WO2023098919A1 - 一种低碳含氮奥氏体不锈钢棒的制造方法 - Google Patents

一种低碳含氮奥氏体不锈钢棒的制造方法 Download PDF

Info

Publication number
WO2023098919A1
WO2023098919A1 PCT/CN2022/137667 CN2022137667W WO2023098919A1 WO 2023098919 A1 WO2023098919 A1 WO 2023098919A1 CN 2022137667 W CN2022137667 W CN 2022137667W WO 2023098919 A1 WO2023098919 A1 WO 2023098919A1
Authority
WO
WIPO (PCT)
Prior art keywords
forging
low
stainless steel
austenitic stainless
upsetting
Prior art date
Application number
PCT/CN2022/137667
Other languages
English (en)
French (fr)
Inventor
董晓亮
张秀丽
周立新
雷应华
王显华
许广鹏
徐朋
孙国洋
李造宇
张军
阮栋
Original Assignee
大冶特殊钢有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大冶特殊钢有限公司 filed Critical 大冶特殊钢有限公司
Priority to EP22871159.4A priority Critical patent/EP4245880A4/en
Priority to US18/247,564 priority patent/US20240035110A1/en
Priority to JP2023523256A priority patent/JP7471520B2/ja
Publication of WO2023098919A1 publication Critical patent/WO2023098919A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/08Upsetting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/02Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/18Electroslag remelting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the invention relates to a method for manufacturing a metal material, in particular to a method for manufacturing a low-carbon high-strength nitrogen-containing austenitic stainless steel rod.
  • the international and domestic implementation standard of this type of austenitic stainless steel is RCCM M3306 compiled by the French Pressurized Water Reactor Nuclear Island Mechanical Equipment Design and Construction Rules Association, which requires C in steel: ⁇ 0.035%, Si: ⁇ 1.00%, Mn: ⁇ 2.00%, S: ⁇ 0.015%, P: ⁇ 0.030%, Cr: 18.50 ⁇ 20.00%, Ni: 9.00 ⁇ 10.00%, Cu: ⁇ 1.00%, Co: ⁇ 0.06%, N: ⁇ 0.080%, B: ⁇ 0.0018%, Nb+Ta: ⁇ 0.15%; in order to ensure the corrosion resistance of this material, the content of carbon and nitrogen elements is limited in the standard: C: ⁇ 0.035%, N: ⁇ 0.08%; at the same time , the standard requires the performance of this type of austenitic stainless steel: 350 °C high temperature tensile strength ⁇ 394MPa, 350 °C high temperature yield strength ⁇ 125MPa, room temperature tensile strength ⁇
  • the main strengthening elements to increase its strength are carbon and nitrogen elements.
  • the content of carbon and nitrogen elements is high, the strength of the steel is high, and vice versa.
  • the corrosion resistance of steel decreases.
  • the nitrogen element requirement is 0.10-0.16%. Therefore, this kind of stainless steel can easily achieve the high strength of the same kind of steel in the RCCM M3306 standard.
  • due to the high nitrogen content it is difficult to meet the corrosion resistance required by this standard.
  • the purpose of the present invention is to overcome the problems existing in the prior art, and to provide a method for manufacturing a low-carbon nitrogen-containing austenitic stainless steel rod.
  • the mechanical properties of the stainless steel rod obtained by this method meet the austenite in the RCCM M3306 standard
  • the mechanical performance requirements of stainless steel rods so as to break through the technical barriers, realize the independent production of low-carbon high-strength nitrogen-containing austenitic stainless steel rods, and no longer need to rely on importing such stainless steel rods from abroad.
  • the inventors of the present invention have found through in-depth research that after controlling the steel within a specific composition range, the steel ingot is used as an electrode rod for electroslag remelting for remelting and crystallization, and the remelting process is carried out with a specific slag material.
  • the uniform distribution of the chemical composition inside the steel and the high purity of the steel can be better controlled, and then the steel ingot is forged through a specific forging method to obtain a steel with uniform distribution of chemical composition and structure, high purity, and qualified strength. Therefore, the invention provides a method for manufacturing a low-carbon high-strength nitrogen-containing austenitic stainless steel rod.
  • the present invention adopts the following technical solutions.
  • a method for manufacturing a low-carbon nitrogen-containing austenitic stainless steel rod comprising the following steps in sequence: melting, electroslag remelting and forging; wherein, in the electroslag remelting step, the steel ingot obtained in the melting step is used as an electroslag
  • the electrode rod of the slag furnace is remelted and crystallized with a specific slag material; in the forging process, the crystallized steel ingot is forged in a specific forging method;
  • the specific slag includes CaF 2 , Al 2 O 3 , CaO and MgO, and the content of CaF 2 , Al 2 O 3 , CaO and MgO is (65%-70%), (15% ⁇ 20%), (5% ⁇ 10%), (2% ⁇ 5%);
  • the specific forging method includes upsetting and radial forging, wherein the upsetting includes: the deformation of each pass is less than 35% (for example, 28%, 30%, 32%, 33%, 34%), and the reduction of each pass is less than 35%.
  • the volume is 50-80mm (for example, 55mm, 60mm, 70mm, 75mm), the heating temperature of each pass is 1130-1150°C (for example, 1135°C, 1140°C, 1145°C), and the deformation mode of each pass is: ellipse-ellipse-circle.
  • the pass heating temperature refers to the temperature returned to the furnace for heating after each pass of deformation.
  • the upsetting and drawing include upsetting and elongation.
  • the ellipse first gradually becomes smaller, and finally becomes a circle.
  • the reduction is the single reduction height of the press, and the deformation is the change of the front and rear areas of the steel.
  • the CaF 2 , Al 2 O 3 , CaO and MgO are (65%-68%), (18%-20%) , (5%-10%), (3%-5%), more preferably CaF 2 , Al 2 O 3 , CaO and MgO are 65%, 20%, 10%, and 5% in sequence.
  • the general choice of pass deformation is 40-60%, the purpose is to improve the production efficiency of steel; the pass heating temperature is generally 1160-1180 °C, and the pass deformation mode is square-ellipse-circle .
  • the selected pass deformation is less than 35%, in order to ensure that the as-cast structure of the steel ingot undergoes uniform transformation during the forging process; the pass reduction of 50-80mm is used to ensure The steel ingot deforms uniformly during the forging process to avoid local organization disorder caused by excessive reduction; the heating temperature of the pass is 1130-1150°C (for example, 1135°C, 1140°C, 1145°C), in order to ensure that the material is fine Scattered structure; in addition, the present invention adopts the ellipse-ellipse-circle pass deformation method, the purpose is to avoid square edges and corners in the steel, which in turn leads to abnormal steel structure due to the rapid drop in temperature of the edges and corners.
  • the steelmaking raw materials are mixed in such a way that the steel ingot obtained after smelting or the finally obtained stainless steel bar has a specific composition.
  • the specific composition includes: C: 0.020 ⁇ 0.030%, Si: 0.3 ⁇ 0.6%, Mn: 1.3 ⁇ 1.8%, S: ⁇ 0.002%, P: ⁇ 0.015%, Cr: 19.20 ⁇ 19.70%, Ni: 9.20 ⁇ 9.80%, Cu: ⁇ 1.00% , Co: ⁇ 0.06%, N: 0.065-0.075%, B: ⁇ 0.0018%, Nb+Ta: ⁇ 0.15%.
  • the specific composition includes: C: 0.025%, Si: 0.5%, Mn: 1.45%, S: ⁇ 0.002%, P: ⁇ 0.015%, Cr: 19.5%, Ni: 9.7% %, Cu: ⁇ 1.00%, Co: ⁇ 0.06%, N: 0.07%, B: ⁇ 0.0018%, Nb+Ta: ⁇ 0.15%.
  • the steelmaking raw materials include low-carbon ferrochromium, metallic nickel, electrolytic manganese, ferrosilicon, ferrochrome nitride, and steel scrap.
  • the low-carbon ferrochromium, metallic nickel, electrolytic manganese, ferrosilicon, ferrochromium nitride, scrap steel, etc. can be used for various metals conventionally used in the field for refining 304 series steel.
  • the smelting process includes melting treatment, refining treatment, vacuum degassing treatment and casting molding in sequence.
  • the steel ingot obtained in the smelting process is firstly subjected to cutting treatment and surface polishing treatment, and then used as an electrode rod for electroslag remelting , the cutting treatment is used to cut off poorly fed parts; the surface polishing treatment is used to obtain an electrode rod with good surface quality.
  • the chemical composition of the steel ingot after remelting is uniform and the surface quality is good, so as to obtain steel with better surface quality, high purity, uniform structure and high strength.
  • the electroslag remelting current is 11 ⁇ 13KA (for example, 11.5KA, 12.0KA, 12.5KA).
  • the percentages by weight are (65% ⁇ 70%), (15% ⁇ 20%), (5% ⁇ 10%), (2% ⁇ 5%), preferably
  • the mixed slag (specific slag) of 65%, 20%, 10%, 5% CaF 2 , Al 2 O 3 , CaO and MgO is remelted and crystallized, which can effectively improve the purity of the steel.
  • CaF 2 can reduce the melting point, viscosity and surface tension of slag, improve the fluidity of slag, and can effectively eliminate non-metallic inclusions in steel
  • Al 2 O 3 can reduce the conductivity of slag to achieve energy saving and reduction.
  • the present invention adopts CaF 2 , Al 2 O 3 , CaO, and MgO in the order of (65% to 70%), (15% to 20%), (5% to 10%), (2% to 5% ), preferably 65%, 20%, 10%, 5% of the specific slag ratio and 11 ⁇ 13KA, preferably 11KA remelting current, can ensure the stable melting of the electrode rod, and can also obtain high purity, microstructure And steel ingots with uniform composition and good surface.
  • 1 to 10 wt%, preferably 1 to 8 wt% of the electrode rod (for example, 2wt%, 3wt%, 5wt%, 6wt%, 7wt%), used for feeding the crystallized steel ingot. That is, when the molten steel is dripped into the crystallizer to crystallize, due to the effect of the surface tension of the molten steel, there will be shrinkage cavities on the surface of the steel ingot. In order to avoid the large shrinkage cavities formed by the steel ingot, the surface quality of the steel obtained after forging will be poor in the present invention.
  • the steel ingot obtained by electroslag remelting is demoulded and cooled to room temperature to obtain a low-carbon nitrogen-containing austenitic stainless steel billet.
  • the low-carbon nitrogen-containing austenitic stainless steel billet prepared by adopting the technical solution of the present invention has uniform chemical composition, high purity and no segregation defects, and can be used to manufacture a low-carbon high-strength nitrogen-containing austenitic stainless steel rod.
  • the manufacturing method of the low-carbon high-strength nitrogen-containing austenitic stainless steel rod needs to meet special requirements.
  • the low-carbon nitrogen-containing austenitic stainless steel billet obtained by electroslag remelting is subjected to soaking treatment before upsetting, and the soaking treatment includes 1 ⁇ 10°C/min (e.g., 2°C/min, 3°C/min, 5°C/min, 7°C/min, 8°C/min, 9°C/min) heating rate to 1130-1150°C (e.g., 1135°C, 1140°C, 1145°C), and then kept at this temperature for 3-5h (for example, 3.5h, 4.0h, 4.5h).
  • 1 ⁇ 10°C/min e.g., 2°C/min, 3°C/min, 5°C/min, 7°C/min, 8°C/min, 9°C/min
  • the conditions for the upsetting include: using the specific forging method for upsetting, the forging start temperature ⁇ 1000°C (for example, 1050°C, 1100°C °C, 1110 °C, 1120 °C), the final forging temperature is ⁇ 800 °C (for example, 850 °C, 900 °C, 950 °C, 1000 °C), and the number of times of upsetting is 1 to 3 times (eg 2 times), preferably 2 to 3 times; each upsetting time is 5 to 20 minutes (for example, 8 minutes, 10 minutes, 12 minutes, 15 minutes, 17 minutes, 19 minutes).
  • the conditions for the upsetting include: using the specific forging method for upsetting, and the forging start temperature is 1050-1100°C (for example, 1060°C , 1070°C, 1080°C, 1090°C), the final forging temperature is 800-900°C (for example, 820°C, 850°C, 870°C, 890°C), preferably, the time for each upsetting is 5-15min (for example , 7min, 9min, 10min, 12min, 14min).
  • the specific forging method includes: the deformation amount of each pass is 30-32% (for example, 30.5%, 31%, 31.5%) , the pass reduction is 65-75mm (for example, 67mm, 70mm, 72mm, 74mm), the pass heating temperature is 1130-1150°C (for example, 1135°C, 1140°C, 1145°C), the pass deformation mode is: ellipse- Ellipse - Circle.
  • the specific forging method includes: the deformation amount of each pass is 31%, the reduction amount of each pass is 70mm, and the heating temperature of each pass is 1140°C , the pass deformation mode is: ellipse-ellipse-circle.
  • the upsetting of the forging process two upsetting and two drawing are performed in a 4500t press (that is, two times of upsetting), and the deformation amount of the second upsetting is larger than that of the first The amount of deformation at one time is large, which can solve the problem of coarse structure caused by the process of returning to the furnace after the first upsetting, so that the obtained steel has a better grain size.
  • each time the upsetting (upsetting and elongation) is completed it will be returned to the furnace for refiring to achieve the opening forging required for the next upsetting.
  • Temperature preferably, the conditions for returning to the furnace and refiring heating (ie, pass heating) after each upsetting and drawing include: the temperature is 1130-1150°C (for example, 1135°C, 1140°C, 1145°C), and the time is 90-120min ( For example, 95min, 100min, 110min, 115min).
  • the above-mentioned reheating and refiring heating conditions can be used again for heating to prepare for the next radial forging.
  • radial forging is performed after the end of upsetting; the conditions of the radial forging include: the forging start temperature is 1000-1140°C (for example, 1020°C, 1040°C, 1050°C, 1070°C, 1090°C, 1115°C, 1125°C, 1130°C, 1135°C), the final forging temperature is 800-900°C (for example, 820°C, 850°C, 870°C, 890°C), time 5-20 min (for example, 8 min, 10 min, 12 min, 15 min, 17 min, 19 min).
  • the forging start temperature is 1000-1140°C (for example, 1020°C, 1040°C, 1050°C, 1070°C, 1090°C, 1115°C, 1125°C, 1130°C, 1135°C)
  • the final forging temperature is 800-900°C (for example, 820°C, 850°C, 870°C, 890°C), time 5-20 min (for example, 8 min,
  • the conditions for radial forging include: the opening temperature of forging is 1000-1100°C (for example, 1005°C, 1010°C, 1020°C, 1040°C, 1050°C, 1070°C, 1080°C, 1090°C), the final forging The temperature is 800-900°C (eg, 820°C, 850°C, 870°C, 890°C), and the time is 10-20min (eg, 12min, 15min, 17min, 18min).
  • the radial forging is carried out on a 1600t radial forging machine, and one fire forging is performed, and the radially forged steel is air-cooled to obtain a low-carbon nitrogen-containing austenitic stainless steel rod.
  • a low-carbon nitrogen-containing austenitic stainless steel rod with a diameter of more than 200mm can be produced.
  • the obtained low-carbon nitrogen-containing austenitic stainless steel rod has a high-temperature tensile strength at 350°C ⁇ 410MPa, a high-temperature yield strength at 350°C ⁇ 140MPa, a tensile strength at room temperature ⁇ 560MPa, and a yield strength at room temperature ⁇ 260MPa, and the chemical composition and high and low structure are uniform, and the purity of the steel is high.
  • the invention provides a method for manufacturing a low-carbon high-strength nitrogen-containing austenitic stainless steel rod, which includes the following steps: smelting, electroslag remelting and forging; wherein,
  • Smelting process adding steelmaking raw materials to electric arc furnace, refining furnace outside the furnace and vacuum oxygen blowing decarburization furnace for smelting, the smelting includes melting treatment, refining treatment, first sample adjustment treatment, oxygen blowing decarburization treatment in sequence , degassing treatment and nitrogen blowing treatment, the second sample adjustment treatment and pouring molding; the steelmaking raw materials are batched in such a way that the final steel ingot has a specific composition, and the specific composition includes by weight percentage: C: 0.020 ⁇ 0.030%, Si: 0.3 ⁇ 0.6%, Mn: 1.3 ⁇ 1.8%, S: ⁇ 0.002%, P: ⁇ 0.015%, Cr: 19.20 ⁇ 19.70%, Ni: 9.20 ⁇ 9.80%, Cu: ⁇ 1.00%, Co: ⁇ 0.06%, N: 0.065 ⁇ 0.075%, B: ⁇ 0.0018%, Nb+Ta: ⁇ 0.15%;
  • Electroslag remelting process the steel ingots obtained in the smelting process are first cut off and surface polished, and then used as electrode rods for electroslag remelting, remelted and crystallized with specific slag materials, and then crystallized The steel ingot is cooled;
  • the specific slag material includes CaF 2 , Al 2 O 3 , CaO and MgO, and the content of CaF 2 , Al 2 O 3 , CaO and MgO is (65% to 70%) in sequence. , (15% ⁇ 20%), (8% ⁇ 10%), (2% ⁇ 5%), to ensure that the sum of the proportions of the final proportioning ratio is 100%;
  • Forging process cooling the crystallized steel ingot; in the forging process, forging the crystallized steel ingot into a material in a specific forging method; the specific forging method includes upsetting and radial forging, and the upsetting includes Upsetting and elongation, wherein the upsetting includes: the deformation of each pass is less than 35% (for example, 28%, 30%, 32%, 33%, 34%), and the reduction of each pass is 50-80mm (for example, 55mm , 60mm, 70mm, 75mm), the pass heating temperature is 1130 ⁇ 1150°C (for example, 1135°C, 1140°C, 1145°C), and the pass deformation mode is: ellipse-ellipse-circle.
  • the pass heating temperature refers to the temperature returned to the furnace for heating after each pass of deformation.
  • the smelting process can adopt conventional technical solutions in the field.
  • the steelmaking raw materials include low-carbon ferrochrome, metallic nickel, electrolytic manganese, ferrosilicon, ferrochrome nitride, steel scrap, etc.
  • the low-carbon ferrochrome, metallic nickel, electrolytic Manganese, ferrosilicon, ferrochromium nitride, scrap steel, etc. can be various metals conventionally used in the art for refining 304 series steel, for example, the metal nickel is 1#Ni, etc.
  • the specific composition includes: C: 0.025%, Si: 0.5%, Mn: 1.45%, S: ⁇ 0.002%, P: ⁇ 0.015%, Cr: 19.5%, Ni: 9.7%, Cu: ⁇ 1.00%, Co: ⁇ 0.06%, N: 0.07%, B: ⁇ 0.0018%, Nb+Ta: ⁇ 0.15%.
  • the batching of the steelmaking raw materials can be batched according to the above composition, in order to obtain more high-quality steel ingots, preferably, in the smelting treatment process, part of the low-carbon ferrochromium and nitriding in the steelmaking raw materials Ferrochromium is reserved as the addition of the second sample adjustment treatment.
  • the melting treatment refers to the process of melting and mixing the steelmaking raw materials through electrode heating, oxygen blowing, and slag addition after adding the steelmaking raw materials into an electric arc furnace, such as a vacuum electric arc furnace.
  • the tapping conditions of the melting treatment include: C ⁇ 0.60%, T ⁇ 1630°C.
  • the refining process refers to pouring the molten steel melted in the electric furnace into the refining furnace outside the furnace, and reducing the molten steel in the electric arc furnace through electrode heating and slag addition.
  • Adjust the slag to be suitable that is, adjust the slag to white
  • take a sample for full analysis and return the sample to adjust the composition.
  • the tapping condition T ⁇ 1650°C the tapping composition: C ⁇ 0.80%, Si ⁇ 0.30%, S ⁇ 0.015%.
  • carrying out vacuum oxygen blowing decarburization treatment, degassing treatment and nitrogen blowing treatment in the vacuum oxygen blowing decarburization furnace means that the molten steel in the refining furnace outside the furnace is subjected to vacuum oxygen blowing treatment to Remove the carbon content of the steel, and then add slag and deoxidizer under vacuum for vacuum degassing to remove the oxides left over from the steel after oxygen blowing and decarburization.
  • the chemical composition add the reserved low-carbon ferrochromium and ferrochromium nitride; preferably, the refining slag outside the furnace is cleaned before the molten steel enters the vacuum oxygen blowing decarburization furnace, and the slag processed by vacuum degassing
  • the ratio is: lime 400kg/furnace, fluorite 50-100kg/furnace, pre-dissolved aluminum-calcium composite slag 200-300kg/furnace; deoxidizer is Al grain, Ca-Si or Fe-Si; preferably, add with slag Deoxidizer Al particles 1 ⁇ 3kg/t, Ca-Si or Fe-Si 5 ⁇ 8kg/t; vacuum degree of vacuum degassing treatment ⁇ 100Pa, holding time ⁇ 10min.
  • casting molding refers to casting molten steel with qualified chemical composition obtained by vacuum degassing treatment into electrodes.
  • argon gas is blown at the bottom of the furnace for 20 minutes before casting, and argon gas protection is used for casting.
  • the pouring temperature is 1530-1550°C.
  • the steel ingot with the composition of the present invention is remelted and crystallized as an electrode rod for electroslag remelting.
  • the present invention in order to obtain steel with better surface quality, high purity, uniform structure and high strength, it is necessary to ensure that the chemical composition of the steel ingot after remelting is uniform and the surface quality is good. Polished finish.
  • the cutting treatment is used to cut off poorly fed parts; the surface polishing treatment is used to obtain an electrode rod with good surface quality.
  • the steel ingot obtained by casting is used as the electrode rod of the electroslag furnace.
  • Molten steel the molten steel is dripped into the crystallizer through slag for crystallization; preferably, the specific slag ratio is: CaF 2 : 65%, Al 2 O 3 : 20%, CaO: 10%, MgO: 5%, the current of electroslag remelting is 11KA.
  • the electrode rod in order to obtain steel with higher surface quality, preferably, 1 to 10% by weight (more preferably 1 to 8% by weight) of the electrode rod is used for feeding the crystallized steel ingot, that is, due to When the molten steel is dripped into the crystallizer to crystallize, due to the effect of the surface tension of the molten steel, there will be shrinkage cavities on the surface of the steel ingot. In order to avoid the large shrinkage cavities formed by the steel ingot, the surface quality of the steel obtained after forging will be poor and affect its quality. For the quality of processing plasticity, preferably in the later stage of crystallization, 1 to 10% by weight (more preferably 1 to 8% by weight) of the electrode rod is used to fill the shrinkage cavity on the surface of the steel ingot formed after crystallization.
  • the low-carbon nitrogen-containing austenitic stainless steel obtained by the manufacturing method of the present invention has uniform distribution of chemical components, high purity and no segregation defects, and can be used to manufacture a low-carbon high-strength nitrogen-containing austenitic stainless steel rod.
  • the specific forging method is to perform upsetting and radial forging on the steel ingot after soaking treatment; the soaking treatment is obtained by electroslag remelting process The steel ingot is cooled and then heat-treated.
  • the soaking treatment includes: raising the temperature to 1130-1150°C at a heating rate of 1-10°C/min, and then holding the temperature for 3-5 hours; the upsetting includes upsetting and elongating.
  • the conditions for the upsetting include: the starting forging temperature is ⁇ 1000°C, the final forging temperature is ⁇ 800°C, and the time for each upsetting is 5 to 50°C. 20min; the pass deformation is 30-32%, the pass reduction is 65-75mm, the pass heating temperature is 1130-1150°C, and the pass deformation mode is: ellipse-ellipse-circle.
  • the conditions for upsetting include: the opening forging temperature is 1050-1100°C, the final forging temperature is 800-900°C, and the time for each upsetting is 5-15 minutes; the number of upsetting times can be 1-3 times, preferably 2 to 3 times; more preferably, two upsetting and two drawing are carried out in the 4500t press, and the second upsetting and drawing deformation is larger than the first deformation, which can solve the problem of returning to the furnace after the first upsetting and drawing The process causes the problem of coarse structure, which can make the resulting steel have better grain size.
  • the upsetting including upsetting and drawing
  • the conditions for returning to the furnace after each upsetting and refiring include: the temperature is 1130 ⁇ 1150°C, the time is 90 ⁇ 120min, including the return conditions after the last upsetting can adopt the above-mentioned return conditions, the deformation of each pass is 31%, the reduction of each pass is 70mm, the heating temperature of each pass is 1140°C, and the The deformation mode is: ellipse-ellipse-circle.
  • radial forging is performed after the upsetting and drawing are completed, and the forging start temperature of the radial forging is the temperature of the steel after returning to the furnace for heating.
  • the conditions for the radial forging include: the temperature for starting the forging is 1120-1140° C., the temperature for the final forging is 800-900° C., and the time is 5-20 minutes.
  • the conditions of the radial forging include: the starting forging temperature is 1000-1100°C, the final forging temperature is 800-900°C, and the time is 10-20min; more preferably, the radial forging is carried out on a 1600t radial forging machine It is carried out, and a fire forging is carried out, and the steel after radial forging is air-cooled.
  • a steel rod with a diameter of more than 200mm can be obtained, and the high-temperature tensile strength of the obtained low-carbon high-strength nitrogen-containing austenitic stainless steel is ⁇ 410MPa at 350°C. 350°C high temperature yield strength ⁇ 140MPa, room temperature tensile strength ⁇ 560MPa, room temperature yield strength ⁇ 260MPa, and the chemical composition and high and low structure are uniform, and the steel purity is high.
  • the tensile strength Rm, the yield strength Rp0.2, the elongation after fracture A and the reduction of area Z are measured by the method described in RCCM M1000.
  • This embodiment provides a method for manufacturing a low-carbon high-strength nitrogen-containing austenitic stainless steel rod, which includes the following steps in sequence: smelting, electroslag remelting and forging. specifically,
  • the molten steel after refining and tapping is poured into a vacuum oxygen blowing decarburization furnace for oxygen blowing treatment under vacuum. After oxygen blowing, samples are taken until the carbon content in the steel is 0.005%, and then 400kg of lime and fluorite are poured into the molten steel. 80kg, 200kg of synthetic slag, 20kg of deoxidizer Al particles and 20kg of Ca-Si were added along with the slag material for degassing treatment, the vacuum degree was 67Pa, and the holding time was 15min.
  • the filled portion of the steel ingot obtained in the smelting process is cut off and its surface is polished.
  • the polished steel ingot is used as the electrode rod of the electroslag furnace for remelting.
  • the feeding material of the steel ingot in the crystallizer performs feeding treatment on the shrinkage cavity of the steel ingot.
  • the steel ingot is demoulded and cooled to room temperature to obtain a ⁇ 510mm steel ingot.
  • Forging process forging with a specific forging method, including soaking heat treatment and forging, the forging includes upsetting and radial forging, wherein the specific forging method includes: the deformation amount of each pass is 31%, the reduction amount of each pass is 70mm, The heating temperature of the pass is 1140°C, and the deformation mode of the pass is ellipse-ellipse-circle. specifically,
  • Soaking treatment Soak the air-cooled 2.5 tons ( ⁇ 510mm) steel ingot.
  • the soaking condition is: first heat it to 1150°C at a heating rate of 2.3°C/min, and keep it for 4 hours.
  • Upsetting (including upsetting and elongation) and diameter forging send the soaked ingot into a 4500t press for the first upsetting for 8 minutes, the final forging temperature is 850°C, and the diameter is 530mm. 70mm, the deformation method is ⁇ 540mm ellipse- ⁇ 535mm ellipse- ⁇ 530mm circle (the ellipse here is also called barren circle in the production process, which is an irregular circle, and the diameter refers to the average value of the long and short diameters); and then return to the furnace to heat at 1140°C Heating for 90 minutes, then upsetting and pulling for 10 minutes in a 4500t press, the final forging temperature is 850°C, until the diameter is 510mm, the reduction is 70mm, and the deformation mode is ⁇ 520mm ellipse- ⁇ 515mm ellipse- ⁇ 510mm circle; return to the furnace Heating at 1140°C for 90 minutes, and the first elongation for 15 minutes in a 4500t press, until
  • This embodiment provides a method for manufacturing a low-carbon high-strength nitrogen-containing austenitic stainless steel rod, which includes the following steps in sequence: smelting, electroslag remelting and forging. Among them, except that the following technical scheme is adopted for the batching step in the smelting process, the technical scheme in Example 1 is adopted for other steps of the smelting process, electroslag remelting and forging processes.
  • This embodiment provides a method for manufacturing a low-carbon high-strength nitrogen-containing austenitic stainless steel rod, which includes the following steps in sequence: smelting, electroslag remelting and forging.
  • smelting, electroslag remelting and forging adopts the same technical scheme as that of embodiment 2, and the forging process adopts the following technical scheme:
  • Forging process forging in a specific forging method, including soaking heat treatment and forging, the forging includes upsetting and radial forging, wherein the specific forging method includes: the deformation amount of each pass is 31%, the reduction amount of each pass is 65mm, The heating temperature of the pass is 1140°C, and the deformation mode of the pass is ellipse-ellipse-circle.
  • the reduction is the single reduction height of the press, and the deformation is the change in the front and rear areas of the steel. specifically,
  • Soaking treatment Soak the air-cooled 2.5 tons ( ⁇ 510mm) steel ingot.
  • the soaking condition is: first heat it to 1150°C at a heating rate of 2.3°C/min, and keep it for 4 hours.
  • Upsetting and radial forging Send the soaked ingot into a 4500t press for the first upsetting for 15 minutes, the final forging temperature is 800°C, the diameter is 530mm, the reduction is 65mm, and the deformation method is ⁇ 540mm ellipse- ⁇ 535mm ellipse- ⁇ 530mm circle; return to the furnace to heat at 1130°C for 90min, then send it to a 4500t press for the second upsetting for 15min, the final forging temperature is 800°C, until the diameter is 510mm, the reduction is 65mm, and the deformation method is ⁇ 520mm ellipse- ⁇ 515mm ellipse- ⁇ 510mm circle; return to the furnace to heat at 1130°C for 90 minutes, and then send it to a 4500t press for the first elongation for 15 minutes, until the diameter is 420mm, the reduction is 65mm, and the deformation is 31%.
  • the method is ⁇ 430mm ellipse- ⁇ 425mm ellipse- ⁇ 420mm circle; then return to the furnace to heat at 1130°C for 90 minutes, and then send it to a 4500t press for the second elongation for 15 minutes, until the diameter is 350mm, the reduction is 65mm, and the deformation is 31%.
  • the deformation mode is ⁇ 360mm ellipse- ⁇ 355mm ellipse- ⁇ 350mm circle; then return to the furnace and heat at 1140°C for 90min, then perform a fire forging in a 1600t diameter forging machine for 20min, the final forging temperature is 850°C, the diameter after forging is 200mm, and then Air-cooled to room temperature to obtain a 00Cr19Ni10N steel rod with a diameter of 200 mm.
  • the 350°C high-temperature tensile strength, 350°C high-temperature yield strength, room temperature tensile strength, and room temperature yield strength of the 00Cr19Ni10N steel rod all meet the requirements of the RCCMM3306 standard, and the chemical composition and high-low structure are uniform, and the purity of the steel is high. For details, see Shown in Table 5 and Table 6.
  • This comparative example provides a manufacturing method for producing low-carbon high-strength nitrogen-containing austenitic stainless steel rods by conventional electroslag technology, which includes the following steps in sequence: smelting, electroslag remelting and forging.
  • the smelting and forging process adopts the same technical scheme as that of the smelting and forging process in Example 1, and the electroslag remelting process adopts the following technical scheme:
  • the polished steel ingot is used as the electrode rod of the electroslag furnace for remelting .
  • the weight of the slag is 130kg.
  • the current is 12KA, and the remelting voltage is 45V; the molten steel is dripped into a crystallizer with a diameter of 510mm to crystallize, and when there is 360kg left in the electrode rod, it is used as the feeding material for the steel ingot in the crystallizer to shrink the steel ingot. Holes are processed for shrinkage.
  • the ingot is demolded and cooled to room temperature.
  • the steel ingot obtained in the electroslag remelting process is forged to obtain a diameter of 200 mm, and then air-cooled to room temperature to obtain a 00Cr19Ni10N steel rod with a diameter of 200 mm.
  • the yield strength at room temperature did not meet the requirements of the RCCMM3306 standard, the purity of the steel was low, and the low-magnification structure was uneven. See Table 7 and Table 8 for details.
  • This comparative example provides a method for manufacturing a low-carbon high-strength nitrogen-containing austenitic stainless steel rod produced by a conventional forging process, which includes the following steps in sequence: smelting, electroslag remelting and forging.
  • smelting and electroslag remelting process adopts the same technical scheme as that of embodiment 1, and the forging process adopts the following technical scheme:
  • Forging process forging with a specific forging method, including soaking heat treatment and forging, the forging includes upsetting and radial forging, wherein the specific forging method includes: 50% deformation per pass, 120mm reduction per pass, The heating temperature of the pass is 1170°C, and the deformation mode of the pass is square-ellipse-circle. specifically,
  • Soaking treatment Soak the air-cooled 2.5 tons ( ⁇ 510mm) steel ingot.
  • the soaking condition is: first heat it to 1170°C at a heating rate of 2.3°C/min, and then keep it for 4 hours.
  • Upsetting and radial forging Send the soaked ingot into a 4500t press for the first upsetting for 8 minutes, the final forging temperature is 850°C, the diameter is 530mm, the reduction is 120mm, and the deformation method is 530mm square- ⁇ 535mm ellipse- ⁇ 530mm circle; return to the furnace and heat at 1170°C for 90min, then send it to a 4500t press for the second upsetting for 10min, the final forging temperature is 750°C, until the diameter is 450mm, the reduction is 120mm, and the deformation method is 440mm square billet- ⁇ 455mm ellipse- ⁇ 450mm circle; return to the furnace to heat at 1170°C for 90 minutes, and then send it to a 4500t press for 15 minutes of elongation until the diameter is 300mm, the reduction is 120mm, and the deformation is 55%.
  • This comparative example provides a method for manufacturing low-carbon high-strength nitrogen-containing austenitic stainless steel rods produced within the conventional chemical composition control range, which includes the following steps in sequence: smelting, electroslag remelting and forging. Among them, except that the following technical scheme is adopted for the batching step in the smelting process, the technical scheme in Example 1 is adopted for other steps of the smelting process, electroslag remelting and forging process. specifically,
  • the final forging is 200mm in diameter, and then air-cooled to room temperature to obtain 00Cr19Ni10N steel rods with a diameter of 200mm.
  • the strength and room temperature yield strength are not up to the requirements of the RCCMM3306 standard, as shown in Table 11 and Table 12.
  • the technical solution of the present invention can obtain low-carbon, high-strength nitrogen-containing austenitic stainless steel with uniform distribution of chemical composition and structure, high purity and high strength.

Abstract

本发明公开了一种低碳含氮奥氏体不锈钢棒的制造方法,依次包括如下工序:熔炼、电渣重熔和锻造;电渣重熔工序中,将熔炼工序得到的钢锭作为电渣炉的电极棒,以特定的渣料进行重熔并结晶;锻造工序中,将结晶后的钢锭以特定的锻造方式进行锻造成材;特定的渣料按重量百分比含量包括CaF 2(65%~70%)、Al 2O 3(15%~20%)、CaO(5%~10%)和MgO(2%~5%);特定的锻造方式包括镦拔和径锻,镦拔包括:道次变形量小于35%,道次压下量50~80mm,道次加热温度1130~1150℃,道次变形方式为椭圆-椭圆-圆。采用该方法能获得化学成分及组织均匀分布、纯净度高、强度高的低碳高强含氮奥氏体不锈钢。

Description

一种低碳含氮奥氏体不锈钢棒的制造方法 技术领域
本发明涉及一种金属材料的制造方法,具体而言涉及一种低碳高强含氮奥氏体不锈钢棒的制造方法。
背景技术
随着目前工业化的快速发展,对金属材料的要求也有些越来越高的要求,尤其是在一些特殊的环境中,如核电、锅炉及军工等领域常涉及到需要耐腐蚀、耐高低温、具备高强度的金属材料,目前常见的钢材中,只有奥氏体不锈钢可以满足其使用要求,但该种奥氏体不锈钢对成分和性能指标有限更严格的要求。
目前国际及国内通用的该类奥氏体不锈钢的执行标准为法国压水堆核岛机械设备设计和建造规则协会编制的RCCM M3306,该标准中要求钢中的C:≤0.035%,Si:≤1.00%,Mn:≤2.00%,S:≤0.015%,P:≤0.030%,Cr:18.50~20.00%,Ni:9.00~10.00%,Cu:≤1.00%,Co:≤0.06%,N:≤0.080%,B:≤0.0018%,Nb+Ta:≤0.15%;为了保证该材料的耐腐蚀性,标准中限制了碳和氮元素的含量:C:≤0.035%,N:≤0.08%;同时,该标准要求了对该类奥氏体不锈钢的性能为:350℃高温拉伸强度≥394MPa,350℃高温屈服强度≥125MPa,室温拉伸强度≥520MPa,室温屈服强度≥210MPa。
然而,对于低碳高强含氮奥氏体不锈钢,提高其强度的主要强化元素为碳和氮元素,当碳和氮元素的含量高时,钢的强度高,反之亦然。但是,碳和氮元素的含量高时,钢的耐腐蚀性降低。国标GB/T1220-2007中,该同类低碳高强含氮奥氏体不锈钢材料中,氮元素的要求为0.10~0.16%,因而,该类不锈钢很容易实现RCCM M3306标准中同类钢的高强度,但由于氮含量高很难满足该标准所要的耐腐蚀性。
但是,降低国标GB/T1220-2007中氮元素的含量,该类钢则很难达到的RCCM M3306标准中同类钢的高强度。因而,与RCCM M3306标准中钢的化学成分要求相比,低碳高强含氮奥氏体不锈钢的生产难度增加。
目前,国内企业在生产过程中经常出现所生产的该类奥氏体不锈钢的强度不满足标准要求的情况,生产过程中成材率较低,导致该钢仍需要从法国进口。
因此,需要一种能生产具有更稳定性能的低碳高强含氮奥氏体不锈钢的制造方法。
发明内容
本发明的目的在于克服现有技术中存在的问题,提供一种低碳含氮奥氏体不锈钢棒的制造方法,采用这种方法制得的不锈钢棒的力学性能满足RCCM M3306标准中奥氏体不锈钢棒的力学性能要求,从而突破技术壁垒,实现低碳高强含氮奥氏体不锈钢棒的自主生产,无需再依赖从国外进口该类不锈钢棒。
本发明的发明人经过深入研究发现,将钢控制在特定的组成成分的范围内后,将钢锭用作电渣重熔的电极棒进行重熔并结晶,重熔过程以特定的渣料进行,能够较好的控制钢内部化学成分的均匀分布以及钢较高的纯净度,然后由该钢锭通过特定的锻造方式进行锻造成材,获得化学成分及组织均匀分布、纯净度高,强度合格的钢材。由此,本发明提供了一种低碳高强含氮奥氏体不锈钢棒的制造方法。
为实现上述目的,本发明采用如下技术方案。
一种低碳含氮奥氏体不锈钢棒的制造方法,依次包括如下工序:熔炼、电渣重熔和锻造;其中,所述电渣重熔工序中,将所述熔炼工序得到的钢锭作为电渣炉的电极棒,以特定的渣料进行重熔并结晶;所述锻造工序中,将结晶后的钢锭以特定的锻造方式进行锻造成材;
所述特定的渣料包括CaF 2、Al 2O 3、CaO和MgO,按重量百分比含量,所述CaF 2、Al 2O 3、CaO和MgO依次为(65%~70%)、(15%~20%)、(5%~10%)、(2%~5%);
所述特定的锻造方式包括镦拔和径锻,其中所述镦拔包括:道次变形量小于35%(例如,28%、30%、32%、33%、34%),道次压下量50~80mm(例如,55mm、60mm、70mm、75mm),道次加热温度1130~1150℃(例如,1135℃、1140℃、1145℃),道次变形方式为:椭圆-椭圆-圆。道次加热温度是指每道次变形结束后回炉加热的温度。
本发明中,所述镦拔包括镦粗和拔长,钢锭锻造拔长时一般都是先椭圆逐渐变小,最终变为圆形。压下量是压机单次压下高度,变形量是钢材前后面积的变 化。
上述制造方法中,作为一种优选实施方式,优选地,按重量百分比含量,所述CaF 2、Al 2O 3、CaO和MgO依次为(65%~68%)、(18%~20%)、(5%~10%)、(3%~5%),更优选为CaF 2、Al 2O 3、CaO和MgO依次为65%、20%、10%、5%。
常规的不锈钢锻造工艺中,一般选择道次变形量为40~60%,目的是为了提高钢材的生产效率;道次加热温度一般为1160~1180℃,道次的变形方式为方形-椭圆-圆。
本发明中,相对于常规的不锈钢锻造工艺,选用道次变形量小于35%,是为了保证钢锭在锻造过程中铸态组织发生均匀的转变;采用道次压下量50~80mm,是为了保证钢锭在锻造过程中变形均匀,避免出现由于压下量过大导致的局部组织混乱;采用道次加热温度1130~1150℃(例如,1135℃、1140℃、1145℃),是为了保证材获得细小弥散的组织;此外,本发明采用椭圆-椭圆-圆的道次变形方式,目的是避免钢材出现方形棱角,继而导致由于棱角温度降低太快导致钢材组织异常。
上述制造方法中,作为一种优选实施方式,炼钢原料按照使得熔炼后所得钢锭或者最终所得不锈钢棒具有特定的组成成分的方式进行配料,按重量百分比,所述特定的组成成分包括:C:0.020~0.030%,Si:0.3~0.6%,Mn:1.3~1.8%,S:≤0.002%,P:≤0.015%,Cr:19.20~19.70%,Ni:9.20~9.80%,Cu:≤1.00%,Co:≤0.06%,N:0.065~0.075%,B:≤0.0018%,Nb+Ta:≤0.15%。
优选地,按重量百分比,所述特定的组成成分包括:C:0.025%,Si:0.5%,Mn:1.45%,S:≤0.002%,P:≤0.015%,Cr:19.5%,Ni:9.7%,Cu:≤1.00%,Co:≤0.06%,N:0.07%,B:≤0.0018%,Nb+Ta:≤0.15%。
本发明中,在C含量为0.020~0.030%的基础上,采用合理设计的Cr、Ni和N含量,以确保该类元素在钢中可以形成较多的碳化物、金属间化合物和析出相,其在钢中能够有效的提高钢的强度。
上述制造方法中,作为一种优选实施方式,所述炼钢原料包括低碳铬铁、金属镍、电解锰、硅铁、氮化铬铁,废钢。本发明中,所述低碳铬铁、金属镍、电解锰、硅铁、氮化铬铁、废钢等可以采用本领域常规的用于炼制304系列钢的各种金属。
上述制造方法中,作为一种优选实施方式,所述熔炼工序依次包括熔化处理、 精炼处理、真空脱气处理和浇注成型。
上述制造方法中,作为一种优选实施方式,在进行所述电渣重熔工序之前,将所述熔炼工序得到的钢锭先进行切除处理和表面磨光处理,然后作为电渣重熔的电极棒,所述切除处理用于将补缩不良的部分切除;所述表面磨光处理用于获得表面质量良好的电极棒。经过切除处理和表面磨光处理,可保证重熔后的钢锭化学成分均匀且表面质量良好,从而获得表面质量更好、纯净高、组织均匀且强度高的钢材。
上述制造方法中,作为一种优选实施方式,所述电渣重熔工序中,电渣重熔的电流为11~13KA(例如,11.5KA、12.0KA、12.5KA)。
本发明中,在电渣重熔过程中,电流过大会导致母电极快速融化,进而导致金属熔池变深,结晶后得到的钢锭心部会出现较严重的偏析组织及较差的纯净度。电流过小会导致母电极融化较慢,进而导致金属熔池变浅,结晶后得到的钢锭边缘会出现较严重的偏析组织及较差的纯净度。
本发明中,在电渣重熔过程中,以重量百分比依次为(65%~70%)、(15%~20%)、(5%~10%)、(2%~5%),优选65%、20%、10%、5%的CaF 2、Al 2O 3、CaO和MgO的混合渣料(特定渣料)进行重熔并结晶,可以有效的提高钢材的纯净度。这里,CaF 2能降低渣料的熔点、黏度和表面张力,提高熔渣的流动性,可以有效的消除钢中的非金属夹杂物;Al 2O 3能降低熔渣的电导率,达到节能降耗的作用,但过多加入会提高熔渣的黏度;CaO能提高熔渣的碱度,有效的脱硫能力使钢液更加纯净;MgO能使熔渣表面形成一个渣膜,对外可以防止钢液的二次氧化,对内可以减少热量的损失,但加入过多会使熔渣的黏度提高。因而,采用上述四类物质组成的四元渣系,即可以获得纯净度较高的钢材,也可以降低能源消耗。
本发明中,如果选用的渣料和电流不适宜,会出现卷渣及裹渣、钢液纯净度低、钢材偏析严重、钢锭表面质量差等缺陷。本发明采用按质量比含量CaF 2、Al 2O 3、CaO、MgO依次为(65%~70%)、(15%~20%)、(5%~10%)、(2%~5%),优选为65%、20%、10%、5%的特定渣料配比和11~13KA,优选为11KA的重熔电流,可以保证电极棒稳定地熔化,还可以获得纯净度高、组织及成分均匀表面良好的钢锭。
上述制造方法中,作为一种优选实施方式,为了获得表面质量较高的钢,所述电渣重熔工序中,将所述电极棒的1~10wt%,优选为1~8wt%(例如,2wt%、 3wt%、5wt%、6wt%、7wt%),用于对结晶后的钢锭的补缩。即,由于钢水滴入结晶器中结晶时,由于钢水表面张力的作用,使得钢锭表面将存在缩孔,本发明为了避免钢锭形成的较大的缩孔导致后来锻造后获得的钢的表面质量差而影响其加工塑性的品质,优选在结晶后期,将1~10wt%,更优选1~8wt%的电极棒用于填补结晶后形成的钢锭表面上的缩孔。
上述制造方法中,作为一种优选实施方式,所述电渣重熔得到的钢锭脱模并冷至室温,得到的低碳含氮奥氏体不锈钢坯料。
采用本发明的技术方案制备得到的低碳含氮奥氏体不锈钢坯料,其化学成分均匀分布、纯净度高、没有偏析缺陷,能够用于制造一种低碳高强含氮奥氏体不锈钢棒,但该低碳高强含氮奥氏体不锈钢棒的制造方法需要满足特殊的要求。
上述制造方法中,作为一种优选实施方式,所述锻造工序中,在镦拔前先将电渣重熔得到的低碳含氮奥氏体不锈钢坯料进行均热处理,所述均热处理包括以1~10℃/min(例如,2℃/min、3℃/min、5℃/min、7℃/min、8℃/min、9℃/min)的加热速度升温至1130~1150℃(例如,1135℃、1140℃、1145℃),然后在该温度下保温3~5h(例如,3.5h、4.0h、4.5h)。
上述制造方法中,作为一种优选实施方式,所述锻造工序中,所述镦拔的条件包括:采用所述特定的锻造方式进行镦拔,开锻温度≥1000℃(例如,1050℃、1100℃、1110℃、1120℃),终锻温度为≥800℃(例如,850℃、900℃、950℃、1000℃),所述镦拔的次数为1~3次(例如2次),优选为2~3次;每次镦拔的时间为5~20min(例如,8min、10min、12min、15min、17min、19min)。
上述制造方法中,作为一种优选实施方式,所述锻造工序中,所述镦拔的条件包括:采用所述特定的锻造方式进行镦拔,开锻温度为1050~1100℃(例如,1060℃、1070℃、1080℃、1090℃),终锻温度为800~900℃(例如,820℃、850℃、870℃、890℃),优选地,每次镦拔的时间为5~15min(例如,7min、9min、10min、12min、14min)。
上述制造方法中,作为一种优选实施方式,所述锻造工序的镦拔中,所述特定的锻造方式包括:道次变形量为30~32%(例如,30.5%、31%、31.5%),道次压下量65~75mm(例如,67mm、70mm、72mm、74mm),道次加热温度1130~1150℃(例如,1135℃、1140℃、1145℃),道次变形方式为:椭圆-椭圆-圆。
上述制造方法中,作为一种优选实施方式,所述锻造工序的镦拔中,所述特定的锻造方式包括:道次变形量为31%,道次压下量70mm,道次加热温度1140℃,道次变形方式为:椭圆-椭圆-圆。
上述制造方法中,作为一种优选实施方式,所述锻造工序的镦拔中,在4500t压机内进行两镦两拔(即,两次镦拔),且第二次镦拔变形量比第一次变形量大,这样可以解决第一次镦拔完回炉过程造成组织粗大的问题,从而可以使得所得钢材具有更好的晶粒度。
上述制造方法中,作为一种优选实施方式,所述锻造工序的镦拔中,每次镦拔(镦粗和拔长)结束都会回炉进行再烧以达到下一道次镦拔所需的开锻温度,优选地,每次镦拔结束后回炉再烧加热(即道次加热)的条件包括:温度为1130~1150℃(例如,1135℃、1140℃、1145℃),时间为90~120min(例如,95min、100min、110min、115min)。
最后一次镦拔结束后可再次采用上述回炉再烧加热条件进行加热为接下来的径锻做准备。
上述制造方法中,作为一种优选实施方式,所述锻造工序中,在镦拔结束后再进行径锻;所述径锻的条件包括:开锻温度为1000~1140℃(例如,1020℃、1040℃、1050℃、1070℃、1090℃、1115℃、1125℃、1130℃、1135℃),终锻温度为800~900℃(例如,820℃、850℃、870℃、890℃),时间为5~20min(例如,8min、10min、12min、15min、17min、19min)。
再优选地,所述径锻的条件包括:开锻温度为1000~1100℃(例如,1005℃、1010℃、1020℃、1040℃、1050℃、1070℃、1080℃、1090℃),终锻温度为800~900℃(例如,820℃、850℃、870℃、890℃),时间为10~20min(例如,12min、15min、17min、18min)。
更优选地,所述径锻是在1600t径锻机上进行的,并进行一个火次锻造成形,将径锻后的钢进行空冷,即得低碳含氮奥氏体不锈钢棒。
采用本发明的方法,能够制得直径为200mm以上的低碳含氮奥氏体不锈钢棒。
上述制造方法中,作为一种优选实施方式,所得低碳含氮奥氏体不锈钢棒的350℃高温拉伸强度≥410MPa,350℃高温屈服强度≥140MPa,室温拉伸强度≥560MPa,室温屈服强度≥260MPa,且化学成分及高低倍组织均匀,钢材纯净度 高。
本发明中,在相互不冲突的条件下,上述技术特征可以自由组合形成新的技术方案。
与现有技术相比,本发明的有益技术效果如下:
1、采用本发明的技术方案,能够较好的控制钢内部化学成分的均匀分布以及钢较高的纯净度。
2、采用本发明的技术方案,能够获得化学成分及组织均匀分布、纯净度高、强度高的低碳高强含氮奥氏体不锈钢。
具体实施方式
下面将结合本发明的实施例,对本发明具体实施方式中的技术方案进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
本发明提供了一种低碳高强含氮奥氏体不锈钢棒的制造方法,包括如下工序:熔炼、电渣重熔和锻造;其中,
熔炼工序:将炼钢原料加入到电弧炉、炉外精炼炉及真空吹氧脱碳炉中进行熔炼,所述熔炼依次包括熔化处理、精炼处理、第一次调样处理、吹氧脱碳处理、脱气处理及吹氮处理、第二次调样处理和浇注成型;所述炼钢原料按照使得最终所得钢锭具有特定的组成成分的方式进行配料,所述特定的组成成分按重量百分比包括:C:0.020~0.030%,Si:0.3~0.6%,Mn:1.3~1.8%,S:≤0.002%,P:≤0.015%,Cr:19.20~19.70%,Ni:9.20~9.80%,Cu:≤1.00%,Co:≤0.06%,N:0.065~0.075%,B:≤0.0018%,Nb+Ta:≤0.15%;
电渣重熔工序:将所述熔炼工序得到的钢锭先进行切除处理和表面磨光处理,然后作为电渣重熔的电极棒,以特定的渣料进行重熔并结晶,然后将结晶后的钢锭进行冷却;所述特定的渣料包括CaF 2、Al 2O 3、CaO和MgO,按重量百分比含量,所述CaF 2、Al 2O 3、CaO和MgO依次为(65%~70%)、(15%~20%)、(8%~10%)、(2%~5%),保证最终配比的比例之和为100%;
锻造工序:将结晶后的钢锭进行冷却;所述锻造工序中,将结晶后的钢锭以特定的锻造方式进行锻造成材;所述特定的锻造方式包括包括镦拔和径锻,所述 镦拔包括镦粗和拔长其中所述镦拔包括:道次变形量小于35%(例如,28%、30%、32%、33%、34%),道次压下量50~80mm(例如,55mm、60mm、70mm、75mm),道次加热温度1130~1150℃(例如,1135℃、1140℃、1145℃),道次变形方式为:椭圆-椭圆-圆。道次加热温度是指每道次变形结束后回炉加热的温度。
本发明中,所述熔炼工序可采用本领域的常规技术方案。
根据本发明,作为一种优选实施方式,所述炼钢原料包括低碳铬铁、金属镍、电解锰、硅铁、氮化铬铁,废钢等,所述低碳铬铁、金属镍、电解锰、硅铁、氮化铬铁、废钢等可以为本领域常规的用于炼制304系列钢的各种金属,例如,所述金属镍为1#Ni等。
根据本发明,作为一种优选实施方式,按重量百分比,所述特定的组成成分包括:C:0.025%,Si:0.5%,Mn:1.45%,S:≤0.002%,P:≤0.015%,Cr:19.5%,Ni:9.7%,Cu:≤1.00%,Co:≤0.06%,N:0.07%,B:≤0.0018%,Nb+Ta:≤0.15%。
虽然所述炼钢原料的配料可以按照上述组成进行配料,但是为了获得更为优质的钢锭,优选地,所述熔炼处理工序中,将所述炼钢原料中的部分低碳铬铁和氮化铬铁预留下来作为第二次调样处理的加料。
根据本发明,作为一种优选实施方式,熔化处理是指将炼钢原料加入到电弧炉例如真空电弧炉内后,通过电极加热、吹氧、加渣将所述炼钢原料进行熔融混合的过程。优选地,所述熔化处理的出钢条件包括:C≤0.60%,T≥1630℃。
根据本发明,作为一种优选实施方式,精炼处理是指将电炉熔化的钢水倒入炉外精炼炉中,通过电极加热、加渣处理将电弧炉钢水进行还原处理,优选地,加入Si-C粉5~10kg/t,脱氧,给电烧渣大于10分钟。调整渣子合适(即,将渣子调整成白色),取样全分析,回样调成分。优选地,出钢条件T≥1650℃,出炉成分:C≤0.80%,Si≤0.30%,S≤0.015%。
根据本发明,作为一种优选实施方式,在真空吹氧脱碳炉中进行真空吹氧脱碳处理、脱气处理及吹氮处理,是指将炉外精炼炉的钢水进行真空吹氧处理以去除钢种的碳含量,然后在真空下添加渣料和脱氧剂进行真空脱气处理,以去除钢中吹氧脱碳后遗留的氧化物,脱氧完成后进行炉底吹氮处理,以增加钢中的氮含量,最后根据化学成分加入预留的低碳铬铁和氮化铬铁;优选地,钢液进入真空吹氧脱碳炉前扒净炉外精炼渣,真空脱气处理的渣料配比为:白灰400kg/炉, 萤石50~100kg/炉,预溶铝钙复合渣200~300kg/炉;脱氧剂为Al粒、Ca-Si或Fe-Si;优选地,随渣料加入脱氧剂Al粒1~3kg/t,Ca-Si或Fe-Si 5~8kg/t;真空脱气处理的真空度≤100Pa,保持时间≥10min。
根据本发明,作为一种优选实施方式,浇注成型是指将真空脱气处理得到的化学成分合格的钢水浇注成电极,优选地,浇注前炉底吹氩气20分钟,采用氩气保护浇注,浇注温度为1530~1550℃。
根据本发明,作为一种优选实施方式,将具有本发明组成的钢锭,特别是上述制造方法制得的钢锭,作为电渣重熔的电极棒进行重熔并结晶。
在本发明中,为了获得表面质量更好、纯净高、组织均匀且强度高的钢材,需要保证重熔后的钢锭化学成分均匀且表面质量良好,优选将作为电极棒的钢锭先进行切除处理和表面磨光处理。所述切除处理用于将补缩不良的部分切除;所述表面磨光处理用于获得表面质量良好的电极棒。
根据本发明,作为一种优选实施方式,所述电渣重熔工序中,将所述浇注成型得到的钢锭作为电渣炉的电极棒,在通电情况下,电极棒会在渣料中熔化成钢水,熔化的钢水通过渣料滴入结晶器中进行结晶;优选地,按重量百分比含量,所述特定的渣料配比为:CaF 2:65%、Al 2O 3:20%、CaO:10%、MgO:5%,电渣重熔的电流为11KA。
根据本发明,为了获得表面质量较高的钢,优选地,将所述电极棒的1~10重量%(更优选为1~8重量%)用于对结晶后的钢锭的补缩,即由于钢水滴入结晶器中结晶时,由于钢水表面张力的作用,使得钢锭表面将存在缩孔,本发明为了避免钢锭形成的较大的缩孔导致后来锻造后获得的钢的表面质量差而影响其加工塑性的品质,优选在结晶后期,将1~10重量%(更优选1~8重量%)的电极棒用于填补结晶后形成的钢锭表面上的缩孔。
采用本发明的制造方法得到的低碳含氮奥氏体不锈钢,其化学成分均匀分布、纯净度高、没有偏析缺陷,能够用于制造一种低碳高强含氮奥氏体不锈钢棒。
上述制造方法中,作为一种优选实施方式,所述锻造工序中,所述特定的锻造方式是将均热处理后的钢锭进行镦拔和径锻;所述均热处理是将电渣重熔工序得到的钢锭冷却后再进行加热处理,所述均热处理包括:以1~10℃/min的加热速度升温至1130~1150℃,然后保温3~5h;所述镦拔包括镦粗和拔长。
上述制造方法中,作为一种优选实施方式,所述锻造工序中,所述镦拔的条 件包括:开锻温度≥1000℃,终锻温度为≥800℃,每次镦拔的时间为5~20min;道次变形量为30~32%,道次压下量65~75mm,道次加热温度1130~1150℃,道次变形方式为:椭圆-椭圆-圆。
优选地,所述镦拔的条件包括:开锻温度1050~1100℃,终锻温度为800~900℃,每次镦拔的时间为5~15min;所述镦拔的次数可以为1~3次,优选为2~3次;更优选地,在4500t压机内进行两镦两拔,且第二次镦拔变形量比第一次变形量大,这样可以解决第一次镦拔完回炉过程造成组织粗大的问题,从而可以使得所得钢材具有更好的晶粒度。
其中,每次镦拔(包括镦粗和拔长)结束都会回炉进行再烧以达到镦拔所需的开锻温度,优选地,每次镦拔结束后回炉再烧的条件包括:温度为1130~1150℃,时间为90~120min,包括最后一次镦拔结束后的回炉条件可以采用上述回炉条件,道次变形量为31%,道次压下量70mm,道次加热温度1140℃,道次变形方式为:椭圆-椭圆-圆。
上述制造方法中,作为一种优选实施方式,所述锻造工序中,在镦拔结束后再进行径锻,径锻的开锻温度即为回炉加热后的钢的温度。优选地,所述径锻的条件包括:开锻温度为1120~1140℃,终锻温度为800~900℃,时间为5~20min。再优选地,所述径锻的条件包括:开锻温度为1000~1100℃,终锻温度为800~900℃,时间为10~20min;再优选地,所述径锻是在1600t径锻机上进行的,并进行一个火次锻造成形,将径锻后的钢进行空冷。
通过采用本发明的方法制得一种低碳高强含氮奥氏体不锈钢可以制得直径为200mm以上的钢棒,所得低碳高强含氮奥氏体不锈钢的350℃高温拉伸强度≥410MPa,350℃高温屈服强度≥140MPa,室温拉伸强度≥560MPa,室温屈服强度≥260MPa,且化学成分及高低倍组织均匀,钢材纯净度高。
以下将通过实施例对本发明进行详细描述。
在实施例中,抗拉强度Rm、屈服强度Rp0.2、断后延伸率A和断面收缩率Z,通过RCCM M1000中记载的方法进行测量。
实施例1
本实施例提供了一种低碳高强含氮奥氏体不锈钢棒的制造方法,依次包括如下工序:熔炼、电渣重熔和锻造。具体地,
熔炼工序:
(1)配料:将低碳铬铁、金属镍、电解锰、硅铁、氮化铬铁、废钢,按照所需制备的钢锭含有C:0.026%,Si:0.54%,Mn:1.45%,S:≤0.002%,P:0.017%,Cr:19.7%,Ni:9.7%,Cu:≤1.00%,Co:≤0.06%,N:0.072%,B:≤0.0018%,Nb+Ta:≤0.15%的方式进行配料,其中,低碳铬铁和氮化铬铁各预留下其重量的1/3。
(2)熔化处理:将配料后得到的炼钢原料加入到电弧炉中进行熔化处理,首先将电极插入到合金料中进行给电化料,同时在炉底插入氧枪吹氧助熔,并在该炼钢原料表面加入白灰,通过电极加热、吹氧、加渣将所述炼钢原料进行熔融混合。电炉出钢时:C:0.56wt%,出钢温度为1690℃。
(3)精炼处理:将电炉熔化的钢液倒入炉外精炼炉中,加入Si-C粉15kg,合成渣400kg,给电烧渣15分钟,停电后取样全分析,样回调整成分(即,第一次调样处理)。出钢条件T:1670℃,出炉成分:C:0.40%,Si:0.25%,S:0.005%。
(4)吹氧脱碳处理、脱气处理及吹氮处理、第二次调样处理和浇注成型:
精炼处理出钢后的钢水倒入真空吹氧脱碳炉中在真空下进行吹氧处理,吹氧后取样直到钢中的碳含量为0.005%,而后向钢液中倒入白灰400kg,萤石80kg,合成渣200kg,随渣料加入脱氧剂Al粒20kg,Ca-Si 20kg进行脱气处理,真空度为67Pa,保持时间为15min。
脱气结束后向钢液中吹入氮气,然后加入预留的低碳铬铁和金属锰,金属料融化后向钢液中吹氩气20min,再采用氩气保护浇注2.5吨直径410mm的电极模中。浇注前炉底吹氩气20分钟,然后氩气保护浇注,浇注温度:1530~1550℃,浇注后留400kg注余。
切除处理和表面磨光处理:
将熔炼工序得到的钢锭的充填部分切除,并将其表面磨光。
电渣重熔工序:
将表面磨光后的钢锭作为电渣炉的电极棒进行重熔,重熔过程中渣料重量为130kg,渣料配比为:CaF 2:Al 2O 3:CaO:MgO=65%:20%:10%:5%,重熔的电流为11KA,重熔电压为:45V;熔化的钢水滴入直径为510mm(Φ510mm)的结晶器中结晶,待电极棒还剩余360kg时,将其作为结晶器中的钢锭的补缩材 料对钢锭的缩孔进行补缩处理。
熔炼完成后将钢锭脱模并冷至室温,得到Φ510mm钢锭。
锻造工序:以特定的锻造方式进行锻造,包括均热处理和锻造,所述锻造包括镦拔和径锻,其中,特定的锻造方式包括:道次变形量31%,道次压下量为70mm,道次加热温度为1140℃,道次变形方式为椭圆-椭圆-圆。具体地,
均热处理:将该空冷后的2.5吨(Φ510mm)钢锭进行均热,均热的条件为:先以2.3℃/min的升温速度将其加热至1150℃,保温4h后。
镦拔(包括镦粗和拔长)与径锻:将均热处理后的钢锭送入4500t的压机中进行第一次镦拔8min,终锻温度为850℃,至直径为530mm,压下量70mm,变形方式为Φ540mm椭圆-Φ535mm椭圆-Φ530mm圆(这里的椭圆在生产过程又称为荒圆,就是不规则的圆,直径是指长径和短径的均值);再回炉加热在1140℃加热90min,在送入4500t的压机中进行第二次镦拔10min,终锻温度为850℃,至直径为510mm,压下量70mm,变形方式为Φ520mm椭圆-Φ515mm椭圆-Φ510mm圆;再回炉加热在1140℃加热90min,在送入4500t的压机中进行第一次拔长15min,至直径为420mm,压下量70mm,变形量为31%,变形方式为Φ430mm椭圆-Φ425mm椭圆-Φ420mm圆;再回炉加热在1140℃加热90min,在送入4500t的压机中进行第二次拔长15min,至直径为350mm,压下量70mm,变形量为31%,变形方式为Φ360mm椭圆-Φ355mm椭圆-Φ350mm圆;再回炉加热在1140℃加热90min,然后在1600t径锻机中进行一个火次锻造20min,终锻温度为850℃,锻后直径为200mm,然后空冷至室温获得直径为200mm的00Cr19Ni10N钢棒,其350℃高温拉伸强度、350℃高温屈服强度、室温拉伸强度、室温屈服强度均达到了RCCMM3306标准的要求,且化学成分及高低倍组织均匀,钢材纯净度高,具体见表1及表2所示。
表1实施例1制备得到的低碳含氮奥氏体不锈钢棒的性能及组织
Figure PCTCN2022137667-appb-000001
表2实施例1制备得到的低碳含氮奥氏体不锈钢棒的化学成分(wt%)
C Si Mn P S Cr Ni N Nb+Ta Co Cu B
0.026 0.54 1.45 0.017 0.002 19.7 9.7 0.072 0.008 0.03 0.2 0.0009
实施例2
本实施例提供了一种低碳高强含氮奥氏体不锈钢棒的制造方法,依次包括如下工序:熔炼、电渣重熔和锻造。其中,除了熔炼工序中的配料步骤采用如下技术方案外,熔炼工序的其他步骤以及电渣重熔和锻造工序均采用实施例1中的技术方案。
熔炼工序:
(1)配料:将低碳铬铁、金属镍、电解锰、硅铁、氮化铬铁、废钢,按照所需制备的钢锭含有C:0.026%,Si:0.54%,Mn:1.45%,S:≤0.002%,P:≤0.017%,Cr:19.2%,Ni:9.2%,Cu:≤1.00%,Co:≤0.06%,N:0.072%,B:≤0.0018%,Nb+Ta:≤0.15%的方式进行配料,其中,低碳铬铁和氮化铬铁各预留下其重量的1/3。
采用上述配料进行熔炼、电渣重熔和锻造,最终锻造得到直径为200mm,然后空冷至室温获得直径为200mm的00Cr19Ni10N钢棒,其350℃高温拉伸强度、350℃高温屈服强度、室温拉伸强度、室温屈服强度均达不到了RCCMM3306标准的要求,具体见表3及表4所示。
表3实施例2制备得到的低碳含氮奥氏体不锈钢棒的性能及组织
Figure PCTCN2022137667-appb-000002
表4实施例2制备得到的低碳含氮奥氏体不锈钢棒的化学成分(wt%)
C Si Mn P S Cr Ni N Nb+Ta Co Cu B
0.026 0.54 1.45 0.017 0.002 19.2 9.2 0.072 0.008 0.03 0.2 0.0009
实施例3
本实施例提供了一种低碳高强含氮奥氏体不锈钢棒的制造方法,依次包括如下工序:熔炼、电渣重熔和锻造。其中,熔炼和电渣重熔工序采用与实施例2相同的技术方案,锻造工序采用如下技术方案:
锻造工序:以特定的锻造方式进行锻造,包括均热处理和锻造,所述锻造包括镦拔和径锻,其中,特定的锻造方式包括:道次变形量31%,道次压下量为65mm,道次加热温度为1140℃,道次变形方式为椭圆-椭圆-圆。这里压下量是压机单次压下高度,变形量是钢材前后面积的变化。具体地,
均热处理:将该空冷后的2.5吨(Φ510mm)钢锭进行均热,均热的条件为:先以2.3℃/min的升温速度将其加热至1150℃,保温4h后。
镦拔与径锻:将均热处理后的钢锭送入4500t的压机中进行第一次镦拔15min,终锻温度为800℃,至直径为530mm,压下量65mm,变形方式为Φ540mm椭圆-Φ535mm椭圆-Φ530mm圆;再回炉加热在1130℃加热90min,再送入4500t的压机中进行第二次镦拔15min,终锻温度为800℃,至直径为510mm,压下量65mm,变形方式为Φ520mm椭圆-Φ515mm椭圆-Φ510mm圆;再回炉加热在1130℃加热90min,再送入4500t的压机中进行第一次拔长15min,至直径为420mm,压下量65mm,变形量为31%,变形方式为Φ430mm椭圆-Φ425mm椭圆-Φ420mm圆;再回炉加热在1130℃加热90min,再送入4500t的压机中进行第二次拔长15min,至直径为350mm,压下量65mm,变形量为31%,变形方式为Φ360mm椭圆-Φ355mm椭圆-Φ350mm圆;再回炉加热在1140℃加热90min,然后在1600t径锻机中进行一个火次锻造20min,终锻温度为850℃,锻后直径为200mm,然后空冷至室温获得直径为200mm的00Cr19Ni10N钢棒。
表5实施例3制备得到的低碳含氮奥氏体不锈钢棒的性能及组织
Figure PCTCN2022137667-appb-000003
该00Cr19Ni10N钢棒的350℃高温拉伸强度、350℃高温屈服强度、室温拉 伸强度、室温屈服强度均达到了RCCMM3306标准的要求,且化学成分及高低倍组织均匀,钢材纯净度高,具体见表5及表6所示。
表6实施例3制备得到的低碳含氮奥氏体不锈钢棒的化学成分(wt%)
C Si Mn P S Cr Ni N Nb+Ta Co Cu B
0.026 0.54 1.45 0.017 0.002 19.2 9.2 0.072 0.008 0.03 0.2 0.0009
对比例1
本对比例提供了一种采用常规电渣工艺生产低碳高强含氮奥氏体不锈钢棒的制造方法,依次包括如下工序:熔炼、电渣重熔和锻造。其中,熔炼和锻造工序采用与与实施例1中的熔炼和锻造工序相同技术方案,电渣重熔工序采用如下技术方案:
电渣重熔工序:
将表面磨光后的钢锭作为电渣炉的电极棒进行重熔,重熔过程中渣料重量为130kg,渣料配比为:CaF 2:Al 2O 3=70%:30%,重熔的电流为12KA,重熔电压为:45V;熔化的钢水滴入直径为510mm的结晶器中结晶,待电极棒还剩余360kg时,将其作为结晶器中的钢锭的补缩材料对钢锭的缩孔进行补缩处理。
熔炼完成后将钢锭脱模并冷至室温。
然后,电渣重熔工序得到的钢锭经锻造工序得到直径为200mm,然后空冷至室温获得直径为200mm的00Cr19Ni10N钢棒,其350℃高温拉伸强度、350℃高温屈服强度、室温拉伸强度、室温屈服强度均达不到了RCCMM3306标准的要求,钢材纯净度较低,低倍组织不均匀,具体见表7及表8所示。
表7对比例1制备得到的低碳含氮奥氏体不锈钢棒的性能及组织
Figure PCTCN2022137667-appb-000004
表8对比例1制备得到的低碳含氮奥氏体不锈钢棒的化学成分(wt%)
C Si Mn P S Cr Ni N Nb+Ta Co Cu B
0.026 0.54 1.45 0.017 0.002 19.7 9.6 0.072 0.008 0.03 0.2 0.0009
对比例2
本对比例提供了一种采用常规锻造工艺生产的低碳高强含氮奥氏体不锈钢棒的制造方法,依次包括如下工序:熔炼、电渣重熔和锻造。其中,熔炼和电渣重熔工序采用与实施例1相同的技术方案,锻造工序采用如下技术方案:
锻造工序:以特定的锻造方式进行锻造,包括均热处理和锻造,所述锻造包括镦拔和径锻,其中,特定的锻造方式包括:道次变形量50%,道次压下量为120mm,道次加热温度为1170℃,道次变形方式为方形-椭圆-圆。具体地,
均热处理:将该空冷后的2.5吨(Φ510mm)钢锭进行均热,均热的条件为:先以2.3℃/min的升温速度将其加热至1170℃,保温4h后。
镦拔与径锻:将均热处理后的钢锭送入4500t的压机中进行第一次镦拔8min,终锻温度为850℃,至直径为530mm,压下量120mm,变形方式为530mm方-Φ535mm椭圆-Φ530mm圆;再回炉加热在1170℃加热90min,再送入4500t的压机中进行第二次镦拔10min,终锻温度为750℃,至直径为450mm,压下量120mm,变形方式为440mm方坯-Φ455mm椭圆-Φ450mm圆;再回炉加热在1170℃加热90min,再送入4500t的压机中进行一次拔长15min,至直径为300mm,压下量120mm,变形量为55%,变形方式为310mm方坯-Φ305mm椭圆-Φ300mm圆;再回炉加热在1170℃加热90min,然后在1600t径锻机中进行一个火次锻造20min,终锻温度为850℃,锻后直径为200mm,然后空冷至室温获得直径为200mm的00Cr19Ni10N钢棒,其350℃高温拉伸强度、350℃高温屈服强度、室温拉伸强度、室温屈服强度均达不到RCCMM3306标准的要求,且高低倍组织不均匀,具体见表9及表10所示。
表9对比例2制备得到的低碳含氮奥氏体不锈钢棒的性能及组织
Figure PCTCN2022137667-appb-000005
表10对比例2制备得到的低碳含氮奥氏体不锈钢棒的化学成分(wt%)
C Si Mn P S Cr Ni N Nb+Ta Co Cu B
0.026 0.54 1.45 0.017 0.002 19.7 9.6 0.072 0.008 0.03 0.2 0.0009
对比例3
本对比例提供了一种采用常规化学成分控制范围生产的低碳高强含氮奥氏体不锈钢棒的制造方法,依次包括如下工序:熔炼、电渣重熔和锻造。其中,除了熔炼工序中的配料步骤采用如下技术方案外,熔炼工序的其他步骤、电渣重熔和锻造工序均采用实施例1中的技术方案。具体地,
熔炼工序:
(1)配料:将低碳铬铁、金属镍、电解锰、硅铁、氮化铬铁、废钢,按照所需制备的钢锭含有C:0.026%,Si:0.54%,Mn:1.45%,S:≤0.002%,P:≤0.017%,Cr:18.8%,Ni:9.3%,Cu:≤1.00%,Co:≤0.06%,N:0.05%,B:≤0.0018%,Nb+Ta:≤0.15%的方式进行配料,其中,低碳铬铁和氮化铬铁各预留下其重量的1/3。
采用上述配料进行熔炼、电渣重熔和锻造,最终锻造得到直径为200mm,然后空冷至室温获得直径为200mm的00Cr19Ni10N钢棒,其350℃高温拉伸强度、350℃高温屈服强度、室温拉伸强度、室温屈服强度均达不到RCCMM3306标准的要求,具体见表11及表12所示。
表11对比例3制备得到的低碳含氮奥氏体不锈钢棒的性能及组织
Figure PCTCN2022137667-appb-000006
表12对比例3制备得到的低碳含氮奥氏体不锈钢棒的化学成分(wt%)
C Si Mn P S Cr Ni N Nb+Ta Co Cu B
0.026 0.54 1.45 0.017 0.002 18.8 9.3 0.05 0.008 0.03 0.2 0.0009
综上分析,采用本发明的技术方案,能够获得化学成分及组织均匀分布、纯净度高、强度高的低碳高强含氮奥氏体不锈钢。

Claims (16)

  1. 一种低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,依次包括如下工序:熔炼、电渣重熔和锻造;其中,所述电渣重熔工序中,将所述熔炼工序得到的钢锭作为电渣炉的电极棒,以特定的渣料进行重熔并结晶;所述锻造工序中,将结晶后的钢锭以特定的锻造方式进行锻造成材;
    所述熔炼工序中,炼钢原料按照使得熔炼后所得钢锭或者最终所得不锈钢棒具有特定的组成成分的方式进行配料,按重量百分比,所述特定的组成成分包括C:0.020~0.030%,Si:0.3~0.6%,Mn:1.3~1.8%,S:≤0.002%,P:≤0.015%,Cr:19.20~19.70%,Ni:9.20~9.80%,Cu:≤1.00%,Co:≤0.06%,N:0.065~0.075%,B:≤0.0018%,Nb+Ta:≤0.15%;
    所述特定的渣料包括CaF 2、Al 2O 3、CaO和MgO,按重量百分比含量,所述CaF 2、Al 2O 3、CaO和MgO依次为65%~68%、18%~20%、5%~10%、3%~5%;
    所述特定的锻造方式包括镦拔和径锻,其中所述镦拔包括:道次变形量小于35%,道次压下量50~80mm,道次加热温度1130~1150℃,道次变形方式为:椭圆-椭圆-圆,开锻温度≥1000℃,终锻温度为≥800℃,所述镦拔的次数为2~3次;在镦拔结束后再进行径锻,开锻温度为1000~1140℃,终锻温度为800~900℃,将径锻后的钢进行空冷,即得低碳含氮奥氏体不锈钢棒;所述低碳含氮奥氏体不锈钢棒的直径为200mm;
    所述锻造工序中,在所述镦拔前先将电渣重熔得到的低碳含氮奥氏体不锈钢坯料进行均热处理,所述均热处理包括以1~10℃/min的加热速度升温至1130~1150℃。
  2. 根据权利要求1所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,按重量百分比含量,所述CaF 2、Al 2O 3、CaO和MgO依次为65%、20%、10%、5%。
  3. 根据权利要求1所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,
    所述熔炼工序中,炼钢原料按照使得熔炼后所得钢锭或者最终所得不锈钢棒具有特定的组成成分的方式进行配料,按重量百分比,所述特定的组成成分包括: C:0.025%,Si:0.5%,Mn:1.45%,S:≤0.002%,P:≤0.015%,Cr:19.5%,Ni:9.7%,Cu:≤1.00%,Co:≤0.06%,N:0.07%,B:≤0.0018%,Nb+Ta:≤0.15%。
  4. 根据权利要求1-3中任一项所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,
    所述熔炼工序依次包括熔化处理、精炼处理、真空脱气处理和浇注成型;所述炼钢原料包括低碳铬铁、金属镍、电解锰、硅铁、氮化铬铁、废钢。
  5. 根据权利要求4所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,在进行所述电渣重熔工序之前,将所述熔炼工序得到的钢锭先进行切除处理和表面磨光处理,然后作为电渣重熔的电极棒。
  6. 根据权利要求5所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,所述电渣重熔工序中,电渣重熔的电流为11~13KA。
  7. 根据权利要求6所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,所述电渣重熔工序中,将所述电极棒的1~10wt%,用于对结晶后的钢锭的补缩;
    所述电渣重熔得到的钢锭脱模并冷至室温,得到的低碳含氮奥氏体不锈钢坯料。
  8. 根据权利要求7所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,所述电渣重熔工序中,将所述电极棒的1~8wt%,用于对结晶后的钢锭的补缩。
  9. 根据权利要求1所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,
    所述锻造工序中,在镦拔前先将电渣重熔得到的低碳含氮奥氏体不锈钢坯料进行均热处理,所述均热处理的保温时间为3~5h。
  10. 根据权利要求1所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在 于,所述锻造工序中,每次镦拔的时间为5~20min。
  11. 根据权利要求1所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,
    所述锻造工序中,所述镦拔的条件包括:采用所述特定的锻造方式进行镦拔,开锻温度为1050~1100℃,终锻温度为800~900℃,每次镦拔的时间为5~15min;
    道次变形量为30~32%,道次压下量65~75mm,道次加热温度1130~1150℃。
  12. 根据权利要求11所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,所述锻造工序的镦拔中,所述特定的锻造方式包括:道次变形量为31%,道次压下量70mm,道次加热温度1140℃;
    在4500t压机内进行两次镦拔,且第二次镦拔变形量比第一次变形量大。
  13. 根据权利要求1所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,所述锻造工序的镦拔中,每次镦拔结束都会回炉进行再烧,以达到下一道次镦拔所需的开锻温度,每次镦拔结束后回炉再烧加热的条件包括:温度为1130~1150℃,时间为90~120min。
  14. 根据权利要求1所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,
    所述锻造工序中,所述径锻的时间为5~20min。
  15. 根据权利要求14所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,所述径锻的条件包括:开锻温度为1000~1100℃,终锻温度为800~900℃,时间为10~20min;所述径锻是在1600t径锻机上进行的。
  16. 根据权利要求1所述的低碳含氮奥氏体不锈钢棒的制造方法,其特征在于,所述低碳含氮奥氏体不锈钢棒的350℃高温拉伸强度≥410MPa,350℃高温屈服强度≥140MPa,室温拉伸强度≥560MPa,室温屈服强度≥260MPa。
PCT/CN2022/137667 2021-12-16 2022-12-08 一种低碳含氮奥氏体不锈钢棒的制造方法 WO2023098919A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22871159.4A EP4245880A4 (en) 2021-12-16 2022-12-08 MANUFACTURING PROCESS FOR LOW-CARBON NITROGEN-CONTAINING AUSTENITIC STAINLESS STEEL BARS
US18/247,564 US20240035110A1 (en) 2021-12-16 2022-12-08 Method for Manufacturing a Low-Carbon Nitrogen-Containing Austenitic Stainless Steel Bar
JP2023523256A JP7471520B2 (ja) 2021-12-16 2022-12-08 低炭素窒素含有のオーステナイト系ステンレス鋼棒の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111541505.5 2021-12-16
CN202111541505.5A CN114250402B (zh) 2021-12-16 2021-12-16 一种低碳含氮奥氏体不锈钢棒的制造方法

Publications (1)

Publication Number Publication Date
WO2023098919A1 true WO2023098919A1 (zh) 2023-06-08

Family

ID=80792619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137667 WO2023098919A1 (zh) 2021-12-16 2022-12-08 一种低碳含氮奥氏体不锈钢棒的制造方法

Country Status (5)

Country Link
US (1) US20240035110A1 (zh)
EP (1) EP4245880A4 (zh)
JP (1) JP7471520B2 (zh)
CN (1) CN114250402B (zh)
WO (1) WO2023098919A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114250402B (zh) * 2021-12-16 2022-06-28 大冶特殊钢有限公司 一种低碳含氮奥氏体不锈钢棒的制造方法
CN115896633A (zh) * 2022-12-13 2023-04-04 无锡市法兰锻造有限公司 一种核电站用无发纹奥氏体不锈钢锻件制造工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088094A (zh) * 2015-08-11 2015-11-25 宝钢特钢有限公司 一种控氮奥氏体不锈钢大锻件的制造方法
CN110684927A (zh) * 2019-11-08 2020-01-14 宝鸡文理学院 奥氏体型700MPa级单相不锈螺纹钢筋及其生产方法
CN112662935A (zh) * 2020-12-07 2021-04-16 中兴能源装备有限公司 一种控氮奥氏体不锈钢锻件铁素体含量的控制方法
WO2021223660A1 (zh) * 2020-05-06 2021-11-11 宝山钢铁股份有限公司 一种冶炼极细金刚砂线用钢的工艺方法
CN114250402A (zh) * 2021-12-16 2022-03-29 大冶特殊钢有限公司 一种低碳含氮奥氏体不锈钢棒的制造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101396728B (zh) * 2007-09-28 2011-05-11 上海重型机器厂有限公司 百万千瓦级核电堆芯构件用钢锭的制造方法
CN103695809B (zh) * 2013-12-15 2016-05-11 中广核工程有限公司 核电站控制棒驱动机构行程套管及其制备方法
CN103667991B (zh) * 2013-12-15 2016-04-20 中广核工程有限公司 核电站控制棒驱动机构密封壳及其制备方法
CN104399854B (zh) * 2014-11-04 2016-04-27 西宁特殊钢股份有限公司 提高钢材横向冲击性能的锻造方法
CN104789787B (zh) * 2015-05-08 2017-03-15 沈阳科金特种材料有限公司 一种核电用高纯净度奥氏体含氮不锈钢的电渣重熔方法
CN105177264B (zh) * 2015-09-25 2018-06-12 宝钢特钢有限公司 一种不锈钢锻制圆钢的制造方法
CN107475527A (zh) * 2017-07-27 2017-12-15 洛阳双瑞特种装备有限公司 一种高Mo奥氏体不锈钢高效热成型工艺
CN108342587A (zh) 2018-04-10 2018-07-31 抚顺特殊钢股份有限公司 一种不锈叶片钢电渣重熔渣系
CN109280778A (zh) 2018-09-18 2019-01-29 重庆材料研究院有限公司 用于制备高硅锰含氮不锈钢的电渣重熔的渣料
WO2021208181A1 (zh) * 2020-04-14 2021-10-21 北京科技大学 一种低温高韧高温高强及高淬透性热模钢及制备技术

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088094A (zh) * 2015-08-11 2015-11-25 宝钢特钢有限公司 一种控氮奥氏体不锈钢大锻件的制造方法
CN110684927A (zh) * 2019-11-08 2020-01-14 宝鸡文理学院 奥氏体型700MPa级单相不锈螺纹钢筋及其生产方法
WO2021223660A1 (zh) * 2020-05-06 2021-11-11 宝山钢铁股份有限公司 一种冶炼极细金刚砂线用钢的工艺方法
CN112662935A (zh) * 2020-12-07 2021-04-16 中兴能源装备有限公司 一种控氮奥氏体不锈钢锻件铁素体含量的控制方法
CN114250402A (zh) * 2021-12-16 2022-03-29 大冶特殊钢有限公司 一种低碳含氮奥氏体不锈钢棒的制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4245880A4

Also Published As

Publication number Publication date
US20240035110A1 (en) 2024-02-01
CN114250402A (zh) 2022-03-29
CN114250402B (zh) 2022-06-28
EP4245880A4 (en) 2024-04-03
JP7471520B2 (ja) 2024-04-19
EP4245880A1 (en) 2023-09-20
JP2024506434A (ja) 2024-02-14

Similar Documents

Publication Publication Date Title
CN104532102B (zh) 风电用大规格渗碳轴承钢G20Cr2Ni4A制造工艺
WO2023098919A1 (zh) 一种低碳含氮奥氏体不锈钢棒的制造方法
CN112662933A (zh) 耐低温冲击韧性风电钢的制备方法
CN109371329B (zh) 一种耐高温人工水晶成型模具钢材料及其制备方法
CN110055459B (zh) 中合金超高强韧稀土钢及其制备方法
KR20220012912A (ko) 초미세 초고강도 강선, 선재 및 선재의 생산 방법
WO2023056792A1 (zh) 一种含镁45钢及其制备工艺
CN110157988A (zh) 一种高纯、均质稀土冷轧辊用钢合金材料及制备方法
CN110273105B (zh) 一种高速工具钢及其制备方法
CN115094263B (zh) 铜铬锆系合金用变质剂合金、其制备方法及应用
CN102925811A (zh) 一种易切削加钒高铝氮化钢及其制造方法
CN114438394B (zh) 一种预硬型高抛光塑胶模具钢的生产工艺
CN113502434B (zh) 一种航空用30CrMnSiNi2A高强钢及其生产方法
CN112410573B (zh) 用于冶炼含Ce的Fe-Ni软磁合金的渣系及其使用方法
WO2024051758A1 (zh) 一种发动机传动链用钢50CrVA的制备方法
JP2003027188A (ja) シャド−マスク用インバ−合金とその製造法
CN109778073B (zh) 一种易切削汽车同步器用钢及其制备方法
CN112795836A (zh) 一种钛处理降低低密度钢中氮化铝夹杂物的方法
CN109797348A (zh) 一种高强度板簧及其生产工艺
CN115261564B (zh) 非晶软磁薄带用非铝脱氧原料纯铁及其制备方法
CN116411226B (zh) 一种超低碳软线钢swrm6及其制备方法
CN114774624B (zh) 一种特殊钢及其制备方法
JP2864964B2 (ja) メッキ性およびハンダ性に優れたFe−Ni系合金冷延板およびその製造方法
CN114959183A (zh) 一种基于铝脱氧Cr5支承辊钢的精炼渣系及其应用工艺
CN117026073A (zh) 一种含Zr合金结构钢及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18247564

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023523256

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022871159

Country of ref document: EP

Effective date: 20230613

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871159

Country of ref document: EP

Kind code of ref document: A1