WO2023098832A1 - 一类作为小gtp酶kras突变抑制剂的吡啶并嘧啶类衍生物 - Google Patents

一类作为小gtp酶kras突变抑制剂的吡啶并嘧啶类衍生物 Download PDF

Info

Publication number
WO2023098832A1
WO2023098832A1 PCT/CN2022/136003 CN2022136003W WO2023098832A1 WO 2023098832 A1 WO2023098832 A1 WO 2023098832A1 CN 2022136003 W CN2022136003 W CN 2022136003W WO 2023098832 A1 WO2023098832 A1 WO 2023098832A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
compound
alkoxy
heteroaryl
Prior art date
Application number
PCT/CN2022/136003
Other languages
English (en)
French (fr)
Inventor
魏国平
林毅晖
丁长根
方国军
王卫红
龚久涵
高宏武
盛施霏
周建
龚兆龙
Original Assignee
思路迪生物医药(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 思路迪生物医药(上海)有限公司 filed Critical 思路迪生物医药(上海)有限公司
Priority to CN202280074858.5A priority Critical patent/CN118215663A/zh
Publication of WO2023098832A1 publication Critical patent/WO2023098832A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4375Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having nitrogen as a ring heteroatom, e.g. quinolizines, naphthyridines, berberine, vincamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00

Definitions

  • This application relates to a class of pyridopyrimidine derivatives, their preparation methods, pharmaceutical compositions containing these compounds or their salts, and their medical use as small GTPase KRAS mutation inhibitors in the treatment of different tumors.
  • RAS is the first human tumor gene (Oncogene) discovered, and it is one of the most commonly mutated genes in tumors. About 30% of tumors carry RAS mutations. If combined with the regulatory factors of RAS and the upstream and downstream of the signaling pathway Mutations cover almost all tumors.
  • KRAS gene Kerrsten rat sarcoma viral oncogene homolog
  • the protein encoded by the KRAS gene is a GDP/GTP binding protein, a small GTPase enzyme, which belongs to the superprotein family.
  • the KRAS protein has 188 amino acids, its molecular weight is 21.6KD, it is located inside the cell membrane, and is connected to the cell membrane through a modified gene of Farnesyl.
  • KRAS binds to GTP in an active state (KRAS-GTP), and binds to GDP in an off state (or inactive state) (KRAS-GDP). Subsequently, GTPase activating protein (GAP) can bind the GTP bound to KRAS-GTP Hydrolysis to GDP promotes the formation of the KRAS-GDP closed state, thus making KRAS in an inactive state.
  • GAP GTPase activating protein
  • the KRAS protein is a "switch" between the KRAS-GTP active state and the KRAS-GDP inactive state (closed state). In the active state, it can activate downstream signaling pathways, including MAPK signaling pathway, PI3K signaling pathway and Ral-GDS signaling path.
  • the RAS protein switch controls its downstream signaling pathways, thereby promoting cell survival, proliferation and cytokine release, and plays an important role in life processes such as cell proliferation, differentiation and apoptosis.
  • KRAS can also be transiently activated by growth factors (such as EGFR), and activated KRAS can activate downstream such as the PI3K-AKT-mTOR signaling pathway that controls cell production, and the RAS-RAF-MEK-ERK signaling pathway that controls cell proliferation. Even in the absence of activation of kinases such as EGFR, KRAS will continue to be activated, resulting in continued cell proliferation and eventually cancer.
  • KRAS mutations are highly expressed in a variety of tumors, and the most common ones found include lung cancer, intestinal cancer, pancreatic cancer, colon cancer, small intestine cancer, and bile duct cancer. Structural studies have shown that most KRAS gene mutations interfere with the ability of KRAS to hydrolyze GTP, and eventually KRAS is continuously activated, making it unable to effectively regulate cell signal transduction, thereby promoting the occurrence, development and metastasis of tumors.
  • the 12th amino acid (G12) mutation accounts for about 80%, while the G12C mutation accounts for about 14% of all G12 mutations.
  • researchers have successively developed a series of KRAS G12C mutation covalent inhibitors, but the development of KRAS G12D mutation inhibitors has encountered great challenges.
  • KRAS membrane localization is regulated by farnesyl transferase, but also targeting KRAS downstream signaling molecules (effector proteins)
  • the wild-type signaling pathway required for growth inhibition has a narrow therapeutic window, and due to the compensatory mechanism, it cannot be completely and effectively inhibited
  • the downstream signaling of KRAS mutants makes the development of kinase inhibitors of effector proteins extremely limited in their efficacy against KRAS mutations.
  • the object of the present invention is to provide a KRAS mutant inhibitor with oral safety and effectiveness, especially an inhibitor for the treatment of intestinal cancer, lung cancer, pancreatic cancer, bile duct cancer, esophageal cancer, breast cancer, gastric cancer and other tumors .
  • the first aspect of the present invention provides a compound represented by the following formula (I), or a pharmaceutically acceptable salt thereof:
  • Q is bond, S, O or NR 5 ;
  • R 2 is selected from the group consisting of hydrogen, deuterium, halogen, C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 haloalkyl, C 1 -C 6 deuterated alkyl, C 2 -C Alkenyl ;
  • R 3 is aryl or heteroaryl, wherein aryl or heteroaryl is optionally substituted by one or more R 8 ;
  • Each M is independently a chemical bond, a C 1 -C 6 alkylene group, or a C 2 -C 6 alkenylene group; wherein, the M can be optionally replaced by one or more substituents selected from the following group Substitution: hydroxyl, amino, C 1 -C 4 hydroxyalkyl or heteroaryl;
  • Each R 5 is independently hydrogen, C 1 -C 6 alkyl or C 1 -C 6 haloalkyl
  • R 4 and R 5 and their connected N atoms together form a 4-7 membered saturated nitrogen heterocyclic ring; wherein, the 4-7 membered saturated nitrogen heterocyclic ring can be optionally substituted by one or more R 6 ;
  • L is a chemical bond or O
  • R 10 is selected from the group consisting of H, D, halogen, OH, OR, CH 2 OH, CH 2 OR, CN, NH 2 , NHR, N(R) 2 , or
  • R is C 1 -C 4 alkyl, C 1 -C 4 alkoxy
  • R 10 is
  • X is selected from the group consisting of halogen, hydroxyl, mercapto, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C 4 alkylmercapto;
  • Y is selected from the group consisting of H, halogen, hydroxyl, mercapto, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C 4 alkylmercapto;
  • Z is selected from the group consisting of H, halogen, hydroxyl, mercapto, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C 4 alkylmercapto;
  • the aryl group is a C 6 -C 14 aryl group
  • the heterocyclic group is a 3-12 membered heterocyclic group
  • the heteroaryl group is a 5-14 membered heteroaryl group (such as a 5-6 membered heteroaryl group or a benzene and 5-6 membered heteroaryl)
  • cycloalkyl is C 3 -C 12 cycloalkyl; and unless otherwise specified, the aryl, heteroaryl and cycloalkyl can optionally have 1-3 A substituent selected from the group consisting of halogen, C 1 -C 6 alkyl.
  • R 11 is selected from the group consisting of H, halogen, cyano, hydroxyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C1-C4 haloalkyl, C1-C4 deuterated alkyl, C1-C4 Haloalkoxy, C2-C4 alkenyl, C3-C6 cycloalkyl;
  • R is selected from the group consisting of H, halogen, cyano, hydroxyl, nitro, amino, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C 4 haloalkyl, C 1 -C 4 deuterated alkyl Base, C1-C4 haloalkoxy, C2-C4 alkenyl, C3-C6 cycloalkyl;
  • R 13 is selected from the group consisting of H, halogen, cyano, hydroxyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C1-C4 haloalkyl, C1-C4 deuterated alkyl, C1-C4 Haloalkoxy, C2-C4 alkenyl, C3-C6 cycloalkyl;
  • R is selected from the group consisting of H, halogen, cyano, hydroxyl, C 1 -C 4 alkyl, C 1 -C 4 alkoxy, C 1 -C 4 haloalkyl, C 1 -C 4 deuterated alkyl, C 1 -C 4 Haloalkoxy, C2-C4 alkenyl, C3-C6 cycloalkyl;
  • R 15 is selected from the group consisting of H, methyl, ethyl, acetyl, t-butoxycarbonyl, deuterated methyl, deuterated ethyl, ethoxycarbonyl.
  • Each R'1 is independently selected from the group consisting of H, methyl, ethyl, C 3 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 1 -C 6 alkoxy, C 1 -C 6 cycloalkoxy, C 1 -C 6 cycloalkyl mercapto, deuterated methyl, deuterated ethyl;
  • Each Rx and Ry is independently selected from the group consisting of halogen, hydrogen, deuterium, cyano, methylenecyano, nitro, amino, C 1 -C 6 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 haloalkyl, C 3 -C 10 cycloalkyl, C 3 -C 10 halocycloalkyl, 4-8 membered heterocycloalkyl, 4-8 membered halo Heterocycloalkyl, C 6 -C 10 aryl, 5-10 membered heteroaryl, C 3 -C 10 cycloalkyl-C 1 -C 3 alkylene, 4-8 membered heterocycloalkyl-C 1 -C 3 alkylene, C 6 -C 10 aryl-C 1 -C 3 alkylene, 5-10 membered heteroaryl-C 1 -C 3 alkylene, C 1 -C 6 alkoxy
  • the compound has the structure shown in the following formula:
  • the R 18 is selected from the group consisting of H, halogen, methyl, ethyl, C 3 -C 6 alkyl, C 3 -C 6 cycloalkyl, C 1 -C 6 alkoxy, C 1 -C 6 cycloalkoxy, C 1 -C 6 cycloalkylmercapto, deuterated methyl, deuterated ethyl, halomethyl, halomethoxy.
  • n 0, 1, 2, 3 or 4.
  • the R 5 is selected from the group consisting of hydrogen, C 1 -C 6 alkyl, or C 1 -C 6 cyanoalkyl.
  • the R 4 has a structure selected from the group consisting of -M-heterocyclyl, -M-aryl, -M-heteroaryl, -M-cycloalkyl; wherein, each Heterocyclyl, aryl, cycloalkyl or heteroaryl moieties may be optionally substituted by one or more R 6 , and wherein the aryl or heteroaryl of -M-aryl and -M-heteroaryl is also can be optionally substituted by one or more R7 ;
  • the aryl group is a C 6 -C 10 aryl group
  • the heterocyclic group is a 4-6 membered monocyclic heterocyclic group or a 7-9 membered heterocyclic group
  • the heteroaryl group is a 5-6 membered monocyclic heterocyclic group Heteroaryl or 9-10 membered and ring heterocyclic group
  • cycloalkyl is C 3 -C 6 monocycloalkyl or C 7 -C 10 and cycloalkyl;
  • said R4 has a structure selected from the following group:
  • Q is O, S, NH, CO;
  • R 4 is the above group
  • Q is a single bond
  • the C 1 -C 6 alkyl group is methyl, ethyl, isopropyl or isobutyl.
  • said R3 has a structure selected from the following group:
  • R 3 is optionally substituted by one or more R 8 .
  • said R3 has a structure selected from the following group:
  • R 8 is one or more substituents located on R 3 .
  • said R3 has a structure selected from the following group:
  • the compound has the structure shown below:
  • R 10 is selected from D, halogen, OH, C 1 -C 4 alkoxy, CH 2 OH, CH 2 (C 1 -C 4 alkoxy, CN, NH 2 , NH(C 1 -C 4 alkoxy), N(C 1 -C 4 alkoxy) 2 ; the definitions of the rest of the groups are the same as above;
  • the compound has the structure shown below:
  • R 10 is preferably selected from D, halogen, OH, C 1 -C 4 alkoxy, CH 2 OH, CH 2 (C 1 -C 4 alkoxy, CN, NH 2 , NH(C 1 -C 4 alkoxy), N(C 1 -C 4 alkoxy) 2 ; the definitions of the rest of the groups are the same as above;
  • the has a structure selected from the group consisting of:
  • the has a structure selected from the group consisting of:
  • the has a structure selected from the group consisting of:
  • the R 2 is selected from H, D, halogen, C 1 -C 3 alkyl, halogenated C 1 -C 3 alkyl, C 1 -C 3 alkoxy, vinyl, Allyl.
  • the R 2 is selected from CD 3 , D, halogen, C 1 -C 3 alkyl, halogenated C 1 -C 3 alkyl, C 1 -C 3 alkoxy, vinyl , Allyl.
  • the compound of formula (I) has a structure selected from the following group:
  • the compound has a structure selected from the following group:
  • the compound has a structure selected from the following group:
  • the compound has a structure selected from the following group:
  • R 1 ' or R 2 ' are each independently selected from the following group: methyl, ethyl, allyl, hydroxyethyl,
  • each R 3 ' is independently selected from the following group: allyl, ethyl, trifluoromethyl, trifluoroethyl, difluoromethyl, monofluoromethyl,
  • R has a structure selected from the following group:
  • R has a structure selected from the following group:
  • the compound of formula (I) has a structure selected from the following group:
  • the compound has a structure selected from the following group:
  • the compound has a structure selected from the following group:
  • the compound has a structure selected from the following group:
  • the second aspect of the present invention provides the use of the compound according to the first aspect of the present invention for the preparation of a drug for treating diseases related to the activity or expression of KRAS mutants.
  • the disease associated with the activity or expression of the KRAS mutant is a tumor, preferably a tumor selected from the group consisting of sarcoma, myxoma, rhabdomyoma, fibroma, lipoma, teratoma tumor, bronchial cancer, lung cancer, bronchial adenoma, lymphoma, chondroma hamartoma, mesothelioma, esophageal cancer, gastric cancer, pancreatic cancer, small intestine cancer, large intestine cancer, cecum cancer, genitourinary tract tumor, kidney cancer, bladder cancer Cancer, urethral cancer, prostate, testicular cancer, liver cancer, cholangiocarcinoma, hepatoblastoma, angiosarcoma, hepatocellular adenoma, hemangioma, gallbladder cancer, ampullary cancer, bile duct cancer, bone cancer, brain cancer, uterine cancer
  • the KRAS mutant is a KRAS G12D mutant, a KRAS G12V mutant, a KRAS G12S mutant or a KRAS G13D mutant.
  • the third aspect of the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising: (i) a therapeutically effective amount of the compound of formula I as described in the first aspect of the present invention, or a pharmaceutically acceptable a salt; and (ii) a pharmaceutically acceptable carrier.
  • the pharmaceutical composition is used to treat diseases related to the activity or expression of KRAS mutants.
  • the inventors After long-term and in-depth research, the inventors have prepared a class of compounds with the structure shown in formula I, and found that they have the activity of inhibiting KRAS-effector protein-protein interaction. Moreover, the compound can inhibit a series of KRAS-effector protein-protein interactions at a very low concentration (as low as ⁇ 100nmol/L), and the inhibitory activity is quite excellent, so it can be used for the treatment of KRAS-effector and KRAS-effector Diseases related to protein-protein interactions such as tumors. Based on the above findings, the inventors have accomplished the present invention.
  • C 1 -C 6 alkyl refers to a straight or branched chain alkyl group having 1 to 6 carbon atoms, such as methyl, ethyl, propyl, isopropyl, or similar groups,
  • the expressions "C 1 -C 3 alkyl” etc. have similar definitions.
  • C 1 -C 6 alkoxy refers to a straight or branched chain alkoxy group having 1 to 6 carbon atoms, such as methoxy, ethoxy, propoxy, isopropoxy, or the like group, "C 1 -C 3 alkoxy” and other expressions have similar definitions.
  • the term “comprises”, “comprises” or “comprises” means that various components can be applied together in the mixture or composition of the present invention. Accordingly, the terms “consisting essentially of” and “consisting of” are included in the term “comprising”.
  • the term "pharmaceutically acceptable” ingredient refers to a substance that is suitable for human and/or animal without undue adverse side effects (such as toxicity, irritation and allergic reaction), ie, has a reasonable benefit/risk ratio.
  • the term "effective amount" refers to the amount of a therapeutic agent that treats, alleviates or prevents a target disease or condition, or exhibits a detectable therapeutic or preventive effect.
  • the precise effective amount for a subject will depend on the size and health of the subject, the nature and extent of the disorder, and the therapeutic agents and/or combination of therapeutic agents chosen for administration. Therefore, it is not useful to prespecify an exact effective amount. However, the effective amount can be determined by routine experimentation, within the judgment of the clinician, for a given situation.
  • substituted means that one or more hydrogen atoms on the group are replaced by substituents selected from the group consisting of: halogen, unsubstituted or halogenated C 1 -C 6 alkyl , unsubstituted or halogenated C 2 -C 6 acyl, unsubstituted or halogenated C 1 -C 6 alkyl-hydroxyl.
  • each chiral carbon atom may optionally be in R configuration or S configuration, or a mixture of R and S configurations.
  • cycloalkyl includes saturated and partially unsaturated cyclic hydrocarbon radicals having 3 to 12 carbons, for example 3 to 8 carbons, and as a further example 3 to 6 carbons, wherein said cycloalkyl is additionally optionally replaced by one or more.
  • cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl.
  • cycloalkyl also includes bridged cycloalkyl groups such as bicyclo[1.1.1]pentyl.
  • aryl group is a C 6 -C 14 aromatic moiety comprising one to three aromatic rings, optionally replaced by one or more R 6 or one or more R as defined herein 7 replaced.
  • the aryl group is a C6-C10 aryl group.
  • Examples of aryl groups include, but are not limited to, phenyl, naphthyl, anthracenyl, fluorenyl, and dihydrobenzofuranyl.
  • Aryl also means a bicyclic or tricyclic ring system, wherein one or both rings of the aromatic ring system, respectively, may be saturated or partially saturated, and wherein if the ring system includes two saturated rings, the The saturated ring may be fused or spiro, but its connection to the rest of the compound is on the aryl moiety.
  • a “heterocyclyl” or “heterocyclic” group is a ring structure having 3 to 12 atoms, such as 4 to 8 atoms, wherein one or more atoms are selected from the group consisting of N, O and S, wherein the ring N Atoms can be oxidized to NO and ring S atoms can be oxidized to SO or SO2 , the remaining ring atoms are carbon.
  • a heterocyclyl group can be a monocyclic, bicyclic, spiro, or bridged ring system.
  • the heterocyclic group or heterocyclic ring may be partially or fully unsaturated, and when the heterocyclic group is a partially unsaturated (ie, partially non-aromatic) structure, the heterocyclic group or heterocyclic ring
  • the linking site of can be located on a fully or partially saturated ring, and can also be located on an aromatic ring.
  • heteroaryl refers to a group having 5 to 14 ring atoms, preferably 5, 6, 9 or 10 ring atoms; and, in addition to carbon atoms, each ring has one to three ring atoms selected from N, O and A heteroatom of S, "heteroaryl” also means a bicyclic ring system having, in addition to carbon atoms, one to three heteroatoms per ring selected from N, O, and S, wherein one ring system may be saturated or partially saturated of.
  • halogen refers to F, Cl, Br and I.
  • the term "compound of the present invention” refers to a compound represented by formula I.
  • the term also includes the various crystalline forms, pharmaceutically acceptable salts, hydrates or solvates of the compounds of formula I.
  • the term "pharmaceutically acceptable salt” refers to a salt of a compound of the present invention with an acid or a base which is suitable for use as a medicine.
  • Pharmaceutically acceptable salts include inorganic salts and organic salts.
  • a preferred class of salts are the salts of the compounds of the invention with acids.
  • Acids suitable for forming salts include, but are not limited to: inorganic acids such as hydrochloric acid, hydrobromic acid, hydrofluoric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, Maleic acid, lactic acid, malic acid, tartaric acid, citric acid, picric acid, methanesulfonic acid, benzenemethanesulfonic acid, benzenesulfonic acid and other organic acids; and acidic amino acids such as aspartic acid and glutamic acid.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, hydrofluoric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, Maleic acid, lactic acid, malic acid,
  • the compounds involved in the present invention can be prepared from commercially available reagents using the synthetic methods and reaction schemes described herein, or using other reagents and traditional methods well known to those skilled in the art .
  • reaction structure formula A the compound of Formula I can be prepared and synthesized according to formula A.
  • step a intermediate (2) is formed from the reaction of ethyl 4,6-dichloronicotinate (1) with 2,4-dimethoxybenzylamine.
  • step b intermediate 2 can be debenzylated by hydrochloric acid/dioxane treatment to obtain 4-amino, 6-chloronicotinic acid ethyl ester (3).
  • step c 4-amino, 6-chloronicotinic acid
  • the intermediate (4) can be obtained by reacting the base acid ethyl ester (3) with 2,2,2 trichloroacetyl isocyanate.
  • step d the intermediate (4) can be treated with ammonia in methanol solution to obtain the cyclized core intermediate (5), 7-chloropyrido[4,3-d]pyrimidinedione.
  • step e 7-chloropyrido[4,3-d]pyrimidinedione is converted to intermediate (6) by reaction with phosphorus oxychloride.
  • step f the reaction of 2,4,7-trichloropyridopyrimidine intermediate (6) with tert-butoxycarbonyl-protected diazabicyclooctane can generate intermediate (7).
  • step g intermediate 7 reacts with nucleophile HQR 4 to generate the nucleophilic substitution product of QR 4 , ie intermediate (8).
  • step h intermediate (8) can be reacted with trifluoromethanesulfonic anhydride or zinc difluoromethanesulfinate to form intermediate (9).
  • the former reaction conditions are usually carried out at room temperature under the irradiation of LED lamps, and the latter reaction conditions are generally in a mixed solution of TFA, FeCl 2 in DMSO; H 2 O, TBHP is added dropwise and reacted at room temperature.
  • step i the intermediate (9) reacts with a boronic acid reagent or a trialkyl-substituted tin reagent (these two types of reactions are called Suzuki Cross Coupling and Stille Cross Coupling respectively) to generate a carbon-carbon coupling intermediate (10) (or product).
  • step j the intermediate (10) undergoes acidic conditions (usually TFA/dichloromethane) to remove tert-butyl formate to finally generate compound Formula I.
  • reaction structure B the compound of Formula II can be prepared and synthesized according to the formula B.
  • step a the reaction of 7-chloro,8-fluoropyrido[4,3-d]pyrimidinedione (11) with phosphorus oxychloride is converted to intermediate 2,4,7-trichloro-8-fluoro Pyridopyrimidine intermediate (12).
  • step b reaction of intermediate 12 with a tert-butoxycarbonyl-protected diazabicyclooctane can give intermediate (13).
  • step c intermediate 13 reacts with nucleophile HQR 4 to generate intermediate 14, a nucleophilic substitution product of QR 4 .
  • step d intermediate (14) reacts with boronic acid or boronate reagents or trialkyl substituted tin reagents (these two types of reactions are called SuzukiCrossCoupling and StilleCrossCoupling respectively) to generate carbon-carbon coupling intermediate (15) (or product ).
  • step e the intermediate (15) undergoes acidic conditions (usually TFA/dichloromethane) to remove tert-butyl formate to finally generate compound FormulaII.
  • the compound of Formula II-a can be prepared and synthesized according to the method shown in Formula C.
  • step a intermediate 12 reacts with nucleophilic reagent 1-(aminomethyl)-N,N-disubstituent (R'1)-cyclobutanyl-1-amine to generate nucleophilic substitution product intermediate 16.
  • step b intermediate 16 reacts with nucleophile HQR 4 to produce intermediate 17, a nucleophilic substitution product of QR 4 .
  • step c intermediate (17) is reacted with boronic acid or boronate reagent to generate carbon-carbon coupling intermediate (18) (or product).
  • step d intermediate (18) undergoes acidic conditions (usually TFA/dichloromethane) to remove tert-butyl formate to finally generate compound FormulaII-a.
  • compositions and methods of administration are provided.
  • the compound of the present invention has excellent inhibitory activity against KRAS mutants
  • the compound of the present invention and its various crystal forms, pharmaceutically acceptable inorganic or organic salts, hydrates or solvates, and compounds containing the present invention are mainly
  • the pharmaceutical composition of active ingredients can be used to treat, prevent and alleviate diseases related to the activity or expression of KRAS mutants.
  • KRAS mutants not only refer to G12D mutants, but also include G12V, G12S, G13D and G12C mutants.
  • the above-mentioned diseases related to the activity or expression of KRAS mutants are selected from the following group:
  • sarcomas angiosarcoma, fibrosarcoma, rhabdomyosarcoma, liposarcoma
  • myxoma rhabdomyoma, fibroma, lipoma, and teratoma
  • bronchial carcinoma squamous cell, undifferentiated small cell, undifferentiated large cell, adenocarcinoma
  • alveolar carcinoma bronchiole carcinoma
  • bronchial adenoma sarcoma
  • lymphoma chondroma hamartoma
  • mesothelioma adenocarcinoma
  • Gastrointestinal Esophagus (squamous cell carcinoma, adenocarcinoma, leiomyosarcoma, lymphoma), stomach (carcinoma, lymphoma, leiomyosarcoma), pancreas (ductal adenocarcinoma, insulinoma, glucagonoma, gastrinoma) , carcinoid tumor, vasoactive intestinal peptide tumor), small intestine (adenocarcinoma, lymphoma, carcinoid tumor, Kaposi sarcoma, leiomyoma, hemangioma, lipoma, neurofibroma, fibroma), large intestine (adenocarcinoma Carcinoma, tubular adenoma, villous adenoma, hamartoma, leiomyoma); urogenital tract: kidney (adenocarcinoma, Wilm's tumor (Wilms tumor), lymphoma, le
  • Biliary tract gallbladder cancer, ampullary cancer, bile duct cancer;
  • Bone osteogenic sarcoma (osteosarcoma), fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's sarcoma, malignant lymphoma (reticulocyte sarcoma), multiple myeloma, malignant giant cell tumor chordoma, Osteochondroma (exostoses of osteochondral), benign chondroma, chondroblastoma, chondromyxoid fibroma, osteoid osteoma, and giant cell tumor; Nervous system: skull (osteoma, hemangioma, granuloma, Xanthoma, osteitis deformans), meninges (meningioma, meningiosarcoma, glioma), brain (astrocytoma, medulloblastoma, glioma, ependymoma, germ cell tumor (pine
  • Skin malignant melanoma, basal cell carcinoma, squamous cell carcinoma, Kaposi's sarcoma, dysplastic nevus, lipoma, hemangioma, dermatofibroma, keloid, psoriasis; and adrenal: neuroblastoma.
  • said cancer is non-small cell lung cancer, small cell lung cancer, colorectal cancer, rectal cancer or pancreatic cancer.
  • the pharmaceutical composition of the present invention comprises the compound of the present invention or a pharmacologically acceptable salt thereof within a safe and effective amount range and a pharmaceutically acceptable excipient or carrier.
  • safe and effective dose refers to: the amount of the compound is sufficient to obviously improve the condition without causing severe side effects.
  • the pharmaceutical composition contains 1-2000 mg of the compound of the present invention per dose, more preferably 5-200 mg of the compound of the present invention per dose.
  • the "one dose” is a capsule or tablet.
  • “Pharmaceutically acceptable carrier” refers to: one or more compatible solid or liquid fillers or gel substances, which are suitable for human use, and must have sufficient purity and low enough toxicity. "Compatibility” herein means that the components of the composition can be blended with the compound of the present invention and with each other without significantly reducing the efficacy of the compound.
  • Examples of pharmaceutically acceptable carrier parts include cellulose and derivatives thereof (such as sodium carboxymethylcellulose, sodium ethylcellulose, cellulose acetate, etc.), gelatin, talc, solid lubricants (such as stearic acid , magnesium stearate), calcium sulfate, vegetable oil (such as soybean oil, sesame oil, peanut oil, olive oil, etc.), polyols (such as propylene glycol, glycerin, mannitol, sorbitol, etc.), emulsifiers (such as Tween ), wetting agent (such as sodium lauryl sulfate), coloring agent, flavoring agent, stabilizer, antioxidant, preservative, pyrogen-free water, etc.
  • cellulose and derivatives thereof such as sodium carboxymethylcellulose, sodium ethylcellulose, cellulose acetate, etc.
  • gelatin such as talc
  • solid lubricants such as stearic acid , magnesium stearate
  • the mode of administration of the compound or pharmaceutical composition of the present invention is not particularly limited, and representative modes of administration include (but are not limited to): oral, intratumoral, rectal, parenteral (intravenous, intramuscular or subcutaneous), and topical administration .
  • Solid dosage forms for oral administration include capsules, tablets, pills, powders and granules.
  • the active compound is admixed with at least one conventional inert excipient (or carrier), such as sodium citrate or dicalcium phosphate, or with (a) fillers or extenders, for example, Starch, lactose, sucrose, glucose, mannitol and silicic acid; (b) binders such as hydroxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose and acacia; (c) humectants, For example, glycerol; (d) disintegrants, such as agar, calcium carbonate, potato starch or tapioca starch, alginic acid, certain complex silicates, and sodium carbonate; (e) slow agents, such as paraffin; (f) Absorption accelerators such as quaternary ammonium compounds; (g) wetting agents such as cetyl alcohol and glyceryl monostea, or
  • Solid dosage forms such as tablets, dragees, capsules, pills, and granules can be prepared with coatings and shell materials, such as enteric coatings and others well known in the art. They may contain opacifying agents and, in such compositions, the release of the active compound or compounds may be in a certain part of the alimentary canal in a delayed manner.
  • coatings and shell materials such as enteric coatings and others well known in the art. They may contain opacifying agents and, in such compositions, the release of the active compound or compounds may be in a certain part of the alimentary canal in a delayed manner.
  • Examples of usable embedding components are polymeric substances and waxy substances.
  • the active compounds can also be in microencapsulated form, if desired, with one or more of the above-mentioned excipients.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups or tinctures.
  • liquid dosage forms may contain inert diluents conventionally used in the art, such as water or other solvents, solubilizers and emulsifiers, for example, ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1 , 3-butanediol, dimethylformamide and oils, especially cottonseed oil, peanut oil, corn germ oil, olive oil, castor oil and sesame oil or mixtures of these substances, etc.
  • inert diluents conventionally used in the art, such as water or other solvents, solubilizers and emulsifiers, for example, ethanol, isopropanol, ethyl carbonate, ethyl acetate, propylene glycol, 1 , 3-butanediol, dimethylformamide and
  • compositions can also contain adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring and perfuming agents.
  • Suspensions in addition to the active compounds, may contain suspending agents, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methoxide and agar, or mixtures of these substances, and the like.
  • suspending agents for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum methoxide and agar, or mixtures of these substances, and the like.
  • compositions for parenteral injection may comprise physiologically acceptable sterile aqueous or anhydrous solutions, dispersions, suspensions or emulsions, and sterile powders for reconstitution into sterile injectable solutions or dispersions.
  • Suitable aqueous and non-aqueous carriers, diluents, solvents or vehicles include water, ethanol, polyols, and suitable mixtures thereof.
  • Dosage forms for topical administration of a compound of this invention include ointments, powders, patches, sprays and inhalants.
  • the active ingredient is admixed with a physiologically acceptable carrier and any preservatives, buffers, or propellants which may be required if necessary.
  • the compounds of the present invention may be administered alone or in combination with other pharmaceutically acceptable compounds.
  • a safe and effective amount of the compound of the present invention is applied to a mammal (such as a human) in need of treatment, wherein the dosage is a pharmaceutically effective dosage when administered, for a person with a body weight of 60kg, the daily
  • the dosage is usually 1-1200 mg, preferably 5-600 mg.
  • factors such as the route of administration and the health status of the patient should also be considered for the specific dosage, which are within the skill of skilled physicians.
  • Step b
  • intermediate 1-6 (2.0 g) was dissolved in phosphorus oxychloride (20 ml), N,N-diisopropylethylamine (5.0 ml) was added, and reacted at 120° C. for 2 hours. After the reaction was complete, the mixture was concentrated under reduced pressure, and the crude product was purified by neutral alumina column chromatography (ethyl acetate as the eluent) to give black oil 1-7 (1.8 g).
  • Step f
  • the intermediate preparation 1 (500 mg) was dissolved in 1,2, dichloroethane (12 ml), and then dichlorotris(2,2'-bipyridyl)ruthenium(II)6 Hydrate (69 mg), pyridine (0.275 ml), trifluoromethanesulfonic anhydride (0.32 ml). Stir at room temperature for 2 hours under LED light irradiation. After the reaction was completed, water (20 mL) was slowly added, and extracted three times with dichloromethane (10 mL).
  • Preparation Example 9 can be prepared by referring to the similar method of Preparation Example 5.
  • Step b
  • Boc2O 75.21mg, 0.342mmol
  • DIEA 110.5mg, 0.855mmol
  • 8-2 100mg, 0.285mmol
  • dichloromethane 2mL
  • LCMS showed that the raw materials reacted After completion, the product was formed.
  • Step b
  • the intermediate 10-2 (4.68g, 18.4mmol) was dissolved in dichloromethane (80ml) and N,N-diisopropylethylamine was added to adjust (the pH value was 7), and then N, N-Diisopropylethylamine (8.0mL, 45.96mmol), (1R, 5S)-3,8-diazacyclo[3.2.1]octane-8-carboxylic acid tert-butyl ester 8 (3.25g, 15.32 mmol). Stir at room temperature for 17 hours. After the reaction was complete, water (300 mL) was slowly added and extracted three times with dichloromethane (200 mL).
  • the intermediate 10-3 (500mg, 1.17mmol) was dissolved in tetrahydrofuran (20mL), and then the chiral compound 10-4 (372mg, 2.34mmol) and cesium carbonate (1143mg, 3.51mmol) were added sequentially. Stir at 70°C for 17 hours. After the reaction was complete, water (100 mL) was slowly added, and extracted three times with ethyl acetate (150 mL).
  • Preparation 11 can be prepared by referring to the similar method of Preparation 10.
  • Preparation Example 12 and Preparation Example 13 can be prepared in a similar manner with reference to Preparation Example 10 and Preparation Example 11.
  • the intermediate Preparation 2 (60 mg) was dissolved in dioxane (0.5 ml) and water (0.05 ml), and then the intermediate boric acid 1-1 (60 mg), potassium carbonate (42 mg), Pd(dtbpf)Cl 2 (13 mg). Stir in microwave at 100°C for 0.5 hours. After the reaction was complete, water (20 mL) was slowly added and extracted three times with ethyl acetate (10 mL).
  • Step b
  • the intermediate Preparation 2 (60 mg) was dissolved in dioxane (0.5 ml) and water (0.05 ml), and then the intermediate borate 2-1 (60 mg), potassium carbonate was added successively (42 mg), Pd(dtbpf) Cl2 (13 mg). Stir in microwave at 100°C for 0.5 hours. After the reaction was complete, water (20 mL) was slowly added and extracted three times with ethyl acetate (10 mL).
  • Example 3 To a solution of Example 3 (6.3 mg, 0.0079 mmol) in dichloromethane (1.0 mL) was added TFA (0.2 mL), and the mixture was stirred at 25°C for 1 hr. LCMS showed detection of product. The reaction was then concentrated to give the crude product and pre-HPLC (method with ammonia) to give Example 4 as a white solid (5.92 mg).
  • Example 6 TFA (0.2 mL) was added to a solution of Example 5 (40 mg, 0.047 mmol) in DCM (1 mL) at 20 °C, and the mixture was stirred at 20 °C for 1 h. The mixture was concentrated in vacuo. The residue was purified by Pre-HPLC (eluting with CH3CN:0.03% HCOOH) 10% CH3CN to 95% CH3CN to give Example 6 as a white solid (12.21 mg).
  • Example 7 To a solution of Example 7 (9.7 mg, 0.011 mmol) in dichloromethane (1.0 mL) was added TFA (0.2 mL), and the mixture was stirred at 25°C for 1 hr. LCMS showed detection of product. The reaction was then concentrated to give the crude product and by Pre-HPLC (method with formic acid) to give Example 8 as a white solid (1.89 mg).
  • Example 10 (4.74 mg).
  • Example 11 (4.64 mg, 0.0055 mmol) as a white solid.
  • Example 11 To a solution of Example 11 (20 mg, 0.0239 mmol) in DCM (1 mL) was added TFA (0.2 mL). The mixture was stirred at 20°C for 1 hour. LCMS showed the reaction was complete, then the reaction was concentrated to give a crude residue which was purified by pre-HPLC (method with formic acid): eluting with CH3CN: 0.001 HCOOH/H2O) 10% CH3CN to 95% CH3CN to give a white solid Example 12 (2.04 mg, 0.0032mmol).
  • Example 16 As a white solid (4.54 mg).
  • the crude product was prepared by pre-HPLC (instrument: 2#SHIMADZU (HPLC-01)): column model: YMC-Actus Triart C18 ExRS, 30mm X 150mm, 5um; mobile phase:
  • Example 17 100 mg, DCM (5 mL) and TFA (1 mL) were added to a 50 mL single-necked bottle, and the reaction solution was stirred at room temperature for 2 h. After the reaction was complete, the mixture was spin-dried under reduced pressure. Obtained 60 mg of crude product purified by preparative.
  • the preliminary purified product was prepared by the following conditions (instrument: 2#SHIMADZU (HPLC-05)), column type: YMC-Actus Triart C18 ExRS, 30mm X 150mm, 5um; mobile phase: water (10mmol/L TFA) and acetonitrile (rising to 60% from 20% in 12min); Detection wavelength: 254nm obtains off-white solid embodiment 18 (19.3mg).
  • Example 19 To a solution of Example 19 (30.0 mg, 0.034 mmol) in dichloromethane (1.0 mL) was added TFA (0.2 mL), and the mixture was stirred at 25°C for 1 hr. LCMS showed detection of product. The reaction was then concentrated to give the crude product and by Pre-HPLC (method with formic acid) to give Example 20 (5.71 mg) as a white solid.
  • Example 23 (1.4 mg) as a white solid.
  • Example 24 can be obtained by Suzuki Cross coupling reaction of Preparation Example 10 with the corresponding borate ester by referring to the similar method of Example 40.
  • the intermediate obtained from the carbon-carbon coupling reaction was reacted with trifluoroacetic acid in dichloromethane at room temperature, and the crude product was purified by reverse-phase column with 10 mmoL solution (NH 4 HCO 3 aqueous solution) to obtain Example (1.8 mg) as a white solid.
  • intermediate 25-1 (200mg, 0.4mmol) was dissolved in tetrahydrofuran (3mL), and then compound 25-2 (137mg, 0.8mmol), N,N-diisopropylethylamine (DIPEA) were added successively (0.12 mL, 0.8 mmol). Stir at 70°C for 17 hours. The reaction solution was cooled and spin-dried under reduced pressure to obtain a crude product, which was purified with reverse-phase pure water to obtain a white solid 25-3 (120 mg).
  • DIPEA N,N-diisopropylethylamine
  • Example 25 (13.36 mg) as a white solid.
  • intermediate 25-1 (130mg, 0.257mmol) was dissolved in tetrahydrofuran (2mL), and then compound 26-1 (84mg, 0.514mmol), N,N-diisopropylethylamine (DIPEA) were added successively (0.18 mL, 1.028 mmol). Stir at 70°C for 17 hours. The reaction solution was cooled and spin-dried under reduced pressure to obtain a crude product, which was purified with reverse-phase pure water to obtain a white solid 26-2 (60 mg).
  • DIPEA N,N-diisopropylethylamine
  • Example 27 (2.47 mg) as a white solid.
  • the crude product was purified under the following conditions (C18xbridge preparative column, flow rate 20ml/min, 10mmol/L concentration of trifluoroacetic acid, 64%-67% gradient of acetonitrile. An off-white solid 28-1 (5.56mg) was obtained).
  • intermediate 25-1 (150mg, 0.3mmol) was dissolved in tetrahydrofuran (3mL), and compound 29-1 (105mg, 0.6mmol), N,N-diisopropylethylamine (DIPEA) were added successively (0.09 mL, 0.06 mmol). Stir at 70°C for 17 hours. The reaction solution was cooled and spin-dried under reduced pressure to obtain a crude product, which was purified with reversed-phase pure water to obtain a white solid 29-2 (102 mg).
  • DIPEA N,N-diisopropylethylamine
  • Example 29 (8.97 mg) as a white solid.
  • Example 31 (5.79 mg) as a white solid.
  • the reaction mixture was diluted with water (10 mL), extracted with EtOAc (20 mL*3), the organic layer was dried over anhydrous Na 2 SO 4 , and the organic layer was concentrated under reduced pressure to obtain a crude product, The crude product was purified by Pre-HPLC (with the formic acid method) to give 33-1 (1.21 mg) as a white solid.
  • Example 33 (1.01 mg) as a white solid.
  • the reaction mixture was diluted with water (10 mL), extracted with EtOAc (20 mL*3), the organic layer was dried over anhydrous Na 2 SO 4 , and the organic layer was concentrated under reduced pressure to obtain a crude product, The crude product was purified by Pre-HPLC (with the formic acid method) to give 34-1 (1.18 mg) as a white solid.
  • Example 34 (25 mg, 0.032 mmol) in dichloromethane (1.0 mL) was added TFA (0.2 mL), and the mixture was stirred at 25° C. for 2 hr. LCMS showed detection of product. The reaction was then concentrated to give crude product and pre-HPLC (method with formic acid) to give Example 34 (3.54 mg) as a white solid.
  • Example 35 (8.61 mg) as a white solid.
  • Example 36 (10.0 mg) as a white solid.
  • Example 37 (14.84 mg) as a white solid.
  • compound 38-1 (9.5mg, 0.018mmol) was dissolved in N,N-dimethylformamide (DMF, 2mL) solution, compound 5-1 (10.9mg, 0.027mmol) was added to the mixed solution ), potassium phosphate (17.6mg, 0.054mmol) and DPEPhosPdCl2 (5.0mg, 0.0072mmol).
  • DMF N,N-dimethylformamide
  • compound 5-1 (10.9mg, 0.027mmol) was added to the mixed solution
  • potassium phosphate 17.6mg, 0.054mmol
  • DPEPhosPdCl2 5.0mg, 0.0072mmol
  • reaction mixture was diluted with water (10 mL), extracted with EtOAc (20 mL*3), the organic layer was dried over anhydrous Na 2 SO 4 , and the organic layer was concentrated under reduced pressure to obtain a crude product.
  • the product was subjected to Pre-TLC and pre-HPLC (method with formic acid) to give white solid 38-2 (1.34 mg).
  • Example 38 As a white solid (8.67 mg).
  • compound 39-1 (50.0mg, 0.092mmol) was dissolved in N,N-dimethylformamide (DMF, 2.5mL) solution, compound 5-1 (55mg, 0.14mmol) was added to the mixed solution ), potassium phosphate (90mg, 0.28mmol) and DPEPhosPdCl2 (26mg, 0.036mmol).
  • the mixture was stirred under microwave at 120 °C for 1 hour.
  • LCMS showed that the reaction was complete, and the reaction solution was cooled and then filtered.
  • the reaction mixture was diluted with water (10 mL), extracted with EtOAc (20 mL*3), the organic layer was dried over anhydrous Na 2 SO 4 , and the organic layer was concentrated under reduced pressure to obtain a crude product.
  • Example 39 (1.23 mg) as a white solid.
  • Example 40 (10.43 mg) as a white solid.
  • Example 44 can be prepared by referring to the similar method of Example 43.
  • Example 45 was reacted from its intermediate 45-3 (13.0 mg) by pertrifluoroacetic acid in dichloromethane to give crude product and by pre-HPLC (method with formic acid) to give white solid Example 45 (2.08 mg) .
  • Example 47 The intermediate (27.0 mg) obtained from the carbon-carbon coupling reaction was reacted with a dichloromethane solution of pertrifluoroacetic acid to obtain a crude product.
  • the white solid Example 47 (9.0 mg).
  • Example 48 (1.44 mg) as a white solid.
  • the deuterium substitution rate is 84%.
  • Example 53 can be prepared by referring to the similar method of Example 51.
  • Example 53 The intermediate obtained from the carbon-carbon coupling reaction was reacted with pertrifluoroacetic acid in dichloromethane to obtain a crude product.
  • the white solid Example 53 (2.44 mg) was obtained by pre-HPLC (method using ammonia water).
  • Example 54 can refer to the similar method of Example 51.
  • Example 54 The intermediate obtained from the carbon-carbon coupling reaction was reacted with pertrifluoroacetic acid in dichloromethane to obtain the crude product.
  • the white solid Example 54 (2.47 mg) was obtained by pre-HPLC (method with formic acid).
  • Example 55 can refer to the similar method of Example 51.
  • Example 55 The intermediate obtained from the carbon-carbon coupling reaction was reacted with pertrifluoroacetic acid in dichloromethane to obtain the crude product.
  • the white solid Example 55 (10.31 mg) was obtained by pre-HPLC (method with formic acid).
  • Example 56 can be prepared by referring to the similar method of Example 40 to obtain Example 56 (8.0 mg) as a white solid.
  • Example 57 can be prepared by referring to the similar method of Example 47 to obtain Example 56 (8.0 mg) as a white solid.
  • HTRF time-resolved fluorescence
  • Compound inhibition rate IR (%) formula (RLU 0% inhibition - RLU compound ) / (RLU 0% inhibition - RLU 100% inhibition ) x 100%, using the four-parameter method (4-parameter logistic model) to fit the compound gradient dilution The concentration and the corresponding inhibition rate were used to calculate the IC 50 value.
  • the results of the inhibitory activity (IC 50 , ⁇ M) of the test compounds on KRAS G12D protein are shown in Table 1 below.
  • HTRF time-resolved fluorescence
  • reaction buffer 50mM HEPES pH 7.5, 5mM MgCl 2 , 1mM DTT
  • 25nM fluorescently labeled probes and target compounds were added to a 384-well white shallow well plate (PerkinElmer), and an appropriate Control wells.
  • GDP-KRAS protein, fluorescently labeled probes and compounds were pre-incubated in a 384-well plate for 30 minutes, and then diluted 0.5nM Tb-SA (Cisbio) was added to initiate the reaction.
  • Compound inhibition rate IR (%) formula (RLU 0% inhibition - RLU compound ) / (RLU 0% inhibition - RLU 100% inhibition ) x 100%, use the four-parameter method (4-parameter logistic model) to fit the gradient dilution of the compound The concentration and the corresponding inhibition rate were used to calculate the IC 50 value.
  • the results of the competitive inhibitory activity (IC 50 , ⁇ M) of the test compounds against KRAS G12D protein are shown in Table 1 below.
  • HTRF homogeneous time-resolved fluorescence
  • the target compound was serially diluted with DMSO solution to obtain a series of compound action concentrations, and the final concentration of DMSO was controlled to be 1%.
  • Compound inhibition rate IR (%) formula (RLU 0% inhibition - RLU compound ) / (RLU 0% inhibition - RLU 100% inhibition ) x 100%, using the four-parameter method (4-parameter logistic model) to fit the compound gradient dilution The concentration and the corresponding inhibition rate were used to calculate the IC 50 value.
  • the compound of the present application exhibits higher selectivity compared to the wild type, compared with the positive control compound KRpep-2d, the activity and selectivity have been greatly improved. It can also be seen from the above examples that compared with the positive control compound, it is suggested that the compound of the present invention not only has higher activity in inhibiting the protein-protein interaction of GTP-KRAS-RAF1 but also inhibits the KRAS-GDP protein nucleotide exchange catalyzed by SOS1. It has higher activity and higher selectivity to wild type.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一类作为小GTP酶KRAS突变抑制剂的吡啶并嘧啶类衍生物,具体地,本发明提供了一类结构式如通式(I)和通式(II)所示的吡啶并嘧啶类衍生物,及其药学上可接受的盐,其对KRAS G12D等突变体具有抑制活性。本发明还提供了此类衍生物的制备方法,其药物组合物、成盐复合物、以及作为小GTP酶KRAS突变抑制剂在治疗不同种类肿瘤中的医学用途。

