WO2023103129A1 - 一种继电器 - Google Patents

一种继电器 Download PDF

Info

Publication number
WO2023103129A1
WO2023103129A1 PCT/CN2021/143466 CN2021143466W WO2023103129A1 WO 2023103129 A1 WO2023103129 A1 WO 2023103129A1 CN 2021143466 W CN2021143466 W CN 2021143466W WO 2023103129 A1 WO2023103129 A1 WO 2023103129A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
elastic member
push rod
contact plate
assembly
Prior art date
Application number
PCT/CN2021/143466
Other languages
English (en)
French (fr)
Inventor
于荣爱
唐俊平
王亚宾
黄嘉健
Original Assignee
三友联众集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三友联众集团股份有限公司 filed Critical 三友联众集团股份有限公司
Publication of WO2023103129A1 publication Critical patent/WO2023103129A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/56Contact spring sets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/56Contact spring sets
    • H01H50/58Driving arrangements structurally associated therewith; Mounting of driving arrangements on armature

Definitions

  • the invention relates to the technical field of switch devices, in particular to a relay.
  • the short-circuit resistance requirements of typical input required by the market are 8000A, 5ms without burning or exploding; while the relays of the prior art cannot provide sufficient contact pressure while maintaining the characteristics of small size and low coil power.
  • an electric repulsion force will be generated between the dynamic and static contacts. If the contact pressure is not enough to resist the electric repulsion force received by the moving spring, the moving reed and the static reed will spring apart, thus affecting the relationship between the moving and static contacts. Indirect contact stability, so it is difficult to meet market requirements.
  • the present invention provides a relay to optimize the problem of poor stability of the existing relay due to electrodynamic repulsion.
  • the present invention provides a relay, comprising: a fixed base; a static contact, which is fixed relative to the fixed base; a moving contact plate, on which a moving contact is arranged corresponding to the static contact; a push rod , which slides relative to the fixed base, and the movable contact plate is movable relative to the push rod along the sliding direction parallel to the push rod; the electromagnetic assembly is used to drive the push rod to slide; the reset elastic part is used for the movable contact Disengage from the static contact to provide elastic force; at least one set of elastic components, the elastic force of which acts on the push rod and the moving contact plate, the elastic component includes at least two elastic parts; wherein, the electromagnetic component drives the push rod to slide, and the push rod passes through it At least one elastic member drives the moving contact plate to move to close the movable contact and the static contact, and as the push rod continues to slide, the elastic force of the rest of the elastic members acts on the moving contact plate to increase the distance between the moving contact and the static contact.
  • the electromagnetic assembly drives the push rod to move against the elastic force of the reset elastic member, so that the push rod drives the movable contact plate to move in a direction close to the static contact, and the movable contact on the movable contact plate moves The point and the static contact are closed to achieve closure.
  • the electromagnetic component continues to drive the push rod to move forward, and the static contact
  • the contact presses against the moving contact plate through the moving contact, so that the moving contact plate slides relative to the push rod in the opposite direction of the push rod, and makes each elastic member of the elastic component generate reverse elastic force successively, and the elastic component acts on the moving
  • the reverse elastic force generated by the touch panel gradually increases.
  • the reason for this setting is that the elastic force generated by the elastic component acts on both the moving touch panel and the push rod, so that it can keep the moving touch panel and the static contact in balance. It provides elastic resistance and also hinders the movement of the push rod.
  • the change rate of the driving force provided by the electromagnetic component is different.
  • the moving contact and the static contact For a period of time before the contact of the points and after the contact of the moving contact and the static contact, the driving force of the electromagnetic component is small and the rate of change is small. If the reverse elastic force generated by the elastic component is too large, the driving force of the electromagnetic component will appear. Insufficient force causes the armature and static iron core in the electromagnetic assembly to fail to close, the stability is poor, and the contacts are prone to detachment; while the armature and static iron core in the electromagnetic assembly are gradually closing, the drive of the electromagnetic assembly The force will increase and the growth rate of the driving force will be larger.
  • the driving thrust generated by the electromagnetic component can resist a larger reverse elastic force.
  • the plate provides a large reverse elastic force, so that the moving contact on the moving contact plate and the static contact are kept in close contact.
  • the reverse elastic force generated by the component can resist this abnormal movement and maintain the stability of the contact between the moving contact and the static contact; since the elastic component can provide an adaptive reverse elastic force with the change of the electromagnetic attraction force of the electromagnetic component, it is convenient to realize the small size and the coil Under the characteristics of low power, the stability of the relay work is improved to meet the needs of the actual application process.
  • the elastic assembly includes a first elastic piece and a second elastic piece, both of which are compression springs, and both the first elastic piece and the second elastic piece are arranged on the movable contact plate away from the static contact side.
  • the compression spring is used as the elastic member, and when the movable contact plate moves in the opposite direction of the push rod, it provides the movable contact plate with an elastic resisting force opposite to its moving direction, thereby resisting the relay Due to the electric repulsion generated by the large short-circuit current, the moving contact and the static contact are prevented from being separated, and the stability of the relay operation is improved.
  • the elastic assembly includes a first elastic piece and a second elastic piece, both of which are extension springs, and both the first elastic piece and the second elastic piece are arranged on the moving contact plate facing the static contact side.
  • a tension spring is used as the elastic member, and the tension spring is connected with the moving contact plate.
  • the moving moving touch panel stretches the extension spring, and with the movement of the moving touch panel, multiple extension springs gradually apply elastic tension to the moving touch panel, thereby gradually increasing the elastic tension applied to the moving touch panel opposite to its movement direction, In this way, it resists the electric repulsion force generated by the relay due to passing a large short-circuit current, and prevents the movable contact from being separated from the static contact.
  • the elastic assembly includes a first elastic member and a second elastic member, wherein the first elastic member is a tension spring, the second elastic member is a compression spring, and the first elastic member is located on the side of the moving contact plate facing the static contact, The second elastic member is located on the side of the moving contact plate away from the static contact.
  • the first elastic member and the second elastic member located on both sides of the moving contact plate successively Applying an elastic force towards the static contact side to the movable contact plate can also generate contact pressure between the movable contact plate and the static contact, which can resist the electric repulsion force generated by a large short-circuit current and keep the contacts closed stability.
  • a through groove is opened on the moving contact plate, and the push rod is arranged through the through groove, and the moving contact plate can slide relative to the push rod.
  • the movable contact plate can be relatively slid along the push rod, and the push rod can be used as a moving guide for the movable contact plate to avoid possible misalignment during the moving process of the movable contact plate, which is conducive to the realization of the movable contact and the static contact Closing and breaking reliability.
  • a guide plate is respectively provided on both sides of the moving touch plate, and the two guide plates keep a distance and form a guiding channel for the sliding of the moving touch plate.
  • a guide channel for the sliding of the moving touch panel is formed, thereby providing a moving guide for the moving touch panel, reducing the possibility of the moving touch panel turning sideways or horizontally rotating, and facilitating the realization of Stable closing and breaking reliability of moving and static contacts.
  • each elastic member is nested.
  • the elastic parts in the same elastic component are nested, which can reduce the occupied space and is beneficial to the miniaturization design of the product.
  • the shorter elastic member is placed on the outside of the longer elastic member, or the longer elastic member is placed on the outer side of the shorter elastic member.
  • each elastic member is arranged in parallel along the stretching direction.
  • each elastic member of the elastic assembly can also be independently arranged in parallel.
  • the elastic constants of the elastic parts are the same.
  • the elastic coefficients of the elastic parts are different.
  • each elastic member in the same elastic component can better fit the change process of the driving force of the electromagnetic component, and finally provide the best reverse elastic force to counteract the electrodynamic repulsion and stabilize the movable contact and static contact connection.
  • the elastic coefficient of the elastic member that generates elastic force first is smaller than the elastic coefficient of the elastic member that generates elastic force later.
  • the elastic member with a small elastic coefficient produces a reverse elastic force before the elastic member with a large elastic coefficient, so that it can adapt to the dynamic contact, static contact
  • the elastic coefficient of the elastic member that participates in the reverse elastic force increases gradually, that is, it can provide a greater feedback force.
  • the elastic force that is, to adapt to the process of gradually increasing the driving force provided by the subsequent electromagnetic components.
  • such a setting is more in line with the changing process of the driving force of the electromagnetic component, and finally provides the best reverse elastic force to offset the electrodynamic repulsion And stabilize the connection between the moving contact and the static contact.
  • the elastic coefficient of the elastic member that generates elastic force later is smaller than the elastic coefficient of the elastic member that generates elastic force first.
  • a group of elastic components is provided, and the elastic component is located at the center of the moving touch panel.
  • the elastic assemblies are arranged symmetrically with respect to the center of the moving touch panel.
  • the electromagnetic assembly includes a coil support, a coil, a fixed iron core, a yoke, and an armature.
  • the coil is sleeved outside the fixed iron core, and the fixed iron core and the yoke are fixed to the coil support.
  • the yoke and the fixed iron core generate magnetic flux and the magnetic flux tends to form a closed magnetic circuit to drive the armature to move closer to the fixed iron core.
  • the electromagnetic component continues to drive the push rod to move forward along its moving direction, and the static contact presses the moving contact plate through the moving contact, so that the moving contact plate is on the push rod Slip along the opposite direction of the push rod movement, and sequentially make each elastic member of the elastic assembly generate elastic force successively, so that the elastic force generated by the elastic assembly acts on the moving contact plate, causing it to produce a resisting force with the static contact.
  • the elastic force also acts on the push rod, which is opposite to the direction of the driving force generated by the electromagnetic component.
  • the elastic component generates a process of gradually increasing the elastic force, which can adapt to the change of the electromagnetic component, and finally provides a large reverse elastic force to resist the electric force. Repulsion, easy to realize the stability of the contact between the moving contact and the static contact while maintaining the characteristics of small size and small coil power, and improve the stability of the relay work to meet the needs of the actual application process;
  • Compression springs can be used for the elastic component components to provide elastic pressure for the moving contact plate, so as to resist the electric repulsion generated by the relay due to the large short-circuit current, and avoid the separation of the moving contact and the static contact;
  • the elastic components can all use tension springs to provide elastic tension for the movable contact plate, so as to resist the electric repulsion generated by the relay due to the large short-circuit current, and avoid the separation of the movable contact and the static contact;
  • the elastic member can be a combination of compression spring and extension spring, which can also provide elastic force for the movable contact plate, so as to resist the electric repulsion generated by the relay through a large short-circuit current, and avoid the separation of the movable contact and the static contact;
  • the elastic coefficients of the elastic parts are different, and the elastic coefficients of the elastic parts increase sequentially with the order in which the elastic parts are compressed or stretched, so as to further adapt to the change process of the driving force of the electromagnetic component, and finally provide the best Excellent reverse elastic force to offset the electric repulsion and stabilize the connection between the moving contact and the static contact, which further facilitates the realization of the stability of the relay operation while maintaining the characteristics of small size and small coil power, so as to meet the actual application process. needs.
  • FIG. 1 is a schematic diagram of the internal structure when the movable contact and the static contact of the relay in Embodiment 1 of the present invention are in a disconnected state;
  • FIG. 2 is a schematic diagram of the internal structure when the movable contact and the static contact of the relay in Embodiment 1 of the present invention are in a closed state;
  • Fig. 3 is the resultant force of elastic assembly and reset elastic member, the schematic diagram that the magnetic attraction force of electromagnetic assembly changes with armature and fixed iron core distance;
  • FIG. 4 is a schematic diagram of the arrangement of the first elastic component in Embodiment 1 of the present invention.
  • Fig. 5 is a schematic diagram of the setting method of the second elastic component in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the internal structure of the relay in Embodiment 2 of the present invention.
  • FIG. 7 is a partial schematic diagram of the internal structure of the relay in Embodiment 4 of the present invention.
  • Fig. 8 is a partial side view of the internal structure of the relay in Fig. 7;
  • Fig. 9 is a schematic structural diagram of an elastic component in Embodiment 5 of the present invention.
  • Fig. 10 is a schematic diagram of the structure of the elastic component in Embodiment 6 of the present invention.
  • the present invention discloses a relay, including a fixed base 1, a static contact 2, a moving contact plate 3, a push rod 4, an electromagnetic assembly 5, a reset elastic member 6, and an elastic assembly 7, wherein the fixed
  • the base 1 includes an upper cover 101 and a base 102.
  • the upper cover 101 and the base 102 form an accommodating cavity for the installation of the static contact 2, the moving contact plate 3, the push rod 4, the electromagnetic assembly 5, the return elastic member 6 and the elastic assembly 7. (not marked in the figure).
  • the static contact 2 is fixed relative to the fixed base 1; the movable contact plate 3 is provided with a movable contact corresponding to the static contact 2 (not marked in the figure), and the movable contact is arranged toward the static contact 2.
  • the moving contacts can be in contact with the static contacts 2, and electrically conduct through the moving contact plate 3;
  • the push rod 4 is movable relative to the fixed base 1, It is connected with the moving contact plate 3, and can drive the moving contact plate 3 to move back and forth so that the moving contact is close to or away from the static contact 2;
  • the electromagnetic component 5 is connected with the push rod 4, and is used to drive the push rod 4 to move when power is applied; reset
  • the elastic member 6 is connected to the push rod 4, and is used to provide a reset elastic force for the push rod 4; at least one set of elastic components 7 is provided, and each set of elastic components 7 includes at least two elastic components 701;
  • the moving touch panel 3 is slidingly connected to the push rod 4, and the sliding direction of the moving touch panel 3 is along the shaft direction of the push rod 4, that is, the moving direction of the push rod 4 parallel;
  • a through slot 301 is opened on the moving contact plate 3 , and the push rod 4 is disposed through the through slot 301 , and the moving contact plate 3 can slide relative to the push rod 4 along the shaft direction of the push rod 4 .
  • the elastic component 7 is used to provide a pressing elastic force for the movable contact plate 3 to keep it in contact with the static contact 2, so as to resist the electric repulsion force generated by the contact closing current.
  • the electromagnetic component 5 drives the push rod 4 to move, and drives the movable contact plate 3 to approach the static contact 2 to close the movable contact and the static contact 2, the electromagnetic component 5 continues to drive the push rod 4 to move forward, and the movable contact plate 3 is
  • the static contact 2 presses and slides relative to the push rod 4 , and at the same time makes each elastic member 701 in the elastic assembly 7 successively generate elastic force.
  • the Y-axis represents the magnitude change of the force (the electromagnetic attraction force of the electromagnetic assembly 5, the elastic assembly 7 and the overall reverse elastic force of the elastic assembly 7 and the reset elastic member 6, and the unit is N/N), and the X-axis represents the armature 505 in the electromagnetic assembly 5
  • the curve a in the figure indicates that the electromagnetic attraction force generated by the coil 502 in the electromagnetic assembly 5 changes with the distance between the armature 505 and the fixed iron core 503, and the curve b indicates the elastic assembly. 7
  • the situation that the reverse elastic force exerted by the two elastic members 701 on the movable contact plate 3 varies with the distance between the armature 505 and the fixed iron core 503 is adopted.
  • the electromagnetic component 5 drives the moving contact plate 3 to move to the static contact 2, before the moving contact and the static contact 2 contact , the driving force is small and the rate of change is small, therefore, the driving force of the electromagnetic assembly 5 mainly overcomes the reverse elastic force of the reset elastic member 6 until the moving contact plate 3 and the static contact 2 are closed (at x1 position in the figure) ;
  • the electromagnetic component 5 continues to drive the push rod 4 to move forward along its moving direction, and the static contact 2 is pressed by the moving contact.
  • the elastic action also acts on the push rod 4, which is opposite to the moving direction of the push rod 4, constituting the electromagnetic drive assembly. driving resistance;
  • the elastic assembly 7 Since the driving force of the electromagnetic assembly 5 is small before the movable contact and the static contact 2 are offset and for a period of time after the movable contact and the static contact 2 are offset, the elastic assembly 7 needs to be generated at the initial stage of contact closure. Smaller elastic reaction force, as shown in Figure 3, in the interval x 1 ⁇ x 2 , only one elastic member 701 provides the elastic force, otherwise if the elastic component 7 generates when the movable contact contacts the static contact 2 If the reverse elastic force is large, it will have a greater impact on the driving of the electromagnetic assembly 5.
  • the push rod 4 cannot move under the drive of the electromagnetic assembly 5, causing the armature 505 and the fixed iron core 503 in the electromagnetic assembly 5 to fail to close, the stability of the contact closure is relatively poor, and the phenomenon of contact separation is prone to occur;
  • another elastic member 701 acts to provide elastic force together with the previous elastic member 701, so that the armature 505 of the electromagnetic assembly 5 and the static iron After the core is closed, the two elastic members 701 jointly provide the movable contact plate 3 with a reverse elastic force against the static contact 2, so that the movable contact on the movable contact plate 3 and the static contact 2 are kept in close contact, even if The relay generates a large electric repulsion force through a large short-circuit current.
  • the elastic component 7 can resist this abnormal movement and maintain the stability of the contact between the movable contact and the static contact 2.
  • the elastic component 7 can follow the electromagnetic component 5.
  • the change of the electromagnetic attraction force provides an adaptive reverse elastic force, which facilitates the improvement of the working stability of the relay while maintaining the characteristics of small size and low power of the coil 502, so as to meet the needs of the actual application process.
  • each set of elastic components 7 includes a first elastic member 701a and a second elastic member 701b, wherein the first elastic member 701a and the second elastic member 701b are both provided with dynamic Same side of touchpad 3.
  • both the first elastic member 701a and the second elastic member 701b are compression springs.
  • the push rod 4 is provided with a first limiting member 401 and a second limiting member 402, wherein the first limiting member 401 is located at the end of the push rod 4, and the second limiting member 402 is located at the end of the push rod 4.
  • the lengths of the first elastic member 701a and the second elastic member 701b are not equal, the length of the first elastic member 701a is greater than that of the second elastic member 701b, the first elastic member 701a, the second elastic member 701b
  • the two elastic members 701 b are both located between the second limiting member 402 and the movable contact plate 3 , and both can exert elastic force on the movable contact plate 3 toward one side of the static contact 2 .
  • the length of the second elastic member 701b may also be longer than that of the first elastic member 701a, but for the convenience of distinguishing the two, the structure and principle will be described in an embodiment in which the length of the first elastic member 701a is longer than that of the second elastic member 701b.
  • the first limiting member 401 and the second limiting member 402 limit the moving contact plate 3 and the elastic assembly 7, and the compression spring is used as the elastic element, and the length of the first elastic member 701a is longer than that of the second elastic member 701b , after the moving contact plate 3 abuts against the static contact 2, while the push rod 4 continues to move forward, the moving contact plate 3 moves in the opposite direction to the movement of the push rod 4 and successively compresses the first elastic member 701a and the second elastic member 701a.
  • the elastic force exerted by the elastic component 7 on the movable contact plate 3 increases as the moving distance of the movable contact plate 3 along the opposite direction of the push rod 4 increases, thus, the armature 505 and the static iron core in the electromagnetic component 5 are closed
  • the elastic component 7 provides sufficient pressure elastic force for the movable contact plate 3, and the movable contact of the movable contact plate 3 maintains a stable connection with the static contact 2, which can resist the contact caused by a relatively large short-circuit current.
  • the generated electric repulsion has high stability.
  • the first limiting member 401 is a hoop, which is clamped and connected with the push rod 4 to limit the movement of the moving contact plate 3 and prevent the moving contact plate 3 from moving from the push rod 4.
  • the end of the structure is disengaged, which is convenient for assembly.
  • the second limiting member 402 may also be configured as a clip, or the second limiting member 402 and the push rod 4 may be integrally formed.
  • each elastic member 701 is nested.
  • each elastic member 701 of the elastic assembly 7 is nested, which can reduce the occupied space and is beneficial to the miniaturization design of the product.
  • the elastic members 701 when the elastic members 701 are arranged in a nested manner, it can be set as follows: the shorter elastic member 701 is placed outside the longer elastic member 701, that is, the second elastic member 701b is placed on the second elastic member 701b. The outer side of an elastic member 701a; or, the longer elastic member 701 is placed on the outer side of the shorter elastic member 701, that is, the first elastic member 701a is placed on the outer side of the second elastic member 701b.
  • the compactness and miniaturization of the elastic component 7 are realized.
  • one of the second limiting member 402 and the moving contact plate 3 is fixed to one end of the first elastic member 701a, and the second limiting member 402 and the moving contact plate 3 The other one is connected to, abuts against or maintains a gap with the other end of the first elastic member 701a.
  • the second limiting member 402 is fixed to one end of the first elastic member 701a, the moving touch panel 3 is against the other end of the first elastic member 701a, and the first elastic member 701a produces a certain amount of initial deformation, so that the moving touch panel 3. Adhere to the surface of the first limiting member 401, avoiding the occurrence of slipping collision and abnormal noise when the relay is inverted due to the gap left.
  • the relay when used in the upright state, it can also be set as follows: the first elastic member 701a is in contact with the lower surface of the movable contact plate 3, and at this time, the compression spring generates a small elastic force against the movable contact plate to support the movable contact plate 3 weights.
  • the middle position of the compression spring is fixed with the push rod 4, and the two ends of the compression spring are against at least one of the movable contact plate 3 and the second limiter 402 , or both ends of the compression spring maintain a gap with the moving contact plate 3 and the second limiting member 402 .
  • the elastic assembly 7 is arranged in one group, and the elastic assembly 7 is located at the center of the moving touch panel 3 .
  • the elastic coefficients of the elastic members 701 are the same.
  • the elastic coefficients of the elastic members 701 are different.
  • the elastic coefficient of each elastic member 701 increases with the increase of the order in which the elastic force is generated, that is, the elastic coefficient of the elastic member 701 that generates elastic force first is smaller than that of the elastic member that generates elastic force later.
  • the modulus of elasticity of the piece 701. in this embodiment, the elastic coefficient of the first elastic member 701a is smaller than the elastic coefficient of the second elastic member 701b, and the elastic coefficient of the first compressed elastic member 701 is smaller than the elastic coefficient of the later compressed elastic member 701, in other words, first
  • the stiffness of the compressed elastic member 701 is smaller than that of the post-compressed elastic member 701, and the elastic force generated by the elastic member 701 in the deformation process is related to the elastic coefficient. Reverse elastic force, the elastic member 701 compressed afterward produces an additional and larger reverse elastic force on the moving touch panel 3 .
  • the elastic coefficient of the elastic member 701 that generates elastic force afterward is smaller than the elastic coefficient of the elastic member 701 that generates elastic force afterward.
  • the elastic coefficients of the elastic members 701 can be set to increase sequentially with the action of the elastic force, and the elastic coefficients increase first and then Reduced settings.
  • the electromagnetic assembly 5 includes a coil support 501, a coil 502, a fixed iron core 503, a yoke 504, and an armature 505.
  • the coil 502 is sleeved outside the fixed iron core 503.
  • Fixed, the armature 505 is fixedly connected with the push rod 4, when the coil 502 is energized, the yoke 504 and the fixed iron core 503 generate magnetic flux and the magnetic flux tends to form a closed magnetic circuit to drive the armature 505 to move closer to the fixed iron core 503.
  • the coil 502 When the contacts are closed, the coil 502 is energized to generate electromagnetic flux in the fixed iron core 503 and the yoke 504, and the magnetic circuit formed by the magnetic flux tends to close, which attracts the armature 505 to move toward the iron core, and then drives The push rod 4 moves to make the moving contact and the static contact 2 touch and close;
  • the electromagnetic assembly 5 continues to drive the push rod 4 to continue moving forward along its moving direction, and the static contact 2 presses the moving contact plate 3 through the moving contact, so that the moving contact plate 3 On the push rod 4, it slides in the direction opposite to the movement of the push rod 4 toward the second limiter 402, that is, the movable touch panel 3 moves toward the second limiter 402, and compresses the elastic assembly 7 in turn.
  • the elastic member 701 specifically, at the position shown by x1 in FIG. Force, now the resultant force of the elastic assembly 7 and the reset elastic member 6 is less than the forward driving force provided by the electromagnetic assembly 5 for the push rod 4, and the electromagnetic assembly 5 can continue to push the push rod 4 forward in this case;
  • the elastic force is superimposed with the elastic force generated by the first elastic member 701a, providing a relatively large reverse elastic force for the movable contact plate 3, thereby providing a stable resistance force for the movable contact plate 3 to keep against the static contact 2, so as to resist
  • the electrodynamic repulsion generated by the large short-circuit current that may flow through the relay keeps the stability of the closing of the movable contact and the static contact 2.
  • the present invention discloses another relay. Based on the above embodiment, the difference between this embodiment and the above embodiment is only:
  • both the first elastic member 701a and the second elastic member 701b are extension springs, and both the first elastic member 701a and the second elastic member 701b are located between the second limiting member 402 and the movable contact plate 3, and the extension springs One end of one end is fixed to the first limiting member 401, and the other end is connected to the moving contact plate 3.
  • the length of the first elastic member 701a is longer than that of the second elastic member 701b, and both of them can apply force to the moving contact plate 3 towards the side of the static contact 2. direction of elasticity.
  • a tension spring is used as the elastic member 701
  • the tension spring is connected to the moving contact plate 3, and the push rod 4 continues to move forward after the moving contact plate 3 contacts the static contact 2 , the moving contact plate 3 moving relative to the push rod 4 drives the elastic members 701 to stretch successively, so that the tension spring provides the moving contact plate 3 with an elastic pulling force opposite to the direction of its movement, thus resisting the relay caused by a relatively large short-circuit current
  • the generated electric repulsion prevents the moving contact from breaking away from the static contact 2.
  • the shorter elastic piece 701 remains tense and the longer elastic piece 701 remains loose. Only the short elastic member 701 provides a small elastic force to balance the gravity of the moving touch panel 3 and keep the moving touch panel 3 stable.
  • Embodiment 1 The only difference from the implementation process of Embodiment 1 is that after the moving contact and the static contact 2 are closed, the electromagnetic assembly 5 continues to drive the push rod 4 to continue moving forward along its moving direction, and the static contact 2 is moved forward through the moving contact. Touch and press the moving touch panel 3, so that the moving touch panel 3 slides on the push rod 4 in the opposite direction of the movement of the push rod 4, that is, the moving touch panel 3 moves away from the first limiter 401, and stretches in turn
  • the present invention discloses another kind of relay. Based on the above embodiments, the difference between this embodiment and the above embodiments only lies in:
  • the first elastic member 701a is a tension spring
  • the second elastic member 701b is a compression spring
  • the first elastic member 701a is located between the first limiting member 401 and the moving contact plate 3
  • the second elastic member 701b is located Between the two limiters 402 and the movable contact plate 3 , the first elastic member 701 a and the second elastic member 701 b can exert elastic force on the movable contact plate 3 toward one side of the static contact 2 .
  • the first elastic members 701a, 701a, and The second elastic member 701b successively exerts elastic force toward the side of the static contact 2 on the moving contact plate 3.
  • the first elastic member 701a may first generate an elastic pulling force to keep the moving contact plate 3 in contact with the static contact 2
  • the second elastic member 701b generates an elastic pressure, which is superimposed on the elastic tension of the first elastic member 701a, and further provides a pressing contact force for the abutment of the movable contact plate 3 and the static contact 2 .
  • adopting the scheme of this embodiment can also generate contact pressure between the movable contact plate 3 and the static contact 2, can resist the electrodynamic repulsion force generated by a relatively large short-circuit current, and maintain the stability of contact closure .
  • the first elastic member 701a is set as a compression spring, and the first elastic member 701a is a tension spring, and the purpose of the invention can also be realized by referring to the above setting method for adjustment.
  • the present invention discloses another relay. Based on any one of the above embodiments 1 to 3, the difference between this embodiment and the above embodiments is only that:
  • a guide plate 8 is provided on both sides of the moving touch plate 3 , and the two guide plates 8 keep a distance and form a guiding channel 801 for the moving touch plate 3 to slide.
  • a guide channel 801 for the sliding of the moving touch panel 3 is formed, thereby providing a moving guide for the moving touch panel 3, reducing the possibility of the moving touch panel 3 turning over or rotating horizontally, It is beneficial to realize the stable closing and breaking reliability of the movable contact and the static contact 2.
  • the guide plate 8 is fixed to the push rod 4 .
  • the guide plate 8 is disposed on the fixed base 1 , which can be fixed with the fixed base 1 or movable relative to the fixed base 1 and move with the movement of the push rod 4 .
  • the end of the push rod 4 is connected with a fixed plate 9, the two guide plates 8 are fixed to the fixed plate 9, the moving touch plate 3 is connected to the fixed plate 9 through an elastic piece, and the moving touch plate 3 is connected between the two The guide channel 801 formed between two guide plates 8 slides toward or away from the guide plate 8.
  • a limiting plate 10 is further provided on the side of the guide plate 8 away from the fixed plate 9 .
  • the elastic member 701 when the elastic member 701 is set as an extension spring, one end of the extension spring is connected to the limiting plate 10, and the other end is connected to the moving contact plate 3; when the elastic member 701 is set as a compression spring, One end of the stage clip is connected with the fixed plate 9, and the other end is connected with the moving contact plate 3.
  • the present invention discloses another relay. Based on Embodiment 1, the difference between this embodiment and Embodiment 1 lies in:
  • each elastic piece 701 is arranged in parallel along its stretching direction.
  • At least two elastic members 701 of the elastic assembly 7 can also be independently arranged in parallel.
  • the second limiting member 402 is arranged in a plate shape, and at least two groups of elastic assemblies 7 are arranged. As shown in FIG.
  • the present invention discloses another relay. Based on Embodiment 1, the difference between this embodiment and Embodiment 1 lies in:
  • each elastic assembly 7 is arranged symmetrically with respect to the center of the movable touch panel 3 .
  • the present invention discloses another relay. Based on Embodiment 1 or Embodiment 2, the difference between this embodiment and Embodiment 1 or Embodiment 2 lies in:
  • the elastic assembly 7 includes a first elastic member 701a, a second elastic member 701b, and may also include a third elastic member (not shown in the figure).
  • the lengths of the first elastic member 701a, the second elastic member 701b, and the third elastic member are respectively L1, L2, L3, wherein, L1>L2>L3.
  • the curve c indicates that the elastic component 7 adopts three elastic members 701 to exert a reverse elastic force on the movable contact plate 3 as the distance between the armature 505 and the fixed iron core 503 changes.
  • the elastic component 7 mainly relies on the first elastic member 701a and the second elastic member 701b to provide elastic force; in the interval of 0- x3 , the third elastic member produces elastic force, and the elastic force generated by it Superimposed with the elastic force generated by the first elastic member 701a and the second elastic member 701b, they jointly provide a resisting force for the movable contact and the static contact 2 of the movable contact plate 3, and further, make the elastic force curve close to that of the electromagnetic assembly 5.
  • the driving force that can be provided maintains the stability of contact contact.
  • the present invention discloses another relay. Based on Embodiment 5, the difference between this embodiment and Embodiment 5 or Embodiment 2 lies in:
  • the elastic assembly 7 includes a first elastic member 701a, a second elastic member 701b, and may also include a third elastic member (not shown in the figure), the lengths of the first elastic member 701a, the second elastic member 701b, and the third elastic member are equal Or not.
  • the at least two elastic members 701 provided by the elastic assembly 7 provide a reverse elastic force for the movable contact plate 3 after the movable contact contacts the static contact 2, compared with the use of A single elastic member 701, the elastic component 7 can adapt to the changing process of the driving force provided by the electromagnetic component 5, and can provide a larger reverse elastic force in the final state, which is better for the applicability of the driving force of the electromagnetic component 5, and can Reduce the impact on the electromagnetic component 5 to continue to drive the push rod 4 to move forward, and can also provide a strong reverse elastic force to resist the impact of the electric repulsion on the closing of the movable contact and the static contact 2, while keeping the volume small and the coil Under the characteristics of low power of 502, the stability of the relay work is improved to meet the needs of the actual application process.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)
  • Push-Button Switches (AREA)

Abstract

本发明公开了一种继电器,涉及开关装置技术领域,包括固定基座、静触点、具有动触点的动触板、推杆、电磁组件、复位弹性件以及至少一组弹性组件,其至少包括两个弹性件;其中,电磁组件驱动推杆滑移,推杆通过其中至少一弹性件带动动触板移动而闭合动触点与静触点后,随推杆的继续滑移,其余的弹性件的弹性力作用于动触板,以增大动触点与静触点之间的抵压作用力。本发明的继电器中,弹性组件能够随电磁组件的电磁吸力变化提供适应的反向弹力,便于实现在保持体积小及线圈功率小的特点下,提高继电器工作的稳定性,以满足实际运用过程中的需要。

Description

一种继电器 技术领域
本发明涉及开关装置技术领域,尤其涉及一种继电器。
背景技术
随着新能源行业的迅速发展,各车厂及电池包厂对故障短路电流的要求也越来越高,在保持体积小及线圈功率小特点的基础上,要求继电器具有抗短路功能,能够在系统出现故障大电流时抵抗动簧受到的电动斥力。
目前,市场要求的典型输入的抗短路要求为8000A,5ms不烧、不炸;而现有技术的继电器在保持体积小及线圈功率小的特点下无法提供足够的触点压力,当出现故障短路电流时,会在动、静触点之间产生电动斥力,若触点压力不足以抵抗动簧受到的电动斥力,则动簧片与静簧片将弹开,从而影响动、静触点之间接触的稳定性,因此很难满足市场要求。
发明内容
为了克服上述现有技术所述的至少一种缺陷,本发明提供一种继电器,以优化现有的继电器因电动斥力产生而存在稳定性较差的问题。
本发明为解决其问题所采用的技术方案是:
根据本发明的一个方面,本发明提供一种继电器,包括:固定基座;静触点,其相对于固定基座固定;动触板,其上对应静触点设置有动触点;推杆,其相对于固定基座滑移,动触板沿平行于推杆的滑移方向相对于推杆活动设置;电磁组件,用于驱动推杆滑移;复位弹性件,用于为动触点与静触点脱离提供弹性力;至少一组弹性组件,其弹性力作用于推杆与动 触板,弹性组件至少包括两个弹性件;其中,电磁组件驱动推杆滑移,推杆通过其中至少一弹性件带动动触板移动而闭合动触点与静触点后,随推杆的继续滑移,其余的弹性件的弹性力作用于动触板,以增大动触点与静触点之间的抵压作用力。
由此,在闭合动触点、静触点时,电磁组件驱动推杆克服复位弹性件的弹力移动,使得推杆带动动触板向靠近静触点的方向移动,动触板上的动触点与静触点相抵而实现闭合,为保证动触点与静触点闭合的紧密性和可靠性,动触点与静触点相抵闭合后,电磁组件继续驱动推杆继续向前移动,静触点则经动触点抵压动触板,使动触板沿推杆移动的相反方向相对推杆滑移,并使弹性组件的各个弹性件先后产生反向的弹性力,弹性组件对动触板产生的反向弹性力逐步增加,这样设置的原因在于:弹性组件所产生的弹性力即作用于动触板,也作用于推杆,从而其能够为动触板与静触点保持相抵提供弹性抵压力,也对推杆的移动造成阻碍,在驱动动触板向静触点移动过程中,电磁组件提供的驱动力的变化速率是不同的,具体地,在动触点、静触点相抵前以及动触点、静触点相抵后的一段时间内,电磁组件的驱动力较小且变化速率较小,若弹性组件产生的反向弹性力过大,则会出现电磁组件的驱动力不足,而导致电磁组件中的衔铁和静铁芯无法闭合,稳定性较差,触点容易出现脱离;而在电磁组件中的衔铁和静铁芯逐步接近闭合的过程中,电磁组件的驱动力将增大且驱动力的增速较大,此时电磁组件所产生的驱动推力能够抵抗更大的反向弹性力,因此,弹性组件的至少两个弹性件的弹性力叠加,为动触板提供较大的反向弹性力,使得动触板上的动触点与静触点保持紧密地抵接,即便继电器通过较大的短路电流而产生较大的电动斥力,此时,由弹性组件产生反向弹性力能够抵抗此异动,保持动触点与静触点接触的稳定性;由于弹性组件能够随电磁组件的电磁吸力变化提供适应的反向弹力,便于实现在保持体积小及线圈功率小的特点下,提高继电器工作的稳定性,以满足实际运用过程 中的需要。
进一步地,弹性组件包括第一弹性件、第二弹性件,第一弹性件、第二弹性件均为压簧,且第一弹性件、第二弹性件均设置于动触板背离静触点的一侧。
由此,此作为一种实施方式,采用压簧作为弹性件,在动触板沿推杆移动的相反方向移动时,为动触板提供与其运动方向相反的弹性抵压力,由此,抵抗继电器因通过较大短路电流所产生的电动斥力,避免动触点与静触点脱离,提高继电器工作的稳定性。
进一步地,弹性组件包括第一弹性件、第二弹性件,第一弹性件、第二弹性件均为拉簧,且第一弹性件、第二弹性件均设置于动触板朝向静触点的一侧。
由此,此作为另一种实施方式,采用拉簧作为弹性件,拉簧与动触板连接,推杆在动触板与静触点抵接后继续前移的过程中,相对于推杆移动的动触板拉伸拉簧,且随着动触板的移动,多个拉簧逐步对动触板施加弹性拉力,从而逐渐增大对动触板施加的与其运动方向相反的弹性拉力,由此,抵抗继电器因通过较大短路电流所产生的电动斥力,避免动触点与静触点脱离。
进一步地,弹性组件包括第一弹性件、第二弹性件,其中,第一弹性件为拉簧,第二弹性件为压簧,第一弹性件位于动触板朝向静触点的一侧,第二弹性件位于动触板背离静触点的一侧。
由此,此作为再一种实施方式,在动触板与静触点相抵后,推杆向前继续前移的过程中,位于动触板两侧的第一弹性件、第二弹性件先后对动触板施加朝向静触点一侧方向的弹力,同样也能使动触板与静触点之间产生抵接压力,能抵抗较大的短路电流所产生的电动斥力,保持触点闭合的稳定性。
进一步地,动触板上开设有通槽,推杆穿过通槽设置,且动触板能够 相对于推杆滑动。
由此,能够使得动触板沿推杆相对滑动,推杆可作为动触板活动的移动导向,避免动触板移动过程中的可能出现的错位现象,有利于实现动触点与静触点闭合和断开的可靠性。
进一步地,在动触板的两侧各设置一个导向板,两个导向板保持间距并形成供动触板滑动的导向通道。
由此,通过在动触板的两侧设置导向板,形成供动触板滑动的导向通道,从而为动触板提供移动导向,减少动触板发生侧翻或者水平旋转的可能,有利于实现动触点与静触点的稳定闭合和断开可靠性。
进一步地,同一弹性组件中,各弹性件呈嵌套设置。
由此,将同一弹性组件中的各个弹性件呈嵌套设置,这样能够减小占用空间,有利于产品的小型化设计。
进一步地,长度较短的弹性件套于长度较长的弹性件外侧,或者长度较长的弹性件套于长度较短的弹性件外侧。
进一步地,同一弹性组件中,各弹性件沿伸缩方向平行设置。
由此,在空间足够的情况下,还可以将弹性组件的各个弹性件独立地以平行布置的方式设置。
进一步地,同一弹性组件中,各弹性件的弹性系数相同。
进一步地,同一弹性组件中,各弹性件的弹性系数大小不同。
由此,通过将同一弹性组件中的各个弹性件的弹性系数设置为不同,能够更加契合电磁组件驱动力的变化过程,并最终提供最佳的反向弹性力以抵消电动斥力而稳定动触点和静触点的连接。
进一步地,同一弹性组件中,先产生弹力的弹性件的弹性系数小于后产生弹力的弹性件的弹性系数。
由此,在动触板与静触点相抵后移动时,同一弹性组件中,弹性系数小的弹性件先于弹性系数大的弹性件产生反向弹性力,这样,能够适应动 触点、静触点刚接触时电磁组件所能提供的较小的驱动力,随着推杆的继续前移,参与反向弹性力提供的弹性件的弹性系数逐渐增大,也即能够提供更大的反向弹性力,也即适应后续电磁组件提供的驱动力逐步增大的过程,进一步地,这样的设置更契合电磁组件驱动力的变化过程,并最终提供最佳的反向弹性力以抵消电动斥力而稳定动触点和静触点的连接。
进一步地,同一弹性组件中,后产生弹力的弹性件的弹性系数小于先产生弹力的弹性件的弹性系数。
进一步地,弹性组件设置一组,弹性组件位于动触板的中心位置。
由此,这样的设置能够使得动触板的受力平衡,在提供足够的反向弹性力以抵抗电动斥力的前提下,采用较少的弹性组件,简化结构,减小组装的麻烦。
进一步地,弹性组件设置至少两组,弹性组件关于动触板的中心对称设置。
由此,通过至少两组弹性组件,为动触板提供均衡且充足的反向弹性力。
进一步地,电磁组件包括线圈支架、线圈、固定铁芯、轭铁、衔铁,线圈套设于固定铁芯外,固定铁芯、轭铁均与线圈支架固定,衔铁与推杆固定连接,线圈通电时,轭铁、固定铁芯产生磁通且该磁通趋向于形成闭合磁路而驱动衔铁向靠近固定铁芯移动。
由此,在线圈通电时,在固定铁芯、轭铁中产生电磁磁通,而磁通所形成的磁路趋向于闭合,则吸引衔铁向靠近铁芯的方向移动,进而驱动推杆移动,以实现继电器中动触点和静触点的闭合;当线圈失电时,电磁磁通消失,则推杆在弹性组件、复位弹性件的弹力作用下复位。
由上述技术方案可知,本发明实施例至少具有如下优点和积极效果:
1)动触点与静触点相抵闭合后,电磁组件继续驱动推杆沿其移动方向继续向前移动,静触点则经动触点抵压动触板,使动触板在推杆上沿推杆 移动的相反方向滑移,并依次使弹性组件的各个弹性件先后产生弹性力,使得弹性组件所产生的弹力既作用于动触板上,使其与静触点产生抵压力,该弹力还作用于推杆上,与电磁组件所产生的驱动力的方向相反,弹性组件产生弹力逐步增大的过程,能够适应电磁组件的变化,并最终提供较大的反向弹性力以抵抗电动斥力,便于实现在保持体积小及线圈功率小的特点下,保持动触点与静触点接触的稳定性,提高继电器工作的稳定性,以满足实际运用过程中的需要;
2)弹性件组件可均采用压簧,为动触板提供弹性抵压力,以抵抗继电器因通过较大短路电流所产生的电动斥力,避免动触点与静触点脱离;
3)弹性件组件可均采用拉簧,为动触板提供弹性拉力,以抵抗继电器因通过较大短路电流所产生的电动斥力,避免动触点与静触点脱离;
4)弹性件可采用压簧和拉簧的组合,也能为动触板提供弹性力,以抵抗继电器因通过较大短路电流所产生的电动斥力,避免动触点与静触点脱离;
5)同一弹性组件中,各弹性件的弹性系数不同,且弹性件的弹性系数随弹性件受压缩或者受拉伸的顺序依次递增,进一步适应电磁组件的驱动力的变化过程,并最终提供最佳的反向弹性力以抵消电动斥力而稳定动触点和静触点的连接,进一步便于实现在保持体积小及线圈功率小的特点下,提高继电器工作的稳定性,以满足实际运用过程中的需要。
附图说明
图1为本发明实施例1中继电器的动触点与静触点处于断开状态时的内部结构示意图;
图2为本发明实施例1中继电器的动触点与静触点处于闭合状态时的内部结构示意图;
图3为弹性组件和复位弹性件的合力、电磁组件的磁性吸力随衔铁和 固定铁芯距离变化的示意图;
图4为本发明实施例1中第一种弹性组件的设置方式示意图;
图5为本发明实施例1中第二种弹性组件的设置方式示意图;
图6为本发明实施例2中继电器的内部结构示意图;
图7为本发明实施例4中继电器内部结构的局部示意图;
图8为图7中继电器内部结构的局部侧视图;
图9为本发明实施例5中弹性组件的结构示意简图;
图10为本发明实施例6中弹性组件的结构示意简图。
其中,附图标记含义如下:
1、固定基座;101、上盖;102、底座;2、静触点;3、动触板;301、通槽;4、推杆;401、第一限位件;402、第二限位件;5、电磁组件;501、线圈支架;502、线圈;503、固定铁芯;504、轭铁;505、衔铁;6、复位弹性件;7、弹性组件;701、弹性件;701a、第一弹性件;701b、第二弹性件;8、导向板;801、导向通道;9、固定板;10、限位板。
具体实施方式
为了更好地理解和实施,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
在本发明的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所 使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。
实施例1
参阅图1~3,本发明公开了一种继电器,包括固定基座1、静触点2、动触板3、推杆4、电磁组件5、复位弹性件6、弹性组件7,其中,固定基座1包括上盖101和底座102,上盖101与底座102内形成供静触点2、动触板3、推杆4、电磁组件5、复位弹性件6以及弹性组件7安装的容纳腔(图中未标注)。
静触点2相对于固定基座1固定;动触板3上设置有与静触点2对应的动触点(图中未标注),动触点朝静触点2设置,本实施例中,动触点、静触点2各设置2个,动触点能够与静触点2相抵接,并经动触板3而电性导通;推杆4相对于固定基座1活动设置,其与动触板3连接,能够带动动触板3往返移动以使动触点靠近或远离静触点2;电磁组件5与推杆4连接,用于在通电时驱动推杆4移动;复位弹性件6与推杆4连接,用于为推杆4提供复位弹性力;弹性组件7设置至少一组,每一组弹性组件7均至少包括两个弹性件701;
参阅图1~图2,一些可能的实施方式中,动触板3与推杆4滑动连接,动触板3滑动的方向沿推杆4的杆身方向,也即与推杆4的移动方向平行;
具体地,在动触板3上开设有通槽301,推杆4穿过通槽301设置,且动触板3能够相对于推杆4沿推杆4的杆身方向滑动。
弹性组件7用于为动触板3提供抵压弹性力,使其与静触点2保持抵接,以抵抗触点闭合电流所产生的电动斥力。
当电磁组件5驱动推杆4移动,并带动动触板3向静触点2靠近而闭合动触点与静触点2后,电磁组件5继续驱动推杆4前移,动触板3受静触点2抵压而相对于推杆4滑移,同时使得弹性组件7中的各个弹性件701先后产生弹性力。
参考图3,Y轴代表力(电磁组件5的电磁吸力、弹性组件7和复位弹 性件6整体的反向弹性力,单位为牛/N)的大小变化,X轴代表电磁组件5中衔铁505与固定铁芯503的距离变化,单位为毫米/mm,图中曲线a指示随电磁组件5中线圈502所产生电磁吸力随衔铁505与固定铁芯503的距离变化的情况,曲线b指示弹性组件7采用2个弹性件701对动触板3施加的反向弹性力随衔铁505与固定铁芯503的距离变化的情况。
在闭合动触点与静触点2的过程中,在x 0~x 1区间,电磁组件5驱动动触板3向静触点2移动过程中,在动触点、静触点2接触前,驱动力较小且变化速率较小,因此,电磁组件5的驱动力主要克服复位弹性件6的反向弹性力,直到动触板3与静触点2相抵闭合(图中x1位置处);
为保证闭合的紧密性以及可靠性,动触点与静触点2相抵闭合后,电磁组件5继续驱动推杆4沿其移动方向继续向前移动,静触点2则经动触点抵压动触板3,动触板3在推杆4上沿推杆4移动的相反方向滑移,在0~x1区间中,弹性组件7产生弹力作用,该弹力作用于动触板3上,使动触板3抵压静触点2,以保持动触点与静触点2闭合的稳定,该弹性作用还作用于推杆4上,与推杆4的移动方向相反,构成电磁驱动组件的驱动阻力;
由于在动触点、静触点2相抵前以及动触点、静触点2相抵后的一段时间内,电磁组件5的驱动力较小,因此,弹性组件7在触点闭合的初期需产生较小的弹性反作用力,如图3所示,在区间x 1~x 2区间中,仅一个弹性件701提供弹性力,否则若在动触点与静触点2接触时弹性组件7产生的反向弹性力较大,则会对电磁组件5的驱动造成较大影响,例如,若弹性组件7所产生的弹性力与复位弹性力的合力大于电磁组件5对推杆4所产生的驱动力时,则推杆4无法在电磁组件5的驱动下移动,导致电磁组件5中的衔铁505和固定铁芯503无法闭合,触点闭合的稳定性较差,容易出现触点脱离的现象;
而随着电磁组件5中的衔铁505和固定铁芯503的距离缩小,电磁组件5的驱动力将持续增大,且驱动力的增速增加,电磁组件5所产生的推 力逐渐能够抵抗更大的反向弹性力,因此,在x 2~x 3区间中,另一个弹性件701起作用,与前一个弹性件701一并提供弹性力,这样,最终在电磁组件5的衔铁505和静铁芯闭合后,通过两个弹性件701共同为动触板3提供抵压静触点2的反向弹力,使得动触板3上的动触点与静触点2保持紧密地抵接,即使继电器通过较大的短路电流而产生较大的电动斥力,此时,由弹性组件7能够抵抗此异动,保持动触点与静触点2接触的稳定性,弹性组件7能够随电磁组件5的电磁吸力变化提供适应的反向弹力,便于实现在保持体积小及线圈502功率小的特点下,提高继电器工作的稳定性,以满足实际运用过程中的需要。
作为一种可能的实施方式,参阅图1、图2,每组弹性组件7均包括第一弹性件701a、第二弹性件701b,其中,第一弹性件701a、第二弹性件701b均设置动触板3的同一侧。
进一步地,作为一种可能的实施方式,第一弹性件701a、第二弹性件701b均为压簧。
参阅图1、图2,推杆4上设置有第一限位件401和第二限位件402,其中,第一限位件401位于推杆4的端部,第二限位件402位于动触板3背离静触点2的一侧,第一弹性件701a与第二弹性件701b的长度不相等,第一弹性件701a的长度大于第二弹性件701b,第一弹性件701a、第二弹性件701b均位于第二限位件402与动触板3之间,且均能够对动触板3施加朝静触点2一侧方向的弹性力。
当然,第二弹性件701b的长度也可以大于第一弹性件701a,只是为了便于区分两者,将以第一弹性件701a的长度大于第二弹性件701b的实施方式进行结构和原理的说明。
由此,第一限位件401和第二限位件402将动触板3、弹性组件7进行限位,采用压簧作为弹性元件,且第一弹性件701a的长度大于第二弹性件701b,动触板3与静触点2抵接后,推杆4继续前移的过程中,在动触板3 沿推杆4移动的相反方向移动并先后压缩第一弹性件701a、第二弹性件701b,弹性组件7对动触板3施加的弹力随着动触板3沿推杆4相反方向移动距离的增加而增大,由此,在电磁组件5中的衔铁505和静铁芯闭合而停止驱动后,有弹性组件7为动触板3提供充足的抵压弹力,动触板3的动触点与静触点2保持稳定的连接,能够抵抗触点通过较大短路电流而所产生的电动斥力,稳定性较高。
更进一步地,本实施例中,第一限位件401为卡箍,通过卡箍与推杆4卡接连接以对动触板3的移动进行限位,避免动触板3从推杆4的端部脱离,这种结构设置便于组装。
第二限位件402也可设置为卡箍,或者,第二限位件402与推杆4设置为为一体成型。
作为一种可能的实施方式,参阅图1、图2、图4、图5,进一步地,同一弹性组件7中,各个弹性件701呈嵌套设置。
由此,将弹性组件7的各个弹性件701呈嵌套设置,这样能够减小占用空间,有利于产品的小型化设计。
作为一种可能的实施方式,弹性件701以嵌套的方式设置时,可设置为:长度较短的弹性件701套于长度较长的弹性件701外侧,即第二弹性件701b套于第一弹性件701a的外侧;或者,长度较长的弹性件701套于长度较短的弹性件701外侧,即第一弹性件701a套于第二弹性件701b的外侧,这两种实施方式均能实现弹性组件7的紧凑化以及小型化。
作为一种可能的实施方式,参阅图1、图2,第二限位件402和动触板3中的一个与第一弹性件701a的一端固定,第二限位件402和动触板3中的另一个与第一弹性件701a的另一端相连、相抵或者保持间隙。
作为优选,第二限位件402与第一弹性件701a的一端固定,动触板3与第一弹性件701a的另一端相抵,第一弹性件701a产生一定的初始变形量,使得动触板3与第一限位件401的表面相贴,避免留有空隙而在继电 器倒装时出现滑移碰撞产生异响。
当然,当继电器为正置状态下使用时,也可以设置为:第一弹性件701a与动触板3的下表面相抵,此时该压簧产生很小的抵压弹性力以支撑动触板3的重量。
第二弹性件701b由于其长度限制,在动触板3未受静触点2抵压而相对于推杆4移动时,第二弹性件701b与动触板3的板面之间保持间隙。
由此,动触板3受静触点2抵压后相对于推杆4移动时,动触板3向第二限位件402的方向滑移,动触板3先压缩长度较长的第一弹性件701a,使其产生弹性力,随着动触板3与第二限位件402的距离缩短,动触板3能够抵压更短的第二弹性件701b,使其产生弹力作用,由此使得弹性组件7的各个弹性件701受压而逐渐产生弹力,适应电磁组件5的电磁力变化。
参阅图5,在一些可能的实施方式中,还可以设置为:压簧的中部位置与推杆4固定,压簧的两端与动触板3、第二限位件402中的至少一个相抵,或者压簧的两端与动触板3、第二限位件402均保持间隙。
参阅图1、图2,进一步地,本实施例中,弹性组件7设置于一组,弹性组件7位于动触板3的中心位置。
由此,这样的设置能够使得动触板3的受力平衡,在提供足够的反向弹性力以抵抗电动斥力的前提下,采用较少的弹性组件7,简化结构,减小组装的麻烦。
进一步地,一些可能的实施方式中,同一弹性组件7中,各弹性件701的弹性系数相同。
进一步地,另一些可能的实施方式中,同一弹性组件7中,各弹性件701的弹性系数不同。
最优地,同一弹性组件7中,各弹性件701的弹性系数随其产生弹性力的先后顺序的增大而增大,也即先产生弹力的弹性件701的弹性系数小于后产生弹力的弹性件701的弹性系数。,在本实施例中,第一弹性件701a 的弹性系数小于第二弹性件701b的弹性系数,先压缩的弹性件701的弹性系数小于后压缩的弹性件701的弹性系数,换句话说,先压缩的弹性件701的刚度小于后压缩的弹性件701的刚度,而弹性件701在变形过程中所产生的弹力跟弹性系数有关,则先压缩的弹性件701对动触板3产生较小的反向弹力,后压缩的弹性件701对动触板3产生额外增加的更大的反向弹力。
由此,通过将不同弹性件701的弹性系数设置为不同,在动触板3与静触点2相抵后移动时,弹性系数小的弹性件701先于弹性系数大的弹性件701产生反向弹性力,这样,能够适应电磁组件5初期所能提供的较小的驱动力,随着推杆4的继续前移,参与反向弹性力提供的弹性件701的弹性系数逐渐增大,也即能够提供更大的反向弹性力,也即适应后续电磁组件5提供的驱动力逐步增大的过程,这样的设置更契合电磁组件5驱动力的变化过程,并最终提供最佳的反向弹性力以抵消电动斥力而稳定动触点和静触点2的连接,因此,进一步便于实现电磁组件5小体积和低功率的设计。
当然,在其他可能的实施方式中,也可以设置为,后产生弹力的弹性件701的弹性系数小于后产生弹力的弹性件701的弹性系数。
当然,在其他可能的实施方式中,当弹性组件7设置为包括至少三个弹性件701时,弹性件701的弹性系数可以设置为随着弹力作用产生顺序的增加,弹性系数为先增大后减小的设置。
进一步地,电磁组件5包括线圈支架501、线圈502、固定铁芯503、轭铁504、衔铁505,线圈502套设于固定铁芯503外,固定铁芯503、轭铁504均与线圈支架501固定,衔铁505与推杆4固定连接,线圈502通电时,轭铁504、固定铁芯503产生磁通且该磁通趋向于形成闭合磁路而驱动衔铁505向靠近固定铁芯503移动。
由此,在线圈502通电时,在固定铁芯503、轭铁504中产生电磁磁通, 而磁通所形成的磁路趋向于闭合,则吸引衔铁505向靠近铁芯的方向移动,进而驱动推杆4移动,以实现继电器中动触点和静触点2的闭合,在衔铁505逐步靠近固定铁芯503的过程中,也即两者的距离逐渐减小的过程中,线圈502所能提供的磁性吸力的变化曲线如图3中a曲线所示;当线圈502失电时,电磁磁通消失,则推杆4在弹性组件7、复位弹性件6的弹力作用下复位。
本发明实施例的实施过程以及原理:
触点闭合时,线圈502得电而使固定铁芯503、轭铁504中产生电磁磁通,而磁通所形成的磁路趋向于闭合,则吸引衔铁505向靠近铁芯的方向移动,进而驱动推杆4移动,使动触点与静触点2相贴而闭合;
动触点与静触点2相抵闭合后,电磁组件5继续驱动推杆4沿其移动方向继续向前移动,静触点2则经动触点抵压动触板3,使动触板3在推杆4上沿推杆4移动的相反方向向靠近第二限位件402的方向滑移,即动触板3向靠近第二限位件402的方向移动,并依次压缩弹性组件7的各个弹性件701,具体地,在如图3中x1所示位置,动触板3先压缩长度较长的第一弹性件701a,使弹性组件7对动触板3产生较小的反向弹性力,此时弹性组件7和复位弹性件6的合力小于电磁组件5为推杆4提供的向前移动的驱动力,电磁组件5能够在此情况下继续推动推杆4前移;
在电磁组件5继续驱动推杆4向前移动的过程中,动触板3继续在静触点2的抵压下向靠近第二限位件402的方向移动,在如图3中x2所示位置,动触板3逐渐抵压长度较短的第二弹性件701b,使第二弹性件701b也对动触板3产生反向弹性力,直至X=0mm,第二弹性件701b所产生的弹性力与第一弹性件701a所产生的弹性力叠加,对动触板3提供较大的反向弹性力,从而为动触板3保持与静触点2相抵提供稳定的抵压力,以抵抗继电器可能流过的较大短路电流所产生的电动斥力,保持动触点与静触点2闭合的稳定性。
当线圈502失电时,电磁磁通消失,则推杆4先在弹性组件7、复位弹性件6的共同作用下复位。
实施例2
参阅图6,本发明公开了另一种继电器,基于以上实施例,本实施例与以上实施例的区别仅在于:
本实施例中,第一弹性件701a、第二弹性件701b均为拉簧,第一弹性件701a、第二弹性件701b均位于第二限位件402与动触板3之间,拉簧的一端与第一限位件401固定,另一端与动触板3连接,第一弹性件701a的长度大于第二弹性件701b,且均能够对动触板3施加朝静触点2一侧方向的弹性力。
由此,此作为另一种实施方式,采用拉簧作为弹性件701,拉簧与动触板3连接,推杆4在动触板3与静触点2抵接后继续前移的过程中,相对于推杆4移动的动触板3驱动各弹性件701先后拉伸,从而拉簧为动触板3提供与其运动方向相反的弹性拉力,由此,抵抗继电器因通过较大短路电流所产生的电动斥力,避免动触点与静触点2脱离。
由于同一弹性组件7的弹性件701的长度不同,在动触板3未受静触点2抵压移动时,长度较短的弹性件701保持张紧而长度较长的弹性件701保持松弛,仅依靠长度较短的弹性件701提供微小的弹性力以平衡动触板3的重力,保持动触板3稳定。
本发明实施例的使用过程以及原理:
与实施例1实施过程区别的地方仅在于,在动触点与静触点2相抵闭合后,电磁组件5继续驱动推杆4沿其移动方向继续向前移动,静触点2则经动触点抵压动触板3,使动触板3在推杆4上沿推杆4移动的相反方向滑移,即动触板3向远离第一限位件401的方向移动,并依次拉伸弹性组件7的各个弹性件701,具体地,在如图3中x1所示位置,动触板3先拉伸 长度较短的第二弹性件701b,使该弹性件701对动触板3产生、较小的反向弹性力,对推杆4的继续前移的运动影响减小,在电磁组件5继续驱动推杆4向前移动的过程中,动触板3继续在静触点2的抵压下向靠近第二限位件402的方向移动,在如图3中x2所示位置,动触板3逐渐拉伸长度较长的第一弹性件701a,使第一弹性件701a也对动触板3产生反向弹性力,直至X=0mm,此弹性力与前面弹性件701所产生的弹性力叠加,对动触板3提供较大的反向弹性力,从而为动触板3保持与静触点2相抵提供稳定的抵压力,以抵抗继电器可能流过的较大短路电流所产生的电动斥力,保持动触点与静触点2闭合的稳定性。
实施例3
本发明公开了另一种继电器,基于以上实施例,本实施例与以上实施例的区别仅在于:
本实施例中,第一弹性件701a为拉簧,第二弹性件701b为压簧,第一弹性件701a位于第一限位件401与动触板3之间,第二弹性件701b位于第二限位件402与动触板3之间,第一弹性件701a、第二弹性件701b均能够对动触板3施加朝静触点2一侧方向的弹性力。
由此,此作为再一种实施方式,在动触板3与静触点2相抵后,推杆4向前继续前移的过程中,位于动触板3两侧的第一弹性件701a、第二弹性件701b先后对动触板3施加朝向静触点2一侧方向的弹力,具体地,可以是第一弹性件701a先产生弹性拉力使动触板3与静触点2保持抵接,而第二弹性件701b后产生弹性压力,其与第一弹性件701a的弹性拉力叠加,进一步地为动触板3和静触点2的抵接提供抵压接触力。
由此,采用本实施例的方案,同样也能使动触板3与静触点2之间产生抵接压力,能抵抗较大的短路电流所产生的电动斥力,保持触点闭合的稳定性。
当然,将第一弹性件701a设置为压簧,第一弹性件701a为拉簧,也 可参考以上设置方式调整而实现发明目的。
实施例4
参阅图7~图8,本发明公开了另一种继电器,基于以上实施例1~3中的任一个实施例,本实施例与上述实施例区别仅在于:
本实施例中,在动触板3的两侧各设置一个导向板8,两个导向板8保持间距并形成供动触板3滑动的导向通道801。
通过在动触板3的两侧设置导向板8,形成供动触板3滑动的导向通道801,从而为动触板3提供移动导向,减少动触板3发生侧翻或者水平旋转的可能,有利于实现动触点与静触点2的稳定闭合和断开可靠性。
一些可能的实施方式中,导向板8与推杆4固定。
在其他可能的实施方式中,导向板8设置于固定基座1,其可与固定基座1固定或者相对于固定基座1活动设置且随推杆4的活动而活动。
在一些可能的实施方式中,推杆4的端部连接有固定板9,两个导向板8与固定板9固定,动触板3通过弹性件与固定板9连接,动触板3在两个导向板8之间形成的导向通道801中朝靠近或远离导向板8的方向滑动。
进一步地,一些可能的实施方式中,为避免动触板3从导向通道801脱离,在导向板8背离固定板9的一侧还设置有限位板10。
进一步地,一些可能的实施方式中,当弹性件701设置为拉簧时,拉簧的一端与限位板10连接,另一端与动触板3连接;当弹性件701设置为压簧时,压簧的一端与固定板9连接,另一端与动触板3连接。
本发明实施例的工作原理与上述实施例相似,在此不再赘述。
实施例5
参阅图9,本发明公开了另一种继电器,基于实施例1,本实施例与实施例1区别的地方仅在于:
同一弹性组件7中,各个弹性件701沿其伸缩方向平行设置。
由此,在空间足够的情况下,还可以将弹性组件7的至少两个弹性件 701独立地以平行布置的方式设置。
第二限位件402呈板状设置,弹性组件7设置至少两组,如图6所示,弹性组件7设置两组,各个弹性组件7关于动触板3的中心对称设置。
实施例6
参阅图10,本发明公开了另一种继电器,基于实施例1,本实施例与实施例1区别的地方仅在于:
如图10所示,弹性组件7设置三组,各个弹性组件7关于动触板3的中心对称设置。
由此,通过至少两组弹性组件7,为动触板3提供均衡且充足的反向弹性力。
实施例7
本发明公开了另一种继电器,基于实施例1或实施例2,本实施例与实施例1或实施例2的区别仅在于:
弹性组件7包括第一弹性件701a、第二弹性件701b,还可包括第三弹性件(图中未示出),第一弹性件701a、第二弹性件701b、第三弹性件的长度分别为L1、L2、L3,其中,L1>L2>L3。
本实施例的工作原理如下:
基于实施例1,并与实施例1不同的地方在于:
参考图3,曲线c指示弹性组件7采用3个弹性件701对动触板3施加的反向弹性力随衔铁505与固定铁芯503的距离变化的情况。
在x 0~x 3区间中,弹性组件7主要依靠第一弹性件701a、第二弹性件701b提供弹力,在0~x 3的区间中,第三弹性件产生弹力作用,其产生的弹性力与第一弹性件701a、第二弹性件701b产生的弹性力叠加,共同为动触板3的动触点与静触点2提供抵压力,进一步地,使得该弹性力曲线贴近电磁组件5所能提供的驱动力,保持触点接触的稳定性。
实施例8
本发明公开了另一种继电器,基于实施例5,本实施例与实施例5或实施例2的区别仅在于:
弹性组件7包括第一弹性件701a、第二弹性件701b,还可包括第三弹性件(图中未示出),第一弹性件701a、第二弹性件701b、第三弹性件的长度相等或者不等。
综上所述,本发明所提供的继电器,通过弹性组件7设置的至少两个弹性件701在动触点与静触点2接触后为动触板3提供反向弹性力,相比于采用单个弹性件701,弹性组件7能够适应电磁组件5提供的驱动力的变化过程,并能在最终状态提供较大的反向弹性力,对电磁组件5的驱动力的适用性更好,既能减小对电磁组件5继续驱动推杆4向前移动的影响,还能提供较强的反向弹性力以抵抗电动斥力对动触点与静触点2闭合的影响,在保持体积小及线圈502功率小的特点下,提高继电器工作的稳定性,以满足实际运用过程中的需要。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (15)

