WO2023098701A1 - 投影设备及其投影显示方法 - Google Patents

投影设备及其投影显示方法 Download PDF

Info

Publication number
WO2023098701A1
WO2023098701A1 PCT/CN2022/135292 CN2022135292W WO2023098701A1 WO 2023098701 A1 WO2023098701 A1 WO 2023098701A1 CN 2022135292 W CN2022135292 W CN 2022135292W WO 2023098701 A1 WO2023098701 A1 WO 2023098701A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
projection screen
projection
target
target projection
Prior art date
Application number
PCT/CN2022/135292
Other languages
English (en)
French (fr)
Inventor
刘芸
刘秀红
沈海杰
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111436976.XA external-priority patent/CN114155802A/zh
Priority claimed from CN202210332154.5A external-priority patent/CN114650404A/zh
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to CN202280074826.5A priority Critical patent/CN118160026A/zh
Publication of WO2023098701A1 publication Critical patent/WO2023098701A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present disclosure relates to the field of projection technology, and in particular, to a projection device and a projection display method thereof.
  • the projection device can be equipped with high dynamic range (High Dynamic Range, HDR) technology for image display.
  • HDR technology can expand the brightness range of the displayed image, reveal the details of the bright and dark parts of the displayed image, bring richer colors and more vivid and natural details to the displayed image, and make the displayed image closer to what the human eye sees.
  • the projection device and the projection screen are separated, and in order to improve the generalization of products and different usage scenarios of users, one projection device can be matched with different projection screens.
  • a projection device in one aspect, includes a light source, an optical machine, a lens, a projection screen and a controller.
  • the light source is configured to provide an illumination beam.
  • the optical machine is configured to use an image signal to modulate the illumination beam provided by the light source to obtain a projection beam.
  • the lens is configured to project the projected light beam, and the light source, the optical machine and the lens are sequentially connected along the beam propagation direction.
  • the projection screen is located at the light exit side of the lens, and is configured to reflect the projection light beam to realize picture display.
  • the controller is coupled to the optical machine, and the controller is configured to: obtain parameter information of the target projection screen; determine the screen display brightness of the target projection screen according to the parameter information of the target projection screen; The screen display brightness of the target projection screen is used for image display after performing brightness mapping on the image to be displayed.
  • a projection display method of a projection device includes a projection screen configured to display a projection image
  • the projection display method includes: acquiring the model or size of the target projection screen; according to The model of the target projection screen and the model of the default projection screen, or, according to the size of the target projection screen and the size of the default projection screen, determine the screen display brightness of the target projection screen; Display brightness, image display after performing brightness mapping on the image to be displayed.
  • FIG. 1 is a comparison diagram of a brightness change trend and a standard EOTF curve according to some embodiments
  • FIG. 2 is a comparison diagram of another brightness variation trend and a standard EOTF curve according to some embodiments
  • FIG. 3 is a comparison diagram of another brightness change trend and a standard EOTF curve according to some embodiments.
  • Fig. 4 is a composition diagram of a projection system according to some embodiments.
  • Fig. 5 is a structural diagram of a projection device according to some embodiments.
  • Fig. 6 is a structural diagram of a projection assembly according to some embodiments.
  • Fig. 7 is a structural diagram of a light source, an optical engine and a lens in a projection assembly according to some embodiments;
  • FIG. 8 is a block diagram of another projection assembly according to some embodiments.
  • Fig. 9 is a block diagram of hardware configuration of a projection device according to some embodiments.
  • Fig. 10 is a composition diagram of a camera assembly according to some embodiments.
  • Fig. 11 is an application scenario diagram of a projection device according to some embodiments.
  • Figure 12 is a hardware architecture diagram of a mobile phone according to some embodiments.
  • Fig. 13 is a display interface diagram of a terminal device according to some embodiments.
  • Fig. 14 is a display interface diagram of another terminal device according to some embodiments.
  • Fig. 15 is a display interface diagram of another terminal device according to some embodiments.
  • Fig. 16 is a flowchart of a projection display method according to some embodiments.
  • FIG. 17 is a flowchart of another projection display method according to some embodiments.
  • FIG. 18 is a flow chart of yet another projection display method according to some embodiments.
  • Fig. 19 is a flow chart of yet another projection display method according to some embodiments.
  • FIG. 20 is a flow chart of yet another projection display method according to some embodiments.
  • Fig. 21 is a flow chart of yet another projection display method according to some embodiments.
  • Fig. 22 is a flow chart of yet another projection display method according to some embodiments.
  • Fig. 23 is a flow chart of yet another projection display method according to some embodiments.
  • Fig. 24 is a flow chart of yet another projection display method according to some embodiments.
  • Fig. 25 is a hardware structure diagram of a controller according to some embodiments.
  • Projection equipment 110. Projection assembly; 111. Light source; 112. Optical machine; 1121. Light guide; 1122. Lens assembly; 1123. Mirror; 1124. Light valve; 1125. Prism assembly; 113. Lens; 1101. Housing; 120, first controller; 130, first camera component; 1301, camera; 1302, image recognition device; 140, first communicator; 150, interface component; 160, first memory;
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality” means two or more.
  • the expressions “coupled” and “connected” and their derivatives may be used.
  • the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
  • the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the context herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel As used herein, “parallel”, “perpendicular”, and “equal” include the stated situation and the situation similar to the stated situation, the range of the similar situation is within the acceptable deviation range, wherein the The stated range of acceptable deviation is as determined by one of ordinary skill in the art taking into account the measurement in question and errors associated with measurement of the particular quantity (ie, limitations of the measurement system).
  • “parallel” includes absolute parallelism and approximate parallelism, wherein the acceptable deviation range of approximate parallelism can be, for example, a deviation within 5°; Deviation within 5°.
  • “Equal” includes absolute equality and approximate equality, where the difference between the two that may be equal is less than or equal to 5% of either within acceptable tolerances for approximate equality, for example.
  • projection equipment mainly includes two display forms, one is to use a monochrome laser with a color wheel for time-sharing display, and the other is to use a three-color laser for three-primary color display. Due to the visual inertia of the human eye, the primary colors alternately illuminated at high speed on the same pixel will be mixed and superimposed to view the color.
  • Laser projection equipment especially projection equipment with three-color laser light sources, has much higher requirements on display effects such as brightness and color rendering than ordinary projection products.
  • laser projection equipment uses some image processing technologies of liquid crystal display, such as high dynamic range (High Dynamic Range, HDR) technology, for image display, these image processing technologies are not complete Suitable for laser projection equipment.
  • HDR High Dynamic Range
  • the HDR image When the HDR image is processed by the processor, it is theoretically possible to restore the HDR image with a complete Electro-Optical Transfer Function (EOTF) curve, but considering the actual situation of the display brightness of the screen, many HDR images In post-production, the maximum brightness of HDR images is not produced at 10,000 nits (nit), but is often produced at 1,000 to 4,000 nits. At the same time, since the maximum display brightness of most screens is mainly concentrated below 1000nit, and the signal processing is mainly based on the standard dynamic range (Standard Dynamic Range, SDR) method.
  • SDR Standard Dynamic Range
  • Tone Mapping on the HDR image, that is, to map the brightness range of the HDR image to the brightness range that can be displayed on the screen, so that the obtained brightness change trend (also called the brightness mapping curve) and EOTF curve matching.
  • the standard EOTF (ST2084) curve match with the standard EOTF (ST2084) curve to achieve the best display effect.
  • Laser projection technology can modulate the light beam emitted by the light source according to the image signal, and the modulated light beam is emitted from the lens to the optical screen. Since the general optical screen is composed of multi-layer films, it has different gain levels for light beams.
  • the HDR technology is processed at the image signal level, and is formulated according to some parameters of the LCD screen. Therefore, if the parameters set according to the traditional HDR technology are directly applied to the image signal, after the projection beam obtained according to the image signal is projected and reflected by the optical film, the contrast and brightness of the actual displayed screen will change, which will easily cause the entire screen to be damaged. The display effect of is not as expected.
  • projection on an optical screen helps restore the brightness and color of the projected picture. But even if they are all Fresnel screens, the materials of different manufacturers or batches of optical films, the stacked combination of multi-layer optical films, the angle of Fresnel microstructure, the eccentric radius and other factors will affect the gain of the projection screen. parameters are affected. Therefore, the display effects of different projection screens are also different.
  • the projection device performs brightness mapping on the HDR image according to the screen display brightness of the default projection screen before displaying the image.
  • the screen display brightness of the default projection screen due to the screen gain of different projection screens They are not equal, and the screen display brightness of projection screens of different sizes varies greatly. If the screen display brightness of the default projection screen is still used for brightness mapping, it cannot match the standard EOTF curve, resulting in loss of dark field details or high brightness. The problem of saturation cannot give full play to the advantages of HDR technology, which affects the viewing experience of users.
  • the larger the screen gain the stronger the reflection ability of the projection screen to light, and the brighter the image viewed by the user at the front viewing angle;
  • the display brightness of the screen is obtained through the detection of an illuminance meter, and the unit of the display brightness of the screen is nit.
  • FIG. 1 , FIG. 2 and FIG. 3 are comparison diagrams of three brightness change trends and standard EOTF curves provided according to some embodiments.
  • the abscissa represents the grayscale from 0 to 100 IRE, and the ordinate represents the brightness.
  • S represents the standard EOTF curve, and S1 represents the luminance change trend curve after luminance mapping.
  • FIG. 1 it is a comparison chart of a brightness change trend obtained through brightness mapping and a standard EOTF curve when a projection device is configured with a default projection screen according to some embodiments.
  • the default projection screen size is 100 inches, and the screen gain is 2.0.
  • Brightness mapping needs to be performed according to the actual brightness of the display device.
  • the chip can automatically map the corresponding brightness curve to match the standard EOTF curve. It can be seen from Figure 1 that when the projection device is matched with a default projection screen, the brightness change trend obtained when the default screen display brightness is used for brightness mapping can match the standard EOTF curve.
  • the picture displayed on the screen can show more detailed features, that is, it can show the details of the dark part of the image, and it will not cause the problem of highlight saturation.
  • the display effect of the picture is closer to the scene observed by human eyes in nature, and the display effect is better.
  • the default screen brightness parameter written into the projection device is determined by the preset screen gain and size, thereby determining the default projection screen.
  • FIG. 2 it is a comparison chart of a brightness change trend obtained by performing brightness mapping and a standard EOTF curve when another projection device is configured with a non-default projection screen according to some embodiments.
  • the screen gain of the non-default projection screen matched with the projection device is greater than the screen gain of the default projection screen, or the size of the non-default projection screen matched with the projection device is smaller than the size of the default projection screen.
  • the default screen display brightness is still used for brightness mapping, the matching degree between the brightness curve between 10IRE-100IRE and the standard EOTF curve in the brightness change trend obtained by brightness mapping is low, so that higher brightness is displayed in the same gray scale, thus The problem of high brightness saturation is caused, the image layers observed by users are not clear enough, and the overall image brightness is high, which reduces the brightness comfort of users.
  • FIG. 3 it is a comparison chart of a brightness change trend obtained by performing brightness mapping and a standard EOTF curve when another projection device is configured with a non-default projection screen according to some embodiments.
  • the screen gain of the non-default projection screen matched with the projection device is smaller than the screen gain of the default projection screen, or the size of the non-default projection screen matched with the projection device is larger than the size of the default projection screen.
  • the default screen display brightness is still used for brightness mapping, the matching degree between the brightness curve between 10IRE-100IRE and the EOTF curve in the brightness change trend standard obtained by brightness mapping is low, so that lower brightness is displayed in the same gray scale, thus
  • the lines and outlines of the image observed by the user are not clear, and the overall image brightness is relatively low, which reduces the brightness comfort of the user.
  • the present disclosure provides a projection display method according to some embodiments.
  • the target projection screen is a non-default projection screen
  • the target projection screen is automatically obtained according to the parameter information of the current projection screen.
  • the screen display brightness of the screen is used to perform brightness mapping according to the determined screen display brightness, so that the brightness change trend curve after brightness mapping matches the standard EOTF curve.
  • the display brightness of the default screen corresponding to the default projection screen is still to be displayed.
  • the high dynamic range image is displayed after luminance mapping, which improves the matching degree between the luminance change trend and the standard electro-optic transfer function curve.
  • the parameter information of the projection screen includes screen gain and size.
  • Fig. 4 is a composition diagram of a projection system according to some embodiments. As shown in FIG. 4 , the projection system includes a projection device 100 and a projection screen 200 .
  • the light outlet of the projection device 100 faces the projection screen, and the projection device 100 can emit light beams to the projection screen 200 , and the projection screen 200 is used to reflect the light beams to realize image display.
  • one projection device 100 can generally be equipped with different projection screens 200 .
  • the projection device 100 may refer to a device having a projection function.
  • the projection device 100 may be a desktop projector, a portable projector, a floor-standing projector, a reflective projector, a transmissive projector, a single-function projector, a multi-functional projector, a smart projector or a touch interactive projector, etc. .
  • the projection device 100 may also have other names, such as a projection host, a projector, and the like.
  • the projection device 100 may be a projection device with one set of projection lenses, or a projection device with multiple sets of projection lenses.
  • the images projected by the multiple sets of projection lenses are edge-overlaid by fusion technology, and can be displayed as a complete projection image.
  • FIG. 5 is a structural diagram of a projection device 100 according to some embodiments, and the projection device 100 will be introduced below with reference to FIGS. 5 to 10 .
  • the projection apparatus 100 includes a projection assembly 110 and a first controller 120 .
  • the projection assembly 110 is connected with the first controller 120 . It should be understood that FIG. 5 only shows some components of the projection device 100 , and there may be other components in the projection device 100 .
  • the projection assembly 110 is used for emitting light for image projection on the projection screen 200 .
  • the projection assembly 110 includes a light source 111 , an optical engine 112 and a lens 113 .
  • the projection assembly 110 may further include a housing 1101 (only part of the housing 1101 is shown in FIG. 6 ).
  • the light source 111 is configured to provide an illumination beam (laser beam).
  • the optical machine 112 is configured to use an image signal to modulate the illumination beam provided by the light source 111 to obtain a projection beam.
  • the lens 113 is configured to project the projection light beam on a screen or a wall to form a projection picture.
  • the light source 111 , the light engine 112 and the lens 113 can be assembled in the casing 1101 .
  • the light source 111, the optical engine 112 and the lens 113 may be sequentially connected along the beam propagation direction.
  • the light source 111 , the light engine 112 and the lens 113 can be respectively wrapped by corresponding housings.
