WO2023101340A1 - 디이소시아네이트의 제조방법 - Google Patents

디이소시아네이트의 제조방법 Download PDF

Info

Publication number
WO2023101340A1
WO2023101340A1 PCT/KR2022/018934 KR2022018934W WO2023101340A1 WO 2023101340 A1 WO2023101340 A1 WO 2023101340A1 KR 2022018934 W KR2022018934 W KR 2022018934W WO 2023101340 A1 WO2023101340 A1 WO 2023101340A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
diisocyanate
pressure
bis
purification step
Prior art date
Application number
PCT/KR2022/018934
Other languages
English (en)
French (fr)
Inventor
박종성
심유진
박주영
우은지
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to EP22901698.5A priority Critical patent/EP4414361A1/en
Priority to CN202280076693.5A priority patent/CN118302406A/zh
Publication of WO2023101340A1 publication Critical patent/WO2023101340A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/18Separation; Purification; Stabilisation; Use of additives
    • C07C263/20Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton

Definitions

  • the present invention relates to a method for producing diisocyanate having high purity and improved stability.
  • Isocyanate compounds are compounds with high utilization value not only in the fields of chemical industry and resin industry, but also as fine chemical products including optical materials.
  • Demand for xylylene diisocyanate (XDI) a representative example of an isocyanate compound, as a high value-added chemical material as a raw material for high-end optical lenses is increasing.
  • isocyanates have high reactivity, and denaturation easily occurs depending on the storage environment.
  • isocyanate is denatured, not only the purity is lowered, but also the transparency is lowered and white turbidity occurs, so there is a problem that is unsuitable for use in optical fields requiring excellent appearance characteristics, particularly transparency.
  • a method of prescribing a stabilizer to isocyanate is used, but the stabilizer may cause coloration and has a limited effect when the stability of isocyanate itself is poor.
  • An object of the present invention is to provide a method for producing diisocyanate suitable for the production of optical resins due to its high purity and excellent stability even during long-term storage.
  • reaction step of reacting diamine or a salt thereof with phosgene to obtain a reaction mixture
  • the purification step is performed for 16 hours or less at a temperature of less than 170 ° C., a method for producing diisocyanate is provided.
  • the diamine is 1,2-xylylene diamine, 1,3-xylylene diamine, 1,4-xylylene diamine, 1,2-bis(aminomethyl)cyclohexane, 1,3-bis(aminomethyl)cyclohexane , And at least one selected from the group consisting of 1,4-bis (aminomethyl) cyclohexane,
  • the diamine salt is 1,2-xylylene diamine hydrochloride, 1,3-xylylene diamine hydrochloride, 1,4-xylylene diamine hydrochloride, 1,2-bis(aminomethyl)cyclohexane hydrochloride, 1,3-bis( aminomethyl)cyclohexane hydrochloride, 1,4-bis(aminomethyl)cyclohexane hydrochloride, 1,2-xylylene diamine carbonate, 1,3-xylylene diamine carbonate, and 1,4-xylylene diamine carbonate, 1, It may be at least one selected from the group consisting of 2-bis(aminomethyl)cyclohexane carbonate, 1,3-bis(aminomethyl)cyclohexane carbonate, and 1,4-bis(aminomethyl)cyclohexane carbonate.
  • the reaction step may be performed at 80 °C to 180 °C.
  • the purification step may be performed at a temperature of 100 °C to 150 °C for 5 hours to 15 hours.
  • the purification step may be performed by vacuum distillation and/or thin film distillation under a pressure of 0.001 to 50 kPa.
  • the purification step may include removing the solvent by distilling the reaction mixture under reduced pressure at a first temperature and a first pressure; removing low-boiling point impurities by distillation under reduced pressure at a second temperature and a second pressure; and removing oligomers by thin-film distillation under a third temperature and a third pressure.
  • the third temperature may be equal to or lower than the first temperature and/or the second temperature
  • the third pressure may be equal to or lower than the first pressure and/or the second pressure.
  • the diisocyanate may have a purity of 99% to 100%.
  • diisocyanate having high purity and excellent stability even during long-term storage can be produced.
  • the present inventors have studied a method for producing diisocyanate with improved stability so that denaturation such as white turbidity does not occur during long-term storage while increasing purity, and as a result, the above effects are achieved by controlling the maximum temperature and residence time in the purification step.
  • the present invention was completed by confirming that it could be done.
  • reaction step of reacting diamine or a salt thereof with phosgene to obtain a reaction mixture
  • the purification step is performed for 16 hours or less at a temperature of less than 170 ° C., a method for producing diisocyanate is provided.
  • a reaction step of reacting diamine or a salt thereof with phosgene to obtain a reaction mixture phosgenation reaction step
  • the diamine is an aromatic, alicyclic, or aliphatic amine containing two amine groups in a molecule.
  • the diamine is 1,2-xylylene diamine (o-xylylene diamine, o-XDA), 1,3-xylylene diamine (m-xylylene diamine, m-XDA), 1,4- Xylylene diamine (p-xylylene diamine, p-XDA), 1,2-bis(aminomethyl)cyclohexane, 1,3-bis(aminomethyl)cyclohexane, and 1,4-bis(aminomethyl)cyclo At least one selected from the group consisting of hexane, and may be selected according to the structure of the desired diisocyanate.
  • the salt of the diamine refers to a salt produced by a reaction between the diamine and an acid, and may be, for example, a hydrochloride salt prepared by a reaction of diamine and anhydrous hydrochloric acid, a carbonate salt prepared by a reaction between diamine and carbonic acid, and the like.
  • Diamine reacts rapidly with phosgene, but the reaction rate can be alleviated when converted into a salt in a solid state.
  • diamine salts include 1,2-xylylene diamine hydrochloride, 1,3-xylylene diamine hydrochloride, 1,4-xylylene diamine hydrochloride, 1,2-bis(aminomethyl)cyclohexane hydrochloride, 1,3 -bis(aminomethyl)cyclohexane hydrochloride, 1,4-bis(aminomethyl)cyclohexane hydrochloride, 1,2-xylylene diamine carbonate, 1,3-xylylene diamine carbonate, and 1,4-xylylene diamine carbonate , At least one selected from the group consisting of 1,2-bis (aminomethyl) cyclohexane carbonate, 1,3-bis (aminomethyl) cyclohexane carbonate, and 1,4-bis (aminomethyl) cyclohexane carbonate can be used
  • the preparation of the diamine salt may be performed in a solvent, and the solvent may be an aromatic hydrocarbon solvent such as benzene, toluene, xylene, or ethylbenzene; chlorinated aromatic hydrocarbon solvents such as monochlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene; Chlorinated hydrocarbon solvents such as dichloromethane, chloroform, and carbon tetrachloride may be used, and two or more of them may be mixed and used.
  • aromatic hydrocarbon solvent such as benzene, toluene, xylene, or ethylbenzene
  • chlorinated aromatic hydrocarbon solvents such as monochlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene
  • Chlorinated hydrocarbon solvents such as dichloromethane, chloroform, and carbon tetrachloride may be used, and two or more of them may
  • solvents for the phosgenation reaction after obtaining a diamine salt by reacting diamine with an acid in the solvent, the phosgenation reaction can be performed by adding phosgene without a separate purification process.
  • the preparation of the diamine salt is preferably carried out at a temperature of 60 ° C or less, preferably about 5 to 30 ° C, and the temperature may temporarily rise due to the heat of reaction during the reaction, but the maximum temperature in the reactor is 90 ° C or less, or It is preferably maintained at 60 ° C or less.
  • phosgene when diamine is reacted with phosgene, phosgene may be added at once at the beginning of the reaction, or partially added at the beginning of the reaction, and then the remainder may be added during the reaction.
  • the temperature of phosgene is preferably -10 ° C to 0 ° C to prevent leakage of toxic phosgene and smoothly raise the temperature of the reactant.
  • the temperature of the reactor may be adjusted to 80 °C to 180 °C. Preferably, it may be in the range of 100 °C or higher, or 120 °C or higher, and 150 °C or lower, or 140 °C or lower. Under the above temperature conditions, a smooth phosgenation reaction can be achieved, and thermal decomposition of diisocyanate produced can be prevented.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • 4-acet In the group consisting of amido-2,2,6,6-tetramethylpiperidine 1-oxyl (4-acetamido-2,2,6,6-tetramethylpiperidin-1-oxyl; hereinafter referred to as 4-acetamido TEMPO)
  • the content of the additive may be 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight or 0.5 to 3 parts by
  • Isocyanate groups are highly reactive, so side reactions easily occur, and impurities formed through side reactions may affect the purity, color, etc. of the isocyanate compound, so a purification step is required.
  • the stability of the isocyanate compound is greatly reduced when the purification step is performed under excessively high temperature conditions or when the time of the purification step is increased. Therefore, in the present invention, the stability of diisocyanate can be improved by maintaining the temperature of the purification step at an appropriate level and controlling the total time (residence time) of the purification step.
  • the purification step is performed at a temperature of less than 170 ° C. for 16 hours or less.
  • the maximum temperature of the purification step is 170° C. or higher or the residence time of the purification step exceeds 16 hours, the prepared diisocyanate absorbs excessive heat and may have low stability.
  • the temperature of the purification step is controlled to less than 170 ° C. and the residence time to 16 hours or less, the effect of improving the stability of diisocyanate can be secured regardless of the amount of the reaction mixture to be purified.
  • the highest temperature of the purification step is maintained at 160 °C or less, or 150 °C or less.
  • the lowest temperature in the purification step is not particularly limited because it does not significantly affect the stability of diisocyanate, but may be 100 ° C. or higher, or 110 ° C. or higher, considering the efficiency of the purification process.
  • the residence time of the purification step may be 16 hours or less, or 15 hours or less.
  • the purification step may be performed by a method generally used for purification of an isocyanate compound.
  • the purification step may be performed by vacuum distillation and/or thin film distillation using a distillation tower.
  • the vacuum distillation and/or thin-film distillation may be performed under a pressure of 0.001 to 50 kPa to enable high-purity purification while satisfying the above-described temperature and residence time conditions.
  • distillation column used for the vacuum distillation a plate tower or a packed tower may be used without limitation.
  • the theoretical number of stages of the distillation column may be, for example, 2 or more, or 5 or more, or 10 or more, and 60 or less, or 40 or less.
  • the temperature is maintained at less than 170 °C, specifically 100 °C or more, or 130 °C or more, and may be 160 °C or less, or 150 °C or less.
  • the pressure during vacuum distillation may be 0.001 kPa or more, or 0.005 kPa or more, or 0.01 kPa or more, and 50 kPa or less, 30 kPa or less, 10 kPa or less, or 1 kPa or less.
  • the temperature and pressure during distillation under reduced pressure refer to the bottom temperature of the distillation column.