Description

一类作为小GTP酶KRAS突变抑制剂的吡啶并嘧啶类衍生物 技术领域
本申请涉及一类吡啶并嘧啶类衍生物,其制备方法,含有这些化合物的药物组合物或其盐以及作为小GTP酶KRAS突变抑制剂在治疗不同肿瘤中的医学用途。
背景技术
RAS是首个被发现的人类肿瘤基因(Oncogene),是肿瘤中最常见的突变基因之一,在约30%的肿瘤中均携带有RAS突变,如果结合RAS的调控因子和信号通路的上下游突变,则几乎覆盖所有肿瘤。KRAS基因(Kirsten rat sarcoma viral oncogene homolog)是RAS基因家族中的重要成员。KRAS基因编码的蛋白是GDP/GTP结合蛋白,是一种小GTPase酶,它属于超蛋白家族。KRAS蛋白有188个氨基酸,其分子量为21.6KD,其定位于细胞膜内侧,通过法尼酰基(Farnesyl)的修饰基因连接到细胞膜上。KRAS与GTP结合呈激活状态(KRAS-GTP),与GDP结合呈关闭状态(或非活状态)(KRAS-GDP),随后,GTP酶激活蛋白(GAP)可以将结合在KRAS-GTP上的GTP水解为GDP,促使KRAS-GDP关闭状态的形成,从而使KRAS处在失活态。KRAS蛋白是处在KRAS-GTP激活状态和KRAS-GDP非活状态(关闭状态)之间的“开关”,在激活状态可激活下游信号通路其中包括MAPK信号通路,PI3K信号通路和Ral-GDS信号通路。RAS蛋白开关控制着其下游信号通路,从而促进细胞生存,增殖和细胞因子释放,在细胞增殖,分化和凋亡等生命过程中发挥着重要作用。KRAS也可被生长因子(如EGFR)短暂激活,活化后的KRAS可激活下游如控制细胞生成的PI3K-AKT-mTOR信号通路,以及控制细胞增殖的RAS-RAF-MEK-ERK信号通路,而突变的KRAS即使没有EGFR等激酶激活的情况下却会发生持续活化,导致细胞持续增值,最终发生癌变。
KRAS突变在多种肿瘤中高表达,被发现到最常见的包括肺癌,肠癌,胰腺癌、结肠癌、小肠癌、胆管癌等。结构学研究表明,KRAS的基因突变大多干扰了KRAS水解GTP的能力,最终使KRAS持续激活,使之无法有效调控细胞信号转导,从而促进肿瘤的发生、发展以及转移。
对于KRAS突变,12位氨基酸(G12)的突变约占80%,而G12C突变大约占G12全部突变的14%。近几年来,研究人员相继开发了一系列KRAS G12C突变共价抑制剂,但开发KRAS G12D突变抑制剂遇到了极大的挑战。
目前还没有开发出共价结合在天冬氨酸的方法。直接抑制KRAS G12D突变体难点不仅在于KRAS编码的蛋白表面光滑,缺少结合位点,且KRAS与GTP/GDP的结合力非常强,胞内GTP/GDP的浓度也很高,导致无法开发对GTP竞争性抑制剂。不仅KRAS膜定位受法尼基转移酶等调节,而且靶向KRAS下游信号分子(效应蛋白),抑制生长所需的野生型信号通路的治疗窗口狭小,更由于补偿机制使无法完全而有效地抑制KRAS突变体下游信号,从而使开发效应蛋白的激酶抑制剂对KRAS突变的疗效受到极大限制。
综上所述,对于开发具有口服安全有效性的小GTP酶抑制剂如KRAS G12D等突变体抑制剂仍然有很大的未能满足的临床需求。
发明内容
本发明的目的是提供一种具有口服安全有效性的KRAS突变体抑制剂,特别是用 于治疗肠癌、肺癌、胰腺癌、胆管癌、食道癌、乳腺癌、胃癌等肿瘤的治疗的抑制剂。
本发明的第一方面,提供了一种如下式(I)所示的化合物,或其药学上可接受的盐:
Figure PCTCN2022136003-appb-000001
其中,R 1选自下组:氢、C 1-C 6烷基、C 1-C 6卤代烷基、C 1-C 6氰基烷基、C 1-C 6羟烷基、烯丙基、-C(=O)H、-CO 2R 5、-C(=O)R 6、-SO 2R 7、-CO 2N(R 5) 2、芳基、杂芳基、CONH 2、CONRaRb或CONHRc;其中Ra、Rb、Rc分别选自:C 1-C 6烷基、芳基、取代芳基、杂芳基、取代杂芳基;
Q为键、S、O或NR 5
R 2选自下组:氢、氘、卤素、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6卤代烷基、C 1-C 6氘代烷基、C 2-C 6烯基;
R 3是芳基或杂芳基,其中芳基或杂芳基任选地被一个或多个R 8取代;
R 4是氢、-N(R 5) 2、杂环基、C 1-C 6烷基、-M-杂环基、-M-芳基、-M-杂芳基、-M-环烷基、-MN(R 5) 2、-M-NHC(=NH)NH 2、-MC(=O)N(R 5) 2、-M-C 1-C 6卤代烷基、-M-OR 5、-M-(CH 2OR 5)(CH 2) nOR 5、-M-NR 5C(O)-芳基、-M-COOH或-MC(=O)O(C 1-C 6烷基),其 中,各个杂环基、芳基、环烷基或杂芳基部分可以任选地被一个或多个R 6取代,并且其中-M-芳基和-M-杂芳基的芳基或杂芳基还可以任选地被一个或多个R 7取代;
每个M各自独立地为化学键,C 1-C 6亚烷基,或者C 2-C 6亚烯基;其中,所述的M可以任选地被一个或多个选自下组的取代基取代:羟基、胺基、C 1-C 4羟烷基或杂芳基;
每个R 5各自独立地为氢、C 1-C 6烷基或C 1-C 6卤代烷基;
或R 4和R 5及其相连接的N原子共同构成4-7元的饱和氮杂环;其中,所述的4-7元饱和氮杂环可以任选地被一个或多个R 6取代;
每个R 6各自独立地是卤素、羟基、C 1-C 6羟基烷基、C 1-C 6烷基、C 1-C 6卤代烷基、C 1-C 6烷氧基、氰基、杂环基、-L-苯基、-L-苯基SO 2F、-C(=O)NH 2、-NHC(=O)苯基、-NHC(=O)苯基SO 2F、杂芳基、芳基C 1-C 6烷基-、叔丁基二甲基甲硅烷氧基CH 2-、-N(R 5) 2、(C 1-C 6烷氧基)C 1-C 6烷基-、(C 1-C 6烷基)C(=O)、氧代、(C 1-C 6卤代烷基)C(=O)-、-SO 2F、(C 1-C 6烷氧基)C 1-C 6烷氧基、-CH 2OC(=O)N(R 5) 2、-CH 2NHC(=O)OC 1-C 6烷基,-CH 2NHC(=O)N(R 5) 2,-CH 2NHC(=O)C 1-C 6烷基,-CH 2(杂芳基)、-CH 2杂环基,-CH 2NHSO 2C 1-C 6烷基,-CH 2OC(=O)杂环基,-OC(=O)N(R 5) 2,-OC(=O)NH(C 1-C 6烷基)O(C 1-C 6烷基),-OC(=O)NH(C 1-C 6烷基)O(C 1-C 6烷基)苯基(C 1-C 6烷基)N(CH 3) 2,-OC(=O)NH(C 1-C 6烷基)O(C 1-C 6烷基)O(C 1-C 6烷基)烷基)苯基或-OC(=O)杂环基;其中,-NHC(=O)苯基或-OC(=O)NH(C 1-C 6烷基)O(C 1-C 6烷基)苯基的苯基任选地被-C(=O)H或OH取代,且-CH 2杂环基中的杂环基还可任选地被氧代取代;
其中,L为化学键或O;
各个R 7各自独立地选自下组:卤素、羟基、HC(=O)-、C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4卤代烷基、C 1-C 4羟烷基或-N(R 5) 2
每个R 8独立地为卤素、氰基、羟基、C 1-C 4烷基、-S-C 1-C 6烷基、C 2-C 4烯基、C 2-C 4炔基、C 2-C 4羟基炔基、C 1-C 6氰基烷基、三唑基、C 1-C 6卤代烷基,-O-C 1-C 6卤代烷基、-S-C 1-C 6卤代烷基、C 1-C 6烷氧基、羟基C 1-C 6烷基、-CH 2C(=O)N(R 5) 2、-C 3-C 4炔基(NR 5) 2、-N(R 5) 2、氘代C 2-C 4炔基、(C 1-C 6烷氧基)卤代C 1-C 6烷基-或C 3-C 6环烷基,其中所述C 3-C 6环烷基任选被卤素或C 1-C 6烷基取代;
R 10选自下组:H、D、卤素、OH、OR、CH 2OH、CH 2OR、CN、NH 2、NHR、N(R) 2、或
Figure PCTCN2022136003-appb-000002
其中,R为C 1-C 4烷基、C 1-C 4烷氧基;
且在式(I)中,R 10
Figure PCTCN2022136003-appb-000003
X选自下组:卤素、羟基、巯基、C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4烷巯基;
Y选自下组:H、卤素、羟基、巯基、C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4烷巯基;
Z选自下组:H、卤素、羟基、巯基、C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4烷巯基;
其中,所述的芳基为C 6-C 14芳基、杂环基为3-12元杂环基、杂芳基为5-14元杂芳基(例如5-6元杂芳基或苯并5-6元杂芳基)、环烷基为C 3-C 12环烷基;且除非特别说明,所述的芳基、杂芳基和环烷基可任选地具有1-3个选自下组的取代基:卤素、C 1-C 6烷基。
R 11选自下组:H、卤素、氰基、羟基、C 1-C 4烷基、C 1-C 4烷氧基、C1-C4卤代烷基、C1-C4氘代烷基、C1-C4卤代烷氧基、C2-C4烯基、C3-C6环烷基;
R 12选自下组:H、卤素、氰基、羟基、硝基、氨基、C 1-C 4烷基、C 1-C 4烷氧基、C1-C4卤代烷基、C1-C4氘代烷基、C1-C4卤代烷氧基、C2-C4烯基、C3-C6环烷基;
R 13选自下组:H、卤素、氰基、羟基、C 1-C 4烷基、C 1-C 4烷氧基、C1-C4卤代烷基、C1-C4氘代烷基、C1-C4卤代烷氧基、C2-C4烯基、C3-C6环烷基;
R 14选自下组:H、卤素、氰基、羟基、C 1-C 4烷基、C 1-C 4烷氧基、C1-C4卤代烷基、C1-C4氘代烷基、C1-C4卤代烷氧基、C2-C4烯基、C3-C6环烷基;
R 15选自下组:H、甲基、乙基、乙酰基、叔丁氧基羰基、氘代甲基、氘代乙基,乙氧基羰基。
各个R' 1各自独立地选自下组,H、甲基、乙基、C 3-C 6烷基、C 3-C 6环烷基、C 1-C 6烷氧基、C 1-C 6环烷氧基、C 1-C 6环烷巯基、氘代甲基、氘代乙基;
每个Rx和Ry各自独立地选自下组:卤素、氢、氘、氰基、亚甲基氰基、硝基、氨基、C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、C 1-C 6卤代烷基、C 3-C 10环烷基、C 3-C 10卤代环烷基、4-8元杂环烷基、4-8元卤代杂环烷基、C 6-C 10芳基、5-10元杂芳基、C 3-C 10环烷基-C 1-C 3亚烷基、4-8元杂环烷基-C 1-C 3亚烷基、C 6-C 10芳基-C 1-C 3亚烷基、5-10元杂芳基-C 1-C 3亚烷基、C 1-C 6烷氧基、-S(C 1-C 6烷基)、-C(O)(C 1-C 6烷基)、-C(O)NH(C 1-C 6烷基)、OC(O)R b9、OC(O)NR c9R d9、NR c9R d9、NR c9C(O)R b9、NR c9C(O)OR a9、NR c9C(O)NR c9R d9、C(=NR e9)R b9、C(=NOR a9)R b9、C(=NR e9)NR c9R d9、NR c9C(=N e9)NR c9R d9、NR c9C(=NR e9)R b9、NR c9S(O)R b9、NR c9S(O) 2R b9、NR c9S(O) 2NR c9R d9、S(O)R b9、S(O)NR c9R d9、S(O)R b9、S(O) 2NR c9R d9、和BR h9R i9;所述的R a9、R b9、R c9、R d9、R e9、R h9和R i9各自独立地选自下组:氢、C 1-C 6烷基或C 1-C 6卤代烷基。
在另一优选例中,所述的化合物具有如下式所示的结构:
Figure PCTCN2022136003-appb-000004
其中,所述的R 18选自下组:H、卤素,甲基、乙基、C 3-C 6烷基、C 3-C 6环烷基,C 1-C 6烷氧基、C 1-C 6环烷氧基、C 1-C 6环烷巯基、氘代甲基、氘代乙基,卤代甲基,卤代甲氧基。
m为0、1、2、3或4。
在另一优选例中,R 1选自下组:氢、羟基、C 1-C 6烷基、C 1-C 6氰基烷基、C 1-C 6羟烷基、HC(=O)-、-CO 2R 5,或-CO 2N(R 5) 2
在另一优选例中,所述的R 5选自下组:氢、C 1-C 6烷基,或C 1-C 6氰基烷基。
在另一优选例中,所述的R 4具有选自下组的结构:-M-杂环基、-M-芳基、-M-杂芳基、-M-环烷基;其中,各个杂环基、芳基、环烷基或杂芳基部分可以任选地被一个或多个R 6取代,并且其中-M-芳基和-M-杂芳基的芳基或杂芳基还可以任选地被一个或多个R 7取代;
其中,所述的芳基为C 6-C 10芳基、杂环基为4-6元单环杂环基或7-9元并环杂环基、杂芳基为5-6元单环杂芳基或9-10元并环杂环基、环烷基为C 3-C 6单环烷基或C 7-C 10并环烷基;
每个R 6各自独立地是卤素、羟基、C 1-C 6羟烷基、C 1-C 6烷基、C 1-C 6卤代烷基、C 1- C 6烷氧基、氰基、杂环基、C 1-C 6烷基取代的杂芳基、芳基C 1-C 6烷基-、-N(R 5) 2、(C 1-C 6烷氧基)C 1-C 6烷基-、(C 1-C 6烷基)C(=O)、-C(=O)NH 2、-CH 2(杂芳基)、-CH 2杂环基;
各个R 7各自独立地选自下组:卤素、羟基、HC(=O)-、C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4卤代烷基、C 1-C 4羟烷基或-N(R 5) 2
在另一优选例中,所述的R 4具有选自下组的结构:
Figure PCTCN2022136003-appb-000005
较佳地,当R 4为上述基团时,Q为O、S、NH、CO;
Figure PCTCN2022136003-appb-000006
较佳地,当R 4为上述基团时,Q为单键。
在另一优选例中,所述的C 1-C 6烷基是甲基、乙基、异丙基或异丁基。
在另一优选例中,所述的R 3具有选自下组的结构:
Figure PCTCN2022136003-appb-000007
Figure PCTCN2022136003-appb-000008
且所述的R 3任选地被一个或多个R 8取代。
在另一优选例中,所述的R 3具有选自下组的结构:
Figure PCTCN2022136003-appb-000009
Figure PCTCN2022136003-appb-000010
其中R 8为位于R 3上的一个或多个取代基。
在另一优选例中,所述的R 3具有选自下组的结构:
Figure PCTCN2022136003-appb-000011
Figure PCTCN2022136003-appb-000012
在另一优选例中,所述的
Figure PCTCN2022136003-appb-000013
选自下组:CHF 2、CH 2F、CF 3,CF2Cl、CF2CH3。
在另一优选例中,所述的化合物具有如下所示的结构:
Figure PCTCN2022136003-appb-000014
Figure PCTCN2022136003-appb-000015
其中,式III中,R 10选自D、卤素、OH、C 1-C 4烷氧基、CH 2OH、CH 2(C 1-C 4烷氧基、CN、NH 2、NH(C 1-C 4烷氧基)、N(C 1-C 4烷氧基) 2;其余各基团的定义同上文中所 述;
其余各式中,各个基团的定义同上文中所述。
在另一优选例中,所述的化合物具有如下所示的结构:
Figure PCTCN2022136003-appb-000016
Figure PCTCN2022136003-appb-000017
其中,R 10优选地选自D、卤素、OH、C 1-C 4烷氧基、CH 2OH、CH 2(C 1-C 4烷氧基、CN、NH 2、NH(C 1-C 4烷氧基)、N(C 1-C 4烷氧基) 2;其余各基团的定义同上;
其余各式中,各个基团的定义同上。
在另一优选例中,所述的
Figure PCTCN2022136003-appb-000018
具有选自下组的结构:
Figure PCTCN2022136003-appb-000019
在另一优选例中,所述的
Figure PCTCN2022136003-appb-000020
具有选自下组的结构:
Figure PCTCN2022136003-appb-000021
在另一优选例中,所述的
Figure PCTCN2022136003-appb-000022
具有选自下组的结构:
Figure PCTCN2022136003-appb-000023
在另一优选例中,所述的R 2选自H、D、卤素、C 1-C 3烷基、卤代C 1-C 3烷基、C 1-C 3烷氧基、乙烯基、烯丙基。
在另一优选例中,所述的R 2选自CD 3、D、卤素、C 1-C 3烷基、卤代C 1-C 3烷基、C 1-C 3烷氧基、乙烯基、烯丙基。
在另一优选例中,所述的式(I)化合物具有选自下组的结构:
Figure PCTCN2022136003-appb-000024
Figure PCTCN2022136003-appb-000025
在另一优选例中,所述的化合物具有选自下组的结构:
Figure PCTCN2022136003-appb-000026
在另一优选例中,所述的化合物具有选自下组的结构:
Figure PCTCN2022136003-appb-000027
在另一优选例中,所述的化合物具有选自下组的结构:
Figure PCTCN2022136003-appb-000028
在另一优选例中,R 1'或R 2'各自独立地选自下组:甲基、乙基、烯丙基、羟乙基、
Figure PCTCN2022136003-appb-000029
在另一优选例中,R 3'各自独立地选自下组:烯丙基、乙基、三氟甲基、三氟乙基、二氟甲基、单氟甲基、
Figure PCTCN2022136003-appb-000030
在另一优选例中,当Q为O、S、NH或CO时,R 4具有选自下组的结构:
Figure PCTCN2022136003-appb-000031
Figure PCTCN2022136003-appb-000032
在另一优选例中,当Q为单键时,R 4具有选自下组的结构:
Figure PCTCN2022136003-appb-000033
在另一优选例中,所述的式(I)化合物具有选自下组的结构:
Figure PCTCN2022136003-appb-000034
Figure PCTCN2022136003-appb-000035
Figure PCTCN2022136003-appb-000036
Figure PCTCN2022136003-appb-000037
Figure PCTCN2022136003-appb-000038
Figure PCTCN2022136003-appb-000039
Figure PCTCN2022136003-appb-000040
Figure PCTCN2022136003-appb-000041
Figure PCTCN2022136003-appb-000042
Figure PCTCN2022136003-appb-000043
Figure PCTCN2022136003-appb-000044
Figure PCTCN2022136003-appb-000045
Figure PCTCN2022136003-appb-000046
Figure PCTCN2022136003-appb-000047
Figure PCTCN2022136003-appb-000048
Figure PCTCN2022136003-appb-000049
Figure PCTCN2022136003-appb-000050
Figure PCTCN2022136003-appb-000051
Figure PCTCN2022136003-appb-000052
Figure PCTCN2022136003-appb-000053
在另一优选例中,所述的化合物具有选自下组的结构:
Figure PCTCN2022136003-appb-000054
Figure PCTCN2022136003-appb-000055
Figure PCTCN2022136003-appb-000056
在另一优选例中,所述的化合物具有选自下组的结构:
Figure PCTCN2022136003-appb-000057
Figure PCTCN2022136003-appb-000058
Figure PCTCN2022136003-appb-000059
Figure PCTCN2022136003-appb-000060
Figure PCTCN2022136003-appb-000061
Figure PCTCN2022136003-appb-000062
Figure PCTCN2022136003-appb-000063
Figure PCTCN2022136003-appb-000064
Figure PCTCN2022136003-appb-000065
在另一优选例中,所述的化合物具有选自下组的结构:
Figure PCTCN2022136003-appb-000066
Figure PCTCN2022136003-appb-000067
Figure PCTCN2022136003-appb-000068
Figure PCTCN2022136003-appb-000069
Figure PCTCN2022136003-appb-000070
Figure PCTCN2022136003-appb-000071
Figure PCTCN2022136003-appb-000072
Figure PCTCN2022136003-appb-000073
Figure PCTCN2022136003-appb-000074
Figure PCTCN2022136003-appb-000075
Figure PCTCN2022136003-appb-000076
Figure PCTCN2022136003-appb-000077
Figure PCTCN2022136003-appb-000078
Figure PCTCN2022136003-appb-000079
Figure PCTCN2022136003-appb-000080
Figure PCTCN2022136003-appb-000081
Figure PCTCN2022136003-appb-000082
Figure PCTCN2022136003-appb-000083
本发明的第二方面,提供了如本发明第一方面所述的化合物的用途,其用于制备治疗与KRAS突变体活性或表达量相关的疾病的药物的用途。
在另一优选例中,所述与KRAS突变体活性或表达量相关的疾病为肿瘤,较佳地为选自下组的肿瘤:肉瘤、粘液瘤、横纹肌瘤、纤维瘤、脂肪瘤、畸胎瘤、支气管癌、肺癌、支气管腺瘤、淋巴瘤、软骨瘤错构瘤、间皮瘤、食道癌、胃癌、胰腺癌、小肠癌、大肠癌、盲肠癌、泌尿生殖道肿瘤、肾癌、膀胱癌、尿道癌、前列腺、睾丸癌、肝癌、胆管癌、肝母细胞瘤、血管肉瘤、肝细胞腺瘤、血管瘤、胆囊癌、壶腹癌、胆管癌、骨癌、脑癌、子宫癌、阴道癌、血液瘤、皮肤癌、乳腺癌。
在另一优选例中,所述KRAS突变体为KRAS G12D突变体、KRAS G12V突变体、 KRAS G12S突变体或KRAS G13D突变体。
本发明的第三方面,提供了一种药物组合物,所述的药物组合物包括:(i)治疗有效量的如本发明第一方面所述的式I化合物,或其药学上可接受的盐;和(ii)药学上可接受的载体。
在另一优选例中,所述的药物组合物用于治疗与KRAS突变体活性或表达量相关的疾病。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
具体实施方式
本发明人经过长期而深入的研究,制备了一类具有式I所示结构的化合物,并发现其具有抑制KRAS-effector蛋白-蛋白相互作用的活性。且所述的化合物在极低浓度(可低至≤100nmol/L)下,即对一系列KRAS-effector蛋白-蛋白相互作用产生抑制作用,抑制活性相当优异,因而可以用于治疗与KRAS-effector蛋白-蛋白相互作用相关的疾病如肿瘤。基于上述发现,发明人完成了本发明。
术语
如本文所用,术语“C 1-C 6烷基”指具有1~6个碳原子的直链或支链烷基,例如甲基、乙基、丙基、异丙基,或类似基团,“C 1-C 3烷基”等表述具有类似的定义。
术语“C 1-C 6烷氧基”指具有1~6个碳原子的直链或支链烷氧基,例如甲氧基、乙氧基、丙氧基、异丙氧基,或类似基团,“C 1-C 3烷氧基”等表述具有类似的定义。
本发明中,术语“含有”、“包含”或“包括”表示各种成分可一起应用于本发明的混合物或组合物中。因此,术语“主要由...组成”和“由...组成”包含在术语“含有”中。
本发明中,术语“药学上可接受的”成分是指适用于人和/或动物而无过度不良副反应(如毒性、刺激和变态反应),即有合理的效益/风险比的物质。
本发明中,术语“有效量”指治疗剂治疗、缓解或预防目标疾病或状况的量,或是表现出可检测的治疗或预防效果的量。对于某一对象的精确有效量取决于该对象的体型和健康状况、病症的性质和程度、以及选择给予的治疗剂和/或治疗剂的组合。因此,预先指定准确的有效量是没用的。然而,对于某给定的状况而言,可以用常规实验来确定该有效量,临床医师是能够判断出来的。
在本文中,除特别说明之处,术语“取代”指基团上的一个或多个氢原子被选自下组的取代基取代:卤素、未取代或卤代的C 1-C 6烷基、未取代或卤代的C 2-C 6酰基、未取代或卤代的C 1-C 6烷基-羟基。
除非特别说明,本发明中,所有出现的化合物均意在包括所有可能的光学异构体,如单一手性的化合物,或各种不同手性化合物的混合物(即外消旋体)。本发明的所有化合物之中,各手性碳原子可以任选地为R构型或S构型,或R构型和S构型的混合物。
术语“环烷基”包括具有3至12个碳,例如3至8个碳,并且作为进一步实例3至6个碳的饱和和部分不饱和的环烃基,其中所述环烷基另外任选地被一个或多个取代。环烷基的实例包括但不限于环丙基、环丁基、环戊基、环戊烯基、环己基、环己烯基、 环庚基和环辛基。术语“环烷基”还包括桥连环烷基,例如双环[1.1.1]戊基。
如本文所用,术语“芳基”基团是包含一到三个芳环的C 6-C 14芳族部分,其任选地被一个或多个R 6或一个或多个如本文定义的R 7取代。作为一个实施例,芳基是C6-C10芳基。芳基的实例包括但不限于苯基、萘基、蒽基、芴基和二氢苯并呋喃基。“芳基”还指二环或三环环系统,其中所述芳环系统的一个或两个环分别可以是饱和或部分饱和的,并且其中如果所述环系统包括两个饱和环,则所述饱和环可以是稠合的或螺环,但其与化合物的其他部分的连接位置在芳基部分上。
“杂环基”或“杂环”基团是具有3至12个原子,例如4至8个原子的环结构,其中一个或多个原子选自由N、O和S组成的组,其中环N原子可以被氧化成NO,并且环S原子可以被氧化成SO或SO 2,其余的环原子是碳。杂环基可以是单环、双环、螺环或桥环系统。所述的杂环基或杂环可以是部分或全部不饱和的,且当所述的杂环基为部分不饱和(即,部分非芳香性)结构时,所述的杂环基或杂环的连接位点可以位于全部或部分饱和环上,也可以位于芳香性环上。
术语“杂芳基”是指具有5至14个环原子,优选5、6、9或10个环原子的基团;并且除碳原子外,每个环具有一至三个选自N、O和S的杂原子,“杂芳基”还指除碳原子外,每个环具有一到三个选自N、O和S的杂原子的双环系统,其中一个环系统可以是饱和的或部分饱和的。
术语“卤素”指F、Cl、Br和I。
如本文所用,术语“本发明化合物”指式I所示的化合物。该术语还包括及式I化合物的各种晶型形式、药学上可接受的盐、水合物或溶剂合物。
如本文所用,术语“药学上可接受的盐”指本发明化合物与酸或碱所形成的适合用作药物的盐。药学上可接受的盐包括无机盐和有机盐。一类优选的盐是本发明化合物与酸形成的盐。适合形成盐的酸包括但并不限于:盐酸、氢溴酸、氢氟酸、硫酸、硝酸、磷酸等无机酸,甲酸、乙酸、丙酸、草酸、丙二酸、琥珀酸、富马酸、马来酸、乳酸、苹果酸、酒石酸、柠檬酸、苦味酸、甲磺酸、苯甲磺酸,苯磺酸等有机酸;以及天冬氨酸、谷氨酸等酸性氨基酸。
小GTP酶KRAS突变抑制剂的制备
在知晓本发明化合物的结构后,本发明所涉及的化合物可以使用本文所述的合成方法和反应方案,或使用本专业技术人员所熟知的其他试剂和传统方法,从商业上可获得的试剂制备。
例如反应结构式A,Formula I的化合物可根据式A所制备合成。在步骤a,从4,6-二氯烟碱酸乙酯(1)与2,4-二甲氧基苄氨反应生成中间体(2)。在步骤b,中间体2经过盐酸/二氧六环处理可以脱苄基团得从4-氨基,6-氯烟碱酸乙酯(3).在步骤c,4-氨基,6-氯烟碱酸乙酯(3)与2,2,2三氯乙酰基异氰酸酯反应可得到中间体(4).在步骤d,中间体(4)经氨的甲醇溶液处理可得环化的核心中间体(5),7-氯吡啶并【4,3-d】嘧啶二酮。在步骤e,7-氯吡啶并【4,3-d】嘧啶二酮与三氯氧磷反应转化成中间体(6)。在步骤f,2,4,7-三氯吡啶并嘧啶中间体(6)与叔丁氧基羰基保护的二氮杂二环辛烷反应可生成中间体(7)。在步骤g,中间体7同亲核试剂H-Q-R 4反应生成Q-R 4的亲核取代产物,即中间体(8)。在步骤h,中间体(8)同三氟甲磺酸酐或二氟甲烷亚磺酸锌可反应生成中间体(9)。前者反应条件通常在LED灯照射下室温进行,后者反应条件一般在TFA,FeCl 2的DMSO;H 2O的混合溶液中,滴加入TBHP,并在室温反应。在步骤i中,中间体(9)与硼酸试剂或三烷基取代锡试剂反应(这两类反应分别称为Suzuki Cross Coupling和Stille Cross  Coupling)生成碳-碳偶联中间体(10)(或产物)。在步骤j,中间体(10)经酸性条件(通常为TFA/二氯甲烷)反应脱叔丁基甲酸酯最终生成化合物Formula I。
Figure PCTCN2022136003-appb-000084
又例如反应结构式B,Formula II的化合物可根据式B所制备合成。在步骤a,从7-氯,8-氟吡啶并【4,3-d】嘧啶二酮(11)与三氯氧磷反应转化成生成中间体2,4,7-三氯-8-氟吡啶并嘧啶中间体(12)。在步骤b,中间体12与叔丁氧基羰基保护的二氮杂二环辛烷反应可生成中间体(13)。在步骤c,中间体13同亲核试剂H-Q-R 4反应生成Q-R 4的亲核取代产物中间体14。在步骤d,中间体(14)与硼酸或硼酸酯试剂或三烷基取代锡试剂反应(这两类反应分别称为SuzukiCrossCoupling和StilleCrossCoupling)生成碳-碳偶联中间体(15)(或产物)。在步骤e,中间体(15)经酸性条件(通常为TFA/二氯甲烷)反应脱叔丁基甲酸酯最终生成化合物FormulaII。
Figure PCTCN2022136003-appb-000085
Formula II-a的化合物可根据式C所示方法所制备合成。
在步骤a,中间体12同亲核试剂1-(氨基甲基)-N,N-二取代基(R’1)-环丁烷基-1-胺反应生成亲核取代产物中间体16。在步骤b,中间体16同亲核试剂H-Q-R 4反应生成Q-R 4的亲核取代产物中间体17。在步骤c,中间体(17)与硼酸或硼酸酯试剂反应生成碳-碳偶联中间体(18)(或产物)。在步骤d,中间体(18)经酸性条件(通常为TFA/二氯甲烷)反应脱叔丁基甲酸酯最终生成化合物FormulaII-a。
Figure PCTCN2022136003-appb-000086
其他的化合物可以通过替换相应的起始原料片段,采用如本发明实施例中所述的方法进行制备。
药物组合物和施用方法
由于本发明化合物具有优异的对KRAS突变体的抑制活性,因此本发明化合物及其各种晶型,药学上可接受的无机或有机盐,水合物或溶剂合物,以及含有本发明化合物为主要活性成分的药物组合物可用于治疗、预防以及缓解由与KRAS突变体活性或表达量相关的疾病。
KRAS突变体不仅指G12D突变体,还包括G12V、G12S,G13D和G12C等突变体。
在优选的实施例中,上述的与KRAS突变体活性或表达量相关的疾病选自下组:
心脏:肉瘤(血管肉瘤、纤维肉瘤、横纹肌肉瘤、脂肪肉瘤)、粘液瘤、横纹肌瘤、纤维瘤、脂肪瘤和畸胎瘤;
肺:支气管癌(鳞状细胞、未分化小细胞、未分化大细胞、腺癌)、肺泡(细支气管)癌、支气管腺瘤、肉瘤、淋巴瘤、软骨瘤错构瘤、间皮瘤;
胃肠:食管(鳞状细胞癌、腺癌、平滑肌肉瘤、淋巴瘤)、胃(癌、淋巴瘤、平滑肌肉瘤)、胰腺(导管腺癌、胰岛素瘤、胰高血糖素瘤、胃泌素瘤、类癌瘤、血管活性肠肽瘤)、小肠(腺癌、淋巴瘤、类癌瘤、卡波西肉瘤、平滑肌瘤、血管瘤、脂肪瘤、神经纤维瘤、纤维瘤)、大肠(腺癌、管状腺瘤、绒毛状腺瘤、错构瘤、平滑肌瘤);泌尿生殖道:肾脏(腺癌、威尔姆氏瘤(肾母细胞瘤)、淋巴瘤、白血病)、膀胱和尿道(鳞状细胞癌、移行细胞癌、腺癌)、前列腺(腺癌、肉瘤)、睾丸(精原细胞瘤、畸胎瘤、胚胎性癌、畸胎癌、绒毛膜癌、肉瘤、间质细胞癌、纤维瘤、纤维腺瘤、腺瘤样瘤、脂肪瘤);肝脏:肝细胞瘤(肝细胞癌)、胆管癌、肝母细胞瘤、血管肉瘤、肝细胞腺瘤、血管瘤;
胆道:胆囊癌、壶腹癌、胆管癌;
骨:骨原性肉瘤(骨肉瘤)、纤维肉瘤、恶性纤维性组织细胞瘤、软骨肉瘤、尤文氏肉瘤、恶性淋巴瘤(网织细胞肉瘤)、多发性骨髓瘤、恶性巨细胞肿瘤脊索瘤、骨软骨瘤(骨软骨外生骨疣)、良性软骨瘤、软骨母细胞瘤、软骨黏液样纤维瘤、骨样骨瘤和巨细胞肿瘤;神经系统:颅骨(骨瘤、血管瘤、肉芽肿、黄色瘤、畸形性骨炎)、脑膜(脑膜瘤、脑膜肉瘤、胶质瘤)、脑(星形细胞瘤、髓母细胞瘤、神经胶质瘤、室管膜瘤、生殖细胞瘤(松果体瘤)、多形性胶质母细胞瘤、少突胶质细胞瘤、神经鞘瘤、视网膜母细胞瘤、先天性肿瘤)、脊髓神经纤维瘤、脑膜瘤、神经胶质瘤、肉瘤);妇科:子宫(子宫内膜癌(浆液性囊腺癌、粘液性囊腺癌、未分类癌)、粒层细胞-鞘细胞瘤、Sertoli-Leydig细胞瘤、无性细胞瘤、恶性畸胎瘤)、外阴(鳞状细胞癌、上皮内癌、腺癌、纤维肉瘤、黑色素瘤)、阴道(透明细胞癌、鳞状细胞癌、葡萄状肉瘤(胚胎性横纹肌肉瘤)、输卵管(癌);血液系统:血液(骨髓性白血病(急性和慢性)、急性成淋巴细胞性白血病、慢性淋巴细胞性白血病、骨髓增殖性疾病、多发性骨髓瘤、骨髓增生异常综合征)、霍奇金病、非霍奇金淋巴瘤(恶性淋巴瘤);
皮肤:恶性黑色素瘤、基底细胞癌、鳞状细胞癌、卡波西肉瘤、发育不良痣、脂肪瘤、血管瘤、皮肤纤维瘤、瘢痕疙瘩、牛皮癣;以及肾上腺:成神经细胞瘤。
在最佳的实施方式中,所述癌症是非小细胞肺癌、小细胞肺癌、结肠直肠癌、直肠癌或胰腺癌。
本发明的药物组合物包含安全有效量范围内的本发明化合物或其药理上可接受的盐及药理上可以接受的赋形剂或载体。其中“安全有效量”指的是:化合物的量足以明显改善病情,而不至于产生严重的副作用。通常,药物组合物含有1-2000mg本发明化合物/剂,更佳地,含有5-200mg本发明化合物/剂。较佳地,所述的“一剂”为一个胶囊或药片。
“药学上可以接受的载体”指的是:一种或多种相容性固体或液体填料或凝胶物质,它们适合于人使用,而且必须有足够的纯度和足够低的毒性。“相容性”在此指的是组合物中各组份能和本发明的化合物以及它们之间相互掺和,而不明显降低化合物的药效。药学上可以接受的载体部分例子有纤维素及其衍生物(如羧甲基纤维素钠、乙基纤维素钠、纤维素乙酸酯等)、明胶、滑石、固体润滑剂(如硬脂酸、硬脂酸镁)、硫酸钙、植物油(如豆油、芝麻油、花生油、橄榄油等)、多元醇(如丙二醇、甘油、甘 露醇、山梨醇等)、乳化剂(如吐温
Figure PCTCN2022136003-appb-000087
)、润湿剂(如十二烷基硫酸钠)、着色剂、调味剂、稳定剂、抗氧化剂、防腐剂、无热原水等。
本发明化合物或药物组合物的施用方式没有特别限制,代表性的施用方式包括(但并不限于):口服、瘤内、直肠、肠胃外(静脉内、肌肉内或皮下)、和局部给药。
用于口服给药的固体剂型包括胶囊剂、片剂、丸剂、散剂和颗粒剂。在这些固体剂型中,活性化合物与至少一种常规惰性赋形剂(或载体)混合,如柠檬酸钠或磷酸二钙,或与下述成分混合:(a)填料或增容剂,例如,淀粉、乳糖、蔗糖、葡萄糖、甘露醇和硅酸;(b)粘合剂,例如,羟甲基纤维素、藻酸盐、明胶、聚乙烯基吡咯烷酮、蔗糖和阿拉伯胶;(c)保湿剂,例如,甘油;(d)崩解剂,例如,琼脂、碳酸钙、马铃薯淀粉或木薯淀粉、藻酸、某些复合硅酸盐、和碳酸钠;(e)缓溶剂,例如石蜡;(f)吸收加速剂,例如,季胺化合物;(g)润湿剂,例如鲸蜡醇和单硬脂酸甘油酯;(h)吸附剂,例如,高岭土;和(i)润滑剂,例如,滑石、硬脂酸钙、硬脂酸镁、固体聚乙二醇、十二烷基硫酸钠,或其混合物。胶囊剂、片剂和丸剂中,剂型也可包含缓冲剂。
固体剂型如片剂、糖丸、胶囊剂、丸剂和颗粒剂可采用包衣和壳材制备,如肠衣和其它本领域公知的材料。它们可包含不透明剂,并且,这种组合物中活性化合物或化合物的释放可以延迟的方式在消化道内的某一部分中释放。可采用的包埋组分的实例是聚合物质和蜡类物质。必要时,活性化合物也可与上述赋形剂中的一种或多种形成微胶囊形式。
用于口服给药的液体剂型包括药学上可接受的乳液、溶液、悬浮液、糖浆或酊剂。除了活性化合物外,液体剂型可包含本领域中常规采用的惰性稀释剂,如水或其它溶剂,增溶剂和乳化剂,例知,乙醇、异丙醇、碳酸乙酯、乙酸乙酯、丙二醇、1,3-丁二醇、二甲基甲酰胺以及油,特别是棉籽油、花生油、玉米胚油、橄榄油、蓖麻油和芝麻油或这些物质的混合物等。
除了这些惰性稀释剂外,组合物也可包含助剂,如润湿剂、乳化剂和悬浮剂、甜味剂、娇味剂和香料。
除了活性化合物外,悬浮液可包含悬浮剂,例如,乙氧基化异十八烷醇、聚氧乙烯山梨醇和脱水山梨醇酯、微晶纤维素、甲醇铝和琼脂或这些物质的混合物等。
用于肠胃外注射的组合物可包含生理上可接受的无菌含水或无水溶液、分散液、悬浮液或乳液,和用于重新溶解成无菌的可注射溶液或分散液的无菌粉末。适宜的含水和非水载体、稀释剂、溶剂或赋形剂包括水、乙醇、多元醇及其适宜的混合物。
用于局部给药的本发明化合物的剂型包括软膏剂、散剂、贴剂、喷射剂和吸入剂。活性成分与生理上可接受的载体及任何防腐剂、缓冲剂,或必要时可能需要的推进剂一起混合。
本发明化合物可以单独给药,或者与其他药学上可接受的化合物联合给药。
使用药物组合物时,是将安全有效量的本发明化合物适用于需要治疗的哺乳动物(如人),其中施用时剂量为药学上认为的有效给药剂量,对于60kg体重的人而言,日给药剂量通常为1~1200mg,优选5~600mg。当然,具体剂量还应考虑给药途径病人健康状况等因素,这些都是熟练医师技能范围之内的。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。除非另外说明,否则百分比和份数按重量计 算。
制备例1
Figure PCTCN2022136003-appb-000088
步骤a:
室温条件下,将原料 1-1(10.0克)溶于乙腈(100毫升),依次加入N,N-二异丙基乙胺(9.4克)和DMBNH 2(9.0克)后,反应液在25℃搅拌2小时。反应完全后,混合物加入水(200毫升),用乙酸乙酯(200毫升)萃取三次。结合有机层,加入饱和食盐水(200毫升)洗涤,有机层用无水硫酸钠干燥。粗品用硅胶柱层析纯化(乙酸乙酯:石油醚=15%-30%),得到黄色固体 1-2(13.0克)。
LCMS:m/z 351(M+H) +.
步骤b:
室温条件下,将中间体 1-2(13.0克)溶于盐酸/二氧六环(130毫升),在80℃搅拌16小时。反应完全后,反应液浓缩干。然后加入甲苯浓缩,重复三次,得到黄色固体 1-3(9.0克)。
LCMS:m/z 201(M+H) +.
步骤c:
0℃条件下,将中间体 1-3(9.0克)溶于四氢呋喃(100毫升),依次加入三乙胺(4.5克)和三氯异氰酸酯 4(10.9克),在0℃搅拌2小时。反应完全后,然后加入在下搅拌2小时。 在反应完全后,混合物加入水(200毫升),用乙酸乙酯(100毫升)萃取三次。结合有机层,加入饱和食盐水(100毫升)洗涤,有机层用无水硫酸钠干燥。有机相浓缩干,得到黄色油状物 1-5(9.5克)。
LCMS:m/z 390(M+H) +.
步骤d:
室温条件下,将中间体 1-5(9.5克)溶于氨甲醇(30毫升),在室温下搅拌16小时。反应完全后,反应液浓缩干,向粗品中加入甲醇(20毫升),固体析出,然后过滤,收集固体,得到黄色固体 1-6(6.5克)。
LCMS:m/z 198(M+H) +.
步骤e:
室温条件下,将中间体 1-6(2.0克)溶于三氯氧磷(20毫升),加入N,N-二异丙基乙胺(5.0毫升),在120℃条件下反应2小时。反应完全后,混合物减压浓缩,粗品用中性三氧化二铝柱层析纯化(乙酸乙酯为洗脱剂),得黑色油状物 1-7,(1.8克)。
LCMS:m/z 234(M+H) +.
步骤f:
室温条件下,将中间体 1-7(1.8克)溶于二氯甲烷(20毫升),然后依次加入(1R,5S)-3,8-二氮杂环[3.2.1]辛烷-8-羧酸叔丁酯1-8(1.3克),N,N-二异丙基乙胺(3.81毫升)。在室温搅拌1小时。在反应完全后,缓慢加入水(30毫升),用二氯甲烷(20毫升)萃取三次。有机相用饱和食盐水洗涤(30毫升),然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用硅胶柱层析纯化(乙酸乙酯:石油醚=10:1-2:1),得黄色固体 1-9,(0.8克)。
LCMS:m/z 410(M+H) +.
步骤g:
室温条件下,将中间体 1-9(0.8克)溶于四氢呋喃(15毫升),然后依次加入(2R,7aS)-2-氟四氢-1H-吡呤-7a(5H)甲醇1-10(0.62克),碳酸铯(1.91克)。在70℃搅拌3小时。反应完全后,缓慢加入水(30毫升),用乙酸乙酯(20毫升)萃取三次。有机相用饱和食盐水洗涤(30毫升),然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用硅胶柱纯化(二氯甲烷:甲醇=50:1-10:1),得黄色固体制备例1(0.5克)。
LCMS:m/z 533(M+H) +.
制备例2
Figure PCTCN2022136003-appb-000089
Figure PCTCN2022136003-appb-000090
室温条件下,将中间体制备例1(500毫克)溶于1,2,二氯乙烷(12毫升)中,然后依次加入二氯三(2,2'-联吡啶)钌(II)六水合物(69毫克),吡啶(0.275毫升),三氟甲磺酸酐(0.32毫升)。在LED灯照射下室温搅拌2小时。反应完毕后,缓慢加入水(20毫升),用二氯甲烷(10毫升)萃取三次。有机相用饱和食盐水洗涤(20毫升),然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用制备柱层析纯化(二氯甲烷:甲醇=10:1),得黄色固体制备例2,(75毫克)。
LCMS:m/z 601(M+H) +
制备例3
Figure PCTCN2022136003-appb-000091
制备例3的合成参照制备例1的类似条件,黄色固体1(70mg)。
LCMS:m/z 533(M+H) +
制备例4
Figure PCTCN2022136003-appb-000092
制备例4的合成参照制备例2的类似条件,得到纯中间体黄色固体(49mg)。
LCMS:m/z=601.1(M+H) +
制备例5和制备例9
Figure PCTCN2022136003-appb-000093
Figure PCTCN2022136003-appb-000094
在室温下向制备例1(1.0g,1.88mmol)、TFA(342.96mg,1.88mmol)的DMSO(30mL)溶液中添加bis(((difluoromethyl)sulfinyl)oxy)zincy(1.65g,5.64mmol)和FeCl 2(118.3mg,0.94mmol)的H 2O(5mL)溶液,所得混合物逐滴加入TBHP(70%纯度,241.93mg)。在室温下搅拌该混合物15h。LCMS显示检测到产物,添加10mL水并用EtOAc(10mL*3)萃取,将有机层在无水Na 2SO 4结晶干燥,过滤后在真空中蒸发得到粗产品,通过硅胶过柱纯化MeOH:DCM:=0-3%得到黄色固体制备例5(70mg)。
LCMS:m/z[M+H] +=583.2.
制备例9可参照制备例5的类似方法制得。
制备例6
Figure PCTCN2022136003-appb-000095
室温条件下,在100毫升单口瓶中加入中间体1-9(3.7g),N,N-diethylazetidin-3-amine(4.5g),DIEA(3.5g)和n-BuOH(50mL),反应液在130摄氏度下搅拌5h。反应完全后,减压旋干。混合物加入水(30mL),之后用EtOAc(50mL)萃取三次,用水(30mL)和饱和氯化钠溶液(30mL)各洗涤有机相3次,有机相用无水硫酸钠干燥,将有机相旋干。粗品用硅胶柱层析纯化(石油醚:乙酸乙酯=1:3),得到类白色固体制备例6(2.7g).
LCMS:m/z 502.1(M+H) +
制备例7
Figure PCTCN2022136003-appb-000096
制备例7的合成参照制备例2的类似条件,得到棕色油状物制备例7(120mg)
LCMS:m/z 570.9(M+H) +
制备例8
Figure PCTCN2022136003-appb-000097
步骤a:
在-78℃条件下和氮气保护下,将8-1(120mg,0.258mmol)溶于二氯甲烷(5mL),然后逐滴加入BBr3(1N,1.29mL),反应液逐步升温至室温。LCMS显示反应完全,产物生成。反应液直接减压浓缩得粗品8-2可不仅分离直接用于下一步。
LCMS:m/z=439.9(M+H)。
步骤b:
在8-2(100mg,0.285mmol)的二氯甲烷(2mL)溶液中加入Boc2O(75.21mg,0.342mmol),DIEA(110.5mg,0.855mmol),反应液在20℃搅拌15h.LCMS显示原料反应完,产物生成.反应液经常规处理后所得出产物进一步用pre-TLC纯化(PE:EA=3:1)得到白色固体8-3(40mg).
LCMS:m/z=452.2(M+H)+.
步骤c:
在0℃条件下,将8-3(40mg,0.088mmol)的二氯甲烷(0.5mL)溶液中加入DAST(28.36mg,0.176mmol),反应液在0℃条件下搅拌1h.LCMS显示原料反应完,产物生成。反应液用饱和的NaHCO3水溶液(2mL)淬灭并用EtOAc(10mL*3)萃取,所收集有相机减压下旋干得到白色固体制备例8(13.3mg)。
LCMS:m/z=454.1(M+H)+。
制备例10和制备例11
Figure PCTCN2022136003-appb-000098
步骤a:
室温条件下,将原料10-1(4.0g,18.56mmol)溶于三氯氧磷(40mL),加入N,N-二异丙基乙胺(16.0mL,92.8mmol),在120℃条件下反应3小时。反应完全后,混合物冷却后减压浓缩,粗品直接用于下一步得黑色油状物2,4,7-三氯,8-氟吡啶并嘧啶中间体10-2(4.68g)。
步骤b:
室温条件下,将中间体10-2(4.68g,18.4mmol)溶于二氯甲烷(80毫升)加入N,N-二异丙基乙胺调节(PH值为7),然后依次加入N,N-二异丙基乙胺(8.0mL,45.96mmol),(1R,5S)-3,8-二氮杂环[3.2.1]辛烷-8-羧酸叔丁酯8(3.25g,15.32mmol)。在室温搅拌17小时。在反应完全后,缓慢加入水(300毫升),用二氯甲烷(200毫升)萃取三次。有机相用饱和食盐水洗涤(200毫升),然后用无水硫酸钠干燥,有机相溶液减压浓缩得粗品,粗品用硅胶柱层析纯化(乙酸乙酯:石油醚=1:4),得黄色固体10-3(2.61g,)。
LCMS:m/z=428.1(M+H) +1H NMR(400MHz,DMSO)δ9.07(s,1H),4.48(s,2H),4.26(s,2H),3.70(s,2H),1.78(s,2H),1.61(d,J=7.4Hz,2H),1.46(s,9H).
步骤c:
室温条件下,将中间体10-3(500mg,1.17mmol)溶于四氢呋喃(20mL),然后依次加入手性化合物蝴蝶醇10-4(372mg,2.34mmol),碳酸铯(1143mg,3.51mmol)。在70℃搅拌17小时。反应完全后,缓慢加入水(100mL),用乙酸乙酯(150mL)萃取三次。有机相用饱和食盐水洗涤(100mL),然后用无水硫酸钠干燥,有机相溶液减压浓缩得粗品,粗品用硅胶柱纯化(0-95%乙酸乙酯在石油醚中),得黄色固体制备例10(232mg)。
LCMS:m/z=551.1(M+H) +
制备例11可参照制备例10的类似方法制得。
LCMS:m/z=467.2(M+H) +
制备例12和制备例13
Figure PCTCN2022136003-appb-000099
制备例12和制备例13可参照制备例10和制备例11的类似方法制得.
制备例14
Figure PCTCN2022136003-appb-000100
步骤a
室温条件下,在100mL单口瓶中加入14-1(2g,13.87mmol),加入DCM(10mL)溶解,加入DMF(0.11mL),在0摄氏度下加入草酰氯(COCl) 2(2mL,20.81mmol,1.5eq.),反应液搅拌2小时后,减压下旋干反应液,用甲苯带走未反应的草酰氯,重复三次,得到中间体14-2,直接用于下一步反应。
步骤b
将第一步反应粗产物14-2用THF(15mL)溶解,在0摄氏度下加入DIEA(30mL),加入14-3(3.11g,20.81mmol,1.5eq.)。氮气保护下,混合物在25℃下反应17小时。反应完全后,用DCM(20毫升)萃取3次,有机相分别用水(20mL)和饱和食盐水(20mL)洗涤三次。将有机相用无水硫酸钠干燥,然后将有机相液体在减压下旋干,粗品用硅胶柱层析纯化(PE:EA=1:2),得到类白色油状物14-4(1克)。
LCMS:m/z=240.1(M+H) +
步骤c
室温条件下,在50mL单口瓶中加入14-4(400mg,1.67mmol,1.0eq.),加入THF(5mL)溶解,在0摄氏度下缓慢加入LiAlH 4的四氢呋喃溶液(6.68mL,3.34mmol,2.0eq.,1M in THF),混合物在25℃下反应3小时。反应完全后加入无水合硫酸钠和乙醚,搅拌过夜。反应液过滤后在减压下旋干,得到类白色固体制备例14(300mg)。
LCMS:m/z=198.1(M+H) +和198.2(M+H) +
H-NMR:1HNMR(400MHz,DMSO)δ4.70(d,J=34.1Hz,1H),3.49(d,J=10.2Hz,2H),3.43–3.38(m,4H),3.09(s,2H),2.26(s,2H),1.83–1.74(m,2H),1.71–1.62(m,2H),0.39–0.31(m,2H),0.25(q,J=4.0Hz,2H).
实施例1
Figure PCTCN2022136003-appb-000101
Figure PCTCN2022136003-appb-000102
步骤a:
室温条件下,将中间体 制备例2(60毫克)溶于二氧六环(0.5毫升)和水(0.05毫升)中,然后依次加入中间体硼酸1-1(60毫克),碳酸钾(42毫克),Pd(dtbpf)Cl 2(13毫克)。在微波100℃搅拌0.5小时。反应完全后,缓慢加入水(20毫升),用乙酸乙酯(10毫升)萃取三次。有机相用饱和食盐水洗涤(20毫升),然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用硅胶柱层析纯化(二氯甲烷:甲醇=10:1),得黄色固体 1-2,(50毫克)。
LCMS:m/z 833(M+H) +
步骤b:
室温条件下,将中间体 1-2(50毫克)溶于二氯甲烷(3毫升)中,然后加入三氟乙酸(1毫升)。在室温搅拌1小时。在反应完全后,用饱和碳酸氢钠水溶液调节碱性至8,缓慢加入水(10毫升),用二氯甲烷(10毫升)萃取三次。有机相用饱和食盐水洗涤(10毫升),然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用硅胶柱层析纯化(二氯甲烷:甲醇=10:1),得白色固体 实施例1(22.4毫克)。LCMS:m/z 633(M+H) +. 1H NMR(400MHz,CDCl 3)δ9.14(s,1H),7.21–7.19(m,2H),7.19–7.16(m,1H),6.88(t,J=8.7Hz,1H),5.32(d,J=15.4Hz,2H),5.20(d,J=54.1Hz,1H),4.48(d,J=12.3Hz,1H),4.36(d,J=12.6Hz,1H),4.27–4.19(m,2H),3.57-3.51(m,3H),3.46(dd,J=12.5,6.5Hz,1H),3.21–3.13(m,2H),3.08(s,1H),2.89(dd,J=15.3,7.4Hz,1H),2.24–2.15(m,1H),2.10(t,J=10.0Hz,2H),1.91–1.76(m,4H).
实施例2
Figure PCTCN2022136003-appb-000103
步骤a
室温条件下,将中间体 制备例2(60毫克)溶于二氧六环(0.5毫升)和水(0.05毫升)中,然后依次加入中间体硼酸酯2-1(60毫克),碳酸钾(42毫克),Pd(dtbpf)Cl 2(13毫克)。在微波100℃搅拌0.5小时。反应完全后,缓慢加入水(20毫升),用乙酸乙酯(10毫升)萃取 三次。有机相用饱和食盐水洗涤(20毫升),然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用硅胶柱层析纯化(二氯甲烷:甲醇=10:1),得黄色固体 2-2,(35毫克)。
LCMS:m/z 951.2(M+H) +.
步骤b
室温条件下,将中间体 2-2(35毫克)溶于四氢呋喃(1毫升),然后加入TBAF溶液(1M)(1毫升)在室温搅拌1小时。在反应完全后,缓慢加入水(10毫升),用乙酸乙酯(10毫升)萃取二次。有机相用饱和食盐水洗涤(20毫升),然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用硅胶柱层析纯化(二氯甲烷:甲醇=10:1),得黄色固体 2-3,(15毫克)。
LCMS:m/z 794.9(M+H) +.
步骤c
室温条件下,将中间体 2-3(15毫克)溶于二氯甲烷(2毫升)中,然后加入三氟乙酸(1毫升)。在室温搅拌1小时。在反应完全后,真空旋干,用饱和碳酸氢钠水溶液调节碱性至8,缓慢加入水(10毫升),用二氯甲烷(10毫升)萃取三次。有机相用饱和食盐水洗涤(10毫升),然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用Pre-HPLC纯化(乙腈:0.01%碳酸氢铵),得灰白色固体 实施例2(3.23毫克)。
LCMS:m/z 651.2(M+H) +.
1H NMR(400MHz,MeOD)δ9.13(s,1H),7.77(dd,J=9.2,5.5Hz,1H),7.23(dd,J=17.1,5.7Hz,2H),6.98(d,J=2.5Hz,1H),5.28(d,J=55.1Hz,1H),4.64(s,1H),4.35(dd,J=10.7,3.3Hz,2H),4.26(d,J=11.0Hz,1H),3.75(d,J=12.5Hz,1H),3.62(s,3H),3.23(d,J=7.8Hz,2H),3.14(d,J=10.2Hz,1H),2.99(d,J=5.5Hz,1H),2.25(dd,J=28.5,12.6Hz,2H),2.12(d,J=9.1Hz,1H),2.05–1.90(m,3H),1.87(d,J=15.8Hz,4H),1.74(s,1H).
实施例3和实施例4
Figure PCTCN2022136003-appb-000104
步骤a
在氮气保护下,向制备例4(20mg,0.033mmol)的Dioxane/H 2O=4/1(1.25mL)混合溶液中加入化合物3-1(41mg,0.083mmol)、磷酸钾(21mg,0.099mmol)和Pd2(dba)3(6.0mg,0.0066mmol),PCy3(6.0mg,0.02mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,然后过滤,有机层用无水Na 2SO 4干燥,在真空中蒸发粗产物,粗产物通过硅胶洗脱PE:EA=1:1纯化,得到黄色油状3-2(27.6mg)。
LCMS:(ESI)m/z=951.3(M+H) +
步骤b
向中间体3-2(27.4mg,0.029mmol)的THF(0.5mL)溶液中添加TBAF(1M)(0.5mL).然后在室温下搅拌反应混合物1h。TLC显示反应完全,LCMS显示检测到产物。粗产品直接用pre-TLC(PE:EA=1:2)纯化,得到白色固体实施例3(14.7mg)。
LCMS:m/z=795.2(M+H) +
1H NMR(400MHz,MeOD)δ9.19(s,1H),7.96(dd,J=9.1,5.7Hz,1H),7.62(d,J=2.5Hz,1H),7.37(t,J=8.9Hz,1H),7.16(d,J=2.2Hz,1H),5.34(q,J=6.9Hz,3H),4.68(d,J=10.2Hz,1H),4.58(s,1H),4.43(s,1H),4.38(dd,J=10.7,2.7Hz,3H),4.29(d,J=10.9Hz,1H),3.79(d,J=12.9Hz,1H),3.68(d,J=12.3Hz,1H),3.50(s,3H),3.42(s,1H),3.26(s,1H),3.20(s,1H),3.07–2.97(m,1H),2.38–2.21(m,2H),2.16(dd,J=17.8,8.1Hz,1H),2.06–1.95(m,4H),1.91–1.74(m,3H),1.52(s,9H).
步骤c
向实施例3(6.3mg,0.0079mmol)的二氯甲烷(1.0mL)溶液中中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例4(5.92mg)。
LCMS:m/z=651.2(M+H) +
1H NMR(400MHz,MeOD)δ9.07(s,1H),7.75(dd,J=9.2,5.8Hz,1H),7.25–7.19(m,2H),6.92(d,J=2.2Hz,1H),5.21(d,J=53.5Hz,1H),4.58(d,J=7.3Hz,1H),4.29(dd,J=16.0,5.2Hz,2H),4.20(d,J=10.8Hz,1H),3.69(d,J=11.8Hz,1H),3.62–3.50(m,3H),3.27(s,1H),3.18(d,J=8.2Hz,1H),3.11(s,1H),2.98–2.90(m,1H),2.20(ddd,J=17.5,14.8,10.6Hz,2H),2.07(dd,J=16.5,8.7Hz,1H),1.97–1.83(m,3H),1.79(s,4H),1.68(s,1H).
实施例5和实施例6
Figure PCTCN2022136003-appb-000105
步骤a
向中间体制备例2(70mg,0.117mmol)在甲苯(0.6mL)中的溶液中添加硼酸酯5-1(141.80mg,0.351mmol),在N 2下添加DPEPhosCl 2(16.75mg,0.0234mmol)和Cs 2CO 3(114.36mg,0.351mmol),并在微波条件下120℃下搅拌混合物1小时。薄层色谱显示反应完全。用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,浓缩有机层,得到粗产品通过pre-HPLC(用CH3CN:0.03%HCCOH洗脱)进一步纯化,10%CH 3CN至95%CH 3CN,得到白色固体实施例5(5.42mg)。
LCMS:[M+H] +=857.2.
HNMR(400MHz,MeOD)δ9.23(s,1H),7.37(dd,J=8.4,4.9Hz,1H),7.27-7.17(m,1H),5.37(s,1H),5.24(s,1H),4.56(s,1H),4.46-4.25(m,5H),3.90(s,1H),3.60(s,1H),3.17(d,J=28.4Hz,1H),3.04(s,1H),2.52-2.09(m,4H),2.07-1.78(m,7H),1.68(s,2H),1.54(d,J=16.8Hz,18H).
步骤b
将TFA(0.2mL)在20℃下添加到实施例5(40mg,0.047mmol)的DCM(1mL)溶液中,在20℃下搅拌混合物1h。混合物在真空中浓缩。通过Pre-HPLC(用CH3CN:0.03%HCOOH洗脱)10%CH 3CN至95%CH3CN纯化残余物,得到白色固体实施例6(12.21mg)。
LCMS:[M+H] +=657.3.
1H NMR(400MHz,MeOD)δ9.26(s,1H),7.22(dd,J=8.3,5.0Hz,1H),7.07–6.91(m,1H),5.44(d,J=51.6Hz,1H),4.53(dt,J=22.5,11.5Hz,3H),3.98(t,J=13.6Hz,3H),3.76(d,J=13.2Hz,1H),3.58(d,J=24.0Hz,3H),3.30-3.25(m,2H),2.60–2.14(m,5H),1.95(d,J=37.9Hz,5H).
实施例7和实施例8
Figure PCTCN2022136003-appb-000106
步骤a
在氮气保护下,向中间体制备例4(20mg,0.034mmol)的甲苯(1.25mL)溶液中加入硼酸酯5-1(42mg,0.102mmol)、碳酸铯(33mg,0.102mmol)和DPEPhosPdCl2(9.6mg,0.0136mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,然后过滤,在真空中蒸发得粗产物,将粗产物通过Pre-TLC和pre-HPLC(用甲酸的方法)得到白色固体实施例7作为甲酸盐形式(2.68mg)。
LC-MS:m/z=857.2(M+H) +
1H NMR(400MHz,MeOD)δ9.13(s,1H),8.43(s,1H),7.33–7.21(m,1H),7.09(t,J=8.9Hz,1H),5.20(d,J=53.6Hz,1H),4.67(dd,J=7.3,3.2Hz,1H),4.35–4.15(m,5H),3.81–3.75(m,1H),3.52(d,J=8.7Hz,1H),3.16(s,2H),3.10(s,1H),2.93(d,J=5.3Hz,1H),2.21(d,J=20.1Hz,1H),2.12(s,1H),2.04(d,J=8.6Hz,1H),1.90(dd,J=10.9,6.5Hz,2H),1.77(d,J=36.0Hz,4H),1.59(s,1H),1.47(s,9H),1.43(s,9H).
步骤b
向实施例7(9.7mg,0.011mmol)的二氯甲烷(1.0mL)溶液中中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过Pre-HPLC(用甲酸的方法)得到白色固体实施例8(1.89mg)。
LCMS:m/z=657.1(M+H) +
1H NMR(400MHz,MeOD)δ9.28(s,1H),8.47(s,1H),7.25(dd,J=8.3,5.0Hz,1H),7.03(t,J=8.9Hz,1H),5.45(d,J=52.1Hz,1H),4.60–4.50(m,3H),4.01(d,J=13.6Hz,3H),3.77(d,J=10.4Hz,1H),3.59(dd,J=22.2,8.7Hz,3H),3.23(dd,J=29.2,18.9Hz,2H),2.59–2.41(m,2H),2.35–2.27(m,1H),2.25–2.14(m,2H),1.96(d,J=37.5Hz,5H).
实施例9和实施例10
Figure PCTCN2022136003-appb-000107
步骤a
在N 2保护下,向制备例5(50mg,0.086mmol),硼酸酯2-1(88.01mg,0.172mmol)和K 2CO 3(35.54mg,0.257mmol)的1,4-二氧六环/H 2O=4/1(1mL)的混合溶液中添加Pd(dtbf)Cl 2(5.6mg,0.0086mmol)。在100℃下微波下搅拌混合物1h。LCMS显示反应完成,然后添加10mL水并用EtOAc(10mL*3)萃取.将有机层用无水Na 2SO 4结晶干燥,在真空中蒸发。粗产物通过柱层析DCM:MeOH=100:3纯化,获得黄色固体9-1(30mg)。
LCMS:m/z[M+H] +=933.3.
步骤b
向中间体9-2(28mg,0.03mmol)的THF(0.5mL)中加入TBAF(THF溶液)(1N,0.5mL)溶液.然后在室温下搅拌反应混合物2h。TLC显示反应完全,LCMS显示检测到所要产物。用水(10mL)稀释混合物,用乙酸乙酯(15mL*2)萃取,用盐水(20mL)洗涤合并的有机层,用无水Na 2SO 4干燥,然后在真空中浓缩,得到粗残渣,通过Pre-TLC(DCM:MeOH=10:1)纯化,得到黄色固体实施例9(23mg)。
LCMS:m/z[M+H] +=777.3.
1H NMR(400MHz,MeOD)δ9.19(s,1H),7.97(dd,J=9.0,5.8Hz,1H),7.65(d,J=2.5Hz,1H),7.41(dd,J=37.0,28.1Hz,2H),7.29(s,1H),5.44–5.22(m,3H),4.67(s,1H),4.54(s,1H),4.42(s,2H),4.32(dt,J=14.2,8.6Hz,2H),3.84–3.67(m,2H),3.52–3.45(m,5H),3.23(s,1H),3.06(s,1H),2.37–2.13(m,3H),2.02(dd,J=17.3,6.3Hz,4H),1.87(s,2H),1.55(s,9H),1.48-1.43(m,2H).
步骤c
向实施例9(19mg,0.0245mmol)的DCM(1mL)溶液中添加TFA(0.2mL),将该混合物在20℃下搅拌2小时。LCMS显示检测到所要产物。然后浓缩反应溶液得粗产 物并通过Pre-HPLC(用CH 3CN:0.03%HCOOH/H 2O洗脱)进一步纯化(溶剂梯度10%CH 3CN至95%CH 3CN),得到白色固体实施例10(4.74mg)。
LCMS:m/z[M+H] +=633.2,Purity:94.7%(254nm).
1H NMR(400MHz,MeOD)δ9.20(s,1H),7.85(dd,J=9.0,5.9Hz,1H),7.54–7.22(m,3H),7.12(s,1H),5.43(d,J=51.8Hz,1H),4.79–4.68(m,1H),4.68–4.42(m,4H),4.01(s,2H),3.90–3.77(m,2H),3.53(t,J=20.5Hz,4H),2.44(d,J=16.3Hz,2H),2.28(s,1H),2.17(s,2H),2.02(s,5H).
实施例11和实施例12
Figure PCTCN2022136003-appb-000108
步骤a
在室温下,向制备例5(10mg,0.172mmol)的DMF(0.5mL)溶液中添加5-1(10.43mg,0.0258mmol)和DPEPhosPdCl 2(2.46mg,0.0034mmol),Cs 2CO 3(16.81mg,0.516mmol)在氮气保护中。所得混合物在120℃微波下搅拌1小时。LCMS显示检测到产物,混合物过滤后添加10mL水并用乙酸乙酯(10mL*3)萃取。有机层用无水Na 2SO 4干燥,在旋转的真空中蒸发粗产物,粗产物通过pre-HPLC纯化(用CH3CN:0.001HCOOH/H 2O洗脱)10%CH 3CN至95%CH 3CN,得到实施例11(4.64mg,0.0055mmol)白色固体。
LCMS:m/z[M+H] +=839.3.
1H NMR(400MHz,CD3OD)δ9.24(s,1H),7.74–7.44(m,2H),7.27–7.14(m,1H),5.34(d,J=54.0Hz,1H),4.60(s,3H),4.38(d,J=10.1Hz,3H),4.29(d,J=10.6Hz,1H),3.77(s,2H),3.21(d,J=43.4Hz,2H),3.07(s,1H),2.68(s,1H),2.43–2.14(m,3H),2.05(s,2H),1.94(s,3H),1.78(s,2H),1.58(s,9H),1.55(s,9H).
步骤b
向实施例11(20mg,0.0239mmol)的DCM(1mL)溶液中加入TFA(0.2mL)。将混合物在20℃下搅拌1小时。LCMS显示反应完成,然后浓缩反应得到粗残品通过pre-HPLC(用甲酸的方法)纯化:用CH3CN:0.001 HCOOH/H2O)10%CH3CN至95%CH3CN洗脱,得到白色固体实施例12(2.04mg,0.0032mmol)。
LCMS:m/z[M+H] +=639.3.
1H NMR(400MHz,CD3OD)δ9.32(s,1H),7.67–7.27(m,2H),7.14–6.98(m,1H),5.59(d,J=52.9Hz,1H),4.78–4.65(m,2H),4.23(s,2H),3.94(s,5H),3.50(s,2H),3.15(s,1H),2.80–2.58(m,2H),2.46(s,1H),2.37(s,2H),2.20–1.94(m,5H).
实施例13和实施例14
Figure PCTCN2022136003-appb-000109
步骤a
在氮气保护下,向制备例4(10mg,0.017mmol)的Dioxane/H 2O=4/1(1.25mL)混合溶液中加入化合物6-1(25mg,0.085mmol)、磷酸钾(11mg,0.051mmol)和Pd2(dba)3(3.0mg,0.0034mmol),PCy3(3.0mg,0.01mmol)。将混合物在120℃微波下氮气氛围下搅拌1小时。LCMS显示反应完成,然后过滤,有机层用无水Na2SO4干燥,在旋转真空中蒸发粗产物,粗产物通过硅胶洗脱PE:EA=3:1和Pre-HPLC用甲酸的方法纯化,得到白色固体实施例13(1.59mg)。
LCMS:m/z[M+H] +=731.3.
1H NMR(400MHz,CD3OD)δ9.32(s,1H),7.54(d,J=7.5Hz,1H),7.49–7.35(m,2H),5.33(d,J=53.0Hz,1H),4.64(s,2H),4.36(q,J=10.8Hz,4H),3.76(s,2H),3.23(s,3H),3.06(d,J=5.3Hz,1H),2.37(dd,J=32.1,27.5Hz,3H),2.26(d,J=5.3Hz,1H),2.16(d,J=8.0Hz,1H),2.01(dd,J=23.3,18.3Hz,5H),1.80(d,J=8.2Hz,2H),1.55(s,9H),1.28(s,1H),0.81(s,1H).
步骤b
向化合物实施例13(7.0mg,0.0095mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例14(1.98mg)。
LCMS:m/z[M+H] +=631.2..
1H NMR(400MHz,CD3OD)δ9.29(s,1H),7.54(d,J=7.5Hz,1H),7.47–7.34(m,2H),5.31(d,J=53.0Hz,1H),4.60(s,3H),4.33(dd,J=35.2,10.7Hz,2H),3.68(d,J=30.5Hz,4H),3.19(t,J=19.2Hz,3H),3.07–2.99(m,1H),2.50–2.21(m,4H),2.14(d,J=8.6Hz,1H),2.00(dd,J=13.8,9.4Hz,2H),1.94–1.73(m,5H),1.31(s,1H),0.81(s,1H).
实施例15和实施例16
Figure PCTCN2022136003-appb-000110
Figure PCTCN2022136003-appb-000111
步骤a
在氮气保护下,向制备例5(10mg,0.017mmol)的Dioxane/H 2O=4/1(1.25mL)混合溶液中加入中间体5-2(25mg,0.085mmol)、磷酸钾(11mg,0.051mmol)和Pd 2(dba) 3(3.0mg,0.0034mmol),PCy3(3.0mg,0.01mmol)。将混合物在120℃微波下氮气氛围下搅拌1小时。LCMS显示反应完成,然后过滤,有机层用无水Na 2SO 4干燥,在真空中蒸发粗产物,粗产物通过硅胶洗脱PE:EA=3:1和Pre-HPLC用甲酸的方法纯化,得到白色固体实施例15(2.72mg)。
LCMS:m/z[M+H] +=731.2.
1H NMR(400MHz,CD3OD)δ9.33(s,1H),8.59–8.49(m,1H),7.55(d,J=7.4Hz,1H),7.48–7.37(m,2H),5.36(d,J=52.8Hz,1H),4.63(s,2H),4.46–4.34(m,4H),3.76(s,2H),3.41–3.34(m,3H),3.15–3.03(m,1H),2.51–2.28(m,3H),2.19(d,J=8.2Hz,1H),2.10–1.90(m,5H),1.80(d,J=8.2Hz,2H),1.55(s,9H),1.29(d,J=13.4Hz,1H),0.82(s,1H).
步骤b
向化合物实施例15(10.0mg,0.013mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例16(4.54mg)。
LCMS:m/z[M+H] +=631.2.
1H NMR(400MHz,CD3OD)δ9.29(s,1H),7.54(d,J=7.1Hz,1H),7.45–7.36(m,2H),5.30(d,J=54.5Hz,1H),4.58(s,3H),4.37(d,J=10.7Hz,1H),4.29(d,J=10.8Hz,1H),3.71(s,2H),3.63(s,2H),3.21(d,J=26.7Hz,3H),3.02(s,1H),2.29(dd,J=37.4,16.7Hz,4H),2.13(d,J=9.0Hz,1H),2.00(s,2H),1.89–1.75(m,5H),1.28(s,1H),0.81(s,1H).
实施例17和实施例18
Figure PCTCN2022136003-appb-000112
Figure PCTCN2022136003-appb-000113
步骤a
室温条件下,在8mL微波管中加入制备例7(290mg),2-1(522mg,),Pd 2(dba) 3(76mg),K 3PO 4(324mg),PCy 3(86mg),dioxane(3mL)和H 2O(0.6mL)。混合物氮气保护,然后在120℃下微波反应器反应1小时。反应完全后,混合物经冷却后过滤,用乙腈(10毫升)洗涤滤饼3次,收集滤液旋干。粗品用硅胶柱层析纯化(乙酸乙酯:石油醚=1:1),得到棕色油中间体17-1(200mg)。
LCMS:m/z[M+H] +=920.1.
步骤b
室温条件下,在50mL单口瓶中加入中间体17-1(170mg),THF(3mL)和TBAF(3ml,1N in THF),反应液在室温下搅拌2h。反应完全后,混合物加入水(30mL),之后用EA(30mL)萃取三次,用水(30mL)和饱和氯化钠溶液(30mL)各洗涤有机相3次,有机相用无水硫酸钠干燥,将过滤出的有机相减压旋干。得到类白色固体粗产品(130mg).
粗产品通过pre-HPLC制备(仪器:2#SHIMADZU(HPLC-01)):柱型号:YMC-Actus Triart C18 ExRS,30mm X 150mm,5um;流动相:
水(10mmol/L NH 4HCO 3)和乙腈(在8分钟内从28%升到54%);检测波长:254nm.得到类白色固体3实施例17(6.72mg);
LCMS:m/z[M+H]+=764.4.
1H NMR(400MHz,CD3OD)δ8.91(s,1H),7.96(d,J=5.6Hz,1H),7.61(d,J=2.6Hz,1H),7.38(t,J=8.9Hz,1H),7.15(d,J=2.4Hz,1H),5.38–5.34(m,2H),4.58(s,1H),4.33(d,J=13.0Hz,5H),4.09(d,J=9.8Hz,2H),3.73(t,J=11.7Hz,2H),3.52(s,3H),2.69(q,J=7.2Hz,4H),2.29–2.18(m,1H),2.09–1.89(m,5H),1.54(s,9H),1.10(t,J=7.2Hz,6H).
步骤c
室温条件下,在50mL单口瓶中加入实施例17(100mg),DCM(5mL)and TFA(1mL),反应液在室温下搅拌2h。反应完全后,混合物减压旋干。得到60毫克粗品通过制备纯化。初步纯化的产品再通过以下条件制备(仪器:2#SHIMADZU(HPLC-05)),柱型号:YMC-Actus Triart C18 ExRS,30mm X 150mm,5um;流动相:水(10mmol/L TFA)和乙腈(在12min内从20%升到60%);检测波长:254nm得到类白色固体实施例18(19.3mg).
LCMS:m/z[M+H]+=620.1.
1H NMR(400MHz,CD3OD)δ9.01(s,1H),7.87(d,J=9.0Hz,1H),7.47–7.19(m,2H),7.02(d,J=2.4Hz,1H),5.36(t,J=4.8Hz,1H),4.76(s,1H),4.60(d,J=11.8Hz, 3H),4.48(d,J=6.4Hz,3H),4.26(s,2H),3.89(d,J=33.1Hz,2H),2.20(d,J=10.8Hz,5H),2.05(d,J=5.4Hz,2H),1.62(s,1H),1.38(t,J=6.4Hz,6H).
实施例19和实施例20
Figure PCTCN2022136003-appb-000114
步骤a
在氮气保护下,向化合物19-1(11.4mg,0.0185mmol)的N,N-二甲基甲酰胺(DMF)(0.5mL)溶液中加入化合物19-2(11.5mg,0.028mmol)、碳酸铯(18mg,0.056mmol)和DPEPhosPdCl2(5.3mg,0.0074mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后然后过滤,混合物减压旋干得粗产物,粗产物通过pre-HPLC(用甲酸的方法)得到白色固体实施例19(5.3mg)。
LCMS:m/z[M+H]+=871.2.
1H NMR(400MHz,MeOD)δ9.23(s,1H),7.39(dd,J=8.2,4.8Hz,1H),7.22(t,J=8.9Hz,1H),5.16(d,J=55.8Hz,1H),4.82(s,1H),4.62–4.39(m,4H),4.34(s,1H),3.89(d,J=12.4Hz,1H),3.62(d,J=12.7Hz,1H),2.98(dd,J=26.5,10.2Hz,2H),2.87–2.67(m,2H),2.54(t,J=12.0Hz,2H),2.16(ddd,J=26.8,13.5,7.0Hz,1H),1.96(dd,J=49.3,18.2Hz,4H),1.71(s,1H),1.57(d,J=16.7Hz,18H),0.74(s,2H),0.56(s,2H).
步骤b
向实施例19(30.0mg,0.034mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过Pre-HPLC(用甲酸的方法)得到白色固体实施例20(5.71mg)。
LCMS:m/z[M+H]+=671.1.
1H NMR(400MHz,MeOD)δ9.29(s,1H),7.25(dd,J=8.3,5.0Hz,1H),7.04(t,J=8.9Hz,1H),5.45(d,J=53.6Hz,1H),4.95(s,1H),4.68–4.45(m,3H),4.20(d,J=14.9Hz,2H),4.04(d,J=13.9Hz,1H),3.86(d,J=13.8Hz,2H),3.68(s,1H),3.61–3.45(m,2H),3.37(s,1H),3.16(d,J=13.0Hz,1H),2.41(ddd,J=47.1,28.0,11.3Hz,2H),2.16–1.98(m,4H),1.02–0.79(m,4H).
实施例21
Figure PCTCN2022136003-appb-000115
步骤a
室温条件下,将中间体21-1(200mg,0.4mmol)溶于四氢呋喃(5mL),然后加入化合物21-2(124mg,0.8mmol),DIPEA(103mg,0.8mmol)。混合液在70℃搅拌17小时。反应完全后,缓慢加入水(15mL),用乙酸乙酯(15mL)萃取三次。有机相用饱和食盐水洗涤(10mL),然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用Pre-HPLC(纯水的方法)纯化,得白色固体中间体21-3(120mg)。
LCMS:m/z[M+H]+=597.2.
步骤b
在氮气保护下,向中间体21-3(60mg,0.1mmol)的Dioxane/H2O=4/1(2.5mL)混合溶液中加入化合物2-1(102mg,0.2mmol)、磷酸钾(63mg,0.2mmol)和Pd2(dba)3(18mg,0.02mmol),PCy3(18mg,0.064mmol)。将混合物在120℃微波反应条件下搅拌1小时。LCMS显示反应完成,然后过滤,有机层用无水Na2SO4干燥,有机相减压浓缩得粗品,粗产物通过Pre-HPLC(用纯水的方法)纯化,得到黄色油状物21-4(37mg)。
LCMS:m/z[M+H]+=947.3.
步骤c
向化合物21-4(12mg,0.0128mmol)的THF(0.5mL)溶液中添加TBAF(1M)(0.5mL)。然后混合液在室温下搅拌反应混合物1h。TLC显示反应完全,LCMS显示检测到产物。粗产品直接用pre-TLC(PE:EA=1:3)纯化,得到白色固体21-5(5mg)。
步骤d
向化合物21-5(26mg,0.033mmol)的二氯甲烷(1.0mL)溶液中中添加TFA(0.2mL),该混合物在25℃下搅拌2小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例21(9mg)。
LCMS:m/z[M+H]+=647.2.
1H NMR(400MHz,MeOD)δ9.23(s,1H),7.87(dd,J=9.1,5.7Hz,1H),7.34(dd,J=10.3,7.6Hz,2H),7.02(d,J=2.4Hz,1H),4.76(d,J=13.2Hz,2H),4.62(s,3H),4.54(t,J= 3.9Hz,2H),4.03–3.88(m,2H),3.81(d,J=13.4Hz,1H),3.50(s,1H),3.41–3.36(m,4H),2.14(s,4H),2.03(t,J=11.4Hz,3H),1.93(t,J=9.1Hz,1H),0.98(t,J=5.5Hz,2H),0.89(t,J=5.5Hz,2H).
实施例22
Figure PCTCN2022136003-appb-000116
步骤a
在0℃条件下,将制备例8(15mg,0.033mmol)的DCM(0.5mL)溶液中加入m-CPBA(8.04mg,0.0396mmol,85%purity),在0℃条件下搅拌0.5h.LCMS显示原料反应完,产物生成.反应液用饱和的NaHCO3水溶液(5mL)淬灭并用EtOAc(10mL*3)萃取,有机相用无水Na2SO4干燥,过滤,有机相液体在减压浓缩后得到22-1,直接用于下一步。
LCMS:m/z[M+H]+=470.1
步骤b
在25℃条件下,将22-1(15mg,0.032mmol)的THF(0.5mL)溶液中加入1-10(5.09mg,0.032mmol),在70℃条件下搅拌15h.LCMS显示原料反应完,产物生成.反应液浓缩后用pre-TLC(DCM:MeOH=10:1)纯化得到白色固体22-2(10mg,0.0177mmol)。
LCMS:m/z[M+H]+=565.3
步骤c
在15℃条件下,将中间体22-2(5mg,0.0088mmol)的DMF(0.5mL)溶液中加入硼酸酯5-1(1.78mg,0.01144mmol),DPEPhosPdCl2(0.63mg,0.00088mmol)和Cs2CO3(8.58mg,0.0264mmol)。将混合物在120℃微波反应条件下搅拌1小时。LCMS显示反应完成。反应液冷却后然后过滤,混合物减压旋干得粗产物,粗产物通过pre-HPLC(用甲酸的方法)得到白色固体22-2(5.0mg)。
LCMS:m/z[M+H]+=821.3.
步骤d
在0℃条件下,将22-2(6.5mg,0.0094mmol)的二氯甲烷(0.6mL)溶液中加入TFA(0.2mL),在15℃下搅拌1h.LCMS显示原料反应完全,产物生成.反应液直接浓缩得到粗品进一步用pre-HPLC(用甲酸的方法)纯化,得到白色固实施例22(2.58mg)。
LCMS:m/z[M+H]+=621.2.
1H NMR(400MHz,MeOD)δ9.27(s,1H),7.35(dd,J=8.3,5.4Hz,1H),7.06(t,J=8.8Hz,1H),5.58(d,J=52.5Hz,3H),4.75(dd,J=35.2,12.5Hz,4H),4.23(s,2H),4.10–3.81(m,5H),3.48(s,1H),2.80–2.54(m,2H),2.47(s,1H),2.36(s,2H),2.04(dd,J=26.2,15.5Hz,5H).
实施例23
Figure PCTCN2022136003-appb-000117
步骤a
在室温条件下,将23-1(20mg,0.035mmol),中间体5-1(21mg,0.052mmol)和Cs2CO3(34mg,0.105mmol)溶于DMF(0.5mL)中,在氮气保护下加入DPEPhosPdCl2(10mg,0.014mmol),在微波120℃下搅拌混合物1小时。LCMS表明原料反应完全。反应液冷却后然后过滤,混合物减压旋干得粗产物,粗产物通过pre-HPLC(用甲酸的方法)得到白色固体23-2(13.0mg)。
LCMS:m/z[M+H]+=833.2.
步骤b
将23-2(10mg,0.012mmol)溶于DCM(0.6mL)中,TFA(0.2mL)在0℃逐滴加入,反应液在15℃搅拌1h.LCMS显示原料反应完,反应液浓缩得到粗产品,用pre-HPLC(用甲酸的方法)纯化得到白色固体实施例23(1.4mg)。
LCMS:m/z[M+H]+=633.3.
1H NMR(400MHz,MeOD)δ9.24(s,1H),7.38(dd,J=8.3,5.1Hz,1H),7.18–7.01(m,1H),5.58(d,J=50.3Hz,1H),4.83(d,J=11.1Hz,4H),4.73(d,J=12.6Hz,1H),4.26(s,2H),3.97(dd,J=37.0,16.1Hz,5H),3.51(dd,J=8.2,6.6Hz,2H),3.18(d,J=23.2Hz,3H),2.81–2.59(m,2H),2.52(d,J=8.0Hz,1H),2.44–2.30(m,2H),2.07(dd,J=27.6,15.6Hz,5H).
实施例24
Figure PCTCN2022136003-appb-000118
实施例24的制备可参照实施例40的类似方法制备从制备例10与相应的硼酸酯进行Suzuki Cross coupling反应得到。从碳-碳偶联反应所得中间体通过三氟乙酸的二氯甲烷溶液室温反应,粗品用10mmoL溶液(NH 4HCO 3水溶液)反相柱纯化得到白色固体实施例(1.8mg)。
LCMS:[M+H] +=625.0。
实施例25
Figure PCTCN2022136003-appb-000119
步骤a
室温条件下,将中间体25-1(200mg,0.4mmol)溶于四氢呋喃(3mL),然后依次加入化合物25-2(137mg,0.8mmol),N,N-二异丙基乙胺(DIPEA)(0.12mL,0.8mmol)。在70℃搅拌17小时。反应液冷却后减压旋干得粗产物,粗品用反相纯水纯化得白色固体25-3(120mg)。
LCMS:[M+H] +=613.1.
步骤b
在氮气保护下,向化合物25-3(60mg,0.096mmol)的Dioxane/H 2O=4/1(3.75mL)混合溶液中加入化合物2-1(126mg,0.246mmol)、磷酸钾(63mg,0.288mmol)和Pd 2(dba) 3(18mg,0.0192mmol),PCy 3(16.2mg,0.0576mmol)。将混合物在120℃微波下搅拌30分钟。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过硅胶洗脱PE:EA=2:1纯化,得到黄色油状25-4(50mg)。
LCMS:[M+H] +=963.2.
步骤c
向化合物25-4(10mg,0.01mmol)的THF(0.2mL)溶液中添加四丁基氟化铵(TBAF)(1M)(0.2mL).然后在室温下搅拌反应混合物1h。TLC显示反应完全,LCMS显示检测到产物。粗产品减压浓缩后直接用pre-TLC(PE:EA=1:1)纯化,得到白色固体25-5(5.5mg)。
LCMS:[M+H] +=807.2.
步骤d
向化合物25-5(23.5mg,0.029mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例25(13.36mg)。
LCMS:[M+H] +=663.1.
1H NMR(400MHz,MeOD)δ9.25(s,1H),7.88(dd,J=9.2,5.7Hz,1H),7.34(dd,J=10.3,7.6Hz,2H),7.01(d,J=2.5Hz,1H),4.83(s,1H),4.65(d,J=14.0Hz,1H),4.58(d,J=11.8Hz,1H),4.50(d,J=11.8Hz,1H),4.28(s,2H),3.97(dd,J=27.1,13.7Hz,6H),3.37(s,1H),3.29(s,2H),3.20–3.11(m,1H),2.29–2.05(m,5H),1.75–1.41(m,1H),1.03(t,J=7.4Hz,1H),0.98(t,J=5.2Hz,2H),0.86(s,2H).
实施例26
Figure PCTCN2022136003-appb-000120
步骤a
室温条件下,将中间体25-1(130mg,0.257mmol)溶于四氢呋喃(2mL),然后依次加入化合物26-1(84mg,0.514mmol),N,N-二异丙基乙胺(DIPEA)(0.18mL,1.028mmol)。在70℃搅拌17小时。反应液冷却后减压旋干得粗产物,粗品用反相纯水纯化得白色固体26-2(60mg)。
LCMS:[M+H] +=571.2.
步骤b
在氮气保护下,向化合物26-2(36mg,0.064mmol)的Dioxane/H 2O=4/1(1.25mL)混合溶液中加入化合物2-1(84mg,0.164mmol)、磷酸钾(42mg,0.192mmol)和Pd 2(dba) 3(12mg, 0.0128mmol),PCy 3(10.8mg,0.0384mmol)。将混合物在120℃微波下搅拌30分钟。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过硅胶洗脱PE:EA=2:1纯化,得到黄色油状26-3(40.0mg)。
LCMS:[M+H] +=921.3.
步骤c
向化合物26-3(19mg,0.021mmol)的THF(0.2mL)溶液中添加四丁基氟化铵(TBAF)(1M)(0.2mL).然后在室温下搅拌反应混合物1h。TLC显示反应完全,LCMS显示检测到产物。粗产品减压浓缩后直接用pre-TLC(PE:EA=1:1)纯化,得到白色固体26-4(6.5mg)。
LCMS:[M+H] +=765.2.
步骤d
向化合物26-4(29.0mg,0.038mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例26(11.62mg)。
LCMS:[M+H] +=621.1.
1H NMR(400MHz,MeOD)δ9.25(s,1H),7.88(dd,J=9.1,5.7Hz,1H),7.38–7.28(m,2H),7.02(d,J=2.4Hz,1H),4.83(s,1H),4.65(d,J=13.7Hz,1H),4.53(dd,J=25.5,12.1Hz,2H),4.24(s,2H),3.96(dd,J=28.2,13.9Hz,2H),3.37(d,J=6.3Hz,3H),3.03(s,6H),2.20–2.05(m,4H),1.01(t,J=5.4Hz,2H),0.90(t,J=5.4Hz,2H).
实施例27
Figure PCTCN2022136003-appb-000121
步骤a
在氮气保护下,向27-1(50mg,0.084mmol)的DMF(2.5mL)溶液中加入化合物5-1(50mg,0.12mmol)、碳酸铯(80mg,0.245mmol)和DPEPhosPdCl 2(25mg,0.035mmol)。将混合物在100℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后然后过滤,有机层用无水Na 2SO 4干燥,在减压下蒸发粗产物,粗产物通过Pre-HPLC(用含少量甲酸的方法)纯化,得到白色固体27-2(20mg)。
LCMS:[M+H]+=853.2.
步骤b
向化合物27-2(14mg,0.0164mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物2小时。LCMS显示检测产物。然后浓缩反应液,得到粗产品并通过pre-HPLC(用含少量甲酸的方法)得到白色固体实施例27(2.47mg)。
LCMS:[M+H]+=653.1.
1H NMR(400MHz,MeOD)δ9.28(s,1H),8.46(s,1H),7.24(dd,J=8.3,5.0Hz,1H),7.03(t,J=8.9Hz,1H),4.86–4.82(m,1H),4.61–4.49(m,3H),4.02(t,J=16.4Hz,3H),3.81(d,J=13.5Hz,1H),3.47(d,J=24.2Hz,3H),3.39(t,J=7.8Hz,2H),2.14(s,4H),2.00(d,J=18.0Hz,3H),1.91(d,J=9.3Hz,1H),0.97(d,J=10.3Hz,2H),0.89(s,2H).
实施例28
Figure PCTCN2022136003-appb-000122
步骤a
室温条件下,在8毫升微波管中加入制备例7(150mg),19-2(330mg),DPEPhosPdCl 2(38mg),CS 2CO 3(257mg)和DMF(3mL)。混合物经氮气保护,然后在120℃下微波反应器反应1小时。LCMS显示反应完成,反应液冷却后然后过滤。用乙腈(10毫升)洗涤滤饼3次,收集滤液后减压下旋干。粗品用硅胶柱层析纯化(乙酸乙酯:石油醚=1:2),得到类白色固体120mg,30mg通过制备纯化。粗产品经以下条件纯化(C18xbridge制备柱,流速20ml/min,10mmol/L浓度的三氟乙酸,64%-67%梯度的乙腈。得到类白色固体28-1(5.56mg))。
LCMS:[M+H]+=826.4.
步骤b
室温条件下,在50毫升单口瓶中加入28-1(90mg),二氯甲烷5ml)and三氟乙酸(TFA)(0.6ml),反应液在室温下搅拌3h。反应完全后,混合物减压旋干。得到60毫克粗产品通过制备纯化。粗产品通过以下条件制备(C18xbridge制备柱,流速20ml/min,10mmol/L浓度的三氟乙酸,35%-39%梯度的乙腈。得到类白色固体实施例28(6.25mg)。
LCMS:[M+H]+=626.3.
1H NMR(400MHz,MeOD)δ8.96(s,1H),7.21(d,J=8.3Hz,1H),7.01(t,J=9.0Hz,1H),4.51–4.29(m,4H),4.22–4.06(m,4H),3.92(d,J=13.1Hz,2H),3.69(d,J=13.6Hz,1H),2.84(q,J=7.0Hz,4H),2.20–2.00(m,4H),1.17(t,J=7.1Hz,6H).
实施例29
Figure PCTCN2022136003-appb-000123
步骤a
室温条件下,将中间体25-1(150mg,0.3mmol)溶于四氢呋喃(3mL),然后依次加入化合物29-1(105mg,0.6mmol),N,N-二异丙基乙胺(DIPEA)(0.09mL,0.06mmol)。在70℃搅拌17小时。反应液冷却后减压旋干得粗产物,粗品用反相纯水纯化得白色固体29-2(102mg)。
LCMS:[M+H] +=615.4.
步骤b
在氮气保护下,向化合物29-2(20mg,0.032mmol)的Dioxane/H 2O=4/1(1.25mL)混合溶液中加入化合物2-1(42mg,0.082mmol)、磷酸钾(21mg,0.096mmol)和Pd 2(dba) 3(6mg,0.0064mmol),PCy 3(5.4mg,0.0192mmol)。将混合物在120℃微波下搅拌30分钟。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过硅胶洗脱PE:EA=2:1纯化,得到黄色油状29-3(12.0mg)。
LCMS:[M+H] +=965.3.
步骤c
向化合物29-3(19mg,0.021mmol)的THF(0.2mL)溶液中添加四丁基氟化铵(TBAF)(1M)(0.2mL).然后在室温下搅拌反应混合物1h。TLC显示反应完全,LCMS显示检测到产物。粗产品减压浓缩后直接用pre-TLC(PE:EA=1:1)纯化,得到白色固体29-4(4.5mg)。
LCMS:[M+H] +=809.3.
步骤d
向化合物29-4(30mg,0.037mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例29(8.97mg)。
LCMS:[M+H] +=665.2.
1H NMR(400MHz,MeOD)δ9.21(s,1H),8.48(s,1H),7.87(dd,J=9.0,5.7Hz,1H),7.39–7.31(m,2H),7.03(s,1H),5.28(d,J=54.6Hz,1H),4.78(s,1H),4.61–4.43(m,3H),4.08(s,2H),3.93(d,J=13.6Hz,1H),3.82(d,J=13.7Hz,1H),3.39(s,1H),3.27(d,J=9.6Hz,1H),3.02(dd,J=34.5,21.7Hz,2H),2.84(dd,J=12.9,4.8Hz,2H),2.30(ddd,J=29.1,14.6,7.8Hz,1H),2.05(d,J=31.7Hz,5H),0.83(s,2H),0.69(s,2H).
实施例30
Figure PCTCN2022136003-appb-000124
步骤a
在氮气保护下,向化合物制备例2(10mg,0.017mmol)的Dioxane/H 2O=4/1(0.625mL)混合溶液中加入化合物30-1(21mg,0.042mmol)、磷酸钾(11mg,0.05mmol)和Pd 2(dba) 3(3mg,0.0033mmol),PCy 3(3.0mg,0.0033mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过硅胶洗脱PE:EA=1:3纯化,得到黄色油状30-2(8.0mg)。
LCMS:[M+H] +=933.3.
步骤b
向化合物30-2(8.0mg,0.0086mmol)的THF(0.5mL)溶液中添加四丁基氟化铵(TBAF)(1M)(0.2mL).然后在室温下搅拌反应混合物1h。TLC显示反应完全,LCMS显示检测到产物。粗产品减压浓缩后直接用pre-TLC(PE:EA=1:3)纯化,得到白色固体30-3(5.0mg)。
LCMS:[M+H] +=777.2.
步骤c
向化合物30-3(20mg,0.032mmol)的四氢呋喃(0.5mL)溶液中添加添加盐酸1,4二氧六环(4N,1mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例30(6.8mg)。
LCMS:[M+H] +=633.2.
1H NMR(400MHz,MeOD)δ9.19(s,1H),7.82(d,J=8.2Hz,1H),7.52(d,J=7.0Hz,1H),7.41(t,J=7.6Hz,1H),7.30(s,1H),6.98(s,1H),5.37(d,J=52.4Hz,1H),4.74(d,J=8.1Hz,1H),4.61(s,1H),4.46(d,J=8.3Hz,2H),4.37(d,J=11.1Hz,1H),3.84(s,3H),3.72(d,J=13.3Hz,1H),3.40(d,J=6.0Hz,2H),3.12(d,J=5.2Hz,1H),3.06(s,1H),2.48–2.28(m,2H),2.20(d,J=9.0Hz,1H),2.08(dd,J=13.4,9.1Hz,2H),1.96(s,4H),1.86(s,1H).
实施例31
Figure PCTCN2022136003-appb-000125
步骤a
在氮气保护下,向化合物31-1(24mg,0.043mmol)的Dioxane/H 2O=4/1(1.2 5mL)混合溶液中加入化合物31-2(44mg,0.126mmol)、磷酸钾(27mg,0.127mmol)和Pd 2(dba) 3(8mg,0.009mmol),PCy 3(8.0mg,0.029mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过硅胶洗脱PE:EA=1:4纯化,得到白色固体31-3(27.0mg)。
LCMS:[M+H] +=745.3.
步骤b
向化合物31-3(48mg,0.064mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例31(5.79mg)。
LCMS:[M+H] +=601.3.
1H NMR(400MHz,MeOD)δ9.25(d,J=7.9Hz,1H),7.60(s,1H),7.40(dd,J=17.5,8.7Hz,1H),7.29(s,1H),7.01(s,1H),4.67–4.49(m,4H),3.71(dd,J=29.5,14.0Hz,4H),3.13(s,1H),2.87(s,1H),2.54(s,3H),2.40(dd,J=17.1,8.6Hz,1H),2.14(s,1H),1.91–1.76(m,7H).
实施例32
Figure PCTCN2022136003-appb-000126
步骤a
在氮气保护下,向化合物制备例4(10mg,0.017mmol)的Dioxane/H 2O=4/1(0.625mL)混合溶液中加入化合物31-2(12mg,0.034mmol)、磷酸钾(11mg,0.051mmol)和Pd 2(dba) 3 (3mg,0.0034mmol),PCy 3(3.0mg,0.011mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过硅胶洗脱PE:EA=3:1纯化,再用Pre-HPLC(用甲酸方法)纯化,得到白色固体32-3(3.01mg)。
LCMS:[M+H] +=789.3.
步骤b
向化合物32-3(30mg,0.038mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例32(8.01mg)。
LCMS:[M+H] +=645.5.
1H NMR(400MHz,CD3OD)δ9.23(s,1H),7.60(s,1H),7.35(d,J=47.7Hz,2H),7.01(s,1H),5.31(d,J=54.2Hz,1H),4.59(d,J=41.5Hz,2H),4.35(d,J=21.8Hz,2H),3.71(d,J=40.4Hz,4H),3.23(d,J=27.5Hz,3H),3.03(s,1H),2.32(d,J=21.6Hz,1H),2.21(d,J=34.9Hz,2H),2.01(s,3H),1.84(d,J=12.8Hz,4H).
实施例33
Figure PCTCN2022136003-appb-000127
步骤a
在氮气保护下,向化合物制备例5(10mg,0.0172mmol)的Dioxane/H 2O=4/1(1.725mL)混合溶液中加入化合物31-2(12.04mg,0.034mmol)、磷酸钾(10.95mg,0.051mmol)和Pd 2(dba) 3(3.15mg,0.00344mmol),PCy 3(2.89mg,0.010mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过Pre-HPLC(用甲酸方法)纯化,得到白色固体33-1(1.21mg)。
LCMS:[M+H] +=771.3.
步骤b
向化合物33-1(20mg,0.026mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物2小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例33(1.01mg)。
LCMS:[M+H] +=627.1.
1H NMR(400MHz,CD 3OD)δ9.27(s,1H),8.47(s,1H),7.71–7.42(m,1H),7.41–7.34(m,1H),7.31(s,1H),7.11(s,1H),5.39(s,1H),4.61(s,3H),4.56–4.46(m,2H),4.01(s,2H),3.85(t,J=11.3Hz,2H),3.68–3.47(m,4H),2.50(dd,J=40.0,13.5Hz,2H),2.31(d,J=8.8Hz,1H),2.19(s,2H),2.00(d,J=11.3Hz,4H).
实施例34
Figure PCTCN2022136003-appb-000128
步骤a
在氮气保护下,向化合物制备例9(10mg,0.0172mmol)的Dioxane/H 2O=4/1(0.625mL)混合溶液中加入化合物31-2(12.04mg,0.034mmol)、磷酸钾(10.95mg,0.051mmol)和Pd 2(dba) 3(3.15mg,0.00344mmol),PCy 3(2.89mg,0.010mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过Pre-HPLC(用甲酸方法)纯化,得到白色固体34-1(1.18mg)。
LCMS:[M+H] +=771.3.
步骤b
向化合物34-1(25mg,0.032mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物2小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例34(3.54mg)。
LCMS:[M+H] +=627.2.
1H NMR(400MHz,CD3OD)δ9.32(s,1H),7.62(s,1H),7.51(s,1H),7.40(d,J=8.2Hz,1H),7.33(s,1H),7.10(s,1H),5.74–5.43(m,1H),4.76(s,3H),4.26(s,2H),3.96(s,5H),3.50(s,2H),2.62(s,2H),2.37(s,3H),2.14(s,5H).
实施例35
Figure PCTCN2022136003-appb-000129
Figure PCTCN2022136003-appb-000130
步骤a
在氮气保护下,向化合物制备例2(10mg,0.017mmol)的Dioxane/H 2O=4/1(0.625mL)混合溶液中加入化合物31-2(12.04mg,0.034mmol)、磷酸钾(11mg,0.051mmol)和Pd 2(dba) 3(3.0mg,0.0034mmol),PCy 3(3.0mg,0.010mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过硅胶洗脱PE:EA=3:1和Pre-HPLC(用氨水的方法)纯化,得到白色固体35-1(6.05mg)。
LCMS:[M+H] +=789.2.
步骤b
向化合物35-1(23mg,0.025mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例35(8.61mg)。
LCMS:[M+H] +=645.5.
1H NMR(400MHz,MeOD)δ9.23(s,1H),7.60(dd,J=8.7,4.2Hz,1H),7.39(dd,J=17.3,9.5Hz,1H),7.29(s,1H),7.01(s,1H),5.31(d,J=53.9Hz,1H),4.61(s,2H),4.58–4.50(m,2H),4.39(dd,J=10.7,4.5Hz,1H),4.30(dd,J=10.7,5.5Hz,1H),3.77–3.67(m,2H),3.65(s,2H),3.26(d,J=6.5Hz,2H),3.19(s,1H),3.02(dd,J=14.9,9.3Hz,1H),2.39–2.28(m,1H),2.26–2.14(m,2H),2.06–1.92(m,3H),1.83(dd,J=26.1,12.3Hz,3H).
实施例36
Figure PCTCN2022136003-appb-000131
Figure PCTCN2022136003-appb-000132
步骤a
室温条件下,将中间体1-9(2g,4.87mmol)和化合物36-1(1.13mg,9.81mmol)溶于四氢呋喃(25mL),然后加入碳酸铯(Cs2CO3)(4.76g,14.61mmol)。在70℃搅拌17小时。反应完全后,缓慢加入水(150mL),用乙酸乙酯(50mL)萃取三次。有机相用饱和食盐水洗涤(100mL),然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用硅胶柱纯化(二氯甲烷:甲醇=10:1),得到产物黄色固体36-2(1.54g)。
LCMS:[M+H] +=489.4.
步骤b
室温条件下,将中间体36-2(500mg,1.02mmol)溶于1,2,二氯乙烷(12mL)中,然后加入二氯三(2,2'-联吡啶)钌(II)六水合物(77mg,0.1mmol),在零度依次加入吡啶(0.3mL,3.6mmol),三氟甲磺酸酐(0.37mL,2.04mmol)。在LED灯照射下室温搅拌5小时。反应完毕后,缓慢加入水(100mL),用二氯甲烷(100mL)萃取三次。然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用制备柱层析纯化(二氯甲烷:甲醇=20:1),得黄色油状物36-3(24mg)。
LCMS:[M+H] +=557.4.
步骤c
在氮气保护下,向化合物36-3(20mg,0.036mmol)的Dioxane/H 2O=4/1(1.25mL)混合溶液中加入化合物2-1(37mg,0.072mmol)、磷酸钾(23mg,0.108mmol)和Pd 2(dba) 3(6mg,0.007mmol),PCy 3(6.0mg,0.02mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过硅胶洗脱PE:EA=1:3纯化,得到黄色油状36-4(16.0mg)。
LCMS:[M+H] +=907.5.
步骤d
向化合物36-4(10.0mg,0.016mmol)的THF(0.5mL)溶液中添加四丁基氟化铵(TBAF)(1M)(0.5mL).然后在室温下搅拌反应混合物1h。TLC显示反应完全,LCMS显示检测到产物。粗产品减压浓缩后直接用pre-TLC(PE:EA=1:2)纯化,得到白色固体36-5(5.0mg)。
LCMS:[M+H] +=751.2.
步骤e
向化合物36.5(23mg,0.031mmol)的二氯甲烷(0.5mL)溶液中添加添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例36(10.0mg)。
LCMS:[M+H] +=607.2.
1H NMR(400MHz,MeOD)δ9.29(s,1H),7.88(dd,J=9.1,5.7Hz,1H),7.42–7.25(m,2H),7.03(d,J=2.4Hz,1H),4.95(dd,J=12.8,3.1Hz,2H),4.82–4.66(m,2H),4.28(s,2H),4.00(dd,J=25.1,13.8Hz,3H),3.78(s,1H),3.40(d,J=3.2Hz,1H),3.31–3.23(m,1H),3.17–3.06(m,3H),2.44(d,J=7.8Hz,1H),2.23–2.06(m,6H),1.59(dtt,J=104.6,14.9,7.4Hz,1H).
实施例37
Figure PCTCN2022136003-appb-000133
步骤a
室温条件下,将化合物37-1(5g,19.8mmol)溶于1,2,二氯乙烷(100mL)中,然后在零度依次加入DIEA(13.6mL,82.5mmol),37-2(3.16g,16.5mmol)。室温搅拌16小时。反应完毕后,缓慢加入水(100mL),用二氯甲烷(100mL)萃取三次。然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用制备柱层析纯化(乙酸乙酯:石油醚=1:4),得黄色固体37-3(2.0g)。
LCMS:[M+H] +=407.1.
步骤b
室温条件下,将化合物37-4(234mg,1.47mmol)溶于THF(10mL)中,氮气置换,然后加入NaH(74.4mg,1.86mmol),反应1h,然后加入化合物37-3(300mg,0.738mmol)。室温搅拌2小时。反应完毕后,缓慢加入水(100mL),用乙酸乙酯(100mL)萃取三次。然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用制备柱层析纯化(乙酸乙酯:石油醚=1:4),得黄色固体37-5(130mg)。
LCMS:[M+H] +=530.2.
步骤c
在氮气保护下,将化合物37-5(50mg,0.094mmol)溶于DMF(2.5mL)溶液中,混合溶液中加入化合物5-1(57mg,0.14mmol)、磷酸钾(92.5mg,0.28mmol)和DPEPhosPdCl2(27.5mg,0.039mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过硅胶洗脱PE:EA=1:1纯化,得到黄色固体37-6(28.0mg)。
LCMS:[M+H] +=786.3.
步骤d
向化合物37-6(28mg,0.079mmol)的二氯甲烷(1.0mL)溶液中添加添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例37(14.84mg)。
LCMS:[M+H] +=686.3.
1H NMR(400MHz,MeOD)δ9.27(s,1H),7.69(s,1H),7.45(dd,J=8.4,5.1Hz,1H),7.08(t,J=8.9Hz,1H),5.58(d,J=51.6Hz,1H),5.29(s,2H),4.74(dd,J=32.5,12.4Hz,2H),4.54(d,J=5.6Hz,2H),4.46(d,J=5.0Hz,2H),4.07–3.85(m,3H),3.49(td,J=11.3,6.3Hz,1H),2.66(ddd,J=31.6,21.4,13.4Hz,2H),2.50–2.43(m,1H),2.39–2.32(m,2H),2.16(d,J=9.8Hz,1H).
实施例38
Figure PCTCN2022136003-appb-000134
步骤a
室温条件下,将化合物1-10(156mg,0.98mmol)溶于THF(15mL)中.氮气氛围下零度加入60%氢化钠(49.6mg,1.225mmol).搅拌1小时然后加入化合物37-3(200mg,0.49mmol)的四氢呋喃溶液。室温搅拌2小时。反应完毕后,缓慢加入饱和的氯化铵(20mL),用乙酸乙酯(100mL)萃取三次。然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用Pre-HPLC(用甲酸的方法),得黄色固体38-1(62mg)。
LCMS:[M+H] +=530.3.
步骤b
在氮气保护下,将化合物38-1(9.5mg,0.018mmol)溶于N,N-二甲基甲酰胺(DMF,2mL)溶液中,混合溶液中加入化合物5-1(10.9mg,0.027mmol)、磷酸钾(17.6mg,0.054mmol)和DPEPhosPdCl2(5.0mg,0.0072mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物,粗产物通过Pre-TLC和pre-HPLC(用甲酸的方法)得到白色固体38-2(1.34mg)。
LCMS:[M+H] +=786.2.
步骤c
向化合物38-2(22mg,0.028mmol)的二氯甲烷(1.0mL)溶液中添加添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例38(8.67mg)。
LCMS:[M+H] +=686.2.
1H NMR(400MHz,MeOD)δ9.27(s,1H),7.68(s,1H),7.45(dd,J=8.4,5.1Hz,1H),7.08(t,J=8.9Hz,1H),5.58(d,J=51.8Hz,1H),5.29(s,2H),4.74(d,J=19.2Hz,2H),4.54(d,J=5.3Hz,2H),4.46(d,J=4.8Hz,2H),4.09–3.98(m,1H),3.92(d,J=16.2Hz,2H),3.48(dd,J=13.4,7.8Hz,1H),2.80–2.59(m,2H),2.50–2.42(m,1H),2.37(dd,J=14.8,8.7Hz,2H),2.19(s,1H).
实施例39
Figure PCTCN2022136003-appb-000135
步骤a
室温条件下,将化合物29-1(255mg,1.47mmol)溶于THF(10mL)中.氮气置换,然后加入NaH(74.4mg,1.86mmol),反应1小时,然后加入化合物37-3(300mg,0.738mmol)。室温搅拌2小时。反应完毕后,缓慢加入水(100mL),用乙酸乙酯(100mL)萃取三次。然后用无水硫酸钠干燥,减压浓缩得粗品,粗品用制备柱层析纯化(乙酸乙酯:石油醚=1:4),得黄色固体39-1(80mg)。LCMS:[M+H] +=544.5.
步骤b
在氮气保护下,将化合物39-1(50.0mg,0.092mmol)溶于N,N-二甲基甲酰胺(DMF,2.5mL)溶液中,混合溶液中加入化合物5-1(55mg,0.14mmol)、磷酸钾(90mg,0.28mmol)和DPEPhosPdCl2(26mg,0.036mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后然后过滤.用水(10mL)稀释反应混合物,用EtOAc(20mL*3)萃取,有机层用无水Na 2SO 4干燥,减压下浓缩有机层得粗产物。粗产物通过硅胶洗脱PE:EA=1:1纯化,得到黄色固体39-2(6mg)。
LCMS:[M+H] +=800.4.
步骤c
向化合物39-2(6.0mg,0.028mmol)的二氯甲烷(1.0mL)溶液中添加添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例39(1.23mg)。
LCMS:[M+H] +=700.3.
1H NMR(400MHz,MeOD)δ9.23(s,1H),7.67(s,1H),7.44(dd,J=8.3,5.1Hz,1H),7.08(t,J=8.9Hz,1H),5.55(s,1H),5.25(s,2H),4.48(dd,J=30.4,9.3Hz,6H),3.52(d,J=36.3Hz,5H),2.42(s,2H),0.94(dd,J=26.1,15.4Hz,5H).
实施例40
Figure PCTCN2022136003-appb-000136
步骤a
室温条件下,将中间体10-3(500mg,1.17mmol)溶于四氢呋喃(20mL),然后加入化合物29-1(506mg,1.25mmol),Cs 2CO 3(1.14g,3.5mmol)。在70℃搅拌17小时。反应完全后,缓慢加入水(100mL),用乙酸乙酯(50mL)萃取三次。有机相用无水硫酸钠干燥,有机相液体减压浓缩得粗品,粗品用硅胶柱纯化(PE:EA=1:3),得黄色固体40-1(157mg)。
LCMS:[M+H] +=565.4。
步骤b
在氮气保护下,向化合物40-1(77mg,0.137mmol)的DMF(4mL)溶液中加入化合物5-1(83mg,0.205mmol)、碳酸铯(134mg,0.411mmol)和DPEPhosPdCl 2(39mg,0.054mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,冷却后过滤,在真空中蒸发粗产物,粗产物通过Pre-HPLC(用甲酸的方法)纯化,得到白色固体40-2(30mg)。
LCMS:[M+H] +=821.6。
1H NMR(400MHz,MeOD)δ9.07(s,1H),7.58(dd,J=8.3,5.0Hz,1H),7.27(dd,J=9.4,8.4Hz,1H),5.29–5.05(m,1H),4.67(d,J=12.3Hz,2H),4.52(d,J=11.0Hz,1H),4.40(d,J=10.6Hz,3H),3.76(d,J=12.2Hz,2H),3.36(d,J=8.1Hz,1H),2.97(dt,J=14.5,9.7Hz,2H),2.84–2.66(m,2H),2.59–2.46(m,2H),2.26–2.09(m,1H),2.06–1.94(m,2H),1.78(t,J=11.5Hz,2H),1.57(d,J=17.3Hz,18H),0.74(t,J=4.8Hz,2H),0.56(t,J=4.7Hz,2H).
步骤c
向化合物40-2(25mg,0.03mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物2小时。LCMS显示检测产物。然后浓缩反应液,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例40(10.43mg)。
LCMS:[M+H] +=621.2。
1H NMR(400MHz,MeOD)δ9.11(s,1H),7.43(dd,J=8.3,5.2Hz,1H),7.07(t,J=8.9Hz,1H),5.48(d,J=53.1Hz,1H),4.82(s,2H),4.50(d,J=14.5Hz,2H),4.25(s,3H),3.95(d,J=13.9Hz,3H),3.53(d,J=40.6Hz,2H),3.14(s,2H),2.69–2.00(m,6H),0.94(dd,J=23.0,11.6Hz,4H).
实施例41
Figure PCTCN2022136003-appb-000137
步骤a
在氮气保护下,向制备例11(10mg,0.018mmol)的N,N-二甲基甲酰胺(0.5mL)溶液中加入硼酸酯5-1(10.9mg,0.027mmol)、碳酸铯(17.6mg,0.054mmol)和DPEPhosPdCl2(5.0mg,0.0072mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,冷却后过滤,在加压下旋转蒸发粗产物,粗产物通过Pre-TLC和pre-HPLC(用甲酸的方法)得到白色固体41-1(5.14mg)。
LCMS:[M+H] +=807.1。
1H NMR(400MHz,MeOD)δ8.99(s,1H),7.46(dd,J=8.2,5.0Hz,1H),7.15(t,J=8.9Hz,1H),5.25(d,J=53.5Hz,1H),4.62–4.52(m,2H),4.28(d,J=9.7Hz,3H),4.24–4.16(m,1H),3.65(dd,J=12.4,4.7Hz,2H),3.40–3.22(m,3H),3.03–2.95(m,1H),2.26(ddd,J=23.5,15.2,7.7Hz,2H),2.12–2.05(m,1H),2.01–1.91(m,2H),1.85(d,J=5.5Hz,3H),1.67(d,J=7.7Hz,2H),1.45(d,J=17.2Hz,18H).
步骤b
向中间体41-1(30mg,0.037mmol)的二氯甲烷(1.0mL)溶液中中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例41(8.35mg)。
LCMS:[M+H] +=607.1。
1H NMR(400MHz,MeOD)δ9.15(s,1H),7.45(dd,J=8.2,5.1Hz,1H),7.09(t,J=8.8Hz,1H),5.57(d,J=51.9Hz,1H),4.69(q,J=12.1Hz,2H),4.21(s,2H),4.08–3.72(m,6H),3.45(dd,J=15.2,10.6Hz,1H),2.68(ddd,J=56.0,23.5,12.5Hz,2H),2.49–2.39(m,1H),2.34(s,2H),2.09(dd,J=27.3,9.8Hz,6H).
实施例42
Figure PCTCN2022136003-appb-000138
步骤a
室温条件下,将中间体10-3(300mg,0.7mmol)溶于四氢呋喃(13mL),然后加入化合物21-2(273mg,1.76mmol),Cs 2CO 3(687mg,2.1mmol)。在70℃搅拌17小时。反应完全后,缓慢加入水(100mL),用乙酸乙酯(50mL)萃取三次。有机相用无水硫酸钠干燥,有机相液体减压浓缩得粗品,粗品用硅胶柱纯化(PE:EA=1:4),得白色固体42-1(60mg)。
LCMS:[M+H] +=547.2。
步骤b
在氮气保护下,向中间体42-1(60mg,0.11mmol)的DMF(2.5mL)溶液中加入硼酸酯5-1(45mg,0.111mmol)、碳酸铯(108mg,0.33mmol)和DPEPhosPdCl 2(30mg,0.042mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后过滤,在减压下旋转蒸发粗产物,粗产物通过Pre-HPLC(用甲酸的方法)纯化,得到白色固体42-2(30mg)。
LCMS:[M+H] +=803.5。
1H NMR(400MHz,MeOD)δ9.14(s,1H),8.52(s,1H),7.59(dd,J=8.3,5.0Hz,1H),7.34–7.25(m,1H),4.68(d,J=12.5Hz,2H),4.45(d,J=26.8Hz,4H),3.78(d,J=12.5Hz,2H),3.66(s,1H),3.50(s,3H),3.38(s,2H),2.12(s,4H),2.02–1.93(m,2H),1.78(d,J=7.8Hz,2H),1.60(s,9H),1.55(s,9H),0.98(t,J=5.6Hz,2H),0.93–0.88(m,2H).
步骤c
向中间体40-2(20mg,0.025mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物2小时。LCMS显示检测产物。然后减压下旋转浓缩反应液,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例42(6.02mg)。
LCMS:[M+H] +=603.2。
1H NMR(400MHz,MeOD)δ9.14(s,1H),7.46(dd,J=8.0,5.2Hz,1H),7.10(t,J=8.9Hz,1H),4.84–4.79(m,2H),4.52(s,2H),4.28(s,2H),4.04–3.83(m,4H),3.40(s,2H),3.21(s,2H),2.13(dd,J=23.8,9.9Hz,8H),0.95(d,J=27.9Hz,4H).
实施例43
Figure PCTCN2022136003-appb-000139
Figure PCTCN2022136003-appb-000140
步骤a
室温条件下,在25毫升单口瓶中加入原料43-1(500mg,4.94mmol),加入MeOH(5mL)溶解,在0摄氏度下加入37%甲醛水溶液(1.2g,14.84mmol,3.0eq)搅拌10分钟,随后加入NaBH3CN(930mg,14.84mmol,3.0eq)。氮气保护下,混合物在25℃下反应12小时。反应完全后,用DCM:MeOH(20mL)萃取3次,有机相分别用水(20mL)和饱和食盐水(20mL)洗涤三次。将有机相用无水硫酸钠干燥,然后将有机相液体减压下旋干,得到粗品43-2(300mg)直接用于下一步。
1HNMR(400MHz,MeOD)δ3.50–3.45(m,2H),2.72–2.61(m,2H),2.60–2.48(m,2H),2.36(s,3H),2.04–1.92(m,2H),1.62–1.47(m,1H).
步骤b
室温条件下,在25毫升单口瓶中加入43-2(180mg,1.57mmol,5.0eq.),加入dioxane(5mL)溶解,加入DIEA(207mg,1.57mmol,5.0eq.)和10-3(135mg,0.315mmol,1.0eq.)。混合物在100℃下反应12小时。反应完全后,反应液冷却后过滤,滤液减压下旋干。然后用DCM:MeOH=10:1(20mL)萃取3次,有机相分别用水(20mL)和饱和食盐水(20Ml)洗涤三次。将有机相用无水硫酸钠干燥,然后将其拉干,粗品用硅胶柱层析纯化(DCM:MeOH=10:1),得到类黄色色固体43-3(38mg)。
LCMS:[M+H] +=507.3。
步骤c
室温条件下,在8毫升微波管中加入43-3(35mg,0.069mmol),加入硼酸酯5-1(56mg,0.1mmol,1.5eq.),PEphosPdCl 2(21mg,0.027mmol,0.4eq.)和Cs 2CO 3(112mg,0.2mmol,3.0eq.),使用DMF(1mL)溶解。混合物在微波炉反应器120℃下反应1小时。反应完全后,反应混合物冷却后过滤,滤液在减压下旋干。然后用DCM(10mL)萃取3次,有机相分别用水(10mL)和饱和食盐水(10mL)洗涤三次。将有机相用无水硫酸钠干燥,然后将有机相液体减压下旋转浓缩,粗品用硅胶柱层析纯化(DCM:MeOH=10:1),得到黑色色固体43-4(20mg)。
LCMS:[M+H] +=763.4。
步骤d
向中间体43-4(20mg,0.026mmol)的二氯甲烷(3.0mL)溶液中在零度下添加TFA(1.0mL),在0℃下搅拌该混合物1小时。LCMS显示检测产物。然后减压下旋转浓缩反应液,使用无水THF溶解粗品,并通过pre-HPLC(用甲酸的方法)得到白色固体实施例43(12.0mg)。
LCMS:[M+H] +=563.3。
1HNMR(400MHz,MeOD)δ9.10(s,1H),7.43(dd,J=8.4,5.1Hz,1H),7.14–7.01(m,1H),4.58(s,4H),4.55–4.48(m,2H),4.10(s,2H),3.89(d,J=13.3Hz,2H),3.50(d,J=16.8Hz,2H),3.05(s,1H),2.98(s,3H),2.40(s,1H),2.15–1.94(m,5H).
实施例44
Figure PCTCN2022136003-appb-000141
实施例44的制备可参照实施例43的类似方法制备。
实施例44从其中间体44-4(10mg)通过过三氟乙酸的二氯甲烷溶液反应,粗品用硅胶柱层析纯化(二氯甲烷:甲醇=10:1)获得(2.0mg)。
LCMS:[M+H] +=563.2。
1HNMR(400MHz,MeOD)δ9.10(s,1H),7.43(dd,J=8.4,5.0Hz,1H),7.07(t,J=8.9Hz,1H),4.23(s,2H),3.95(d,J=14.2Hz,2H),3.66(s,5H),2.99(s,2H),2.22–2.17(m,1H),2.07(dd,J=21.0,11.4Hz,4H),1.31(d,J=19.1Hz,5H),0.89(d,J=7.0Hz,1H)。
实施例45
Figure PCTCN2022136003-appb-000142
实施例45的制备可参照实施例40的类似方法制备
实施例45从其中间体45-3(13.0mg)通过过三氟乙酸的二氯甲烷溶液反应,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例45(2.08mg)。
LCMS:[M+H] +=621.3。
1H NMR(400MHz,MeOD)δ9.11(s,1H),7.43(dd,J=8.4,5.1Hz,1H),7.15–7.01(m,1H),5.61–5.35(m,1H),4.82(s,2H),4.50(dd,J=24.0,12.1Hz,2H),4.24(s,3H),3.94(d,J=13.9Hz,3H),3.62–3.46(m,2H),3.13(d,J=1.6Hz,2H),2.55–2.01(m,6H),1.04–0.83(m,4H).
实施例46
Figure PCTCN2022136003-appb-000143
步骤a
室温条件下,在25mL单口瓶中加入10-3(300mg,0.7mmol,1.00eq.),加入制备例14(280mg,1.4mmol,2.0eq.),Cs 2CO 3(684mg,2.1mmol,3.0eq.),使用THF(5mL)溶解。混合物在70℃下反应12小时。反应完全后冷却过滤后旋干。然后用DCM(10mL)萃取3次,有机相分别用水(10mL)和饱和食盐水(10mL)洗涤三次。将有机相用无水硫酸钠干燥,然后将有机相液体减压下旋干,粗品用硅胶柱层析纯化(DCM:MeOH=10:1),得到黄色固体46-1(150mg)。
LCMS:[M+H] +=589.4。
步骤b
室温条件下,在8毫升微波管中加入46-1(50mg,0.085mmol),5-1(51mg,0.127mmol,1.5eq.),DPEPhosPdCl 2(25mg,0.034mmol,0.4eq.),Cs 2CO 3(83mg,0.254mmol,3.0eq.)加入DMF(1mL)溶解,在120摄氏度下搅拌1小时。反应完全后,反应混合物经冷却过滤后减压下旋干反应液,然后用DCM(10mL)萃取3次,有机相分别用水(10mL)和饱和食盐水(10mL)洗涤三次。将有机相用无水硫酸钠干燥,过滤后将有机相液体减压下旋干,粗品用硅胶柱层析纯化(DCM:MeOH=10:1),得到黑色固体。使用少量无水THF溶解,通过pre-HPLC得到白色固体46-2(20mg)。
LCMS:[M+H] +=845.5。
步骤c
室温条件下,在25毫升单口瓶中加入46-2(20mg,0.023mmol),加入DCM(2mL)溶解,随后加入TFA(1mL),在25摄氏度下搅拌1小时。LCMS显示检测产物。然后减压下旋转浓缩反应液,使用无水THF溶解粗品,并通过pre-HPLC(用甲酸的方法)得到白色固体实施例46(10mg)。
LCMS:[M+H] +=645.3。
H-NMR:1HNMR(400MHz,MeOD)δ9.09(d,J=7.7Hz,1H),7.42(dd,J=8.3,5.1Hz,1H),7.07(t,J=8.9Hz,1H),4.75(s,2H),4.53(s,2H),4.17(d,J=8.2Hz,4H),4.13(s,2H),3.92(d,J=13.7Hz,2H),3.83(d,J=12.3Hz,2H),3.18(s,2H),2.22(s,4H),2.15–2.02(m,4H),0.95(s,2H),0.86(s,2H).
实施例47
Figure PCTCN2022136003-appb-000144
实施例47的制备可参照实施例40的类似方法制备
实施例47从碳-碳偶联反应所得中间体(27.0mg)通过过三氟乙酸的二氯甲烷溶液反应,得到粗产品通过pre-HPLC(用氨水的方法)得到白色固体实施例47(9.0mg)。
LCMS:[M+H] +=619.0。
H-NMR:1HNMR(400MHz,MeOD)δ9.09(s,1H),7.44(dd,J=8.4,5.1Hz,1H),7.09(dd,J=9.4,8.4Hz,1H),4.81(d,J=13.8Hz,2H),4.49(s,2H),4.27–4.14(m,2H),3.92(d,J=13.7Hz,2H),3.80–3.74(m,2H),2.94–2.69(m,4H),2.10(s,4H),1.19–1.10(m,4H),0.83(t,2H),0.66(t,2H).
实施例48
Figure PCTCN2022136003-appb-000145
步骤a
在氮气保护下,向制备例11(30mg,0.064mmol)的N,N-二甲基甲酰胺(1.5mL)溶液中加入硼酸酯5-1(52mg,0.128mmol)、碳酸铯(63mg,0.192mmol)和DPEPhosPdCl2(18mg,0.0256mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后过滤,滤液在减压下旋干得粗产物,粗产物通过Pre-TLC和pre-HPLC(用甲酸的方法)得到白色固体48-1(7mg)。
LCMS:[M+H] +=723.3。
1H NMR(400MHz,MeOD)δ9.25(s,1H),7.54(dd,J=8.3,5.0Hz,1H),7.25(t,J=8.9Hz,1H),5.36(d,J=53.7Hz,1H),4.41(dd,J=25.3,11.0Hz,2H),4.13(d,J=15.7Hz,2H),3.42(dd,J=36.1,15.8Hz,3H),3.11(d,J=14.9Hz,1H),2.51(s,6H),2.45–2.35(m,1H), 2.27(dd,J=21.1,9.4Hz,3H),2.18(d,J=20.4Hz,3H),2.09(d,J=7.0Hz,2H),1.91(dd,J=19.4,10.5Hz,3H),1.57(s,9H)。
步骤b
向化合物48-1(5mg,0.0069mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后减压下浓缩反应液,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例48(1.44mg)。
LCMS:[M+H] +=623.2。
1H NMR(400MHz,MeOD)δ9.26(s,1H),7.40(dd,J=8.4,5.1Hz,1H),7.06(t,J=8.9Hz,1H),5.45(d,J=52.6Hz,1H),4.55(q,J=11.7Hz,2H),4.17(d,J=16.6Hz,2H),3.61(d,J=16.4Hz,3H),2.70(s,6H),2.58–2.46(m,1H),2.39(dd,J=27.0,9.1Hz,3H),2.25(dd,J=32.8,14.0Hz,6H),2.03(s,1H),1.99–1.90(m,2H).
实施例49
Figure PCTCN2022136003-appb-000146
步骤a
在氮气保护下,向制备例13(30mg,0.064mmol)的N,N-二甲基甲酰胺(1.5mL)溶液中加入硼酸酯5-1(52mg,0.128mmol)、碳酸铯(63mg,0.192mmol)和DPEPhosPdCl2(18mg,0.0256mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液冷却后过滤,滤液在减压下旋干得粗产物,粗产物通过Pre-TLC和pre-HPLC(用甲酸的方法)得到白色固体49-1(11.0mg)。
LCMS:[M+H] +=723.3。
1H NMR(400MHz,MeOD)δ9.23(d,J=6.4Hz,1H),7.53(dd,J=8.3,5.0Hz,1H),7.25(t,J=8.9Hz,1H),5.34(d,J=53.7Hz,1H),4.58(s,2H),4.37(dd,J=25.9,10.7Hz,2H),4.14–4.04(m,2H),3.49–3.37(m,1H),3.14–3.01(m,1H),2.49–2.40(m,6H),2.33–2.18(m,4H),2.17–2.00(m,5H),1.89(dd,J=18.0,9.1Hz,3H),1.57(s,9H).
步骤b
向化合物49-1(20.0mg,0.028mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后减压下浓缩反应液,得到粗产品并通过pre-HPLC(用甲酸的方法)得到白色固体实施例49(3.7mg)。
LCMS:[M+H] +=623.3。
1H NMR(400MHz,MeOD)δ9.28(s,1H),7.41(s,1H),7.07(t,J=8.8Hz,1H),5.52(d,J=52.0Hz,1H),4.67(d,J=9.7Hz,2H),4.57(s,1H),4.26(d,J=4.6Hz,2H),3.78(d,J=17.9Hz,3H),3.48(s,1H),2.84(s,6H),2.63–2.50(m,2H),2.39(d,J=11.5Hz,4H),2.29(s,2H),2.11(s,1H),1.99(d,J=9.2Hz,2H)。
实施例50
Figure PCTCN2022136003-appb-000147
步骤a
在室温下,向制备例1(8.49mg,0.016mmol)的DMF(0.3mL)溶液中添加硼酸酯5-1(10mg,0.024mmol)和DPEPhosPdCl 2(2.3mg,0.0032mmol)、Cs 2CO 3(15.64mg,0.048mmol)。所得混合物在120℃微波下搅拌1小时。LCMS检测到产物。反应液冷却后过滤。然后添加10mL水并用乙酸乙酯(10mL*3)萃取。有机层用无水Na 2SO 4上干燥,在减压下旋干得粗产物,粗产物通过pre-HPLC纯化(用甲酸的方法),得到白色固体50-1(5.13mg)。
LCMS:[M+H] +=789.4。
步骤b
向中间体50-1(30mg,0.038mmol)的DCM(1mL)溶液中加入TFA(0.2mL)。将混合物在20℃下搅拌1小时。LCMS显示反应完成,然后反应液在减压下浓缩反应得到粗产品并通过pre-HPLC(用甲酸的方法)纯化,得到白色固体实施例50(6.67mg)。
LCMS:[M+H] +=589.3.
1H NMR(400MHz,MeOD)δ9.20(s,1H),7.50(s,1H),7.42(dd,J=8.4,5.2Hz,1H),7.08–7.01(m,1H),5.33(d,J=51.8Hz,1H),4.61(s,2H),4.27(dd,J=34.4,10.4Hz,2H),3.73(d,J=12.3Hz,2H),3.65(s,2H),3.24(d,J=23.3Hz,3H),3.04(d,J=5.7Hz,1H),2.40–2.10(m,3H),2.02(s,2H),1.94–1.67(m,5H).
实施例51
Figure PCTCN2022136003-appb-000148
步骤a
室温条件下,将51-1(60mg,0.12mmol)溶于DMF(3mL),然后依次加入硼酸酯19-2(73mg,0.18mmol),碳酸铯(115mg,0.35mmol)DPEPhosPdCl 2(33mg,0.047mmol)。在120°微波反应1小时。反应完全并冷却后,用硅藻土过滤,然后添加10mL水并用乙酸乙酯(10mL*3)萃取。有机层用无水Na 2SO 4上干燥,在减压下旋干得粗产物,粗产物通过pre-HPLC纯化(用甲酸的方法)得到白色固体51-2(20mg)。
LCMS:[M+H] +=759.2.
步骤b
向中间体51-2(18mg,0.023mmol)的二氯甲烷(1.5mL)溶液中中添加TFA(0.3mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后浓缩反应,得到粗产品并通过pre-HPLC(用氨水的方法)得到白色固体实施例51(7.06mg)。
LCMS:[M+H] +=559.2.
1H NMR(400MHz,MeOD)δ9.26(s,1H),8.47(s,1H),7.59(s,1H),7.44(dd,J=8.2,5.2Hz,1H),7.06(t,J=8.9Hz,1H),4.78(d,J=13.5Hz,2H),4.46(s,2H),4.12(s,2H),3.93(d,J=13.6Hz,2H),3.29(s,2H),2.99(s,6H),2.05(dd,J=30.2,9.2Hz,4H),0.99(s,2H),0.89(s,2H).
实施例52
Figure PCTCN2022136003-appb-000149
步骤a
在-78℃和氩气氛围下将浓度为2mol的二异丙基氨基锂(0.93mL、1.86mmol)缓慢滴加到制备例1(50mg,0.093mmol)的四氢呋喃(2mL)溶液中,并搅拌该溶液45分钟。然后添加重水(93mg,4.65mmol)并在RT下搅拌溶液5min。LC-MS显示制备例残留并形成产物。反应液用水(20mL)稀释混合物,用EA(30mL*3)提取,在无水Na2SO4上干燥,然后在减压下浓缩抽干,浓缩物通过TLC硅胶板(DCM:MeOH=20:1)纯化得到黄色油状物52-1(20mg)。氘代率84%。
1H NMR(400MHz,DMSO-d6)δ9.04(s,1H),5.76(d,1H),4.48(m,2H),4.24(broad s.,2H),4.10(dd,2H),3.61(d,2H),3.32(d,1H),3.01-3.08(m,3H),2.80(m,,1H),1.85-2.12(m,3H),1.76-1.85(m,4H),1.63(m,2H),1.46(s,9H)。
步骤b
在氮气保护下,向52-1(20mg,0.037mmol)的N,N-二甲基甲酰胺(1.0mL)溶液中加入化合物19-2(23mg,0.056mmol)、碳酸铯(36mg,0.111mmol)和DPEPhosPdCl2(11mg,0.0148mmol)。将混合物在120℃微波下搅拌1小时。LCMS显示反应完成,反应液然后过滤,在减压下旋干得粗产物,粗产物通过Pre-TLC和pre-HPLC(用甲酸的方法)得到白色固体52-2(11.2mg)。
LCMS:[M+H] +=790.2。
步骤c
向25-2(30.0mg,0.039mmol)的二氯甲烷(1.0mL)溶液中添加TFA(0.2mL),在25℃下搅拌该混合物1小时。LCMS显示检测产物。然后反应液减压下浓缩,得到粗产品并通过Pre-HPLC(用甲酸的方法)得到白色固体实施例52(10.27mg)。
LCMS:[M+H] +=590.0。
1H NMR(400MHz,MeOD)δ9.31(s,1H),7.46(dd,J=8.4,5.2Hz,1H),7.10–7.05(m,1H),5.62(d,J=51.6Hz,1H),4.89(s,1H),4.71(t,J=8.6Hz,2H),4.27(s,2H),4.03–3.91(m,5H),3.55–3.48(m,1H),2.83–2.61(m,2H),2.51–2.44(m,1H),2.39(dd,J=14.7,9.0Hz,2H),2.28–2.04(m,6H)。
实施例53
Figure PCTCN2022136003-appb-000150
实施例53的制备可参照实施例51的类似方法制备。
实施例53从碳-碳偶联反应所得中间体通过过三氟乙酸的二氯甲烷溶液反应,得到粗产品通过pre-HPLC(用氨水的方法)得到白色固体实施例53(2.44mg)。
LCMS:[M+H] +=601.1。
1H NMR(400MHz,MeOD)δ9.07(s,1H),7.36(s,1H),7.30(d,J=8.3Hz,1H),6.98–6.86(m,1H),4.50(d,J=11.7Hz,2H),4.30(s,2H),3.63–3.48(m,8H),2.36(d,J=28.7Hz,6H),1.70(d,J=8.8Hz,4H),0.60(t,J=5.3Hz,2H),0.40(t,J=5.3Hz,2H)。
实施例54
Figure PCTCN2022136003-appb-000151
实施例54的制备可参照实施例51的类似方法制备。
实施例54从碳-碳偶联反应所得中间体通过过三氟乙酸的二氯甲烷溶液反应,得到粗产品通过pre-HPLC(用甲酸的方法)得到白色固体实施例54(2.47mg)。
LCMS:[M+H] +=585.2。
1H NMR(400MHz,MeOD)δ9.28(s,1H),7.62(s,1H),7.45(dd,J=8.2,5.2Hz,1H),7.07(t,J=8.9Hz,1H),4.85(s,1H),4.82(s,1H),4.49(s,2H),4.27(s,2H),3.98(d,J=14.0Hz,2H),3.89(s,2H),3.39(d,J=13.3Hz,2H),3.19(s,2H),2.12(dd,J=24.9,10.3Hz,8H),0.95(d,J=24.4Hz,4H)。
实施例55
Figure PCTCN2022136003-appb-000152
实施例55的制备可参照实施例51的类似方法制备。
实施例55从碳-碳偶联反应所得中间体通过过三氟乙酸的二氯甲烷溶液反应,得到粗产品通过pre-HPLC(用甲酸的方法)得到白色固体实施例55(10.31mg)。
LCMS:[M+H] +=603.2。
1H NMR(400MHz,MeOD)δ9.25(s,1H),7.61(s,1H),7.44(dd,J=8.2,5.1Hz,1H),7.15–7.02(m,1H),5.51(s,1H),4.80(s,1H),4.53–4.43(m,2H),4.22(s,2H),3.94(d,J=13.4Hz,2H),3.70–3.62(m,1H),3.41(d,J=12.7Hz,3H),3.16(d,J=12.1Hz,1H),2.38(s,3H),2.11(s,4H),1.32(s,1H),0.88(dd,J=24.3,13.9Hz,4H)。
实施例56
Figure PCTCN2022136003-appb-000153
实施例56的制备可参照实施例40的类似方法制备得到白色固体实施例56(8.0mg).
LCMS:[M+H] +=639.0。
实施例57
Figure PCTCN2022136003-appb-000154
实施例57的制备可参照实施例47的类似方法制备得到白色固体实施例56(8.0mg).
LCMS:[M+H] +=637.0。
1H NMR(400MHz,MeOD)δ9.13(s,1H),7.42(dd,1H),4.82(s,2H),4.53(s,2H),4.27(s,2H),3.95(m,4H),3.72–3.62(m,2H),3.23(s,2H),2.20–2.14(m,4H),1.14(ddt,4H),0.92-0.78(m,4H).
生物测试例:KRAS蛋白相互作用(PPI)实验和竞争性(Competition)实验
PPI Assay:
本实验使用均相时间分辨荧光(HTRF)的方法检测小分子化合物对GTP活化状态下的KRAS蛋白与下游RAF1蛋白相互作用的抑制活性。用TR-FRET缓冲液100倍稀释纯化好的Tag1-RAF1蛋白储液,同理,用缓冲液100倍稀释纯化好的Tag2-KRAS蛋白和GTP混合液,保证GTP的终浓度为10μM,这些蛋白的工作浓度经过优化以保证最大 信号的产生。使用DMSO溶液对靶标化合物进行梯度倍比稀释,得到一系列化合物作用浓度,控制DMSO的终浓度为0.5%。向384孔白色浅孔板中(PerkinElmer)加入4μL GTP-KRAS蛋白,4μL RAF1蛋白以及2μL化合物工作液,同步设置合适的对照孔。将GTP-KRAS蛋白,RAF1蛋白与化合物在384孔板中预孵育15分钟,随后加入HTRF检测缓冲液稀释的10μL Anti-Tag1-Eu 3+和Anti-Tag2-XL665标记抗体混合液来启动反应。封板,4℃避光孵育2小时后,使用EnVision酶标仪(PerkinElmer)测定TR-FRET信号值(激发波长:320nm,发射波长:615nm和665nm)。计算荧光信号比RLU=(665nm信号/615nm信号)x10 4;不同浓度下靶标化合物抑制KRAS蛋白与RAF1相互作用的%抑制率通过设置的0%抑制率和100%抑制率信号孔来计算获得。
化合物抑制率IR(%)公式=(RLU 0%抑制-RLU 化合物)/(RLU 0%抑制-RLU 100%抑制)x 100%,使用四参数法(4-parameter logistic model)拟合化合物梯度稀释浓度和对应的抑制率,计算出IC 50值。测试化合物对KRAS G12D蛋白的抑制活性(IC 50,μM)结果如下表1所示。
KRAS G12D蛋白竞争抑制活性实验:
本实验是使用均相时间分辨荧光(HTRF)的方法来鉴定竞争结合到GDP形式的KRAS蛋白的一类化合物,他们能够竞争取代占据KRAS蛋白结合位点上的荧光标记探针。大肠杆菌体内纯化表达生物素化标记的重组KRAS蛋白(序列1-188AA),使用DMSO溶液对靶标化合物进行梯度倍比稀释,得到一系列化合物作用浓度。实验时向384孔白色浅孔板中(PerkinElmer)加入反应缓冲液(50mM HEPES pH 7.5,5mM MgCl 2,1mM DTT)稀释的5nM KRAS G12D,25nM的荧光标记探针和靶标化合物,同时设置合适的对照孔。将GDP-KRAS蛋白,荧光标记探针与化合物在384孔板中预孵育30分钟,随后加入稀释的0.5nM Tb-SA(Cisbio)来启动反应。封板,室温避光孵育1小时后,使用EnVision酶标仪(PerkinElmer)测定TR-FRET信号值(激发波长:320nm,发射波长:615nm和665nm)。计算荧光信号比RLU=(665nm信号/615nm信号)x10 4;不同浓度下靶标化合物与标记探针竞争结合的%抑制率通过设置的0%抑制率和100%抑制率信号孔来计算获得。
化合物抑制率IR(%)公式=(RLU 0%抑制-RLU 化合物)/(RLU 0%抑制-RLU 100%抑制)x 100%,使用四参数法(4-parameter logistic model)拟合化合物梯度稀释浓度和对应的抑制率,计算出IC 50值。测试化合物对KRAS G12D蛋白的竞争抑制活性(IC 50,μM)结果如下表1所示。
生物测试例:KRAS GDP-GTP核苷酸交换实验(Nucleotide Exchange Assay)
本实验使用均相时间分辨荧光(HTRF)的方法检测小分子化合物对GDP失活状态下的KRAS蛋白向GTP激活状态转换时的抑制活性。将BODIPY-GDP loaded His-KRAS(G12D,aa 2-186,BPS bioscience)或者BODIPY-GDP loaded His-KRAS(WT,aa 2-185,BPS bioscience)和MAb Anti-6HIS Tb cryptate Gold(Cisbio)混合(最终浓度:KRAS 100nM;Tb 0.335nM),并在25℃下孵育30min。然后使用DMSO溶液对靶标化合物进行梯度倍比稀释,得到一系列化合物作用浓度,控制DMSO的终浓度为1%。向384孔白色浅孔板中(PerkinElmer)加入5μL GDP-KRAS蛋白和Anti-6HIS Tb的混合液,5μL化合物工作液。封板,25℃避光孵育1小时。随后加入5μL SOS1(Cytoskeleton)/GTP(Sigma)混合物(最终浓度:SOS1 150nM;GTP 10μM),同时设置合适的对照孔。封板,25℃避光孵育20min后使用EnVision酶标仪(PerkinElmer)测定TR-FRET信号值(激发波长:320nm,发射 波长:615nm和665nm)。计算荧光信号比RLU=(665nm信号/615nm信号)x10 4;不同浓度下靶标化合物抑制KRAS蛋白核苷酸转换作用的%抑制率通过设置的0%抑制率和100%抑制率信号孔来计算获得。
化合物抑制率IR(%)公式=(RLU 0%抑制-RLU 化合物)/(RLU 0%抑制-RLU 100%抑制)x 100%,使用四参数法(4-parameter logistic model)拟合化合物梯度稀释浓度和对应的抑制率,计算出IC 50值。测试化合物对KRAS蛋白核苷酸转换的抑制活性(IC 50,μM)。
实施例活性数据
表1
Figure PCTCN2022136003-appb-000155
Figure PCTCN2022136003-appb-000156
注解:NT:not tested;NA:not applicable.
从上述结果中可以看出,在SOS1催化的KRAS-GDP G12D蛋白进行核苷酸交换时,本申请的化合物相对于野生型体现出较高选择性,相较于阳性对照化合物KRpep-2d,活性和选择性都有较大提高。上述实施例也可以看出,对比阳性对照化合物,提示本发明化合物不仅在抑制GTP-KRAS-RAF1的蛋白蛋白互作上具有更高的活性而且在抑制SOS1催化的KRAS-GDP蛋白核苷酸交换作用上具有更高的活性和较高的对野生型的选择性。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (15)

  1. 一种如下式(I),式(I-a),和式(II),式(II-a)所示的化合物,或其药学上可接受的盐:
    Figure PCTCN2022136003-appb-100001
    其中,R 1选自下组:氢、C 1-C 6烷基、C 1-C 6卤代烷基、C 1-C 6氰基烷基、C 1-C 6羟烷基、烯丙基、-C(=O)H、-CO 2R 5、-C(=O)R 6、-SO 2R 7、-CO 2N(R 5) 2、芳基、杂芳基、CONH 2、CONR aR b或CONHR c;其中R a、R b、R c分别选自:C 1-C 6烷基、芳基、取代芳基、杂芳基、取代杂芳基;
    Q为键、S、O或NR 5
    R 2选自下组:氢、氘、卤素、C 1-C 6烷基、C 1-C 6烷氧基、C 1-C 6卤代烷基、C 1-C 6氘代烷基、C 2-C 6烯基;
    R 3是芳基或杂芳基,其中芳基或杂芳基任选地被一个或多个R 8取代;
    R 4是氢、-N(R 5) 2、杂环基、C 1-C 6烷基、-M-杂环基、-M-芳基、-M-杂芳基、-M-环烷基、-MN(R 5) 2、-M-NHC(=NH)NH 2、-MC(=O)N(R 5) 2、-M-C 1-C 6卤代烷基、-M-OR 5、-M-(CH 2OR 5)(CH 2) nOR 5、-M-NR 5C(O)-芳基、-M-COOH或-MC(=O)O(C 1-C 6烷基),其中,各个杂环基、芳基、环烷基或杂芳基部分可以任选地被一个或多个R 6取代,并且其中-M-芳基和-M-杂芳基的芳基或杂芳基还可以任选地被一个或多个R 7取代;
    每个M各自独立地为化学键,C 1-C 6亚烷基,或者C 2-C 6亚烯基;其中,所述的M可以任选地被一个或多个选自下组的取代基取代:羟基、胺基、C 1-C 4羟烷基或杂芳基;
    每个R 5各自独立地为氢、C 1-C 6烷基或C 1-C 6卤代烷基;
    或R 4和R 5及其相连接的N原子共同构成4-7元的饱和氮杂环;其中,所述的4-7元饱和氮杂环可以任选地被一个或多个R 6取代;
    每个R 6各自独立地是卤素、羟基、C 1-C 6羟基烷基、C 1-C 6烷基、C 1-C 6卤代烷基、 C 1-C 6烷氧基、氰基、杂环基、-L-苯基、-L-苯基SO 2F、-C(=O)NH 2、-NHC(=O)苯基、-NHC(=O)苯基SO 2F、杂芳基、芳基C 1-C 6烷基-、叔丁基二甲基甲硅烷氧基CH 2-、-N(R 5) 2、(C 1-C 6烷氧基)C 1-C 6烷基-、(C 1-C 6烷基)C(=O)、氧代、(C 1-C 6卤代烷基)C(=O)-、-SO 2F、(C 1-C 6烷氧基)C 1-C 6烷氧基、-CH 2OC(=O)N(R 5) 2、-CH 2NHC(=O)OC 1-C 6烷基,-CH 2NHC(=O)N(R 5) 2,-CH 2NHC(=O)C 1-C 6烷基,-CH 2(杂芳基)、-CH 2杂环基,-CH 2NHSO 2C 1-C 6烷基,-CH 2OC(=O)杂环基,-OC(=O)N(R 5) 2,-OC(=O)NH(C 1-C 6烷基)O(C 1-C 6烷基),-OC(=O)NH(C 1-C 6烷基)O(C 1-C 6烷基)苯基(C 1-C 6烷基)N(CH 3) 2,-OC(=O)NH(C 1-C 6烷基)O(C 1-C 6烷基)O(C 1-C 6烷基)烷基)苯基或-OC(=O)杂环基;其中,-NHC(=O)苯基或-OC(=O)NH(C 1-C 6烷基)O(C 1-C 6烷基)苯基的苯基任选地被-C(=O)H或OH取代,且-CH 2杂环基中的杂环基还可任选地被氧代取代;
    其中,L为化学键或O;
    各个R 7各自独立地选自下组:卤素、羟基、HC(=O)-、C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4卤代烷基、C 1-C 4羟烷基或-N(R 5) 2
    每个R 8独立地为卤素、氰基、羟基、C 1-C 4烷基、-S-C 1-C 6烷基、C 2-C 4烯基、C 2-C 4炔基、C 2-C 4羟基炔基、C 1-C 6氰基烷基、三唑基、C 1-C 6卤代烷基,-O-C 1-C 6卤代烷基、-S-C 1-C 6卤代烷基、C 1-C 6烷氧基、羟基C 1-C 6烷基、-CH 2C(=O)N(R 5) 2、-C 3-C 4炔基(NR 5) 2、-N(R 5) 2、氘代C 2-C 4炔基、(C 1-C 6烷氧基)卤代C 1-C 6烷基-或C 3-C 6环烷基,其中所述C 3-C 6环烷基任选被卤素或C 1-C 6烷基取代;
    R 10选自下组:H、D、卤素、OH、OR、CH 2OH、CH 2OR、CN、NH 2、NHR、N(R) 2、或
    Figure PCTCN2022136003-appb-100002
    其中,R为C 1-C 4烷基、C 1-C 4烷氧基;
    且在式(I)中,R 10
    Figure PCTCN2022136003-appb-100003
    X选自下组:卤素、羟基、巯基、C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4烷巯基;
    Y选自下组:H、卤素、羟基、巯基、C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4烷巯基;
    Z选自下组:H、卤素、羟基、巯基、C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4烷巯基;
    R 11选自下组:H、卤素、氰基、羟基、C 1-C 4烷基、C 1-C 4烷氧基、C1-C4卤代烷基、C1-C4氘代烷基、C1-C4卤代烷氧基、C2-C4烯基、C3-C6环烷基;
    R 12选自下组:H、卤素、氰基、羟基、硝基、氨基、C 1-C 4烷基、C 1-C 4烷氧基、C1-C4卤代烷基、C1-C4氘代烷基、C1-C4卤代烷氧基、C2-C4烯基、C3-C6环烷基;
    R 13选自下组:H、卤素、氰基、羟基、C 1-C 4烷基、C 1-C 4烷氧基、C1-C4卤代烷基、C1-C4氘代烷基、C1-C4卤代烷氧基、C2-C4烯基、C3-C6环烷基;
    R 14选自下组:H、卤素、氰基、羟基、C 1-C 4烷基、C 1-C 4烷氧基、C1-C4卤代烷基、C1-C4氘代烷基、C1-C4卤代烷氧基、C2-C4烯基、C3-C6环烷基;
    R 15选自下组:H、甲基、乙基、乙酰基、叔丁氧基羰基、氘代甲基、氘代乙基,乙氧基羰基;
    各个R' 1各自独立地选自下组,H、甲基、乙基、C 3-C 6烷基、C 3-C 6环烷基、C 1-C 6烷氧基、C 1-C 6环烷氧基、C 1-C 6环烷巯基、氘代甲基、氘代乙基;
    每个Rx和Ry各自独立地选自下组:卤素、氢、氘、氰基、亚甲基氰基、硝基、氨 基、C 1-C 6烷基、C 2-C 6烯基、C 2-C 6炔基、C 1-C 6卤代烷基、C 3-C 10环烷基、C 3-C 10卤代环烷基、4-8元杂环烷基、4-8元卤代杂环烷基、C 6-C 10芳基、5-10元杂芳基、C 3-C 10环烷基-C 1-C 3亚烷基、4-8元杂环烷基-C 1-C 3亚烷基、C 6-C 10芳基-C 1-C 3亚烷基、5-10元杂芳基-C 1-C 3亚烷基、C 1-C 6烷氧基、-S(C 1-C 6烷基)、-C(O)(C 1-C 6烷基)、-C(O)NH(C 1-C 6烷基)、OC(O)R b9、OC(O)NR c9R d9、NR c9R d9、NR c9C(O)R b9、NR c9C(O)OR a9、NR c9C(O)NR c9R d9、C(=NR e9)R b9、C(=NOR a9)R b9、C(=NR e9)NR c9R d9、NR c9C(=N e9)NR c9R d9、NR c9C(=NR e9)R b9、NR c9S(O)R b9、NR c9S(O) 2R b9、NR c9S(O) 2NR c9R d9、S(O)R b9、S(O)NR c9R d9、S(O)R b9、S(O) 2NR c9R d9、和BR h9R i9;所述的R a9、R b9、R c9、R d9、R e9、R h9和R i9各自独立地选自下组:氢、C 1-C 6烷基或C 1-C 6卤代烷基;
    其中,所述的芳基为C 6-C 14芳基、杂环基为3-12元杂环基、杂芳基为5-14元杂芳基(例如5-6元杂芳基或苯并5-6元杂芳基)、环烷基为C 3-C 12环烷基;且除非特别说明,所述的芳基、杂芳基和环烷基可任选地具有1-3个选自下组的取代基:卤素、C 1-C 6烷基。
  2. 如如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的化合物具有如下式所示的结构:
    Figure PCTCN2022136003-appb-100004
    其中,所述的R 18选自下组:H、卤素,甲基、乙基,C 3-C 6烷基、C 3-C 6环烷基,C 1-C 6烷氧基、C 1-C 6环烷氧基、C 1-C 6环烷巯基、氘代甲基、氘代乙基,卤代甲基,卤代甲氧基;
    m为0、1、2、3或4。
  3. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,R 1选自下组:氢、羟基、C 1-C 6烷基、C 1-C 6氰基烷基、C 1-C 6羟烷基、HC(=O)-、-CO 2R 5,或-CO 2N(R 5) 2
  4. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的R 4具有选自下组的结构:-M-杂环基、-M-芳基、-M-杂芳基、-M-环烷基;其中,各个杂环基、芳基、环烷基或杂芳基部分可以任选地被一个或多个R 6取代,并且其中-M-芳基和-M-杂芳基的芳基或杂芳基还可以任选地被一个或多个R 7取代;
    其中,所述的芳基为C 6-C 10芳基、杂环基为4-6元单环杂环基或7-9元并环杂环基、杂芳基为5-6元单环杂芳基或9-10元并环杂环基、环烷基为C 3-C 6单环烷基或C 7-C 10并环烷基;
    每个R 6各自独立地是卤素、羟基、C 1-C 6羟烷基、C 1-C 6烷基、C 1-C 6卤代烷基、C 1-C 6烷氧基、氰基、杂环基、C 1-C 6烷基取代的杂芳基、芳基C 1-C 6烷基-、-N(R 5) 2、(C 1-C 6烷氧基)C 1-C 6烷基-、(C 1-C 6烷基)C(=O)、-C(=O)NH 2、-CH 2(杂芳基)、-CH 2杂环基;
    各个R 7各自独立地选自下组:卤素、羟基、HC(=O)-、C 1-C 4烷基、C 1-C 4烷氧基、C 1-C 4卤代烷基、C 1-C 4羟烷基或-N(R 5) 2
  5. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的R 4具有选自下组的结构:
    Figure PCTCN2022136003-appb-100005
    Figure PCTCN2022136003-appb-100006
    较佳地,当R 4为上述基团时,Q为O、S、NH、CO;
    Figure PCTCN2022136003-appb-100007
    Figure PCTCN2022136003-appb-100008
    较佳地,当R 4为上述基团时,Q为单键。
  6. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的R 3具有选自下组的结构:
    Figure PCTCN2022136003-appb-100009
    Figure PCTCN2022136003-appb-100010
    且所述的R 3任选地被一个或多个R 8取代;
    较佳地,所述的R 3具有选自下组的结构:
    Figure PCTCN2022136003-appb-100011
    Figure PCTCN2022136003-appb-100012
    其中R 8为位于R 3上的一个或多个取代基。
  7. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的
    Figure PCTCN2022136003-appb-100013
    选自下组:CHF 2、CH 2F、CF 3、CF2Cl、CF2CH3。
  8. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的化合物具有如下所示的结构:
    Figure PCTCN2022136003-appb-100014
    其中,式III中,R 10选自D、卤素、OH、C 1-C 4烷氧基、CH 2OH、CH 2(C 1-C 4烷氧基、CN、NH 2、NH(C 1-C 4烷氧基)、N(C 1-C 4烷氧基) 2;其余各基团的定义同权利要求1;
    其余各式中,各个基团的定义同权利要求1。
  9. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的
    Figure PCTCN2022136003-appb-100015
    具有选自下组的结构:
    Figure PCTCN2022136003-appb-100016
    Figure PCTCN2022136003-appb-100017
    和/或所述的
    Figure PCTCN2022136003-appb-100018
    具有选自下组的结构:
    Figure PCTCN2022136003-appb-100019
    和/或
    所述的
    Figure PCTCN2022136003-appb-100020
    具有选自下组的结构:
    Figure PCTCN2022136003-appb-100021
  10. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的R 2选自H、D、CD 3、卤素、C 1-C 3烷基、卤代C 1-C 3烷基、C 1-C 3烷氧基、乙烯基、烯丙基。
  11. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的化合物具有选自下组的结构:
    Figure PCTCN2022136003-appb-100022
    或所述的化合物具有选自下组的结构:
    Figure PCTCN2022136003-appb-100023
    Figure PCTCN2022136003-appb-100024
  12. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的式(I)化合物具有选自下组的结构:
    Figure PCTCN2022136003-appb-100025
    Figure PCTCN2022136003-appb-100026
    Figure PCTCN2022136003-appb-100027
    Figure PCTCN2022136003-appb-100028
    Figure PCTCN2022136003-appb-100029
    Figure PCTCN2022136003-appb-100030
    Figure PCTCN2022136003-appb-100031
    Figure PCTCN2022136003-appb-100032
    Figure PCTCN2022136003-appb-100033
    Figure PCTCN2022136003-appb-100034
    Figure PCTCN2022136003-appb-100035
    Figure PCTCN2022136003-appb-100036
    Figure PCTCN2022136003-appb-100037
    Figure PCTCN2022136003-appb-100038
    Figure PCTCN2022136003-appb-100039
    Figure PCTCN2022136003-appb-100040
    Figure PCTCN2022136003-appb-100041
    Figure PCTCN2022136003-appb-100042
    Figure PCTCN2022136003-appb-100043
    或所述的式(I-a)化合物具有选自下组的结构:
    Figure PCTCN2022136003-appb-100044
    Figure PCTCN2022136003-appb-100045
    或所述的式(II)化合物具有选自下组的结构:
    Figure PCTCN2022136003-appb-100046
    Figure PCTCN2022136003-appb-100047
    Figure PCTCN2022136003-appb-100048
    Figure PCTCN2022136003-appb-100049
    Figure PCTCN2022136003-appb-100050
    Figure PCTCN2022136003-appb-100051
    Figure PCTCN2022136003-appb-100052
    Figure PCTCN2022136003-appb-100053
    Figure PCTCN2022136003-appb-100054
    Figure PCTCN2022136003-appb-100055
    或所述的式(II-a)化合物具有选自下组的结构:
    Figure PCTCN2022136003-appb-100056
    Figure PCTCN2022136003-appb-100057
    Figure PCTCN2022136003-appb-100058
    Figure PCTCN2022136003-appb-100059
    Figure PCTCN2022136003-appb-100060
    Figure PCTCN2022136003-appb-100061
    Figure PCTCN2022136003-appb-100062
    Figure PCTCN2022136003-appb-100063
    Figure PCTCN2022136003-appb-100064
    Figure PCTCN2022136003-appb-100065
    Figure PCTCN2022136003-appb-100066
    Figure PCTCN2022136003-appb-100067
    Figure PCTCN2022136003-appb-100068
    Figure PCTCN2022136003-appb-100069
  13. 如权利要求1所述的化合物,或其药学上可接受的盐,其特征在于,所述的化合物具有选自下组的结构:
    Figure PCTCN2022136003-appb-100070
    Figure PCTCN2022136003-appb-100071
    Figure PCTCN2022136003-appb-100072
    Figure PCTCN2022136003-appb-100073
    Figure PCTCN2022136003-appb-100074
    Figure PCTCN2022136003-appb-100075
  14. 如权利要求1所述的化合物的用途,其特征在于,提供了一种如权利要求1所述的化合物或其药学上可接受的盐用于制备治疗与KRAS突变体活性或表达量相关的疾病的药物的用途;较佳地,所述的疾病选自下组:肿瘤,较佳地为选自下组的肿瘤:肉瘤、粘液瘤、横纹肌瘤、纤维瘤、脂肪瘤、畸胎瘤、支气管癌、肺癌、支气管腺瘤、淋巴瘤、软骨瘤错构瘤、间皮瘤、食道癌、胃癌、胰腺癌、小肠癌、大肠癌、盲肠癌、泌尿生殖道肿瘤、肾癌、膀胱癌、尿道癌、前列腺、睾丸癌、肝癌、胆管癌、肝母细胞瘤、血管肉瘤、肝细胞腺瘤、血管瘤、胆囊癌、壶腹癌、胆管癌、骨癌、脑癌、子宫癌、阴道癌、血液瘤、皮肤癌、乳腺癌。
  15. 一种药物组合物,所述的药物组合物包括:(i)治疗有效量的如权利要求1所述的化合物,或其药学上可接受的盐;和(ii)药学上可接受的载体。
PCT/CN2022/136003 2021-12-02 2022-12-01 一类作为小gtp酶kras突变抑制剂的吡啶并嘧啶类衍生物 WO2023098832A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280074858.5A CN118215663A (zh) 2021-12-02 2022-12-01 一类作为小gtp酶kras突变抑制剂的吡啶并嘧啶类衍生物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111460036.4 2021-12-02
CN202111460036.4A CN116217591A (zh) 2021-12-02 2021-12-02 一类作为kras g12d突变抑制剂的吡啶并嘧啶类衍生物

Publications (1)

Publication Number Publication Date
WO2023098832A1 true WO2023098832A1 (zh) 2023-06-08

Family

ID=86577281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136003 WO2023098832A1 (zh) 2021-12-02 2022-12-01 一类作为小gtp酶kras突变抑制剂的吡啶并嘧啶类衍生物

Country Status (2)

Country Link
CN (2) CN116217591A (zh)
WO (1) WO2023098832A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912723B2 (en) 2022-02-09 2024-02-27 Quanta Therapeutics, Inc. KRAS modulators and uses thereof
WO2024051852A1 (zh) * 2022-09-09 2024-03-14 上海翰森生物医药科技有限公司 含嘧啶多环类生物抑制剂、其制备方法和应用
WO2024054926A1 (en) * 2022-09-07 2024-03-14 Bristol-Myers Squibb Company Kras g12d inhibitors
WO2024067714A1 (zh) * 2022-09-30 2024-04-04 泰励生物科技(上海)有限公司 具有抗kras突变肿瘤活性的化合物
WO2024206858A1 (en) 2023-03-30 2024-10-03 Revolution Medicines, Inc. Compositions for inducing ras gtp hydrolysis and uses thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110869358A (zh) * 2017-05-25 2020-03-06 亚瑞克西斯制药公司 Kras的共价抑制剂
WO2020055761A1 (en) * 2018-09-10 2020-03-19 Mirati Therapeutics, Inc. Combination therapies
WO2020146613A1 (en) * 2019-01-10 2020-07-16 Mirati Therapeutics, Inc. Kras g12c inhibitors
WO2021041671A1 (en) * 2019-08-29 2021-03-04 Mirati Therapeutics, Inc. Kras g12d inhibitors
WO2022042630A1 (en) * 2020-08-26 2022-03-03 InventisBio Co., Ltd. Heteroaryl compounds, preparation methods and uses thereof
WO2022061251A1 (en) * 2020-09-18 2022-03-24 Plexxikon Inc. Compounds and methods for kras modulation and indications therefor
WO2022184178A1 (en) * 2021-03-05 2022-09-09 Jacobio Pharmaceuticals Co., Ltd. Kras g12d inhibitors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110869358A (zh) * 2017-05-25 2020-03-06 亚瑞克西斯制药公司 Kras的共价抑制剂
WO2020055761A1 (en) * 2018-09-10 2020-03-19 Mirati Therapeutics, Inc. Combination therapies
WO2020146613A1 (en) * 2019-01-10 2020-07-16 Mirati Therapeutics, Inc. Kras g12c inhibitors
WO2021041671A1 (en) * 2019-08-29 2021-03-04 Mirati Therapeutics, Inc. Kras g12d inhibitors
WO2022042630A1 (en) * 2020-08-26 2022-03-03 InventisBio Co., Ltd. Heteroaryl compounds, preparation methods and uses thereof
WO2022061251A1 (en) * 2020-09-18 2022-03-24 Plexxikon Inc. Compounds and methods for kras modulation and indications therefor
WO2022184178A1 (en) * 2021-03-05 2022-09-09 Jacobio Pharmaceuticals Co., Ltd. Kras g12d inhibitors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912723B2 (en) 2022-02-09 2024-02-27 Quanta Therapeutics, Inc. KRAS modulators and uses thereof
WO2024054926A1 (en) * 2022-09-07 2024-03-14 Bristol-Myers Squibb Company Kras g12d inhibitors
WO2024051852A1 (zh) * 2022-09-09 2024-03-14 上海翰森生物医药科技有限公司 含嘧啶多环类生物抑制剂、其制备方法和应用
WO2024067714A1 (zh) * 2022-09-30 2024-04-04 泰励生物科技(上海)有限公司 具有抗kras突变肿瘤活性的化合物
WO2024206858A1 (en) 2023-03-30 2024-10-03 Revolution Medicines, Inc. Compositions for inducing ras gtp hydrolysis and uses thereof

Also Published As

Publication number Publication date
CN118215663A (zh) 2024-06-18
CN116217591A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2023098832A1 (zh) 一类作为小gtp酶kras突变抑制剂的吡啶并嘧啶类衍生物
CN113286794B (zh) Kras突变蛋白抑制剂
WO2020259432A1 (zh) Kras-g12c抑制剂
CN106029659B (zh) 谷氨酰胺酶抑制剂
WO2022171184A1 (zh) 作为sos1抑制剂的杂环化合物
WO2022214102A1 (zh) 作为kras g12d抑制剂的杂环化合物
KR20240087636A (ko) Kras g12d 억제제 및 이의 용도
WO2019158019A1 (zh) 嘧啶并环化合物及其制备方法和应用
TWI781938B (zh) 苯基丙醯胺類衍生物、其製備方法及其在醫藥上的應用
CN114761016A (zh) 抗病毒杂环化合物
CA2971640A1 (en) Cot modulators and methods of use thereof
WO2017157332A1 (zh) 芳香酰胺类衍生物、其制备方法及其在医药上的应用
CN115232129A (zh) 一种parp1选择性抑制剂及其制备方法和用途
CN114423753A (zh) 作为cd38抑制剂的杂双环酰胺
CN109071548A (zh) 可用于治疗尤其是癌症的吡咯并咪唑衍生物或其类似物
WO2022166920A1 (zh) 一种吡咯并哒嗪类化合物及其制备方法和用途
WO2021249475A1 (zh) 稠合喹唑啉类衍生物、其制备方法及其在医药上的应用
CN108349947B (zh) 四氢吲唑及其医药用途
CN116332948A (zh) 一种含氮四环化合物及其制备方法和药用用途
CN113527299A (zh) 一类含氮稠环类化合物、制备方法和用途
WO2021197467A1 (zh) 多靶点的抗肿瘤化合物及其制备方法和应用
WO2024002377A1 (zh) 一类prmt5抑制剂及其用途
CN114249712A (zh) 嘧啶基衍生物、其制备方法及其用途
CN110461842A (zh) 作为tnf活性调节剂的稠合五环咪唑衍生物
WO2022223039A1 (zh) Sos1降解剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280074858.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE