WO2023108827A1 - 一种抗短路的继电器 - Google Patents

一种抗短路的继电器 Download PDF

Info

Publication number
WO2023108827A1
WO2023108827A1 PCT/CN2021/143467 CN2021143467W WO2023108827A1 WO 2023108827 A1 WO2023108827 A1 WO 2023108827A1 CN 2021143467 W CN2021143467 W CN 2021143467W WO 2023108827 A1 WO2023108827 A1 WO 2023108827A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive sheet
magnetically conductive
push rod
limiting
contact
Prior art date
Application number
PCT/CN2021/143467
Other languages
English (en)
French (fr)
Inventor
王亚宾
于荣爱
唐俊平
黄嘉健
Original Assignee
三友联众集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三友联众集团股份有限公司 filed Critical 三友联众集团股份有限公司
Priority to KR1020247019901A priority Critical patent/KR20240096902A/ko
Publication of WO2023108827A1 publication Critical patent/WO2023108827A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/50Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
    • H01H1/54Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position by magnetic force
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/16Magnetic circuit arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H50/00Details of electromagnetic relays
    • H01H50/54Contact arrangements
    • H01H50/56Contact spring sets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the technical field of relays, in particular to an anti-short circuit relay.
  • the typical requirements for anti-short circuit in the market are at least 8000A, 5ms without burning or explosion; while the existing DC relays cannot provide sufficient contact pressure while maintaining the characteristics of small size and low coil power, that is, the contact pressure is not enough to resist The electric repulsion force on the moving spring.
  • the Chinese patent application with application number 201811125654.1 discloses a DC contactor with high short-circuit resistance, including a housing, and two static contactors are installed in the inner cavity of the housing.
  • the contact, a moving contact piece and the driving mechanism, the moving contact piece and the two static contacts are arranged vertically opposite to each other, the driving mechanism has a coil, a mover and a push rod, and a ferromagnetic material for receiving the moving
  • the receiving part of the contact piece and a stopper made of ferromagnetic material, the receiving part and the movable contact piece are movably socketed on the upper part of the push rod, the stopper is positioned and socketed on the upper part of the push rod, and It is located above the receiving piece and the moving contact piece; when the moving contact piece is attracted and connected with the two static contacts, the stopper can form a magnetic circuit gap with the top side of the receiving piece to generate a positive impact on the moving contact piece.
  • An upward electromagnetic attraction force direction in this way, under the condition of large current, it can well ensure that the moving contact piece and the two static contacts remain in contact, which greatly improves the working stability and short-circuit resistance of the DC contactor.
  • the present invention provides a short-circuit resistant relay to optimize the structural defects of the existing relay and improve the short-circuit resistance performance of the relay.
  • the present invention provides a short-circuit resistant relay, comprising: a fixed base; a contact lead-out, the contact lead-out is fixed to the fixed base, and is provided with a static contact, the contact lead-out is at least There are two: a push rod assembly; a moving reed, the movable reed is provided with a moving contact corresponding to the static contact, and the moving reed is movable relative to the push rod assembly along a sliding direction parallel to the push rod assembly; the first magnetic conduction
  • the first magnetically conductive sheet is movably arranged on the side of the moving reed facing the static contact; and the second magnetically conductive sheet is arranged on the side of the moving reed facing away from the static contact, and can be connected with the The first magnetic conductive sheet forms a magnetic circuit; after the push rod assembly drives the moving reed to make the moving contact of the moving reed contact the static contact of the contact lead-out end, the push rod assembly continues
  • the relay further includes an overtravel elastic member, which can exert an overtravel elastic force on the movable reed toward the static contact during the process of the push rod assembly moving to realize the overtravel.
  • the limiting structure is connected to the first magnetically conductive sheet, when the first magnetically conductive sheet approaches the second magnetically conductive sheet according to a predetermined stroke, the limiting structure limits the first magnetically conductive sheet, so that Make the distance between the first magnetically permeable sheet and the second magnetically permeable sheet within a preset range.
  • the push rod assembly includes a push rod and an electromagnetic assembly that drives the push rod to move, the moving reed is provided with a first through hole, the push rod slides through the first through hole, and the first magnetic conductive sheet is slidably connected to the push rod.
  • the limiting structure is arranged on the push rod and located between the first magnetically conductive piece and the moving reed.
  • the limiting structure is a stop block fixedly connected with the push rod.
  • the push rod includes a first sliding end and a second sliding end, the outer diameter of the first sliding end is smaller than the outer diameter of the second sliding end, and the limiting structure is a step formed at the connection position between the first sliding end and the second sliding end part; the first sliding end is slidably fitted with the first through hole; the first magnetic sheet is provided with a second through hole, and the first sliding end is slidably fitted with the second through hole.
  • the first magnetically conductive sheet is provided with a matching groove that cooperates with the step part around the second through hole, and the matching groove is located on the side of the first magnetically conductive sheet facing the moving reed.
  • a stopper is provided at the end of the push rod against the moving reed;
  • the relay also includes a first spool, one end of the first spool is fixed to the first magnetic conductive sheet, and the first spool slides through the stopper,
  • the limit structure is located at the end of the first sliding column away from the first magnetically conductive sheet, and can be against the surface of the stopper facing away from the first magnetically conductive sheet; or, one end of the first sliding column is fixed to the stopper, and the first The sliding column passes through the first magnetically conductive sheet, and the limiting structure is located at the end of the first sliding column away from the first magnetically conducting sheet, and can be against the surface of the first magnetically conductive sheet facing away from the stopper; or, the limiting structure includes The first limit end and the second limit end, the first limit end and the second limit end are respectively arranged at both ends of the first sliding column, the first sliding column slides through the first magnetic conductive sheet and the stopper, Moreover, the first limiting end can a
  • a guide protrusion is respectively arranged on both sides of the first magnetic conduction sheet and the second magnetic conduction sheet, and the two guide protrusions are kept at intervals to form a guide for the first magnetic conduction sheet and the second magnetic conduction sheet. Sliding by the first guide groove.
  • the push rod assembly includes a push rod and an electromagnetic assembly that drives the push rod to move.
  • a push plate is provided at the end of the push rod, and the push plate is connected to the moving reed through an overtravel elastic member.
  • it also includes two guide plates respectively arranged on opposite sides of the moving reed, the two guide plates form a second guide groove for the sliding of the moving reed, and a limit plate is provided at the end of the guide plates away from the push plate.
  • the guide plate is arranged on the fixed base.
  • the guide plate is fixed to the push rod and/or the push plate, and the first magnetic guide piece is slidably connected to the limit plate and/or the guide plate.
  • it also includes a second sliding column, one end of the second sliding column is fixed to the first magnetically conductive sheet, the second sliding column slides through the limit plate, and the limiting structure is located at the second sliding column facing away from the first magnetically conductive sheet Or, one end of the second sliding column is fixed with the limit plate, the second sliding column passes through the first magnetically conductive sheet, the limiting structure is located at the end of the second sliding column away from the first magnetically conductive sheet, and can be connected with the first magnetically conductive sheet
  • the surface of a magnetically conductive sheet facing away from the limit plate is offset; or, the limit structure includes a third limit end and a fourth limit end, and the third limit end and the fourth limit end are respectively arranged on both sides of the second sliding column.
  • the second sliding column slides through the first magnetically conductive sheet and the limiting plate, and the third limiting end can be against the surface of the limiting plate facing away from the first magnetically conductive piece, and the fourth limiting end can be contacted with the first
  • the surface of the magnetic guide sheet facing away from the limiting plate is offset.
  • the limiting structure includes a limiting groove provided on the first magnetically conductive sheet, and the limiting plate is slidably connected to the limiting groove.
  • the push rod assembly drives the movable reed to move toward the static contact, and after the movable contact contacts the static contact, the push rod assembly continues to move to realize the overtravel process, and the first magnetic conductive sheet can move toward the second within the predetermined stroke.
  • the direction of the magnetic conductive sheet slides, shortening the distance between the first magnetic conductive sheet and the second magnetic conductive sheet, so that after the current flows in from one contact lead-out end and flows out from the other contact lead-out end after passing through the moving reed , since the first magnetically conductive sheet and the second magnetically conductive sheet form a magnetic circuit, the current passing through the moving reed will magnetize the first magnetically conductive sheet and the second magnetically conductive sheet, so that the first magnetically conductive sheet and the second magnetically conductive sheet are mutually Generate an attractive force, and then exert a pressing force on the moving reed pointing to the direction of the static contact through the second magnetically conductive sheet.
  • the distance between the first magnetically conductive sheet and the second magnetically conductive sheet is relatively close, the distance between the two parts can be increased.
  • the magnetic attraction makes the closure of the moving contact and the static contact more stable and reliable, and can resist the electrodynamic repulsion generated by a large current during a short circuit.
  • Fig. 1 is the internal schematic diagram of the side view direction of the relay in Embodiment 1 of the present invention.
  • Fig. 2 is an internal schematic diagram of the front view direction of the relay in Embodiment 1 of the present invention.
  • Fig. 3 is an enlarged view of part A in Fig. 2;
  • FIG. 4 is a schematic diagram of the connection relationship and positional relationship between the contact lead-out end, the moving reed, the first magnetic conductive sheet and the second magnetic conductive sheet in the relay in embodiment 1 of the present invention when the contact is disconnected;
  • FIG. 5 is an internal schematic diagram of a three-dimensional perspective of the relay in Embodiment 1 of the present invention.
  • FIG. 6 is a schematic diagram of the state of the relay in Embodiment 1 of the present invention when the movable contact and the static contact are closed;
  • FIG. 7 is a schematic diagram of the state of the relay in Embodiment 1 of the present invention when the armature and the fixed iron core are closed;
  • FIG. 8 is a schematic diagram of the connection relationship between the first limiting structure and the first magnetically conductive sheet in Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of the connection relationship between the second limiting structure and the first magnetically conductive sheet in Embodiment 2 of the present invention.
  • FIG. 10 is a schematic diagram of the connection relationship between the third limiting structure and the first magnetically conductive sheet in Embodiment 2 of the present invention.
  • FIG. 11 is a schematic diagram of the connection relationship and positional relationship between the contact lead-out end, the moving reed, the first magnetic conductive sheet and the second magnetic conductive sheet in the relay in embodiment 3 of the present invention when the contact is disconnected;
  • Fig. 12 is a schematic diagram of the relay in the contact open state in Embodiment 3 of the present invention.
  • FIG. 13 is a schematic diagram of the state of the relay in Embodiment 3 of the present invention when the movable contact and the static contact are closed;
  • Fig. 14 is a schematic diagram of the state of the relay in Embodiment 3 of the present invention when the armature and the fixed iron core are closed;
  • FIG. 15 is a schematic diagram of the connection relationship between the first limiting structure and the first magnetically conductive sheet in Embodiment 3 of the present invention.
  • FIG. 16 is a schematic diagram of the connection relationship between the second limiting structure and the first magnetically conductive sheet in Embodiment 3 of the present invention.
  • FIG. 17 is a schematic diagram of the connection relationship between the third limiting structure and the first magnetic conductive sheet in Embodiment 3 of the present invention.
  • Fig. 18 is a schematic diagram of the connection relationship between the first magnetically conductive sheet and the limiting plate in Embodiment 4 of the present invention.
  • Fig. 19 is a schematic diagram of the connection relationship between the second type of first magnetically conductive sheet and the limiting plate in Embodiment 4 of the present invention.
  • the present invention discloses an anti-short circuit relay, including a fixed base 1, a contact lead-out end 2, a moving reed 3, a push rod assembly 4, an overtravel elastic member 5, a first magnetic conductor Sheet 6, limiting structure 7, second magnetically conductive sheet 8; wherein, the fixed base 1 includes a base 101 and an upper cover 102, the base 101 and the upper cover 102 are provided with an installation cavity 103, and the installation cavity 103 is also provided with a blower.
  • the arc structure 9 and the arc blowing structure 9 reference may be made to other prior art, which will not be repeated here;
  • the contact lead-out 2 is fixed to the fixed base 1. As shown in the figure, the contact lead-out 2 is fixed to the upper cover 102. There are at least two contact lead-outs 2 with static contacts (not marked in the figure). The contacts are spaced apart and insulated from each other;
  • the two ends of the movable reed 3 are provided with movable contacts (not marked in the figure) corresponding to the static contacts, and each static contact is correspondingly provided with a movable contact;
  • the moving reed 3 is movable relative to the push rod assembly and is driven by the push rod assembly 4 to approach or move away from the static contact point;
  • the push rod assembly 4 is used to drive the action of the movable reed 3, so that the movable contacts at both ends of the movable reed 3 are in contact with the static contacts of the two contact outlets 2, so that the current flows in from one contact outlet 2, and passes through the movable reed. After the reed 3 flows out from another contact outlet 2, as shown in Figure 6 or I in Figure 7;
  • the moving reed 3 is movable relative to the push rod assembly 4 along the sliding direction parallel to the push rod assembly 4;
  • the overtravel elastic member 5 can exert an overtravel elastic force on the movable reed 3 toward the direction of the static contact point.
  • the overtravel elastic member 5 is arranged on the push rod assembly 4, and the overtravel elastic member 5 is connected with the moving reed 3 and can apply an overtravel elastic force toward the static contact direction to the moving reed 3;
  • the over-travel elastic member 5 adopts an over-travel spring.
  • the over-travel elastic member 5 may also be replaced by shrapnel or other components with resilience.
  • the push rod assembly 4 drives the movable reed 3 to approach the static contact, so that the movable contact on the movable reed 3 contacts with the static contact to realize contact closure, and the overtravel elastic member 5 exerts a direction to the static contact on the movable reed 3.
  • the elastic force of the contacts thus providing additional pressure for the closure of the contacts.
  • the first magnetically conductive sheet 6 is movably arranged on the side of the moving reed 3 towards the static contact along the moving direction parallel to the moving reed 3;
  • the second magnetically conductive sheet 8 is arranged on the second magnetically conductive sheet 8 on the side of the moving reed 3 facing away from the static contact, and the second magnetically conductive sheet 8 is arranged corresponding to the first magnetically conductive sheet 6, and is driven by the push rod assembly 4
  • the moving reed 3 moves, and after the moving contact of the moving reed 3 is in contact with the static contact of the contact lead-out 2, the push rod assembly 4 continues to move to realize the overtravel process, the first magnetic conductive sheet 6 is parallel to the The moving direction of the moving reed 3 moves towards the direction close to the second magnetically conductive piece 8 within a predetermined stroke.
  • the push rod assembly 4 drives the movable reed 3 to approach the static contact, and makes the movable contact contact with the static contact, and the push rod assembly 4 continues Moving forward, in the process of realizing overtravel, the first magnetically conductive sheet 6 can slide towards the direction of the second magnetically conductive sheet 8, shortening the distance between the first magnetically conductive sheet 6 and the second magnetically conductive sheet 8, and the current After flowing in from one contact lead-out end 2, passing through the moving reed 3 and then flowing out from the other contact lead-out end 2, since the first magnetically conductive sheet 6 and the second magnetically conductive sheet 8 form a magnetic circuit, thus passing through the moving reed
  • the current of 3 magnetizes the first magnetically permeable piece 6 and the second magnetically permeable piece 8, so that the first magnetically permeable piece 6 and the second magnetically permeable piece 8 generate mutual attraction, and then pass the second magnetically permeable piece 8 to
  • the magnetic attraction force between the two parts can be increased, so that the movable contact and the static contact
  • the closure is more stable and reliable, and can resist the electrodynamic repulsion generated by a large current during a short circuit.
  • the first magnetically conductive sheet 6 and the second magnetically conductive sheet 8 are set in pairs.
  • more than two groups of the first magnetically conductive sheet 6 and the second magnetically conductive sheet 8 may be provided.
  • the first magnetically conductive sheet 6 is disposed on the push rod assembly 4 .
  • the limiting structure 7 is connected to the first magnetically conductive sheet 6. When the first magnetically conductive sheet 6 approaches the second magnetically conductive sheet 8 according to a predetermined stroke, the limiting structure 7 limits the first magnetically conductive sheet 8 so that the first magnetically conductive sheet 8 The distance between the magnetically permeable sheet (6) and the second magnetically permeable sheet 8 is within a preset range.
  • the limiting structure 7 is disposed on the push rod assembly 4 .
  • the preset range value of the first magnetically conductive sheet 6 and the second magnetically conductive sheet 8 is a, and the overtravel moving distance of the push rod assembly 4 is H, where 0 ⁇ a ⁇ H.
  • the push rod assembly 4 includes a push rod 401 and an electromagnetic assembly 402 that drives the push rod 401 to move, the moving reed 3 is provided with a first through hole 301, and the push rod 401 slides through Through the first through hole 301 , the first magnetic conductive sheet 6 is slidably connected to the push rod 401 .
  • the push rod 401 can provide a sliding guide for the moving reed 3 and the first magnetically conductive piece 6 .
  • the limiting structure 7 is disposed on the push rod 401 and located between the first magnetically conductive piece 6 and the moving reed 3 .
  • the limit structure 7 is a stop block (not shown) fixedly connected with the push rod 401.
  • the stop block can adopt a snap ring, and the outer wall of the push rod 401 is provided for snap ring fixing slot, or the stop block can also be a screw or a bolt-nut assembly, and the screw or bolt-nut assembly is threaded on the push rod 401, of course, the stop block can also be fixed to the push rod 401 by bonding or welding superior.
  • the push rod 401 includes a first sliding end 4011 and a second sliding end 4012, the outer diameter of the first sliding end 4011 is smaller than the outer diameter of the second sliding end 4012, and the limiting structure 7 It is a step portion 4013 formed at the connection position between the first sliding end 4011 and the second sliding end 4012; the first sliding end 4011 is slidingly fitted with the first through hole 301; the first magnetic conductive sheet 6 is provided with a second through hole 601, The first sliding end 4011 is slidingly matched with the second through hole 601 .
  • the cross section of the push rod 401 is circular, and the diameter of the first sliding end 4011 is greater than the diameter of the second sliding end 4012 .
  • the cross section of the push rod 401 is non-circular, the outer diameter of the first sliding end 4011 and the maximum size of the outer diameter cross section of the second sliding end 4012, for example, when the cross section of the push rod 401 is rectangular, Then the diagonal length of the cross section of the push rod 401 is the outer diameter of the first sliding end 4011 or the second sliding end 4012 .
  • the sliding connection between the movable reed 3, the first magnetically conductive piece 6 and the push rod 401 is realized, and the adjustment part is abutted against the first magnetically conductive piece 6 to limit its position, thus, the first magnetically conductive piece
  • the distance between the magnetic sheet 6 and the second magnetically conductive sheet 8 is controlled within a preset range.
  • the first magnetically conductive sheet 6 is provided with a matching groove 602 that cooperates with the step portion 4013 around the second through hole 601 , and the matching groove 602 is located in the direction of the first magnetically conductive sheet 6 .
  • the matching groove 602 can abut against the step portion 4013, and the matching groove 602 can cooperate with the step portion 4013, and the matching groove 602 can The arrangement can reduce the thickness of the first groove guide piece, which is beneficial to provide a compact structure.
  • a stopper 11 is provided at the end of the push rod 401 against the moving reed 3 .
  • the setting of the stopper 11 can prevent the first magnetically conductive piece 6 and the moving reed 3 from detaching from the end of the push rod 401 .
  • a guide protrusion 12 is respectively arranged on both sides of the first magnetic conduction sheet 6 and the second magnetic conduction sheet 8, and the two guide protrusions 12 are kept at intervals to form a guide for the first The magnetically permeable sheet 6 and the second magnetically permeable sheet 8 slide through the guide groove.
  • the electromagnetic assembly 402 includes a bracket 4021, a coil 4022, a fixed iron core 4023, a magnetically permeable panel 4024, a yoke 4025, and an armature 4026.
  • the coil 4022 is sleeved outside the fixed iron core 4023, and the fixed iron core 4023,
  • the yoke 4025 is fixed with the support 4021, the armature 4026 is fixedly connected with the push rod 401, and when the coil 4022 is energized, the magnetically conductive panel 4024, the yoke 4025, and the fixed iron core 4023 generate magnetic flux and the magnetic flux tends to form a closed magnetic circuit.
  • the driving armature 4026 moves close to the fixed iron core 4023 .
  • the relay also includes a return elastic member 10, which is arranged between the fixed iron core 4023 and the armature 4026, and exerts a force on the armature 4026 away from the direction of the fixed iron core 4023 to assist the armature 4026 and the armature 4026
  • the fixed iron core 4023 is separated, thereby realizing the separation of the moving contact and the static contact, and realizing reset.
  • the push rod 401 moves relative to the movable reed 3, and the first magnetically conductive piece 6 is slidably arranged on the push rod 401, and the first magnetically conductive piece 6 will move under the action of its own weight. and/or under the attraction of the second magnetically conductive sheet 8, the first magnetically conductive sheet 6 can slide towards the direction close to the second magnetically conductive sheet 8 until the limiting structure 7 limits the first magnetically conductive sheet 6, That is, as shown in FIG. 7 , until the step portion 4013 abuts against the first magnetically conductive sheet 6 .
  • This embodiment discloses another anti-short circuit relay. The difference between this embodiment and the embodiment only lies in:
  • the relay further includes a first spool 13, one end of the first spool 13 is fixed to the first magnetically conductive sheet 6, the first spool 13 slides through the stopper 11, and the limiting structure 7 is located at the end of the first sliding post 13 facing away from the first magnetically conductive sheet 6 , and can abut against the surface of the stopper 11 facing away from the first magnetically conductive sheet 6 .
  • the first magnetically conductive sheet 6 slides relative to the stopper 11 through the first sliding column 13, and the stopper 7 can abut against the surface of the stopper 11 facing away from the first magnetically conductive sheet 6, thereby providing a positive impact on the first magnetically conductive sheet 6.
  • the magnetically conductive sheet 6 is positioned.
  • one end of the first sliding column 13 is fixed to the stopper 11 , the first sliding column 13 passes through the first magnetic conductive sheet 6 , and the limiting structure 7 is located on the first sliding column 13 is away from one end of the first magnetically conductive sheet 6, and can abut against the surface of the first magnetically conductive sheet 6 facing away from the stopper 11;
  • the first magnetically conductive sheet 6 can slide relative to the first sliding post 13 , and abut against the surface of the first magnetically conductive sheet 6 facing away from the stopper 11 , thereby limiting the position of the first magnetically conductive sheet 6 .
  • the limiting structure 7 includes a first limiting end 1301 and a second limiting end 1302, and the first limiting end 1301 and the second limiting end 1302 are respectively arranged on the first At both ends of the spool 13, the first spool 13 slides through the first magnetically conductive sheet 6 and the stopper 11, and the first limit end 1301 can be against the surface of the stopper 11 facing away from the first magnetically conductive sheet 6 , the second limiting end 1302 can abut against the surface of the first magnetically conductive sheet 6 facing away from the stopper 11 .
  • both the first magnetically conductive piece 6 and the first sliding post 13 can slide relative to the stopper 11, the first limit end 1301 can abut against the surface of the stopper 11 facing away from the first magnetically conductive piece 6, and the second The two limiting ends 1302 can be against the surface of the first magnetically conductive piece 6 facing away from the stopper 11 , thereby limiting the first magnetically conductive piece 6 .
  • this embodiment discloses another anti-short circuit relay.
  • the difference between this embodiment and Embodiment 1 lies in:
  • the push rod assembly 4 includes a push rod 401 and an electromagnetic assembly 402 that drives the push rod 401 to move.
  • the end of the push rod 401 is provided with a push plate 4014, and the push plate 4014 and the moving reed 3 pass through the overtravel elastic member 5 connect.
  • some possible implementations also include two guide plates 14 respectively arranged on the opposite sides of the moving reed 3, and the two guide plates 14 form a second guide groove for the sliding of the moving reed 3 (1401).
  • the second guide groove 1401 for the sliding of the moving reed 3 is formed, thereby reducing the occurrence of horizontal rotation or overturning of the moving reed 3, so that the sliding of the moving reed 3 acts as a closed contact.
  • the process is stable and reliable.
  • the guide plate 14 is disposed on the fixed base 1 .
  • the guide plate 14 is fixed to the push rod 401 and/or the push plate 4014, for example, the guide plate 14 can be fixed to the push plate 4014, and in other possible embodiments, the guide plate 14 can be It is fixed with the push rod 401 , or fixed with both the push rod 401 and the push plate 4014 .
  • the end of the guide plate 14 away from the push plate 4014 is provided with a limiting plate 15 , and the first magnetic conductive sheet 6 is slidably connected with the limiting plate 15 and/or the guiding plate 14 .
  • the setting of the limit plate 15 can prevent the moving contact plate from detaching from the end of the guide plate 14 away from the push plate 4014, and the first magnetically conductive piece 6 is slidably connected with the limit plate 15 and/or the guide plate 14, all of which can be realized in During the overtravel operation of the push rod assembly 4 , the first magnetically conductive sheet 6 can slide toward the direction close to the second magnetically conductive sheet 8 .
  • the first magnetically conductive sheet 6 is slidably connected to the limiting plate 15 .
  • some possible implementations further include a second sliding column 16 , one end of the second sliding column 16 is fixed to the first magnetically conductive sheet 6 , and the second sliding column 16 slides through the limiting plate 15 , the limiting structure 7 is located at the end of the second sliding column 16 facing away from the first magnetic conductive sheet 6;
  • the first magnetically conductive sheet 6 slides relative to the limiting plate 15 through the second sliding column 16, and the limiting structure 7 can abut against the surface of the limiting plate 15 facing away from the first magnetically conductive sheet 6.
  • the magnetically conductive sheet 6 is positioned.
  • one end of the second sliding column 16 is fixed to the limiting plate 15, the second sliding column 16 passes through the first magnetic conductive sheet 6, and the limiting structure 7 is located on the second sliding column 16 is away from one end of the first magnetically conductive sheet 6, and can be against the surface of the first magnetically conductive sheet 6 facing away from the limit plate 15;
  • the first magnetically conductive piece 6 can slide relative to the second sliding post 16 , and abut against the surface of the first magnetically conductive piece 6 facing away from the limiting plate 15 , thereby limiting the first magnetically conductive piece 6 .
  • the limiting structure 7 includes a third limiting end 1601 and a fourth limiting end 1602, and the third limiting end 1601 and the fourth limiting end 1602 are respectively arranged on the second At both ends of the spool 16, the second spool 16 slides through the first magnetically conductive sheet 6 and the limiting plate 15, and the third limiting end 1601 can be against the surface of the limiting plate 15 facing away from the first magnetically conductive sheet 6 , the fourth limiting end 1602 can abut against the surface of the first magnetically conductive sheet 6 facing away from the limiting plate 15 .
  • both the first magnetically conductive piece 6 and the second sliding post 16 can slide relative to the limiting plate 15, the third limiting end 1601 can abut against the surface of the limiting plate 15 facing away from the first magnetically conductive piece 6, and the second The four limiting ends 1602 can abut against the surface of the first magnetically conductive piece 6 facing away from the limiting plate 15 , thereby limiting the first magnetically conductive piece 6 .
  • the push rod assembly 4 drives the movable reed 3 to approach the static contact, and makes the movable contact contact with the static contact;
  • the push rod 401 moves relative to the movable reed 3, and continues to push the push plate 4014 toward the direction of the static contact, driving the guide plate 14 and the limit plate 15 to continue to move forward, And compress the overtravel elastic member 5, and the first magnetically conductive sheet 6 slides relative to the stop plate 15, so the first magnetically conductive sheet 6 is under the action of its own weight and/or the attraction of the second magnetically conductive sheet 8, the first magnetically conductive sheet 6
  • the magnetically conductive sheet 6 can slide towards the second magnetically conductive sheet 8 until the limiting structure 7 limits the first magnetically conductive sheet 6 , as shown in FIG. 14 .
  • This embodiment discloses another anti-short circuit relay.
  • the difference between this embodiment and the above-mentioned embodiments is only that:
  • the limiting structure 7 includes a limiting groove 603 disposed on the first magnetically conductive sheet 6 , and the limiting plate 15 is slidably connected to the limiting groove 603 .
  • the first magnetically conductive sheet 6 is a closed structure.
  • the limiting plate 15 abuts against the inner wall of the limiting groove 603 on the side away from the second magnetically permeable sheet 8 to limit the stroke of the first magnetically permeable sheet 6 approaching the second magnetically permeable sheet 8 .
  • the first magnetically conductive sheet 6 is a semi-closed structure.
  • the anti-short circuit relay provided by the present invention shortens the distance between the first magnetically conductive sheet 6 and the second magnetically conductive sheet 8, making the closing of the movable contact and the static contact more stable and reliable, and capable of resisting short circuit The electric repulsion force generated by a large current.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electromagnets (AREA)

Abstract

本发明公开了一种抗短路的继电器,涉及继电器技术领域,包括固定基座、触点引出端、推杆组件、第一导磁片、第二导磁片,触点引出端至少两个且设置有静触点;动簧片两端对应静触点设置有动触点;第一导磁片沿平行于动簧片移动方向活动地设置在动簧片朝静触点一侧;第二导磁片设置于动簧片背向静触点一侧;其中,第一导磁片和第二导磁片能够形成磁回路,在推杆组件继续动作实现超行程的过程中,第一导磁片沿平行于动簧片移动方向在预定的行程内靠近第二导磁片。本发明所提供的抗短路的继电器,通过缩短第一导磁片和第二导磁片的间距,使得动触点和静触点的闭合更加稳定、可靠,能够抵抗短路时较大电流产生的电动斥力。

Description

一种抗短路的继电器 技术领域
本发明涉及继电器技术领域,尤其涉及一种抗短路的继电器。
背景技术
现有技术的这种继电器,当出现故障短路电流时,会在动、静触点之间产生电动斥力,影响动、静触点之间接触的稳定性。
随着新能源行业的迅速发展,各车厂及电池包厂对故障短路电流的要求也越来越高,在保持体积小及线圈功率小特点的基础上,要求直流继电器具有抗短路功能,能够在系统出现故障大电流时抵抗动簧受到的电动斥力。
目前市场抗短路典型要求至少为8000A,5ms不烧、不炸;而现有技术的直流继电器在保持体积小及线圈功率小的特点下无法提供足够的触点压力,即触点压力不足以抵抗动簧受到的电动斥力。
为提高抵抗电动斥力的能力,现有技术中,申请号为201811125654.1的中国专利申请公开了一种具有高抗短路能力的直流接触器,包括壳体,壳体的内腔中安装有两个静触点、一动接触片和驱动机构,动接触片与两个静触点分别沿竖向相对布置,驱动机构具有线圈、动子和推杆,还设有一由铁磁材料制成并用以承接动接触片的承接件和一由铁磁材料制成的止挡件,承接件连同动接触片一起活动套接于推杆的上部上,止挡件定位套接于推杆的上部上,并还位于承接件及动接触片的上方;当动接触片分别与两个静触点相吸合连通时,止挡件能够与承接件的顶侧之间形成磁路间隙,以对动接触片产生一受力方向向上的电磁吸力;这样在通大电流情况 下,能很好保证动接触片与两个静触点保持吸合,大大提升了直流接触器的工作稳定性和抗短路能力。
但是,由于推杆需超程移动,从而无可避免地,使得承接件和止挡件之间产生间隙,且一般此间隙的大小等于推杆超行程的距离,由于承接件和止挡件之间的间隙较大,导致继电器的抗电动斥力的能力下降明显,因此,无法满足在短路工况下通过大电流的实际使用需求。
因此,需要提出改进方案。
发明内容
为了克服上述现有技术所述的至少一种缺陷,本发明提供一种抗短路的继电器,以优化现有的继电器结构缺陷,以提高继电器的抗短路性能。
本发明为解决其问题所采用的技术方案是:
根据本发明的一个方面,本发明提供一种抗短路的继电器,包括:固定基座;触点引出端,触点引出端与固定基座固定,且设置有静触点,触点引出端至少设置两个;推杆组件;动簧片,动簧片上对应静触点设置有动触点,动簧片沿平行于推杆组件的滑移方向相对于推杆组件活动设置;第一导磁片,第一导磁片活动地设置在动簧片朝静触点的一侧;以及第二导磁片,第二导磁片设置于动簧片背向静触点一侧,且能够与第一导磁片形成磁回路;在推杆组件驱动动簧片动作,使动簧片的动触点与触点引出端的静触点接触后,推杆组件继续动作实现超行程的过程中,第一导磁片沿平行于动簧片的移动方向在预定的行程内朝靠近第二导磁片的方向移动。
进一步地,继电器还包括超程弹性件,在推杆组件动作实现超行程的过程中,超程弹性件能够对动簧片施加朝向静触点方向的超程弹性力。
进一步地,还包括限位结构,限位结构与第一导磁片相连,在第一导磁片按预定行程靠近第二导磁片时,限位结构对第一导磁片限位,以使第一导磁片与所述第二导磁片的间距在预设的范围值内。
进一步地,推杆组件包括推杆以及驱动推杆移动的电磁组件,动簧片 开设有第一通孔,推杆滑动穿过第一通孔,第一导磁片滑动连接于推杆上。
进一步地,限位结构设置于推杆上且位于第一导磁片与动簧片之间。
进一步地,限位结构为与推杆固定连接的止动块。
进一步地,推杆包括第一滑动端以及第二滑动端,第一滑动端的外径小大于第二滑动端的外径,限位结构为第一滑动端与第二滑动端连接位置处形成的台阶部;第一滑动端与第一通孔滑动配合;第一导磁片上开设有第二通孔,第一滑动端与第二通孔滑动配合。
进一步地,第一导磁片绕第二通孔一圈设置有与台阶部配合的配合凹槽,配合凹槽位于第一导磁片朝动簧片的一侧。
进一步地,推杆靠动簧片的末端设置有止挡件;继电器还包括第一滑柱,第一滑柱的一端与第一导磁片固定,第一滑柱滑动穿过止挡件,限位结构位于第一滑柱远离第一导磁片的一端,并能够与止挡件背向第一导磁片的表面相抵;或者,第一滑柱的一端与止挡件固定,第一滑柱穿过第一导磁片,限位结构位于第一滑柱远离第一导磁片的一端,并能够与第一导磁片背向止挡件的表面相抵;或者,限位结构包括第一限位端和第二限位端,第一限位端、第二限位端分别设置于第一滑柱两端,第一滑柱滑动穿过第一导磁片、止挡件,且第一限位端能够与止挡件背向第一导磁片的表面相抵,第二限位端能够与第一导磁片背向止挡件的表面相抵。
进一步地,固定基座上在第一导磁片以及第二导磁片的两侧各设置一导向凸起,两个导向凸起保持间隔,形成供第一导磁片以及第二导磁片滑移的由第一导向槽。
进一步地,推杆组件包括推杆以及驱动推杆移动的电磁组件,推杆的端部设置有推板,推板与动簧片通过超程弹性件连接。
进一步地,还包括两个分别设置于动簧片相对侧的导向板,两个导向板形成供动簧片滑移的第二导向槽,导向板远离推板的一端设置有限位板。
进一步地,导向板设置于固定基座上。
进一步地,导向板与推杆和/或推板固定,第一导磁片与限位板和/或导向板滑动连接。
进一步地,还包括第二滑柱,第二滑柱的一端与第一导磁片固定,第二滑柱滑动穿过限位板,限位结构位于第二滑柱背向第一导磁片的一端;或者,第二滑柱的一端与限位板固定,第二滑柱穿过第一导磁片,限位结构位于第二滑柱远离第一导磁片的一端,并能够与第一导磁片背向限位板的表面相抵;或者,限位结构包括第三限位端和第四限位端,第三限位端、第四限位端分别设置于第二滑柱两端,第二滑柱滑动穿过第一导磁片、限位板,且第三限位端能够与限位板背向第一导磁片的表面相抵,第四限位端能够与第一导磁片背向限位板的表面相抵。
进一步地,限位结构包括设置于第一导磁片的限位槽,限位板滑动连接于限位槽。
由上述技术方案可知,本发明实施例至少具有如下优点和积极效果:
推杆组件驱动动簧片朝静触点方向移动,使动触点与静触点接触后,推杆组件继续动作实现超行程的过程中,第一导磁片能够在预定行程内朝第二导磁片的方向滑移,缩短第一导磁片和第二导磁片之间的间距,从而在电流从一个触点引出端流入、经过动簧片后从另一个触点引出端流出后,由于第一导磁片和第二导磁片形成磁回路,通过动簧片的电流将第一导磁片与第二导磁片磁化,使得第一导磁片和第二导磁片相互产生吸引力,进而通过第二导磁片对动簧片施加指向静触点方向的抵压力,由于第一导磁片和第二导磁片的距离较近,从而能够增大两者件的磁性吸引力,使得动触点和静触点的闭合更加稳定、可靠,能够抵抗短路时较大电流产生的电动斥力。
附图说明
图1为本发明实施例1中继电器侧视方向的内部示意图;
图2为本发明实施例1中继电器主视方向的内部示意图;
图3为图2中A部的放大图;
图4为本发明实施例1中继电器在触点断开状态下触点引出端、动簧片、第一导磁片和第二导磁片的连接关系和位置关系示意图;
图5为本发明实施例1中继电器三维视角的内部示意图;
图6为本发明实施例1中继电器在动触点与静触点闭合时的状态示意图;
图7为本发明实施例1中继电器在衔铁与固定铁芯闭合时的状态示意图;
图8为本发明实施例2中第一种限位结构与第一导磁片的连接关系示意图;
图9为本发明实施例2中第二种限位结构与第一导磁片的连接关系示意图;
图10为本发明实施例2中第三种限位结构与第一导磁片的连接关系示意图;
图11为本发明实施例3中继电器在触点断开状态下触点引出端、动簧片、第一导磁片和第二导磁片的连接关系和位置关系示意图;
图12为本发明实施例3中继电器在触点断开状态下的示意图;
图13为本发明实施例3中继电器在动触点与静触点闭合时的状态示意图;
图14为本发明实施例3中继电器在衔铁与固定铁芯闭合时的状态示意图;
图15为本发明实施例3中第一种限位结构与第一导磁片的连接关系示意图;
图16为本发明实施例3中第二种限位结构与第一导磁片的连接关系示意图;
图17为本发明实施例3中第三种限位结构与第一导磁片的连接关系示意图;
图18为本发明实施例4中第一种第一导磁片与限位板的连接关系示意图;
图19为本发明实施例4中第二种第一导磁片与限位板的连接关系示意图。
其中,附图标记含义如下:
1、固定基座;101、底座;102、上盖;103、安装腔;2、触点引出端;3、动簧片;301、第一通孔;4、推杆组件;401、推杆;4011、第一滑动端;4012、第二滑动端;4013、台阶部;4014、推板;402、电磁组件;4021、支架;4022、线圈;4023、固定铁芯;4024、导磁面板;4025、轭铁;4026、衔铁;5、超程弹性件;6、第一导磁片;601、第二通孔;602、配合凹槽;603、限位槽;7、限位结构;8、第二导磁片;9、吹弧结构;10、复位弹性件;11、止挡件;12、导向凸起;1201、第一导向槽;13、第一滑柱;1301、第一限位端;1302、第二限位端;14、导向板;1401、第二导向槽;15、限位板;16、第二滑柱;1601、第三限位端;1602、第四限位端。
具体实施方式
为了更好地理解和实施,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
在本发明的描述中,需要说明的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。
实施例1
参阅图1~图7,本发明公开了一种抗短路的继电器,包括固定基座1、触点引出端2、动簧片3、推杆组件4、超程弹性件5、第一导磁片6、限位结构7、第二导磁片8;其中,固定基座1包括底座101以及上盖102,底座101与上盖102内设置有安装腔103,安装腔103内还设置有吹弧结构9,吹弧结构9可参考其他现有技术,在此不再赘述;
触点引出端2与固定基座1固定,如图所示,触点引出端2与上盖102固定,触点引出端2至少两个且设置有静触点(图中未标注),静触点之间间隔且相互绝缘设置;
动簧片3的两端对应静触点设置有动触点(图中未标注),每一静触点对应设置一动触点;
动簧片3相对于推杆组件活动设置并受推杆组件4驱动靠近或远离静触点;
推杆组件4用于驱动动簧片3动作,使得动簧片3两端的动触点与两个触点引出端2的静触点接触,实现电流从一个触点引出端2流入,经过动簧片3后从另一个触点引出端2流出,如图6或图7中I所示;
动簧片3沿平行于推杆组件4的滑移方向相对于推杆组件4活动设置;
在推杆组件4动作实现超程过程中,超程弹性件5能够对动簧片3施加朝向所述静触点方向的超程弹性力。
一些可能的实施方式中,超程弹性件5设置于推杆组件4,超程弹性件5与动簧片3连接并能够对动簧片3施加朝向静触点方向的超程弹性力;
如图1所示,超程弹性件5采用超程弹簧,在其他可能的实施方式中,超程弹性件5还可以采用弹片或者其他具有回弹的部件代替。
从而,推杆组件4驱动动簧片3向静触点靠近,使得动簧片3上的动触点与静触点接触实现触点闭合,超程弹性件5对动簧片3施加指向静触点的弹性力,从而为触触点的闭合提供额外的压力。
第一导磁片6沿平行于动簧片3移动方向活动地设置在动簧片3朝静触点的一侧;
第二导磁片8设置在动簧片3背向静触点一侧的第二导磁片8,且第二导磁片8与第一导磁片6对应设置,在推杆组件4驱动动簧片3动作,使动簧片3的动触点与触点引出端2的静触点接触后,推杆组件4继续动作实现超程的过程中,第一导磁片6沿平行于动簧片3的移动方向在预定的行程内朝靠近第二导磁片8的方向移动。
从而,参阅图2、图6、图7,在触点闭合过程中,推杆组件4驱动动簧片3向静触点靠近,并使动触点与静触点接触,推杆组件4继续前移,实现超程的过程中,第一导磁片6能够朝第二导磁片8的方向滑移,缩短第一导磁片6和第二导磁片8之间的间距,在电流从一个触点引出端2流入、经过动簧片3后从另一个触点引出端2流出后,由于第一导磁片6和第二导磁片8形成磁回路,由此通过动簧片3的电流将第一导磁片6与第二导磁片8磁化,使得第一导磁片6和第二导磁片8相互产生吸引力,进而通过第二导磁片8对动簧片3施加指向静触点方向的抵压力,由于第一导磁片6和第二导磁片8的距离较近,从而能够增大两者件的磁性吸引力,使得动触点和静触点的闭合更加稳定、可靠,能够抵抗短路时较大电流产生的电动斥力。
如图1~图2所示,第一导磁片6和第二导磁片8成对设置一组。
在其他可能的实施方式中,第一导磁片6和第二导磁片8可设置两组以上。
一些可能的实施方式中,第一导磁片6设置于推杆组件4上。
限位结构7与第一导磁片6相连,在第一导磁片6按预定行程靠近第 二导磁片8时,限位结构7对第一导磁片8限位,以使第一导磁片(6)与第二导磁片8的间距在预设的范围值内。
一些可能的实施方式中,限位结构7设置于推杆组件4上。
进一步地,第一导磁片6与第二导磁片8预设的范围值为a,推杆组件4的超行程移动距离为H,其中,0≤a<H。
当第一导磁片6与第二导磁片8的间距为0时,即第一导磁片6与第二导磁片8的表面相贴。
参阅图2~图3,一些可能的实施方式中,推杆组件4包括推杆401以及驱动推杆401移动的电磁组件402,动簧片3开设有第一通孔301,推杆401滑动穿过第一通孔301,第一导磁片6滑动连接于推杆401上。
由此,推杆401能够为动簧片3、第一导磁片6提供滑移导向。
一些可能的实施方式中,限位结构7设置于推杆401上且位于第一导磁片6与动簧片3之间。
进一步地,限位结构7为与推杆401固定连接的止动块(图中未示出),例如,止动块可采用卡环,在推杆401的外壁上开设供卡环卡接固定的卡槽,或者止动块还可以是螺钉或者螺栓螺母组件,将螺钉或者螺栓螺母组件螺纹固定于推杆401上,当然,止动块还可以通过粘结或者焊接的方式固定于推杆401上。
参阅图3,一些可能的实施方式中,推杆401包括第一滑动端4011以及第二滑动端4012,第一滑动端4011的外径小大于第二滑动端4012的外径,限位结构7为第一滑动端4011与第二滑动端4012连接位置处形成的台阶部4013;第一滑动端4011与第一通孔301滑动配合;第一导磁片6上开设有第二通孔601,第一滑动端4011与第二通孔601滑动配合。
进一步地,推杆401的横截面为圆形,则第一滑动端4011的直径大于第二滑动端4012的直径。
当推杆401的横截面为非圆形时,则第一滑动端4011的外径、第二滑 动端4012的外径横截面的最大尺寸,例如,当推杆401的横截面为矩形时,则推杆401横截面的对角线长度为第一滑动端4011或第二滑动端4012的外径。
从而,采用以上结构,实现动簧片3、第一导磁片6与推杆401的滑动连接,调节部与第一导磁片6相抵而对其进行限位,由此,将第一导磁片6与第二导磁片8之间的间距控制在预设的范围内。
参阅图3,一些可能的实施方式中,第一导磁片6绕第二通孔601一圈设置有与台阶部4013配合的配合凹槽602,配合凹槽602位于第一导磁片6朝动簧片3的一侧。
从而,在第一导磁片6朝第二导磁片8的方向滑移时,配合凹槽602能够与台阶部4013相抵,并且配合凹槽602能够与台阶部4013配合,配合凹槽602的设置能够减少第一导槽片的厚度,有利于提供结构的紧凑性。
参阅图4,进一步地,推杆401靠动簧片3的末端设置有止挡件11。
止挡件11的设置能够避免第一导磁片6、动簧片3从推杆401的末端脱离。
参阅图5,进一步地,固定基座1上在第一导磁片6以及第二导磁片8的两侧各设置一导向凸起12,两个导向凸起12保持间隔,形成供第一导磁片6以及第二导磁片8滑移的由导槽。
通过这样设置,能够为第一导磁片6、第二导磁片8的活动提供导向,减小第一导磁片6、第二导磁片8出现水平旋转或者翻转的情况发生,使得第一导磁片6与第二导磁片8两者磁性吸引稳定、可靠。
参阅图2,进一步地,电磁组件402包括支架4021、线圈4022、固定铁芯4023、导磁面板4024、轭铁4025、衔铁4026,线圈4022套设于固定铁芯4023外,固定铁芯4023、轭铁4025均与支架4021固定,衔铁4026与推杆401固定连接,线圈4022通电时,导磁面板4024、轭铁4025、固定铁芯4023产生磁通且该磁通趋向于形成闭合磁路而驱动衔铁4026向靠 近固定铁芯4023移动。
参阅图2,进一步地,继电器还包括复位弹性件10,复位弹性件10设置在固定铁芯4023与衔铁4026之间,对衔铁4026施加远离固定铁芯4023方向的作用力,以辅助衔铁4026与固定铁芯4023分离,进而实现动触点与静触分离,实现复位。
由此,在线圈4022通电时,在固定铁芯4023、轭铁4025中产生电磁磁通,而磁通所形成的磁路趋向于闭合,则吸引衔铁4026向靠近铁芯的方向移动,进而驱动推杆401移动,以实现继电器中动触点和静触点的闭合。
参考图6,在动簧片3上的动触点与静触点闭合时,衔铁4026与固定铁芯4023之间仍存在间距,该间距则为推杆组件4的超行程移动距离H,也即衔铁4026在动触点与静触点闭合时开始,直至运动至与固定铁芯4023闭合,这一过程为推杆组件4的超行程动作过程。
衔铁4026与固定铁芯4023继续靠近的过程中,推杆401相对于动簧片3移动,而第一导磁片6滑动设置在推杆401上,则第一导磁片6在其自重作用下和/或第二导磁片8的吸引下,第一导磁片6能够向靠近第二导磁片8的方向滑移,直到限位结构7对第一导磁片6进行限位,即如图7所示,直到台阶部4013与第一导磁片6抵接。
最终,在衔铁4026与固定铁芯4023接触后,推杆组件4停止动作,第一导磁片6和第二导磁片8接触或者保持间距,两者在通过动簧片3的电流作用下产生相互吸引的磁性吸力,且结合超程弹性件5的弹性力,为动簧片3上动触点与静触点的稳定闭合提供条件,实现对于短路工况下通过大电流时所产生的电动斥力起到较好的抵抗效果,满足实际的运用需要。
实施例2
本实施例公开另一种抗短路的继电器,本实施例与实施例的区别仅在于:
参阅图8,本实施例中,继电器还包括第一滑柱13,第一滑柱13的一 端与第一导磁片6固定,第一滑柱13滑动穿过止挡件11,限位结构7位于第一滑柱13背向第一导磁片6的一端,并能够与止挡件11背向第一导磁片6的表面相抵。
从而,第一导磁片6通过第一滑柱13相对于止挡件11滑移,限位结构7能够与止挡件11背向第一导磁片6的表面相抵,由此对第一导磁片6进行限位。
参阅图9,另一种可能的实施方式中,第一滑柱13的一端与止挡件11固定,第一滑柱13穿过第一导磁片6,限位结构7位于第一滑柱13远离第一导磁片6的一端,并能够与第一导磁片6背向止挡件11的表面相抵;
从而,第一导磁片6能够相对于第一滑柱13滑移,与第一导磁片6背向止挡件11的表面相抵,由此对第一导磁片6进行限位。
参阅图10,再一种可能的实施方式中,限位结构7包括第一限位端1301和第二限位端1302,第一限位端1301、第二限位端1302分别设置于第一滑柱13两端,第一滑柱13滑动穿过第一导磁片6、止挡件11,且第一限位端1301能够与止挡件11背向第一导磁片6的表面相抵,第二限位端1302能够与第一导磁片6背向止挡件11的表面相抵。
从而,第一导磁片6、第一滑柱13均能够相对于止挡件11滑移,第一限位端1301能够与止挡件11背向第一导磁片6的表面相抵,第二限位端1302能够与第一导磁片6背向止挡件11的表面相抵,由此对第一导磁片6进行限位。
实施例3
参阅图11~图17,本实施例公开另一种抗短路的继电器,本实施例与实施例1的区别仅在于:
本实施例中,推杆组件4包括推杆401以及驱动推杆401移动的电磁组件402,推杆401的端部设置有推板4014,推板4014与动簧片3通过超程弹性件5连接。
参阅图11、图15,一些可能的实施方式中,还包括两个分别设置于动簧片3相对侧的导向板14,两个导向板14形成供动簧片3滑移的第二导向槽(1401)。
通过设置导向板14,形成供动簧片3滑移的第二导向槽1401,从而能够减小动簧片3出现水平旋转或者翻转的情况发生,使得动簧片3滑移动作闭合触点的过程稳定、可靠。
一些可能的实施方式中,导向板14设置于固定基座1上。
参阅图11,一些可能的实施方式中,导向板14与推杆401和/或推板4014固定,例如,导向板14可与推板4014固定,在其他可能的实施方式中,导向板14可以与推杆401固定,或者与推杆401和推板4014两者均固定。
导向板14远离推板4014的一端设置有限位板15,第一导磁片6与限位板15和/或导向板14滑动连接。
从而,限位板15的设置,能够避免动触板从导向板14远离推板4014的一端脱离,第一导磁片6与限位板15和/或导向板14滑动连接,均能够实现在推杆组件4超程动作过程中,第一导磁片6能够朝靠近第二导磁片8的方向滑动。
本实施例中,第一导磁片6与限位板15滑动连接。
参阅图11~图15,一些可能的实施方式中,还包括第二滑柱16,第二滑柱16的一端与第一导磁片6固定,第二滑柱16滑动穿过限位板15,限位结构7位于第二滑柱16背向第一导磁片6的一端;
从而,第一导磁片6通过第二滑柱16相对于限位板15滑移,限位结构7能够与限位板15背向第一导磁片6的表面相抵,由此对第一导磁片6进行限位。
参阅图16,第二种可能的实施方式中,第二滑柱16的一端与限位板15固定,第二滑柱16穿过第一导磁片6,限位结构7位于第二滑柱16远 离第一导磁片6的一端,并能够与第一导磁片6背向限位板15的表面相抵;
从而,第一导磁片6能够相对于第二滑柱16滑移,与第一导磁片6背向限位板15的表面相抵,由此对第一导磁片6进行限位。
参阅图17,第三种可能的实施方式中,限位结构7包括第三限位端1601和第四限位端1602,第三限位端1601、第四限位端1602分别设置于第二滑柱16两端,第二滑柱16滑动穿过第一导磁片6、限位板15,且第三限位端1601能够与限位板15背向第一导磁片6的表面相抵,第四限位端1602能够与第一导磁片6背向限位板15的表面相抵。
从而,第一导磁片6、第二滑柱16均能够相对于限位板15滑移,第三限位端1601能够与限位板15背向第一导磁片6的表面相抵,第四限位端1602能够与第一导磁片6背向限位板15的表面相抵,由此对第一导磁片6进行限位。
本发明的实施过程与上述实施例1相似:
从而,参阅图2~图14,在触点闭合过程中,推杆组件4驱动动簧片3向静触点靠近,并使动触点与静触点接触;
衔铁4026与固定铁芯4023继续靠近的过程中,推杆401相对于动簧片3移动,并继续朝静触点的方向推动推板4014,驱动导向板14以及限位板15继续前移,并压缩超程弹性件5,而第一导磁片6相对于限位板15滑动,因此第一导磁片6在其自重作用下和/或第二导磁片8的吸引下,第一导磁片6能够向靠近第二导磁片8的方向滑移,直到限位结构7对第一导磁片6进行限位,即如图14所示。
最终,在衔铁4026与固定铁芯4023接触后,推杆组件4停止动作,第一导磁片6和第二导磁片8接触或者保持间距,两者在通过动簧片3的电流作用下产生相互吸引的磁性吸力,且结合超程弹性件5的弹性力,为动簧片3上动触点与静触点的稳定闭合提供条件,实现对于短路工况下通过大电流时所产生的电动斥力起到较好的抵抗效果,满足实际的运用需要。
实施例4
本实施例公开另一种抗短路的继电器,本实施例与上述实施例的区别仅在于:
参阅图18,限位结构7包括设置于第一导磁片6的限位槽603,限位板15滑动连接于限位槽603设置。
一种可能的实施方式中,第一导磁片6为封闭结构。
限位板15与限位槽603的远离第二导磁片8一侧的内壁相抵以限制第一导磁片6导磁片向第二导磁片8靠近的行程。
参阅图19,另一种可能的实施方式中,第一导磁片6为半封闭结构。
综上所述,本发明所提供的抗短路的继电器通过缩短第一导磁片6和第二导磁片8的间距,使得动触点和静触点的闭合更加稳定、可靠,能够抵抗短路时较大电流产生的电动斥力。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (15)

  1. 一种抗短路的继电器,其特征在于,包括:
    固定基座(1);
    触点引出端(2),所述触点引出端(2)与所述固定基座(1)固定,且设置有静触点,所述触点引出端至少设置两个;
    推杆组件(4);
    动簧片(3),所述动簧片(3)上对应所述静触点设置有动触点,所述动簧片(3)沿平行于所述推杆组件(4)的滑移方向相对于所述推杆组件(4)活动设置;
    第一导磁片(6),所述第一导磁片(6)活动地设置在所述动簧片(3)朝所述静触点的一侧;以及
    第二导磁片(8),所述第二导磁片(8)设置于所述动簧片(3)背向所述静触点一侧,且能够与所述第一导磁片(6)形成磁回路;
    在所述推杆组件(4)驱动所述动簧片(3)动作,使所述动簧片(3)的动触点与所述触点引出端(2)的静触点接触后,所述推杆组件(4)继续动作实现超行程的过程中,所述第一导磁片(6)沿平行于所述动簧片(3)的移动方向在预定的行程内朝靠近所述第二导磁片(8)的方向移动。
  2. 根据权利要求1所述的抗短路的继电器,其特征在于,还包括超程弹性件(5),在所述推杆组件(4)实现超行程的过程中,所述超程弹性件(5)能够对所述动簧片(3)施加朝向所述静触点方向的超程弹性力。
  3. 根据权利要求1所述的抗短路的继电器,其特征在于,还包括限位结构(7),所述限位结构(7)与所述第一导磁片(6)相连,在所述第一导磁片(6)按预定行程靠近所述第二导磁片(8)时,所述限位结构(7)对所述第一导 磁片(8)限位,以使第一导磁片(6)与所述第二导磁片(8)的间距在预设的范围值内。
  4. 根据权利要求3所述的抗短路的继电器,其特征在于,所述推杆组件(4)包括推杆(401)以及驱动推杆(401)移动的电磁组件(402),所述动簧片(3)开设有第一通孔(301),所述推杆(401)滑动穿过所述第一通孔(301),所述第一导磁片(6)滑动连接于所述推杆(401)上。
  5. 根据权利要求4所述的抗短路的继电器,其特征在于,所述限位结构(7)设置于所述推杆(401)上且位于所述第一导磁片(6)与所述动簧片(3)之间。
  6. 根据权利要求5所述的抗短路的继电器,其特征在于,所述限位结构(7)为与所述推杆(401)固定连接的止动块。
  7. 根据权利要求5所述的抗短路的继电器,其特征在于,所述推杆(401)包括第一滑动端(4011)以及第二滑动端(4012),所述第一滑动端(4011)的外径小大于所述第二滑动端(4012)的外径,所述限位结构(7)为所述第一滑动端(4011)与所述第二滑动端(4012)连接位置处形成的台阶部(4013);
    所述第一滑动端(4011)与所述第一通孔(301)滑动配合;
    所述第一导磁片(6)上开设有第二通孔(601),所述第一滑动端(4011)与所述第二通孔(601)滑动配合。
  8. 根据权利要求7所述的抗短路的继电器,其特征在于,所述第一导磁片(6)绕所述第二通孔(601)一圈设置有与所述台阶部(4013)配合的配合凹槽(602),所述配合凹槽(602)位于所述第一导磁片(6)朝所述动簧片(3) 的一侧。
  9. 根据权利要求4所述的抗短路的继电器,其特征在于,所述推杆(401)靠所述动簧片(3)的末端设置有止挡件(11);
    继电器还包括第一滑柱(13),所述第一滑柱(13)的一端与所述第一导磁片(6)固定,所述第一滑柱(13)滑动穿过所述止挡件(11),所述限位结构(7)位于所述第一滑柱(13)远离所述第一导磁片(6)的一端,并能够与所述止挡件(11)背向所述第一导磁片(6)的一侧表面相抵;
    或者,所述第一滑柱(13)的一端与所述止挡件(11)固定,所述第一滑柱(13)穿过所述第一导磁片(6),所述限位结构(7)位于所述第一滑柱(13)远离所述第一导磁片(6)的一端,并能够与所述第一导磁片(6)背向所述止挡件(11)的表面相抵;
    或者,所述限位结构(7)包括第一限位端(1301)和第二限位端(1302),所述第一限位端(1301)、第二限位端(1302)分别设置于所述第一滑柱(13)两端,所述第一滑柱(13)滑动穿过所述第一导磁片(6)、所述止挡件(11),且所述第一限位端(1301)能够与所述止挡件(11)背向所述第一导磁片(6)的表面相抵,所述第二限位端(1302)能够与所述第一导磁片(6)背向所述止挡件(11)的表面相抵。
  10. 根据权利要求3所述的抗短路的继电器,其特征在于,所述推杆组件(4)包括推杆(401)以及驱动推杆(401)移动的电磁组件(402),所述推杆(401)的端部设置有推板(4014),所述推板(4014)与所述动簧片(3)通过所述超程弹性件(5)连接。
  11. 根据权利要求10所述的抗短路的继电器,其特征在于,还包括两个分别设置于所述动簧片(3)相对侧的导向板(14),两个所述导向板(14)形 成供所述动簧片(3)滑移的第二导向槽(1401);
    所述导向板(14)远离所述推板(4014)的一端设置有限位板(15)。
  12. 根据权利要求11所述的抗短路的继电器,其特征在于,所述导向板(14)设置于所述固定基座(1)上。
  13. 根据权利要求11所述的抗短路的继电器,其特征在于,所述导向板(14)与所述推杆(401)和/或所述推板(4014)固定,所述第一导磁片(6)与所述限位板(15)和/或所述导向板(14)滑动连接。
  14. 根据权利要求13所述的抗短路的继电器,其特征在于,还包括第二滑柱(16),所述第二滑柱(16)的一端与所述第一导磁片(6)固定,所述第二滑柱(16)滑动穿过所述限位板(15),所述限位结构(7)位于所述第二滑柱(16)背向所述第一导磁片(6)的一端,并能够与所述限位板(15)背向所述第一导磁片(6)的表面相抵;
    或者,所述第二滑柱(16)的一端与所述限位板(15)固定,所述第二滑柱(16)穿过所述第一导磁片(6),所述限位结构(7)位于所述第二滑柱(16)远离所述第一导磁片(6)的一端,并能够与所述第一导磁片(6)背向所述限位板(15)的表面相抵;
    或者,所述限位结构(7)包括第三限位端(1601)和第四限位端(1602),所述第三限位端(1601)、第四限位端(1602)分别设置于所述第二滑柱(16)两端,所述第二滑柱(16)滑动穿过所述第一导磁片(6)、所述限位板(15),且所述第三限位端(1601)能够与所述限位板(15)背向所述第一导磁片(6)的表面相抵,所述第四限位端(1602)能够与所述第一导磁片(6)背向所述限位板(15)的表面相抵。
  15. 根据权利要求13所述的抗短路的继电器,其特征在于,所述限位结构(7)包括设置于所述第一导磁片(6)的限位槽(603),所述限位板(15)滑动连接于所述限位槽(603)。
PCT/CN2021/143467 2021-12-13 2021-12-31 一种抗短路的继电器 WO2023108827A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247019901A KR20240096902A (ko) 2021-12-13 2021-12-31 단락 방지 릴레이

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111518789.6 2021-12-13
CN202111518789.6A CN116264141A (zh) 2021-12-13 2021-12-13 一种抗短路的继电器

Publications (1)

Publication Number Publication Date
WO2023108827A1 true WO2023108827A1 (zh) 2023-06-22

Family

ID=86721948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143467 WO2023108827A1 (zh) 2021-12-13 2021-12-31 一种抗短路的继电器

Country Status (3)

Country Link
KR (1) KR20240096902A (zh)
CN (1) CN116264141A (zh)
WO (1) WO2023108827A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181038A1 (en) * 2013-08-02 2016-06-23 Panasonic Intellectual Property Management Co.,Ltd Electromagnetic relay
CN209000835U (zh) * 2018-11-09 2019-06-18 厦门宏发电力电器有限公司 抗短路电流的直流继电器
CN111627758A (zh) * 2020-07-08 2020-09-04 尼普顿电器(昆山)有限公司 触点磨损后仍能承载大电流冲击的直流继电器
CN111916312A (zh) * 2020-08-12 2020-11-10 浙江众信新能源科技股份有限公司 一种抗大短路电流继电器触点组件
CN212032959U (zh) * 2019-12-31 2020-11-27 厦门宏发电力电器有限公司 一种可抗短路电流的直流继电器
CN112750663A (zh) * 2020-12-11 2021-05-04 厦门宏发电力电器有限公司 一种能够提高抗短路电流能力的直流继电器
CN112967906A (zh) * 2021-02-01 2021-06-15 昆山联滔电子有限公司 一种可动式抗短路直流继电器
CN214254281U (zh) * 2021-01-15 2021-09-21 东莞市中汇瑞德电子股份有限公司 带有高抗短路结构的高压直流继电器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181038A1 (en) * 2013-08-02 2016-06-23 Panasonic Intellectual Property Management Co.,Ltd Electromagnetic relay
CN209000835U (zh) * 2018-11-09 2019-06-18 厦门宏发电力电器有限公司 抗短路电流的直流继电器
CN212032959U (zh) * 2019-12-31 2020-11-27 厦门宏发电力电器有限公司 一种可抗短路电流的直流继电器
CN111627758A (zh) * 2020-07-08 2020-09-04 尼普顿电器(昆山)有限公司 触点磨损后仍能承载大电流冲击的直流继电器
CN111916312A (zh) * 2020-08-12 2020-11-10 浙江众信新能源科技股份有限公司 一种抗大短路电流继电器触点组件
CN112750663A (zh) * 2020-12-11 2021-05-04 厦门宏发电力电器有限公司 一种能够提高抗短路电流能力的直流继电器
CN214254281U (zh) * 2021-01-15 2021-09-21 东莞市中汇瑞德电子股份有限公司 带有高抗短路结构的高压直流继电器
CN112967906A (zh) * 2021-02-01 2021-06-15 昆山联滔电子有限公司 一种可动式抗短路直流继电器

Also Published As

Publication number Publication date
KR20240096902A (ko) 2024-06-26
CN116264141A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
US4367448A (en) Direct current electromagnetic contactor
CN109659199B (zh) 一种可灭弧并能抗短路电流的直流继电器
US12020881B2 (en) Direct-current relay having a function of extinguishing ARC and resisting short-circuit current
JP2013098051A (ja) 電磁接触器
CN109659198B (zh) 一种灭弧及抗短路电流的直流继电器
WO2023108827A1 (zh) 一种抗短路的继电器
CN218385043U (zh) 继电器
CN218730704U (zh) 继电器
CN109671593B (zh) 一种带磁钢灭弧并能够抗短路电流的直流继电器
CN109830404B (zh) 一种具有灭弧及抗短路电流功能的直流继电器
WO2022151999A1 (zh) 一种反应灵敏的高压直流磁保持继电器
CN216054511U (zh) 一种易装配型耐短路电流的直流接触器触头结构
WO2023108828A1 (zh) 一种使用可靠的继电器
CN218039040U (zh) 一种抗短路的继电器
CN218385044U (zh) 一种继电器
CN216389206U (zh) 一种能够抵抗特大短路电流的单稳态继电器
WO2024078421A1 (zh) 继电器
CN216528651U (zh) 直流接触器防斥开触头结构
CN219163280U (zh) 一种具有抵抗大电流能力的接触器
CN220172010U (zh) 磁场叠加的接触器电磁系统驱动装置
CN219873343U (zh) 继电器
CN211479955U (zh) 一种高压直流接触器
KR20240097963A (ko) 릴레이
CN219163272U (zh) 一种用于监测继电器触点状态的辅助触点结构
WO2024041190A1 (zh) 一种直线运动电磁机构、继电器、配电盒及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020247019901

Country of ref document: KR