  1. 一种继电器,其特征在于,包括:
    固定基座(1);
    静触点(2),其相对于所述固定基座(1)固定;
    动触板(3),其上对应所述静触点(2)设置有动触点;
    推杆(4),其相对于固定基座(1)滑移,所述动触板(3)沿平行于所述推杆(4)的滑移方向相对于所述推杆(4)活动设置;
    电磁组件(5),用于驱动所述推杆(4)滑移;
    复位弹性件(6),用于为所述动触点与所述静触点(2)脱离提供弹性力;
    至少一组弹性组件(7),其弹性力作用于所述推杆(4)与所述动触板(3),所述弹性组件(7)至少包括两个弹性件(701);
    其中,所述电磁组件(5)驱动所述推杆(4)滑移,所述推杆(4)通过其中至少一所述弹性件(701)带动所述动触板(3)移动而闭合所述动触点与所述静触点(2)后,随所述推杆(4)的继续滑移,其余的所述弹性件(701)的弹性力作用于所述动触板(3),以增大所述动触点与所述静触点(2)之间的抵压作用力。
  2. 根据权利要求1所述的继电器,其特征在于,所述弹性组件(7)包括第一弹性件(701a)、第二弹性件(701b),第一弹性件(701a)、所述第二弹性件(701b)均为压簧,且所述第一弹性件(701a)、所述第二弹性件(701b)均设置于所述动触板(3)背离所述静触点(2)的一侧。
  3. 根据权利要求1所述的继电器,其特征在于,所述弹性组件(7)包括第一弹性件(701a)、第二弹性件(701b),第一弹性件(701a)、所述第二弹性件(701b)均为拉簧,且所述第一弹性件(701a)、所述第二弹性件(701b) 均设置于所述动触板(3)朝向所述静触点(2)的一侧。
  4. 根据权利要求1所述的继电器,其特征在于,所述弹性组件(7)包括第一弹性件(701a)、第二弹性件(701b),其中,第一弹性件(701a)为拉簧,所述第二弹性件(701b)为压簧,所述第一弹性件(701a)位于所述动触板(3)朝向所述静触点(2)的一侧,所述第二弹性件(701b)位于所述动触板(3)背离所述静触点(2)的一侧。
  5. 根据权利要求1所述的继电器,其特征在于,所述动触板(3)上开设有通槽(301),所述推杆(4)穿过所述通槽(301)设置,且所述动触板(3)能够相对于所述推杆(4)滑动。
  6. 根据权利要求1-5任一项所述的继电器,其特征在于,在所述动触板(3)的两侧各设置一个导向板(8),两个所述导向板(8)保持间距并形成供所述动触板(3)滑动的导向通道(801)。
  7. 根据权利要求2或3所述的继电器,其特征在于,同一所述弹性组件(7)中,各所述弹性件(701)呈嵌套设置。
  8. 根据权利要求2或3所述的继电器,其特征在于,同一所述弹性组件(7)中,各所述弹性件(701)沿伸缩方向平行设置。
  9. 根据权利要求1-5任一项所述的继电器,其特征在于,同一所述弹性组件(7)中,各所述弹性件(701)的弹性系数相同。
  10. 根据权利要求1-5任一项所述的继电器,其特征在于,同一所述弹 性组件(7)中,各所述弹性件(701)的弹性系数大小不同。
  11. 根据权利要求10所述的继电器,其特征在于,同一所述弹性组件(7)中,先产生弹力的弹性件(701)的弹性系数小于后产生弹力的弹性件(701)的弹性系数。
  12. 根据权利要求10所述的继电器,其特征在于,同一所述弹性组件(7)中,后产生弹力的弹性件(701)的弹性系数小于先产生弹力的弹性件(701)的弹性系数。
  13. 根据权利要求1-5任一项所述的继电器,其特征在于,所述弹性组件(7)设置一组,所述弹性组件(7)位于所述动触板(3)的中心位置。
  14. 根据权利要求1-5任一项所述的继电器,其特征在于,所述弹性组件(7)设置至少两组,所述弹性组件(7)关于所述动触板(3)的中心对称设置。
  15. 根据权利要求1-5任一项所述的继电器,其特征在于,所述电磁组件(5)包括线圈支架(501)、线圈(502)、固定铁芯(503)、轭铁(504)、衔铁(505),所述线圈(502)套设于所述固定铁芯(503)外,所述固定铁芯(503)、所述轭铁(504)均与所述线圈支架(501)固定,所述衔铁(505)与所述推杆(4)固定连接,所述线圈(502)通电时,所述轭铁(504)、所述固定铁芯(503)产生磁通且该磁通趋向于形成闭合磁路而驱动所述衔铁(505)向靠近所述固定铁芯(503)移动。
PCT/CN2021/143466 2021-12-07 2021-12-31 一种继电器 WO2023103129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111488469.0 2021-12-07
CN202111488469.0A CN116246909A (zh) 2021-12-07 2021-12-07 一种继电器

Publications (1)

Publication Number Publication Date
WO2023103129A1 true WO2023103129A1 (zh) 2023-06-15

Family

ID=86624684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143466 WO2023103129A1 (zh) 2021-12-07 2021-12-31 一种继电器

Country Status (2)

Country Link
CN (1) CN116246909A (zh)
WO (1) WO2023103129A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287526A (ja) * 2006-04-18 2007-11-01 Matsushita Electric Works Ltd 接点装置
CN106558461A (zh) * 2015-09-30 2017-04-05 比亚迪股份有限公司 继电器及其推动机构
CN109859991A (zh) * 2017-11-30 2019-06-07 比亚迪股份有限公司 继电器
CN112002611A (zh) * 2020-08-19 2020-11-27 厦门理工学院 一种动触点推进结构及其继电器
CN112086320A (zh) * 2020-09-01 2020-12-15 浙江宏舟新能源科技有限公司 一种高压直流继电器
CN216624125U (zh) * 2021-12-07 2022-05-27 三友联众集团股份有限公司 一种继电器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287526A (ja) * 2006-04-18 2007-11-01 Matsushita Electric Works Ltd 接点装置
CN106558461A (zh) * 2015-09-30 2017-04-05 比亚迪股份有限公司 继电器及其推动机构
CN109859991A (zh) * 2017-11-30 2019-06-07 比亚迪股份有限公司 继电器
CN112002611A (zh) * 2020-08-19 2020-11-27 厦门理工学院 一种动触点推进结构及其继电器
CN112086320A (zh) * 2020-09-01 2020-12-15 浙江宏舟新能源科技有限公司 一种高压直流继电器
CN216624125U (zh) * 2021-12-07 2022-05-27 三友联众集团股份有限公司 一种继电器

Also Published As

Publication number Publication date
CN116246909A (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN107910228B (zh) 一种高压直流继电器
CN1276447C (zh) 用于电磁接触器的无焊接触系统
EP3157038B1 (en) Direct current relay
CN102668001A (zh) 电磁体装置及使用电磁体装置的开关装置
CN108400056B (zh) 一种基于双线圈单稳态永磁机构的直流断路器
CN216624125U (zh) 一种继电器
WO2016002553A1 (ja) 電磁継電器
WO2023103129A1 (zh) 一种继电器
CN105609372B (zh) 静音电磁接触器
WO2023103128A1 (zh) 一种继电器
CN102903567A (zh) 真空断续器的动力传动装置及具有该装置的真空断路器
CN218975361U (zh) 继电器
US10629398B2 (en) Switch device
CN110323106B (zh) 可动弹片结构及其继电器
CN216624124U (zh) 一种继电器
JP2002124165A (ja) 開閉装置
JP2006147212A (ja) 切換開閉装置
CN201066666Y (zh) 一种触点继电器
CN202930331U (zh) 一种继电器
WO2023108827A1 (zh) 一种抗短路的继电器
WO2023108828A1 (zh) 一种使用可靠的继电器
CN211479955U (zh) 一种高压直流接触器
CN213401027U (zh) 一种交流接触器中衔铁结构连接的线圈罩
CN220821423U (zh) 一种动簧件及继电器
KR20240097963A (ko) 릴레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967041

Country of ref document: EP

Kind code of ref document: A1