  • the corresponding housings of the light source 111 , the optical engine 112 and the lens 113 can support the corresponding optical components and make the optical components meet certain sealing or airtight requirements.
  • the light source 111 can be a monochromatic light source.
  • the light source 111 only emits blue light beams.
  • the light source 111 can also include a fluorescent wheel and/or a color filter wheel. The color conversion is performed to ensure that the light source 111 emits laser beams of different colors in time sequence, for example, beams of three colors of red, green and blue.
  • the light source 111 is a multicolor laser light source, for example, the light source 111 includes a three-color laser chip or three groups of monochromatic lasers integrated in one package component.
  • the three sets of monochromatic lasers may include a set of green lasers, a set of red lasers, and a set of blue lasers.
  • Each set of lasers includes one or more lasers. In this way, the light source 111 can directly emit light beams of three colors of red, green and blue in time sequence.
  • the light source 111 may also be other types of light sources besides lasers.
  • One end of the optical machine 112 is connected to the light source 111 , and the light source 111 and the optical machine 112 are arranged along the outgoing direction of the illumination beam of the projection assembly 110 (refer to the M direction in FIG. 6 ).
  • the other end of the optical machine 112 is connected to the lens 113 , and the optical machine 112 and the lens 113 are arranged along the outgoing direction of the projection beam of the projection assembly 110 (refer to the N direction in FIG. 6 ).
  • the emission direction M of the illumination light beam is substantially perpendicular to the emission direction N of the projection light beam.
  • this connection structure can adapt to the characteristics of the light path of the reflective light valve in the light engine 112 (to be described below), on the other hand, it is also beneficial to shorten the length of the light path in one direction, so that more space can be provided.
  • the components of the projection assembly 110 are arranged.
  • Fig. 7 is a structural diagram of a light source, an optical engine and a lens in a projection assembly according to some embodiments.
  • the illumination beam emitted by the light source 111 enters the light machine 112 .
  • the light engine 112 includes a light valve 1124 .
  • the light valve 1124 is configured to modulate the illumination beam incident thereinto into a projection beam according to an image signal, and direct the projection beam to the lens 113 .
  • Light valve 1124 may be a reflective light valve.
  • the light valve 1124 includes a plurality of micro-reflectors, each corresponding to a pixel in the projected image. For example, according to the projected image to be displayed, the light valve 1124 receives the driving signal converted from the image signal and the irradiation of the three primary colors light from the light source 111, and modulates the three primary colors light beams under the drive of the driving signal to form a projection beam. Projected through a lens onto a projection screen. In this way, the light valve 1124 can modulate the illuminating light beam to obtain the projection light beam, and realize the display of the picture through the projection light beam.
  • the light valve 1124 is a Digital Micromirror Device (DMD).
  • DMD Digital Micromirror Device
  • a digital micromirror device includes a plurality (for example, tens of thousands) of tiny mirrors that can be individually driven to rotate.
  • a plurality of tiny reflective mirrors can be arranged in an array.
  • One tiny mirror for example, each tiny mirror
  • Image signals can be converted into digital codes such as 0 and 1 after processing, and the tiny mirrors can swing in response to these digital codes. Controlling the duration of each tiny reflective mirror in the on state and the off state respectively, to realize the gray scale of each pixel in a frame of image.
  • the digital micromirror device can modulate the illumination light beam, and then realize the display of the projected picture.
  • the light valve 1124 is controlled by a light valve chip.
  • the optical machine 112 is an optical device based on digital light processing (Digital Light Processing, DLP), liquid crystal projection technology (Liquid Crystal Display, LCD), silicon-based liquid crystal (Liquid Crystal on Silicon, LCOS) and other projection technologies. machine.
  • digital light processing Digital Light Processing, DLP
  • liquid crystal projection technology Liquid Crystal Display, LCD
  • silicon-based liquid crystal Liquid Crystal on Silicon, LCOS
  • the projection lens 113 may be a zoom lens, a fixed focus adjustable focus lens or a fixed focus lens.
  • the projection device 100 may be an ultra-short-focus projection device, a short-focus projection device, or a telephoto projection device.
  • the projection lens 113 is an ultra-short-throw projection lens, and the throw ratio of the projection lens 113 is usually less than 0.3, such as 0.24.
  • the first controller 120 refers to a device that can generate an operation control signal to instruct the projection device 100 to execute the control instruction according to the instruction operation code and the timing signal.
  • the first controller 120 may include a central processing unit (Central Processing Unit, CPU), a general-purpose processor, a network processor (Network Processor, NP), a digital signal processor (Digital Signal Processing, DSP), a microprocessor, a microprocessor Controller, Programmable Logic Device (PLD), or any combination thereof.
  • the first controller 120 may also be other devices with processing functions, such as circuits, devices or software devices.
  • the first controller 120 can also be used to control the operation of various components in the projection device 100, so that each component of the projection device 100 operates and realizes various predetermined functions of the projection device. As shown in FIG. 8 , the first controller 120 may be connected with the light valve 1124 for providing a driving signal to the light valve 1124 , and the light valve 1124 drives each micromirror to swing according to the driving signal provided by the first controller 120 .
  • the projection device 100 further includes a remote controller, which has a function of communicating with the first controller 120 , for example, by using infrared rays or other communication methods.
  • the user can perform various controls on the projection device through the remote control to realize the interaction between the user and the projection device 100 .
  • FIG. 9 is a hardware configuration block diagram of a projection device according to some embodiments.
  • the projection device 100 further includes a first camera component 130 , a first communicator 140 , an interface component 150 and a first memory 160 .
  • the first camera component 130 , the first communicator 140 , the interface component 150 and the first memory 160 are respectively connected to the first controller 120 .
  • the first camera component 130 is used to collect images of the environment where the projection device 100 is located.
  • the first camera component 130 includes a camera 1301 and an image recognition device 1302.
  • the camera 1301 is used to take pictures of images within its viewing angle to obtain corresponding images.
  • it can be a monocular camera, or a multi-eye Camera.
  • the image recognition device 1302 may be a dedicated image processing chip connected to the camera 1301, and the image recognition device 1302 is used to recognize the size of the projection screen captured by the camera.
  • the first communicator 140 is configured to establish a communication connection with other network entities, for example, establish a communication connection with a terminal device.
  • the first communicator 140 may include a radio frequency (Radio Frequency, RF) device, a cellular device, a wireless fidelity (Wireless Fidelity, WIFI) device, a GPS device, and the like.
  • RF Radio Frequency
  • the RF device may be used for receiving and sending signals, for example, sending received information to the first controller 120 for processing.
  • the signal generated by the first controller 120 is sent out.
  • the RF device may include but not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (Low Noise Amplifier, LNA), a duplexer, and the like.
  • the projection device 100 can interact with other devices through the first communicator 140 , such as receiving images to be projected sent by other terminal devices or base stations.
  • the first communicator 140 can be used for connection between the projection device and other terminal devices or base stations, so as to receive and send signals, and can transmit the received data to the first controller 120 for processing.
  • the projection device 100 may also receive the control instruction sent by the terminal device through the first communicator 140 , and execute corresponding processing according to the control instruction, so as to realize the interaction between the user and the projection device 100 .
  • the interface component 150 is used to provide various interfaces for external input or output devices (such as keyboard, mouse, external display, external memory, Subscriber Identity Module (SIM), etc.). For example, it is connected with a mouse or a monitor through a Universal Serial Bus (USB) interface, through the metal contacts on the card slot of the subscriber identification module card and the subscriber identity module card provided by the operator, and through the first communicator
  • USB Universal Serial Bus
  • the interface of the 140, the interface of the near field communication (Near Field Communication, NFC) device, the interface of the bluetooth module, etc. realize the communication function with other terminals.
  • the first memory 160 can be used to store software programs and data.
  • the first controller 120 executes various functions of the projection apparatus 100 and data processing by executing software programs or data stored in the first memory 160 .
  • the first memory 160 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage devices.
  • the first memory 160 stores an operating system enabling the projection apparatus 100 to operate.
  • the first memory 160 may store an operating system and various application programs, and may also store codes for executing the method for adjusting the brightness of the projection device provided by the embodiments of the present disclosure.
  • the projection device 100 further includes an audio circuit, a speaker, a microphone, Bluetooth, a Near Field Communication (NFC) device, and the like.
  • an audio circuit a speaker, a microphone, Bluetooth, a Near Field Communication (NFC) device, and the like.
  • NFC Near Field Communication
  • FIG. 9 does not constitute a limitation to the projection device, and the projection device may include more or less components than shown in the figure, or combine certain components, or arrange different components. .
  • Fig. 11 is an application scenario diagram of a projection device according to some embodiments. As shown in FIG. 11 , the application scenario includes a projection device 100 , a projection screen 200 and a terminal device 300 .
  • the application scenario includes multiple terminal devices 300 .
  • the terminal device 300 may be any form of mobile terminal.
  • mobile phones such as mobile phones, tablet computers, desktop computers, laptop computers, handheld computers, notebook computers, ultra-mobile personal computers (Ultra-Mobile Personal Computer, UMPC), netbooks, and cellular phones, personal digital assistants (Personal Digital Assistant, PDA ), augmented reality (Augmented Reality, AR) or virtual reality (Virtual Reality, VR) equipment, etc.
  • PDA Personal Digital Assistant
  • augmented reality Augmented Reality
  • VR Virtual Reality
  • the general hardware architecture of the mobile phone will be described below with reference to FIG. 11 .
  • Fig. 12 is a hardware architecture diagram of a mobile phone according to some embodiments.
  • the mobile phone includes a second controller 301, a radio frequency (RF) circuit 302, a second memory 303, a touch screen 304, a second communicator 305, a second camera assembly 306, a Wi-Fi device 307, and a positioning device 308 , audio circuit 309 and power supply device 310 and other components. These components may communicate over one or more communication buses or signal lines.
  • RF radio frequency
  • the hardware structure shown in FIG. 12 does not limit the mobile phone, and the mobile phone may include more or less components than shown in the figure, or combine some components, or arrange different components.
  • the second controller 301 is the control center of the mobile phone. It uses various interfaces and lines to connect various parts of the mobile phone, and runs or executes the application program (Application, hereinafter referred to as App) stored in the second memory 303, and calls the application program stored in the mobile phone.
  • App application program
  • the data in the second memory 303 executes various functions of the mobile phone and processes data.
  • the second controller 301 may include one or more processing components.
  • the terminal device 300 has uploaded and downloaded an APP capable of controlling the projection device, as shown in FIG. , "Projection APP", “Weather”, “Photos” and “Others” and other application icons.
  • the user may enter the control interface of the projection APP by clicking the application icon of "projection APP" displayed on the display of the terminal device.
  • the terminal device controls the display to display the control interface of the projection APP in response to the user's operation of clicking the application icon of the "projection APP".
  • the control interface of the projection APP can display function options such as "power on”, “power off”, “screen model selection”, “screen size selection” and “others”.
  • the terminal device receives the user's operation of clicking the function option of the "screen model selection” function, and responds to the operation , control the monitor to display the control interface of "screen model selection".
  • Various models of projection screens can be displayed on the control interface of "screen model selection” for the user to choose, such as model one, model two, model three, and so on.
  • the model data of different projection screens can be stored in the first memory 160 and the second memory 303 , and when a new model of the projection screen appears, the projection APP and the projection device 100 can update the stored related data in time.
  • the terminal device 300 receives the user's operation of clicking the function option of the "screen size selection” function, and responds to this To operate, control the monitor to display the control interface of "Screen Size Selection".
  • the control interface of "screen size selection” can display two options of "+” and “—”, “+” corresponds to increase the screen size, and “—” corresponds to decrease the screen size.
  • the rectangle between "+” and “—” is used to display the screen size selected by the user, for example, 70 inches.
  • the radio frequency circuit 302 can be used for receiving and sending wireless signals during sending and receiving information or talking.
  • the radio frequency circuit 302 may receive the downlink data from the base station, send it to the second controller 301 for processing, and send the uplink data to the base station.
  • radio frequency circuitry includes, but is not limited to, an antenna, at least one amplifier, transceiver, coupler, low noise amplifier, duplexer, and the like.
  • the radio frequency circuit 302 can also communicate with other devices through wireless communication.
  • the wireless communication may use any communication standard or protocol, including but not limited to Global System for Mobile Communications, General Packet Radio Service, Code Division Multiple Access, Wideband Code Division Multiple Access, Long Term Evolution, Email, Short Message Service, etc.
  • the second memory 303 is used to store application programs and data, and the second controller 301 executes various functions and data processing of the mobile phone by running the application programs and data stored in the second memory 303 .
  • the second memory 303 mainly includes a storage program area and a storage data area, and the storage program area can store an operating system, at least one function (such as a sound playback function, an image playback function, etc.) The data created at the time (such as audio data, phone book, etc.).
  • the second memory 303 may include a high-speed random access memory, and may also include a non-volatile memory, such as a magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the touch screen 304 may include a touchpad 304-1 and a display 304-2.
  • the touch panel 304-1 can collect touch events of the user of the mobile phone on or near it (for example, the user uses any suitable object such as a finger, a stylus, etc. on the touch panel 304-1 or near the touch panel 304-1 operation), and send the collected touch information to other devices, such as the second controller 301.
  • the second communicator 305 is used to establish a communication connection with other network entities, for example, establish a communication connection with other terminal devices.
  • the second communicator 305 is used to establish a communication connection with the projection device 100 .
  • the second camera component 306 may be a camera (a front camera and/or a rear camera), configured to take images of the environment where the terminal device is located.
  • the Wi-Fi device 307 is used to provide the mobile phone with network access following Wi-Fi-related standard protocols, and the mobile phone can be connected to a Wi-Fi access point through the Wi-Fi device 307, thereby helping users to send and receive emails and browse web pages And access to streaming media, etc., it provides users with wireless broadband Internet access.
  • the Wi-Fi device 307 can also serve as a Wi-Fi wireless access point, and can provide Wi-Fi network access for other terminals.
  • the positioning device 308 is configured to provide a geographic location for the mobile phone. It can be understood that the positioning device 308 may specifically be a receiver of a positioning system such as a Global Positioning System (Global Positioning System, GPS) or a Beidou satellite navigation system, or a GLONASS (GLONASS for short).
  • a positioning system such as a Global Positioning System (Global Positioning System, GPS) or a Beidou satellite navigation system, or a GLONASS (GLONASS for short).
  • the audio circuit 309, the speaker 311, and the microphone 312 can provide an audio interface between the user and the mobile phone.
  • the audio circuit 309 can transmit the electrical signal converted from the received audio data to the speaker 311, and the speaker 311 converts it into an audio signal for output.
  • the microphone 312 converts the collected sound signal into an electrical signal, which is converted into audio data after being received by the audio circuit 309, and then the audio data is output to the RF circuit 302 to be sent to another mobile phone, or the audio data is output to Second storage 303 for further processing.
  • the mobile phone can also include a power supply device 310 (such as a battery and a power management chip) for supplying power to various components, and the battery can be logically connected to the second controller 301 through the power management chip, so as to manage charging, discharging, and power consumption through the power supply device. and other functions.
  • a power supply device 310 such as a battery and a power management chip
  • the battery can be logically connected to the second controller 301 through the power management chip, so as to manage charging, discharging, and power consumption through the power supply device. and other functions.
  • the present disclosure provides a projection display method, which is applied to the first controller 120 of the above-mentioned projection device 100, and the method includes the following steps:
  • Step S10 acquiring parameter information of the target projection screen.
  • the target projection screen is the projection screen that the user will currently watch.
  • the parameter information of the target projection screen includes the screen gain of the target projection screen and/or the size of the target projection screen.
  • Step S20 determining the screen display brightness of the target projection screen according to the parameter information of the target projection screen.
  • Step S30 performing brightness mapping on the high dynamic range image to be displayed according to the screen display brightness of the target projection screen, and then displaying the image.
  • the parameter information of the target projection screen includes the screen gain of the target projection screen, as shown in FIG. 17 , the projection display method further includes:
  • Step S101 acquire the screen gain of the target projection screen.
  • Step S201 Determine the screen display brightness of the target projection screen according to the screen gain of the target projection screen and a predetermined correspondence between the screen gain of the projection screen and the screen display brightness.
  • Step S30 performing brightness mapping on the high dynamic range image to be displayed according to the screen display brightness of the target projection screen, and then displaying the image.
  • the screen gain and screen display brightness of the target projection screen may be stored in the first memory 160 as default screen gain and default screen display brightness, respectively.
  • step S101 further includes the following steps:
  • Step S1011 receiving a user's selection instruction on the model of the target projection screen.
  • the first controller 120 may receive an instruction from the user to select the model of the target projection screen.
  • the selection command indicates the model of the target projection screen.
  • the first controller 120 receiving the user's selection instruction for the model of the target projection screen may include one or more of the following situations.
  • the first controller 120 may receive an instruction for selecting the model or size of the target projection screen sent to the projection device 100 by the user through the remote control of the projection device 100 .
  • the user may send an instruction to the projection device to select the model of the target projection screen by operating the remote control of the projection device, and then the first controller 120 receives the user's instruction to select the model of the target projection screen.
  • the first controller 120 may receive, through the first communicator 140 , an instruction for selecting the model of the target projection screen sent by the user to the projection device 100 through the terminal device 300 .
  • the user selects and clicks the function option of the "screen model selection" function through the projection APP on the terminal device 300 to select the model of the target projection screen.
  • the terminal device 300 After receiving the user's selection instruction for the model, the terminal device 300 sends the selection instruction of the model to the projection device 100 .
  • the first controller 120 receives the selection instruction through the first communicator 140 .
  • Step S1012 in response to the selection instruction, determine the model of the target projection screen.
  • the first controller 120 determines the model of the target projection screen.
  • step S101 also includes:
  • Step S1013 Determine the screen gain of the target projection screen according to the corresponding relationship between the model of the target projection screen and the screen gain.
  • Different projection screen models correspond to a screen gain, and the default screen gain of the projection screen is the default screen gain.
  • the corresponding relationship between different projection screen models and screen gains satisfies the following table:
  • S _default represents the model of the default projection screen
  • S 1 ⁇ S n represents the models of n projection screens other than the default projection screen
  • G _default represents the screen gain of the default projection screen
  • G 1 ⁇ G n represents the model of n projection screens other than the projection screen Screen gain for n projection screens.
  • n is a positive integer greater than or equal to one.
  • the projection device when the projection brightness of the projection device is set to the maximum value, for example, the projection device can adjust the brightness of the light source, and when the brightness of the light source of the projection device is set to the maximum value, the projection screen can display maximum screen display brightness.
  • Maximum screen display brightness is characterized by screen gain and size. At this time, the screen display brightness of the target projection screen can be determined according to the following steps.
  • Step S2011 Determine the screen display brightness of the target projection screen according to the corresponding relationship between the screen gain of the target projection screen and the screen display brightness.
  • the projection brightness of the projection device is set to the maximum value.
  • different screen display brightness values can be used to try, so that The maximum screen display brightness corresponding to different screen gains is determined, that is, after brightness mapping is performed according to the screen display brightness, the obtained brightness change trend curve matches the standard EOTF curve.
  • G _default represents the screen gain of the default projection 1 screen
  • G 1 ⁇ G n represents the screen gain of n projection screens other than the projection screen
  • B _default represents the default screen display brightness corresponding to the screen gain of the default projection screen
  • B 1 ⁇ B n represents the maximum screen display brightness corresponding to n kinds of screen gains of n projection screens except the screen gain of the default projection screen.
  • n is a positive integer greater than or equal to one.
  • the corresponding relationship in Table 2 is obtained through multiple experiments and tests. After using the screen display brightness in the above table to map the brightness of the HDR image displayed on the corresponding projection screen, it can better match the EOTF curve and improve the quality experience.
  • the projection brightness of the default projection device when the projection brightness of the default projection device is at the maximum value, after the model of the target projection screen is obtained, firstly, according to the model of the target projection screen and the predetermined corresponding relationship between the model of the projection screen and the screen gain , to determine the screen gain corresponding to the target projection screen. Then according to the screen gain corresponding to the target projection screen and the corresponding relationship between the screen gain and the screen display brightness, determine the screen display brightness corresponding to the target projection screen, thereby obtaining the screen display brightness suitable for brightness mapping of the target projection screen, so that according to the screen display The luminance change trend after luminance mapping is more consistent with the standard EOTF curve.
  • the screen display brightness at this time is the maximum screen display brightness of the projection screen.
  • step S1013 after determining the screen gain of the target projection screen in step S1013, the following steps are further included:
  • Step S2012 determining a first brightness adjustment parameter according to the screen gain of the target projection screen and the screen gain of the default projection screen.
  • the screen display brightness of the default projection screen can be the initial screen display brightness preset by the projection device when it leaves the factory, or it can be set by the user of the projection device during the use of the projection device, or it can be set by the projection device according to the user's input.
  • One or more parameters are determined by themselves, such as 300nit.
  • the screen display brightness of the default projection screen may also be the maximum display brightness of the projection device.
  • the brightness of the screen display is positively correlated with the screen gain. That is, when the screen gain increases, the screen display brightness corresponding to the projection screen also increases correspondingly; when the screen gain decreases, the screen display brightness corresponding to the projection screen also decreases correspondingly. This is consistent with the law of actual image display.
  • the projection brightness of the projection equipment remains unchanged. When a projection screen with a large screen gain is used, the projection screen has a stronger ability to reflect light, so the light that the human eye can receive is better.
  • the brightness of the displayed image at this time is higher, so the current screen display brightness will increase accordingly; when a projection screen with a smaller screen gain is used, the ability of the projection screen to reflect light is better Weak, so the human eye can receive less light, reflecting a darker image, and the brightness of the displayed image at this time is lower, so the current screen display brightness will also decrease accordingly.
  • the screen gain and the screen display brightness basically satisfy a linear relationship.
  • the first brightness adjustment parameter can be determined using the following formula (1):
  • X n is the first brightness adjustment parameter
  • G n is the screen gain of the target projection screen
  • G_default represents the screen gain of the default projection screen.
  • the screen gain of the default projection screen can be the screen gain of the initial projection screen preset by the projection device at the factory, or it can be set by the user of the projection device during the use of the projection device, such as 1.2.
  • Step S2013 according to the first brightness parameter and the screen display brightness of the default projection screen, determine the screen display brightness of the target projection screen.
  • the screen display brightness of the target projection screen can be determined using the following formula (2):
  • B n is the screen display brightness of the target projection screen
  • X n is the first brightness adjustment parameter in formula (2)
  • B_default represents the screen display brightness of the default projection screen.
  • the screen gain of the target projection screen can be obtained according to the corresponding relationship between the model of the projection screen and the screen gain, and the screen gain of the default projection screen and the default screen display brightness are known values, so the target projection screen can be calculated according to the above formula Corresponding screen display brightness.
  • 120nit is input to the first controller 120 as the screen display brightness value, and then the first controller 120 can make the brightness change trend curve match the standard EOTF curve after the first controller 120 automatically performs brightness mapping according to the screen display brightness value (as shown in FIG. 1 ). , so as to avoid the problem of loss of details in the dark field when the image is displayed.
  • Input 450nit as the screen display brightness value to the first controller 120 then the first controller 120 can make the brightness change trend curve match the standard EOTF curve (as shown in Figure 1) after automatically performing brightness mapping according to the screen display brightness value , so as to avoid the problem of highlight saturation when the image is displayed.
  • the screen display brightness of the default projection screen can be used as the screen display brightness of the target projection screen, and then the screen display brightness of the default projection screen Image display is performed after brightness mapping is performed on the high dynamic range image to be displayed.
  • the projection device provided in this embodiment can be matched with different projection screens, and the screen gain of each projection screen is different.
  • this embodiment first obtains the model of the target projection screen, and then determines the corresponding relationship between the projection screen model and the screen display brightness.
  • the screen display brightness corresponding to the target projection screen, so that the HDR image to be displayed is used for brightness mapping to make it adapt to the target projection screen, which can display dark field details and avoid the problem of highlight saturation, and give full play to the HDR image Advantage.
  • the screen display brightness of the default projection screen can be directly used as the screen display brightness of the target projection screen, and then the default projection screen
  • the screen display brightness of the screen performs image display after performing brightness mapping on the high dynamic range image to be displayed. Therefore, as shown in FIG. 20 , after obtaining the screen gain of the target projection screen in step S101, it also includes:
  • Step S40 judging whether the acquired screen gain of the target projection screen is a default screen gain. If yes, execute step S50; if not, execute step S201.
  • Step S50 determining that the default screen display brightness is the screen display brightness of the target projection screen, and performing brightness mapping on the high dynamic range image to be displayed according to the default screen display brightness before displaying the image.
  • the parameter information of the target projection screen also includes the size of the target projection screen
  • the projection display method further includes the following steps:
  • Step S102 acquiring the size of the target projection screen.
  • Step S202 acquiring screen display brightness of the target projection according to the size of the target projection. For example, the following steps S2021 and S2022 are included:
  • Step S2021 determining a second brightness adjustment parameter according to the size of the target projection screen and the size of the default projection screen.
  • Step S2022 Determine the screen display brightness of the target projection screen according to the second brightness adjustment parameter and the screen display brightness of the default projection screen.
  • Step S30 perform brightness mapping on the high dynamic range image to be displayed according to the screen display brightness of the target projection screen, and then display the image.
  • the acquired target projection screen size and screen display brightness may also be stored in the first memory 160 as the default projection screen size and default screen display brightness.
  • the method for obtaining the size of the target projection screen in step S102 includes:
  • Step S1021 receiving a user's selection instruction on the size of the target projection screen.
  • the first controller 120 may receive an instruction from the user to select the size of the target projection screen.
  • the selection instructions indicate the size of the target projection screen.
  • receiving the user's selection instruction on the size of the target projection screen by the first controller 120 may include one or more of the following situations.
  • the first controller 120 may receive an instruction for selecting the size of the target projection screen sent by the user to the projection device through the remote control of the projection device 100 .
  • the user may send an instruction for selecting the size of the target projection screen to the projection device by operating the remote control of the projection device 100 , and then the first controller 120 receives the user's instruction for selecting the size of the target projection screen.
  • the first controller 120 may receive, through the first communicator 140 , an instruction for selecting the size of the target projection screen sent by the user to the projection device 100 through the terminal device 300 .
  • the user selects and clicks the function option of the "screen size selection" function through the projection APP on the terminal device 300 to select the size of the target projection screen.
  • the terminal device 300 After receiving the user's selection instruction on the size, the terminal device 300 sends the size selection instruction to the projection device 100 .
  • the first controller 120 receives the selection instruction of the size through the first communicator 140 .
  • Step S1022 in response to the selection instruction, determine the size of the target projection screen.
  • the first controller 120 determines the size of the target projection screen.
  • the method for obtaining the size of the target projection screen in step S102 further includes the following steps:
  • Step S1023 photographing the target projection screen to acquire an image of the target projection screen.
  • the projection device 100 can be configured with a first camera assembly 130, and the first controller 120 can take pictures of the target projection screen through the camera 1301 of the first camera assembly 130. , to get the image of the target projection screen.
  • the first controller 120 when the projection device receives a power-on command from the user, the first controller 120 responds to the power-on command and controls the projection component to photograph the target projection screen to obtain an image of the target projection screen.
  • the projection device may be configured with different projection screens. If the user chooses to switch the projection screen currently in use, when the projection device receives an instruction from the user to switch the projection screen, the first controller 120 responds to the switch projection screen instruction and controls the first projection component to shoot the target projection screen to obtain the target projection screen. The image of the projection screen.
  • Step S1024 according to the image of the target projection screen, determine the size of the target projection screen.
  • the projection device After the projection device obtains the image of the target projection screen, it can identify the size of the image of the target projection screen through the image recognition device of the first camera assembly, so as to determine the size of the target projection screen.
  • the image recognition device of the first camera component 130 is pre-configured with a trained projection screen size recognition model. After the camera 1301 of the first camera component 130 acquires the image of the target projection screen, the first camera component The image recognition device at 130 can input the image of the target projection screen into the trained projection screen size recognition model to obtain the size of the target projection screen, and then send the obtained size of the target projection screen to the first controller 120 .
  • the projection screen size recognition model can be implemented by various algorithms. For example, using the support vector machine algorithm (Support Vector Machine, SVM), gradient boosting iterative decision tree algorithm (Gradient Boosting Decision Tree, GBDT), random forest algorithm (Random Forest, RF), etc. to obtain the traditional projection screen based on machine learning algorithm
  • the size recognition model can also use Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-Term Memory (LSTM) to obtain a model based on deep learning.
  • CNN Convolutional Neural Networks
  • RNN Recurrent Neural Networks
  • LSTM Long Short-Term Memory
  • the deep convolutional neural network can automatically extract and learn the more essential features in the massive training data. Applying the deep convolutional neural network to the identification of the projection screen size will significantly enhance the classification effect , and further improve the accuracy of projection screen size recognition.
  • Step S2021 determining a second brightness adjustment parameter according to the size of the target projection screen and the size of the default projection screen.
