WO2023102677A1 - 通信方法、终端设备及网络设备 - Google Patents

通信方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2023102677A1
WO2023102677A1 PCT/CN2021/135644 CN2021135644W WO2023102677A1 WO 2023102677 A1 WO2023102677 A1 WO 2023102677A1 CN 2021135644 W CN2021135644 W CN 2021135644W WO 2023102677 A1 WO2023102677 A1 WO 2023102677A1
Authority
WO
WIPO (PCT)
Prior art keywords
scg
terminal device
scgs
cpac
state
Prior art date
Application number
PCT/CN2021/135644
Other languages
English (en)
French (fr)
Inventor
林雪
尤心
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2021/135644 priority Critical patent/WO2023102677A1/zh
Priority to CN202180101900.3A priority patent/CN117882434A/zh
Publication of WO2023102677A1 publication Critical patent/WO2023102677A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • the present application relates to the technical field of communication, and more specifically, to a communication method, a terminal device, and a network device.
  • the terminal device can perform multiple rounds of CPAC based on one CPAC configuration, also known as "continuous CPAC process". In this way, the network device does not need to re-provide the CPAC configuration for the terminal device during each round of CPAC.
  • the traditional CPAC configuration only includes the SCG status of one SCG.
  • the terminal device needs to change to multiple SCGs after multiple rounds of CPAC processes. At this time, the terminal device cannot know each SCG in the multiple SCGs.
  • the SCG state of the terminal device, the master node, and the slave node have inconsistent understandings, so that the terminal device, the master node, and the slave node cannot communicate normally.
  • the present application provides a communication method, a terminal device, and a network device, so as to improve the success rate of communication between the terminal device and the network device (for example, a primary node or a secondary node).
  • the network device for example, a primary node or a secondary node.
  • a communication method including: a terminal device communicates with a secondary node SN based on the SCG state of a first secondary cell group SCG, the first SCG belongs to multiple SCGs, and the multiple SCGs are the terminal equipment
  • the device adds/changes the CPAC configuration of the primary and secondary cells based on the first condition.
  • the SCGs to which multiple primary and secondary cells PSCells belong to perform multiple CPAC process changes; wherein, at least part of the SCG states in the multiple SCGs are controlled by the primary node MN or the SCG.
  • the SCG states indicated by the SN, and/or at least part of the SCGs in the plurality of SCGs are predefined.
  • a communication method which is characterized by comprising: the secondary node SN communicates with the terminal device based on the SCG state of the first secondary cell group SCG, the first SCG belongs to multiple SCGs, and the multiple SCGs are The terminal device adds/changes the CPAC configuration of the primary and secondary cells based on the first condition.
  • the SCGs to which multiple primary and secondary cells PSCells belong to perform multiple CPAC process changes; wherein, the SCG states of at least some of the SCGs in the multiple SCGs are determined by the primary and secondary cells.
  • the SCG states indicated by the node MN or the SN, and/or at least part of the SCGs in the plurality of SCGs are predefined.
  • a communication method including: a master node MN sends a first message to a terminal device, the first message is used to determine the SCG states of at least some of the SCGs in multiple SCGs, and the multiple SCGs Adding/changing the CPAC configuration based on the first condition for the terminal device to the SCG to which multiple primary and secondary cells PSCells belong that perform multiple CPAC process changes.
  • a terminal device including a processor, a memory, and a communication interface, the memory is used to store one or more computer programs, and the processor is used to call the computer programs in the memory so that the terminal device Perform some or all of the steps in the method of the first aspect.
  • a secondary node including a processor, a memory, and a communication interface
  • the memory is used to store one or more computer programs
  • the processor is used to invoke the computer programs in the memory to make the network device Perform some or all of the steps in the method of the second aspect.
  • a master node including a processor, a memory, and a communication interface
  • the memory is used to store one or more computer programs
  • the processor is used to invoke the computer programs in the memory to make the network device Perform some or all of the steps in the method of the second aspect.
  • the embodiment of the present application provides a communication system, where the system includes the above-mentioned terminal and/or network device.
  • the system may further include other devices that interact with the terminal device or network device in the solutions provided by the embodiments of the present application.
  • the embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program enables the terminal to execute some or all of the steps in the methods of the above aspects.
  • the embodiment of the present application provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to enable the terminal to execute the above-mentioned Some or all of the steps in the method of the aspect.
  • the computer program product can be a software installation package.
  • the embodiment of the present application provides a chip, the chip includes a memory and a processor, and the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects.
  • the terminal device when the terminal device performs multiple rounds of CPAC procedures (also known as continuous CPAC handover) to switch to multiple SCGs based on the first CPAC configuration, the terminal device can switch to multiple SCGs based on the indication of the SN and MN or the SCG of the predefined SCG.
  • CPAC procedures also known as continuous CPAC handover
  • the terminal device can switch to multiple SCGs based on the indication of the SN and MN or the SCG of the predefined SCG.
  • the terminal device cannot know the SCG status of multiple SCGs that need to be changed to during continuous CPAC switching, resulting in inconsistent understanding of the terminal device, the master node, and the slave node, so that the terminal device and the master node, The secondary nodes cannot communicate normally.
  • FIG. 1 is a wireless communication system 100 applied in an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • Fig. 4 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • Fig. 5 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of the SN of the embodiment of the present application.
  • Fig. 8 is a schematic diagram of an MN in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the method provided in the embodiment of the present application can be used in various dual connectivity multi-standard dual connectivity (multiple RAT dual connectivity, MR-DC) architectures.
  • dual connection between the fourth generation (4th generation, 4G) communication system and the fifth generation (5th generation, 5G) communication system the dual connection between the 5G communication system and the 4G communication system, or the dual connection between the 5G communication system and the 5G communication system connect and so on.
  • the aforementioned dual connectivity between the 4G communication system and the 5G communication system may include: dual connectivity between the evolved universal terrestrial radio access (E-UTRA) system and the new radio (NR) system (E-UTRA- NR dual connectivity, EN-DC), and the dual connection of E-UTRA system and NR system under the 5G core network (NG-RAN E-UTRA-NR dual connectivity, NGEN-DC), etc.
  • EN-DC can also be called option 3 series (option 3 series).
  • EN-DC is a long term evolution (long term evolution, LTE) base station,
  • eNB acts as a master node (master node, MN) or primary base station
  • an NR base station acts as a secondary node (secondary node, SN) or the DC of the secondary base station
  • the MN and SN can communicate with the evolved packet core (evolved
  • the packet core (EPC) network has a data plane connection, that is, the 4G core network, which provides air interface transmission resources for data between the terminal and the EPC.
  • NGEN-DC can also be called option 7 series (option 7 series).
  • NG EN-DC uses an LTE base station, such as ng-eNB, as the MN, and an NR base station, such as gNB, as the DC of the SN.
  • NG EN-DC both the MN and the SN are connected to the 5G core
  • the network (5G core network, 5GC) provides air interface transmission resources for data between the terminal and 5GC.
  • the dual connectivity between the 5G communication system and the 4G communication system may include dual connectivity (NRE-UTRA dual connectivity, NE-DC) between the NR system and the E-UTRA system.
  • NE-DC can also be called option 4 series (option 4 series).
  • NE-DC uses the NR base station, such as gNB, as the MN, and the LTE base station, such as ng-eNB, as the SN, and the MN and SN can respectively have a data plane connection with the 5GC, providing air interface transmission for data between the terminal and the 5GC resource.
  • the dual connection between the 5G communication system and the 5G communication system may include the NR system and the DC of the NR system.
  • both the MN and the SN are NR base stations.
  • FIG. 1 it is a schematic structural diagram of a communication system 10 provided by the embodiment of the present application.
  • a communication system 10 may include a network device 101 , a network device 102 , a network device 105 , a terminal device 103 and a terminal device 104 .
  • Fig. 1 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the technical solution provided by the present application.
  • the network device in FIG. 1 may be any device with a wireless transceiver function. Including but not limited to: evolved base station (evolutional Node B, NodeB or eNB or e-NodeB) in LTE, base station (gNodeB or gNB) or transmission receiving point (transmission receiving point/transmission reception point, TRP) in NR, 3GPP The subsequent evolution and so on.
  • the base station can be: a macro base station, a micro base station, a pico base station, a small station, a relay station, or a balloon station, etc.
  • Multiple base stations may support the aforementioned networks of the same technology, or may support the aforementioned networks of different technologies.
  • a base station may contain one or more co-sited or non-co-sited TRPs.
  • the network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (distributed unit, DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the terminal in FIG. 1, that is, terminal device 103 or terminal device 104, is a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on water (such as ships, etc.) ); can also be deployed in the air (for example, on aircraft, balloons and satellites, etc.).
  • the terminal may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, an industrial control (industrial control), vehicle terminal equipment, unmanned driving (self driving) terminal, assisted driving terminal, telemedicine (remote medical) terminal, smart grid (smart grid) terminal, transportation safety ( Terminals in transportation safety, terminals in smart city, terminals in smart home, etc.
  • the embodiments of the present application do not limit the application scenarios.
  • a terminal may sometimes also be referred to as terminal equipment, user equipment (UE), access terminal, vehicle-mounted terminal, industrial control terminal, UE unit, UE station, mobile station, mobile station, remote station, remote terminal, mobile device, UE terminal equipment, wireless communication equipment, machine terminal, UE proxy or UE device, etc.
  • Terminals can be fixed or mobile.
  • the terminal may be a wearable device.
  • Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • conditional PSCell addition/change (CPAC) process is introduced below in conjunction with FIG. 1 .
  • a terminal device 103 or a terminal device 104 may be dual-connected to a network device 101 and a network device 102, wherein one network device is an MN, and the other network device is an SN.
  • One or more serving cells in the MN belong to a master cell group (MCG).
  • MCG may include a primary cell (PCell).
  • SCell secondary cell
  • One or more serving cells in the SN belong to a secondary cell group (SCG).
  • SCG may include a primary secondary cell (PSCell).
  • the SCG may include one or more SCells in addition to the PSCell.
  • the terminal device 103 or the terminal device 104 can perform CPAC.
  • the terminal device 103 may perform conditional PSCell addition (conditional PSCell addition, CPA) through the following example 1, and perform conditional PSCell change (conditional PSCell change, CPC) through the following example 2.
  • conditional PSCell addition conditional PSCell addition, CPA
  • conditional PSCell change conditional PSCell change, CPC
  • Example 1 take terminal device 103 establishing an RRC connection with network device 101, and terminal device 103 needs to perform CPA to establish a connection with network device 102 as an example.
  • network device 101 After network device 101 establishes an RRC connection with terminal device 103, it can be configured for terminal device 103
  • One or more candidate PSCells, the one or more candidate PSCells include the PSCells configured by the network device 102 for the terminal device 103 and the PSCells configured by other network devices for the terminal device 103; the network device 101 sends the one or more candidate PSCells to the terminal device 103
  • the configuration information 1 of the candidate PSCell, the configuration information 1 of the candidate PSCell includes the configuration 1 of the candidate PSCell and adding conditions.
  • the terminal device 103 receives the configuration information 1 of the one or more candidate PSCells from the network device 101, and may detect the addition condition of the one or more candidate PSCells, and when at least one candidate PSCell meeting the addition condition is detected, the terminal device 103 selects one of the candidate PSCells (such as the candidate PSCell configured by the network device 102 for the terminal), and applies the configuration of the candidate PSCell. Subsequently, the terminal device 103 initiates random access with the candidate PSCell, and establishes a dual connection with the network device 101 and the network device 102 after the random access of the candidate PSCell succeeds.
  • the configuration information 1 of the candidate PSCell may also be called the CPA configuration information 1 of the candidate PSCell, and this embodiment of the present application does not limit the name of the configuration information.
  • the terminal device 103 may select a candidate PSCell according to a preset policy, and apply the configuration of the candidate PSCell. For example, when the terminal device 103 detects multiple candidate PSCells that meet the adding conditions, it can randomly select a candidate PSCell and apply the configuration of the candidate PSCell; or, it can select the signal quality among the multiple candidate PSCells that meet the adding conditions.
  • the best candidate PSCell and apply the configuration of the candidate PSCell; or, among the plurality of candidate PSCells that meet the addition condition and the number of beams (beams) is greater than or equal to the threshold value, select the candidate PSCell with the largest number of beams, and The configuration of the candidate PSCell is applied.
  • the foregoing is only an example for the terminal device 103 to select a candidate PSCell, and the terminal device 103 may also select a candidate PSCell in other ways, without limitation.
  • Example 2 taking terminal device 103 as an example of dual connection with network device 101 and network device 102, network device 101 is MN, network device 102 is SN, and terminal device 103 needs to perform CPC as an example, network device 101 can configure terminal device 103 with one or A plurality of candidate PSCells; the network device 101 sends the configuration information 2 of the one or more candidate PSCells to the terminal device 103, and the configuration information 2 of the candidate PSCells includes the configuration 2 of the candidate PSCells and a change condition.
  • the terminal device 103 receives the configuration information 2 of the one or more candidate PSCells from the network device 101, can detect the change condition of the one or more candidate PSCells, and when at least one candidate PSCell meeting the change condition is detected, the terminal device 103 Select one of the candidate PSCells, and apply the configuration of the candidate PSCell. Subsequently, the terminal device 103 initiates random access with the candidate PSCell, and establishes a dual connection with the network device 101 and the SeNB to which the candidate PSCell belongs after the random access to the candidate PSCell succeeds.
  • the configuration information 2 of the candidate PSCell may also be referred to as the CPC configuration information 2 of the candidate PSCell, which is not limited.
  • the terminal device 103 may select a candidate PSCell according to a preset strategy, and apply the configuration of the candidate PSCell. For example, when the terminal device 103 detects multiple candidate PSCells that meet the change condition, it can randomly select a candidate PSCell and apply the configuration of the candidate PSCell; or, it can select the signal quality from the multiple candidate PSCells that meet the change condition.
  • the best candidate PSCell and apply the configuration of the candidate PSCell; or, among the plurality of candidate PSCells that satisfy the change condition and the number of beams (beams) is greater than or equal to the threshold value, select the candidate PSCell with the largest number of beams, and The configuration of the candidate PSCell is applied.
  • the foregoing is only an example for the terminal device 103 to select a candidate PSCell, and the terminal device 103 may also select a candidate PSCell in other ways, without limitation.
  • the configuration information 2 of the candidate PSCell may be collectively referred to as the configuration information of the candidate PSCell
  • the configuration 1 of selecting the PSCell when the terminal performs CPA and the configuration 2 of selecting the PSCell when the terminal performs CPC may be collectively referred to as the configuration of the candidate PSCell.
  • the configuration information of the candidate PSCell includes configuration and addition/change conditions of the candidate PSCell.
  • the configuration of the candidate PSCell is used for the terminal to communicate with the candidate PSCell after adding the candidate PSCell.
  • Add the candidate PSCell When the terminal performs CPC, the configuration of the candidate PSCell is used for the terminal to communicate with the candidate PSCell after changing the source PSCell to the candidate PSCell.
  • the addition/change conditions of the candidate PSCell include the change conditions of the candidate PSCell.
  • the change conditions of the candidate PSCell are used for the terminal to determine Whether to change the source PSCell to this candidate PSCell.
  • the terminal device 103 When the terminal device 103 has received the configuration and addition/change conditions of one or more candidate PSCells, but has not detected a PSCell that meets the addition/change conditions, the terminal device 103 can also switch from the current MN to a target with better signal quality
  • the MN for example, the terminal device 103 can switch from the network device 101 to the network device 105 .
  • the current MN will release one or more candidate PSCells configured for the terminal device 103, and after the target MN establishes an RRC connection with the terminal device 103, it can reconfigure one or more PSCells for the terminal device 103.
  • Candidate PSCells and send configuration information of one or more candidate PSCells configured by the target MN for the terminal to the terminal device 103 for the terminal to perform CPAC, and the configuration information of one or more candidate PSCells configured by the target MN for the terminal includes the configuration information of the candidate PSCells Configure and add/change conditions.
  • the configuration of the candidate PSCell and the addition/change conditions generally include more information, for example, the configuration of the candidate PSCell includes: the identifier of the configuration of the candidate PSCell, and/or, the random access resources allocated by the candidate PSCell to the terminal, and/or Or, the cell radio network temporary identifier (CRNIT), and/or, the global cell identification code (cell global identification, CGI) of the candidate PSCell, and/or, the physical cell identifier (physical cell identifier) of the candidate PSCell , PCI), and/or, frequency information corresponding to the candidate PSCell.
  • CCNIT cell radio network temporary identifier
  • CGI global cell identification code
  • PCI physical cell identifier
  • the frequency information corresponding to the candidate PSCell may include one or more of the following: the absolute frequency of the synchronization signal block (such as absoluteFrequency SSB), the absolute frequency position of the reference resource module (common RB0) (such as absoluteFrequencyPointA), and the frequency bandwidth list (such as frequencyBandList) , subcarrier spacing (subcarrier spacing, SCS) specific carrier list (such as scs-SpecificCarrierList), etc.
  • the absolute frequency of the synchronization signal block such as absoluteFrequency SSB
  • the absolute frequency position of the reference resource module such as absoluteFrequencyPointA
  • the frequency bandwidth list such as frequencyBandList
  • subcarrier spacing subcarrier spacing, SCS
  • scs-SpecificCarrierList such as scs-SpecificCarrierList
  • the configuration of the candidate PSCell also includes resource information corresponding to the candidate PSCell, and the resource information corresponding to the candidate PSCell includes one or more of the following: bearer configuration parameters (radioBearerConfig), cell group configuration (cellGroupConfig) parameters, physical layer (physical layer, PHY layer ) configuration parameters, media access control (media access control, MAC) layer configuration parameters, radio link control (radio link control, RLC) layer configuration parameters, packet data convergence protocol (packet data convergence protocol, PDCP) layer configuration parameters , service data adaptation protocol (service data adaptation protocol, SDAP) layer configuration parameters or RRC layer configuration parameters.
  • bearer configuration parameters radioBearerConfig
  • cellGroupConfig cell group configuration
  • physical layer physical layer
  • media access control media access control
  • radio link control radio link control
  • RLC radio link control
  • packet data convergence protocol packet data convergence protocol
  • PDCP packet data convergence protocol
  • SDAP service data adaptation protocol
  • the addition/change conditions of the candidate PSCell are used by the terminal to determine whether to add the candidate PSCell, or for the terminal to determine whether to change the source PSCell to the candidate PSCell, for example, if the terminal detects that the candidate PSCell satisfies the candidate PSCell's addition/change condition , the terminal determines to add the candidate PSCell, or change the source PSCell to the candidate PSCell, if the terminal detects that the candidate PSCell does not meet the addition/change conditions of the candidate PSCell, the terminal determines not to add the candidate PSCell, or not to change the source PSCell is the candidate PSCell.
  • the addition/change condition of the candidate PSCell includes an execution event type of the addition/change condition of the candidate PSCell, and the execution event type may also be called a measurement event or a reporting event.
  • the terminal may measure the signal quality of the candidate PSCell, or measure the signal quality of the candidate PSCell and the signal quality of the neighboring cell of the candidate PSCell, and determine whether to add the candidate PSCell according to the measurement result and the execution event type, or determine whether to add the source The PSCell is changed to the candidate PSCell.
  • the execution event type includes one or more events, for example, the execution event type may include one or more of the following events: event A3, event A4, event A5, event B1, or event B2.
  • event A3 indicates that the signal quality of the neighboring cell is greater than or equal to a certain offset (offset) than the signal quality of the special cell (SpCell).
  • Event A4 indicates that the signal quality of the neighboring cell is greater than or equal to a certain threshold.
  • Event A5 indicates that the SpCell signal quality is less than or equal to threshold 1 (threshold 1), and the signal quality of neighboring cells is greater than or equal to threshold 2 (threshold 2).
  • Event B1 indicates that the signal quality of the neighboring cell across radio access technology (inter radio access technology, inter RAT) is greater than or equal to a certain threshold.
  • Event B2 indicates that the PCell signal quality is less than or equal to threshold 3 (threshold 3), and the signal quality of the neighboring cell of the inter RAT is greater than or equal to threshold 4 (threshold 4).
  • the above-mentioned events are only examples of events in the execution event type, and the execution event type may also include other events without limitation.
  • the execution event type also includes a threshold value corresponding to an event in the execution event type.
  • the execution event type also includes the time length (time To Trigger) to satisfy the event in the execution event type, and/or, the hysteresis value (hysteresis) when entering/leaving the event in the execution event type, etc.
  • events in the execution event type may correspond to one or more threshold values, for example, event A5 corresponds to two threshold values.
  • event A3 may correspond to A3 reference signal received power (RSRP) and A3 reference signal received quality (reference signal received quality, RSRQ).
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • the network device will provide the terminal device with CPAC configuration, and accordingly, the terminal device changes the PSCell based on the CPAC configuration provided by the network device.
  • the network device may determine whether the terminal device needs CPAC according to service conditions (for example, transmission delay, data volume of data to be transmitted, etc.) and channel measurement conditions (for example, channel status).
  • the above CPAC configuration may include a candidate cell configuration list, an execution condition, and a cell configuration.
  • the above candidate cell list can be understood as a candidate cell configuration list for CPA or CPC.
  • the cell information of one or more candidate cells may be included in the candidate cell list.
  • the cell information of each candidate cell may include a configuration information identifier. It should be noted that the ID of the configuration information may be determined based on the number of candidate cells configured by the network device for the terminal device. For example, if the network device provides configuration information of five candidate cells to the terminal device, then the configuration information IDs of the above cells may be used to identify the configuration information of the five candidate cells.
  • the above execution condition may be an execution condition for instructing the terminal device to execute CPA or CPC.
  • the above cell configuration may be provided by the candidate SN to the SCG configuration of the MN.
  • the above SCG configuration may be sent by the SN to the MN through the Xn interface, and correspondingly, transparently transmitted by the MN to the terminal device.
  • the above SCG configuration may include candidate SCG configuration, where the candidate SCG configuration may include cell ID, radio bearer configuration, logical channel configuration, RLC configuration, MAC configuration, physical layer configuration, and SCell configuration.
  • one SCG may include one or more SCells, and correspondingly, the foregoing SCG configuration may include one or more SCell configurations, which is not limited in this embodiment of the present application.
  • the SCG In order to help terminal equipment save power consumption, two different states are set for the SCG: a deactivated state and an activated state.
  • the power consumption of the terminal device after accessing the SCG whose SCG state is deactivated is smaller than the power consumption of the terminal device after accessing the SCG whose SCG state is active state.
  • the terminal behavior of the terminal device after accessing the SCG may include: stop monitoring the physical downlink control channel (physical downlink control channel, PDCCH) sent by the PSCell ); perform MN and/or SN configuration measurement; all SCells in the SCG are in a deactivated state; do not perform channel sounding reference signal (sounding reference signal, SRS) transmission; do not perform physical uplink shared channel (physical uplink) on PSCell share channel, PUSCH) transmission; perform radio link monitoring (radio link monitoring, RLM) and beam failure detection (BFD) on the PSCell.
  • PDCCH physical downlink control channel
  • MN and/or SN configuration measurement all SCells in the SCG are in a deactivated state; do not perform channel sounding reference signal (sounding reference signal, SRS) transmission; do not perform physical uplink shared channel (physical uplink) on PSCell share channel, PUSCH) transmission; perform radio link monitoring (radio link monitoring, RLM) and beam failure detection (BFD) on the PSCell.
  • the SCG state of the SCG can be indicated by the network device to the terminal device through radio resource control (radio resource control, RRC) signaling.
  • the network device may indicate the SCG of the SCG by including an "scg-state" field indication in an information element (information elements, IE) of an RRC reconfiguration (RRC reconfiguration) request or an RRC resume (RRC resume) request state.
  • IE information elements
  • RRC reconfiguration RRC reconfiguration
  • RRC resume RRC resume
  • the CPAC configuration, SCG configuration, PScell configuration and the behavior of the terminal device when the SCG state is deactivated described above are only introduced as an example.
  • the content contained in the above configurations can be the existing communication protocol defined in , and may also be updated in future communication protocols.
  • the behavior of the terminal device may also be defined by an existing protocol or defined in a future communication protocol, which is not limited in this embodiment of the present application.
  • the terminal device After executing CPAC based on the CPAC configuration provided by the network device, the terminal device will release the corresponding CPAC configuration.
  • the network device needs to provide the CPAC configuration for the terminal device again. In this way, the overhead required for the network device to transmit the CPAC configuration will be increased. However, it is actually unnecessary for the network device to re-provide the CPAC configuration for the terminal device during each CPAC round of the terminal device. Because in some cases, the CPAC configuration used by the terminal device for CPA or CPC may be the same, for example, when the terminal device moves within a small range, the CPAC configuration used by the terminal device for each round of CPAC is the same.
  • the embodiment of the present application provides a continuous CPAC process, that is, a terminal device can perform multiple rounds of CPAC based on one CPAC configuration. In this way, the network device does not need to re-provide the CPAC configuration for the terminal device during each round of CPAC, which helps to reduce the overhead occupied by configuring CPAC.
  • the terminal device may perform multiple rounds of CPAC based on the same CPAC within a period of time.
  • the period of time can be predefined or preconfigured.
  • the terminal device may perform multiple rounds of CPAC configuration based on the same CPAC configuration.
  • the first condition may be, for example, that the movement range of the terminal device is smaller than a threshold.
  • the embodiment of the present application does not specifically limit the content of the first condition.
  • the foregoing first condition may be configured by the network, and the foregoing first condition may also be predefined.
  • the traditional CPAC configuration usually includes the SCG status of one target SCG.
  • the terminal device may switch to multiple target SCGs after multiple rounds of CPAC process. At this time, the terminal device cannot know the multiple target SCGs.
  • the SCG status of each target SCG in the SCG leads to inconsistencies in the understanding of the terminal device, the primary node, and the secondary node, so that normal communication between the terminal device, the primary node, and the secondary node cannot be performed.
  • the CPAC configuration provided by the network device for the terminal device does not include the SCG state of target SCG1, so the terminal device cannot know the SCG state of the target SCG1.
  • SCG1 is in the deactivated state.
  • the secondary node misjudges that the terminal device is in the activated state according to the SCG state of the target SCG1, and sends data to the terminal device through the target SCG1, the terminal device cannot normally receive the data. data, resulting in the failure of data transmission between the terminal device and the secondary node.
  • the present application provides a communication method.
  • a terminal device performs multiple rounds of CPAC based on a CPAC configuration (also known as “the first CPAC configuration") and changes multiple SCGs
  • the SCG state may be indicated by the master node MN or SN, and/or the SCG states of at least some of the SCGs in the plurality of SCGs are predefined.
  • the following describes the SCG states of multiple SCGs in the embodiment of the present application with reference to FIG. 2 .
  • the terminal device communicates with the SN based on the SCG status of the first SCG, which belongs to the above-mentioned multiple SCGs.
  • this SCG can be regarded as the target SCG in the current CPAC process of the terminal device.
  • SCGs can be considered as candidate SCGs.
  • this application mainly introduces from the perspective of multiple SCGs that the terminal device changes to, and does not distinguish between the target SCG and the candidate SCG in each round of CPAC.
  • the SCG states of multiple SCGs there are two ways to determine the SCG states of multiple SCGs in the embodiment of the present application.
  • the first determination mode at least part of the SCG states among the multiple SCGs are indicated by the MN or SN.
  • the second determination manner at least part of the SCG states among the multiple SCGs are predefined. The following two methods are introduced.
  • the MN and the SN may send a first message to the terminal device for the terminal device to determine the SCG states of multiple SCGs.
  • the first message is used to determine the SCG states of multiple SCGs.
  • the first message may include SCG state information of multiple SCGs.
  • the foregoing first message may include a mapping relationship between an identifier of each SCG in the multiple SCGs and SCG state information of each SCG in the multiple SCGs.
  • the foregoing first message may further include an SCG status list, and the SCG status list includes the status of each SCG among the multiple SCGs.
  • Table 1 shows a possible form of the SCG status list.
  • the SCG state of the SCG identified as ID1 is the deactivated state
  • the SCG state of the SCG identified as ID2 is the activated state.
  • the terminal device may determine the SCG status of the SCG currently changed (or to be changed) based on the SCG states of the multiple SCGs contained in the first message. That is, the above method further includes: the terminal device determines the SCG state of the first SCG based on the first message, and the first message carries the SCG state of the first SCG.
  • the first message may only indicate the SCG status of the second SCG among the multiple SCGs.
  • the terminal device determines the SCG states of other SCGs in the plurality of SCGs based on the SCG state of the second SCG.
  • the SCG state of other SCGs may be the same as the SCG state of the second SCG, for example, when the SCG state of the second SCG is deactivated, the SCG states of other SCGs may be deactivated.
  • the SCG states of other SCGs may be opposite to the SCG states of the second SCG. For example, when the SCG of the second SCG is in an activated state, the SCG states of other SCGs may be in a deactivated state.
  • the network device After the network device provides the new CPAC configuration for the terminal device, it will indicate the SCG status of the target SCG to the terminal device through RRC signaling. Therefore, in order to be compatible with the provisions of the existing protocol, or To reduce modification to the existing protocol, the second SCG may be indicated by the network device to the terminal device through RRC signaling in the existing protocol.
  • the above-mentioned second SCG can also be the SCG to which the PSCell belongs to which the terminal device performs the CPAC process change for the first time during multiple CPAC processes, or in other words, multiple CPAC processes During the process, the SCG to which the PSCell to which the terminal device first executes the CPAC process change belongs belongs.
  • the above-mentioned multiple CPAC processes include CPAC process 1, CPAC process 2, and CPAC process 3, wherein CPAC process 1 is the CPAC process performed by the terminal device for the first time in multiple rounds of CPAC processes, and correspondingly, CPAC process 2 is performed on the terminal device
  • CPAC process is performed after the CPAC process 1 is performed
  • the CPAC process 3 is the CPAC process performed by the terminal device after the CPAC process 2 is performed.
  • the above-mentioned second SCG may be the SCG to which the PSCell changed by the terminal device in CPAC process 1 belongs.
  • the first message may only indicate the SCG state of the source SCG to which the source PSCell belongs among the multiple SCGs.
  • the terminal device needs to change from the source SCG to which the source PSCell belongs to the target SCG to which the target PSCell belongs each time the CPAC process is performed, wherein the SCG state of the target SCG is determined according to the SCG state of the source SCG.
  • the terminal device determines the SCG statuses of other SCGs in the plurality of SCGs based on the SCG status of the source SCG.
  • the SCG state of other SCGs may be the same as the SCG state of the source SCG, for example, when the SCG state of the source SCG is in the deactivated state, the SCG states of other SCGs may be in the deactivated state.
  • the SCG states of other SCGs may be opposite to the SCG states of the source SCG. For example, when the SCG of the source SCG is in an activated state, the SCG states of other SCGs may be in a deactivated state.
  • the network device After the network device provides the new CPAC configuration for the terminal device, it will indicate the SCG status of the target SCG to the terminal device through RRC signaling. Therefore, in order to be compatible with the provisions of the existing protocol, or In order to reduce modification to the existing protocol, the source SCG may be indicated by the network device to the terminal device through RRC signaling in the existing protocol.
  • the above-mentioned source SCG can also be the source SCG when the terminal device executes the CPAC process for the first time in multiple CPAC processes, or in other words, the terminal device in multiple CPAC processes The device first executes the source SCG in the CPAC process.
  • the above-mentioned multiple CPAC processes include CPAC process 1, CPAC process 2, and CPAC process 3, wherein CPAC process 1 is the CPAC process performed by the terminal device for the first time in multiple rounds of CPAC processes, and correspondingly, CPAC process 2 is performed on the terminal device
  • CPAC process is performed after the CPAC process 1 is performed
  • the CPAC process 3 is the CPAC process performed by the terminal device after the CPAC process 2 is performed.
  • the above-mentioned source SCG may be the SCG accessed by the terminal device in CPAC process 1 before the change.
  • the method for determining the SCG states of multiple SCGs by the terminal device based on the first message in the determination method 1 is introduced above in combination with the methods 1 to 3, and the sending method of the first message is introduced below.
  • the first message may be sent by the MN or the SN, therefore, the following two transmission methods are introduced respectively.
  • the MN sends the first message to the terminal device.
  • the MN may carry the first message in an SCG configuration (also called "second SCG configuration").
  • SCG configuration can include SCG1 configuration information 1 and execution condition 1, SCG2 configuration information 2 and execution condition 2.
  • SCG status of SCG1 (that is, the part in the first message above) can be added to SCG1 configuration information 1. information)
  • SCG status of SCG1 (that is, part of the information in the first message above) can be added to the configuration information 1 of SCG1.
  • the MN may carry the first message in separate configuration information and send it to the terminal device.
  • the SN In the second transmission mode, the SN sends the first message to the terminal device through the MN.
  • the MN may not process the first message, and directly transparently transmit the first message to the terminal device.
  • the first message may be carried in an SCG configuration (also called "first SCG configuration").
  • SCG configuration can include SCG1 configuration information 1 and execution condition 1, SCG2 configuration information 2 and execution condition 2.
  • SCG status of SCG1 (that is, the part in the first message above) can be added to SCG1 configuration information 1.
  • information the SCG status of SCG1 (that is, part of the information in the first message above) can be added to the configuration information 1 of SCG1.
  • the SN may carry the first message in separate configuration information and send it to the terminal device through the MN.
  • At least part of the SCG states among the multiple SCGs are predefined.
  • the second determining manner above may include that the SCG states of some or all of the SCGs in the multiple SCGs may be predefined.
  • the first message may only indicate the SCG state of the third SCG in the multiple SCGs, and the other SCG states in the multiple SCGs may be predefined.
  • other SCG states in multiple SCGs may be default.
  • the terminal device determines the SCG state of the third SCG based on the SCG state of the third SCG, and the SCG states of other SCGs may be determined based on predefined SCG states.
  • the SCG status of other SCGs may be predefined as deactivated.
  • the SCG state of other SCGs may be predefined as an active state.
  • the terminal device needs to change from the source SCG to which the source PSCell belongs to the target SCG to which the target PSCell belongs each time the terminal device executes the CPAC process in multiple CPAC processes, wherein the SCG state of the source SCG can be predefined, corresponding Typically, the SCG status of the target SCG is determined based on the SCG status of the source SCG. This approach can also be understood as "the terminal independently determines the SCG state of the SCG".
  • the terminal device determines the SCG statuses of other SCGs in the plurality of SCGs based on the SCG status of the source SCG.
  • the SCG state of other SCGs may be the same as the SCG state of the source SCG, for example, when the SCG state of the source SCG is in the deactivated state, the SCG states of other SCGs may be in the deactivated state.
  • the SCG states of other SCGs may be opposite to the SCG states of the source SCG. For example, when the SCG of the source SCG is in an activated state, the SCG states of other SCGs may be in a deactivated state.
  • the terminal device may enter a deactivated state after sending a first random access channel (random access channel, RACH) to the SN. That is, after the terminal device sends the first random access channel RACH to the SN through the first SCG, the terminal device communicates with the SN based on the deactivated state.
  • RACH random access channel
  • the terminal device may enter the deactivation state after sending the second RACH to the SN and after the contention conflict is successfully resolved. That is, if the terminal device sends the second RACH to the SN through the first SCG, and the contention conflict is successfully resolved, the terminal device communicates with the SN based on the deactivated state.
  • the terminal device may enter the deactivation state after sending the second RACH to the SN, successfully resolving contention conflicts and not receiving indication information indicating the SCG status of the first SCG within a preset time period. That is, if the terminal device sends the second RACH to the SN through the first SCG, the contention conflict is successfully resolved, and the second message is not received within the preset time period, the terminal device communicates with the SN based on the deactivated state, and the second message is used to indicate SCG status of the first SCG.
  • the communication method in the embodiment of the present application is introduced below with reference to FIG. 3 to FIG. 5 .
  • the communication method shown in FIG. 3 is introduced by taking method 1 in combination with transmission method 2 in the above-mentioned determination method 1 as an example.
  • the communication method shown in FIG. 4 is introduced by taking the above-mentioned determination method combined with the transmission method as an example.
  • the communication method shown in FIG. 5 is introduced by taking the above-mentioned determination method—combined with transmission method—as an example.
  • FIG. 3 is a flow chart of a communication method according to an embodiment of the present application. The method shown in FIG. 3 includes steps S310 to S330.
  • step S310 the MN sends a first RRC message to the terminal equipment.
  • the above-mentioned first RRC message includes configuration information of multiple SCGs and corresponding execution conditions, wherein each SCG configuration includes the SCG state of the corresponding SCG.
  • step S320 the terminal device evaluates a plurality of SCGs based on the execution condition.
  • the terminal device executes CPC handover to PSCell1 in SCG1.
  • step S330 the terminal device determines the SCG state of SCG1 according to the configuration information of SCG1.
  • Fig. 4 is a flowchart of a communication method according to another embodiment of the present application.
  • the method shown in FIG. 4 includes steps S410 to S430.
  • step S410 the MN sends a first RRC message to the terminal equipment.
  • the first RRC message includes SCG configuration information of multiple SCGs and corresponding execution conditions.
  • the first RRC message also includes a first message, and the first message is used to determine SCG states of multiple SCGs.
  • the SCG states of multiple SCGs can be determined based on the first message by referring to the introduction of the first to the third ways in the first determination way.
  • step S420 the terminal device evaluates a plurality of SCGs based on the execution condition.
  • the terminal device executes CPC handover to PSCell2 in SCG2.
  • step S430 the terminal device determines the SCG state of SCG2 according to the configuration information of SCG2.
  • Fig. 5 is a flowchart of a communication method according to another embodiment of the present application.
  • the method shown in FIG. 5 includes steps S510 to S430.
  • step S510 the MN sends a first RRC message to the terminal equipment.
  • the first RRC message includes SCG configuration information of multiple SCGs and corresponding execution conditions.
  • the first RRC message also includes SCG status of SCG1.
  • step S520 the terminal device evaluates the multiple SCGs based on the execution conditions of the multiple SCGs contained in the CPAC configuration 1 .
  • the terminal device executes the CPC switching to SCG1, and executes step S530.
  • step S530 the terminal device determines the SCG state of SCG1 based on the SCG state of SCG1 contained in the first RRC message.
  • step S540 the terminal device evaluates the multiple SCGs based on the execution conditions of the multiple SCGs contained in the CPAC configuration 1 .
  • the terminal device executes CPC switching to SCG3, and executes step S550.
  • step S550 the terminal device determines the SCG status of SCG3 based on the SCG status of SCG1.
  • the SCG state of SCG1 is an activated state
  • the SCG state of SCG3 is an activated state
  • the SCG state of SCG1 is a deactivated state
  • the SCG state of SCG3 is a deactivated state.
  • FIG. 6 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 600 shown in FIG. 6 includes: a communication unit 610 .
  • the communication unit 610 is configured to communicate with the secondary node SN based on the SCG state of the first secondary cell group SCG, the first SCG belongs to multiple SCGs, and the multiple SCGs are primary secondary cells added by the terminal device based on the first condition /Change the CPAC configuration to the SCGs to which multiple primary and secondary cells PSCells that perform multiple CPAC process changes belong; wherein, at least part of the SCG states in the multiple SCGs are indicated by the master node MN or the SN, and/or the The SCG states of at least some of the SCGs in the plurality of SCGs are predefined.
  • the SCG states of the plurality of SCGs are indicated by the master node MN or the SN
  • the terminal device further includes: a receiving unit, configured to receive the MN or the SN A first message sent, where the first message is used to determine the SCG states of the multiple SCGs.
  • the first message includes SCG status information of the multiple SCGs.
  • the first message includes a mapping relationship between an identifier of each SCG in the multiple SCGs and SCG state information of each SCG in the multiple SCGs.
  • the first message carries SCG status information of a second SCG among the multiple SCGs, and the multiple SCGs also include SCGs other than the second SCG, so The SCG status of the other SCG is determined based on the SCG status of the second SCG.
  • the SCG state of the other SCG is the same as the SCG state of the second SCG.
  • the second SCG is the SCG to which the PSCell belongs to which the terminal device performs the CPAC process change for the first time in the multiple CPAC processes.
  • the first CPAC configuration includes the SCG status of the third SCG
  • the third SCG is the first time that the terminal device executes a CPAC process change in the multiple CPAC processes
  • the SCGs to which the PSCell belongs, the SCG states of other SCGs in the multiple SCGs except the third SCG are predefined.
  • the receiving unit is further configured to: receive first SCG configuration information sent by the MN, the first SCG configuration information includes the first message, and the first SCG The configuration information is sent by the SN to the MN.
  • the receiving unit is further configured to: receive second SCG configuration information sent by the MN, where the second SCG configuration information includes the first message.
  • the terminal device when the terminal device performs a CPAC process each time during the multiple CPAC processes and changes from the source SCG to which the source PSCell belongs to the target SCG to which the target PSCell belongs, the SCG state of the target SCG It is determined according to the SCG status of the source SCG.
  • the SCG state of the target SCG is the same as the SCG state of the source SCG.
  • the SCG state of the first SCG is a deactivated state
  • the communication unit is further configured to send a first random After accessing the channel RACH, communicate with the SN based on the deactivated state.
  • the SCG state of the first SCG is a deactivated state
  • the communication unit is further configured to: if the terminal device sends a second SCG to the SN through the first SCG RACH, and the contention conflict is successfully resolved, communicating with the SN based on the deactivated state.
  • the communication unit is further configured to: if the terminal device sends a second RACH to the SN through the first SCG, the contention conflict is successfully resolved, and within a preset time period Not receiving a second message, communicating with the SN based on the deactivation state, where the second message is used to indicate the SCG state of the first SCG.
  • Fig. 7 is a schematic diagram of the SN of the embodiment of the present application.
  • the SN700 shown in FIG. 7 includes: a communication unit 710 .
  • the communication unit 710 is configured to communicate with the terminal device based on the SCG state of the first secondary cell group SCG, where the first SCG belongs to multiple SCGs, and the multiple SCGs are primary secondary cells for the terminal device based on the first condition.
  • the SCG states of the multiple SCGs are indicated by the SN
  • the secondary node further includes: a sending unit, configured to send a first message to the terminal device, the The first message is used to determine the SCG status of the plurality of SCGs.
  • the first message includes SCG status information of the multiple SCGs.
  • the first message includes a mapping relationship between an identifier of each SCG in the multiple SCGs and SCG state information of each SCG in the multiple SCGs.
  • the first message carries SCG status information of a second SCG among the multiple SCGs, and the multiple SCGs also include SCGs other than the second SCG, so The SCG status of the other SCG is determined based on the SCG status of the second SCG.
  • the SCG state of the other SCG is the same as the SCG state of the second SCG.
  • the second SCG is the SCG to which the PSCell belongs to which the terminal device performs the CPAC process change for the first time in the multiple CPAC processes.
  • the first CPAC configuration includes the SCG status of the third SCG
  • the third SCG is the first time that the terminal device executes a CPAC process change in the multiple CPAC processes
  • the SCGs to which the PSCell belongs, the SCG states of other SCGs in the multiple SCGs except the third SCG are predefined.
  • the sending unit is configured to send first SCG configuration information to the terminal device through the MN, where the first SCG configuration information includes the first message.
  • the terminal device when the terminal device performs a CPAC process each time during the multiple CPAC processes and changes from the source SCG to which the source PSCell belongs to the target SCG to which the target PSCell belongs, the SCG state of the target SCG is Determined according to the SCG status of the source SCG.
  • the SCG state of the target SCG is the same as the SCG state of the source SCG.
  • the SCG state of the first SCG is a deactivated state
  • the communication unit is configured to: when the SN receives the first SCG sent by the terminal device through the first SCG, After a random access channel RACH, communicate with the terminal device based on the deactivated state.
  • the SCG state of the first SCG is deactivated, and the communication unit is configured to: if the SN receives the second SCG sent by the terminal device through the first SCG RACH, and the contention conflict of the terminal device is successfully resolved, and communicate with the terminal device based on the deactivation state.
  • Fig. 8 is a schematic diagram of an MN in an embodiment of the present application.
  • the MN 800 shown in FIG. 8 includes a sending unit 810 .
  • a sending unit 810 configured to send a first message to a terminal device, where the first message is used to determine SCG states of at least some SCGs in multiple secondary cell groups SCGs, where the multiple SCGs are for the terminal device based on a first condition Add/change CPAC configuration of primary and secondary cells The SCG to which multiple primary and secondary cells PSCells that perform multiple CPAC process changes belong.
  • the first message includes SCG status information of the multiple SCGs.
  • the first message includes a mapping relationship between an identifier of each SCG in the multiple SCGs and SCG state information of each SCG in the multiple SCGs.
  • the first message carries SCG status information of a second SCG among the multiple SCGs, and the multiple SCGs also include SCGs other than the second SCG, so The SCG status of the other SCG is determined based on the SCG status of the second SCG.
  • the SCG state of the other SCG is the same as the SCG state of the second SCG.
  • the second SCG is the SCG to which the PSCell belongs to which the terminal device performs the CPAC process change for the first time in the multiple CPAC processes.
  • the first CPAC configuration includes the SCG status of the third SCG
  • the third SCG is the first time that the terminal device executes a CPAC process change in the multiple CPAC processes
  • the SCGs to which the PSCell belongs, the SCG states of other SCGs in the multiple SCGs except the third SCG are predefined.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dotted line in Figure 9 indicates that the unit or module is optional.
  • the apparatus 900 may be used to implement the methods described in the foregoing method embodiments.
  • Apparatus 900 may be a chip, a terminal device or a network device.
  • Apparatus 900 may include one or more processors 910 .
  • the processor 910 can support the device 900 to implement the methods described in the foregoing method embodiments.
  • the processor 910 may be a general purpose processor or a special purpose processor.
  • the processor may be a central processing unit (central processing unit, CPU).
  • the processor can also be other general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (application specific integrated circuits, ASICs), off-the-shelf programmable gate arrays (field programmable gate arrays, FPGAs) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • Apparatus 900 may also include one or more memories 920 .
  • a program is stored in the memory 920, and the program can be executed by the processor 910, so that the processor 910 executes the methods described in the foregoing method embodiments.
  • the memory 920 may be independent from the processor 910 or may be integrated in the processor 910 .
  • Apparatus 900 may also include a transceiver 930 .
  • the processor 910 can communicate with other devices or chips through the transceiver 930 .
  • the processor 910 may send and receive data with other devices or chips through the transceiver 930 .
  • the embodiment of the present application also provides a computer-readable storage medium for storing programs.
  • the computer-readable storage medium can be applied to the terminal or the network device provided in the embodiments of the present application, and the program enables the computer to execute the methods performed by the terminal or the network device in the various embodiments of the present application.
  • the embodiment of the present application also provides a computer program product.
  • the computer program product includes programs.
  • the computer program product can be applied to the terminal or the network device provided in the embodiments of the present application, and the program enables the computer to execute the methods performed by the terminal or the network device in the various embodiments of the present application.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or the network device provided in the embodiments of the present application, and the computer program enables the computer to execute the methods performed by the terminal or the network device in the various embodiments of the present application.
  • the "indication" mentioned may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean determining B only according to A, and B may also be determined according to A and/or other information.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configures and is configured, etc. relation.
  • predefined or “preconfigured” can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • the application does not limit its specific implementation.
  • pre-defined may refer to defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, for example, may include the LTE protocol, the NR protocol, and related protocols applied to future communication systems, which is not limited in the present application.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, rather than the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be read by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (digital video disc, DVD)) or a semiconductor medium (for example, a solid state disk (solid state disk, SSD) )wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种通信方法、终端设备及网络设备。该方法包括终端设备基于第一辅小区组SCG的SCG状态与辅节点SN通信,第一SCG属于多个SCG,多个SCG为终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG;其中,多个SCG中至少部分的SCG状态是由主节点MN或SN指示的,和/或多个SCG中至少部分SCG的SCG状态是预定义的,如此以来,终端设备可以确定多个SGC的SGC状态,有利于提高终端设备与主节点、辅节点之间正常通信的可能性。

Description

通信方法、终端设备及网络设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及通信方法、终端设备及网络设备。
背景技术
目前,为了降低配置条件主辅小区添加/变更(conditional PSCell addition/change,CPAC)占用的开销,终端设备可以基于一个CPAC配置进行多轮CPAC,又称“连续CPAC过程”。这样,网络设备无需在每轮CPAC的过程中为终端设备重新提供CPAC配置。然而,传统的CPAC配置中仅会包含一个SCG的SCG状态,在连续CPAC过程中,终端设备经过多轮CPAC过程需要变更到多个SCG,此时,终端设备无法获知多个SCG中每个SCG的SCG状态,导致终端设备、主节点、辅节点的理解不一致,从而终端设备与主节点、辅节点之间无法正常通信。
发明内容
本申请提供一种通信方法、终端设备及网络设备,以提高终端设备与网络设备(例如,主节点或辅节点)之间通信的成功率。
第一方面,提供了一种通信方法,包括:终端设备基于第一辅小区组SCG的SCG状态与辅节点SN通信,所述第一SCG属于多个SCG,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG;其中,所述多个SCG中至少部分的SCG状态是由主节点MN或所述SN指示的,和/或所述多个SCG中至少部分SCG的SCG状态是预定义的。
第二方面,提供一种通信方法,其特征在于,包括:辅节点SN基于第一辅小区组SCG的SCG状态与终端设备通信,所述第一SCG属于多个SCG,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG;其中,所述多个SCG中至少部分SCG的SCG状态是由主节点MN或所述SN指示的,和/或所述多个SCG中至少部分SCG的SCG状态是预定义的。
第三方面,提供一种通信方法,包括:主节点MN向终端设备发送第一消息,所述第一消息用于确定多个辅小区组SCG中至少部分SCG的SCG状态,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG。
第四方面,提供一种终端设备,包括处理器、存储器以及通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述终端设备执行第一方面的方法中的部分或全部步骤。
第五方面,提供一种辅节点,包括处理器、存储器、通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述网络设备执行第二方面的方法中的部分或全部步骤。
第六方面,提供一种主节点,包括处理器、存储器、通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序使得所述网络设备执行第二方面的方法中的部分或全部步骤。
第七方面,本申请实施例提供了一种通信系统,该系统包括上述的终端和/或网络设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与该终端设备或网络设备进行交互的其他设备。
第八方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质 存储有计算机程序,所述计算机程序使得终端执行上述各方面的方法中的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使终端执行上述各方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述各方面的方法中所描述的部分或全部步骤。
在本申请实施例中,当终端设备基于第一CPAC配置进行多轮CPAC过程(又称连续CPAC切换)切换到多个SCG时,终端设备可以基于SN、MN的指示或者预定义的SCG的SCG状态,来确定多个SCG的SCG状态,有利于提高终端设备与主节点、辅节点之间正常通信的可能性。避免传统的通信技术中,终端设备在连续CPAC切换时无法获知连续CPAC切换需要变更到的多个SCG的SCG状态,导致终端设备、主节点、辅节点的理解不一致,从而终端设备与主节点、辅节点之间无法正常通信。
附图说明
图1是本申请实施例应用的无线通信系统100。
图2是本申请实施例的通信方法的示意性流程图。
图3是本申请另一实施例的通信方法的示意性流程图。
图4是本申请另一实施例的通信方法的示意性流程图。
图5是本申请另一实施例的通信方法的示意性流程图。
图6是本申请实施例的终端设备的示意图。
图7是本申请实施例的SN的示意图。
图8是本申请实施例的MN的示意图。
图9是本申请实施例的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提供的方法可用于各种双连接多制式双连接(multiple RAT dual connectivity,MR-DC)架构。例如,第四代(4th generation,4G)通信系统与第五代(5th generation,5G)通信系统的双连接、5G通信系统与4G通信系统的双连接,或者5G通信系统与5G通信系统的双连接等等。
上述4G通信系统与5G通信系统的双连接可以包括:演进通用陆地无线接入(evolved universal terrestrial radio access,E-UTRA)系统和新无线(new radio,NR)系统的双连接(E-UTRA-NR dual connectivity,EN-DC),和5G核心网下的E-UTRA系统和NR系统的双连接(NG-RAN E-UTRA-NR dual connectivity,NGEN-DC)等。其中,EN-DC也可以称为选项3系列(option 3 series)。EN-DC是以长期演进(long term evolution,LTE)基站,
例如eNB,作为主节点(master node,MN)或主基站,以NR基站,例如gNB,作为辅节点(secondary node,SN)或辅基站的DC,并且MN和SN分别可以与演进分组核心(evolved packet core,EPC)网有数据面连接,即4G核心网,为终端与EPC之间的数据提供空口传输资源。NGEN-DC也可以称为选项7系列(option 7 series)。NG EN-DC是以LTE基站,例如ng-eNB,作为MN,以NR基站,例如gNB,作为SN的DC,与EN-DC不同的是,NG EN-DC中,MN和SN都连接5G核心网(5G core network,5GC),为终端与5GC之间的数据提供空口传输资源。
5G通信系统与4G通信系统的双连接可以包括NR系统和E-UTRA系统的双连接(NRE-UTRA dual connectivity,NE-DC)等。NE-DC也可以称为选项4系列(option 4 series)。NE-DC是以NR基站,例如gNB,作为MN,以LTE基站,例如ng-eNB,作为SN,并且 MN和SN分别可以与5GC有数据面连接,为终端与5GC之间的数据提供空口传输资源。
5G通信系统与5G通信系统的双连接可以包括NR系统与NR系统的DC。NR系统与NR系统的DC中,MN和SN都为NR的基站。
下面仅以图1所示通信系统10为例,对本申请实施例提供的方法进行描述。
如图1所示,为本申请实施例提供的通信系统10的架构示意图。图1中,通信系统10可以包括网络设备101、网络设备102、网络设备105、终端设备103和终端设备104。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
图1中的网络设备即网络设备101、网络设备102或网络设备105可以是任意一种具有无线收发功能的设备。包括但不限于:LTE中的演进型基站(evolutional Node B,NodeB或eNB或e-NodeB),NR中的基站(gNodeB或gNB)或收发点(transmission receiving point/transmission reception point,TRP),3GPP后续演进的等。基站可以是:宏基站,微基站,微微基站,小站,中继站,或,气球站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的TRP。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或,分布单元(distributed unit,DU)。
图1中的终端即终端设备103或终端设备104是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的终端、车载终端设备、无人驾驶(self driving)中的终端、辅助驾驶中的终端、远程医疗(remote medical)中的终端、智能电网(smart grid)中的终端、运输安全(transportation safety)中的终端、智慧城市(smart city)中的终端、智慧家庭(smart home)中的终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为终端设备、用户设备(user equipment,UE)、接入终端、车载终端、工业控制终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端设备、无线通信设备、机器终端、UE代理或UE装置等。终端可以是固定的,也可以是移动的。
作为示例而非限定,在本申请实施例中,终端可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
为了便于理解,下文结合图1介绍条件主辅小区添加/变更(conditional PSCell addition/change,CPAC)过程。
图1中,终端设备103或终端设备104可以与网络设备101和网络设备102双连接,其中,一个网络设备为MN,另一个网络设备为SN。MN中的一个或多个服务小区属于主小区组(master cell group,MCG)。通常,MCG可以包括主小区(primary cell,PCell)。在一些实现方式中,MCG除了包含PCell,还可以包括一个或多个辅小区(secondary cell,SCell)。SN中的一个或多个服务小区属于辅小区组(secondary cell group,SCG)。通常,SCG中可以包括主辅小区(primary secondary cell,PSCell)。在一些实现方式中,SCG除了包括PSCell还可以包括一个或多个SCell。
在图1所示的通信系统10中,终端设备103或终端设备104可以进行CPAC。例如, 终端设备103可以通过下述示例1进行条件主辅小区添加(conditional PSCell addition,CPA),通过下述示例2进行条件主辅小区变更(conditional PSCell change,CPC)。
示例1,以终端设备103与网络设备101建立了RRC连接,终端设备103要进行CPA,与网络设备102建立连接为例,网络设备101与终端设备103建立RRC连接后,可以为终端设备103配置一个或多个候选PSCell,该一个或多个候选PSCell包括网络设备102为终端设备103配置的PSCell和其他网络设备为终端设备103配置的PSCell;网络设备101向终端设备103发送该一个或多个候选PSCell的配置信息1,候选PSCell的配置信息1包括候选PSCell的配置1和添加条件。终端设备103接收到来自网络设备101的该一个或多个候选PSCell的配置信息1,可以检测该一个或多个候选PSCell的添加条件,在检测到至少一个满足添加条件的候选PSCell时,终端设备103选择其中一个候选PSCell(如网络设备102为终端配置的候选PSCell),并应用该候选PSCell的配置。后续,终端设备103与该候选PSCell发起随机接入,并在候选PSCell随机接入成功之后,与网络设备101和网络设备102建立了双连接。其中,候选PSCell的配置信息1也可以称为候选PSCell的CPA配置信息1,本申请实施例对该配置信息的名称不予限制。
可以理解的,终端设备103检测到多个满足添加条件的候选PSCell时,可以根据预置的策略选择一个候选PSCell,并应用该候选PSCell的配置。例如,终端设备103检测到多个满足添加条件的候选PSCell时,可以随机选择一个候选PSCell,并应用该候选PSCell的配置;或者,可以在该多个满足添加条件的候选PSCell中,选择信号质量最好的候选PSCell,并应用该候选PSCell的配置;或者,可以在该多个满足添加条件并且波束(beam)数量大于或等于门限值的候选PSCell中,选择波束数量最多的候选PSCell,并应用该候选PSCell的配置。上述仅是终端设备103选择候选PSCell的示例,终端设备103还可以通过其他方式选择候选PSCell,不予限制。
示例2,以终端设备103与网络设备101和网络设备102双连接,网络设备101为MN,网络设备102为SN,终端设备103要进行CPC为例,网络设备101可以为终端设备103配置一个或多个候选PSCell;网络设备101向终端设备103发送该一个或多个候选PSCell的配置信息2,候选PSCell的配置信息2包括候选PSCell的配置2和变更条件。终端设备103接收到来自网络设备101的该一个或多个候选PSCell的配置信息2,可以检测该一个或多个候选PSCell的变更条件,在检测到至少一个满足变更条件的候选PSCell时,终端设备103选择其中一个候选PSCell,并应用该候选PSCell的配置。后续,终端设备103与该候选PSCell发起随机接入,并在候选PSCell随机接入成功之后,与网络设备101和该候选PSCell所属辅基站建立了双连接。其中,候选PSCell的配置信息2也可以称为候选PSCell的CPC配置信息2,不予限制。
可以理解的,终端设备103检测到多个满足变更条件的候选PSCell时,可以根据预置的策略选择一个候选PSCell,并应用该候选PSCell的配置。例如,终端设备103检测到多个满足变更条件的候选PSCell时,可以随机选择一个候选PSCell,并应用该候选PSCell的配置;或者,可以在该多个满足变更条件的候选PSCell中,选择信号质量最好的候选PSCell,并应用该候选PSCell的配置;或者,可以在该多个满足变更条件并且波束(beam)数量大于或等于门限值的候选PSCell中,选择波束数量最多的候选PSCell,并应用该候选PSCell的配置。上述仅是终端设备103选择候选PSCell的示例,终端设备103还可以通过其他方式选择候选PSCell,不予限制。
需要说明的是,在本申请实施例中,对于任一网络设备为终端配置的一个或多个候选PSCell中的任一候选PSCell,终端进行CPA时,候选PSCell的配置信息1,以及终端进行CPC时,候选PSCell的配置信息2可以统称为候选PSCell的配置信息,终端进行CPA时候选PSCell的配置1以及终端进行CPC时候选PSCell的配置2可以统称为候选PSCell的配置。该候选PSCell的配置信息包括候选PSCell的配置和添加/变更条件。其中,终端 进行CPA时,候选PSCell的配置用于终端添加该候选PSCell后,与该候选PSCell通信,候选PSCell的添加/变更条件包括候选PSCell的添加条件,候选PSCell的添加条件用于终端确定是否添加该候选PSCell。终端进行CPC时,候选PSCell的配置用于终端将源PSCell变更为该候选PSCell后与该候选PSCell通信,候选PSCell的添加/变更条件包括候选PSCell的变更条件,候选PSCell的变更条件用于终端确定是否将源PSCell变更为该候选PSCell。
在终端设备103接收到了一个或多个候选PSCell的配置和添加/变更条件,但是还没有检测出满足添加/变更条件的PSCell时,终端设备103还可以从当前MN切换到信号质量较好的目标MN,例如,终端设备103可以从网络设备101切换到网络设备105上。通常,当终端设备103执行MN切换后,当前MN会释放为终端设备103配置的一个或多个候选PSCell,目标MN与终端设备103建立RRC连接后,可以重新为终端设备103配置一个或多个候选PSCell,并向终端设备103发送目标MN为终端配置的一个或多个候选PSCell的配置信息用于终端进行CPAC,目标MN为终端配置的一个或多个候选PSCell的配置信息包括该候选PSCell的配置和添加/变更条件。
通常,候选PSCell的配置和添加/变更条件一般包括较多的信息,例如,候选PSCell的配置包括:候选PSCell的配置的标识,和/或,候选PSCell为终端分配的随机接入资源,和/或,小区无线网络临时标识(cell radio network temporary identifier,CRNIT),和/或,候选PSCell的全球小区识别码(cell global identification,CGI),和/或,候选PSCell的物理小区标识(physical cell identifier,PCI),和/或,候选PSCell对应的频率信息。候选PSCell对应的频率信息可以包括以下一种或多种:同步信号块的绝对频率(如absoluteFrequency SSB)、参考资源模块(common RB0)的绝对频率位置(如absoluteFrequencyPointA)、频率带宽列表(如frequencyBandList)、子载波间隔(subcarrier spacing,SCS)特定的载波列表(如scs-SpecificCarrierList)等。候选PSCell的配置还包括候选PSCell对应的资源信息,候选PSCell对应的资源信息包括以下一种或多种:承载配置参数(radioBearerConfig)、小区组配置(cellGroupConfig)参数、物理层(physical layer,PHY layer)配置参数、媒体接入控制(media access control,MAC)层配置参数、无线链路控制(radio link control,RLC)层配置参数、分组数据汇聚层协议(packet data convergence protocol,PDCP)层配置参数、服务数据适配协议(service data adaptation protocol,SDAP)层配置参数或RRC层配置参数。候选PSCell的配置也可以称为候选PSCell的CPAC配置、候选PSCell的CPAC配置信息等,本申请实施例对上述配置的名称不作具体限定。
候选PSCell的添加/变更条件用于终端确定是否添加该候选PSCell,或者用于终端确定是否将源PSCell变更为该候选PSCell,例如,若终端检测到候选PSCell满足该候选PSCell的添加/变更条件时,终端确定添加该候选PSCell,或者将源PSCell变更为该候选PSCell,若终端检测到候选PSCell不满足该候选PSCell的添加/变更条件时,终端确定不添加该候选PSCell,或者不将源PSCell变更为该候选PSCell。
可选的,候选PSCell的添加/变更条件包括候选PSCell的添加/变更条件的执行事件类型,该执行事件类型也可以称为测量事件或者上报事件等。终端可以测量该候选PSCell的信号质量,或者测量该候选PSCell的信号质量和该候选PSCell的邻区的信号质量,并根据测量结果和该执行事件类型确定是否添加该候选PSCell,或者确定是否将源PSCell变更为该候选PSCell。
一种可能的实现方式,该执行事件类型包括一个或多个事件,例如,该执行事件类型可以包括以下事件中的一种或多种:事件A3、事件A4、事件A5、事件B1、或事件B2。其中,事件A3表示邻区信号质量比特殊小区(special cell,SpCell)信号质量大于或等于一定的偏置(offset)。事件A4表示邻区信号质量大于或等于一定门限。事件A5表示SpCell信号质量小于或等于门限1(threshold 1),并且邻区信号质量大于或等于门限2(threshold 2)。事件B1表示跨无线接入技术(inter radio access technology,inter RAT)的邻区信号质量大于 或等于一定的门限。事件B2表示PCell信号质量小于或等于门限3(threshold 3),并且inter RAT的邻区信号质量大于或等于门限4(threshold 4)。上述事件仅是执行事件类型中事件的示例,执行事件类型还可以包括其他事件,不予限制。该执行事件类型还包括该执行事件类型中事件对应的门限值。该执行事件类型还包括满足该执行事件类型中事件的时间长度(time To Trigger),和/或,进入/离开该执行事件类型中事件时的迟滞值(hysteresis)等。另外,该执行事件类型中的事件可以对应一个或多个门限值,例如,事件A5对应两个门限值。该执行事件类型中的同一个事件可以对应不同的测量量,例如,事件A3可以对应A3参考信号接收功率(reference signal received power,RSRP)和A3参考信号接收质量(reference signal received quality,RSRQ)。
通常,在终端设备执行上文介绍的CPAC过程之前,网络设备会为终端设备提供CPAC配置,相应地,终端设备在基于网络设备提供的CPAC配置变更PSCell。在一些实现方式中,网络设备可以根据业务情况(例如,传输时延、待传输数据的数据量等)以及信道测量情况(例如,信道状态)来判断终端设备是否需要CPAC。
另外,在一些实现方式中,上述CPAC配置可以包括候选小区配置列表、执行条件以及小区配置。
上述候选小区列表可以理解为是用于CPA或CPC的候选小区配置列表。在该候选小区列表中可以包含一个或多个候选小区的小区信息。每个候选小区的小区信息可以包含配置信息标识。需要说明的是,配置信息的ID可以基于网络设备为终端设备配置的候选小区的数量确定。例如,网络设备为终端设备提供5个候选小区的配置信息,那么上述小区的配置信息ID可以用于标识5个候选小区的配置信息。
上述执行条件可以是用于指示终端设备执行CPA或CPC的执行条件。
上述小区配置可以由候选SN提供给MN的SCG配置。在一些实现方式中,上述SCG配置可以由SN通过Xn接口发送给MN,相应地,由MN透传给终端设备。在一种实现方式中,上述SCG配置可以包括候选SCG的配置,其中,候选SCG的配置可以包含小区ID、无线承载配置、逻辑信道配置、RLC配置、MAC配置、物理层配置以及SCell配置。
需要说明的是,如上文介绍一个SCG可以包含一个或多个SCell,相应地,上述SCG配置可以包含一个或多个SCell配置,本申请实施例对此不作限定。
目前,为了帮助终端设备节约功耗,为SCG设置了两种不同的状态:去激活态和激活态。通常,终端设备接入SCG状态为去激活态的SCG后的功耗小于终端设备接入SCG状态为激活态的SCG后的功耗。在一些实现方式中,当终端设备接入的SCG的SCG状态为去激活态,终端设备在接入SCG之后的终端行为可以包括:停止监听PSCell发送的物理下行控制信道(physical downlink control channel,PDCCH);执行MN和/或SN配置的测量;SCG内的SCell均处于去激活状态;不执行信道探测参考信号(sounding reference signal,SRS)的传输;不执行PSCell上的物理上行共享信道(physical uplink share channel,PUSCH)的传输;执行PSCell上的无线链路监测(radio link monitoring,RLM)和波束失败检测(beam failure detection,BFD)。
目前,SCG的SCG状态可以由网络设备通过无线资源控制(radio resource control,RRC)信令指示给终端设备。在一些实现方式中,网络设备可以通过在RRC重配置(RRC reconfiguration)请求或RRC恢复(RRC resume)请求的信息元素(information elements,IE)中包含“scg-state”字段指示来指示SCG的SCG状态。为例便于理解,下文以通过RRC重配置请求中的“scg-state”来指示SCG的SCG状态为例示出了RRC重配置请求的代码。
Figure PCTCN2021135644-appb-000001
Figure PCTCN2021135644-appb-000002
需要说明的是,上文介绍的CPAC配置、SCG配置、PScell配置以及SCG状态为去激活态时终端设备的行为都仅作为一种示例介绍,上述各个配置中包含的内容可以是现有通信协议中定义的,也可以是未来通信协议中更新的。另外,终端设备的行为也可以是现有协议定义的,也可以是未来通信协议中定义的,本申请实施例对此不作限定。
如上文介绍,终端设备基于网络设备提供的CPAC配置执行CPAC之后,都会释放相应的CPAC配置。当终端设备需要进行下一次CPAC时,网络设备需要重新为终端设备提供CPAC配置。如此以来,会增大网络设备传输CPAC配置所需的开销。然而,这种在终端设备每轮CPAC过程中,网络设备都为终端设备重新提供CPAC配置其实是不必要的。因为在一些情况下,终端设备进行CPA或CPC使用的CPAC配置可能相同,例如,当终端设备在小范围内移动时,终端设备每轮CPAC的过程使用的CPAC的配置相同。
因此,为了降低配置CPAC占用的开销,本申请实施例提供一种连续CPAC过程,即终端设备可以基于一个CPAC配置进行多轮CPAC。这样,网络设备无需在每轮CPAC的过程中为终端设备重新提供CPAC配置,有利于降低配置CPAC占用的开销。
在一些实现方式中,终端设备可以在一段时间内基于同一CPAC进行多轮CPAC。其中一段时间可以是预定义的,也可以是预配置的。在另一些实现方式中,在满足第一条件的情况下,终端设备可以基于同一CPAC配置进行多轮CPAC配置。其中,第一条件例如可以是终端设备的移动范围小于阈值。当然,本申请实施例对第一条件的内容不作具体限定。另外,上述第一条件可以是网络配置的,上述第一条件还可以是预定义的。
目前,传统的CPAC配置中通常会包含一个目标SCG的SCG状态,然而,在连续CPAC过程中,终端设备可能经过多轮CPAC过程切换到多个目标SCG,此时,终端设备无法获知多个目标SCG中每个目标SCG的SCG状态,导致终端设备、主节点、辅节点的理解不一致,从而终端设备与主节点、辅节点之间无法正常通信。
例如,假设多个目标SCG中的目标SCG1的SCG状态为激活态,由于网络设备为终端设备提供的CPAC配置中并不包含目标SCG1的SCG状态,导致终端设备无法获知,终端设备在接入目标SCG1后处于去激活态,在这种情况下,如果辅节点按照目标SCG1的SCG状态为激活态误判终端设备处于激活态,而通过目标SCG1向终端设备发送数据,则终端设备无法正常接收该数据,导致终端设备与辅节点之间的数据传输失败。
为了避免上述问题,本申请提供一种通信方法,当终端设备基于一个CPAC配置(又称“第一CPAC配置”)执行多轮CPAC变更了多个SCG时,这多个SCG中至少部分SCG的SCG状态可以由主节点MN或SN指示的,和/或多个SCG中至少部分SCG的SCG状态是预定义的。下文结合图2介绍本申请实施例中多个SCG的SCG状态。参见图2,在步骤S210中,终端设备基于第一SCG的SCG状态与SN通信,第一SCG属于上文中的多个SCG。
需要说明的是,当终端设备变更到多个SCG中的某一个SCG时,该SCG可以视为终端设备本次CPAC过程中的目标SCG,相应地,多个SCG中除目标SCG之外的其他SCG可以视为候选SCG。下文为了便于描述,本申请主要从终端设备变更到的多个SCG的角度来介绍,并不区分每轮CPAC过程中的目标SCG和候选SCG。
如上文所述本申请实施例中多个SCG的SCG状态的确定方式可以分为两种,在确定方式一中,多个SCG中至少部分的SCG状态由MN或SN指示的。在确定方式二中,多个SCG中至少部分的SCG状态为预定义的。下文针对上述两种方式进行介绍。
在确定方式一中,MN和SN可以通过向终端设备发送第一消息,供终端设备确定多个SCG的SCG状态。或者说,第一消息用于确定多个SCG的SCG状态。
上述通过第一消息确定多个SCG的SCG状态的方式有很多种,为了便于理解,下文主要结合三种方式介绍,本申请实施例并不限于以下三种方式。
方式一、第一消息可以包括多个SCG的SCG状态信息。
在一些实现方式中,上述第一消息可以包括多个SCG中每个SCG的标识与多个SCG中每个SCG的SCG状态信息之间的映射关系。在另一种实现方式中,上述第一消息还可以包含SCG状态列表,SCG状态列表包含多个SCG中每个SCG的状态。
例如,表1示出了SCG状态列表的一种可能的形式。在表1中,标识为ID1的SCG的SCG状态为去激活态,标识为ID2的SCG的SCG状态为激活态。
表1
SCG标识 SCG状态
ID1 去激活
ID2 激活
相应地,终端设备在介绍到上述第一信息后,可以基于第一消息中包含的多个SCG的SCG状态确定当前变更到的(或者准备变更的)SCG的SCG状态。即,上述方法还包括:终端设备基于第一消息确定第一SCG的SCG状态,第一消息中携带第一SCG的SCG状态。
方式二、第一消息可以仅指示多个SCG中第二SCG的SCG状态。
相应地,终端设备基于第二SCG的SCG状态确定多个SCG中其他SCG的SCG状态。在一些实现方式中,其他SCG的SCG状态可以与第二SCG的SCG状态相同,例如,当第二SCG的SCG状态为去激活态,其他SCG的SCG状态可以为去激活态。在另一些实现方式中,其他SCG的SCG状态可以与第二SCG的SCG状态相反,例如,当第二SCG的SCG为激活态,其他SCG的SCG状态可以为去激活态。
如上文所述,传统的方案中,网络设备在为终端设备提供新的CPAC配置后,会通过RRC信令为终端设备指示目标SCG的SCG状态,因此,为了兼容现有协议的规定,或者说减少对现有协议的修改,上述第二SCG可以是现有协议中网络设备通过RRC信令向终端设备指示的。
当然,如果不考虑兼容现有协议,在另一些实现方式中,上述第二SCG还可以是多次CPAC过程中终端设备第一次执行CPAC过程变更到的PSCell所属SCG,或者说,多次CPAC过程中终端设备最早执行CPAC过程变更到的PSCell所属SCG。例如,上述多次CPAC过程包含CPAC过程1、CPAC过程2以及CPAC过程3,其中CPAC过程1是多轮CPAC过程中终端设备第一次执行的CPAC过程,相应地,CPAC过程2是在终端设备执行CPAC过程1之后执行的CPAC过程,CPAC过程3是终端设备在执行CPAC过程2之后执行的CPAC过程。这样,上述第二SCG可以是CPAC过程1中终端设备变更的PSCell所属的SCG。
方式三、第一消息可以仅指示多个SCG中源PSCell所属的源SCG的SCG状态。
也就是说,多次CPAC过程中终端设备每次执行CPAC过程需要从源PSCell所属的源SCG变更到目标PSCell所属的目标SCG,其中,目标SCG的SCG状态是根据源SCG的SCG状态确定的。
相应地,终端设备基于源SCG的SCG状态确定多个SCG中其他SCG的SCG状态。在一些实现方式中,其他SCG的SCG状态可以与源SCG的SCG状态相同,例如,当源SCG的SCG状态为去激活态,其他SCG的SCG状态可以为去激活态。在另一些实现方式中,其他SCG的SCG状态可以与源SCG的SCG状态相反,例如,当源SCG的SCG为激活态,其他SCG的SCG状态可以为去激活态。
如上文所述,传统的方案中,网络设备在为终端设备提供新的CPAC配置后,会通过RRC信令为终端设备指示目标SCG的SCG状态,因此,为了兼容现有协议的规定,或者说为了减少对现有协议的修改,上述源SCG可以是现有协议中网络设备通过RRC信令向 终端设备指示的。
当然,如果不考虑兼容现有协议,在另一些实现方式中,上述源SCG还可以是多次CPAC过程中终端设备第一次执行CPAC过程中的源SCG,或者说,多次CPAC过程中终端设备最早执行CPAC过程中的源SCG。例如,上述多次CPAC过程包含CPAC过程1、CPAC过程2以及CPAC过程3,其中CPAC过程1是多轮CPAC过程中终端设备第一次执行的CPAC过程,相应地,CPAC过程2是在终端设备执行CPAC过程1之后执行的CPAC过程,CPAC过程3是终端设备在执行CPAC过程2之后执行的CPAC过程。这样,上述源SCG可以是CPAC过程1中终端设备在变更之前接入的SCG。
上文结合方式一至方式三,介绍了确定方式一中终端设备基于第一消息的确定多个SCG的SCG状态的方法,下文介绍第一消息的发送方式。如上文所述,第一消息可以是由MN发送的也可以是由SN发送的,因此,下文基于两种传输方式分别介绍。
在传输方式一中,MN向终端设备发送第一消息。
在一些实现方式中,MN可以将第一消息承载于SCG配置(又称“第二SCG配置”)中。例如SCG配置可以包含SCG1的配置信息1以及执行条件1,SCG2的配置信息2以及执行条件2,此时,可以在SCG1的配置信息1中添加SCG1的SCG状态(即上述第一消息中的部分信息),可以在SCG1的配置信息1中添加SCG1的SCG状态(即上述第一消息中的部分信息)。在另一些实现方式中,MN可以将第一消息承载于单独的配置信息中发送给终端设备。
在传输方式二中,SN通过MN向终端设备发送第一消息。
相应地,MN可以不对第一消息进行处理,并直接将第一消息透传给终端设备。
在一些实现方式中,第一消息可以承载于SCG配置(又称“第一SCG配置”)中。例如SCG配置可以包含SCG1的配置信息1以及执行条件1,SCG2的配置信息2以及执行条件2,此时,可以在SCG1的配置信息1中添加SCG1的SCG状态(即上述第一消息中的部分信息),可以在SCG1的配置信息1中添加SCG1的SCG状态(即上述第一消息中的部分信息)。在另一些实现方式中,SN可以将第一消息承载于单独的配置信息中通过MN发送给终端设备。
在确定方式二中,多个SCG中至少部分的SCG状态为预定义的。
上述确定方式二可以包括多个SCG中的部分或全部SCG的SCG状态可以为预定义的。在一些实现方式中,第一消息可以仅指示多个SCG中第三SCG的SCG状态,多个SCG中其他SCG状态可以是预定义的。或者说,多个SCG中其他SCG状态可以是默认的。相应地,终端设备基于第三SCG的SCG状态确定第三SCG的SCG状态,其他SCG的SCG状态可以基于预定义的SCG状态确定。例如,可以预定义其他SCG的SCG状态为去激活。又例如,可以预定义其他SCG的SCG状态为激活态。
在另一些实现方式中,多次CPAC过程中终端设备每次执行CPAC过程需要从源PSCell所属的源SCG变更到目标PSCell所属的目标SCG,其中,源SCG的SCG状态可以是预定义的,相应地,目标SCG的SCG状态是根据源SCG的SCG状态确定的。这种方式也可以理解为“终端自主确定SCG的SCG状态”。
相应地,终端设备基于源SCG的SCG状态确定多个SCG中其他SCG的SCG状态。在一些实现方式中,其他SCG的SCG状态可以与源SCG的SCG状态相同,例如,当源SCG的SCG状态为去激活态,其他SCG的SCG状态可以为去激活态。在另一些实现方式中,其他SCG的SCG状态可以与源SCG的SCG状态相反,例如,当源SCG的SCG为激活态,其他SCG的SCG状态可以为去激活态。
另外,假设第一SCG的SCG状态为去激活态,当终端设备接入第一SCG后,终端设备什么时候处于去激活态,本申请实施例对此不作限定。
在一些实现方式中,终端设备可以在向SN发送第一随机接入信道(random access  channel,RACH)之后,进入去激活态。即在终端设备通过第一SCG向SN发送第一随机接入信道RACH之后,终端设备基于去激活态与SN通信。
在另一些实现方式中,终端设备可以在向SN发送第二RACH,且竞争冲突成功解决之后,进入去激活态。即,若终端设备通过第一SCG向SN发送第二RACH,且竞争冲突成功解决,终端设备基于去激活态与SN通信。
在另一些实现方式中,终端设备可以在向SN发送第二RACH,竞争冲突成功解决且在预设时间段内未接收到指示第一SCG的SCG状态的指示信息之后,进入去激活态。即若终端设备通过第一SCG向SN发送第二RACH,竞争冲突成功解决,且在预设时间段内未接收到第二消息,终端设备基于去激活态与SN通信,第二消息用于指示第一SCG的SCG状态。
为了便于理解,下文结合图3至图5介绍本申请实施例的通信方法。图3所示的通信方法以上述确定方式一中的方式一结合传输方式二为例进行介绍。图4所示的通信方法以以上述确定方式一结合传输方式一为例进行介绍。图5所示的通信方法以以上述确定方式一结合传输方式一为例进行介绍。
图3是本申请实施例的通信方法的流程图。图3所示的方法包括步骤S310至步骤S330。
在步骤S310中,MN向终端设备发送第一RRC消息。
上述第一RRC消息中包含多个SCG的配置信息及对应的执行条件,其中,每个SCG配置中包括对应的SCG的SCG状态。
在步骤S320中,终端设备基于执行条件评估多个SCG。
当满足多个SCG中SCG1的执行条件时,终端设备执行CPC切换到SCG1中的PSCell1。
在步骤S330中,终端设备根据SCG1的配置信息确定SCG1的SCG状态。
图4是本申请另一实施例的通信方法的流程图。图4所示的方法包括步骤S410至步骤S430。
在步骤S410中,MN向终端设备发送第一RRC消息。
第一RRC消息中包含多个SCG的SCG配置信息及对应的执行条件,另外,第一RRC消息中还包括第一消息,第一消息用于确定多个SCG的SCG状态。
需要说明的是,可以参见上述确定方式一中的方式一至方式三的介绍来基于第一消息确定多个SCG的SCG状态。
在步骤S420中,终端设备基于执行条件评估多个SCG。
当满足执行条件时,终端设备执行CPC切换到SCG2中的PSCell2。
在步骤S430中,终端设备根据SCG2的配置信息确定SCG2的SCG状态。
图5是本申请另一实施例的通信方法的流程图。图5所示的方法包括步骤S510至步骤S430。
在步骤S510中,MN向终端设备发送第一RRC消息。
第一RRC消息中包含多个SCG的SCG配置信息及对应的执行条件,另外,第一RRC消息中还包括SCG1的SCG状态。
在步骤S520中,终端设备基于CPAC配置1中包含的多个SCG的执行条件评估多个SCG。
当满足SCG1的执行条件时,终端设备执行CPC切换到SCG1,并执行步骤S530。
在步骤S530中,终端设备基于第一RRC消息中包含的SCG1的SCG状态,确定SCG1的SCG状态。
在步骤S540中,终端设备基于CPAC配置1中包含的多个SCG的执行条件评估多个SCG。
当满足SCG3的执行条件时,终端设备执行CPC切换到SCG3,并执行步骤S550。
在步骤S550中,终端设备基于SCG1的SCG状态,确定SCG3的SCG状态。
若SCG1的SCG状态为激活态,则SCG3的SCG状态为激活态;若SCG1的SCG状态为去激活态,则SCG3的SCG状态为去激活态。
上文结合图1至图5,详细描述了本申请的方法实施例,下面结合图6至图9,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图6是本申请实施例的终端设备的示意图,图6所示的终端设备600包括:通信单元610。
通信单元610,用于基于第一辅小区组SCG的SCG状态与辅节点SN通信,所述第一SCG属于多个SCG,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG;其中,所述多个SCG中至少部分的SCG状态是由主节点MN或所述SN指示的,和/或所述多个SCG中至少部分SCG的SCG状态是预定义的。
在一种可选的实现方式中,所述多个SCG的SCG状态是由主节点MN或所述SN指示的,所述终端设备还包括:接收单元,用于接收所述MN或所述SN发送的第一消息,所述第一消息用于确定所述多个SCG的SCG状态。
在一种可选的实现方式中,所述第一消息包括所述多个SCG的SCG状态信息。
在一种可选的实现方式中,所述第一消息包含所述多个SCG中每个SCG的标识与所述多个SCG中每个SCG的SCG状态信息之间的映射关系。
在一种可选的实现方式中,所述第一消息携带所述多个SCG中第二SCG的SCG状态信息,所述多个SCG还包括除所述第二SCG之外的其他SCG,所述其他SCG的SCG状态是基于所述第二SCG的SCG状态确定的。
在一种可选的实现方式中,所述其他SCG的SCG状态与所述第二SCG的SCG状态相同。
在一种可选的实现方式中,所述第二SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属SCG。
在一种可选的实现方式中,所述第一CPAC配置包含所述第三SCG的SCG状态,所述第三SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属的SCG,所述多个SCG中除所述第三SCG之外的其他SCG的SCG状态为预定义的。
在一种可选的实现方式中,所述接收单元,还用于:接收所述MN发送的第一SCG配置信息,所述第一SCG配置信息包含所述第一消息,所述第一SCG配置信息是由所述SN发送给所述MN的。
在一种可选的实现方式中,所述接收单元,还用于:接收所述MN发送的第二SCG配置信息,所述第二SCG配置信息包含所述第一消息。
在一种可选的实现方式中,所述多次CPAC过程中所述终端设备每次执行CPAC过程从源PSCell所属的源SCG变更到目标PSCell所属的目标SCG时,所述目标SCG的SCG状态是根据所述源SCG的SCG状态确定的。
在一种可选的实现方式中,所目标SCG的SCG状态与所述源SCG的SCG状态相同。
在一种可选的实现方式中,所述第一SCG的SCG状态为去激活态,所述通信单元,还用于在所述终端设备通过所述第一SCG向所述SN发送第一随机接入信道RACH之后,基于所述去激活态与所述SN通信。
在一种可选的实现方式中,所述第一SCG的SCG状态为去激活态,所述通信单元,还用于:若所述终端设备通过所述第一SCG向所述SN发送第二RACH,且竞争冲突成功解决,基于所述去激活态与所述SN通信。
在一种可选的实现方式中,所述通信单元,还用于若所述终端设备通过所述第一SCG 向所述SN发送第二RACH,竞争冲突成功解决,且在预设时间段内未接收到第二消息,基于所述去激活态与所述SN通信,所述第二消息用于指示所述第一SCG的SCG状态。
图7是本申请实施例的SN的示意图。图7所示的SN700包括:通信单元710。
通信单元710,用于基于第一辅小区组SCG的SCG状态与终端设备通信,所述第一SCG属于多个SCG,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG;其中,所述多个SCG中至少部分SCG的SCG状态是由主节点MN或所述SN指示的,和/或所述多个SCG中至少部分SCG的SCG状态是预定义的。
在一种可选的实现方式中,所述多个SCG的SCG状态是由所述SN指示的,所述辅节点还包括:发送单元,用于向所述终端设备发送第一消息,所述第一消息用于确定所述多个SCG的SCG状态。
在一种可选的实现方式中,所述第一消息包括所述多个SCG的SCG的状态信息。
在一种可选的实现方式中,所述第一消息包含所述多个SCG中每个SCG的标识与所述多个SCG中每个SCG的SCG状态信息之间的映射关系。
在一种可选的实现方式中,所述第一消息携带所述多个SCG中第二SCG的SCG状态信息,所述多个SCG还包括除所述第二SCG之外的其他SCG,所述其他SCG的SCG状态是基于所述第二SCG的SCG状态确定的。
在一种可选的实现方式中,所述其他SCG的SCG状态与所述第二SCG的SCG状态相同。
在一种可选的实现方式中,所述第二SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属SCG。
在一种可选的实现方式中,所述第一CPAC配置包含所述第三SCG的SCG状态,所述第三SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属的SCG,所述多个SCG中除所述第三SCG之外的其他SCG的SCG状态为预定义的。
在一种可选的实现方式中,所述发送单元,用于通过所述MN向所述终端设备发送第一SCG配置信息,所述第一SCG配置信息包含所述第一消息。
在一种可选的实现方式中,所述多次CPAC过程中所述终端设备每次执行CPAC过程从源PSCell所属的源SCG变更到目标PSCell所属的目标SCG时,所目标SCG的SCG状态是根据所述源SCG的SCG状态确定的。
在一种可选的实现方式中,所目标SCG的SCG状态与所述源SCG的SCG状态相同。
在一种可选的实现方式中,所述第一SCG的SCG状态为去激活态,所述通信单元,用于:在所述SN通过所述第一SCG接收到所述终端设备发送的第一随机接入信道RACH之后,基于所述去激活态与所述终端设备通信。
在一种可选的实现方式中,所述第一SCG的SCG状态为去激活态,所述通信单元,用于:若所述SN通过所述第一SCG接收所述终端设备发送的第二RACH,且所述终端设备竞争冲突成功解决,基于所述去激活态与终端设备通信。
图8是本申请实施例的MN的示意图。图8所示的MN800包括发送单元810。
发送单元810,用于向终端设备发送第一消息,所述第一消息用于确定多个辅小区组SCG中至少部分SCG的SCG状态,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG。
在一种可选的实现方式中,所述第一消息包括所述多个SCG的SCG状态信息。
在一种可选的实现方式中,所述第一消息包含所述多个SCG中每个SCG的标识与所述多个SCG中每个SCG的SCG状态信息之间的映射关系。
在一种可选的实现方式中,所述第一消息携带所述多个SCG中第二SCG的SCG状态信息,所述多个SCG还包括除所述第二SCG之外的其他SCG,所述其他SCG的SCG状 态是基于所述第二SCG的SCG状态确定的。
在一种可选的实现方式中,所述其他SCG的SCG状态与所述第二SCG的SCG状态相同。
在一种可选的实现方式中,所述第二SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属SCG。
在一种可选的实现方式中,所述第一CPAC配置包含所述第三SCG的SCG状态,所述第三SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属的SCG,所述多个SCG中除所述第三SCG之外的其他SCG的SCG状态为预定义的。
图9是本申请实施例的通信装置的示意性结构图。图9中的虚线表示该单元或模块为可选的。该装置900可用于实现上述方法实施例中描述的方法。装置900可以是芯片、终端设备或网络设备。
装置900可以包括一个或多个处理器910。该处理器910可支持装置900实现前文方法实施例所描述的方法。该处理器910可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置900还可以包括一个或多个存储器920。存储器920上存储有程序,该程序可以被处理器910执行,使得处理器910执行前文方法实施例所描述的方法。存储器920可以独立于处理器910也可以集成在处理器910中。
装置900还可以包括收发器930。处理器910可以通过收发器930与其他设备或芯片进行通信。例如,处理器910可以通过收发器930与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系, 也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (88)

  1. 一种通信方法,其特征在于,包括:
    终端设备基于第一辅小区组SCG的SCG状态与辅节点SN通信,所述第一SCG属于多个SCG,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG;
    其中,所述多个SCG中至少部分的SCG状态是由主节点MN或所述SN指示的,和/或所述多个SCG中至少部分SCG的SCG状态是预定义的。
  2. 如权利要求1所述的方法,其特征在于,所述多个SCG的SCG状态是由主节点MN或所述SN指示的,所述方法还包括:
    所述终端设备接收所述MN或所述SN发送的第一消息,所述第一消息用于确定所述多个SCG的SCG状态。
  3. 如权利要求2所述的方法,其特征在于,所述第一消息包括所述多个SCG的SCG状态信息。
  4. 如权利要求3所述的方法,其特征在于,所述第一消息包含所述多个SCG中每个SCG的标识与所述多个SCG中每个SCG的SCG状态信息之间的映射关系。
  5. 如权利要求2所述的方法,其特征在于,所述第一消息携带所述多个SCG中第二SCG的SCG状态信息,所述多个SCG还包括除所述第二SCG之外的其他SCG,所述其他SCG的SCG状态是基于所述第二SCG的SCG状态确定的。
  6. 如权利要求5所述的方法,其特征在于,所述其他SCG的SCG状态与所述第二SCG的SCG状态相同。
  7. 如权利要求5或6所述的方法,其特征在于,所述第二SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属SCG。
  8. 如权利要求1所述的方法,其特征在于,所述第一CPAC配置包含所述第三SCG的SCG状态,所述第三SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属的SCG,所述多个SCG中除所述第三SCG之外的其他SCG的SCG状态为预定义的。
  9. 如权利要求2-7中任一项所述的方法,其特征在于,所述终端设备接收所述MN或所述SN发送的第一消息,包括:
    所述终端设备接收所述MN发送的第一SCG配置信息,所述第一SCG配置信息包含所述第一消息,所述第一SCG配置信息是由所述SN发送给所述MN的。
  10. 如权利要求2-7中任一项所述的方法,其特征在于,所述终端设备接收所述MN或所述SN发送的第一消息,包括:
    所述终端设备接收所述MN发送的第二SCG配置信息,所述第二SCG配置信息包含所述第一消息。
  11. 如权利要求1所述的方法,其特征在于,所述多次CPAC过程中所述终端设备每次执行CPAC过程从源PSCell所属的源SCG变更到目标PSCell所属的目标SCG时,所述目标SCG的SCG状态是根据所述源SCG的SCG状态确定的。
  12. 如权利要求11所述的方法,其特征在于,所目标SCG的SCG状态与所述源SCG的SCG状态相同。
  13. 如权利要求1-12中任一项所述的方法,其特征在于,所述第一SCG的SCG状态为去激活态,所述终端设备基于所述第一SCG的SCG状态与辅节点SN通信,包括:
    在所述终端设备通过所述第一SCG向所述SN发送第一随机接入信道RACH之后,所述终端设备基于所述去激活态与所述SN通信。
  14. 如权利要求1-12中任一项所述的方法,其特征在于,所述第一SCG的SCG状态为去激活态,所述终端设备基于所述第一SCG的SCG状态与辅节点SN通信,包括:
    若所述终端设备通过所述第一SCG向所述SN发送第二RACH,且竞争冲突成功解决,所述终端设备基于所述去激活态与所述SN通信。
  15. 如权利要求14所述的方法,其特征在于,若所述终端设备通过所述第一SCG向所述SN发送第二RACH,且竞争冲突成功解决,所述终端设备基于所述去激活态与所述SN通信,包括:
    若所述终端设备通过所述第一SCG向所述SN发送第二RACH,竞争冲突成功解决,且在预设时间段内未接收到第二消息,所述终端设备基于所述去激活态与所述SN通信,所述第二消息用于指示所述第一SCG的SCG状态。
  16. 一种通信方法,其特征在于,包括:
    辅节点SN基于第一辅小区组SCG的SCG状态与终端设备通信,所述第一SCG属于多个SCG,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG;
    其中,所述多个SCG中至少部分SCG的SCG状态是由主节点MN或所述SN指示的,和/或所述多个SCG中至少部分SCG的SCG状态是预定义的。
  17. 如权利要求16所述的方法,其特征在于,所述多个SCG的SCG状态是由所述SN指示的,所述方法还包括:
    所述SN向所述终端设备发送第一消息,所述第一消息用于确定所述多个SCG的SCG状态。
  18. 如权利要求17所述的方法,其特征在于,所述第一消息包括所述多个SCG的SCG的状态信息。
  19. 如权利要求18所述的方法,其特征在于,所述第一消息包含所述多个SCG中每个SCG的标识与所述多个SCG中每个SCG的SCG状态信息之间的映射关系。
  20. 如权利要求17所述的方法,其特征在于,所述第一消息携带所述多个SCG中第二SCG的SCG状态信息,所述多个SCG还包括除所述第二SCG之外的其他SCG,所述其他SCG的SCG状态是基于所述第二SCG的SCG状态确定的。
  21. 如权利要求20所述的方法,其特征在于,所述其他SCG的SCG状态与所述第二SCG的SCG状态相同。
  22. 如权利要求20或21所述的方法,其特征在于,所述第二SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属SCG。
  23. 如权利要求16所述的方法,其特征在于,所述第一CPAC配置包含所述第三SCG的SCG状态,所述第三SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属的SCG,所述多个SCG中除所述第三SCG之外的其他SCG的SCG状态为预定义的。
  24. 如权利要求17-22中任一项所述的方法,其特征在于,所述SN向所述终端设备发送第一消息,包括:
    所述SN通过所述MN向所述终端设备发送第一SCG配置信息,所述第一SCG配置信息包含所述第一消息。
  25. 如权利要求16所述的方法,其特征在于,所述多次CPAC过程中所述终端设备每次执行CPAC过程从源PSCell所属的源SCG变更到目标PSCell所属的目标SCG时,所目标SCG的SCG状态是根据所述源SCG的SCG状态确定的。
  26. 如权利要求25所述的方法,其特征在于,所目标SCG的SCG状态与所述源SCG的SCG状态相同。
  27. 如权利要求16-26中任一项所述的方法,其特征在于,所述第一SCG的SCG状态为去激活态,所述SN基于第一SCG的SCG状态与终端设备通信,包括:
    在所述SN通过所述第一SCG接收到所述终端设备发送的第一随机接入信道RACH 之后,所述SN基于所述去激活态与所述终端设备通信。
  28. 如权利要求16-26中任一项所述的方法,其特征在于,所述第一SCG的SCG状态为去激活态,所述SN基于第一SCG的SCG状态与终端设备通信,包括:
    若所述SN通过所述第一SCG接收所述终端设备发送的第二RACH,且所述终端设备竞争冲突成功解决,所述SN基于所述去激活态与终端设备通信。
  29. 一种通信方法,其特征在于,包括:
    主节点MN向终端设备发送第一消息,所述第一消息用于确定多个辅小区组SCG中至少部分SCG的SCG状态,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG。
  30. 如权利要求29所述的方法,其特征在于,所述第一消息包括所述多个SCG的SCG状态信息。
  31. 如权利要求30所述的方法,其特征在于,所述第一消息包含所述多个SCG中每个SCG的标识与所述多个SCG中每个SCG的SCG状态信息之间的映射关系。
  32. 如权利要求29所述的方法,其特征在于,所述第一消息携带所述多个SCG中第二SCG的SCG状态信息,所述多个SCG还包括除所述第二SCG之外的其他SCG,所述其他SCG的SCG状态是基于所述第二SCG的SCG状态确定的。
  33. 如权利要求32所述的方法,其特征在于,所述其他SCG的SCG状态与所述第二SCG的SCG状态相同。
  34. 如权利要求32或33所述的方法,其特征在于,所述第二SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属SCG。
  35. 如权利要求29所述的方法,其特征在于,所述第一CPAC配置包含所述第三SCG的SCG状态,所述第三SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属的SCG,所述多个SCG中除所述第三SCG之外的其他SCG的SCG状态为预定义的。
  36. 一种终端设备,其特征在于,包括:
    通信单元,用于基于第一辅小区组SCG的SCG状态与辅节点SN通信,所述第一SCG属于多个SCG,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG;
    其中,所述多个SCG中至少部分的SCG状态是由主节点MN或所述SN指示的,和/或所述多个SCG中至少部分SCG的SCG状态是预定义的。
  37. 如权利要求36所述的终端设备,其特征在于,所述多个SCG的SCG状态是由主节点MN或所述SN指示的,所述终端设备还包括:
    接收单元,用于接收所述MN或所述SN发送的第一消息,所述第一消息用于确定所述多个SCG的SCG状态。
  38. 如权利要求37所述的终端设备,其特征在于,所述第一消息包括所述多个SCG的SCG状态信息。
  39. 如权利要求38所述的终端设备,其特征在于,所述第一消息包含所述多个SCG中每个SCG的标识与所述多个SCG中每个SCG的SCG状态信息之间的映射关系。
  40. 如权利要求37所述的终端设备,其特征在于,所述第一消息携带所述多个SCG中第二SCG的SCG状态信息,所述多个SCG还包括除所述第二SCG之外的其他SCG,所述其他SCG的SCG状态是基于所述第二SCG的SCG状态确定的。
  41. 如权利要求40所述的终端设备,其特征在于,所述其他SCG的SCG状态与所述第二SCG的SCG状态相同。
  42. 如权利要求40或41所述的终端设备,其特征在于,所述第二SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属SCG。
  43. 如权利要求36所述的终端设备,其特征在于,所述第一CPAC配置包含所述第三SCG的SCG状态,所述第三SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属的SCG,所述多个SCG中除所述第三SCG之外的其他SCG的SCG状态为预定义的。
  44. 如权利要求37-42中任一项所述的终端设备,其特征在于,所述接收单元,还用于:
    接收所述MN发送的第一SCG配置信息,所述第一SCG配置信息包含所述第一消息,所述第一SCG配置信息是由所述SN发送给所述MN的。
  45. 如权利要求37-42中任一项所述的终端设备,其特征在于,所述接收单元,还用于:
    接收所述MN发送的第二SCG配置信息,所述第二SCG配置信息包含所述第一消息。
  46. 如权利要求36所述的终端设备,其特征在于,所述多次CPAC过程中所述终端设备每次执行CPAC过程从源PSCell所属的源SCG变更到目标PSCell所属的目标SCG时,所述目标SCG的SCG状态是根据所述源SCG的SCG状态确定的。
  47. 如权利要求46所述的终端设备,其特征在于,所目标SCG的SCG状态与所述源SCG的SCG状态相同。
  48. 如权利要求36-47中任一项所述的终端设备,其特征在于,所述第一SCG的SCG状态为去激活态,所述通信单元,还用于在所述终端设备通过所述第一SCG向所述SN发送第一随机接入信道RACH之后,基于所述去激活态与所述SN通信。
  49. 如权利要求36-47中任一项所述的终端设备,其特征在于,所述第一SCG的SCG状态为去激活态,所述通信单元,还用于:若所述终端设备通过所述第一SCG向所述SN发送第二RACH,且竞争冲突成功解决,基于所述去激活态与所述SN通信。
  50. 如权利要求49所述的终端设备,其特征在于,所述通信单元,还用于
    若所述终端设备通过所述第一SCG向所述SN发送第二RACH,竞争冲突成功解决,且在预设时间段内未接收到第二消息,基于所述去激活态与所述SN通信,所述第二消息用于指示所述第一SCG的SCG状态。
  51. 一种辅节点SN,其特征在于,包括:
    通信单元,用于基于第一辅小区组SCG的SCG状态与终端设备通信,所述第一SCG属于多个SCG,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG;
    其中,所述多个SCG中至少部分SCG的SCG状态是由主节点MN或所述SN指示的,和/或所述多个SCG中至少部分SCG的SCG状态是预定义的。
  52. 如权利要求51所述的辅节点,其特征在于,所述多个SCG的SCG状态是由所述SN指示的,所述辅节点还包括:
    发送单元,用于向所述终端设备发送第一消息,所述第一消息用于确定所述多个SCG的SCG状态。
  53. 如权利要求52所述的辅节点,其特征在于,所述第一消息包括所述多个SCG的SCG的状态信息。
  54. 如权利要求53所述的辅节点,其特征在于,所述第一消息包含所述多个SCG中每个SCG的标识与所述多个SCG中每个SCG的SCG状态信息之间的映射关系。
  55. 如权利要求52所述的辅节点,其特征在于,所述第一消息携带所述多个SCG中第二SCG的SCG状态信息,所述多个SCG还包括除所述第二SCG之外的其他SCG,所述其他SCG的SCG状态是基于所述第二SCG的SCG状态确定的。
  56. 如权利要求55所述的辅节点,其特征在于,所述其他SCG的SCG状态与所述第二SCG的SCG状态相同。
  57. 如权利要求55或56所述的辅节点,其特征在于,所述第二SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属SCG。
  58. 如权利要求51所述的辅节点,其特征在于,所述第一CPAC配置包含所述第三SCG的SCG状态,所述第三SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属的SCG,所述多个SCG中除所述第三SCG之外的其他SCG的SCG状态为预定义的。
  59. 如权利要求52-57中任一项所述的辅节点,其特征在于,所述发送单元,用于:
    通过所述MN向所述终端设备发送第一SCG配置信息,所述第一SCG配置信息包含所述第一消息。
  60. 如权利要求51所述的辅节点,其特征在于,所述多次CPAC过程中所述终端设备每次执行CPAC过程从源PSCell所属的源SCG变更到目标PSCell所属的目标SCG时,所目标SCG的SCG状态是根据所述源SCG的SCG状态确定的。
  61. 如权利要求60所述的辅节点,其特征在于,所目标SCG的SCG状态与所述源SCG的SCG状态相同。
  62. 如权利要求51-61中任一项所述的辅节点,其特征在于,所述第一SCG的SCG状态为去激活态,所述通信单元,用于:
    在所述SN通过所述第一SCG接收到所述终端设备发送的第一随机接入信道RACH之后,基于所述去激活态与所述终端设备通信。
  63. 如权利要求51-61中任一项所述的辅节点,其特征在于,所述第一SCG的SCG状态为去激活态,所述通信单元,用于:
    若所述SN通过所述第一SCG接收所述终端设备发送的第二RACH,且所述终端设备竞争冲突成功解决,基于所述去激活态与终端设备通信。
  64. 一种主节点MN,其特征在于,包括:
    发送单元,用于向终端设备发送第一消息,所述第一消息用于确定多个辅小区组SCG中至少部分SCG的SCG状态,所述多个SCG为所述终端设备基于第一条件主辅小区添加/变更CPAC配置执行多次CPAC过程变更的多个主辅小区PSCell所属的SCG。
  65. 如权利要求64所述的主节点,其特征在于,所述第一消息包括所述多个SCG的SCG状态信息。
  66. 如权利要求65所述的主节点,其特征在于,所述第一消息包含所述多个SCG中每个SCG的标识与所述多个SCG中每个SCG的SCG状态信息之间的映射关系。
  67. 如权利要求64所述的主节点,其特征在于,所述第一消息携带所述多个SCG中第二SCG的SCG状态信息,所述多个SCG还包括除所述第二SCG之外的其他SCG,所述其他SCG的SCG状态是基于所述第二SCG的SCG状态确定的。
  68. 如权利要求67所述的主节点,其特征在于,所述其他SCG的SCG状态与所述第二SCG的SCG状态相同。
  69. 如权利要求67或68所述的主节点,其特征在于,所述第二SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属SCG。
  70. 如权利要求64所述的主节点,其特征在于,所述第一CPAC配置包含所述第三SCG的SCG状态,所述第三SCG为所述多次CPAC过程中所述终端设备第一次执行CPAC过程变更到的PSCell所属的SCG,所述多个SCG中除所述第三SCG之外的其他SCG的SCG状态为预定义的。
  71. 一种终端设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如权利要求1-15中任一项所述的方法。
  72. 一种主节点,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如权利要求16-28中任一项所述的方法。
  73. 一种辅节点,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以执行如权利要求29-35中任一项所述的方法。
  74. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求1-15中任一项所述的方法。
  75. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求16-28中任一项所述的方法。
  76. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以执行如权利要求29-35中任一项所述的方法。
  77. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-15中任一项所述的方法。
  78. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求16-28中任一项所述的方法。
  79. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求29-35中任一项所述的方法。
  80. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-15中任一项所述的方法。
  81. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求16-28中任一项所述的方法。
  82. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求29-35中任一项所述的方法。
  83. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-15中任一项所述的方法。
  84. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求16-28中任一项所述的方法。
  85. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求29-35中任一项所述的方法。
  86. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-15中任一项所述的方法。
  87. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求16-28中任一项所述的方法。
  88. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求29-35中任一项所述的方法。
PCT/CN2021/135644 2021-12-06 2021-12-06 通信方法、终端设备及网络设备 WO2023102677A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/135644 WO2023102677A1 (zh) 2021-12-06 2021-12-06 通信方法、终端设备及网络设备
CN202180101900.3A CN117882434A (zh) 2021-12-06 2021-12-06 通信方法、终端设备及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/135644 WO2023102677A1 (zh) 2021-12-06 2021-12-06 通信方法、终端设备及网络设备

Publications (1)

Publication Number Publication Date
WO2023102677A1 true WO2023102677A1 (zh) 2023-06-15

Family

ID=86729398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135644 WO2023102677A1 (zh) 2021-12-06 2021-12-06 通信方法、终端设备及网络设备

Country Status (2)

Country Link
CN (1) CN117882434A (zh)
WO (1) WO2023102677A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113382421A (zh) * 2020-03-09 2021-09-10 华为技术有限公司 通信方法及装置
US20210321310A1 (en) * 2020-04-09 2021-10-14 Samsung Electronics Co., Ltd. Method for handling conditional configuration stored in ue
WO2021228137A1 (zh) * 2020-05-15 2021-11-18 夏普株式会社 小区变更方法以及用户设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113382421A (zh) * 2020-03-09 2021-09-10 华为技术有限公司 通信方法及装置
WO2021179911A1 (zh) * 2020-03-09 2021-09-16 华为技术有限公司 通信方法及装置
US20210321310A1 (en) * 2020-04-09 2021-10-14 Samsung Electronics Co., Ltd. Method for handling conditional configuration stored in ue
WO2021228137A1 (zh) * 2020-05-15 2021-11-18 夏普株式会社 小区变更方法以及用户设备

Also Published As

Publication number Publication date
CN117882434A (zh) 2024-04-12

Similar Documents

Publication Publication Date Title
JP7274624B2 (ja) セカンダリセルビームリカバリ
US10420009B2 (en) Methods and devices for determining and using Device-to-Device relay node
JP7315681B2 (ja) 無線リンクモニタリング、ビーム障害検出、及びビーム障害回復のためのユーザ装置からネットワークへの報告
US20220167233A1 (en) Method, apparatus and system for mobility control
US11729846B2 (en) Method for activating packet data convergence protocol duplication and node device
EP2802165B1 (en) Indication of device to device communication state to base station
US20230379789A1 (en) Handling conditional pscell change (cpc) upon sn release
US11330643B2 (en) Method and device for implementing wireless backhaul, and base station
US20230110774A1 (en) Cell group processing method and apparatus and communication device
EP3787340A1 (en) Communication method and device
CN110856267B (zh) 一种通信方法及设备
WO2022011500A1 (zh) 配置方法和装置
US20240276271A1 (en) Expedited measurement reporting (xmr)
CN112399444B (zh) 数据传输方法及相关设备
KR20230124693A (ko) 포지셔닝 설정 방법 및 전자 장치
KR20230125315A (ko) 빔 지시 방법, 장치 및 통신 기기(beam indicationmethod and apparatus, and communication device)
KR20220004135A (ko) 랜덤 액세스 방법 및 장치
TW201735711A (zh) 基於設備到設備的通訊方法和終端
WO2023102677A1 (zh) 通信方法、终端设备及网络设备
RU2741328C1 (ru) Способ произвольного доступа, оконечное устройство и сетевое устройство
EP3905736A1 (en) Device discovery method, apparatus, and system
WO2024164321A1 (zh) 无线通信方法及终端设备
WO2023131239A1 (zh) 间隙Gap信息传输方法、装置和网络侧设备
WO2024168805A1 (zh) 无线通信方法、终端设备及网络设备
WO2024029091A1 (ja) 端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180101900.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE