WO2021228137A1 - 小区变更方法以及用户设备 - Google Patents

小区变更方法以及用户设备 Download PDF

Info

Publication number
WO2021228137A1
WO2021228137A1 PCT/CN2021/093311 CN2021093311W WO2021228137A1 WO 2021228137 A1 WO2021228137 A1 WO 2021228137A1 CN 2021093311 W CN2021093311 W CN 2021093311W WO 2021228137 A1 WO2021228137 A1 WO 2021228137A1
Authority
WO
WIPO (PCT)
Prior art keywords
scg
cpc
cell
pscell
deactivation
Prior art date
Application number
PCT/CN2021/093311
Other languages
English (en)
French (fr)
Inventor
常宁娟
刘仁茂
Original Assignee
夏普株式会社
常宁娟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 常宁娟 filed Critical 夏普株式会社
Publication of WO2021228137A1 publication Critical patent/WO2021228137A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0061Transmission or use of information for re-establishing the radio link of neighbour cell information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • H04W36/085Reselecting an access point involving beams of access points

Definitions

  • the present disclosure relates to the field of wireless communication technology, and more specifically, the present disclosure relates to a cell change method and corresponding user equipment.
  • One of the research purposes of a 5G technical standard research project of version 16 is to find one of the requirements for network mobility: seamless handover , That is, it can meet the handover interruption time of 0 milliseconds or close to 0 milliseconds in the cell handover process, and enhance the robustness of handover and reduce the handover failure rate.
  • One of the technical means used to reduce the interruption time in the cell change process and/or enhance the robustness of the cell change is conditional handover (Conditional HandOver, CHO) or Conditional Reconfiguration (Conditional Reconfiguration).
  • condition-based reconfiguration can be applied to the change of primary and secondary cell (Primary Secondary Cell Group Cell, PSCell), which is called Conditional PSCell Change (Conditional PSCell Change, CPC).
  • PSCell Primary Secondary Cell Group Cell
  • CPC Conditional PSCell Change
  • the base station issues a CPC conditional reconfiguration command to UE (User Equipment) in advance, where the conditional reconfiguration command includes execution condition configuration.
  • the UE executes the CPC according to the received and saved conditional reconfiguration command only when the configured execution condition is satisfied.
  • the early issuance of the conditional reconfiguration command can enable the UE to obtain the reconfiguration command for PSCell change in advance, thereby improving the success rate of PSCell change, and avoiding the inability to obtain the reconfiguration command for PSCell change in time before the PSCell link becomes bad. And the time delay caused by the failure of PSCell change to business interruption.
  • the 3GPP RAN working group passed a version 17 research project (participated in the 3GPP document RP-193249 (New WID on further enhancements on Multi-Radio Dual-Connectivity)).
  • a dynamic secondary cell group Secondary Cell Group, SCG
  • SCG Secondary Cell Group
  • the present disclosure proposes a solution to the problem of how to manage and execute CPC under the introduction of SCG activation/deactivation mechanism in the NR system.
  • the purpose of the present disclosure is to propose a solution to the problem of how to manage and execute CPC under the introduction of SCG activation/deactivation mechanism in the NR system.
  • the present disclosure provides a cell change method and corresponding user equipment.
  • a cell change method which includes: a user equipment UE receives a condition-based primary and secondary cell change CPC configuration; the UE performs a CPC condition reconfiguration evaluation, from one or more CPC candidate cells The CPC trigger cell is determined; the UE judges whether the secondary cell group SCG is in a deactivated state; the UE executes the CPC processing based on the judgment result of the deactivated state of the SCG.
  • the UE determines whether the result of the CPC condition reconfiguration evaluation satisfies the configured one or more of the configured CPC candidate cells. Multiple conditions.
  • the UE when the SCG is in the activated state, the UE performs the CPC operation of the CPC-triggered cell; when the SCG is in the deactivated state, the UE The CPC is not executed to trigger the CPC operation of the cell.
  • the UE when the SCG is in a deactivated state, the UE activates the SCG and executes the CPC to trigger the CPC operation of the cell.
  • the UE performs at least one of the following operations when activating the SCG: operation 1: activating all secondary cells SCells in the SCG whose states are configured as active; operation 2: activating the SCG The primary and secondary cell PSCell corresponding to the SCG; Operation 3: Activate the cells activated in Operation 1 and Operation 2 to activate the downlink bandwidth part BWP and the uplink bandwidth part BWP indicated by the firstActiveDownlinkBWP-Id information element and/or the firstActiveDownlinkBWP-Id information element, respectively ; Operation 4: Start or restart the timer associated with the secondary cell Scell or primary and secondary cell PSCell for controlling the cell activation and deactivation state; Operation 6: Restore all the data radio bearer DRB and signaling radio bearer SRB associated with the SCG Operation 7: Start or restart the uplink time alignment timer associated with the uplink time advance group TAG for the SCG/PSCell or PSCell;
  • the saved CPC configuration associated with the CPC-triggered cell is applied.
  • a cell change method which includes: a user equipment UE receives a condition-based primary and secondary cell change CPC configuration, and performs CPC condition reconfiguration evaluation; the UE determines that the secondary cell group SCG is deactivated , Execute the SCG deactivation operation, and stop the CPC condition reconfiguration evaluation.
  • the UE determines that the SCG is deactivated.
  • the UE determines that the SCG deactivation occurs at the moment when the SCG is activated to deactivated, or the UE is already in the SCG deactivated state.
  • a user equipment including: a processor; and a memory storing instructions; wherein the instructions execute the cell change method according to the context when the instructions are executed by the processor.
  • FIG. 1 shows a processing flowchart of the cell change method according to the fourth embodiment.
  • FIG. 2 shows a processing flowchart of another example of a cell change method according to the fifth embodiment.
  • FIG. 3 is a diagram schematically showing the activation/deactivation (activation/deactivation) MAC CE of the SCell.
  • FIG. 4 is a block diagram showing the user equipment UE involved in the present disclosure.
  • cell change refers to PSCell change, that is, the PSCell of the UE is changed from the source PSCell to the target PSCell, where the source PSCell and the target PSCell can be the same cell It can also be a different cell.
  • the secret key or security algorithm used for access layer security can also be updated or not updated accordingly.
  • the source PSCell is also called the source base station, it can also be the source beam (beam), the source transmission point (TRP), the source secondary cell group (Secondary Cell Group, SCG), and the target PSCell can also be called the target base station. It is the target beam, the target transmission point, and the target SCG.
  • the source PSCell refers to the PSCell that is connected to serve the UE before the PSCell change process is initiated.
  • the target PSCell refers to the PSCell that the UE is connected to to serve the UE after the PSCell change process is successfully completed, or the cell indicated by the target PSCell cell identifier included in the PSCell change command.
  • the source PSCell is also called the source cell
  • the target PSCell is also called the target cell.
  • the PSCell change command described in the present disclosure is an RRC reconfiguration message including a synchronization reconfiguration (Reconfigurationwithsync) information element in the SCG configuration in the NR system, which is also referred to as SCG synchronization reconfiguration.
  • the synchronization reconfiguration information element includes one or more configuration information of the following target cell, such as target cell identity, target cell frequency, common configuration of the target cell, such as system information, and random information used by the UE to access the target cell.
  • Cancel, release, delete, empty and clear can be replaced.
  • Execution, use and application can be replaced.
  • Configuration and reconfiguration can be replaced. Links and connections can be replaced. Monitor and detect can be replaced.
  • the UE establishes links with two base stations at the same time, that is, the radio resources used by the UE are provided by different schedulers located in the two base stations.
  • the radio access between the two base stations and the UE can be the same or different (Radio Access Technology, RAT), such as NR, or one NR, and one LTE (Evolved Universal Terrestrial Radio Access). Terrestrial Radio Access, E-UTRA).
  • RAT Radio Access Technology
  • NR Universal Terrestrial Radio Access
  • LTE Evolution Universal Terrestrial Radio Access
  • the MCG includes a primary cell (Primary Cell, PCell) and optionally one or more secondary cells (Secondary Cell, SCell).
  • PCell works on the main frequency, and the UE performs the initial connection establishment process or the connection re-establishment process through the main frequency.
  • the SCG includes one PSCell and optionally one or more SCells.
  • the PSCell refers to the SCG cell where the UE performs random access when performing the synchronization reconfiguration process or the SCG adding process.
  • PCell and PSCell are also collectively referred to as special cell SpCell.
  • the SCG is an example of SCG in dual-connected DC, but it is not limited to SCG only in dual-connected DC. For example, it may be more than two connections, that is, the UE is connected to more than two base stations. In this case, the operation described in the embodiment is performed on a corresponding SCG.
  • condition-based PSCell change CPC is used to enhance the robustness of PSCell change.
  • a relatively conservative measurement report threshold is set, so that the base station obtains the measurement result in advance, and performs CPC preparation in advance according to the measurement result and the selected target base station.
  • the base station can perform RRC reconfiguration and CPC execution including one or more CPC candidate cells and their corresponding RRC reconfiguration information elements including synchronous reconfiguration information elements before the actual PSCell change conditions (relative to the conservative measurement report threshold) are met.
  • the conditional CPC command is issued to the UE, where, preferably, different CPC candidate cells correspond to different CPC execution conditions.
  • the UE After the UE receives the CPC command, it does not immediately perform the PSCell cell change, but saves the received CPC configuration, and starts to monitor the link quality of the source cell and/or the link of the target cell according to the execution conditions carried in the CPC configuration The quality of the road is used to evaluate whether the CPC execution conditions are met. Only when it is monitored that the execution conditions of one or more of the configured candidate cells are met, the UE selects a candidate cell that meets the conditions as the target cell, starts to apply the saved RRC reconfiguration corresponding to the cell, and accesses the target cell.
  • CPC refers to the PSCell change process that is executed only when one or more of the configured CPC execution conditions are met.
  • one or more conditions can be configured for a candidate cell, and one condition can be indicated by configuring a measurement identifier.
  • the measurement identifier is associated with a measurement object identifier and a report configuration identifier.
  • the report configuration pointed to by the report configuration identifier includes the configuration of the conditional event used for conditional reconfiguration.
  • the conditional event is a measurement event.
  • the condition is a conditional measurement event A3 (the signal quality of the neighboring cell is better than that of the PCell or PSCell cell by more than an offset for a period of time).
  • conditional measurement event A5 the signal quality of the neighboring cell is better than an absolute threshold 2 and the signal quality of the PCell or PSCell cell is worse than an absolute threshold 1 for a period of time
  • the neighboring cell corresponds to the conditional reconfiguration candidate for handover Community.
  • the present disclosure does not limit the measurement event used for conditional reconfiguration.
  • CPC is also called conditional reconfiguration, and further refers to conditional reconfiguration for SCG or conditional reconfiguration for PSCell.
  • conditional reconfiguration is used in the process of PSCell addition
  • CPC is also called Conditional PSCell Addition Change (Conditional PSCell Addition Change).
  • CPC configuration, CPC command and RRC message containing CPC configuration are interchangeable.
  • the UE energy-saving mechanism at cell granularity in the existing mechanisms is the UE energy-saving mechanism at cell granularity in the existing mechanisms:
  • the SCell can be deactivated or the bandwidth part (Bandwidth Part, BWP) of the SCell's working bandwidth can be changed to the dormant BWP method to reduce the UE's presence on an SCell. Power consumption.
  • BWP Bandwidth Part
  • one or more SCells are activated or deactivated mainly through Medium Access Control (MAC) Control Element (CE) or Radio Resource Control (Radio Resource Control) signaling.
  • MAC Medium Access Control
  • CE Control Element
  • Radio Resource Control Radio Resource Control
  • the SCell deactivation timer associated with the SCell running on the UE expires or stops, the UE deactivates the corresponding SCell.
  • the UE receives an SCell activation and deactivation MAC CE if the bit corresponding to an SCell in the MAC CE is set to "1" (indicating to activate the SCell), the UE activates the SCell; if it is set to "0" (indicating to Activate the SCell), the UE deactivates the SCell.
  • the UE activates the SCell; otherwise, if the sCellState of the SCell in the RRC message received by the UE is not set to "activated” or set to "deactivated”. Then the UE deactivates the SCell.
  • sCellState information element
  • the UE When an SCell is in the active state, the UE performs normal operations on the SCell, including, for example, sending uplink and downlink data normally on the SCell, sending sounding reference signals (Sounding Reference Signal, SRS) on the SCell, and the channel used for the SCell Status indication (Channel State Information, CSI) reporting, physical downlink control channel (Physical Downlink Control Channel, PDCCH) monitoring on the SCell, PDCCH monitoring for the SCell and physical uplink control channel (Physical Uplink) on the SCell Control Channel, PUCCH) transmission, etc.
  • SRS Sounding Reference Signal
  • CSI Channel State Information
  • the UE stops the timer associated with the SCell, deactivates the activated BWP associated with the SCell, clears the downlink assignment (downlink asignment) of the configuration associated with the SCell or the type 2 uplink grant ( Configured Grant, CG), suspend the type 1 configured uplink grant, clear the hybrid automatic retransmission HARQ buffer associated with the SCell, and so on.
  • the UE does not perform normal operations on the SCell, including one or more of the following: not sending the sounding reference signal SRS on the SCell, not performing the channel state indication CSI report for the SCell, Do not perform physical downlink control channel PDCCH monitoring on the SCell, do not perform PDCCH monitoring for the SCell, do not perform the physical uplink control channel PUCCH transmission on the SCell, and do not send the uplink shared channel (Uplink Shared Channel, UL- SCH) and random access channel (Random Access Channel, RACH).
  • the uplink shared channel Uplink Shared Channel, UL- SCH
  • random access channel Random Access Channel
  • the base station configures an SCell dormant BWP identifier for the UE through RRC signaling.
  • the activated BWP of an SCell is a dormant BWP, it can be considered that the BWP or the SCell is in a dormant state.
  • the base station notifies the UE to work on the dormant BWP through RRC signaling or Downlink Control Information (DCI) for BWP change.
  • DCI Downlink Control Information
  • the operation of the UE includes one or more of the following: not monitoring the PDCCH on the BWP, not monitoring the PDCCH used for the BWP, and not receiving the Downlink Shared Channel on the BWP. , DL-SCH), do not perform CSI measurement for the BWP, stop all uplink behaviors associated with the SCell, etc.
  • the energy-saving mechanism of the aforementioned SCell is not applicable to the PSCell, that is to say, currently in version 16, the SpCell including the PCell and the PSCell is always in an active state.
  • the PSCell that is to say, currently in version 16
  • the SpCell including the PCell and the PSCell is always in an active state.
  • the power overhead caused by unnecessary uplink and downlink transmission or link detection is further saved.
  • One way is to introduce the activation and deactivation mechanism of the SCG, which can use the dynamically changing UE service volume/service rate by rapidly activating and deactivating the SCG, thereby improving power utilization.
  • the content and embodiments described in this disclosure focus on how to realize the activation and deactivation mechanism of SCG and how to execute CPC under the SCG activation and deactivation mechanism, so as to realize the activation and deactivation of SCG and solve the simultaneous configuration of CPC and SCG activation and deactivation.
  • the activation/deactivation of the SCG, the resume/suspension of the SCG, and the activation/deactivation of the PSCell can be replaced.
  • the SCG activation deactivation command is a collective term for the SCG activation command and the SCG deactivation command.
  • This embodiment provides a method for how to manage the CPC configuration when the UE is configured with the SCG activation and deactivation mechanism and CPC at the same time.
  • the UE can configure the SCG deactivation mechanism and CPC at the same time, but does not use these two mechanisms at the same time.
  • the UE deletes the saved CPC configuration.
  • Step 1 The UE judges that the SCG is deactivated and executes the SCG deactivation operation.
  • the UE determines that the SCG is deactivated when the UE receives the SCG deactivation instruction sent by the network side, or the timer used to control the activation and deactivation of the SCG expires.
  • the timer refers to that when the timer is running, the UE considers that the SCG is in an active state; when the timer expires or stops, the UE considers that the SCG enters a deactivated state.
  • the SCG deactivation indication may be included in RRC signaling, or may be in a manner of MAC CE or physical layer signaling DCI.
  • Step 2 The UE deletes the saved CPC configuration.
  • step 2 the UE deletes all saved entries for SCG conditional reconfiguration.
  • the one entry corresponds to a CPC configuration of a CPC candidate cell, and the CPC configuration includes a conditional reconfiguration identifier, a conditional reconfiguration trigger condition configuration, and an RRC reconfiguration message of the candidate cell that includes a synchronization reconfiguration information element.
  • the UE deletes the measurement report configuration identifier, the measurement object identifier, and the measurement identifier associated with the conditional reconfiguration used for the SCG. That is, the UE performs one or more of the following: For each measurement identifier, if the report type (reportType) of the associated report configuration is set to the conditional trigger configuration (condTriggerConfig), then the measurement from the measurement configuration variable (VarMeasConfig) Remove the entry of the measurement identifier from the identifier list; for each associated report configuration identifier (reportConfigId), remove the entry of the report configuration identifier from the report configuration list in the measurement configuration variable; if the associated measurement object identifier Only a report configuration (reportConfig) whose report type is set to a conditional trigger configuration is associated with, and the item identified by the measurement object is removed from the measurement object list in the measurement configuration variable.
  • the UE deletes the measurement report configuration identifier, the measurement object identifier, and the measurement identifier associated with the conditional
  • This embodiment provides a configuration method in which the UE does not configure the SCG activation and deactivation mechanism and the CPC at the same time, that is, the UE will not be enabled with the SCG activation and deactivation mechanism and the CPC configured at the same time.
  • the base station does not configure SCG activation and deactivation related parameters and CPC configuration for a UE at the same time.
  • the RRC configuration when the information element used to configure the CPC (such as the RRC reconfiguration message for SCG configuration or the conditionalReconfiguration information element included in the SCG configuration) is configured, the RRC signaling associated with the UE is not included.
  • the information element used for the parameter configuration of the SCG activation and deactivation mechanism exists, there is no information element used to configure the CPC in the RRC signaling associated with the UE (such as included in the RRC reconfiguration for SCG configuration).
  • the parameter configuration of the SCG activation and deactivation mechanism includes a timer for SCG deactivation, a timer for PSCell deactivation, and a timer for indicating SCG activation or deactivation status or instructing UE to activate or deactivate SCG.
  • Information elements for PSCell, sleep BWP configuration (such as sleep BWP identification), longer period Discontinuous Reception (DRX) configuration for PSCell for details, please refer to the following embodiments, for example, embodiment 8. ).
  • This embodiment provides a method for how to execute the CPC process when the UE is configured with the SCG deactivation mechanism and CPC at the same time.
  • the UE can configure the SCG activation and deactivation mechanism and CPC configuration at the same time, but does not use these two mechanisms at the same time.
  • the SCG is deactivated, the UE does not perform the condition evaluation operation of the CPC.
  • Step 1 The UE judges that the SCG is deactivated and executes the SCG deactivation operation.
  • This step is the same as step 1 in Example 1.
  • the UE determines that the SCG deactivation may occur at the moment when the SCG is activated to deactivate, or the UE is already in the SCG deactivated state.
  • Step 2 The UE stops the condition evaluation of the CPC, that is, the UE stops performing the conditional reconfiguration evaluation operation.
  • step 1 of this embodiment includes that the UE receives the CPC configuration, saves the CPC configuration, and reconfigures according to the execution condition contained in the CPC configuration to evaluate whether the execution condition is satisfied.
  • FIG. 1 shows a processing flow chart of the cell change method according to Embodiment 4. Specifically, as an example, it shows the cell change method when the UE is configured with SCG deactivation activation and CPC at the same time.
  • the cell change method involved in Embodiment 4 may include but is not limited to the following steps.
  • Step 1 UE performs CPC condition reconfiguration evaluation.
  • the UE determines that for the configured one or more CPC candidate cells, its conditional reconfiguration evaluation result is that the configured one or more conditions are satisfied. More specifically, it may be that if the measurement events associated with all measurement identifiers in the condition trigger configuration of a target candidate cell are satisfied, the UE considers the target candidate cell to be a trigger cell.
  • Step 2 The UE judges whether the SCG is in the deactivated state. If so, the UE does not perform the CPC operation of the CPC-triggered cell in step 1, that is, does not apply the saved CPC configuration associated with the CPC-triggered cell; otherwise, if the SCG is in the activated state, The UE performs the CPC operation of the CPC-triggered cell in step 1, that is, applies the stored CPC configuration associated with the CPC-triggered cell. Optionally, if there are multiple trigger cells in step 1, the UE selects one of the trigger cells to perform the CPC operation in step 2.
  • the CPC operation is to apply the saved CPC to trigger the conditional reconfiguration associated with the cell.
  • the conditional reconfiguration refers to the configuration included in the RRC reconfiguration message of the candidate cell in the CPC configuration.
  • the UE receives the CPC configuration and saves the received CPC configuration.
  • This embodiment provides a method for how to perform the CPC process when the UE is configured with the SCG activation and deactivation mechanism and the CPC configuration at the same time.
  • the UE executes the conditional reconfiguration evaluation operation for CPC. When the evaluation determines that the trigger condition is met, the UE executes the CPC. If the SCG is in the deactivated state at this time, the UE first activates the SCG and then executes the CPC, or when the CPC is executed The SCG is activated during the process, which means that the PSCell change process of the CPC occurs when the SCG is activated.
  • FIG. 2 shows a processing flowchart of another example of a cell change method related to Embodiment 5. Specifically, it shows another example of a cell change method when the UE is configured with SCG deactivation activation and CPC at the same time. As shown in FIG. 2, the cell change method involved in Embodiment 5 may include but is not limited to the following steps.
  • Step 1 UE performs CPC condition reconfiguration evaluation.
  • the UE determines that for one or more CPC candidate cells, its conditional reconfiguration evaluation result is satisfied. More specifically, it may be that if the measurement events associated with all measurement identifiers in the condition trigger configuration of a target candidate cell are satisfied, the UE considers the target candidate cell to be a trigger cell.
  • Step 2 The UE judges whether the SCG is in a deactivated state. If so, the UE activates the SCG, and the UE executes the CPC operation of the CPC-triggered cell in step 1, that is, applies the saved CPC configuration associated with the CPC-triggered cell.
  • the CPC configuration refers to the configuration included in the RRC reconfiguration message of the candidate cell used in the conditional reconfiguration of the CPC.
  • the UE selects one of the trigger cells to perform the CPC operation in step 2.
  • This step does not limit the sequence of activating the SCG and performing the CPC operation (for example, the SCG activation operation can be performed before or during the execution of the CPC process).
  • the UE receives the CPC configuration and saves the CPC configuration.
  • the operation of the UE in activating the SCG in step 2 can be referred to but not limited to those described in other embodiments.
  • This embodiment provides a UE behavior when the SCG is activated.
  • the UE When the UE changes an SCG from the deactivated state to the activated state, the UE performs one or more of the following operations:
  • Operation 1 Activate all SCells in the SCG, and execute it at the MAC layer or the RRC layer.
  • Operation 2 Activate the PSCell corresponding to the SCG, and execute it at the MAC layer or the RRC layer.
  • Operation 3 Activate the downlink BWP and uplink BWP indicated by the firstActiveDownlinkBWP-Id information element and/or the firstActiveDownlinkBWP-Id information element, respectively; where the firstActiveDownlinkBWP-Id information element and the firstActiveDownlinkBWP-Id information element are sent by the network side through RRC signaling (such as RRC) Reconfiguration message) configuration, used to indicate the downlink/uplink BWP identifier that is activated when the configuration of the RRC signaling is performed or the downlink/uplink BWP identifier used when the MAC layer activates an SCell or PSCell, executed at the MAC layer .
  • RRC signaling such as RRC
  • Operation 4 Start or restart the sCellDeactivationTimer timer associated with the Scell or PSCell; wherein the sCellDeactivationTimer is used to control the activation and deactivation state of the SCell or PSCell.
  • the UE considers the associated cell to be in the deactivation state
  • the UE considers the associated cell to be active.
  • the operation includes starting the restarted SCGdeactivationTimer timer associated with the SCG, where the sCellDeactivationTimer is used to control the activation and deactivation state of the SCG.
  • the operation includes stopping the SCG activation and deactivation timer.
  • the SCG activation and deactivation timer is used to control the activation and deactivation state of the SCG.
  • the UE considers the associated SCG to be in the activated state.
  • the UE performs the state change operation from the SCG deactivated state to the activated state as described in this embodiment; when it is running, the UE considers the associated SCG to be in the deactivated state.
  • Operation 5 Initialize or reinitialize the suspended type 1 configuration uplink grant associated with the SCell or PSCell; it is performed at the MAC layer of the UE.
  • the above operations 3 to 5 are performed when the firstActiveDownlinkBWP-Id is not set as a dormant BWP.
  • the SCG activation command is MAC CE or RRC signaling
  • the SCell in operation 1 refers to all SCells whose activation status is indicated as being activated
  • the above operations 3 to 5 are also performed on all SCells whose activation status is indicated as being activated.
  • Operation 6 Restore all the DRBs and SRBs associated with the SCG. Including the SCG part of the split bearer. Performed at the RRC layer of the UE.
  • Operation 7 Start or restart the uplink time alignment timer timeAlighmentTimer for uplink time alignment associated with the uplink timing advance group (Timing Advance Group, TAG) used for SCG/PSCell or PSCell; it is executed at the MAC layer of the UE.
  • TAG Timing Advance Group
  • Operation 8 Perform the operation of resetting the MAC entity; preferably, the operation of resetting the MAC entity does not include canceling the triggered Buffer Status Report (BSR) process. Executed at the MAC layer of the UE.
  • BSR Buffer Status Report
  • Operation 9 Trigger the random access procedure of the PSCell.
  • the UE determines whether to perform the random access procedure based on the random access indication information in the SCG activation command.
  • the UE executes the random access procedure of the PSCell.
  • the random access parameter refers to the physical random access channel PRACH time-frequency resource, synchronization signal block (Synchronization Signal Block, SSB)/channel status information reference signal (Channel Status) for performing the RACH process Information Reference Signal (CSIRS) reference signal received power (Reference Signal Received Power, RSRP) threshold configuration and priority parameters (such as ra-Prioritization information element), etc.
  • CSIRS RACH process Information Reference Signal
  • RSRP Reference Signal Received Power
  • priority parameters such as ra-Prioritization information element
  • Operation 10 If the SCG activation command is obtained through the received MAC CE, or the SCG activation decision is determined by the MAC entity, such as when the BSR is triggered or the random access process is triggered, then The MAC entity indicates the SCG activation information to the upper layer (such as the RRC layer).
  • the SCG activation command is obtained through physical layer signaling DCI, for example, the SCG activation field included in the DCI indicates SCG activation or the BWP identifier included in the DCI indicates that the BWP is not a dormant BWP, then
  • the physical layer indicates the SCG activation information or the PSCell activation information or the BWP change information to the upper layer (such as the MAC layer or the RRC layer).
  • the DCI refers to the DCI used for the PSCell or SCell of the SCG, and in this case, the BWP refers to the BWP configured by the PSCell or the SCell.
  • Operation 12 If the SCG activation command is obtained through the received RRC signaling, or the SCG activation decision is determined by the RRC, if the CPC execution process is triggered, the RRC layer lowers the layer (e.g. MAC layer) indicates the SCG activation information.
  • the SCG activation information may also be expressed as the PSCell activation information.
  • the UE When the UE receives the SCG activation command, it performs the operation from the SCG deactivated state to the SCG activated state, or the MAC layer or RRC layer of the UE receives the inter-layer interaction indication information of operations 10 to 12, such as the information indicating SCG activation , Perform the above-mentioned related operations.
  • This embodiment provides a UE behavior when the SCG is deactivated.
  • the UE When the UE changes an SCG from the active state to the active state, the UE performs one or more of the following operations:
  • Operation 1 Deactivate all SCells in the SCG, and perform it at the MAC layer or the RRC layer.
  • Operation 2 Deactivate the PSCell corresponding to the SCG, and perform it at the MAC layer or the RRC layer.
  • Operation 3 Deactivate the PSCell of the SCG or all BWPs of the SCell, and perform it at the MAC layer.
  • Operation 4 Stop the sCellDeactivationTimer timer associated with the SCell, PSCell, or SCG; wherein, the sCellDeactivationTimer is used to control the activation and deactivation state of the SCell, PSCell, or SCG.
  • the UE considers the associated cell or SCG to be deactivated. Active state.
  • the UE When it times out, the UE considers the associated SCG to be in the activated state, The UE performs the state change operation from the SCG deactivated state to the activated state as described in this embodiment; when it is running, the UE considers that the associated SCG is in the deactivated state.
  • Operation 5 Suspend the suspended uplink grant and/or downlink allocation of the type 1 configuration associated with the SCell or PSCell, and clear the uplink grant of the response type 2 configuration; execute it at the MAC layer of the UE.
  • Operation 6 Suspend all the DRBs and SRBs associated with the SCG. Including the SCG part of the split bearer. Performed at the RRC layer of the UE.
  • Operation 7 Stop the uplink time alignment timer used for uplink time alignment associated with the SCG; execute it at the MAC layer of the UE. In another manner, this operation can also be performed as applying SCG to the uplink time alignment timer timeAlignmentTimer to deactivate the associated timer value.
  • the value of the timer refers to the value used to configure the duration of the timer (configured by the timeAlignmentTimer information element in the TAG-Config information element); the timer refers to the timer corresponding to the TAG associated with the PSCell of the SCG or the SCell.
  • the timer value associated with the SCG deactivation means that the configuration of the timer duration value in the SCG deactivated state is different from the timer duration value used in the SCG activated state.
  • Operation 8 Perform the operation of resetting the MAC entity; it is performed at the MAC layer of the UE.
  • Operation 9 If the SCG deactivation command is obtained through the received MAC CE, or the SCG deactivation decision is determined by the MAC entity, such as when the deactivation timer associated with the PSCell expires or When the timer associated with the SCG deactivation expires, the MAC entity instructs the upper layer (such as the RRC layer) to deactivate the SCG.
  • the MAC entity instructs the upper layer (such as the RRC layer) to deactivate the SCG.
  • the SCG deactivation command is obtained through physical layer signaling DCI
  • the SCG deactivation field included in the DCI indicates SCG deactivation or the BWP identifier included in the DCI indicates that the BWP is dormant BWP
  • the physical layer indicates the SCG deactivation information or the PSCell deactivation information or the BWP change information to the upper layer (such as the MAC layer or the RRC layer).
  • the DCI refers to the DCI used for the PSCell or SCell of the SCG
  • the BWP refers to the BWP configured by the PSCell or the SCell.
  • Operation 11 If the SCG deactivation command is obtained through the received RRC signaling, or the SCG deactivation decision is determined by the RRC, if the CPC execution process is triggered, the RRC layer is lowered (E.g. MAC layer) Information indicating the deactivation of the SCG.
  • the SCG deactivation information may also be expressed as the PSCell deactivation information.
  • Operation 12 If a DRB or SRB is configured as a split bearer, and if its primary path information element primaryPath is set to SCG, set the primary path or primarypath information element to MCG. Preferably, this operation is performed when the RB is not configured for PDCP duplication (indicated by the pdcp-Duplication information element).
  • the primarypath information element is used to indicate the logical channel identifier and cell group identifier of the primary RLF entity used for uplink transmission when a bearer PDCP entity is associated with more than one RLC entity.
  • Operation 13 Change the currently activated working BWP of the PSCell and/or SCell of the SCG to a dormant BWP.
  • the UE When the UE receives the SCG deactivation command or when the UE judges that the SCG is deactivated (such as the corresponding deactivation timer expires), it executes the operation from the SCG activated state to the SCG deactivated state, or the MAC layer or RRC of the UE When the layer receives the inter-layer interaction indication information of operations 9-11, such as the information indicating the deactivation of the SCG, it performs the above-mentioned related operations.
  • the SCG activation/deactivation command may be included in RRC signaling, MAC CE, or physical layer L1 signaling DCI.
  • the SCG deactivation command may indicate the status of the PSCell or each SCell, such as indicating that the cell is in a deactivated state, or indicating that the cell is changed to activate a working BWP to a dormant BWP.
  • This embodiment provides an SCG activation and deactivation state, which is applicable to but not limited to the UE behavior in the SCG activation and deactivation state in other embodiments of the present disclosure.
  • the UE operation in the SCG deactivated state includes one or more of the following:
  • the DRB or SRB associated with the SCG is in a suspended state
  • the PSCell and SCell of the SCG work on the dormant BWP corresponding to the cell.
  • the UE in the SCG activated state performs normal communication operations of the PSCell and SCell of the SCG, including one or more subordinates:
  • the DRB or SRB associated with the SCG is in a non-suspended state
  • the PSCell and SCell of the SCG do not work on the dormant BWP corresponding to the cell.
  • the SCG when the SCG is in the active state, only the PSCell is restricted to be in the active state or the PSCell does not work on the dormant BWP, and one or more SCells are allowed to be in the deactivated state or work on the dormant BWP.
  • the item is for the PSCell and SCell in the activated state or the SCell working on the non-sleeping BWP.
  • the UE operation in the SCG deactivated state includes one or more of the following:
  • the UE is in a state of receiving DRX configuration using deep discontinuity.
  • the deep DRX state means that only a longer DRX cycle is used, for example, the DRX cycle is greater than 10240 milliseconds.
  • the deactivation of the SCG can also be expressed as the dormancy of the SCG.
  • both PSCell and SCell in the SCG work on the dormant BWP.
  • the UE considers that the SCG has changed from the activated state to the deactivated state, and executes the change from the activated state to the activated state as described in the above embodiment. Operation in deactivated state.
  • the deactivation of the SCG and the deactivation of the PSCell are equivalent, that is, when the PSCell is deactivated or the activated BWP of the PSCell is changed to a dormant BWP, the UE considers the SCG Deactivation; When the PSCell is activated or the activated BWP of the PSCell is changed from the dormant BWP to another BWP, the UE considers that the SCG is activated. In one manner, the activation/deactivation state of the SCG/PSCell reuses the activation/deactivation (activation/deactivation) MAC CE of the SCell in the existing mechanism.
  • Figure 3 is a diagram schematically showing the activation/deactivation (activation/deactivation) MAC CE of the SCell, where (a) represents the activation/deactivation (activation/deactivation) MAC CE of one byte, and (b) represents The activation/deactivation (activation/deactivation) MAC CE of the four-byte SCell.
  • the reserved bit "R" in the MAC CE is used to indicate the activation and deactivation state of the PSCell/SCG. If the bit is set to 1, it means it is activated, and if the bit is set to 0, it is deactivated.
  • Ci corresponds to the SCell whose SCell is identified as i, and the value of the Ci bit indicates the activation and deactivation state of the corresponding SCell.
  • FIG. 4 is a block diagram showing the user equipment UE involved in the present disclosure.
  • the user equipment UE40 includes a processor 401 and a memory 402.
  • the processor 401 may include, for example, a microprocessor, a microcontroller, an embedded processor, and the like.
  • the memory 402 may include, for example, volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memories.
  • the memory 402 stores program instructions. When the instruction is run by the processor 401, it can execute the above-mentioned data transmission method described in detail in the present invention.
  • base station refers to a mobile communication data and control switching center with larger transmission power and wider coverage area, including functions such as resource allocation and scheduling, data reception and transmission.
  • User equipment refers to user mobile terminals, such as mobile phones, notebooks, and other terminal devices that can communicate with base stations or micro base stations wirelessly.
  • the method and related equipment of the present disclosure have been described above in conjunction with preferred embodiments. Those skilled in the art can understand that the method shown above is only exemplary. The method of the present disclosure is not limited to the steps and sequence shown above.
  • the base station and user equipment shown above may include more modules, for example, may also include modules that can be developed or developed in the future that can be used for base stations, MMEs, or UEs, and so on.
  • the various identifiers shown above are only exemplary rather than restrictive, and the present disclosure is not limited to specific information elements as examples of these identifiers. Those skilled in the art can make many changes and modifications based on the teaching of the illustrated embodiment.
  • the program running on the device may be a program that causes the computer to implement the functions of the embodiments of the present disclosure by controlling a central processing unit (CPU).
  • the program or the information processed by the program can be temporarily stored in volatile memory (such as random access memory RAM), hard disk drive (HDD), non-volatile memory (such as flash memory), or other memory systems.
  • the program for realizing the functions of the various embodiments of the present disclosure can be recorded on a computer-readable recording medium.
  • Corresponding functions can be realized by causing the computer system to read the programs recorded on the recording medium and execute these programs.
  • the so-called "computer system” herein may be a computer system embedded in the device, and may include an operating system or hardware (such as peripheral devices).
  • the "computer-readable recording medium” may be a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a recording medium storing a program dynamically for a short time, or any other recording medium readable by a computer.
  • circuits for example, single-chip or multi-chip integrated circuits.
  • Circuits designed to perform the functions described in this specification can include general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA), or other programmable logic devices, discrete Gate or transistor logic, discrete hardware components, or any combination of the above devices.
  • the general-purpose processor may be a microprocessor, or any existing processor, controller, microcontroller, or state machine.
  • the above-mentioned circuit can be a digital circuit or an analog circuit. In the case of new integrated circuit technologies that replace existing integrated circuits due to advances in semiconductor technology, one or more embodiments of the present disclosure may also be implemented using these new integrated circuit technologies.
  • present disclosure is not limited to the above-mentioned embodiments. Although various examples of the embodiment have been described, the present disclosure is not limited thereto.
  • Fixed or non-mobile electronic equipment installed indoors or outdoors can be used as terminal equipment or communication equipment, such as AV equipment, kitchen equipment, cleaning equipment, air conditioners, office equipment, vending machines, and other household appliances.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种小区变更方法以及用户设备,所述小区变更方法包括:用户设备UE接收基于条件的主辅小区变更CPC配置;所述UE执行CPC条件重配置评估,从一个或多个CPC候选小区确定CPC触发小区;所述UE判断辅小区组SCG是否处于去激活状态;所述UE基于所述SCG的去激活状态的判断结果,执行CPC处理。

Description

小区变更方法以及用户设备 技术领域
本公开涉及无线通信技术领域,更具体地,本公开涉及小区变更方法以及对应的用户设备。
背景技术
版本16的一个5G技术标准研究项目(参见非专利文献:RP-181433:New WID on NR(New Radio)mobility enhancements)的研究目的之一是找到用于满足网络移动性需要之一:无缝切换,即在小区切换过程中能够满足0毫秒或接近0毫秒的切换中断时间,并增强切换的鲁棒性,降低切换失败率。其中用于降低小区变更过程中的中断时间和/或增强小区变更鲁棒性的技术手段之一是基于条件的切换(Conditional HandOver,CHO)或称基于条件的重配置(Conditional Reconfiguration)。在双连接(Dual Connectivity,DC)的情况下,基于条件的重配置可以应用于主辅小区(Primary Secondary cell group Cell,PSCell)的变更,此时称为基于条件的PSCell变更(Conditional PSCell Change,CPC)。在CPC机制中,基站提前下发用于CPC的条件重配置命令给UE(User Equipment,用户设备),其中条件重配置命令中包含执行条件配置。UE只有在所配置的执行条件满足时才根据收到并保存的条件重配置命令来执行CPC。这样通过条件重配置命令的提前下发可以使得UE提前获得用于PSCell变更的重配置命令,从而提高PSCell变更的成功率,避免因在PSCell链路变坏之前无法及时获取PSCell变更的重配置命令而带来的PSCell变更失败对业务中断带来的时延。
此外,3GPP RAN工作组通过了一个版本17的研究项目(参加3GPP文档RP-193249(New WID on further enhancements on  Multi-Radio Dual-Connectivity))。其中,为了进一步降低UE在双连接DC情况的功率消耗,研究目的之一是实现动态的辅小区组(Secondary Cell Group,SCG)激活/去激活机制。
本公开针对在NR系统中在引入SCG激活/去激活机制下如何管理和执行CPC的问题提出解决方法。
发明内容
本公开的目的在于针对在NR系统中在引入SCG激活/去激活机制下如何管理和执行CPC的问题提出解决方法。具体而言,本公开提供了一种小区变更方法以及相应的用户设备。
根据本公开的第一方面,提出了一种小区变更方法,包括:用户设备UE接收基于条件的主辅小区变更CPC配置;所述UE执行CPC条件重配置评估,从一个或多个CPC候选小区确定CPC触发小区;所述UE判断辅小区组SCG是否处于去激活状态;所述UE基于所述SCG的去激活状态的判断结果,执行CPC处理。
在上述第一方面的小区变更方法中,在所述CPC条件重配置评估中,所述UE对于所配置的一个或多个CPC候选小区,确定CPC条件重配置评估结果是否满足所配置的一个或多个条件。
在上述第一方面的小区变更方法中,在所述SCG处于激活状态的情况下,所述UE执行所述CPC触发小区的CPC操作;在所述SCG处于去激活状态的情况下,所述UE不执行所述CPC触发小区的CPC操作。
在上述第一方面的小区变更方法中,在所述SCG处于去激活状态的情况下,所述UE激活所述SCG,并执行所述CPC触发小区的CPC操作。
在上述第一方面的小区变更方法中,所述UE激活所述SCG时执行下述至少一项操作:操作1:激活SCG中所有状态被配置为激活状态的辅小区SCell;操作2:激活该SCG对应的主辅小区PSCell;操作3:对操作1和操作2中所激活的小区激活由 firstActiveDownlinkBWP-Id信息元素和/或firstActiveDownlinkBWP-Id信息元素分别所指示的下行带宽部分BWP和上行带宽部分BWP;操作4:启动或重启与辅小区Scell或主辅小区PSCell所关联的用于控制小区激活去激活状态的定时器;操作6:恢复所有SCG所关联的数据无线承载DRB和信令无线承载SRB;操作7:启动或重新启动用于SCG/PSCell或PSCell所述上行时间提前组TAG所关联的上行时间对齐定时器;操作8:执行重置媒介接入控制MAC实体的操作;操作9:触发PSCell的随机接入过程;操作10:UE MAC实体向上层RRC层指示所述SCG激活的信息;操作12:RRC层向MAC层指示所述SCG激活的信息。
在上述第一方面的小区变更方法中,在所述UE执行所述CPC触发小区的CPC操作时,应用所保存的所述CPC触发小区所关联的CPC配置。
根据本公开的第二方面,提出了一种小区变更方法,包括:用户设备UE接收基于条件的主辅小区变更CPC配置,并执行CPC条件重配置评估;所述UE判断辅小区组SCG去激活,执行SCG去激活操作,并停止所述CPC条件重配置评估。
在上述第二方面的小区变更方法中,在所述UE接收到网络侧发送的SCG去激活指示、或者用于控制SCG激活去激活的定时器超时的情况下,所述UE判断SCG去激活。
在上述第二方面的小区变更方法中,所述UE判断SCG去激活发生在SCG从激活到去激活的时刻、或者是所述UE已经处于SCG去激活状态。
根据本公开的第三方面,提供一种用户设备,包括:处理器;以及存储器,存储有指令;其中,所述指令在由所述处理器运行时执行根据上下文所述的小区变更方法。
附图说明
为了更完整地理解本公开及其优势,现在将参考结合附图的以下 描述,其中:
图1表示实施例4所涉及的小区变更方法的处理流程图。
图2表示实施例5所涉及的另一例的小区变更方法的处理流程图。
图3是示意地表示SCell的激活/去激活(activation/deactivation)MAC CE的图。
图4是表示本公开所涉及的用户设备UE的框图。
在附图中,相同或相似的结构均以相同或相似的附图标记进行标识。
具体实施方式
根据结合附图对本公开示例性实施例的以下详细描述,本公开的其它方面、优势和突出特征对于本领域技术人员将变得显而易见。
在本公开中,术语“包括”和“含有”及其派生词意为包括而非限制;术语“或”是包含性的,意为和/或。
在本说明书中,下述用于描述本公开原理的各种实施例只是说明,不应该以任何方式解释为限制公开的范围。参照附图的下述描述用于帮助全面理解由权利要求及其等同物限定的本公开的示例性实施例。下述描述包括多种具体细节来帮助理解,但这些细节应认为仅仅是示例性的。因此,本领域普通技术人员应认识到,在不背离本公开的范围和精神的情况下,可以对本文中描述的实施例进行多种改变和修改。此外,为了清楚和简洁起见,省略了公知功能和结构的描述。此外,贯穿附图,相同参考数字用于相似功能和操作。如未做特殊说明,实施例之前的术语、定义以及方法可以共用,实施例之前可协同工作。
下文以长期演进系统(Long Term Evolution,LTE)/NR移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本公开的多个实施方式。然而,需要指出的是,本公开不限于以下实施方式,而是可适用于更多其它的无线通信系统。若无特殊说明,在本公开中,小区和基站的概念可以互相替换;小区变更指的是PSCell变更,即UE的PSCell从源PSCell变更为目标PSCell,其中源PSCell和目标 PSCell可以是同一个小区也可以是不同的小区,在此过程中,用于接入层安全的秘钥或安全算法也可随之更新或不更新。源PSCell也称为源基站,也可以是源光束(beam)、源传输点(Transmission point,TRP)、源辅小区组(Secondary Cell Group,SCG),目标PSCell也可称为目标基站,也可以是目标光束、目标传输点、目标SCG。源PSCell指的是PSCell变更过程发起之前所连接的为UE服务的PSCell。目标PSCell指的是PSCell变更过程成功完成之后UE所连接的为UE服务的PSCell,或者说是PSCell变更命令中所包含的目标PSCell小区标识所指示的小区。为描述方便,源PSCell也称源小区,目标PSCell也称目标小区。本公开所述PSCell变更命令在NR系统中是SCG配置中包含同步重配置(Reconfigurationwithsync)信息元素的RRC重配置消息,也称为SCG的同步重配置。其中,所述同步重配置信息元素包含下述目标小区的一个或多个配置信息,例如目标小区标识、目标小区频率、目标小区的公共配置如系统信息、UE接入到目标小区所使用的随机接入配置、UE在目标小区的安全参数配置、UE在目标小区的无线承载配置等。取消、释放、删除、清空和清除等可以替换。执行、使用和应用可替换。配置和重配置可以替换。链路和连接可以替换。监测(monitor)和检测(detect)可替换。
下述先简要描述本公开实施例所涉及到的在先技术。
双连接(Dual Connectivity,DC):
为了提高UE的数据传输效率,UE同时与两个基站建立链路,也就是UE所使用的无线资源由位于两个基站的不同调度器提供。这两个基站与UE之间的无线接入可以是相同或不同的制式(Radio Access Technology,RAT),如都是NR,或一个是NR,一个是LTE(演进的通用陆地无线接入Evolved Universal Terrestrial Radio Access,E-UTRA)。在这两个基站中,一个称为主基站(Master Node,MN)或MgNB、MeNB,主基站下的服务小区组称为主小区组(Master Cell Group,MCG);另一个称为辅基站(Secondary Node,SN)或SgNB、SeNB,辅基站下的服务小区组称为辅小区组(Secondary Cell Group, SCG)。MCG包含一个主小区(Primary Cell,PCell)和可选的一个或多个辅小区(Secondary Cell,SCell)。PCell工作在主频率上,UE通过主频率执行初始连接建立过程或连接重建立过程。SCG包含一个PSCell和可选的一个或多个SCell。PSCell是指UE在执行同步重配置过程或SCG添加过程时执行随机接入的SCG小区。PCell和PSCell也统称为特殊小区SpCell。本公开中,所述SCG以双连接DC下的SCG为例,但并不限定仅在双连接DC情况下的SCG,比如可以是多于两个连接即UE与多于两个基站连接的情况的多个SCG,此时,实施例中所述操作是对于对应的某个SCG执行的。
基于条件的PSCell变更CPC:
如前所述基于条件的PSCell变更CPC用于增强PSCell变更的鲁棒性。在CPC机制中,设置相对保守的测量报告门限,使得基站提前获取测量结果,并根据测量结果和选定的目标基站提前执行CPC准备。这样基站可以在真正的PSCell变更条件(相对于所述保守的测量报告门限)满足之前,提前将包含一个或多个CPC候选小区及其对应的包括同步重配置信息元素的RRC重配置和CPC执行条件的CPC命令下发给UE,其中,优选地,不同的CPC候选小区对应于不同的CPC执行条件。UE收到CPC命令后,并不会立即执行PSCell小区变更,而是保存所接收到的CPC配置,并根据CPC配置中携带的执行条件开始监测源小区的链路质量和/或目标小区的链路质量以评估CPC执行条件是否满足。只有当监测到所配置的一个或多个候选小区的执行条件满足时,UE选择一个满足条件的候选小区作为目标小区,开始应用所保存的该小区对应的RRC重配置,接入到目标小区。总言之,CPC是指只有当所配置的一个或多个CPC执行条件满足时才执行的PSCell变更过程。对于执行条件,举例来说,可以为一个候选小区配置一个或多于一个条件,一个条件配置一个测量标识来指示。所述测量标识关联到一个测量对象标识和上报配置标识。所述上报配置标识所指向的上报配置中包含了用于条件重配置的条件事件的配置。条件事件是一个测量事件,比如所述条件是条件测量事件A3(在持续一段 时间内邻小区比PCell或PSCell小区信号质量好过一个偏移量)。或条件测量事件A5(在持续一段时间内邻小区信号质量好过一个绝对门限值2以及PCell或PSCell小区信号质量差过一个绝对门限值1),所述邻小区对应切换的条件重配置候选小区。本公开并不限定所述用于条件重配置的测量事件。CPC也称为条件重配置(conditional reconfiguration),更进一步地指对于SCG的条件重配置或对于PSCell的条件重配置。在条件重配置用于PSCell添加的过程时,CPC也称条件PSCell添加变更(Conditional PSCell Addition Change)。CPC配置、CPC命令和包含CPC配置的RRC消息之间可替换。
现有机制中的小区粒度的UE节能机制:
在版本16的NR系统中,考虑到UE的业务量变化,可以通过去激活SCell或将SCell所工作的带宽部分(Bandwidth Part,BWP)变更为休眠BWP的的方法,来降低UE在一个SCell上的功率消耗。
在SCell激活去激活机制中,主要通过媒介接入控制(Medium Access Control,MAC)控制元素(Control Element,CE)或无线资源控制(Radio Resource Control)信令来激活或去激活一个或多个SCell。此外,当UE上运行的SCell所关联的SCell去激活定时器超时或停止时,UE去激活所对应的SCell。当UE收到一个SCell激活去激活MAC CE,若MAC CE中一个SCell所对应的bit设置为“1”(即指示激活该SCell),则UE激活该SCell;若设置为“0”(即指示激活该SCell),则UE去激活该SCell。此外,若UE所接收到的RRC消息中所述SCell的用于指示SCell激活去激活状态的信息元素(sCellState)被设置为“activated”。则UE激活该SCell;否则若UE所接收到的RRC消息中所述SCell的sCellState不设置为“activated”或设置为“deactivated”。则UE去激活该SCell。当一个SCell处于激活状态时,UE对该SCell执行正常操作,包括如:在该SCell正常发送上下行数据、在该SCell上发送探测参考信号(Sounding Reference Signal,SRS)、用于该SCell的信道状态指示(Channel State Information,CSI)上报、在该SCell上执行物理下行控制信道(Physical Downlink Control Channel,PDCCH) 监听、执行用于该SCell的PDCCH监听和该SCell上的物理上行控制信道(Physical Uplink Control Channel,PUCCH)发送等。当一个SCell被去激活时,UE停止该SCell所关联的定时器、去激活该SCell所关联的激活BWP、清除该SCell所关联的配置的下行分配(downlink asignment)或类型2配置的上行许可(Configured Grant,CG)、挂起类型1配置的上行许可、清空该SCell所关联的混合自动重传HARQ缓存等。对于一个处于去激活状态的SCell,UE对该SCell不执行正常操作,包括下述一项或多项:不在该SCell上发送探测参考信号SRS、不执行用于该SCell的信道状态指示CSI上报、不在该SCell上执行物理下行控制信道PDCCH监听、不执行用于该SCell的PDCCH监听、不执行该SCell上的物理上行控制信道PUCCH发送、不在该SCell上发送上行共享信道(Uplink Shared Channel,UL-SCH)和随机接入信道(Random Access Channel,RACH)。
在SCell休眠机制中,通过将激活状态下的SCell工作在一个被配置的休眠BWP上来实现进一步的节能。基站通过RRC信令对UE配置一个SCell的休眠BWP标识。当一个SCell的激活BWP是休眠BWP时,可以认为该BWP或该SCell处于休眠状态。基站通过RRC信令或用于BWP变更的下行控制信息(Downlink Control Information,DCI)来通知UE工作到休眠BWP上。对于一个休眠的BWP,UE的操作包括下述一项或多项:不监听在该BWP上的PDCCH、不监听用于该BWP的PDCCH、不接收在该BWP上的下行共享信道(Downlink Shared Channel,DL-SCH)、不执行用于该BWP的CSI测量、停止所有的与该SCell关联的上行行为等。
但上述SCell的节能机制并不适用于PSCell,也就是说目前在版本16中,包含PCell和PSCell在内的SpCell总是处于激活状态。如前所述,版本17中期望在UE业务量低时进一步节省不必要的上下行发送或链路检测所带来的功率开销。一种方式是引入SCG的激活去激活机制,通过将SCG快速激活和去激活以使用动态变化的UE业务量/业务速率,从而提高功率利用率。本公开中所述内容及实施例关注如 何实现SCG的激活去激活机制以及在SCG激活去激活机制下如何执行CPC的问题,以实现SCG的激活去激活以及解决CPC和SCG激活去激活同时配置情况下的UE操作问题。所述SCG的激活/去激活、SCG的恢复(resume)/挂起(suspension),和PSCell的激活/去激活之间可以替换。SCG激活去激活命令是对SCG激活命令和SCG去激活命令的统称。
实施例1
该实施例提供了一种UE同时配置了SCG激活去激活机制和CPC时如何管理CPC配置的方法。在该实施方式中,UE可以同时配置SCG去激活机制和CPC但是并不同时使用这两种机制。当SCG去激活时,UE删除所保存的CPC配置。
步骤1:UE判断SCG去激活,执行SCG去激活操作。
UE判断SCG去激活可以是当UE接收到网络侧发送的SCG去激活指示,或者用于控制SCG激活去激活的定时器超时。所述定时器指的是,当所述定时器运行时,UE认为SCG处于激活状态;当所述定时器超时或停止,UE认为SCG进入去激活状态。所述SCG去激活指示可以包含在RRC信令中,也可以是通过MAC CE或物理层信令DCI的方式。
步骤2:UE删除所保存的CPC配置。
在步骤2中UE删除所保存的用于SCG的条件重配置的所有条目(entry)。所述一个条目对应一个CPC候选小区的CPC配置,所述CPC配置包含条件重配置标识、条件重配置触发条件配置和候选小区的包含同步重配置信息元素的RRC重配置消息。
可选地,还包括UE删除用于SCG的条件重配置所关联的测量上报配置标识、测量对象标识以及测量标识。即UE执行下述的一项或多项:对于每一个测量标识,若所关联的上报配置的上报类型(reportType)设置为条件触发配置(condTriggerConfig),则从测量配置变量(VarMeasConfig)中的测量标识列表中移除该测量标识的条 目;对每一个所关联的上报配置标识(reportConfigId),从测量配置变量中的上报配置列表中移除该上报配置标识的条目;若所关联的测量对象标识仅关联到一个上报类型设置为条件触发配置的上报配置(reportConfig),从测量配置变量中的测量对象列表中移除该测量对象标识的条目。
实施例2
该实施例提供了一种UE不同时配置SCG激活去激活机制和CPC的配置方法,也就是说UE不会被同时使能SCG激活去激活机制和被配置CPC。
在该实施例中,基站不同时为一个UE配置SCG激活去激活相关参数和CPC配置。在RRC配置中,当用于配置CPC的信息元素(如包含在用于SCG配置的RRC重配置消息或包含在SCG配置中的conditionalReconfiguration信息元素)被配置时,该UE关联的RRC信令中不存在用于SCG激活去激活机制的参数配置的信息元素。可选地,当用于SCG激活去激活机制的参数配置的信息元素存在时,该UE关联的RRC信令中不存在用于配置CPC的信息元素(如包含在用于SCG配置的RRC重配置消息或包含在SCG配置中的conditionalReconfiguration信息元素)。优选地,所述SCG激活去激活机制的参数配置包含用于SCG去激活的定时器、用于PSCell去激活的定时器、用于指示SCG激活状态或去激活状态或命令UE激活或去激活SCG的信息元素、用于PSCell的休眠BWP配置(如休眠BWP标识)、用于PSCell的更长周期的非连续性接收(Discontinuous Reception,DRX)配置(具体可参见下述实施例,例如实施例8)。
实施例3
该实施例提供了一种UE同时配置了SCG去激活机制和CPC时如何执行CPC过程的方法。在该实施方式中,UE可以同时配置SCG激活去激活机制和CPC配置但是并不同时使用这两种机制。当SCG 去激活时,UE不执行CPC的条件评估操作。
步骤1:UE判断SCG去激活,执行SCG去激活操作。
该步骤和实施例1中步骤1相同。所述UE判断SCG去激活可以发生在SCG从激活到去激活的时刻,也可以是UE已经处于SCG去激活状态。
步骤2:UE停止CPC的条件评估,即UE停止执行条件重配置评估操作。
显然地,该实施例步骤1之前包括UE接收CPC配置,保存CPC配置并根据CPC配置中所包含的执行条件重配置评估所述执行条件是否满足。
实施例4
该实施例提供了一种UE同时配置了SCG去激活机制和CPC时如何执行CPC过程的方法。在该实施方式中,UE可以同时配置SCG去激活机制和CPC配置但是并不同时执行这两种机制。当SCG去激活时,UE执行CPC的条件评估操作,但当所述评估认为触发条件满足时,UE并不执行CPC。图1表示实施例4所涉及的小区变更方法的处理流程图,具体而言,作为一例表示UE同时配置了SCG去激活激活和CPC的情况下的小区变更方法。如图1所示,实施例4所涉及的小区变更方法可以包含但不限于如下步骤。
步骤1:UE执行CPC条件重配置评估。UE确定对于所配置的一个或多个CPC候选小区,其条件重配置评估结果是满足所配置的一个或多个条件。更具体地,可以是若与一个目标候选小区条件触发配置中的所有测量标识相关联的测量事件都满足的话,UE认为所述目标候选小区是一个触发小区。
步骤2:UE判断SCG是否处于去激活状态,若是,UE不执行步骤1中CPC触发小区的CPC操作,即不应用所保存的CPC触发小区所关联的CPC配置;否则,若SCG处于激活状态,UE执行步骤1中CPC触发小区的CPC操作,即应用所保存的CPC触发小区所关联 的CPC配置。可选地,若步骤1中有多个触发小区,则UE选择其中一个触发小区执行步骤2中的CPC操作。所述CPC操作,是应用所保存的CPC触发小区所关联的条件重配置,优选地,条件重配置指CPC配置中的候选小区的RRC重配置消息中包含的配置。
显然地,该实施例步骤1之前包括UE接收CPC配置,保存所收到的CPC配置。
实施例5
该实施例提供了一种UE同时配置了SCG激活去激活机制和CPC配置时如何执行CPC过程的方法。UE执行用于CPC的条件重配置评估操作,当所述评估认为触发条件满足时,UE执行CPC,若此时SCG处于去激活状态,则UE先激活SCG,再执行CPC,或者在执行CPC的过程中激活SCG,也就是说CPC的PSCell变更过程发生在SCG处于激活状态时。
图2表示实施例5所涉及的另一例的小区变更方法的处理流程图,具体而言,表示UE同时配置了SCG去激活激活和CPC的情况下的小区变更方法的另一例。如图2所示,实施例5所涉及的小区变更方法可以包含但不限于如下步骤。
步骤1:UE执行CPC条件重配置评估。UE确定对于一个或多个CPC候选小区,其条件重配置评估结果是满足。更具体地,可以是若与一个目标候选小区条件触发配置中的所有测量标识相关联的测量事件都满足的话,UE认为所述目标候选小区是一个触发小区。
步骤2:UE判断SCG是否处于去激活状态,若是,则UE激活所述SCG,UE执行步骤1中CPC触发小区的CPC操作,即应用所保存的CPC触发小区所关联的CPC配置。优选地,CPC配置指用于CPC的条件重配置中的候选小区的RRC重配置消息中包含的配置。
可选地,若步骤1中有多个触发小区,则UE选择其中一个触发小区执行步骤2中的CPC操作。该步骤中并不限定对所述SCG激活以及执行CPC操作的先后顺序(如SCG激活操作可以在执行CPC过 程之前或CPC过程的执行过程中执行)。
显然地,该实施例步骤1之前包括UE接收CPC配置,保存CPC配置。
步骤2中所述UE激活SCG中的操作可参见但并不限于其他实施例中所述。
实施例6
本实施例提供了一种SCG被激活时的UE行为。
当UE将一个SCG从去激活状态变更到激活状态时,UE执行下述操作的一项或多项:
操作1:激活SCG中所有的SCell,在MAC层或RRC层执行。
操作2:激活该SCG对应的PSCell,在MAC层或RRC层执行。
操作3:激活由firstActiveDownlinkBWP-Id信息元素和/或firstActiveDownlinkBWP-Id信息元素分别所指示的下行BWP和上行BWP;其中firstActiveDownlinkBWP-Id信息元素和firstActiveDownlinkBWP-Id信息元素由网络侧通过RRC信令(如RRC重配置消息)配置,用于指示当执行所述RRC信令的配置时所激活的下行/上行BWP标识或者当MAC层激活一个SCell或PSCell时所使用的下行/上行BWP标识,在MAC层执行。
操作4:启动或重启与Scell或PSCell所关联的sCellDeactivationTimer定时器;其中,所述sCellDeactivationTimer用于SCell或PSCell的激活去激活状态控制,当其超时时,UE认为所关联的小区处于去激活状态,当其运行时,UE认为所关联的小区处于激活状态。在UE MAC层执行。在另一种方式中,该操作中包括启动所重启与SCG所关联的SCGdeactivationTimer定时器,其中,所述sCellDeactivationTimer用于SCG的激活去激活状态控制,当其超时时,UE认为所关联的SCG处于去激活状态,当其运行时,UE认为所关联的SCG处于激活状态。在又一种方式中,该操作中包括停止SCG激活去激活定时器,所述SCG激活去激活定时器用于SCG的激活去 激活状态控制,当其超时时,UE认为所关联的SCG处于激活状态,UE执行包括该实施例中所述的从SCG去激活状态到激活状态的状态变更操作;当其运行时,UE认为所关联的SCG处于去激活状态。
操作5:初始化或重新初始化SCell或PSCell所关联的所挂起的类型1配置的上行许可;在UE MAC层执行。
优选地,上述操作3~5在所述firstActiveDownlinkBWP-Id不设置为休眠BWP时执行。可选地,当所述SCG激活命令是MAC CE或RRC信令时,所述SCG激活命令中,除了指示PSCell/SCG的状态是激活外,还单独指示每一个SCG SCell的激活状态是激活或者去激活。在这种情况下,操作1中的SCell指的是所有激活状态指示为激活的SCell,上述操作3~5也是对所有激活状态指示为激活的SCell所执行的。
操作6:恢复所有SCG所关联的DRB和SRB。其中包括分裂承载的SCG部分。在UE的RRC层执行。
操作7:启动或重新启动用于SCG/PSCell或PSCell所述上行时间提前组(Timing Advance Group,TAG)所关联的用于上行时间对齐的上行时间对齐定时器timeAlighmentTimer;在UE的MAC层执行。
操作8:执行重置MAC实体的操作;优选地,所述重置MAC实体的操作不包括取消所触发的缓存状态报告过程(Buffer Status Report,BSR)。在UE的MAC层执行。
操作9:触发PSCell的随机接入过程。可选地,UE基于SCG激活命令中的随机接入指示信息来确定是否执行随机接入过程。当SCG激活命令中的随机接入指示信息存在或置为TRUE或1时,或者SCG激活命令中的随机接入参数被配置在SCG激活命令中,则UE执行PSCell的随机接入过程。所述随机接入参数(RACH-ConfigDeadicated信息元素标识)指的是执行RACH过程的物理随机接入信道PRACH时频资源、同步信号块(Synchronization Signal Block,SSB)/信道状态信息参考信号(Channel Status Information Reference Signal,CSIRS)的参考信号接收功率(Reference Signal Received Power,RSRP)门限 值配置和优先参数(如ra-Prioritization信息元素)等。可选地,若PSCell所关联的上行时间对齐定时器处于非运行状态,则UE执行随机接入,否则UE不执行随机接入。
操作10:若所述SCG激活的命令是通过接收到的MAC CE获得的,或者所述SCG激活的决定是由MAC实体所确定的,如当触发了BSR,或触发了随机接入过程,则MAC实体向上层(如RRC层)指示所述SCG激活的信息。
操作11:若所述SCG激活的命令是通过物理层信令DCI获得的,如包含在DCI中的SCG激活域指示为SCG激活或包含在DCI中的BWP标识指示所述BWP不是休眠BWP,则物理层向上层(如MAC层或RRC层)指示所述SCG激活的信息或所述PSCell激活的信息或所述BWP变更的信息。优选地,所述DCI指用于所述SCG的PSCell或SCell的DCI,此时所述BWP指的是所述PSCell或所述SCell所配置的BWP。
操作12:若所述SCG激活的命令是通过接收到的RRC信令获得的,或者所述SCG激活的决定是由RRC所确定的,如当触发了CPC执行过程,则RRC层向下层(如MAC层)指示所述SCG激活的信息。所述SCG激活的信息也可以表述为所述PSCell激活的信息。
UE在收到SCG激活命令时执行上述从SCG去激活状态到SCG激活状态的操作,或者UE的MAC层或RRC层在收到操作10~12的层间交互指示信息如指示SCG激活的信息时,执行上述相关操作。
实施例7
本实施例提供了一种SCG被去激活时的UE行为。
当UE将一个SCG从激活状态变更去到激活状态时,UE执行下述操作的一项或多项:
操作1:去激活SCG中所有的SCell,在MAC层或RRC层执行。
操作2:去激活该SCG对应的PSCell,在MAC层或RRC层执行。
操作3:去激活SCG的PSCell或SCell的所有BWP,在MAC层 执行。
操作4:停止Scell或PSCell或SCG所关联的sCellDeactivationTimer定时器;其中,所述sCellDeactivationTimer用于SCell或PSCell或SCG的激活去激活状态控制,当其超时时,UE认为所关联的小区或SCG处于去激活状态。在UE MAC层执行。在一种方式中,该操作中包括启动SCG激活去激活定时器,所述SCG激活去激活定时器用于SCG的激活去激活状态控制,当其超时时,UE认为所关联的SCG处于激活状态,UE执行包括该实施例中所述的从SCG去激活状态到激活状态的状态变更操作;当其运行时,UE认为所关联的SCG处于去激活状态。
操作5:挂起SCell或PSCell所关联的所挂起的类型1配置的上行许可和/或下行分配,清除响应的类型2配置的上行许可;在UE MAC层执行。
操作6:挂起所有SCG所关联的DRB和SRB。其中包括分裂承载的SCG部分。在UE的RRC层执行。
操作7:停止用于SCG所关联的用于上行时间对齐的上行时间对齐定时器;在UE的MAC层执行。在另一种方式中,该操作还可以执行为对上行时间对齐定时器timeAlignmentTimer应用SCG去激活相关联的定时器值。所述定时器的值指用于配置定时器时长的值(以TAG-Config信息元素中的timeAlignmentTimer信息元素来配置);所述定时器指SCG的PSCell或SCell所关联的TAG对应的定时器。所述SCG去激活相关联的定时器值,指所述定时器的时长值在SCG去激活状态下的配置不同于SCG激活状态下所使用的定时器时长值。
操作8:执行重置MAC实体的操作;在UE的MAC层执行。
操作9:若所述SCG去激活的命令是通过接收到的MAC CE获得的,或者所述SCG去激活的决定是由MAC实体所确定的,如当PSCell所关联的去激活定时器超时或则SCG去激活所关联的定时器超时,则MAC实体向上层(如RRC层)指示所述SCG去激活的信息。
操作10:若所述SCG去激活的命令是通过物理层信令DCI获得 的,如包含在DCI中的SCG去激活域指示为SCG去激活或包含在DCI中的BWP标识指示所述BWP是休眠BWP,则物理层向上层(如MAC层或RRC层)指示所述SCG去激活的信息或所述PSCell去激活的信息或所述BWP变更的信息。优选地,所述DCI指用于所述SCG的PSCell或SCell的DCI,此时所述BWP指的是所述PSCell或所述SCell所配置的BWP。
操作11:若所述SCG去激活的命令是通过接收到的RRC信令获得的,或者所述SCG去激活的决定是由RRC所确定的,如当触发了CPC执行过程,则RRC层向下层(如MAC层)指示所述SCG去激活的信息。所述SCG去激活的信息也可以表述为所述PSCell去激活的信息。
操作12:若一个DRB或SRB被配置为分裂承载,若其主路径信息元素primaryPath设置为SCG,则设置主路径或primarypath信息元素为MCG。优选地,该操作在所述RB未被配置PDCP重复(由pdcp-Duplication信息元素指示)时执行。其中primarypath信息元素用于指示当一个承载的PDCP实体关联了多于一个RLC实体时用于上行发送的主要RLF实体的逻辑信道标识和小区组标识。
操作13:将SCG的PSCell和/或SCell的当前激活的工作BWP变更为休眠BWP。
UE在收到SCG去激活命令时或者所述UE判断SCG去激活时(如上述对应的去激活定时器超时)执行上述从SCG激活状态到SCG去激活状态的操作,或者UE的MAC层或RRC层在收到操作9~11的层间交互指示信息如指示SCG去激活的信息时,执行上述相关操作。
所述SCG激活/去激活命令可以包含在RRC信令、MAC CE或物理层L1信令DCI中。在一种方式中,SCG去激活命令中可以指示PSCell或每一个SCell的状态,如指示所述小区是去激活状态,或指示所述小区变更激活的工作BWP为休眠BWP。
实施例8
本实施例提供了一种SCG的激活去激活状态,可适用于但并不限制本公开其他实施例中的SCG激活去激活状态下的UE行为。
在一种方式中,处于SCG去激活状态下的UE操作包括下述一项或多项:
不在SCG的PSCell和SCell上发送SRS;
不上报用于SCG的PSCell和SCell的CSI;
不在SCG的PSCell和SCell上发送UL-SCH;
不在SCG的PSCell和SCell上发送RACH;
不在SCG的PSCell和SCell上监听PDCCH;
不监听用于SCG的PSCell和SCell的PDCCH;
不在SCG的PSCell和SCell上发送PUCCH;
不在SCG的PSCell和SCell上接收UL-SCH;
不执行用于SCG的PSCell和/或SCell的波束失败检测和波束失败恢复过程;
SCG所关联的DRB或SRB处于挂起状态;
不触发BSR;
不触发用于功率余量报告的PHR过程;
SCG的PSCell和SCell工作在所述小区对应的休眠BWP上。
反之,在一种方式中,处于SCG激活状态下的UE执行正常的SCG的PSCell和SCell的通信操作,包括下属一项或多项:
在SCG的PSCell和SCell上发送SRS;
上报用于SCG的PSCell和SCell的CSI;
在SCG的PSCell和SCell上发送UL-SCH;
在SCG的PSCell和SCell上发送RACH;
在SCG的PSCell和SCell上监听PDCCH;
监听用于SCG的PSCell和SCell的PDCCH;
在SCG的PSCell和SCell上发送PUCCH;
在SCG的PSCell和SCell上接收UL-SCH;
执行用于SCG的PSCell和/或SCell的波束失败检测和波束失败 恢复过程;
SCG所关联的DRB或SRB处于非挂起状态;
SCG的PSCell和SCell不工作在所述小区对应的休眠BWP上。
此外,在SCG处于激活状态下仅限定PSCell处于激活状态或PSCell不工作在休眠BWP上,允许一个或多个SCell处于去激活状态或者工作在休眠BWP上,此时上述操作中的一项或多项是对于处于激活态的PSCell和SCell或工作在非休眠BWP上的SCell而言的。
在另一种方式中,处于SCG去激活状态下的UE操作包括下述一项或多项:
UE处于使用深度非连续性接收DRX配置的状态。所述深度DRX状态指的是只用更长的DRX周期,比如DRX周期大于10240毫秒。
在本公开实施例中,在一种方式中,SCG的去激活也可以表述为SCG的休眠。此时SCG中的PSCell和SCell都工作在休眠BWP上。当PSCell工作在休眠BWP上或PSCell和所有的SCG SCell都工作或变更为工作在休眠BWP上时,UE认为SCG从激活状态变更为去激活状态,执行上述实施例中所述从激活状态变为去激活状态的操作。在另一种方式中,如本公开前面所述,SCG的去激活和PSCell的去激活是等价的,也就是说当PSCell被去激活或PSCell的激活BWP变更为休眠BWP时,UE认为SCG去激活;当PSCell被激活或PSCell的激活BWP从休眠BWP变更为其他BWP时,UE认为SCG激活。在一种方式中,SCG/PSCell的激活去激活状态复用现有机制中的SCell的激活/去激活(activation/deactivation)MAC CE。图3是示意地表示SCell的激活/去激活(activation/deactivation)MAC CE的图,其中,(a)表示一字节的SCell的激活/去激活(activation/deactivation)MAC CE,(b)表示四字节的SCell的激活/去激活(activation/deactivation)MAC CE。使用所述MAC CE中的预留比特“R”比特来指示PSCell/SCG的激活去激活状态,若所述比特置为1则表示被激活,若所述比特置为0则去激活。其中,Ci对应SCell 标识为i的SCell,Ci比特的值指示对应的SCell的激活去激活状态。
实施例9
该实施例对本公开的用户设备UE进行说明。图4是表示本公开所涉及的用户设备UE的框图。如图4所示,该用户设备UE40包括处理器401和存储器402。处理器401例如可以包括微处理器、微控制器、嵌入式处理器等。存储器402例如可以包括易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器等。存储器402上存储有程序指令。该指令在由处理器401运行时,可以执行本发明中详细描述的上述数据传输方法。
在本公开中,“基站”是指具有较大发射功率和较广覆盖面积的移动通信数据和控制交换中心,包括资源分配调度、数据接收发送等功能。“用户设备”是指用户移动终端,例如包括移动电话、笔记本等可以与基站或者微基站进行无线通信的终端设备。
上文已经结合优选实施例对本公开的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本公开的方法并不局限于上面示出的步骤和顺序。上面示出的基站和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站、MME、或UE的模块等等。上文中示出的各种标识仅是示例性的而不是限制性的,本公开并不局限于作为这些标识的示例的具体信元。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
运行在根据本公开的设备上的程序可以是通过控制中央处理单元(CPU)来使计算机实现本公开的实施例功能的程序。该程序或由该程序处理的信息可以临时存储在易失性存储器(如随机存取存储器RAM)、硬盘驱动器(HDD)、非易失性存储器(如闪速存储器)、或其他存储器系统中。
用于实现本公开各实施例功能的程序可以记录在计算机可读记录 介质上。可以通过使计算机系统读取记录在所述记录介质上的程序并执行这些程序来实现相应的功能。此处的所谓“计算机系统”可以是嵌入在该设备中的计算机系统,可以包括操作系统或硬件(如外围设备)。“计算机可读记录介质”可以是半导体记录介质、光学记录介质、磁性记录介质、短时动态存储程序的记录介质、或计算机可读的任何其他记录介质。
用在上述实施例中的设备的各种特征或功能模块可以通过电路(例如,单片或多片集成电路)来实现或执行。设计用于执行本说明书所描述的功能的电路可以包括通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、或其他可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或上述器件的任意组合。通用处理器可以是微处理器,也可以是任何现有的处理器、控制器、微控制器、或状态机。上述电路可以是数字电路,也可以是模拟电路。因半导体技术的进步而出现了替代现有集成电路的新的集成电路技术的情况下,本公开的一个或多个实施例也可以使用这些新的集成电路技术来实现。
此外,本公开并不局限于上述实施例。尽管已经描述了所述实施例的各种示例,但本公开并不局限于此。安装在室内或室外的固定或非移动电子设备可以用作终端设备或通信设备,如AV设备、厨房设备、清洁设备、空调、办公设备、自动贩售机、以及其他家用电器等。
如上,已经参考附图对本公开的实施例进行了详细描述。但是,具体的结构并不局限于上述实施例,本公开也包括不偏离本公开主旨的任何设计改动。另外,可以在权利要求的范围内对本公开进行多种改动,通过适当地组合不同实施例所公开的技术手段所得到的实施例也包含在本公开的技术范围内。此外,上述实施例中所描述的具有相同效果的组件可以相互替代。

Claims (10)

  1. 一种小区变更方法,包括:
    用户设备UE接收基于条件的主辅小区变更CPC配置;
    所述UE执行CPC条件重配置评估,从一个或多个CPC候选小区确定CPC触发小区;
    所述UE判断辅小区组SCG是否处于去激活状态;
    所述UE基于所述SCG的去激活状态的判断结果,执行CPC处理。
  2. 根据权利要求1所述的小区变更方法,其中,
    在所述CPC条件重配置评估中,所述UE对于所配置的一个或多个CPC候选小区,确定CPC条件重配置评估结果是否满足所配置的一个或多个条件。
  3. 根据权利要求1所述的小区变更方法,其中,
    在所述SCG处于激活状态的情况下,所述UE执行所述CPC触发小区的CPC操作;
    在所述SCG处于去激活状态的情况下,所述UE不执行所述CPC触发小区的CPC操作。
  4. 根据权利要求1所述的小区变更方法,其中,
    在所述SCG处于去激活状态的情况下,所述UE激活所述SCG,并执行所述CPC触发小区的CPC操作。
  5. 根据权利要求4所述的小区变更方法,其中,
    所述UE激活所述SCG时执行下述至少一项操作:
    操作1:激活SCG中所有状态被配置为激活状态的辅小区SCell;
    操作2:激活该SCG对应的主辅小区PSCell;
    操作3:对操作1和操作2中所激活的小区激活由firstActiveDownlinkBWP-Id信息元素和/或firstActiveDownlinkBWP-Id信息元素分别所指示的下行带宽部分BWP和上行带宽部分BWP;
    操作4:启动或重启与辅小区Scell或主辅小区PSCell所关联的用于控制小区激活去激活状态的定时器;
    操作6:恢复所有SCG所关联的数据无线承载DRB和信令无线承载SRB;
    操作7:启动或重新启动用于SCG/PSCell或PSCell所述上行时间提前组TAG所关联的上行时间对齐定时器;
    操作8:执行重置媒介接入控制MAC实体的操作;
    操作9:触发PSCell的随机接入过程;
    操作10:UE MAC实体向上层RRC层指示所述SCG激活的信息;
    操作12:RRC层向MAC层指示所述SCG激活的信息。
  6. 根据权利要求3或4所述的小区变更方法,其中,
    在所述UE执行所述CPC触发小区的CPC操作时,应用所保存的所述CPC触发小区所关联的CPC配置。
  7. 一种小区变更方法,包括:
    用户设备UE接收基于条件的主辅小区变更CPC配置,并执行CPC条件重配置评估,
    所述UE判断辅小区组SCG去激活,执行SCG去激活操作,并停止所述CPC条件重配置评估。
  8. 根据权利要求7所述的小区变更方法,其中,
    在所述UE接收到网络侧发送的SCG去激活指示、或者用于控制SCG激活去激活的定时器超时的情况下,所述UE判断SCG去激活。
  9. 根据权利要求7或8所述的小区变更方法,其中,
    所述UE判断SCG去激活发生在SCG从激活到去激活的时刻、或者是所述UE已经处于SCG去激活状态。
  10. 一种用户设备UE,包括:
    处理器;以及
    存储器,存储有指令;
    其中,所述指令在由所述处理器运行时执行根据权利要求1至9中任一项所述的小区变更方法。
PCT/CN2021/093311 2020-05-15 2021-05-12 小区变更方法以及用户设备 WO2021228137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010416865.1A CN113676965A (zh) 2020-05-15 2020-05-15 小区变更方法以及用户设备
CN202010416865.1 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021228137A1 true WO2021228137A1 (zh) 2021-11-18

Family

ID=78526020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093311 WO2021228137A1 (zh) 2020-05-15 2021-05-12 小区变更方法以及用户设备

Country Status (2)

Country Link
CN (1) CN113676965A (zh)
WO (1) WO2021228137A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022132580A1 (en) * 2020-12-16 2022-06-23 Google Llc Managing conditional configuration in scg deactivation scenarios
US20230049913A1 (en) * 2021-08-05 2023-02-16 Soenghun KIM Method and Apparatus for secondary base station change in mobile wireless communication system
WO2023102677A1 (zh) * 2021-12-06 2023-06-15 Oppo广东移动通信有限公司 通信方法、终端设备及网络设备
WO2023184476A1 (en) * 2022-04-01 2023-10-05 Mediatek Singapore Pte. Ltd. Methods and apparatus of ta maintenance and acquisition for mobility with inter-cell beam management
WO2023207968A1 (zh) * 2022-04-27 2023-11-02 维沃移动通信有限公司 连接恢复方法、小区切换方法、及装置
WO2023207978A1 (zh) * 2022-04-28 2023-11-02 维沃移动通信有限公司 配置信息的处理方法、装置及通信设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339811A (zh) * 2020-09-30 2022-04-12 维沃移动通信有限公司 执行目标操作的方法、装置和终端设备
CN116264718A (zh) * 2021-12-13 2023-06-16 维沃移动通信有限公司 条件小区变换方法、装置、ue及网络侧设备
CN116669077A (zh) * 2022-02-18 2023-08-29 维沃移动通信有限公司 候选小区的配置方法、装置、终端及网络侧设备
CN117501743A (zh) * 2022-04-22 2024-02-02 北京小米移动软件有限公司 一种用于基于条件的移动性的信息的处理方法及装置
CN117322045A (zh) * 2022-04-27 2023-12-29 北京小米移动软件有限公司 一种小区管理方法/装置/设备及存储介质
CN117395733A (zh) * 2022-07-04 2024-01-12 维沃移动通信有限公司 移动性控制方法、终端及网络侧设备
CN117796029A (zh) * 2022-07-27 2024-03-29 北京小米移动软件有限公司 一种随机接入控制方法及装置
WO2024020894A1 (zh) * 2022-07-27 2024-02-01 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质
WO2024020987A1 (en) * 2022-07-29 2024-02-01 Qualcomm Incorporated Non-active bandwidth parts for candidate cell operations in mobility
CN118042545A (zh) * 2022-11-04 2024-05-14 维沃移动通信有限公司 条件配置的控制方法、控制装置、终端及网络侧设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105917716A (zh) * 2014-01-30 2016-08-31 夏普株式会社 用于双连接操作的系统和方法
CN106538034A (zh) * 2014-08-07 2017-03-22 Lg 电子株式会社 用于在scg改变过程期间去激活s小区的方法及其设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105917716A (zh) * 2014-01-30 2016-08-31 夏普株式会社 用于双连接操作的系统和方法
CN106538034A (zh) * 2014-08-07 2017-03-22 Lg 电子株式会社 用于在scg改变过程期间去激活s小区的方法及其设备

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS INC: "Consideration of SCG Failure with CPC", 3GPP DRAFT; R2-2001538, vol. RAN WG2, 14 February 2020 (2020-02-14), pages 1 - 2, XP051849834 *
LG ELECTRONICS INC: "Left Issues for CPC in R16", 3GPP DRAFT; R2-2002903, vol. RAN WG2, 9 April 2020 (2020-04-09), RAN WG2, pages 1 - 4, XP051870159 *
SAMSUNG: "Discussion on CPC configuration handling during SCG Release", 3GPP DRAFT; R2-2003327, vol. RAN WG2, 10 April 2020 (2020-04-10), pages 1 - 3, XP051871296 *
ZTE CORPORATION; SANECHIPS: "On SCG Suspension", 3GPP DRAFT; R2-1914823, vol. RAN WG2, 8 November 2019 (2019-11-08), Reno, Nevada, USA, pages 1 - 4, XP051816773 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022132580A1 (en) * 2020-12-16 2022-06-23 Google Llc Managing conditional configuration in scg deactivation scenarios
US20230049913A1 (en) * 2021-08-05 2023-02-16 Soenghun KIM Method and Apparatus for secondary base station change in mobile wireless communication system
US11638184B2 (en) * 2021-08-05 2023-04-25 Blackpin Method and apparatus for secondary base station change in mobile wireless communication system
WO2023102677A1 (zh) * 2021-12-06 2023-06-15 Oppo广东移动通信有限公司 通信方法、终端设备及网络设备
WO2023184476A1 (en) * 2022-04-01 2023-10-05 Mediatek Singapore Pte. Ltd. Methods and apparatus of ta maintenance and acquisition for mobility with inter-cell beam management
WO2023207968A1 (zh) * 2022-04-27 2023-11-02 维沃移动通信有限公司 连接恢复方法、小区切换方法、及装置
WO2023207978A1 (zh) * 2022-04-28 2023-11-02 维沃移动通信有限公司 配置信息的处理方法、装置及通信设备

Also Published As

Publication number Publication date
CN113676965A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2021228137A1 (zh) 小区变更方法以及用户设备
US20230345312A1 (en) User mobility method and device
US20200260348A1 (en) Method for avoiding unnecessary actions in resume procedure
WO2018113661A1 (zh) 用户移动性方法和设备
WO2021190608A1 (zh) 无线链路失败报告方法以及用户设备
US11758422B2 (en) User equipment and related method
WO2021115370A1 (zh) 无线链路失败恢复方法以及用户设备
CN110798867B (zh) 用户设备的控制方法以及用户设备
EP3641186A1 (en) Base station, user equipment, and related methods
CN110868739B (zh) 由用户设备执行的方法、用户设备以及切换命令生成方法
WO2022127731A1 (zh) 小区变更方法以及用户设备
RU2765430C1 (ru) Способ и пользовательское оборудование для создания соединения, избегающие ненужных действий
WO2020221193A1 (zh) 条件切换方法及对应的用户设备
CN112291819B (zh) 无线链路失败恢复方法以及用户设备
US20220394620A1 (en) Communication method and apparatus
US20170150459A1 (en) Communication control method and base station
US20220167452A1 (en) User equipment and pre-configured uplink resource transmission method performed thereby
WO2022127730A1 (zh) 由用户设备执行的方法以及用户设备
WO2019214607A1 (zh) 通信控制方法和用户设备
WO2023040955A1 (zh) 切换信息报告方法以及用户设备
WO2022194041A1 (zh) 随机接入报告方法和用户设备
CN115699944A (zh) 终端装置、方法以及集成电路
WO2023005895A1 (zh) 执行用户设备辅助信息发送过程的方法及用户设备
WO2023246770A1 (zh) 由用户设备执行的方法以及用户设备
WO2024008072A1 (zh) 由用户设备执行的配置辅服务小区的方法及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803373

Country of ref document: EP

Kind code of ref document: A1