  • the size of the default projection screen can be the size of the initial projection screen preset by the projection device when it leaves the factory, or it can be set by the user who owns the projection device during the use of the projection device, or it can be set by the user according to the size of the projection device during use.
  • Screen size from image recognition For example 100 inches.
  • the second brightness adjustment parameter satisfies the following formula (3):
  • Y n is the second brightness adjustment parameter
  • S_default is the size of the default projection screen
  • S n is the size of the target projection screen
  • n is a positive integer greater than or equal to one.
  • the quotient of the size of the target projection screen and the size of the default projection screen may also be used as the second brightness adjustment parameter.
  • Step S2022 Determine the screen display brightness of the target projection screen according to the second brightness adjustment parameter and the screen display brightness of the default projection screen.
  • the screen display brightness of the target projection screen can be determined using the following formula (4):
  • B n ' is the screen display brightness of the target projection screen
  • B_default is the screen display brightness of the default projection screen
  • Y n is the second brightness adjustment parameter obtained in the above step S2021.
  • projection screens of different sizes may correspond to different screen display brightnesses.
  • S_default of the projection screen is 300 nit
  • Table 3 is a screen gain and other parameters provided by the present disclosure according to some embodiments.
  • the size of the target projection screen Screen display brightness of the target projection screen S_default 300nit S 1 300nit*Y 1 S 2 300nit*Y 2 S 3 300nit*Y 3 S 4 300nit*Y 4 ... ... S n 300nit*Y n
  • the size of the projection screen is negatively correlated with the screen brightness of the projection screen, that is, the larger the size of the projection screen, the larger the screen brightness of the projection screen.
  • the lower the display brightness For example, take the default projection screen size corresponding to the projection device as 100 inches, and the screen display brightness of the default projection screen as 300 nit as an example. Assuming that the default projection screen corresponding to the projection device has been switched, and the size of the switched target projection screen is 200 inches, then according to the above formula (3) and formula (4), it can be obtained that the screen display brightness of the target projection screen is 75 nit, which is also That is, the larger the size of the projection screen, the lower the screen display brightness of the projection screen.
  • Step S30 performing brightness mapping on the high dynamic range image to be displayed according to the screen display brightness of the target projection screen, and then displaying the image.
  • the image display may be performed after performing brightness mapping on the high dynamic range image to be displayed according to the screen display brightness of the target projection screen.
  • the brightness mapping of the high dynamic range image to be displayed is no longer carried out with the display brightness of the default projection screen, and then the image display is performed, so that the image display of the high dynamic range image processed by brightness mapping through the screen display brightness of the target projection screen can be compared with
  • the current projection screen that is, the target projection screen
  • the current projection screen is more adaptable, so that the luminance change trend after luminance mapping can better match the standard EOTF curve.
  • the screen display brightness of the default projection screen can be directly used as the screen display brightness of the target projection screen, and then the default The screen display brightness of the projection screen performs image display after performing brightness mapping on the high dynamic range image to be displayed. Therefore, as shown in FIG. 24, after obtaining the size of the target projection screen in step S102, the following steps are also included:
  • Step S60 judging whether the acquired size of the target projection screen is the default projection screen size. If yes, execute step S111; if not, execute step S202.
  • Step S70 determining that the default screen display brightness is the screen display brightness of the target projection screen, and performing brightness mapping on the high dynamic range image to be displayed according to the default screen display brightness before displaying the image.
  • the projection device provided in the embodiments of the present disclosure, on the one hand, obtains The screen gain of the target projection screen is easy to understand. If the screen gain of the target projection screen is inconsistent with the screen gain of the default screen, that is to say, the target projection screen is not the default screen. It is necessary to determine the screen display brightness of the target projection screen, and the projection screen There is a corresponding relationship between the screen gain of the screen and the screen display brightness.
  • the first brightness adjustment parameter can be determined according to the correspondence table or the screen gain of the target projection screen and the screen gain of the default projection screen, and then according to the first brightness adjustment parameter and the default
  • the screen display brightness of the projection screen determines the screen display brightness of the target projection screen. After determining the screen display brightness of the target projection screen, and performing brightness mapping on the high dynamic range image to be displayed according to the screen display brightness of the target projection screen, the first controller 120 controls the projection component 110 to display the image.
  • the second brightness adjustment parameter can be determined according to the size of the target projection screen and the size of the default projection screen, and then according to the second brightness adjustment parameter and the screen display brightness of the default projection screen, Determine the screen display brightness of the target projection screen.
  • the first controller 120 uses the determined screen display brightness of the target projection screen to perform brightness mapping on the high dynamic range image to be displayed instead of the default display brightness of the projection screen.
  • Luminance mapping of high dynamic range images improves the matching of luminance trends with standard electro-optic transfer function curves.
  • the embodiments of the present disclosure provide hardware structures and/or software devices corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present invention.
  • the embodiments of the present disclosure may divide the first controller 120 into functional modules according to the above method example, for example, each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the division of modules in this embodiment of the present application is schematic, and is only a logical function division, and there may be another division manner in actual implementation.
  • the controller 3000 includes a processor 3001 , and optionally, a memory 3002 connected to the processor 3001 and a communication interface 3003 .
  • the processor 3001 , the memory 3002 and the communication interface 3003 are connected through a bus 3004 .
  • the processor 3001 can be a central processing unit (Central Processing Unit, CPU), a general-purpose processor, a network processor (Network Processor, NP), a digital signal processor (Digital Signal Processing, DSP), a microprocessor, a microcontroller, a Programmable Logic Device (PLD) or any combination of them.
  • the processor 3001 may also be any other device with processing functions, such as a circuit, device or software device.
  • the processor 3001 may also include multiple CPUs, and the processor 3001 may be a single-core (Single-CPU) processor or a multi-core (Multi-CPU) processor.
  • a processor herein may refer to one or more devices, circuits, or processing cores for processing data such as computer program instructions.
  • the memory 3002 may be a read-only memory (Read-Only Memory, ROM) or other types of static storage devices that can store static information and instructions, a random access memory (Random Access Memory, RAM) or other types that can store information and instructions It can also be an electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), a compact disc (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be programmed by a computer
  • ROM read-only memory
  • RAM Random Access Memory
  • EEPROM Electrically erasable programmable Read-only memory
  • CD-ROM Compact Disc Read-Only Memory
  • optical disc storage including compact discs, laser discs, optical disc
  • the memory 3002 may exist independently, or may be integrated with the processor 3001.
  • Computer program code may be contained in memory 3002 .
  • the processor 3001 is configured to execute the computer program code stored in the memory 3002, so as to implement the projection display method provided by the embodiment of the present disclosure.
  • the communication interface 3003 can be used to communicate with other devices or communication networks (such as Ethernet, Radio Access Network (Radio Access Network, RAN), Wireless Local Area Networks (Wireless Local Area Networks, WLAN), etc.).
  • the communication interface 3003 may be a device, a circuit, a transceiver or any device capable of realizing communication.
  • the bus 3004 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (Extended Industry Standard Architecture, EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus 3004 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 25 , but it does not mean that there is only one bus or one type of bus.
  • An embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium includes computer-executable instructions, and when the computer-executable instructions are run on the computer, the computer is made to execute the methods provided in the above-mentioned embodiments.
  • An embodiment of the present invention also provides a computer program product, which can be directly loaded into a memory and contains software codes. After being loaded and executed by a computer, the computer program product can implement the methods provided in the above embodiments.
  • the functions described in the present invention may be implemented by hardware, software, firmware or any combination thereof.
  • the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage media may be any available media that can be accessed by a general purpose or special purpose computer.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other division methods in actual implementation.
  • a plurality of units or components may be combined or may be integrated into another device, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separated, and a component shown as a unit may be one physical unit or multiple physical units, which may be located in one place or distributed to multiple different places. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units. If an integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium Among them, several instructions are included to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (Processor) execute all or part of the steps of the method described in each embodiment of the present invention.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种投影设备及其投影显示方法,所述投影设备包括光源、光机、镜头、投影屏幕和控制器。所述投影屏幕位于所述镜头的出光侧,被配置为反射所述投影光束以实现画面的显示。所述控制器与所述光机耦接,所述控制器被配置为:获取目标投影屏幕的参数信息;根据所述目标投影屏幕的参数信息,确定所述目标投影屏幕的屏幕显示亮度;根据所述目标投影屏幕的屏幕显示亮度,对待显示的图像进行亮度映射后进行图像显示。

Description

投影设备及其投影显示方法
本申请要求于2021年11月30日提交的、申请号为202111436976.X的中国专利申请的优先权,于2022年3月30日提交的、申请号为202210332154.5的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及投影技术领域,尤其涉及一种投影设备及其投影显示方法。
背景技术
随着投影显示产品的普及,投影设备的应用也越来越广泛,其主要工作场景为教学、演示、娱乐、工作等。为了优化投影设备的显示效果,投影设备可以搭配高动态范围(High Dynamic Range,HDR)技术进行图像显示。HDR技术可以拓展显示图像的亮度范围,展现显示图像中的亮部细节和暗部细节,为显示图像带来更丰富的色彩和更生动自然的细节表现,从而使得显示图像更接近人眼所见。
目前投影设备和投影屏幕是分离的,并且为了提高产品的通用化,以及用户的不同使用场景,一台投影设备可以搭配不同的投影屏幕。
发明内容
一方面,提供一种投影设备,所述投影设备包括光源、光机、镜头、投影屏幕和控制器。所述光源被配置为提供照明光束。所述光机被配置为利用图像信号对所述光源提供的照明光束进行调制以获得投影光束。所述镜头被配置为将所述投影光束投射,所述光源、所述光机和所述镜头沿着光束传播方向依次连接。所述投影屏幕位于所述镜头的出光侧,被配置为反射所述投影光束以实现画面的显示。所述控制器与所述光机耦接,所述控制器被配置为:获取目标投影屏幕的参数信息;根据所述目标投影屏幕的参数信息,确定所述目标投影屏幕的屏幕显示亮度;根据所述目标投影屏幕的屏幕显示亮度,对待显示的图像进行亮度映射后进行图像显示。
另一方面,提供一种投影设备的投影显示方法,所述投影设备包括投影屏幕,所述投影屏幕被配置为显示投影图像,所述投影显示方法包括:获取目标投影屏幕的型号或尺寸;根据所述目标投影屏幕的型号和默认投影屏幕的型号,或者,根据所述目标投影屏幕的尺寸和默认投影屏幕的尺寸,确定所述目标投影屏幕的屏幕显示亮度;根据所述目标投影屏幕的屏幕显示亮度,对待显示的图像进行亮度映射后进行图像显示。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种亮度变化趋势与标准EOTF曲线的对比图;
图2为根据一些实施例的另一种亮度变化趋势与标准EOTF曲线的对比图;
图3为根据一些实施例的又一种亮度变化趋势与标准EOTF曲线的对比图;
图4为根据一些实施例的一种投影系统的组成图;
图5为根据一些实施例的一种投影设备的结构图;
图6为根据一些实施例的一种投影组件的结构图;
图7为根据一些实施例的投影组件中光源、光机和镜头的一种结构图;
图8为根据一些实施例的另一种投影组件的结构图;
图9为根据一些实施例的一种投影设备的硬件配置框图;
图10为根据一些实施例的一种摄像组件的组成图;
图11为根据一些实施例的一种投影设备的应用场景图;
图12为根据一些实施例的一种手机的硬件架构图;
图13为根据一些实施例的一种终端设备的显示界面图;
图14为根据一些实施例的另一种终端设备的显示界面图;
图15为根据一些实施例的又一种终端设备的显示界面图;
图16为根据一些实施例的一种投影显示方法的流程图;
图17为根据一些实施例的另一种投影显示方法的流程图;
图18为根据一些实施例的又一种投影显示方法的流程图;
图19为根据一些实施例的又一种投影显示方法的流程图;
图20为根据一些实施例的又一种投影显示方法的流程图;
图21为根据一些实施例的又一种投影显示方法的流程图;
图22为根据一些实施例的又一种投影显示方法的流程图;
图23为根据一些实施例的又一种投影显示方法的流程图;
图24为根据一些实施例的又一种投影显示方法的流程图;
图25为根据一些实施例的一种控制器的硬件结构图;
附图标记:
100、投影设备;110、投影组件;111、光源;112、光机;1121、光导管;1122、透镜组件;1123、反射镜;1124、光阀;1125、棱镜组件;113、镜头;1101、壳体;120、第一控制器;130、第一摄像组件;1301、摄像头;1302、图像识别装置;140、第一通信器;150、接口组件;160、第一存储器;
200、投影屏幕;
300、终端设备;301、第二控制器;302、射频电路;303、第二存储器;304、触摸屏;304-1、触控板;304-2、显示器;305、第二通信器;306、第二摄像组件;307、Wi-Fi装置;308、定位装置;309、音频电路;310、电源装置。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
一般情况下,投影设备主要包括两种显示形式,一种是采用单色激光器配合色轮进行分时显示,另外一种是采用三色激光器进行三基色显示。由于人眼的视觉惰性,会将高速交替照射在同一像素点上的基色混合叠加而观看到彩色。
激光投影设备,尤其是具有三色激光光源的投影设备,在显示效果如亮度和色彩呈现方面的要求比普通投影产品的要求要高的多。为了实现更优异的显示效果,在图像信号的处理阶段,激光投影设备采用液晶显示的一些图像处理技术,例如高动态范围(High Dynamic Range,HDR)技术,进行图像显示,这些图像处理技术不完全适用激光投影设备。
HDR图像经处理器处理的时候,理论上是可以以完整的电光转换函数(Electro-Optical Transfer Function,简称EOTF)曲线对HDR图像进行还原,但是考虑到屏幕的显示亮度的实际情况,很多HDR图像在后期制作时,HDR图像的最大亮度并不会以10000尼特(nit)来制作,往往会被制作成1000nit至4000nit。同时由于大部分屏幕的最大显示亮度主要集中在1000nit以下,并且信号处理主要为标准动态范围(Standard Dynamic Range,SDR)方式。因此在进行图像显示之前,需要对HDR图像进行亮度映射(Tone Mapping),即将HDR图像的亮度范围映射至屏幕可以显示的亮度范围,使得到的亮度变化趋势(也可以称作亮度映射曲线)与EOTF曲线匹配。例如,与标准EOTF(ST2084)曲线进行匹配,以达到最好的显示效果。
激光投影技术可以根据图像信号对光源发出的光束进行调制,调制后的光束由镜头出射至光学屏幕上。由于一般光学屏幕由多层膜片组成,对于光束具有不同的增益程度。而HDR技术是在图像信号层面的处理,并且是根据液晶显示屏的一些参数考虑制定的。因此若直接将按照传统的HDR技术设定的参数作用于图像信号,根据图像信号获得的投影光束经过光学膜片的投射和反射后,实际显示的画面对比度和亮度会发生变化,容易导致整个画面的显示效果无法达到预期。
并且在激光投影技术中,相比于传统的白塑幕布或者漫反射的白墙,在光学屏幕上投影有助于对投影画面进行亮度和色彩的还原。但是即使都是菲涅尔屏幕,不同厂家或批次的光学膜片的材质、多层光学膜片的层叠组合,以及菲涅尔微结构的角度,偏心半径等些因素都会对投影屏幕的增益参数产生影响。因此,不同投影屏幕的显示效果也不相同。
默认情况下,投影设备在进行图像显示之前对HDR图像的亮度映射过程均按照默认投影屏幕的屏幕显示亮度进行亮度映射,然而当切换投影屏幕的型号或尺寸时,由于不同型号投影屏幕的屏幕增益并不相等,而且不同尺寸的投影屏幕的屏幕显示亮度变化较大,若仍采用默认投影屏幕的屏幕显示亮度进行亮度映射,并不能与标准的EOTF曲线匹配,从而造成暗场细节丢失或高亮度饱和的问题,无法发挥出HDR技术的优势,影响用户的观看体验。
通常,在屏幕尺寸等影响因素保持不变的前提下,屏幕增益越大,则投影屏幕对光线 的反射能力越强,用户在正视角下观看到的图像越明亮;屏幕增益越小,则投影屏幕对光线的反射能力越弱,但可以在任意视下角均观看到图像,图像的观看范围越大。
而且通常在投影屏幕的屏幕增益等因素保持不变的前提下,当投影设备的光源输出的光通量大小相同时,若使投影画面占满整个屏幕,屏幕尺寸越大,感知到的单位面积上的光功率越低,则屏幕平均显示亮度越小;屏幕尺寸越小,感知到的单位面积上的光功率越高,则屏幕平均显示亮度越大。需要说明的是,屏幕显示亮度通过照度计检测获得,屏幕显示亮度的单位是nit。
图1、图2和图3为根据一些实施例提供的三种亮度变化趋势与标准EOTF曲线的对比图。图中,横坐标表示0至100IRE灰度,纵坐标表示亮度。S表示标准EOTF曲线,S1表示经过亮度映射后的亮度变化趋势曲线。
如图1所示,为根据一些实施例的一种投影设备搭配默认的投影屏幕时进行亮度映射得到的亮度变化趋势与标准EOTF曲线的对比图。例如,默认投影屏幕尺寸为100寸,屏幕增益为2.0。亮度映射需要根据显示设备的实际亮度进行,投影设备通过亮度参数获取屏幕最大亮度时,芯片可以自动映射出相应的亮度曲线与标准EOTF曲线匹配。从图1中可以看出,当投影设备搭配默认的投影屏幕,以默认屏幕显示亮度进行亮度映射时得到的亮度变化趋势能够与标准EOTF曲线相匹配。此时,屏幕显示的画面可以表现出更多的细节特征,即既可以表现出图像的暗部细节,也不会导致高亮饱和的问题。此时画面的显示效果更接近人眼在自然界中观察到的场景,显示效果较佳。需要说明的是,通过预设的屏幕增益和尺寸来确定写入投影设备中的默认屏幕亮度参数,从而确定默认的投影屏幕。
如图2所示,为根据一些实施例的另一种投影设备搭配非默认的投影屏幕时进行亮度映射得到的亮度变化趋势与标准EOTF曲线的对比图。假设投影设备搭配的非默认的投影屏幕的屏幕增益大于默认投影屏幕的屏幕增益,或者投影设备搭配的非默认的投影屏幕的尺寸小于默认的投影屏幕的尺寸时,从图2中可以看出,若仍以默认屏幕显示亮度进行亮度映射得到的亮度变化趋势中10IRE-100IRE之间的亮度曲线与标准EOTF曲线之间的匹配度较低,使得在相同的灰度显示出更高的亮度,从而造成了高亮度饱和的问题,用户观察到的图像层次不够鲜明,整体图像亮度较高,降低了用户的亮度舒适感。
如图3所示,为根据一些实施例的又一种投影设备搭配非默认的投影屏幕时进行亮度映射得到的亮度变化趋势与标准EOTF曲线的对比图。假设投影设备搭配的非默认的投影屏幕的屏幕增益小于默认投影屏幕的屏幕增益,或者投影设备搭配的非默认的投影屏幕的尺寸大于默认的投影屏幕的尺寸时,从图3中可以看出,若仍以默认屏幕显示亮度进行亮度映射得到的亮度变化趋势标准中10IRE-100IRE之间的亮度曲线与EOTF曲线之间的匹配度较低,使得在相同的灰度显示出更低的亮度,从而造成暗场细节消失的问题,用户观察到的图像线条轮廓不清楚,整体图像亮度较底,降低了用户的亮度舒适度。
为解决上述问题,本公开根据一些实施例提供了一种投影显示方法,在目标投影屏幕为非默认投影屏幕时,通过获取当前投影屏幕的参数信息,根据当前投影屏幕的参数信息自动获取目标投影屏幕的屏幕显示亮度,从而根据确定出的屏幕显示亮度进行亮度映射,使亮度映射后的亮度变化趋势曲线与标准EOTF曲线匹配。而在用户未切换其它投影屏幕时,即未收到用户切换投影屏幕的控制信号且通过图像识别得到的投影屏幕的信息未发生改变时,仍然根据默认投影屏幕对应的默认屏幕显示亮度对待显示的高动态范围图像进行亮度映射后进行图像显示,提升了亮度变化趋势与标准电光转换函数曲线之间的匹配度。例如,投影屏幕的参数信息包括屏幕增益和尺寸。
图4为根据一些实施例的一种投影系统的组成图。如图4所示,投影系统包括投影设备100和投影屏幕200。
如图4所示,投影设备100的出光口朝向投影屏幕,投影设备100可以发射光束至投影屏幕200,投影屏幕200用于反射该光束以实现画面的显示。为了满足不同使用场景或者适用于不同用户的需求,一台投影设备100通常可以配备不同的投影屏幕200。
投影设备100可以指具有投影功能的设备。例如,投影设备100可以为台式投影机、便携式投影机、落地式投影机、反射式投影机、透射式投影机、单一功能投影机、多功能 投影机、智能投影机或者触控互动投影仪等。当然,投影设备100也可以有其他名称,例如投影主机、投影机等。
投影设备100可以为具有一组投影镜头的投影设备,也可以为具有多组投影镜头的投影设备,通过融合技术对多组投影镜头投射出的画面进行边缘重叠,可以显示为完整的投影画面。
图5为根据一些实施例的一种投影设备100的结构图,下面将结合图5至图10对投影设备100进行介绍。投影设备100包括投影组件110和第一控制器120。投影组件110与第一控制器120相连接。应理解,图5仅示出了投影设备100的部分组件,投影设备100还可以存在其他的组件。
投影组件110用于发出光线以在投影屏幕200上进行画面投射。
如图6、图7所示,投影组件110包括光源111、光机112以及镜头113。投影组件110还可以包括壳体1101(图6中仅示出部分壳体1101)。
光源111被配置为提供照明光束(激光光束)。光机112被配置为利用图像信号对光源111提供的照明光束进行调制以获得投影光束。镜头113被配置为将投影光束投射在屏幕或墙壁上形成投影画面。光源111、光机112以及镜头113可以装配于壳体1101中。
光源111、光机112和镜头113可以沿着光束传播方向依次连接。光源111、光机112和镜头113分别可以由对应的壳体进行包裹。光源111、光机112和镜头113各自对应的壳体可以对相应的光学部件进行支撑并使得各光学部件达到一定的密封或气密要求。
在一些实施例中,光源111可以为单色光源,例如,光源111仅发出蓝色光束,此时,光源111还可以包括荧光轮和/或滤色轮,荧光轮和/或滤色轮用于进行色彩转换,以保证光源111按照时序出射不同颜色的激光光束,例如红绿蓝三个颜色的光束。
在另一些实施例中,光源111为多色激光光源,例如,光源111包括集成在一个封装组件内的三色激光芯片或者三组单色的激光器。该三组单色的激光器可以包括一组绿色激光器、一组红色激光器和一组蓝色激光器。每组激光器包括一个或多个激光器。这样,可以使得光源111直接按照时序出射红绿蓝三个颜色的光束。
在又一些实施例中,光源111还可为除激光器之外的其他类型的光源。
光机112的一端连接光源111,且光源111和光机112沿着投影组件110的照明光束的出射方向(参照图6中的M方向)设置。光机112的另一端和镜头113连接,且光机112和镜头113沿着投影组件110的投影光束的出射方向(参照图6中的N方向)设置。照明光束的出射方向M与投影光束的出射方向N大致垂直。这种连接结构一方面可以适应光机112中反射式光阀(将在下文进行说明)的光路特点,另一方面,还有利于缩短光路在一方向上的长度,这样便可以有更多的空间对投影组件110的各部件进行排布。
图7为根据一些实施例的投影组件中光源、光机和镜头的一种结构图。参见图7,光源111发出的照明光束进入光机112。如图8所示,光机112包括光阀1124。光阀1124被配置为根据图像信号将射入其的照明光束调制成投影光束,并将投影光束射向镜头113。
光阀1124可以为反射式光阀。光阀1124包括多个微型反射片,每个反射片对应于投影画面中的一个像素。例如,根据待显示的投影画面,光阀1124接收图像信号转换成的驱动信号和来自光源111的三基色光的照射,在驱动信号的驱动下对三基色光束进行调制以形成投影光束,投影光束通过镜头被投射至投影屏幕。这样,光阀1124可以对照明光束进行调制以得到投影光束,并通过投影光束实现画面的显示。
在一些实施例中,光阀1124为数字微镜器件(Digital Micromirror Device,DMD)。数字微镜器件包括多个(例如成千上万个)可被单独驱动而旋转的微小反射镜片。多个微小反射镜片可以呈阵列排布。一个微小反射镜片(例如每个微小反射镜片)对应待显示的投影画面中的一个像素。图像信号通过处理后可以转换成0、1这样的数字代码,响应于这些数字代码,微小反射镜片可以摆动。控制每个微小反射镜片在开状态和关状态分别持续的时间,来实现一帧图像中每个像素的灰阶。这样,数字微镜器件可以对照明光束进行调制,进而实现投影画面的显示。例如,光阀1124由光阀芯片控制。
在一些实施例中,光机112为基于数字光处理器(Digital Light Processing,DLP)、液晶 投影技术(Liquid Crystal Display,LCD)、硅基液晶(Liquid Crystal on Silicon,LCOS)等投影技术的光机。
投影镜头113可以是变焦镜头、定焦可调焦镜头或者定焦镜头。投影设备100可以为超短焦投影设备、短焦投影设备或长焦投影设备。例如,投影设备100为超短焦投影设备时,投影镜头113为超短焦投影镜头,投影镜头113的投射比通常小于0.3,比如为0.24。
第一控制器120是指可以根据指令操作码和时序信号,产生操作控制信号,指示投影设备100执行控制指令的装置。例如,第一控制器120可以包括中央处理器(Central Processing Unit,CPU)、通用处理器网络处理器(Network Processor,NP)、数字信号处理器(Digital Signal Processing,DSP)、微处理器、微控制器、可编程逻辑器件(Programmable Logic Device,PLD)或它们的任意组合。第一控制器120还可以是其它具有处理功能的装置,例如电路、器件或软件装置。
此外,第一控制器120还可以用于控制投影设备100内各部件工作,以使得投影设备100各个部件运行并实现投影设备的各预定功能。如图8所示,第一控制器120可以与光阀1124连接,用于向光阀1124提供驱动信号,光阀1124按照第一控制器120提供的驱动信号驱动各微反射镜摆动。
在一些实施例中,投影设备100还包括遥控器,该遥控器具有例如使用红外线或其他通信方式与第一控制器120进行通信的功能。用户可以通过遥控器对投影设备的各种控制,实现用户与投影设备100之间的交互。
图9是根据一些实施例的一种投影设备的硬件配置框图,投影设备100还包括第一摄像组件130、第一通信器140、接口组件150和第一存储器160。第一摄像组件130、第一通信器140、接口组件150和第一存储器160分别与第一控制器120相连接。
在一些实施例中,第一摄像组件130用于采集投影设备100所处环境的图像。
如图10所示,第一摄像组件130包括摄像头1301和图像识别装置1302,摄像头1301用于对其视角范围内的图像进行拍照以获取相应的图像,例如可以为单目摄像头,或者为多目摄像头。图像识别装置1302可以为与摄像头1301相连的专用图像处理芯片,图像识别装置1302用于对摄像头拍摄的投影屏幕进行投影屏幕的尺寸识别。
在一些实施例中,第一通信器140用于与其他网络实体建立通信连接,例如与终端设备建立通信连接。第一通信器140可以包括射频(Radio Frequency,RF)装置、蜂窝装置、无线保真(Wireless Fidelity,WIFI)装置、以及GPS装置等。以RF装置为例,RF装置可以用于信号的接收和发送,例如,将接收到的信息发送给第一控制器120处理。另外,将第一控制器120生成的信号发送出去。通常情况下,RF装置可以包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(Low Noise Amplifier,LNA)、双工器等。
投影设备100可以通过第一通信器140与其他设备进行交互,如接收其他终端设备或基站发送的待投射画面。此时,第一通信器140可用于投影设备与其他终端设备或基站之间的连接,以实现信号的接收和发送,可以将接收的数据传输给第一控制器120处理。
投影设备100还可以通过第一通信器140接收终端设备发送的控制指令,并根据控制指令,执行相应的处理,以实现用户与投影设备100之间交互。
接口组件150用于为外部的输入或输出设备(例如键盘、鼠标、外接显示器、外部存储器、用户识别模块卡(Subscriber Identity Module,SIM)等)提供各种接口。例如通过通用串行总线(Universal Serial Bus,USB)接口与鼠标或显示器连接,通过用户识别模块卡的卡槽上的金属触点与运营商提供的用户识别模块卡进行连接,通过第一通信器140的接口、近场通信(Near Field Communication,NFC)装置的接口、蓝牙模块的接口等与其他终端实现通信功能。
第一存储器160可用于存储软件程序及数据。第一控制器120通过运行存储在第一存储器160的软件程序或数据,从而执行投影设备100的各种功能以及数据处理。第一存储器160可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。第一存储器160存储有使得投影设备100 能运行的操作系统。本公开中第一存储器160可以存储操作系统及各种应用程序,还可以存储执行本公开实施例提供的投影设备的亮度的调节方法的代码。
在一些实施例中,投影设备100还包括音频电路、扬声器、麦克风、蓝牙、近场通信(NFC)装置等。
本领域技术人员可以理解,图9中示出的硬件结构并不构成对投影设备的限定,投影设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
图11为根据一些实施例的一种投影设备的应用场景图。如图11所示,该应用场景中包括投影设备100、投影屏幕200和终端设备300。
在一些实施例中,该应用场景中包括多个终端设备300。
本公开实施例中终端设备300可以为任意形式的移动终端。例如手机、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、上网本,以及蜂窝电话、个人数字助理(Personal Digital Assistant,PDA)、增强现实(Augmented Reality,AR)或虚拟现实(Virtual Reality,VR)设备等。
以本公开实施例中的终端设备300为手机为例,下面结合图11对手机的通用硬件架构进行说明。
图12为根据一些实施例的一种手机的硬件架构图。如图12所示,手机包括第二控制器301、射频(RF)电路302、第二存储器303、触摸屏304、第二通信器305、第二摄像组件306、Wi-Fi装置307、定位装置308、音频电路309和电源装置310等部件。这些部件可通过一根或多根通信总线或信号线进行通信。本领域技术人员可以理解,图12中示出的硬件结构并不构成对手机的限定,手机可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
第二控制器301是手机的控制中心,利用各种接口和线路连接手机的各个部分,通过运行或执行存储在第二存储器303内的应用程序(Application,以下可以简称App),以及调用存储在第二存储器303内的数据,执行手机的各种功能和处理数据。在一些实施例中,第二控制器301可包括一个或多个处理组件。
例如,假设终端设备300上下载有能够控制投影设备的APP,如图13所示,终端设备300的显示器的显示界面上显示有“电子邮件”、“相机”、“设置”、“计算器”、“投影APP”、“天气”、“照片”及“其他”等应用图标。用户可以通过点击终端设备的显示器上显示的“投影APP”的应用图标,来进入投影APP的控制界面。终端设备响应于用户点击“投影APP”的应用图标的操作,控制显示器显示投影APP的控制界面。投影APP的控制界面上可以显示例如“开机”、“关机”、“屏幕型号选择”、“屏幕尺寸选择”和“其他”等功能的功能选项。
如图14所示,假设用户通过终端设备300上的投影APP选择点击“屏幕型号选择”功能的功能选项,终端设备接收到用户点击“屏幕型号选择”功能的功能选项的操作,响应于该操作,控制显示器显示“屏幕型号选择”的控制界面。“屏幕型号选择”的控制界面上可以显示有各种不同投影屏幕的型号供用户选择,例如型号一、型号二、型号三等。不同的投影屏幕的型号数据可以存储在第一存储器160和第二存储器303中,并且当出现新的投影屏幕的型号时投影APP和投影设备100可以及时更新存储的相关数据。
如图15所示,假设用户通过终端设备300上的投影APP选择点击“屏幕尺寸选择”功能的功能选项,终端设备300接收到用户点击“屏幕尺寸选择”功能的功能选项的操作,响应于该操作,控制显示器显示“屏幕尺寸选择”的控制界面。“屏幕尺寸选择”的控制界面上可以显示有“+”和“—”两个选项,“+”对应增加屏幕尺寸,“—”对应减少屏幕尺寸。“+”和“—”之间的矩形框用于显示用户选择的屏幕尺寸,例如70寸。
射频电路302可用于在收发信息或通话过程中,无线信号的接收和发送。例如,射频电路302可以将基站的下行数据接收后,给第二控制器301处理,并且将涉及上行的数据发送给基站。通常,射频电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频电路302还可以通过无线通信和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无 线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
第二存储器303用于存储应用程序以及数据,第二控制器301通过运行存储在第二存储器303的应用程序以及数据,执行手机的各种功能以及数据处理。第二存储器303主要包括存储程序区以及存储数据区,存储程序区可存储操作系统、至少一个功能(比如声音播放功能、图像播放功能等)所需的应用程序;存储数据区可以存储根据使用手机时所创建的数据(比如音频数据、电话本等)。此外,第二存储器303可以包括高速随机存取存储器,还可以包括非易失存储器,例如磁盘存储器件、闪存器件或其他易失性固态存储器件等。
触摸屏304可以包括触控板304-1和显示器304-2。触控板304-1可采集手机的用户在其上或附近的触摸事件(比如用户使用手指、触控笔等任何适合的物体在触控板304-1上或在触控板304-1附近的操作),并将采集到的触摸信息发送给其他器件,例如第二控制器301。
第二通信器305用于与其他网络实体建立通信连接,例如于其他终端设备建立通信连接。
在一些实施例中,第二通信器305用于与投影设备100建立通信连接。
第二摄像组件306可以是摄像头(前置摄像头和/或后置摄像头),用于拍摄终端设备所处环境的图像。
Wi-Fi装置307,用于为手机提供遵循Wi-Fi相关标准协议的网络接入,手机可以通过Wi-Fi装置307接入到Wi-Fi接入点,进而帮助用户收发电子邮件、浏览网页和访问流媒体等,它为用户提供了无线的宽带互联网访问。在一些实施例中,Wi-Fi装置307也可以作为Wi-Fi无线接入点,可以为其他终端提供Wi-Fi网络接入。
定位装置308,用于为手机提供地理位置。可以理解的是,定位装置308具体可以是全球定位系统(Global Positioning System,GPS)或北斗卫星导航系统、格洛纳斯(GLOBAL NAVIGATION SATELLITE SYSTEM,简称GLONASS)等定位系统的接收器。
音频电路309、扬声器311、麦克风312可提供用户与手机之间的音频接口。音频电路309可将接收到的音频数据转换后的电信号,传输到扬声器311,由扬声器311转换为声音信号输出。另一方面,麦克风312将收集的声音信号转换为电信号,由音频电路309接收后转换为音频数据,再将音频数据输出至RF电路302以发送给比如另一手机,或者将音频数据输出至第二存储器303以便进一步处理。
手机还可以包括给各个部件供电的电源装置310(例如电池和电源管理芯片),电池可以通过电源管理芯片与第二控制器301逻辑相连,从而通过电源装置实现管理充电、放电、以及功耗管理等功能。
如图16所示,本公开提供了一种投影显示方法,应用于上述投影设备100的第一控制器120,该方法包括以下步骤:
步骤S10,获取目标投影屏幕的参数信息。
目标投影屏幕也就是用户当前将要进行观看的投影屏幕。例如,目标投影屏幕的参数信息包括目标投影屏幕的屏幕增益和/或目标投影屏幕的尺寸。
步骤S20,根据所述目标投影屏幕的参数信息确定所述目标投影屏幕的屏幕显示亮度。
步骤S30,根据所述目标投影屏幕的屏幕显示亮度,对待显示的高动态范围图像进行亮度映射后再进行图像显示。
在一些实施例中,目标投影屏幕的参数信息包括目标投影屏幕的屏幕增益,如图17所示,投影显示方法还包括:
步骤S101,获取目标投影屏幕的屏幕增益。
步骤S201,根据目标投影屏幕的屏幕增益和预先确定的投影屏幕的屏幕增益与屏幕显示亮度的对应关系,确定目标投影屏幕的屏幕显示亮度。
步骤S30,根据目标投影屏幕的屏幕显示亮度,对待显示的高动态范围图像进行亮度映射后再进行图像显示。
在一些实施例中,可以将目标投影屏幕的屏幕增益和屏幕显示亮度分别作为默认屏幕 增益和默认屏幕显示亮度存储在第一存储器160中。
在一些实施例中,如图18所示,步骤S101还包括以下步骤:
步骤S1011,接收到用户对目标投影屏幕的型号的选择指令。
可以理解的,在用户确认目标投影屏幕的型号的情况下,第一控制器120可以接收到用户对目标投影屏幕的型号的选择指令。选择指令指示了目标投影屏幕的型号。例如,第一控制器120接收用户对目标投影屏幕的型号的选择指令可以包括以下情形中的一种或多种。
情形一,第一控制器120可以接收到用户通过投影设备100的遥控器向投影设备100发送的对目标投影屏幕的型号或尺寸的选择指令。
例如,用户可以通过操作投影设备的遥控器向投影设备发出对目标投影屏幕的型号的选择指令,进而第一控制器120接收到用户对目标投影屏幕的型号的选择指令。
情形二,第一控制器120可以通过第一通信器140接收到用户通过终端设备300向投影设备100发送的对目标投影屏幕的型号的选择指令。
如图14所示,用户通过终端设备300上的投影APP选择点击“屏幕型号选择”功能的功能选项,选择目标投影屏幕的型号。终端设备300在接收到用户对型号的选择指令后,向投影设备100发送该型号的选择指令。进而,第一控制器120通过第一通信器140接收到选择指令。
步骤S1012,响应于选择指令,确定目标投影屏幕的型号。
针对上述情形一和情形二,响应于型号的选择指令,第一控制器120确定目标投影屏幕的型号。
在一些实施例中,目标投影屏幕的屏幕增益是根据目标投影屏幕的型号确定出来的。因此,如图18所示,步骤S101还包括:
步骤S1013,根据目标投影屏幕的型号与屏幕增益的对应关系,确定目标投影屏幕的屏幕增益。
不同的投影屏幕的型号分别对应一个屏幕增益,默认投影屏幕的屏幕增益为默认屏幕增益。在屏幕尺寸等影响因素保持不变的情况下,不同投影屏幕型号和屏幕增益之间的对应关系满足下表:
表1不同投影屏幕型号和屏幕增益的对应关系表
投影屏幕型号 屏幕增益
S _default G default
S 1 G 1
S 2 G 2
S 3 G 3
…… ……
S n G n
其中S _default表示默认投影屏幕的型号,S 1~S n表示除默认投影屏幕以外的n个投影屏幕的型号;G _default表示默认投影屏幕的屏幕增益,G 1~G n表示除投影屏幕以外的n个投影屏幕的屏幕增益。n为大于或等于一的正整数。
由上表可以看出,不同的投影屏幕对应不同的投影屏幕型号,而在投影屏幕的尺寸等影响因素保持不变的情况下,不同型号的投影屏幕对应的屏幕增益也不相同。
在一些实施例中,当所设定的投影设备的投影亮度为最大值时,例如,投影设备可以调节光源亮度,当投影设备的光源亮度设置为最大值时,投影屏幕可以显示出搭配该投影设备时的最大屏幕显示亮度。最大屏幕显示亮度通过屏幕增益和尺寸来进行表征。此时可以根据以下步骤确定出目标投影屏幕的屏幕显示亮度。
步骤S2011,根据目标投影屏幕的屏幕增益与屏幕显示亮度的对应关系,确定目标投影屏幕的屏幕显示亮度。
进一步地,在一些实施例中,根据多次实验尝试,设置投影设备的投影亮度为最大值,在采用不同屏幕增益的投影屏幕进行图像显示时,可以采用不同的屏幕显示亮度值进行尝 试,从而确定出不同的屏幕增益所对应的最大屏幕显示亮度,即根据该屏幕显示亮度进行亮度映射之后,得到的亮度变化趋势曲线与标准EOTF曲线相匹配。
下表为本公开实施例得到的一种在相同屏幕尺寸下不同的屏幕增益与屏幕显示亮度的对应关系:
表2不同的屏幕增益与屏幕显示亮度的对应关系表
屏幕增益 屏幕显示亮度
G _default B _default
G1 B1
G2 B2
G3 B3
…… ……
Gn Bn
G _default表示默认投影1屏幕的屏幕增益,G 1~G n表示除投影屏幕以外的n个投影屏幕的屏幕增益;B _default表示默认投影屏幕的屏幕增益对应的默认屏幕显示亮度,B 1~B n表示除默认投影屏幕的屏幕增益以外的n个投影屏幕的n种屏幕增益对应的最大屏幕显示亮度。n为大于或等于一的正整数。
表2的对应关系是经过多次实验测试得到的,采用上表的屏幕显示亮度对对应的投影屏幕所显示的HDR图像进行亮度映射之后,可以与EOTF曲线更加匹配,提高画质体验。
在本公开实施例中,在默认投影设备的投影亮度为最大值时,当获取到目标投影屏幕的型号之后,先根据目标投影屏幕的型号和预先确定的投影屏幕的型号与屏幕增益的对应关系,确定目标投影屏幕对应的屏幕增益。再根据目标投影屏幕对应的屏幕增益和屏幕增益与屏幕显示亮度的对应关系,确定目标投影屏幕对应的屏幕显示亮度,从而得到适合对目标投影屏幕进行亮度映射的屏幕显示亮度,使根据该屏幕显示亮度进行亮度映射后的亮度变化趋势与标准EOTF曲线更加匹配。此时的屏幕显示亮度为投影屏幕最大屏幕显示亮度。
在另一些实施例中,如图19所示,在步骤S1013中确定出目标投影屏幕的屏幕增益后还包括以下步骤:
步骤S2012,根据目标投影屏幕的屏幕增益和默认投影屏幕的屏幕增益确定第一亮度调节参数。
默认投影屏幕的屏幕显示亮度可以是投影设备在出厂时预先设定的初始屏幕显示亮度,也可以是投影设备所属用户在使用投影设备过程中自行设定的,还可以是投影设备根据用户输入的一个或多个参数自行确定的,例如300nit。当然,默认投影屏幕的屏幕显示亮度还可以是投影设备的最大显示亮度。
经多次实验验证,在一些实施例中,屏幕显示亮度与屏幕增益呈现正相关的关系。即屏幕增益增大时,该投影屏幕对应的屏幕显示亮度也相应增大;屏幕增益减小时,该投影屏幕对应的屏幕显示亮度也相应减小。这与实际图像显示时的规律相吻合,投影设备的投影亮度保持不变,当采用屏幕增益较大的投影屏幕时,该投影屏幕反射光的能力更强,因此人眼能够接收到的光线更多,反映出图像更加明亮,此时的显示图像的亮度更高,因此当下的屏幕显示亮度也会相应地增大;当采用屏幕增益较小的投影屏幕时,该投影屏幕反射光的能力更弱,因此人眼能够接收到的光线更少,反映出图像更加暗淡,此时的显示图像的亮度更低,因此当下的屏幕显示亮度也会相应地减小。
根据多次实验模拟,可以得到屏幕增益和屏幕显示亮度之间基本满足线性关系,在一些实施例中,第一亮度调节参数可以采用以下公式(1)确定:
Figure PCTCN2022135292-appb-000001
X n为第一亮度调节参数,G n为目标投影屏幕的屏幕增益,G _default表示默认投影屏幕的屏幕增益。
默认投影屏幕的屏幕增益可以是投影设备在出厂时预先设定的初始投影屏幕的屏幕 增益,也可以是投影设备所属用户在使用投影设备过程中自行设定的,例如1.2。
步骤S2013,根据第一亮度参数以及默认投影屏幕的屏幕显示亮度,确定目标投影屏幕的屏幕显示亮度。
在一些实施例中,目标的投影屏幕的屏幕显示亮度可以采用以下公式(2)确定:
B n=B _default*X n            公式(2)
B n为目标投影屏幕的屏幕显示亮度,X n为公式(2)中的第一亮度调节参数,B _default表示默认投影屏幕的屏幕显示亮度。
目标投影屏幕的屏幕增益可以根据投影屏幕的型号和屏幕增益之间的对应关系得到,而默认投影屏幕的屏幕增益和默认屏幕显示亮度均为已知值,因此根据上式可以计算出目标投影屏幕对应的屏幕显示亮度。
例如,当默认投影屏幕对应的默认屏幕显示亮度为300nit,而目标投影屏幕的屏幕增益G=0.4G _default时,则目标投影屏幕对应的屏幕显示亮度为0.4×300nit=120nit。将120nit作为屏幕显示亮度值输入至第一控制器120,则第一控制器120根据该屏幕显示亮度值自动进行亮度映射之后,可以使亮度变化趋势曲线匹配标准EOTF曲线(如图1所示),从而避免图像显示时产生暗场细节丢失的问题。
当默认投影屏幕对应的默认屏幕显示亮度为300nit,而目标投影屏幕的屏幕增益G=1.5G _default时,则目标投影屏幕对应的屏幕显示亮度为1.5×300nit=450nit。将450nit作为屏幕显示亮度值输入至第一控制器120,则第一控制器120根据该屏幕显示亮度值自动进行亮度映射之后,可以使亮度变化趋势曲线匹配标准EOTF曲线(如图1所示),从而避免图像显示时产生高亮饱和的问题。
在一些实施例中,若目标投影屏幕的屏幕增益与默认投影屏幕的屏幕增益一致,则可以将默认投影屏幕的屏幕显示亮度作为目标投影屏幕的屏幕显示亮度,进而以默认投影屏幕的屏幕显示亮度对待显示的高动态范围图像进行亮度映射后进行图像显示。
本实施例提供的投影设备可搭配不同的投影屏幕且各投影屏幕的屏幕增益不同。对于采用不同投影屏幕由于屏幕增益不同而导致显示画面暗场细节丢失或高亮饱和的问题,本实施例首先获取目标投影屏幕的型号,再根据投影屏幕型号与屏幕显示亮度的对应关系,确定出目标投影屏幕对应的屏幕显示亮度,从而采用该屏幕显示亮度对待显示的HDR图像进行亮度映射,以使其适应目标投影屏幕,可以显示出暗场细节并避免高亮饱和的问题,发挥HDR图像的优势。
在又一些实施例中,若用户选择的目标投影屏幕的屏幕增益与默认投影屏幕的屏幕增益一致,则可以直接将默认投影屏幕的屏幕显示亮度作为目标投影屏幕的屏幕显示亮度,进而以默认投影屏幕的屏幕显示亮度对待显示的高动态范围图像进行亮度映射后进行图像显示。因此,如图20所示,在步骤S101中获取到目标投影屏幕的屏幕增益之后还包括:
步骤S40,判断所获取的目标投影屏幕的屏幕增益是否为默认屏幕增益。若是,则执行步骤S50;若否,则执行步骤S201。
步骤S50,确定默认屏幕显示亮度为目标投影屏幕的屏幕显示亮度,并根据默认屏幕显示亮度,对待显示的高动态范围图像进行亮度映射后再进行图像显示。
在一些实施例中,如图21所示,目标投影屏幕的参数信息还包括目标投影屏幕的尺寸,投影显示方法还包括以下步骤:
步骤S102,获取目标投影屏幕的尺寸。
步骤S202,根据目标投影的尺寸获取目标投影的屏幕显示亮度。例如,包括以下步骤S2021和步骤S2022:
步骤S2021,根据目标投影屏幕的尺寸和默认投影屏幕的尺寸,确定第二亮度调节参数。
步骤S2022,根据第二亮度调节参数,以及默认投影屏幕的屏幕显示亮度,确定目标投影屏幕的屏幕显示亮度。
步骤S30,根据目标投影屏幕的屏幕显示亮度,对待显示的高动态范围图像进行亮度 映射后再进行图像显示。
在一些实施例中,还可以将获取到的目标投影屏幕的尺寸和屏幕显示亮度作为默认投影屏幕的尺寸和默认屏幕显示亮度存储在第一存储器160中。
在一些实施例中,如图22所示,步骤S102中获取目标投影屏幕的尺寸的方法包括:
步骤S1021,接收到用户对目标投影屏幕的尺寸的选择指令。
可以理解的,在用户确认目标投影屏幕的尺寸的情况下,第一控制器120可以接收到用户对目标投影屏幕的尺寸的选择指令。选择指令指示了目标投影屏幕的尺寸。
例如,第一控制器120接收用户对目标投影屏幕的尺寸的选择指令可以包括以下情形中的一种或多种。
情形一,第一控制器120可以接收到用户通过投影设备100的遥控器向投影设备发送的对目标投影屏幕的尺寸的选择指令。
例如,用户可以通过操作投影设备100的遥控器向投影设备发出对目标投影屏幕的尺寸的选择指令,进而第一控制器120接收到用户对目标投影屏幕的尺寸的选择指令。
情形二,第一控制器120可以通过第一通信器140接收到用户通过终端设备300向投影设备100发送的对目标投影屏幕的尺寸的选择指令。
如图15所示,用户通过终端设备300上的投影APP选择点击“屏幕尺寸选择”功能的功能选项,选择目标投影屏幕的尺寸。终端设备300在接收到用户对尺寸的选择指令后,向投影设备100发送该尺寸的选择指令。进而,第一控制器120通过第一通信器140接收到该尺寸的选择指令。
步骤S1022,响应于选择指令,确定目标投影屏幕的尺寸。
针对上述情形一和情形二,响应于尺寸的选择指令,第一控制器120确定目标投影屏幕的尺寸。
在一些实施例中,如图23所示,在步骤S102中获取目标投影屏幕的尺寸的方法还包括以下步骤:
步骤S1023,对目标投影屏幕进行拍摄,获取目标投影屏幕的图像。
由上述图9和图10中关于投影设备100的描述可知,投影设备100可以配置有第一摄像组件130,第一控制器120可以通过第一摄像组件中130的摄像头1301对目标投影屏幕进行拍摄,得到目标投影屏幕的图像。
在一些实施例中,投影设备接收到用户的开机指令时,第一控制器120响应于开机指令,控制投影组件对目标投影屏幕进行拍摄,来得到目标投影屏幕的图像。
在一些实施例中,投影设备可被配置不同的投影屏幕。若用户选择切换当前正在使用的投影屏幕,投影设备接收到用户切换投影屏幕的指令时,第一控制器120响应于切换投影屏幕指令,控制第一投影组件对目标投影屏幕进行拍摄,来得到目标投影屏幕的图像。
步骤S1024,根据目标投影屏幕的图像,确定目标投影屏幕的尺寸。
投影设备在得到目标投影屏幕的图像后,可以通过第一摄像组件的图像识别装置对目标投影屏幕的图像进行尺寸识别,以确定出目标投影屏幕的尺寸。
在一些实施例中,第一摄像组件130的图像识别装置内预先配置有训练好的投影屏幕尺寸识别模型,在第一摄像组件130的摄像头1301获取到目标投影屏幕的图像后,第一摄像组件130的图像识别装置可以将目标投影屏幕的图像输入至训练好的投影屏幕尺寸识别模型,来得到目标投影屏幕的尺寸,进而将得到的目标投影屏幕的尺寸发送至第一控制器120。
例如,投影屏幕尺寸识别模型可以通过各种算法来实现。例如,利用支持向量机算法(Support Vector Machine,SVM)、梯度提升迭代决策树算法(Gradient Boosting Decision Tree,GBDT)、随机森林算法(Random Forest,RF)等得到传统的基于机器学习算法的投影屏幕尺寸识别模型,也可以利用卷积神经网络算法(Convolutional Neural Networks,CNN)、循环神经网络算法(Recurrent Neural Networks,RNN)、长期短记忆网络算法(Long Short-Term Memory,LSTM)得到基于深度学习的投影屏幕尺寸识别模型。
容易理解的是,深层次的卷积神经网络可以在海量的训练数据中自动提取和学习数据 中更本质的特征,将深度卷积神经网络应用于投影屏幕尺寸的识别中,将显著增强分类效果,并进一步提升投影屏幕尺寸识别的准确性。
步骤S2021,根据目标投影屏幕的尺寸和默认投影屏幕的尺寸,确定第二亮度调节参数。
默认投影屏幕的尺寸可以是投影设备在出厂时预先设定的初始投影屏幕的尺寸,也可以是投影设备所属用户在使用投影设备过程中自行设定的,也可以是投影设备在用户使用中根据图像识别得出的屏幕尺寸。例如100寸。
在一些实施例中,第二亮度调节参数满足下述公式(3):
Figure PCTCN2022135292-appb-000002
Y n为第二亮度调节参数,S _default为默认的投影屏幕的尺寸,S n为目标投影屏幕的尺寸,n为大于等于一的正整数。
在另一些实施例中,也可以将目标投影屏幕的尺寸与默认投影屏幕的尺寸的商,作为第二亮度调节参数。
步骤S2022,根据第二亮度调节参数,以及默认投影屏幕的屏幕显示亮度,确定目标投影屏幕的屏幕显示亮度。
在一些实施例中,目标投影屏幕的屏幕显示亮度可以采用下述公式(4)确定:
B n′=B _default*Y n          公式(4)
B n′为目标投影屏幕的屏幕显示亮度,B _default为默认投影屏幕的屏幕显示亮度,Y n为由上述步骤S2021得到的第二亮度调节参数。
可以理解的,不同尺寸的投影屏幕可以对应不同的屏幕显示亮度,假设默认投影屏幕的屏幕显示亮度S _default为300nit,下述表3为本公开根据一些实施例提供的一种在屏幕增益等其他影响因素保持不变的情况下,不同尺寸的目标投影屏幕与屏幕显示亮度的对应关系。
表3不同尺寸的目标投影屏幕与屏幕显示亮度的对应表
目标投影屏幕的尺寸 目标投影屏幕的屏幕显示亮度
S _default 300nit
S 1 300nit*Y 1
S 2 300nit*Y 2
S 3 300nit*Y 3
S 4 300nit*Y 4
…… ……
S n 300nit*Y n
在一些实施例中,在屏幕增益和其他影响因素保持不变的情况下,投影屏幕的尺寸与投影屏幕的屏幕显示亮度呈负相关的关系,也就是投影屏幕的尺寸越大,投影屏幕的屏幕显示亮度越低。例如,以投影设备对应的默认投影屏幕的尺寸为100寸,默认投影屏幕的屏幕显示亮度为300nit为例。假设将投影设备对应的默认投影屏幕进行了切换,切换后的目标投影屏幕的尺寸为200寸,则根据上述公式(3)和公式(4)可以得到目标投影屏幕的屏幕显示亮度为75nit,也即投影屏幕的尺寸越大,投影屏幕的屏幕显示亮度越低。
步骤S30,根据目标投影屏幕的屏幕显示亮度,对待显示的高动态范围图像进行亮度映射后进行图像显示。
本实施例在确定出目标投影屏幕的屏幕显示亮度后,可以根据目标投影屏幕的屏幕显示亮度对待显示的高动态范围图像进行亮度映射后,再进行图像显示。如此,不再以默认投影屏幕的显示亮度对待显示的高动态范围图像进行亮度映射再进行图像显示,使该经过目标投影屏幕的屏幕显示亮度进行亮度映射的高动态范围图像进行图像显示时能够与当前的投影屏幕(也即目标投影屏幕)更加适应,以使经过亮度映射后的亮度变化趋势能够与标准EOTF曲线更加匹配。
在另一些实施例中,如图24所示,若目标投影屏幕的尺寸与默认投影屏幕的尺寸一 致,则可以直接将默认投影屏幕的屏幕显示亮度作为目标投影屏幕的屏幕显示亮度,进而以默认投影屏幕的屏幕显示亮度对待显示的高动态范围图像进行亮度映射后进行图像显示。因此,如图24所示,在步骤S102中获取目标投影屏幕的尺寸之后,还包括以下步骤:
步骤S60,判断所获取的目标投影屏幕的尺寸是否为默认投影屏幕尺寸。若是,则执行步骤S111;若否,则执行步骤S202。
步骤S70,确定默认屏幕显示亮度为目标投影屏幕的屏幕显示亮度,并根据默认屏幕显示亮度,对待显示的高动态范围图像进行亮度映射后再进行图像显示。
基于本公开所提出的实施例,针对投影设备搭配非默认的投影屏幕时,亮度变化趋势不能够与标准电光转换函数曲线相匹配的问题,本公开实施例提供的投影设备,一方面,通过获取目标投影屏幕的屏幕增益,容易理解的,若目标投影屏幕的屏幕增益与默认屏幕的屏幕增益不一致,也就是说目标投影屏幕不是默认屏幕,需要确定出目标投影屏幕的屏幕显示亮度,而投影屏幕的屏幕增益与屏幕显示亮度之间存在对应关系,可以根据对应关系表或根据目标投影屏幕的屏幕增益与默认投影屏幕的屏幕增益确定出第一亮度调节参数,进而根据第一亮度调节参数和默认投影屏幕的屏幕显示亮度,确定出目标投影屏幕的屏幕显示亮度。在确定出目标投影屏幕的屏幕显示亮度后,再根据目标投影屏幕的屏幕显示亮度,对待显示的高动态范围图像进行亮度映射后,第一控制器120控制投影组件110进行图像显示。
另一方面,通过获取目标投影屏幕尺寸,容易理解的,若目标投影屏幕的尺寸与默认屏幕的尺寸不一致,也就是说目标投影屏幕不是默认屏幕,需要确定出目标投影屏幕的屏幕显示亮度,而投影屏幕尺寸与屏幕显示亮度之间存在对应关系,可以根据目标投影屏幕的尺寸与默认投影屏幕的尺寸确定出第二亮度调节参数,进而根据第二亮度调节参数和默认投影屏幕的屏幕显示亮度,确定出目标投影屏幕的屏幕显示亮度。在确定出目标投影屏幕的屏幕显示亮度后,再根据目标投影屏幕的屏幕显示亮度,对待显示的高动态范围图像进行亮度映射后,第一控制器120控制投影组件110进行图像显示。
如此一来,当切换投影屏幕时,第一控制器120以确定出的目标投影屏幕的屏幕显示亮度,对待显示的高动态范围图像进行亮度映射,而并非以默认的投影屏幕的显示亮度对待显示的高动态范围图像进行亮度映射,提升了亮度变化趋势与标准电光转换函数曲线之间的匹配度。
可以看出,上述主要从方法的角度对本公开实施例提供的方案进行了介绍。为了实现上述功能,本公开实施例提供了执行各个功能相应的硬件结构和/或软件装置。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的装置及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本公开实施例可以根据上述方法示例对第一控制器120进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。可选的,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
本公开实施例还提供一种控制器的硬件结构图,如图25所示,该控制器3000包括处理器3001,可选的,还包括与处理器3001连接的存储器3002和通信接口3003。处理器3001、存储器3002和通信接口3003通过总线3004连接。
处理器3001可以是中央处理器(Central Processing Unit,CPU),通用处理器网络处理器(Network Processor,NP)、数字信号处理器(Digital Signal Processing,DSP)、微处理器、微控制器、可编程逻辑器件(Programmable Logic Device,PLD)或它们的任意组合。处理器3001还可以是其它任意具有处理功能的装置,例如电路、器件或软件装置。处理器3001也可以包括多个CPU,并且处理器3001可以是一个单核(Single-CPU)处理 器,也可以是多核(Multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器3002可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,本公开实施例对此不作任何限制。存储器3002可以是独立存在,也可以和处理器3001集成在一起。存储器3002中可以包含计算机程序代码。处理器3001用于执行存储器3002中存储的计算机程序代码,从而实现本公开实施例提供的投影显示方法。
通信接口3003可以用于与其他设备或通信网络通信(如以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等)。通信接口3003可以是装置、电路、收发器或者任何能够实现通信的装置。
总线3004可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。总线3004可以分为地址总线、数据总线、控制总线等。为便于表示,图25中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质包括计算机执行指令,当计算机执行指令在计算机上运行时,使得计算机执行如上述实施例提供的方法。
本发明实施例还提供一种计算机程序产品,该计算机程序产品可直接加载到存储器中,并含有软件代码,该计算机程序产品经由计算机载入并执行后能够实现上述实施例提供的方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者 该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(Processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的技术人员将会理解,本公开的公开范围不限于上述具体实施例,并且可以在不脱离本公开的精神的情况下对实施例的某些要素进行修改和替换。本公开的范围受所附权力要求的限制。

Claims (20)

  1. 一种投影设备,包括:
    光源,被配置为提供照明光束;
    光机,被配置为利用图像信号对所述光源提供的照明光束进行调制以获得投影光束;
    镜头,被配置为将所述投影光束投射,所述光源、所述光机和所述镜头沿着光束传播方向依次连接;
    投影屏幕,位于所述镜头的出光侧,被配置为反射所述投影光束以实现画面的显示;
    控制器,与所述光机耦接,所述控制器被配置为:
    获取目标投影屏幕的参数信息;
    根据所述目标投影屏幕的参数信息,确定所述目标投影屏幕的屏幕显示亮度;
    根据所述目标投影屏幕的屏幕显示亮度,对待显示的图像进行亮度映射后进行图像显示。
  2. 根据权利要求1所述的投影设备,其中,
    所述控制器被配置为,执行所述获取目标投影屏幕的参数信息,包括:
    获取目标投影屏幕的型号或尺寸;
    所述控制器被配置为,执行所述根据所述目标投影屏幕的参数信息,确定所述目标投影屏幕的屏幕显示亮度,包括:
    根据所述目标投影屏幕的型号和默认投影屏幕的型号,或者,根据所述目标投影屏幕的尺寸和默认投影屏幕的尺寸,确定所述目标投影屏幕的屏幕显示亮度。
  3. 根据权利要求2所述的投影设备,其中,所述控制器被配置为,执行所述根据所述目标投影屏幕的型号和默认投影屏幕的型号,确定所述目标投影屏幕的屏幕显示亮度,包括:
    根据所述目标投影屏幕的型号和默认投影屏幕的型号与屏幕增益的对应关系,确定所述目标投影屏幕对应的屏幕增益;
    根据所述目标投影屏幕对应的屏幕增益以及屏幕增益与屏幕显示亮度的对应关系,确定所述目标投影屏幕的屏幕显示亮度。
  4. 根据权利要求3所述的投影设备,其中,所述屏幕增益与所述屏幕显示亮度呈正相关关系。
  5. 根据权利要求3所述的投影设备,其中,所述屏幕增益与所述屏幕显示亮度呈线性关系。
  6. 根据权利要求3所述的投影设备,其中,所述目标投影屏幕对应的屏幕显示亮度采用以下公式确定:
    B n=B _default*X n
    Figure PCTCN2022135292-appb-100001
    其中,B n为目标投影屏幕对应的屏幕显示亮度,B _default为默认投影屏幕对应的默认屏幕显示亮度,X n为第一亮度调节参数,G n为目标投影屏幕的屏幕增益,G _default表示默认投影屏幕的屏幕增益。
  7. 根据权利要求2所述的投影设备,其中,所述控制器被配置为,执行所述获取目标投影屏幕的型号,包括:
    在接收用户切换投影屏幕的控制信号时,获取目标投影屏幕的型号。
  8. 根据权利要求2所述的投影设备,其中,所述控制器被配置为:
    在未收到用户切换投影屏幕的控制信号时,根据默认投影屏幕对应的默认屏幕显示亮度对待显示的图像进行亮度映射后进行图像显示。
  9. 根据权利要求2至6任一项所述的投影设备,其中,所述控制器被配置为,执行所述根据所述目标投影屏幕的屏幕显示亮度,对待显示的图像进行亮度映射后进行图像显示,包括:
    根据所述目标投影屏幕的屏幕显示亮度,对待显示的图像进行亮度映射,以使经过亮度映射后的亮度变化趋势与标准电光转换函数曲线匹配。
  10. 根据权利要求2所述的投影设备,其中,所述控制器被配置为,执行所述根据所述目标投影屏幕的尺寸和默认投影屏幕的尺寸,确定所述目标投影屏幕的屏幕显示亮度,包括:
    根据所述目标投影屏幕的尺寸和默认投影屏幕的尺寸,确定第二亮度调节参数;
    根据所述第二亮度调节参数以及所述默认投影屏幕的屏幕显示亮度,确定所述目标投影屏幕的屏幕显示亮度。
  11. 根据权利要求10所述的投影设备,其中,所述第二亮度调节参数满足以下公式:
    Figure PCTCN2022135292-appb-100002
    其中,Y n为所述第二亮度调节参数,S_default为所述默认投影屏幕的尺寸,S n为所述目标投影屏幕的尺寸;
    所述目标投影屏幕的屏幕显示亮度满足以下公式:
    B n′=B _default*Y n
    其中,B n′为所述目标投影屏幕的屏幕显示亮度,B _default为所述默认投影屏幕的屏幕显示亮度,Y n为所述第二亮度调节参数。
  12. 根据权利要求2所述的投影设备,其中,所述控制器被配置为,执行所述获取目标投影屏幕的尺寸,包括:
    接收用户对所述目标投影屏幕的尺寸的选择指令;
    响应于所述选择指令,确定所述目标投影屏幕的尺寸。
  13. 根据权利要求2所述的投影设备,还包括:
    摄像组件,用于采集所述投影设备所处环境的图像;
    所述控制器被配置为,执行所述获取目标投影屏幕的尺寸,包括:
    通过所述摄像组件对所述目标投影屏幕进行拍摄,获取所述目标投影屏幕的图像;
    根据所述目标投影屏幕的图像,确定所述目标投影屏幕的尺寸。
  14. 一种投影设备的投影显示方法,所述投影设备包括投影屏幕,所述投影屏幕被配置为显示投影图像,所述投影显示方法包括:
    获取目标投影屏幕的参数信息;
    根据所述目标投影屏幕的参数信息,确定所述目标投影屏幕的屏幕显示亮度;
    根据所述目标投影屏幕的屏幕显示亮度,对待显示的图像进行亮度映射后进行图像显示。
  15. 根据权利要求14所述的投影显示方法,其中,所述获取目标投影屏幕的参数信息,包括:
    获取目标投影屏幕的型号或尺寸;
    所述根据所述目标投影屏幕的参数信息,确定所述目标投影屏幕的屏幕显示亮度,包括:
    根据所述目标投影屏幕的型号和默认投影屏幕的型号,或者,根据所述目标投影屏幕的尺寸和默认投影屏幕的尺寸,确定所述目标投影屏幕的屏幕显示亮度。
  16. 根据权利要求15所述的投影显示方法,其中,所述根据所述目标投影屏幕的型号和默认投影屏幕的型号,确定所述目标投影屏幕的屏幕显示亮度,包括:
    根据所述目标投影屏幕的型号和默认投影屏幕的型号与屏幕增益的对应关系,确定所述目标投影屏幕对应的屏幕增益;
    根据所述目标投影屏幕对应的屏幕增益以及屏幕增益与屏幕显示亮度的对应关系,确定所述目标投影屏幕的屏幕显示亮度。
  17. 根据权利要求15所述的投影显示方法,其中,所述获取目标投影屏幕的型号,包括:
    在接收用户切换投影屏幕的控制信号时,获取目标投影屏幕的型号。
  18. 根据权利要求15所述的投影显示方法,还包括:
    在未收到用户切换投影屏幕的控制信号时,根据默认投影屏幕对应的默认屏幕显示亮 度对待显示的图像进行亮度映射后进行图像显示。
  19. 根据权利要求15所述的投影显示方法,其中,所述根据所述目标投影屏幕的尺寸和默认投影屏幕的尺寸,确定所述目标投影屏幕的屏幕显示亮度,包括:
    根据所述目标投影屏幕的尺寸和默认投影屏幕的尺寸,确定第二亮度调节参数;
    根据所述第二亮度调节参数以及所述默认投影屏幕的屏幕显示亮度,确定所述目标投影屏幕的屏幕显示亮度。
  20. 根据权利要求15所述的投影显示方法,其中,所述获取目标投影屏幕的尺寸,包括:
    接收用户对所述目标投影屏幕的尺寸的选择指令;
    响应于所述选择指令,确定所述目标投影屏幕的尺寸。
PCT/CN2022/135292 2021-11-30 2022-11-30 投影设备及其投影显示方法 WO2023098701A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280074826.5A CN118160026A (zh) 2021-11-30 2022-11-30 投影设备及其投影显示方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111436976.XA CN114155802A (zh) 2021-11-30 2021-11-30 激光投影显示方法、激光投影设备和可读性存储介质
CN202111436976.X 2021-11-30
CN202210332154.5A CN114650404A (zh) 2022-03-30 2022-03-30 投影设备及投影显示方法
CN202210332154.5 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023098701A1 true WO2023098701A1 (zh) 2023-06-08

Family

ID=86611557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135292 WO2023098701A1 (zh) 2021-11-30 2022-11-30 投影设备及其投影显示方法

Country Status (2)

Country Link
CN (1) CN118160026A (zh)
WO (1) WO2023098701A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241588A (zh) * 2016-03-29 2017-10-10 佳能株式会社 投影器和投影器的控制方法
JP2019109281A (ja) * 2017-12-15 2019-07-04 Necディスプレイソリューションズ株式会社 表示制御システム、表示制御方法およびプログラム
CN113495422A (zh) * 2021-09-08 2021-10-12 深圳市火乐科技发展有限公司 投影控制方法、装置、投影设备及存储介质
CN114155802A (zh) * 2021-11-30 2022-03-08 青岛海信激光显示股份有限公司 激光投影显示方法、激光投影设备和可读性存储介质
CN114650404A (zh) * 2022-03-30 2022-06-21 青岛海信激光显示股份有限公司 投影设备及投影显示方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241588A (zh) * 2016-03-29 2017-10-10 佳能株式会社 投影器和投影器的控制方法
JP2019109281A (ja) * 2017-12-15 2019-07-04 Necディスプレイソリューションズ株式会社 表示制御システム、表示制御方法およびプログラム
CN113495422A (zh) * 2021-09-08 2021-10-12 深圳市火乐科技发展有限公司 投影控制方法、装置、投影设备及存储介质
CN114155802A (zh) * 2021-11-30 2022-03-08 青岛海信激光显示股份有限公司 激光投影显示方法、激光投影设备和可读性存储介质
CN114650404A (zh) * 2022-03-30 2022-06-21 青岛海信激光显示股份有限公司 投影设备及投影显示方法

Also Published As

Publication number Publication date
CN118160026A (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
US10455206B2 (en) Method and device for adjusting white balance and storage medium
US9756300B2 (en) Compact optical projection apparatus
US20150154448A1 (en) Display system, display device, projection device and program
US10375366B2 (en) Method and apparatus for controlling screen of terminal device to emit light
KR102402051B1 (ko) 전자 장치, 그의 디스플레이 장치 보정 방법 및 보정 시스템
EP3891997B1 (en) Electronic device and method for playing high dynamic range video and method thereof
JP2011128366A (ja) 投写型表示装置、携帯端末装置および携帯型カメラ
WO2022253336A1 (zh) 激光投影设备及投影图像的校正方法
US20220261951A1 (en) Low latency frame delivery
JP2005234539A (ja) 光学系の光伝搬構造、光学表示装置および光変調素子
EP2592471A1 (en) Projector
US20170171447A1 (en) Method of controlling photographing device including flash, and the photographing device
WO2023098701A1 (zh) 投影设备及其投影显示方法
KR20180060685A (ko) 전자 장치 및 그의 제어 방법
CN104714769B (zh) 一种数据处理的方法及电子设备
CN114650404A (zh) 投影设备及投影显示方法
JP6782426B2 (ja) 映像提示システム
TW200529171A (en) Light propagation characteristic control apparatus, optical display apparatus, light propagation characteristic control program, optical display apparatus control program, light propagation characteristic control method and optical display apparatus…
CN112367557A (zh) Led电视墙的显示方法、电视和计算机可读存储介质
JP2015072480A (ja) 回転体及び投影装置
CN112162719A (zh) 显示内容渲染方法及装置、计算机可读介质和电子设备
TWI438547B (zh) 多向穿透式彩色影像投射裝置及其方法
US9912900B2 (en) Display apparatus and storage medium
WO2018090587A1 (zh) 数据显示方法、装置及系统
WO2022228055A1 (zh) 电子设备及其图像显示方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900505

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280074826.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE