使操作人员减少进入热室内更换的次数和受热室辐射次数,波纹管更 换机构作为一个整体结构在铅箱前侧更换,操作简单,波纹管更换机构内侧设有壳体隔板,有效阻隔波纹管替换件与热室内部环境接触,使阻隔波纹管替换件免受辐照侵害。
附图说明
图1是本发明整体结构示图;
图2是本发明具体实施中所述尾部移动机构示意图;
图3是本发明具体实施中所述波纹管更换机构示意图;
图4是本发明具体实施中所述波纹管更换机构内部结构示意图;
图5是本发明具体实施中所述波纹管尾部滑槽示意图;
图6是本发明具体实施中所述空心壳体隔板滑槽示意图;
图7是本发明具体实施中所述波纹管更换机构剖视图;
图8是本发明具体实施中所述空心壳体内部结构示意图;
图9是本发明具体实施中所述波纹管结构示意图;
图10是本发明具体实施中所述铅箱门开关机构示意图;
其中,1-耐辐射柔性机构;1.1-角度控制机构;1.1.1-耐辐射柔性机构气缸;1.2-尾部移动机构;1.2.1-尾部;1.2.2-环;1.3-摄像机;2-波纹管更换机构;2.1-空心壳体;2.2-壳体隔板;2.3-隔板滑槽;2.4-壳体底板;2.5-底板滑槽;2.6-孔;2.7-顶部保护套;2.8-侧边保护套;2.9-波纹管;2.9.1-波纹管尾部;2.9.2-穹形罩;2.10-波纹管控制气缸;2.11-波纹管尾部滑槽;2.12-把手;3-铅箱门开关机构;3.1-曲柄;3.2-连杆;3.3-门;3.4-门滑槽;4-铅箱;4.1-轮滑槽;4.2-四个轮子。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
下面结合附图和实施例对本发明作进一步描述。
如图1和图2所示,本发明提供的一种热室内部全方位观测装置,安装在热室 内,热室内部全方位观测装置包括耐辐射柔性机构1、波纹管更换机构2、铅箱门开关机构3、铅箱4。
其中,铅箱4是一个内底面设有轮滑槽4.1和四个轮子4.2的箱体,四个轮子4.2设置在轮滑槽4.1内。
耐辐射柔性机构1设置于所述铅箱4内、滑槽4.1的上方,耐辐射柔性机构1包括角度控制机构1.1、尾部移动机构1.2和摄像机1.3,角度控制机构1.1的前端连接摄像机1.3,后端连接尾部移动机构1.2,角度控制机构1.1由多个圆柱结构及耐辐射柔性机构气缸1.1.1串联组成,每个圆柱结构之间连接两个耐辐射柔性机构气缸1.1.1,通过耐辐射柔性机构气缸1.1.1左右伸缩控制耐辐射柔性机构1的转向,完成摄像机1.3在所述铅箱4外的全方位观测。
尾部移动机构1.2设置在角度控制机构1.1的后端,通过两个耐辐射柔性机构气缸1.1.1与角度控制机构1.1连接,尾部移动机构1.2上的环1.2.2卡在四个轮子4.2之间、且在轮滑槽4.1内移动。
波纹管更换机构2为壳体结构,与铅箱4前端连接、垂直于铅箱4底面。
铅箱门开关机构3设置于耐辐射柔性机构1的前方、波纹管更换机构2的铅箱4侧壁下端。
如图3至图9所示,波纹管更换机构2包括空心壳体2.1、壳体隔板2.2、隔板滑槽2.3、壳体底板2.4、底板滑槽2.5、孔2.6、顶部保护套2.7、侧边保护套2.8、波纹管2.9、波纹管控制气缸2.10、波纹管尾部滑槽2.11。
如图3、图6、图8所示,空心壳体2.1为长方形结构,壳体两侧面内壁设置有与顶面平行的隔板滑槽2.3,隔板滑槽2.3贯穿所述空心壳体2.1的前后壁,壳体隔板2.2水平放置于隔板滑槽2.3中,用于分隔波纹管2.9替换件和底部操作空间;
空心壳体2.1的前端面设有便于携带和安装的把手2.12。
如图3所示,空心壳体2.1前端盖为活动板,壳体前端盖与壳体顶面连接处设有顶部保护套2.7,壳体两侧面外壁设有凸台,安装侧边保护套2.8,顶部保护套2.7和侧边保护套2.8防止耐辐射柔性机构1进入底部操作空间,使壳体前端盖相对空心壳体2.1移动。
如图4、图7、图8所示,空心壳体2.1后壁设有多个孔2.6,相邻孔2.6之间的距离为波纹管2.9尾部直径,铅箱4与空心壳体2.1后壁的连接面内侧设有多个波纹管控制气缸2.10,波纹管控制气缸2.10的数量与孔2.6对应,波纹管控制气缸2.10通过孔2.6控制波纹管2.9且延波纹管尾部滑槽2.11落到隔板滑槽2.3上。
空心壳体2.1底部设置有与顶面平行的底板滑槽2.5,壳体底板2.4水平放置于底板滑槽2.5中。
如图5和图9所示,空心壳体2.1的两个内侧面、靠近与铅箱4位置设有贯穿的波纹管尾部滑槽2.11,波纹管尾部滑槽2.11内部竖直排列多个用于保护摄像机1.3免受辐照的波纹管2.9替换件。
波纹管2.9包括波纹管尾部2.9.1和穹形罩2.9.2,波纹管尾部2.9.1卡入波纹管尾部滑槽2.11内,穹形罩2.9.2安装于波纹管2.9的外端。
如图1、图3所示,空心壳体2.1与铅箱4连接面的下方、空心壳体2.1前端面下方设置有贯穿的孔,该孔同时与铅箱门开关机构3的门洞贯穿,是耐辐射柔性机构1伸入热室内和回到铅箱4的通道。
如图10所示,铅箱门开关机构3包括曲柄3.1、连杆3.2、门3.3和门滑槽3.4,铅箱门开关机构3设置于耐辐射柔性机构1的前方、波纹管更换机构2的铅箱4侧壁下端,铅箱4侧壁下端设有门洞,门洞两侧均设置门滑槽3.4,门洞上部设有曲柄3.1和连杆3.2,曲柄3.1匀速转动带动连杆3.2驱动门3.3在门滑槽3.4上下移动,使耐辐射柔性机构1在铅箱4内自由进出。
本发明一种热室内部全方位观测装置操作原理如下:
观测作业时,离壳体隔板2.2最近的波纹管控制气缸2.10向后移动,使波纹管2.9落入壳体隔板2.2上,移出壳体隔板2.2,波纹管2.9基于重力延波纹管尾部滑槽2.11落入壳体底板2.4上,耐辐射柔性机构1通过尾部移动机构1.2上的环1.2.2卡在四个轮子4.2之间、在轮滑槽4.1内向前移动,铅箱门开关机构3门开启,耐辐射柔性机构1穿过空心壳体2.1下方通道,由摄像机1.3卡进波纹管2.9中,进而伸入热室内,通过耐辐射柔性机构1上的耐辐射柔性机构气缸1.1.1左右伸缩控制摄像机1.3转向,摄像机1.3不同角度转向,全方位观测热室内部,波纹管2.9上的穹形罩 2.9.1可以增大摄像机1.3的观察视野,精准测量热室内物体的空间尺寸,获得热室所有区域的高质量图像;
观测完毕,耐辐射柔性机构1沿着轮滑槽4.1向后移动,进入到壳体底板2.4和壳体隔板2.2之间的操作空间,波纹管更换机构2的底板气缸控制壳体底板2.3后移,受到辐照污染的波纹管2.9脱离摄像头后,落入热室内,耐辐射柔性机构1沿着轮滑槽4.1继续向后移动,回到铅箱4中,此时,铅箱门开关机构3门闭合,阻隔耐辐射柔性机构1与热室内部环境,从而保护摄像机1.3免受辐照侵害。
再次观测作业时,重复上述动作。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (6)

  1. 一种热室内部全方位观测装置,其特征在于,包括:耐辐射柔性机构(1)、波纹管更换机构(2)、铅箱门开关机构(3)、铅箱(4),其中,所述铅箱(4)是一个内底面设有轮滑槽(4.1)和四个轮子(4.2)的箱体,所述四个轮子(4.2)设置在所述轮滑槽(4.1)内;
    所述耐辐射柔性机构(1)设置于所述铅箱(4)内的所述轮滑槽(4.1)的上方,所述耐辐射柔性机构(1)包括角度控制机构(1.1)、尾部移动机构(1.2)和摄像机(1.3),所述角度控制机构(1.1)的前端连接所述摄像机(1.3),后端连接所述尾部移动机构(1.2),所述角度控制机构(1.1)由多个圆柱结构及耐辐射柔性机构气缸(1.1.1)串联组成,每个圆柱结构之间连接两个所述耐辐射柔性机构气缸(1.1.1),通过所述耐辐射柔性机构气缸(1.1.1)左右伸缩控制所述耐辐射柔性机构(1)的转向,完成所述摄像机(1.3)在所述铅箱(4)外的全方位观测;
    所述尾部移动机构(1.2)设置在角度控制机构(1.1)的后端,通过两个所述耐辐射柔性机构气缸(1.1.1)与角度控制机构(1.1)连接,所述尾部移动机构(1.2)上的环(1.2.2)卡在所述四个轮子(4.2)之间、且在所述轮滑槽(4.1)内移动;
    所述波纹管更换机构(2)为壳体结构,与所述铅箱(4)前端连接、垂直于所述铅箱(4)底面,所述波纹管更换机构(2)壳体两内侧面、靠近与所述铅箱(4)位置设有贯穿的波纹管尾部滑槽(2.11),所述波纹管尾部滑槽(2.11)内部竖直排列多个用于保护所述摄像机(1.3)免受辐照的波纹管(2.9)替换件;
    所述铅箱门开关机构(3)包括曲柄(3.1)、连杆(3.2)、门(3.3)和门滑槽(3.4),所述铅箱门开关机构(3)设置于所述耐辐射柔性机构(1)的前方,且位于所述铅箱(4)侧壁下端,所述铅箱(4)侧壁下端设有门洞,门洞两侧均设置门滑槽(3.4),门洞上部设有曲柄(3.1)和连杆(3.2),所述曲柄(3.1)匀速转动带动所述连杆(3.2)驱动门(3.3)在门滑槽(3.4)上下移动,使所述耐辐射柔性机构(1)在所述铅箱(4)内自由进出。
  2. 根据权利要求1所述的热室内部全方位观测装置,其特征在于,所述尾部 移动机构(1.2)还包括尾部(1.2.1),所述尾部(1.2.1)为圆柱结构,圆柱外壁设有定位凸台,定位凸台从所述尾部(1.2.1)与所述耐辐射柔性机构气缸(1.1.1)连接的端面延伸至所述尾部(1.2.1)后端面,所述环(1.2.2)内圈套入定位凸台进行限位,所述环(1.2.2)的端面设有安装孔,通过安装孔与所述尾部(1.2.1)的前端面连接固定。
  3. 根据权利要求1所述的热室内部全方位观测装置,其特征在于,所述波纹管更换机构(2)还包括空心壳体(2.1)、壳体隔板(2.2)、隔板滑槽(2.3)、壳体底板(2.4)、底板滑槽(2.5)、孔(2.6)、顶部保护套(2.7)、侧边保护套(2.8)、波纹管控制气缸(2.10)、波纹管尾部滑槽(2.11);
    所述空心壳体(2.1)为长方形结构,壳体两侧面内壁设置有与顶面平行的隔板滑槽(2.3),所述隔板滑槽(2.3)贯穿所述空心壳体(2.1)的前后壁,所述壳体隔板(2.2)水平放置于所述隔板滑槽(2.3)中,用于分隔所述波纹管(2.9)替换件和底部操作空间;
    所述空心壳体(2.1)前端盖为活动板,壳体前端盖与壳体顶面连接处设有所述顶部保护套(2.7),壳体两侧面外壁设有凸台,安装所述侧边保护套(2.8),所述顶部保护套(2.7)和所述侧边保护套(2.8)防止所述耐辐射柔性机构(1)进入底部操作空间,使壳体前端盖相对空心壳体(2.1)移动;
    所述空心壳体(2.1)后壁设有多个孔(2.6),相邻所述孔(2.6)之间的距离为所述波纹管(2.9)尾部直径,所述铅箱(4)与所述空心壳体(2.1)后壁的连接面内侧设有多个波纹管控制气缸(2.10),所述波纹管控制气缸(2.10)的数量与所述孔(2.6)对应,所述波纹管控制气缸(2.10)通过所述孔(2.6)控制所述波纹管(2.9)且延所述波纹管尾部滑槽(2.11)落到所述隔板滑槽(2.3)上;
    所述空心壳体(2.1)底部设置有与顶面平行的底板滑槽(2.5),所述壳体底板(2.4)水平放置于所述底板滑槽(2.5)中;
    所述空心壳体(2.1)与所述铅箱(4)连接面的下方、所述空心壳体(2.1)前端面下方设置有贯穿的孔,该孔同时与所述铅箱门开关机构(3)的门洞贯穿,是所述耐辐射柔性机构(1)伸入热室内和回到所述铅箱(4)的通道。
  4. 根据权利要求1或3所述的热室内部全方位观测装置,其特征在于,所述波纹管(2.9)包括波纹管尾部(2.9.1)和穹形罩(2.9.2),所述波纹管尾部(2.9.1)卡入所述波纹管尾部滑槽(2.11)内,所述穹形罩(2.9.2)安装于所述波纹管(2.9)的外端。
  5. 根据权利要求3中任意一项所述的热室内部全方位观测装置,其特征在于,离所述壳体隔板(2.2)最近的所述波纹管控制气缸(2.10)向后移动,使所述波纹管(2.9)落入所述壳体隔板(2.2)上,移出所述壳体隔板(2.2),所述波纹管(2.9)基于重力,落入所述壳体底板(2.4)上,所述铅箱门开关机构(3)门开启,所述耐辐射柔性机构(1)穿过通道,所述摄像机(1.3)卡进所述波纹管(2.9)中,伸入热室内进行观测;所述摄像机(1.3)观测完毕,穿过通道脱离所述波纹管(2.9),回到铅箱(4)内,所述铅箱门开关机构(3)门关闭;所述波纹管更换机构(2)的底板气缸控制所述壳体底板(2.4)后移,使受到辐照污染的所述波纹管(2.9)落入热室;所述摄像机(1.3)安装新的波纹管(2.9)时,重复上述动作。
  6. 根据权利要求1-3中任意一项所述的热室内部全方位观测装置,其特征在于,所述波纹管更换机构(2)的前端面设有便于携带和安装的把手(2.12)。
PCT/CN2022/115729 2021-12-09 2022-08-30 一种热室内部全方位观测的装置 WO2023103476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111497636.8 2021-12-09
CN202111497636.8A CN114278835B (zh) 2021-12-09 2021-12-09 一种热室内部全方位观测的装置

Publications (1)

Publication Number Publication Date
WO2023103476A1 true WO2023103476A1 (zh) 2023-06-15

Family

ID=80871393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115729 WO2023103476A1 (zh) 2021-12-09 2022-08-30 一种热室内部全方位观测的装置

Country Status (2)

Country Link
CN (1) CN114278835B (zh)
WO (1) WO2023103476A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116951262A (zh) * 2023-09-19 2023-10-27 国能大渡河金川水电建设有限公司 一种基于bim的水电站云监控装置及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114278835B (zh) * 2021-12-09 2022-09-30 湖南大学 一种热室内部全方位观测的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB881007A (en) * 1957-11-05 1961-11-01 Commissariat Energie Atomique Devices for protection against ionising radiation and contamination by harmful dustsin apparatus for observing the interior of sealed chambers
CN102473468A (zh) * 2009-07-17 2012-05-23 原子能及能源替代委员会 热室内部观察仪器、配有该仪器的热室及仪器维护方法
JP2014145646A (ja) * 2013-01-29 2014-08-14 Ihi Corp 原子力設備用観察装置及び原子力設備用観察システム
CN204270661U (zh) * 2014-12-25 2015-04-15 福建宁德核电有限公司 一种核电站用摄像检测装置及其摄像机构
CN207732840U (zh) * 2017-10-09 2018-08-14 天津华宸鑫智能科技有限公司 耐辐射摄像仪及监控系统
CN114278835A (zh) * 2021-12-09 2022-04-05 湖南大学 一种热室内部全方位观测的装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2785987B1 (fr) * 1998-11-16 2001-02-02 Espace Ind Controles Procede et dispositif de mesure 3d en chambre thermique
JP5361641B2 (ja) * 2009-09-28 2013-12-04 株式会社東芝 耐放射性カメラ装置
CN203520895U (zh) * 2013-09-30 2014-04-02 汇佳生物仪器(上海)有限公司 一种带照明和摄像监控装置的x线辐照防护箱
CN211266955U (zh) * 2020-01-16 2020-08-14 广东核电合营有限公司 核电站用摄像头防护装置
CN214331997U (zh) * 2020-12-30 2021-10-01 张广涛 全方位摄像机云台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB881007A (en) * 1957-11-05 1961-11-01 Commissariat Energie Atomique Devices for protection against ionising radiation and contamination by harmful dustsin apparatus for observing the interior of sealed chambers
CN102473468A (zh) * 2009-07-17 2012-05-23 原子能及能源替代委员会 热室内部观察仪器、配有该仪器的热室及仪器维护方法
JP2014145646A (ja) * 2013-01-29 2014-08-14 Ihi Corp 原子力設備用観察装置及び原子力設備用観察システム
CN204270661U (zh) * 2014-12-25 2015-04-15 福建宁德核电有限公司 一种核电站用摄像检测装置及其摄像机构
CN207732840U (zh) * 2017-10-09 2018-08-14 天津华宸鑫智能科技有限公司 耐辐射摄像仪及监控系统
CN114278835A (zh) * 2021-12-09 2022-04-05 湖南大学 一种热室内部全方位观测的装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116951262A (zh) * 2023-09-19 2023-10-27 国能大渡河金川水电建设有限公司 一种基于bim的水电站云监控装置及方法
CN116951262B (zh) * 2023-09-19 2024-01-26 国能大渡河金川水电建设有限公司 一种基于bim的水电站云监控装置及方法

Also Published As

Publication number Publication date
CN114278835A (zh) 2022-04-05
CN114278835B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2023103476A1 (zh) 一种热室内部全方位观测的装置
US3691011A (en) Loading device for fuel elements and control rods in a nuclear reactor
JP2013117491A (ja) 原子炉格納容器内部の遠隔作業方法
US3987666A (en) Device for remote inspection and testing of a structure
RU2404465C2 (ru) Крышка для загрузки в контейнер по меньшей мере одной тепловыделяющей сборки ядерного реактора, устройство захвата и способ загрузки
KR20110036613A (ko) 핵물질들의 물리량들을 측정하기 위한 장치 및 이와 같은 장치를 사용하는 방법
US4070240A (en) Seal containment system
US2868992A (en) Reactor viewing apparatus
EP0434291A1 (en) Fuel handling system for nuclear reactor plants
US4117333A (en) Nuclear fuel element leak detection system
KR840002381B1 (ko) 방사선 조사 표적의 이동 및 위치 조정장치
JP3343447B2 (ja) 原子炉圧力容器の搬出方法
KR102061287B1 (ko) 가압 경수로형 원자력 발전소의 생체 보호 콘크리트의 해체 및 제염 시스템및 방법
JP6309359B2 (ja) 耐放射線カメラ、炉内作業装置、炉内作業方法及び炉内点検装置
US5416334A (en) Hot cell shield plug extraction apparatus
CN213961247U (zh) 一种用于屏蔽放射性射线的动物笼具屏蔽体结构
US2875346A (en) Overall optical viewer
SU703867A1 (ru) Защитный шибер канала исследовательского реактора
CN213183623U (zh) 一种穆斯堡尔谱测试平台可视式移动组合屏蔽装置
Miles et al. A REMOTELY-OPERATED EXTERNAL TARGET SYSTEM FOR THE 88-INCH CYCLOTRON
JP2022130098A (ja) 遮蔽容器
RU183181U1 (ru) Устройство для извлечения отработавших сборок внутриреакторных детекторов
CN116087243A (zh) 防护装置
JP2022181384A (ja) 隔離容器および隔離容器の姿勢制御方法
KR20230017657A (ko) 노내계측기 처리장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902908

Country of ref document: EP

Kind code of ref document: A1