  • the temperature at the top of the column may be 10 ° C. or higher, or 20 ° C. or higher, and 100 ° C. or lower, or 80 ° C. or lower, and the pressure is 0.001 kPa or higher, 0.005 kPa or higher, or 0.01 kPa or higher, similarly to the column bottom pressure. While, it may be 50 kPa or less, 30 kPa or less, 10 kPa or less, or 1 kPa or less.
  • the thin film distillation may be performed using a thin film distillation apparatus having an evaporator, a condenser, and a pressure reducing unit.
  • the rotational speed of the thin film distillation apparatus rotor may be 50 rpm or more, or 120 rpm or more, or 200 rpm or more, and 500 rpm or less, 400 rpm or less, or 350 rpm or less.
  • the temperature is also maintained below 170 ° C, and for example, 100 ° C or higher, or 110 ° C or higher, 160 ° C or lower, 130 ° C or lower, the pressure is 0.001 kPa or higher, or 0.005 kPa or higher, or 0.01 kPa or higher, 50 kPa or less, 30 kPa or less, 10 kPa or less, or 1 kPa or less.
  • the purification efficiency may be increased while the residence time of the purification step may be reduced, and thus, a high-purity diisocyanate compound may be obtained.
  • the purification step may be performed in multiple stages while varying temperature and/or pressure conditions.
  • the purification step may be performed by sequentially removing the solvent, removing the low-boiling point impurities, and removing the oligomer.
  • the purification step is performed at a temperature of 130 to 150 ° C. and a pressure of 0.01 to 1 kPa, and vacuum distillation is performed to remove the solvent at a first temperature and a first pressure, followed by low-boiling impurities at a second temperature and a second pressure.
  • a purification step may be performed by removing oligomers under a third temperature and a third pressure using a thin film distillation apparatus.
  • the first to third temperatures may be the same or different, and the first to third pressures may be the same or different.
  • the third temperature may be equal to or lower than the first temperature and/or the second temperature, and the third pressure may be equal to or lower than the first pressure and/or the second pressure.
  • a nitrogen bubbling step may be further performed to remove unreacted phosgene and hydrogen chloride gas inside the reactor in which the phosgenation reaction is completed.
  • Diisocyanate can be produced by the above-described preparation method.
  • the diisocyanate is 1,2-xylylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, 1,2-bis(isocyanatomethyl)cyclohexane , 1,3-bis (isocyanatomethyl) cyclohexane, and 1,4-bis (isocyanatomethyl) may be one or more selected from the group consisting of cyclohexane.
  • Diisocyanate prepared according to the production method of the present invention may have a purity of 99% to 100% after purification.
  • the purity of the diisocyanate may be 99.2% or more, or 99.4% or more, more preferably, 100%.
  • the diisocyanate is prepared through a purification step in which the temperature and residence time are controlled as described above, it has excellent stability even during long-term storage, thereby exhibiting advantages of low denaturation and excellent color and transparency.
  • the diisocyanate may have a difference of 1.5% or less, or 1% or less, between the purity of the diisocyanate when stored under refrigerated conditions (4° C.) for 6 months after preparation and the initial purity immediately after preparation.
  • the diisocyanate may have a purity of 98% or more, or 98.4% or more, or 98.6% or more, as measured after being stored under refrigeration (4° C.) conditions for 6 months after manufacture.
  • the higher the purity after storage, the better, and theoretically may be 100%, for example, 99.5% or less, or 99% or less.
  • the diisocyanate may have a cloudiness content of less than 0.8% by weight, less than 0.5% by weight, less than 0.3% by weight, or less than 0.1% by weight after storage under refrigeration (4 ° C.) conditions for 6 months after manufacture, preferably 0.1% by weight or less. Ideally, it may be 0% by weight.
  • the purity of the diisocyanate, the purity after refrigerated storage, and the method for measuring the content of cloudiness may be specified in Examples to be described later.
  • the diisocyanate prepared by the above-described manufacturing method of the present invention has excellent stability and high transparency, and thus can be suitably used in a polymerizable composition for manufacturing an optical device.
  • the polymerizable composition may include, for example, the diisocyanate of the present invention and a polyol and/or polythiol component.
  • Such a polymerizable composition has excellent transparency and low yellowing, and thus can be suitably used as an optical material for manufacturing spectacle lenses, camera lenses, and the like.
  • the formed salt was cooled to room temperature, and 43 g of phosgene was introduced into the reactor, and then the reactor temperature was heated to 130°C. At this time, phosgene was prevented from leaking to the outside by using a dry ice-acetone cooler from the time phosgene was introduced to the time the reaction was terminated.
  • the reactor temperature reached 130 °C, the reactor temperature was maintained at 125-135 °C for 2 hours so that the reaction solution became transparent. The completion of the reaction was confirmed when the solution became transparent.
  • the reactor was cooled to room temperature while blowing nitrogen into the reactor.
  • the reaction mixture from which phosgene was removed was distilled under reduced pressure using a 20-stage top plate column under the conditions of a pressure of 10.0 kPa, a bottom temperature of 150 ° C, and a top temperature of 60 ° C to remove the solvent, followed by pressure of 1.0 kPa, bottom temperature of 150 ° C, and top of the column.
  • Low-boiling impurities were removed by distillation under reduced pressure at a temperature of 60 ° C., and oligomers were removed by distillation at 130 ° C. using a thin film distillation apparatus with a rotor rotating at 200 rpm at 0.5 kPa to obtain meta-xylylene diisocyanate (m-XDI). .
  • the highest temperature in the purification step was 150 ° C, which is the temperature during distillation under reduced pressure, and the purification step took a total of 15 hours.
  • reaction mixture from which phosgene was removed was distilled under reduced pressure using a 20-stage top plate column under pressure of 5.0 kPa, bottom temperature of 140 ° C, and top temperature of 50 ° C to remove the solvent, followed by pressure of 0.5 kPa, bottom temperature of 140 ° C, and top of the column.
  • Low-boiling impurities were removed by distillation under reduced pressure at a temperature of 50 °C, and oligomers were removed by distillation at 130 °C and 0.5 kPa using a thin-film distillation apparatus rotating at 200 rpm to obtain m-XDI.
  • the highest temperature in the purification step was 140 ° C., which is the temperature during distillation under reduced pressure, and the purification step took a total of 16 hours.
  • reaction mixture from which phosgene was removed was distilled under reduced pressure using a 20-stage top plate column at a pressure of 5.0 kPa, a bottom temperature of 140 ° C, and a top temperature of 50 ° C to remove the solvent, followed by pressure of 0.5 kPa, bottom temperature of 140 ° C, and top of the column.
  • Low-boiling impurities were removed by distillation under reduced pressure at a temperature of 50 °C, and oligomers were removed by distillation at 130 °C and 0.5 kPa using a thin-film distillation apparatus rotating at 200 rpm to obtain m-XDI.
  • the highest temperature in the purification step was 140 ° C., which is the temperature during distillation under reduced pressure, and the purification step took a total of 32 hours.
  • reaction mixture from which phosgene was removed was distilled under reduced pressure using a 20-stage top plate column under the conditions of a pressure of 10.0 kPa, a bottom temperature of 150 ° C, and a top temperature of 60 ° C to remove the solvent, followed by pressure of 1.0 kPa, bottom temperature of 150 ° C, and top of the column.
  • Low-boiling impurities were removed by distillation under reduced pressure at a temperature of 60 °C, and oligomers were removed by distillation at 130 °C and 0.5 kPa using a thin-film distillation apparatus with a rotor rotating at 200 rpm to obtain m-XDI.
  • the highest temperature in the purification step was 150 ° C., which is the temperature during distillation under reduced pressure, and the purification step took a total of 24 hours.
  • reaction mixture from which phosgene was removed was distilled under reduced pressure using a 20-stage top plate column under the conditions of a pressure of 10.0 kPa, a bottom temperature of 150 ° C, and a top temperature of 60 ° C to remove the solvent, followed by pressure of 1.0 kPa, bottom temperature of 150 ° C, and top of the column.
  • Low-boiling impurities were removed by distillation under reduced pressure at a temperature of 60 °C, and oligomers were removed by distillation using a thin-film distillation apparatus with a rotor rotating at 200 rpm at 0.5 kPa to obtain m-XDI.
  • the highest temperature in the purification step was 150 ° C., which is the temperature during distillation under reduced pressure, and the purification step took a total of 32 hours.
  • reaction mixture from which phosgene was removed was distilled under reduced pressure using a 20-stage top plate column at a pressure of 50.0 kPa, a bottom temperature of 170 ° C, and a top temperature of 80 ° C to remove the solvent, followed by pressure of 10.0 kPa, bottom temperature of 170 ° C, and top of the column.
  • Low-boiling impurities were removed by distillation under reduced pressure at a temperature of 80 °C, and oligomers were removed by distillation using a thin-film distillation apparatus with a rotor rotating at 200 rpm at 0.5 kPa to obtain m-XDI.
  • the highest temperature in the purification step was 170 ° C, which is the temperature during distillation under reduced pressure, and the purification step took a total of 16 hours.
  • the GC used for the analysis was HP-6890 and was detected by FID.
  • the column used was DB-17 (30m * 0.25mm * 0.5 ⁇ m), the carrier gas was nitrogen (1.0 mL/min), and the oven temperature was 80 °C -> 5 °C/min -> 160 °C (8 min) -> 20 °C /min -> 280 °C (18min).
  • dibutyltin chloride was additionally added and stirred for 10 minutes to prepare a mixture.
  • 19.2 g of 2,3-bis(2-sulfanyl ethyl sulfanyl)propane-1-thiol was added to the mixture, degassed at 5 mbar, and stirred for 1 hour to prepare a polymerizable composition.
  • the polymerizable composition After filtering the polymerizable composition through a 1 ⁇ m PTFE filter, it was injected into a mold composed of a glass mold and a tape. The mold was placed in an oven and gradually heated from 10 °C to 120 °C, followed by polymerization for 20 hours. After the polymerization was completed, the mold was taken out of the oven, released, and annealed at 120 ° C. for 6 hours to prepare a plastic lens.
  • the degree of clouding was visually evaluated using a general fluorescent lamp and a zirconium lamp (Y-100G).
  • V.H Vol.H (Visual Haze): Haze observed under both fluorescent and zirconium lamps
  • the XDI of Examples 1 and 2 prepared by setting the maximum temperature of the purification step to less than 170 ° C and adjusting the residence time of the purification step to 16 hours or less maintains excellent purity and is stored for a long period of time. It can be confirmed that the stability is excellent and cloudiness does not occur. In addition, it was confirmed that the optical elements manufactured using the XDI of Examples 1 and 2 exhibited excellent transparency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 순도가 높고 장기 보관 시에도 안정성이 우수하여 백탁이 적은 디이소시아네이트의 제조방법에 관한 것으로, 정제 단계의 온도를 적정 수준으로 유지하고, 정제 단계의 총 체류 시간을 제어함으로써 디이소시아네이트의 안정성을 향상시킬 수 있도록 한다.

Description

디이소시아네이트의 제조방법
관련 출원(들)과의 상호 인용
본 출원은 2021년 11월 30일자 한국 특허 출원 제10-2021-0169321호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 순도가 높고 안정성이 향상된 디이소시아네이트의 제조방법에 관한 것이다.
이소시아네이트 화합물은 화학 공업, 수지 공업 분야뿐만 아니라, 광학 재료를 비롯한 정밀 화학 제품으로 활용 가치가 높은 화합물이다. 이소시아네이트 화합물의 대표적인 예인 자일릴렌 디이소시아네이트(xylylene diisocyanate, 이하 XDI)는 고급 광학 렌즈의 원료로서 고부가가치 화학 소재로 수요가 증가하고 있다.
이러한 이소시아네이트는 반응성이 높아 보관 환경에 따라 변성이 쉽게 발생한다. 이소시아네이트가 변성되는 경우 순도가 저하될 뿐만 아니라 투명도가 떨어지고 백탁이 발생하므로, 우수한 외관 특성, 특히 투명성이 요구되는 광학 분야에 사용하기 부적합한 문제가 있다.
이에, 이소시아네이트에 안정제를 처방하는 방법이 사용되고 있으나, 안정제가 착색의 원인이 될 수 있고, 이소시아네이트 자체의 안정성이 떨어지는 경우 효과가 제한적인 문제가 있다.
이에, 장기 보관 시에도 백탁 발생이 억제되고, 순도가 유지되며, 변성의 우려가 없는 이소시아네이트의 제조에 대한 연구가 필요하다.
본 발명은 순도가 높고 장기 보관 시에도 안정성이 우수하여 광학용 수지 제조에 적합한 디이소시아네이트의 제조방법을 제공하는 것을 목적으로 한다.
이에, 본 발명의 일 구현예에 따르면,
디아민 또는 그 염을 포스겐과 반응시켜 반응 혼합물을 수득하는 반응 단계; 및
상기 반응 혼합물로부터 디이소시아네이트를 분리하는 정제 단계를 포함하고,
상기 정제 단계는 170 ℃ 미만의 온도에서 16 시간 이하로 수행되는, 디이소시아네이트의 제조방법이 제공된다.
상기 디아민은 1,2-자일릴렌 디아민, 1,3-자일릴렌 디아민, 1,4-자일릴렌 디아민, 1,2-비스(아미노메틸)사이클로헥산, 1,3-비스(아미노메틸)사이클로헥산, 및 1,4-비스(아미노메틸)사이클로헥산으로 이루어지는 군에서 선택되는 1종 이상이고,
상기 디아민 염은 1,2-자일릴렌 디아민 염산염, 1,3-자일릴렌 디아민 염산염, 1,4-자일릴렌 디아민 염산염, 1,2-비스(아미노메틸)사이클로헥산 염산염, 1,3-비스(아미노메틸)사이클로헥산 염산염, 1,4-비스(아미노메틸)사이클로헥산 염산염, 1,2-자일릴렌 디아민 탄산염, 1,3-자일릴렌 디아민 탄산염, 및 1,4-자일릴렌 디아민 탄산염, 1,2-비스(아미노메틸)사이클로헥산 탄산염, 1,3-비스(아미노메틸)사이클로헥산 탄산염, 및 1,4-비스(아미노메틸)사이클로헥산 탄산염으로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
일 구현예에서, 상기 반응 단계는 80 ℃ 내지 180 ℃에서 수행될 수 있다.
일 구현예에서, 상기 정제 단계는 100 ℃ 내지 150 ℃의 온도에서 5 시간 내지 15 시간 수행될 수 있다.
일 구현예에서, 상기 정제 단계는 0.001 내지 50 kPa의 압력 하에서의 감압 증류 및/또는 박막 증류에 의하여 수행될 수 있다.
일 구현예에서, 상기 정제 단계는, 제1온도 및 제1압력 하에서 반응 혼합물을 감압 증류하여 용매를 제거하는 단계; 제2온도 및 제2압력 하에서 감압 증류하여 저비점 불순물을 제거하는 단계; 및 제3온도 및 제3압력 하에서 박막 증류하여 올리고머를 제거하는 단계를 포함할 수 있다. 이때, 상기 제3온도는, 제1온도 및/또는 제2온도와 같거나 낮고, 상기 제3압력은, 제1압력 및/또는 제2압력과 같거나 낮을 수 있다.
상기 정제 단계 후 디이소시아네이트의 순도는 99 % 내지 100 %일 수 있다.
본 발명의 디이소시아네이트의 제조방법에 따르면 순도가 높고 장기 보관 시에도 안정성이 우수한 디이소시아네이트를 제조할 수 있다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 본 발명을 상세히 설명한다.
본 발명자들은 순도를 높일 수 있으면서도, 장기 보관 시 백탁 등 변성이 발생하지 않도록 안정성이 향상된 디이소시아네이트의 제조방법에 관하여 연구하였으며, 그 결과 정제 단계에서의 최고 온도 및 체류 시간을 제어함으로써 상기 효과를 달성할 수 있음을 확인하여 본 발명을 완성하였다.
이에, 본 발명의 일 구현예에 따르면,
디아민 또는 그 염을 포스겐과 반응시켜 반응 혼합물을 수득하는 반응 단계; 및
상기 반응 혼합물로부터 디이소시아네이트를 분리하는 정제 단계를 포함하고,
상기 정제 단계는 170 ℃ 미만의 온도에서 16 시간 이하로 수행되는, 디이소시아네이트의 제조방법이 제공된다.
이하, 본 발명을 단계별로 설명한다.
먼저, 디아민, 또는 그 염을 포스겐과 반응시켜 반응 혼합물을 수득하는 반응 단계(포스겐화 반응 단계)를 수행한다.
상기 디아민은 분자 내 아민기를 2개 포함하는 방향족, 지환족, 또는 지방족 아민이다. 일 구현예에서, 상기 디아민은 1,2-자일릴렌 디아민(o-자일릴렌 디아민, o-XDA), 1,3-자일릴렌 디아민(m-자일릴렌 디아민, m-XDA), 1,4-자일릴렌 디아민(p-자일릴렌 디아민, p-XDA), 1,2-비스(아미노메틸)사이클로헥산, 1,3-비스(아미노메틸)사이클로헥산, 및 1,4-비스(아미노메틸)사이클로헥산으로 이루어지는 군에서 선택되는 1종 이상으로, 목적하는 디이소시아네이트의 구조에 따라 선택될 수 있다.
상기 디아민의 염은 상기 디아민과 산의 반응으로 생성된 염을 의미하며, 예를 들어 디아민과 무수 염산의 반응으로 제조된 염산염, 디아민과 탄산의 반응으로 제조된 탄산염 등일 수 있다. 디아민은 포스겐과 급격히 반응하나, 고체 상태의 염으로 전환시켜 사용하는 경우 반응 속도를 완화시킬 수 있다.
구체적으로, 디아민 염으로는 1,2-자일릴렌 디아민 염산염, 1,3-자일릴렌 디아민 염산염, 1,4-자일릴렌 디아민 염산염, 1,2-비스(아미노메틸)사이클로헥산 염산염, 1,3-비스(아미노메틸)사이클로헥산 염산염, 1,4-비스(아미노메틸)사이클로헥산 염산염, 1,2-자일릴렌 디아민 탄산염, 1,3-자일릴렌 디아민 탄산염, 및 1,4-자일릴렌 디아민 탄산염, 1,2-비스(아미노메틸)사이클로헥산 탄산염, 1,3-비스(아미노메틸)사이클로헥산 탄산염, 및 1,4-비스(아미노메틸)사이클로헥산 탄산염으로 이루어지는 군에서 선택되는 1종 이상이 사용될 수 있다.
상기 디아민 염의 제조는 용매 중에서 수행될 수 있으며, 용매로는 벤젠, 톨루엔, 자일렌, 에틸벤젠 등의 방향족 탄화수소 용매; 모노클로로벤젠, 1,2-디클로로벤젠, 1,4-디클로로벤젠 등의 염소화 방향족 탄화수소 용매; 디클로로메탄, 클로로포름, 사염화탄소 등 염소화 탄화수소 용매 등을 사용할 수 있고, 이 중 2종 이상을 혼합하여 사용할 수 있다. 이들 용매는 포스겐화 반응의 용매로도 사용할 수 있으므로, 상기 용매 중에서 디아민과 산을 반응시켜 디아민 염을 얻은 후, 별도의 정제 과정 없이 포스겐을 투입하여 포스겐화 반응을 수행할 수 있다.
상기 디아민 염의 제조는 60 ℃ 이하, 바람직하게는 약 5 내지 30 ℃의 온도에서 수행되는 것이 바람직하며, 반응 중 반응열로 인하여 일시적으로 온도가 상승할 수 있으나, 반응기 내 최대 온도가 90 ℃ 이하, 또는 60 ℃ 이하로 유지되는 것이 바람직하다.
한편, 디아민을 포스겐과 반응시키는 경우, 포스겐은 반응 초기에 일괄 투입되거나, 또는 반응 초기에 일부 투입 후, 잔부가 반응 도중 분할 투입될 수 있다. 상기 포스겐 투입 시 포스겐의 온도는 -10 ℃ 내지 0 ℃인 것이 맹독성 포스겐 유출을 방지하고 반응물의 온도를 원활하게 올릴 수 있어 바람직하다.
포스겐화 반응시 반응기의 온도는 80 ℃ 내지 180 ℃로 조절할 수 있다. 바람직하게는, 100 ℃ 이상, 또는 120 ℃ 이상이면서, 150 ℃ 이하, 또는 140 ℃ 이하의 범위일 수 있다. 상기와 같은 온도 조건에서 원활한 포스겐화 반응이 이루어질 수 있으며, 제조되는 디이소시아네이트의 열분해를 방지할 수 있다.
상기 디아민과 포스겐의 반응 시 부산물 발생을 억제하기 위한 첨가제로서 2,2,6,6-테트라메틸피페리딘-1-옥실(TEMPO), 4-하이드록시-2,2,6,6-테트라메틸피페리딘 1-옥실(4-Hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl; 이하 4-hydroxy TEMPO라함), 4-메톡시-2,2,6,6-테트라메틸-피페리딘 1-옥실(4-메톡시-TEMPO), 2,2,6,6-테트라메틸-4-벤질 옥시피페리딘-1-옥실(4-벤질옥시-TEMPO), 및 4-아세트아미도-2,2,6,6-테트라메틸피페리딘 1-옥실(4-acetamido-2,2,6,6-tetramethylpiperidin-1-oxyl; 이하 4-acetamido TEMPO라 함)로 이루어지는 군에서 1종 이상을 더 포함할 수 있다. 상기 첨가제를 사용할 경우, 첨가제의 함량은 디아민 또는 디아민 염 100 중량부에 대하여 0.01 내지 10중량부, 바람직하게는 0.1 내지 5 중량부 또는 0.5 내지 3 중량부일 수 있다.
다음으로, 상기 포스겐화 반응 후 얻어진 반응 혼합물로부터 디이소시아네이트를 분리하는 정제 단계를 수행한다.
이소시아네이트기는 반응성이 높아 부반응이 일어나기 쉽고, 부반응을 통해 형성되는 불순물은 이소시아네이트 화합물의 순도, 색도 등에 영향을 미칠 수 있으므로 정제 단계가 필요하다. 그런데 본 발명자들의 연구 결과, 정제 단계가 지나치게 고온 조건에서 이루어지거나, 정제 단계의 시간이 증가하는 경우, 이소시아네이트 화합물의 안정성이 크게 저하되는 것으로 확인되었다. 따라서, 본 발명에서는 정제 단계의 온도를 적정 수준으로 유지하고, 정제 단계의 총 시간(체류 시간)을 제어함으로써 디이소시아네이트의 안정성을 향상시킬 수 있도록 한다.
구체적으로, 본 발명의 제조방법에서, 상기 정제 단계는 170 ℃ 미만의 온도에서, 16시간 이하로 수행된다. 정제 단계의 최고 온도가 170 ℃ 이상이거나, 정제 단계의 체류 시간이 16시간을 초과하는 경우, 제조된 디이소시아네이트가 과도한 열을 흡수하여 안정성이 낮아질 수 있다. 그러나 정제 단계의 온도를 170 ℃ 미만, 체류 시간을 16시간 이하로 제어할 경우에는 정제되는 반응 혼합물의 양과 무관하게 디이소시아네이트의 안정성 향상 효과를 확보할 수 있다.
바람직하게는, 상기 정제 단계의 최고 온도는 160 ℃ 이하, 또는 150 ℃ 이하로 유지된다. 한편, 정제 단계의 최저 온도는 디이소시아네이트의 안정성에 큰 영향을 주지 않으므로 특별히 제한되지 않으나, 정제 공정의 효율을 고려할 때 100 ℃ 이상, 또는 110 ℃ 이상일 수 있다.
또, 상기 정제 단계의 체류 시간은 16시간 이하, 또는 15시간 이하일 수 있다. 정제 단계의 체류 시간이 짧을수록 디이소시아네이트의 안정성은 향상될 수 있으나, 고순도로 정제하기 위하여 일정 시간의 정제 과정이 필요한 바, 정제 시간은 5시간 이상, 또는 8시간 이상, 또는 10시간 이상, 또는 13시간 이상인 것이 바람직하다.
상기 정제 단계는 일반적으로 이소시아네이트 화합물의 정제에 사용되는 방법에 의하여 이루어질 수 있다. 일 구현예에서, 상기 정제 단계는 증류탑을 이용한 감압 증류 및/또는 박막 증류에 의해 수행될 수 있다. 상기 감압 증류 및/또는 박막 증류는 상술한 온도 및 체류 시간 조건을 만족하면서 고순도 정제가 가능하도록 0.001 내지 50 kPa의 압력 하에서 수행될 수 있다.
상기 감압 증류에 사용되는 증류탑은 붕단탑(plate tower), 또는 충전탑(packed tower)이 제한 없이 사용될 수 있다. 증류탑의 이론 단수는 예를 들어 2 이상, 또는 5 이상, 또는 10 이상이면서, 60 이하, 또는 40 이하일 수 있다.
상기 감압 증류 시 온도는 170 ℃ 미만을 유지하며, 구체적으로 100 ℃ 이상, 또는 130 ℃ 이상이면서, 160 ℃ 이하, 또는 150 ℃ 이하일 수 있다. 감압 증류 시 압력은 0.001 kPa 이상, 또는 0.005 kPa 이상, 또는 0.01 kPa 이상이면서, 50 kPa 이하, 30 kPa 이하, 10 kPa 이하, 또는 1 kPa 이하일 수 있다. 상기 감압 증류 시의 온도 및 압력은, 증류탑의 탑저 온도를 의미한다.
또, 상기 감압 증류 시 탑정의 온도는 10 ℃ 이상, 또는 20 ℃ 이상이면서, 100 ℃ 이하, 또는 80 ℃ 이하일 수 있고, 압력은 탑저 압력과 마찬가지로 0.001 kPa 이상, 또는 0.005 kPa 이상, 또는 0.01 kPa 이상이면서, 50 kPa 이하, 30 kPa 이하, 10 kPa 이하, 또는 1 kPa 이하일 수 있다.
상기 박막 증류는 증발기, 응축기, 및 감압 수단을 구비하는 박막 증류 장치를 이용하여 수행될 수 있다. 박막 증류장치 회전자의 회전속도는 50rpm 이상, 또는 120rpm 이상, 또는 200rpm 이상이면서, 500rpm 이하, 400rpm 이하, 또는 350rpm 이하일 수 있다. 박막 증류 시 온도 역시 170 ℃ 미만을 유지하며, 일례로 100 ℃ 이상, 또는 110 ℃ 이상이면서 160 ℃ 이하, 130 ℃ 이하일 수 있고, 압력은 0.001 kPa 이상, 또는 0.005 kPa 이상, 또는 0.01 kPa 이상이면서, 50 kPa 이하, 30 kPa 이하, 10 kPa 이하, 또는 1 kPa 이하일 수 있다.
상기와 같은 감압 증류 조건 및/또는 박막 증류 조건 하에서 정제 단계의 체류 시간을 줄이면서도 정제 효율을 높일 수 있으며 이에 따라 고순도의 디이소시아네이트 화합물을 수득할 수 있다.
일 구현예에서, 상기 정제 단계는 온도 및/또는 압력 조건을 변화시키면서 다단계로 수행될 수 있다. 일례로, 용매 제거, 저비점 불순물 제거, 및 올리고머 제거 단계를 순차로 진행하여, 정제 단계를 수행할 수 있다.
구체적으로, 170 ℃ 미만의 온도 및 0.001 내지 50 kPa의 압력 하; 또는 130 내지 150 ℃의 온도 및 0.01 내지 1 kPa의 압력 하에서 정제 단계를 수행하되, 제1온도 및 제1압력 하에서 용매 제거를 위한 감압 증류를 진행하고, 이어서 제2온도 및 제2압력 하에서 저비점 불순물을 제거한 다음, 박막 증류 장치를 이용하여 제3온도 및 제3압력 하에서 올리고머를 제거함으로써 정제 단계를 수행할 수 있다.
이때, 제1온도 내지 제3온도는 각각 같거나 다를 수 있고, 제1압력 내지 제3압력은 각각 같거나 다를 수 있다. 일례로, 상기 제3온도는, 제1온도 및/또는 제2온도와 같거나 낮고, 상기 제3압력은, 제1압력 및/또는 제2압력과 같거나 낮을 수 있다.
한편, 상기 감압 증류 단계 전, 포스겐화 반응이 완료된 반응기 내부에서 미반응된 포스겐과 염화수소 가스를 제거하기 위하여 질소 버블링하는 단계를 더 수행할 수 있다.
상술한 제조방법에 의하여, 디이소시아네이트가 제조될 수 있다. 상기 디이소시아네이트는 사용된 디아민에 따라, 1,2-자일릴렌 디이소시아네이트, 1,3-자일릴렌 디이소시아네이트, 1,4-자일릴렌 디이소시아네이트, 1,2-비스(이소시아나토메틸)사이클로헥산, 1,3-비스(이소시아나토메틸)사이클로헥산, 및 1,4-비스(이소시아나토메틸)사이클로헥산으로 이루어지는 군에서 선택되는 1종 이상일 수 있다.
상기 본 발명의 제조방법에 따라 제조된 디이소시아네이트는 정제 후 순도가 99% 내지 100%일 수 있다. 바람직하게는, 상기 디이소시아네이트의 순도는 99.2% 이상, 또는 99.4% 이상일 수 있고, 더욱 바람직하게는, 100%일 수 있다.
한편, 상기 디이소시아네이트는 상술한 바와 같이 온도 및 체류 시간이 제어된 정제 단계를 거쳐 제조됨에 따라, 장기 보관 시에도 안정성이 우수하여 변성이 적고 색상 및 투명도가 우수한 장점을 나타낸다.
구체적으로, 상기 디이소시아네이트는 제조 후 6개월간 냉장(4 ℃)조건에서 보관하였을 때의 순도와 제조 직후 초기 순도의 차이가 1.5% 이하, 또는 1% 이하일 수 있다.
일례로, 상기 디이소시아네이트는 제조 후 6개월간 냉장(4 ℃)조건에서 보관한 후 측정한 순도가 98% 이상, 또는 98.4% 이상, 또는 98.6% 이상일 수 있다. 상기 보관 후의 순도는 높을수록 우수한 것으로 이론적으로 100%일 수 있으며, 일례로 99.5% 이하, 또는 99% 이하일 수 있다.
또한, 상기 디이소시아네이트는 제조 후 6개월간 냉장(4 ℃)조건에서 보관한 후 발생한 백탁 물질의 함량이 0.8 중량% 미만, 0.5 중량% 이하, 0.3 중량% 이하, 또는 0.1 중량% 이하일 수 있고, 바람직하게는, 0 중량%일 수 있다.
상기 디이소시아네이트의 순도, 냉장 보관 후의 순도 및 백탁 물질 함량 측정법은 후술하는 실시예에서 구체화될 수 있다.
상술한 본 발명의 제조방법에 의하여 제조된 디이소시아네이트는 안정성이 우수하고 투명도가 높아, 광학 소자를 제조하기 위한 중합성 조성물에 적합하게 사용될 수 있다. 상기 중합성 조성물은 예를 들어 본 발명의 디이소시아네이트와, 폴리올 및/또는 폴리티올 성분을 포함하는 것일 수 있다.
이와 같은 중합성 조성물은 투명성이 우수하고 황변이 적어, 안경 렌즈, 카메라 렌즈 등을 제조하기 위한 광학용 재료로 적합하게 사용될 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1
(1) 반응 단계
반응기에 1,2-디클로로벤젠 471 g과 순도 99.4%인 메타-자일릴렌 디아민(m-XDA) 32.5 g, 4-hydroxy TEMPO 0.24 g을 담고 상온(23±5℃)에서 무수 염산을 20 g/hr 속도로 주입하며 교반하였다. 상기 무수 염산을 주입하는 과정에서 온도가 50℃까지 상승하였다.
무수 염산을 4시간 동안 주입 후 형성된 염을 상온으로 냉각하고, 포스겐 43 g을 반응기 내로 투입 후, 반응기 온도를 130℃가 되도록 가열하였다. 이때 포스겐 투입시점부터 반응 종료시점까지 드라이아이스-아세톤 냉각기로 포스겐이 외부로 유출되지 않도록 하였다.
반응기 온도가 130 ℃에 도달한 이후, 반응 용액이 투명해지도록 2시간 동안 반응기 온도를 125~135 ℃로 유지하였다. 용액이 투명해진 것으로 반응 종료를 확인하였다.
(2) 정제 단계
상기 (1) 단계가 완료된 후, 반응기 내부에 질소를 불어넣으며 상온으로 냉각하였다. 포스겐이 제거된 반응 혼합물을 단수 20의 붕단탑을 이용해 압력 10.0 kPa, 탑저온도 150 ℃, 탑정온도 60 ℃ 조건에서 감압 증류하여 용매를 제거하고, 이어서 압력 1.0 kPa, 탑저온도 150 ℃, 탑정온도 60 ℃ 조건에서 감압 증류하여 저비점 불순물을 제거한 다음, 130 ℃, 0.5 kPa에서 회전자가 200rpm으로 회전하는 박막 증류 장치를 이용해 증류하여 올리고머를 제거해, 메타-자일릴렌 디이소시아네이트(m-XDI)를 얻었다.
상기 정제 단계에서 최고 온도는 감압 증류 시 온도인 150℃ 였으며, 정제 단계는 총 15시간 소요되었다.
실시예 2
실시예 1의 (1) 단계와 동일한 방법으로 m-XDA의 포스겐화 반응을 수행하였다.
이후, 반응기 내부에 질소를 불어넣으며 상온으로 냉각하였다. 포스겐이 제거된 반응 혼합물을 단수 20의 붕단탑을 이용해 압력 5.0 kPa, 탑저온도 140 ℃, 탑정온도 50 ℃ 조건에서 감압 증류하여 용매를 제거하고, 이어서 압력 0.5 kPa, 탑저온도 140 ℃, 탑정온도 50 ℃ 조건에서 감압 증류하여 저비점 불순물을 제거한 다음, 130 ℃, 0.5 kPa에서 회전자가 200rpm으로 회전하는 박막 증류 장치를 이용해 증류하여 올리고머를 제거해, m-XDI를 얻었다.
상기 정제 단계에서 최고 온도는 감압 증류 시 온도인 140 ℃ 였고, 정제 단계는 총 16시간 소요되었다.
비교예 1
실시예 1의 (1) 단계와 동일한 방법으로 m-XDA의 포스겐화 반응을 수행하였다.
이후, 반응기 내부에 질소를 불어넣으며 상온으로 냉각하였다. 포스겐이 제거된 반응 혼합물을 단수 20의 붕단탑을 이용해 압력 5.0 kPa, 탑저온도 140 ℃, 탑정온도 50 ℃ 조건에서 감압 증류하여 용매를 제거하고, 이어서 압력 0.5kPa, 탑저온도 140 ℃, 탑정온도 50 ℃ 조건에서 감압 증류하여 저비점 불순물을 제거한 다음, 130 ℃, 0.5 kPa에서 회전자가 200rpm으로 회전하는 박막 증류 장치를 이용해 증류하여 올리고머를 제거해, m-XDI를 얻었다.
상기 정제 단계에서 최고 온도는 감압 증류 시 온도인 140 ℃ 였고, 정제 단계는 총 32시간 소요되었다.
비교예 2
실시예 1의 (1) 단계와 동일한 방법으로 m-XDA의 포스겐화 반응을 수행하였다.
이후, 반응기 내부에 질소를 불어넣으며 상온으로 냉각하였다. 포스겐이 제거된 반응 혼합물을 단수 20의 붕단탑을 이용해 압력 10.0 kPa, 탑저온도 150 ℃, 탑정온도 60 ℃ 조건에서 감압 증류하여 용매를 제거하고, 이어서 압력 1.0 kPa, 탑저온도 150 ℃, 탑정온도 60 ℃ 조건에서 감압 증류하여 저비점 불순물을 제거한 다음, 130 ℃, 0.5 kPa에서 회전자가 200rpm으로 회전하는 박막 증류 장치를 이용해 증류하여 올리고머를 제거해, m-XDI를 얻었다.
상기 정제 단계에서 최고 온도는 감압 증류 시 온도인 150 ℃ 였고, 정제 단계는 총 24시간 소요되었다.
비교예 3
실시예 1의 (1) 단계와 동일한 방법으로 m-XDA의 포스겐화 반응을 수행하였다.
이후, 반응기 내부에 질소를 불어넣으며 상온으로 냉각하였다. 포스겐이 제거된 반응 혼합물을 단수 20의 붕단탑을 이용해 압력 10.0 kPa, 탑저온도 150 ℃, 탑정온도 60 ℃ 조건에서 감압 증류하여 용매를 제거하고, 이어서 압력 1.0 kPa, 탑저온도 150 ℃, 탑정온도 60 ℃ 조건에서 감압 증류하여 저비점 불순물을 제거한 다음, 0.5 kPa에서 회전자가 200rpm으로 회전하는 박막 증류 장치를 이용해 증류하여 올리고머를 제거해, m-XDI를 얻었다.
상기 정제 단계에서 최고 온도는 감압 증류 시 온도인 150 ℃ 였고, 정제 단계는 총 32시간 소요되었다.
비교예 4
실시예 1의 (1) 단계와 동일한 방법으로 m-XDA의 포스겐화 반응을 수행하였다.
이후, 반응기 내부에 질소를 불어넣으며 상온으로 냉각하였다. 포스겐이 제거된 반응 혼합물을 단수 20의 붕단탑을 이용해 압력 50.0kPa, 탑저온도 170 ℃, 탑정온도 80 ℃ 조건에서 감압 증류하여 용매를 제거하고, 이어서 압력 10.0kPa, 탑저온도 170 ℃, 탑정온도 80 ℃ 조건에서 감압 증류하여 저비점 불순물을 제거한 다음, 0.5 kPa에서 회전자가 200rpm으로 회전하는 박막 증류 장치를 이용해 증류하여 올리고머를 제거해, m-XDI를 얻었다.
상기 정제 단계에서 최고 온도는 감압 증류 시 온도인 170 ℃ 였고, 정제 단계는 총 16시간 소요되었다.
실험예
(1) XDI 순도 측정
GC를 이용하여 상기 실시예 및 비교예의 m-XDI의 순도를 분석하였다. 먼저, 정제 직후의 m-XDI 조성물에 대해 GC 분석을 수행하고, m-XDI를 6개월간 냉장(4 ℃) 조건에서 보관한 후 GC 분석을 수행하였다. 6개월 후 백탁이 진행된 m-XDI에 대해서는, 불용성인 백탁 물질을 여과한 다음, 여과액에 대한 GC 분석을 수행하였다.
분석에 사용한 GC는 HP-6890이며, FID로 검출하였다. 사용한 컬럼은 DB-17(30m * 0.25mm * 0.5㎛), 캐리어가스는 질소(1.0 mL/min), 오븐 온도는 80 ℃ -> 5 ℃/min -> 160 ℃(8 min) -> 20 ℃/min -> 280 ℃(18min)이다.
(2) 백탁도 평가 및 백탁 물질 함량 측정
m-XDI를 6개월간 냉장(4 ℃) 조건에서 보관한 후, 백탁 발생 여부를 육안으로 확인하였다. 육안상 백탁이 발생한 m-XDI는 300 g을 계량한 후 필터로 걸러, 걸러진 고형분(백탁 물질)의 무게를 측정하고, 이로부터 백탁 물질의 함량(중량%)을 계산하였다.
(3) 광학재료의 제조 및 투명도 평가
상기 실시예 및 비교예에서 얻은 각 m-XDI를 이용하여, 하기 방법으로 중합성 조성물 및 광학 소자(플라스틱 렌즈)를 제조하였다.
m-XDI 20.8 g, zelec UN(이형제, 산성인산에스테르, Stepan 사제) 0.04 g, biosorb 583(자외선 흡수제, 2-(2′-hydroxy-5′-t-octylphenyl) benzotriazole, Sakai Chemical industry Co., Ltd 사제) 0.04 g를 상온의 플라스크에서 약 20분간 교반하였다.
모든 성분이 잘 혼합된 것을 육안으로 확인한 후 dibutyltin chloride 0.002 g를 추가로 넣고 10분간 교반하여 혼합물을 만들었다. 이 혼합물에 2,3-bis(2-sulfanyl ethyl sulfanyl)propane-1-thiol 19.2 g를 첨가하고 5 mbar 로 탈포하며 1시간 교반하여 중합성 조성물을 조제하였다.
상기 중합성 조성물을 1μm PTFE 필터에서 여과 후 유리 몰드와 테이프로 구성되는 몰드형으로 주입했다. 이 몰드형을 오븐에 투입하고 10 ℃에서 120 ℃까지 서서히 승온하며 20 시간 중합시켰다. 중합 종료 후 오븐에서 몰드형을 꺼내 이형하고, 120 ℃에서 6 시간 어닐링하여 플라스틱 렌즈를 제조하였다.
상기 렌즈에 대해 일반 형광등 및 지르코늄 램프(Y-100G)를 사용하여 육안으로 백탁 현상의 발생 정도를 평가하였다.
<평가 기준>
C(Clear): 형광등 및 지르코늄 램프 아래에서 모두 투명함
S.H(Slightly lamp Haze): 형광등 아래에서는 투명하나, 지르코늄 램프 아래에서 일부 탁함이 관찰됨
L.H(Lamp Haze): 형광등 아래에서는 투명하나, 지르코늄 램프 아래에서 탁함이 관찰됨
V.H(Visual Haze): 형광등 및 지르코늄 램프 아래에서 모두 탁함이 관찰됨
정제단계
최고온도
(℃)
정제단계
체류시간
(hr)
정제 직후 XDI 순도* 6개월 후 XDI 순도* 6개월 후 XDI 백탁 여부 백탁 물질 함량
(wt%)
렌즈 투명도
실시예1 150 15 99.60 98.60 × 0 C
실시예2 140 16 99.43 98.47 × 0 C
비교예1 140 32 99.52 98.04 1.2 V.H
비교예2 150 24 99.03 98.24 0.8 S.H
비교예3 150 32 99.50 98.21 1.4 V.H
비교예4 170 16 99.41 87.9 4 V.H
* GC 분석시 area %
상기 표 1을 참조하면, 정제 단계의 최고 온도를 170 ℃ 미만으로 하고, 정제 단계의 체류 시간을 16시간 이하로 조절하여 제조한 실시예 1 및 2의 XDI는 순도가 우수하게 유지되며, 장기 보관 안정성이 우수하여 백탁이 발생하지 않음을 확인할 수 있다. 또한 실시예 1 및 2의 XDI를 사용하여 제조한 광학 소자는 우수한 투명도를 나타내는 것을 확인할 수 있었다.
그러나 비교예 1 내지 4와 같이 XDI 제조 시 정제 단계의 온도가 너무 높거나, 온도가 적정하더라도 정제 단계의 체류 시간이 지나치게 긴 경우는 정제 직후의 순도는 우수하지만 장기 보관 시 백탁이 발생하거나 순도가 크게 감소하는 등 XDI의 안정성이 저하되고, 결국 이를 이용하여 제조된 광학 소자의 품질에도 영향을 미치는 점을 확인할 수 있다.

Claims (8)

  1. 디아민 또는 그 염을 포스겐과 반응시켜 반응 혼합물을 수득하는 반응 단계; 및
    상기 반응 혼합물로부터 디이소시아네이트를 분리하는 정제 단계를 포함하고,
    상기 정제 단계는 170 ℃ 미만의 온도에서 16 시간 이하로 수행되는, 디이소시아네이트의 제조방법.
  2. 제1항에 있어서,
    상기 디아민은 1,2-자일릴렌 디아민, 1,3-자일릴렌 디아민, 1,4-자일릴렌 디아민, 1,2-비스(아미노메틸)사이클로헥산, 1,3-비스(아미노메틸)사이클로헥산, 및 1,4-비스(아미노메틸)사이클로헥산으로 이루어지는 군에서 선택되는 1종 이상이고,
    상기 디아민 염은 1,2-자일릴렌 디아민 염산염, 1,3-자일릴렌 디아민 염산염, 1,4-자일릴렌 디아민 염산염, 1,2-비스(아미노메틸)사이클로헥산 염산염, 1,3-비스(아미노메틸)사이클로헥산 염산염, 1,4-비스(아미노메틸)사이클로헥산 염산염, 1,2-자일릴렌 디아민 탄산염, 1,3-자일릴렌 디아민 탄산염, 및 1,4-자일릴렌 디아민 탄산염, 1,2-비스(아미노메틸)사이클로헥산 탄산염, 1,3-비스(아미노메틸)사이클로헥산 탄산염, 및 1,4-비스(아미노메틸)사이클로헥산 탄산염으로 이루어지는 군에서 선택되는 1종 이상인, 디이소시아네이트의 제조방법.
  3. 제1항에 있어서,
    상기 반응 단계는 80 ℃ 내지 180 ℃에서 수행되는, 디이소시아네이트의 제조방법.
  4. 제1항에 있어서,
    상기 정제 단계는 100 ℃ 내지 150 ℃의 온도에서 5 시간 내지 15 시간 수행되는, 디이소시아네이트의 제조방법.
  5. 제1항에 있어서,
    상기 정제 단계는 0.001 내지 50 kPa의 압력 하에서의 감압 증류 및/또는 박막 증류에 의하여 수행되는, 디이소시아네이트의 제조방법.
  6. 제1항에 있어서,
    상기 정제 단계는,
    제1온도 및 제1압력 하에서 반응 혼합물을 감압 증류하여 용매를 제거하는 단계;
    제2온도 및 제2압력 하에서 감압 증류하여 저비점 불순물을 제거하는 단계; 및
    제3온도 및 제3압력 하에서 박막 증류하여 올리고머를 제거하는 단계를 포함하는 것인, 디이소시아네이트의 제조방법.
  7. 제6항에 있어서,
    상기 제3온도는, 제1온도 및/또는 제2온도와 같거나 낮고,
    상기 제3압력은, 제1압력 및/또는 제2압력과 같거나 낮은,
    디이소시아네이트의 제조방법.
  8. 제1항에 있어서,
    상기 정제 단계 후 디이소시아네이트의 순도는 99 % 내지 100 %인, 디이소시아네이트의 제조방법.
PCT/KR2022/018934 2021-11-30 2022-11-28 디이소시아네이트의 제조방법 WO2023101340A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22901698.5A EP4414361A1 (en) 2021-11-30 2022-11-28 Method for producing diisocyanate
CN202280076693.5A CN118302406A (zh) 2021-11-30 2022-11-28 制备二异氰酸酯的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210169321A KR20230081351A (ko) 2021-11-30 2021-11-30 디이소시아네이트의 제조방법
KR10-2021-0169321 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023101340A1 true WO2023101340A1 (ko) 2023-06-08

Family

ID=86612600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018934 WO2023101340A1 (ko) 2021-11-30 2022-11-28 디이소시아네이트의 제조방법

Country Status (5)

Country Link
EP (1) EP4414361A1 (ko)
KR (1) KR20230081351A (ko)
CN (1) CN118302406A (ko)
TW (1) TWI846172B (ko)
WO (1) WO2023101340A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163231A (ja) * 1991-12-17 1993-06-29 Mitsui Toatsu Chem Inc 4,4’−ジフェニルメタンジイソシアネートの製造方法
KR20050089053A (ko) * 2002-12-19 2005-09-07 바스프 악티엔게젤샤프트 반응 혼합물로부터 이소시아네이트를 분리하는 방법
KR20190139153A (ko) * 2018-06-07 2019-12-17 우리화인켐 주식회사 메타크실릴렌디이소시아네이트 및 광학 렌즈의 제조방법
KR102217747B1 (ko) * 2019-12-05 2021-02-19 에스케이씨 주식회사 디이소시아네이트 조성물 및 광학 렌즈의 제조방법
KR20210071802A (ko) * 2019-12-06 2021-06-16 에스케이씨 주식회사 디이소시아네이트 조성물 및 광학 렌즈의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11964931B2 (en) * 2019-12-05 2024-04-23 Sk Pucore Co., Ltd. Method of preparing diisocyanate composition and optical lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163231A (ja) * 1991-12-17 1993-06-29 Mitsui Toatsu Chem Inc 4,4’−ジフェニルメタンジイソシアネートの製造方法
KR20050089053A (ko) * 2002-12-19 2005-09-07 바스프 악티엔게젤샤프트 반응 혼합물로부터 이소시아네이트를 분리하는 방법
KR20190139153A (ko) * 2018-06-07 2019-12-17 우리화인켐 주식회사 메타크실릴렌디이소시아네이트 및 광학 렌즈의 제조방법
KR102217747B1 (ko) * 2019-12-05 2021-02-19 에스케이씨 주식회사 디이소시아네이트 조성물 및 광학 렌즈의 제조방법
KR20210071802A (ko) * 2019-12-06 2021-06-16 에스케이씨 주식회사 디이소시아네이트 조성물 및 광학 렌즈의 제조방법

Also Published As

Publication number Publication date
TWI846172B (zh) 2024-06-21
TW202330463A (zh) 2023-08-01
CN118302406A (zh) 2024-07-05
EP4414361A1 (en) 2024-08-14
KR20230081351A (ko) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2019132491A1 (ko) 안정성 및 반응성이 개선된 이소시아네이트 조성물, 및 이를 이용한 광학 렌즈
WO2021206269A1 (ko) 폴리티올 화합물의 제조 방법과 이를 포함한 광학 재료용 중합성 조성물 및 광학 렌즈
EP3831861A1 (en) Diisocyanate composition, preparation method thereof and optical material using same
US20230357136A1 (en) Diamine composition, and method of preparing diisocyanate composition
WO2018043901A1 (ko) 광학 재료용 폴리티올 화합물의 제조방법
WO2021040316A1 (ko) 폴리이소시아네이트 조성물의 제조방법
WO2023101340A1 (ko) 디이소시아네이트의 제조방법
US11964931B2 (en) Method of preparing diisocyanate composition and optical lens
WO2018216901A1 (ko) 에폭시 아크릴계 중굴절 광학렌즈용 수지 조성물 및 그 제조방법
WO2014077589A1 (ko) 에폭시 아크릴계의 고굴절 광학재료용 중합성 조성물 및 에폭시 아크릴계 고굴절 광학재료의 제조방법
WO2014027849A1 (ko) 에폭시 아크릴계 광학재료용 중합성 조성물 및 에폭시 아크릴계 광학재료의 제조방법
US11987541B2 (en) Method of preparing diisocyanate composition
US11932591B2 (en) Method of preparing diisocyanate composition and optical lens
JP3562918B2 (ja) ペンタエリスリトールメルカプトカルボン酸エステルの製造方法
EP3831806B1 (en) Diisocyanate composition for optical lens and preparation method thereof
WO2022059820A1 (ko) 비염소화 유도체를 포함하는 이소시아네이트 화합물의 제조 방법 및 이들의 조성물
US11634383B2 (en) Method of preparing diisocyanate composition
WO2022114805A1 (ko) 폴리티올 조성물, 광학 조성물 및 광학 제품
US11518737B2 (en) Method of preparing diisocyanate composition and optical lens
KR20220024347A (ko) 디이소시아네이트 조성물 및 광학 렌즈의 제조방법
WO2014035125A1 (ko) 에폭시 아크릴계 광학재료용 중합성 조성물 및 에폭시 아크릴계 광학재료의 제조방법
WO2024035146A1 (ko) 이소시아네이트 조성물의 제조 방법 및 이소시아네이트 조성물
WO2021015443A1 (ko) 우레탄 접착제 조성물
WO2023101404A1 (ko) 이소시아네이트 조성물 및 이의 제조방법
US20210171444A1 (en) Method of preparing diisocyanate composition and optical lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901698

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022901698

Country of ref document: EP

Ref document number: 22901698

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280076693.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022901698

Country of ref document: EP

Effective date: 20240510

NENP Non-entry into the national phase

Ref country code: DE