WO2022228055A1 - 电子设备及其图像显示方法 - Google Patents

电子设备及其图像显示方法 Download PDF

Info

Publication number
WO2022228055A1
WO2022228055A1 PCT/CN2022/085255 CN2022085255W WO2022228055A1 WO 2022228055 A1 WO2022228055 A1 WO 2022228055A1 CN 2022085255 W CN2022085255 W CN 2022085255W WO 2022228055 A1 WO2022228055 A1 WO 2022228055A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
fov
image
display screen
head
Prior art date
Application number
PCT/CN2022/085255
Other languages
English (en)
French (fr)
Inventor
李腾跃
朱璐璐
毛春静
闫冠屹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US18/558,096 priority Critical patent/US20240219733A1/en
Priority to EP22794526.8A priority patent/EP4318205A4/en
Publication of WO2022228055A1 publication Critical patent/WO2022228055A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/147Digital output to display device ; Cooperation and interconnection of the display device with other functional units using display panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0141Head-up displays characterised by optical features characterised by the informative content of the display
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0261Improving the quality of display appearance in the context of movement of objects on the screen or movement of the observer relative to the screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving
    • G09G2330/023Power management, e.g. power saving using energy recovery or conservation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/0407Resolution change, inclusive of the use of different resolutions for different screen areas
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/04Changes in size, position or resolution of an image
    • G09G2340/045Zooming at least part of an image, i.e. enlarging it or shrinking it
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/346Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on modulation of the reflection angle, e.g. micromirrors

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an electronic device and an image display method thereof.
  • the field of view (FOV) of the head-mounted electronic device determines the field of view of the head-mounted electronic device. Specifically, the larger the field of view of the electronic device, the larger the field of view; conversely, the smaller the field of view of the electronic device, the smaller the field of view.
  • the present application provides an image display method and electronic device, which can display different FOVs in different situations to meet the needs of users in different situations.
  • the present application provides an image display method, the method is applied to an electronic device, and the method includes: when the power states of the electronic device are different, the electronic device displays images with different FOV angles, wherein, the power state includes a connection state of the electronic device and an external power supply device, and/or a battery power state of the electronic device.
  • the image of the first FOV is displayed; when the electronic device is connected to an external power supply device or the remaining power of the electronic device When the electric quantity is greater than or equal to the first electric quantity value, the image of the second FOV is displayed, and the first FOV is smaller than the second FOV.
  • a small FOV image is displayed, which can save energy consumption, prolong the working time of the electronic device, and improve the user experience.
  • a large FOV image is displayed, which can provide a better display effect for the user.
  • the electronic device when the electronic device is not connected to the external power supply device and the remaining power value of the electronic device is greater than or equal to a first power value, the electronic device displays the image of the first FOV; when When the electronic device is connected to the external power supply device, the electronic device displays the image of the second FOV, and the second FOV is greater than or equal to the first FOV; when the electronic device is not connected to the external power supply When the device and the remaining power value of the electronic device is less than the first power value, the electronic device displays an image of a third FOV, where the third FOV is less than the first FOV.
  • the electronic device includes an optical display module, the optical display module includes a laser beam scanning display LBS light engine, and the LBS light engine includes a microelectromechanical system MEMS galvanometer, when the MEMS galvanometer When the maximum deflection angle during the vibration and rotation process is the first angle, the electronic device displays the first FOV image; when the maximum deflection angle of the MEMS galvanometer during the vibration and rotation process is the second angle, the electronic device displays the first FOV image. A second FOV image is displayed and the first angle is smaller than the second angle.
  • the size of the FOV of the electronic device needs to be adjusted, it can be achieved by adjusting the maximum deflection angle of the MEMS galvanometer.
  • the maximum deflection angle for example, the second angle
  • the maximum deflection angle corresponding to a large FOV (for example, the second FOV) is greater than
  • the maximum deflection angle eg, the first angle
  • the FOV eg, the first FOV
  • the method of adjusting the FOV size of the electronic device by adjusting the maximum rotation angle of the MEMS galvanometer is not limited to be applied to the above-mentioned electronic equipment with or without external power supply equipment and whether the remaining power value of the above-mentioned electronic equipment is lower than a certain power value. In any other scenario where the FOV size needs to be switched, the method of this embodiment can be used.
  • the optical display module further includes a laser module
  • the LBS light engine further includes an optical waveguide
  • the optical waveguide includes an in-coupling region and an out-coupling region
  • the laser module is used to provide all The MEMS galvanometer emits a light beam
  • the MEMS galvanometer is used to enter the light beam emitted from the optical film module, and emits the light beam to the coupling-in area through vibration and rotation
  • the optical waveguide is used to connect the coupling-in area
  • the incident light beam is transmitted to the out-coupling area, and the light beam exits through the out-coupling area.
  • the electronic device further includes a driver chip, and the maximum deflection angle of the MEMS galvanometer can be adjusted by adjusting the magnitude of the voltage signal output by the driver chip of the MEMS galvanometer to the MEMS galvanometer. For example, when the driving chip outputs a first voltage signal to the MEMS galvanometer, the maximum deflection angle of the MEMS galvanometer is the first angle; when the driving chip outputs a second voltage signal to the MEMS galvanometer When the voltage signal is applied, the maximum deflection angle of the MEMS galvanometer is adjusted to the second angle, wherein the first voltage signal is smaller than the second voltage signal.
  • the electronic device includes an optical display module, and the optical display module includes a display screen; wherein, when the effective area of the display screen is the first area, the electronic device displays the first FOV image; when the effective area of the display screen is a second area, the electronic device displays a second FOV image, wherein the first area is smaller than the second area.
  • the size of the FOV of the electronic device when the size of the FOV of the electronic device needs to be adjusted, it can be achieved by adjusting the size of the effective area of the display screen.
  • the effective area for example, the second area
  • the large FOV for example, the second FOV
  • the small FOV e.g, the first FOV
  • the valid area e.g, the first area
  • the method of adjusting the FOV size of the electronic device through the effective area of the display screen is not limited to the scenario where the electronic device has no external power supply and whether the remaining power value of the electronic device is lower than a certain power value. In any other scenario where the FOV size needs to be switched, the method of this embodiment can be used.
  • the display screen is a self-luminous display screen, and in this case, its effective area can be adjusted by the resolution of the self-luminous display screen.
  • the effective area of the self-luminous display screen is the first area; when the resolution of the self-luminous display screen is adjusted to the second resolution
  • the effective area of the display screen is the second area, and the first resolution is lower than the second resolution.
  • the optical display module further includes a first mirror group, the first mirror group includes one or more mirrors, and the first mirror group is used to enter the effective area of the self-luminous display screen emitted light beam and exit the light beam.
  • the display screen is a reflective display screen
  • the optical display module further includes a light source
  • the reflective display screen is used for reflecting the light of the light source.
  • the effective area of the reflective display screen can be adjusted by adjusting the light-emitting area of the light source. For example, when the light-emitting area of the light source is adjusted to the first light-emitting area, the effective area of the reflective display screen is the first area; when the light-emitting area of the light source is adjusted to the second light-emitting area, the reflective display The effective area of the display screen is the second area, and the second reflective area is larger than the first light-emitting area.
  • the optical display module further includes a first mirror group, a second mirror group and an optical waveguide, the optical waveguide includes an in-coupling region and an out-coupling region, the first mirror group and the second mirror group
  • the mirror groups respectively include one or more mirrors; the first mirror group is used for incident light beams emitted from the light source, and the light beams are emitted to the reflective display screen; the second mirror group is used for incident light beams to the reflective display screen.
  • the light beam emitted from the reflective display screen is emitted to the coupling-in region; the optical waveguide is used to transmit the light beam incident from the coupling-in region to the coupling-out region, and from the coupling-in region
  • the exit area emits light beams.
  • the electronic device is a head mounted display device.
  • the image is a virtual image.
  • the fixing component can fix the head-mounted display device on the user's head, so that the pupil of the human eye can be fixed. It is fixed to a position suitable for receiving the virtual image displayed by the head-mounted display device, thereby ensuring that the virtual image can accurately enter the pupil of the human eye, and finally improving the image display effect of the electronic device.
  • the present application provides an electronic device, comprising: one or more processors and one or more memories; the one or more memories are coupled with the one or more processors, the one or more memories A plurality of memories are used to store computer program codes, and the computer program codes include computer instructions.
  • the terminal executes any one of the first aspect and the first aspect.
  • a possible embodiment provides an image display method.
  • the present application provides a computer-readable storage medium, including computer instructions, when the computer instructions are executed on a terminal, the terminal is made to perform any possible implementation of the first aspect and the first aspect way to provide the image display method.
  • the present application provides a computer program product, the computer program product includes computer program code, and when the computer program code runs on a computer, the computer can implement any one of the first aspect and the first aspect.
  • a possible embodiment provides an image display method.
  • FIG. 1 is a schematic structural diagram of a head-mounted electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an optical display module provided by an embodiment of the present application.
  • 3a to 3b are schematic structural diagrams of another optical display module provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another optical display module provided by an embodiment of the present application.
  • 5a is a schematic diagram of a large FOV image according to an embodiment of the present application.
  • 5b is a schematic diagram of a small FOV image according to an embodiment of the present application.
  • 6a to 6c provide schematic flowcharts of image display flow of some head-mounted electronic devices according to an embodiment of the present application
  • FIG. 8a is a schematic diagram of FOV setting of a head-mounted electronic device provided by an embodiment of the present application.
  • FIG. 8b is an interface diagram of a user setting the FOV of a head-mounted electronic device according to an embodiment of the present application.
  • 8c is a working state diagram of the head-mounted electronic device according to the embodiment of the present application after switching to a small FOV image;
  • 9a is an interface diagram of a user setting the FOV of a head-mounted electronic device according to another embodiment of the present application.
  • 9b is a working state diagram of the head-mounted electronic device according to the embodiment of the application after switching to a large FOV image
  • FIG. 10a is a working state diagram of displaying a large FOV image of the head-mounted electronic device provided by the embodiment of the application when the remaining power value exceeds the first power value;
  • FIG. 10b is a working state diagram of displaying a small FOV image of the head-mounted electronic device provided by the embodiment of the application when the remaining power value is lower than the first power value;
  • FIG. 11a is a schematic diagram of the beam direction when the physical deflection angle of the MEMS galvanometer is relatively large, according to an embodiment of the application;
  • FIG. 11b is a schematic diagram of the beam direction when the physical deflection angle of the MEMS galvanometer is small, according to an embodiment of the application;
  • 12a is a schematic diagram of the AA area when the display screen resolution provided by the present embodiment of the application is relatively large;
  • 12b is a schematic diagram of the AA area when the display screen resolution provided by this embodiment of the application is small;
  • FIG. 13a is a schematic diagram of a beam direction of the optical display module 300 provided by the embodiment of the application for displaying a large FOV image;
  • FIG. 13b is a schematic diagram of a beam direction of the optical display module 300 provided by the embodiment of the application for displaying a small FOV image;
  • FIG. 14a is a schematic diagram of another light beam orientation in which the optical display module 300 according to the embodiment of the present application displays a large FOV image;
  • 14b is a schematic diagram of another light beam orientation of the optical display module 300 provided by the embodiment of the application for displaying a small FOV image;
  • 15a provides a schematic diagram of the LED array and the AA area when all sub-LEDs are lit for an embodiment of the application;
  • FIG. 15b provides a schematic diagram of some sub-LEDs lighting the LED array and the AA area according to another embodiment of the present application;
  • FIG. 16a is a schematic diagram of a beam direction of the optical display module 400 provided by the embodiment of the application for displaying a large FOV image;
  • FIG. 16b is a schematic diagram of a beam direction of the optical display module 400 provided by the embodiment of the application for displaying a small FOV image;
  • 17 is a schematic flowchart of an image display method of an electronic device according to an embodiment of the present application.
  • FIG. 18 is a schematic flowchart of an image display method of an electronic device according to another embodiment of the present application.
  • FIG. 19 is a schematic flowchart of an image display method of an electronic device according to another embodiment of the present application.
  • the electronic device is an example of a head-mounted electronic device for introduction, but the electronic device in the embodiments of the present application is not limited to the head-mounted electronic device, and may also be other devices.
  • FIG. 1 is a schematic structural diagram of a head-mounted electronic device provided by an embodiment of the present application.
  • the head mounted electronic device 100 may include a processor 110 , a memory 120 , a sensor module 130 , a microphone 140 , a key 150 , an input/output interface 160 , a communication module 170 , a camera 180 , a battery 190 and an optical display module 1100 Wait.
  • the structures illustrated in the embodiments of the present application do not constitute a specific limitation on the head-mounted electronic device 100 .
  • the head-mounted electronic device 100 may include more or less components than shown, or some components may be combined, or some components may be separated, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 is generally used to control the overall operation of the head-mounted electronic device 100, and may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit processor (graphics processing unit, GPU), image signal processor (image signal processor, ISP), video processing unit (video processing unit, VPU) controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit processor
  • graphics processing unit processor graphics processing unit processor
  • image signal processor image signal processor
  • video processing unit video processing unit
  • VPU video processing unit
  • memory video codec
  • digital signal processor digital signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may contain multiple sets of I2C buses.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus may be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect the processor 110 with the communication module 170 .
  • the processor 110 communicates with the Bluetooth module in the communication module 170 through the UART interface to implement the Bluetooth function.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen and the camera 180 in the optical display module 1100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 110 with the camera 180 , the display screen in the optical display module 1100 , the communication module 170 , the sensor module 130 , the microphone 140 and the like.
  • the GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface is an interface that conforms to the USB standard specification, which can be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface can be used to connect a charger to charge the head-mounted electronic device 100, and can also be used to transmit data between the head-mounted electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as mobile phones.
  • the USB interface can be USB3.0, which is compatible with high-speed display port (DP) signal transmission, and can transmit high-speed video and audio data.
  • DP display port
  • the interface connection relationship between the modules illustrated in the embodiments of the present application is only a schematic illustration, and does not constitute a structural limitation of the head-mounted electronic device 100.
  • the head-mounted electronic device 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the head mounted electronic device 100 may incorporate wireless communication functionality.
  • the communication module 170 may include a wireless communication module and a mobile communication module.
  • the wireless communication function may be implemented by an antenna (not shown), a mobile communication module (not shown), a modem processor (not shown), a baseband processor (not shown), and the like.
  • Antennas are used to transmit and receive electromagnetic wave signals.
  • the head mounted electronic device 100 may contain multiple antennas, each of which may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to speakers, etc.), or displays images or videos through the display screen in the optical display module 1100 .
  • the modem processor may be a stand-alone device.
  • the modulation and demodulation processor may be independent of the processor 110, and may be provided in the same device as the mobile communication module or other functional modules.
  • the wireless communication module can provide applications on the head-mounted electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation Satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation Satellite system
  • frequency modulation frequency modulation, FM
  • NFC near field communication technology
  • IR infrared technology
  • the wireless communication module may be one or more devices integrating at least one communication processing module.
  • the wireless communication module receives electromagnetic waves via the antenna, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module can also receive the signal to be sent from the processor 110, perform frequency modulation on it, amplify it, and convert it into electromagnetic waves for radiation through the antenna.
  • the antenna of the head mounted electronic device 100 and the mobile communication module are coupled such that the head mounted electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), wideband code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC, FM, and/or IR technology, etc.
  • GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi-zenith) satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the head mounted electronic device 100 realizes the display function through the GPU, the optical display module 1100, and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the optical display module 1100 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the head-mounted electronic device 100 may implement audio functions through an audio module, a speaker, a microphone 140, an earphone interface, and an application processor. Such as music playback, recording, etc.
  • the audio module is used to convert digital audio information into analog audio signal output, and also used to convert analog audio input to digital audio signal.
  • the audio module can also be used to encode and decode audio signals.
  • the audio module may be provided in the processor 110 , or some functional modules of the audio module may be provided in the processor 110 .
  • Speakers also known as "horns" are used to convert audio electrical signals into sound signals.
  • the headset 100 can listen to music through the speaker, or listen to a hands-free call.
  • the microphone 140 also referred to as "microphone” or “microphone”, is used to convert sound signals into electrical signals.
  • the head mounted electronic device 100 may be provided with at least one microphone 140 .
  • the head-mounted electronic device 100 may be provided with two microphones 140 , which can implement a noise reduction function in addition to collecting sound signals.
  • the head-mounted electronic device 100 may further be provided with three, four or more microphones 140 to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the headphone jack is used to connect wired headphones.
  • the headphone interface can be a USB interface or a 3.5 millimeter (mm) open mobile terminal platform (OMTP) standard interface, the cellular telecommunications industry association of the USA (CTIA) Standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the headset 100 can include one or more buttons 150 that can control the headset, providing the user with access to functions on the headset 100 .
  • the keys 150 may be in the form of buttons, switches, dials, and touch or near-touch sensing devices (eg, touch sensors). Specifically, for example, the user can turn on the optical display module 1100 of the head mounted electronic device 100 by pressing a button.
  • the keys 150 include a power-on key, a volume key, and the like.
  • the keys 150 may be mechanical keys. It can also be a touch key.
  • the head mounted electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the head mounted electronic device 100 .
  • the head-mounted electronic device 100 may include an input-output interface 160 that may connect other devices to the head-mounted electronic device 100 through suitable components.
  • Components may include, for example, audio/video jacks, data connectors, and the like.
  • the optical display module 1100 is used to present images to the user under the control of the processor.
  • the optical display module 1100 can convert the real pixel image display into a virtual image display of near-eye projection through one or more optical devices such as a reflector, a transmission mirror or an optical waveguide, so as to realize a virtual interactive experience, or realize a virtual and An interactive experience that combines reality.
  • the optical display module 1100 receives the image data information sent by the processor, and presents the corresponding image to the user. Exemplary structural diagrams and image display methods of several optical display modules in the embodiments of the present application are described below.
  • the optical display module 1100 may include a galvanometer, and the galvanometer can rotate under the control of a driving signal.
  • a galvanometer is a micro-electronic-mechanical system (MEMS) galvanometer.
  • MEMS galvanometer in this application may be an electrostatically driven, electromagnetically driven, electrothermally driven or piezoelectrically driven MEMS galvanometer.
  • the optical display module including the MEMS galvanometer as an example, the following describes an image display method of the optical display module according to an embodiment of the present application with reference to FIG. 2 .
  • the optical display module 200 includes a laser beam scanning (LBS) light engine 210 and an optical waveguide 220 .
  • LBS laser beam scanning
  • the LBS light engine 210 may include a laser module 211 and a micro-electro-mechanical system (MEMS) galvanometer 212 .
  • the electronic device may further include a driving chip (not shown in the figure) for the MEMS galvanometer 212 .
  • the MEMS galvanometer 212 is a tiny drivable mirror manufactured based on the MEMS technology, and the diameter of the mirror surface of the MEMS galvanometer 212 is usually only a few millimeters.
  • the MEMS galvanometer 212 can be rotated around the rotation axis 213 to change the angle at which the beam incident on the MEMS galvanometer emerges from the MEMS, thereby changing the angle at which the beam emitted by the laser module 211 enters the coupling region 221 of the waveguide, and further The angle at which the light beam exits from the coupling region 222 of the optical waveguide 220 is changed, and finally the FOV of the image displayed by the optical display module 200 is changed.
  • the MEMS galvanometer 212 may be a one-dimensional galvanometer having only one axis of rotation. In some embodiments, the MEMS galvanometer 212 may be a two-dimensional galvanometer having two mutually perpendicular rotation axes.
  • Direction 1 rotate with the rotation axis as the center; during the rotation of the rotor, the rotor will be subjected to the reset torque applied by the mechanical spring or electronic method, and the greater the angle of rotation of the rotor, the greater the reset torque; the rotor in the direction 1 Drive the MEMS galvanometer to rotate to position 1, that is, when the value of the reset torque is equal to the value of the electromagnetic torque, it rotates in the direction 2, and the reset torque becomes smaller and smaller; after the MEMS returns to the initial position driven by the rotor, the electromagnetic torque will Make the rotor drive the MEMS galvanometer to continue to rotate in the direction 2 until the position 2, the value of the reset torque of the rotor at the position 2 is equal to the value of the electromagnetic torque, the process of the rotor from the initial position to the position 2 is the same as the rotor from the initial position to the position 1.
  • the process of MEMS is similar and will not be repeated here; the MEMS continues to rotate from position 2 to position 2 under the driving of the rotor, and repeats the rotation process, which may be called vibration rotation.
  • the maximum rotation angle of the MEMS galvanometer 212 during the vibration and rotation process that is, the angle between the position 1 and the position 2, for example, the MEMS galvanometer rotates from the position of the solid line frame to the position of the dotted line frame in FIG. 2 .
  • the rotation angle is denoted as ⁇ .
  • the optical waveguide 220 refers to a medium device that guides light waves to propagate therein, and may also be referred to as a medium optical waveguide.
  • the optical waveguide in this embodiment may be a diffractive optical waveguide, a holographic optical waveguide or an arrayed optical waveguide, etc.
  • the optical waveguide at least includes a light coupling-in region 221 and a light coupling-out region 222 .
  • the working principle of image display by the optical display module shown in FIG. 2 is as follows: the laser light source in the laser module 211 emits a laser beam corresponding to the image to be displayed under the control of the processor, and the laser beam passes through the laser module 211. After the optical lens group is shaped, it is emitted to the MEMS galvanometer 212; after the MEMS galvanometer 212 receives the signal sent by the driving chip, it performs rotational vibration based on the signal, so as to make the laser beam incident on the MEMS galvanometer 212 different at different times.
  • the maximum rotation angle of the galvanometer 212 is different.
  • the size of the area is also different, so that the FOV size of the image displayed by the light display module is different.
  • the optical display module may further include a first lens group, and the first lens group is used to present the light emitted from the display screen to the user at a specified angle to display a virtual image.
  • the first mirror group may include one or more mirrors such as lenses, mirrors, and the like.
  • the optical display module may further include an optical waveguide, and the optical waveguide is used for presenting the light emitted from the first mirror group to the user to display a virtual image.
  • the optical display module may further include a light source, and at this time, the display screen is used for reflecting light waves emitted by the light source.
  • the optical display module when it includes a reflective display screen and a light source, it may further include a second mirror group, and the second mirror group is used to output light emitted from the light source to the reflective display screen at a specified angle.
  • the second mirror group may include one or more mirrors such as lenses, mirrors, and the like.
  • optical display module comprising a self-luminous display screen and a first mirror group, and the first mirror group comprising a semi-transparent mirror, a concave mirror and a lens, in conjunction with FIG.
  • the image display method of the display module is an example of an optical display module comprising a self-luminous display screen and a first mirror group, and the first mirror group comprising a semi-transparent mirror, a concave mirror and a lens, in conjunction with FIG.
  • the optical display module 300 includes a half mirror 301 , a concave mirror 302 , a lens 303 and a self-luminous display screen 304 .
  • the half mirror 301, the concave mirror 302 and the lens 303 can be optical devices, which can turn the light path emitted by the self-luminous display screen 304.
  • the half mirror 301, the concave mirror 302 and the lens 303 are used for The light emitted from the self-luminous display screen 304 is presented to the user at a specified angle to display a virtual image, and the specified angle is determined by the positions of the half mirror 301 , the concave mirror 302 and the lens 303 .
  • the self-luminous display screen 304 can be an organic light emitting diode (OLED), a liquid crystal display (LCD), a micro light emitting diode (Micro LED), or the like. It should be noted that the self-luminous display screen 304 is a display screen with adjustable resolution.
  • the working principle of the optical display module 300 corresponding to FIG. 3a is as follows: the self-luminous display screen 304 receives image information and resolution information sent by the processor, and the resolution information is used to indicate the resolution of the display screen 304; the self-luminous display screen 304 Use the resolution indicated by the resolution information to emit the light beam corresponding to the image to be displayed; the light beam emitted from the display screen 304 passes through the lens 303, the half mirror 301 and the concave mirror 302 and then exits and can be received by the human eye, thereby realizing the display for the user.
  • Image function the working principle of the optical display module 300 corresponding to FIG. 3a
  • FIG. 3 b Another example of the optical display module is shown in FIG. 3 b , wherein the optical display module 300 includes a self-luminous display screen 304 and a free-form curved prism 305 .
  • the free-form surface prism 305 can be an optical device, which can turn the light path emitted by the self-luminous display screen 304 to present the light emitted by the self-luminous display screen 304 to the user at a specified angle to display a virtual image.
  • optical display module comprising a self-luminous display screen and a first mirror group
  • first mirror group comprising a free-form curved prism
  • the optical display module 300 includes a self-luminous display screen 304 and a free-form surface prism 305, wherein the free-form surface prism is used to present the light emitted from the self-luminous display screen to the user at a specified angle, and the specified angle is determined by the free-form surface.
  • the position of the curved prism is determined.
  • the working principle of the optical display module 300 corresponding to FIG. 3b is as follows: the self-luminous display screen 304 receives image information and resolution information sent by the processor, and the resolution information is used to indicate the resolution of the display screen 304; the self-luminous display screen 304 The light beam corresponding to the image to be displayed is emitted using the resolution indicated by the resolution information; the light beam emitted from the display screen 304 passes through the free-form surface prism 305 and can be received by the human eye, thereby realizing the function of displaying images for the user.
  • the optical display module includes a light source, a second mirror group, a reflective display screen, a first mirror group and an optical waveguide, and the first mirror group includes a total reflection prism and a plurality of lenses, and the second mirror group includes a concave mirror and a plurality of Taking a lens as an example, with reference to FIG. 4 , an image display method of an optical display module according to another embodiment of the present application is introduced.
  • the optical display module 400 includes a light engine 410 and an optical waveguide 420 .
  • the light engine 410 may include a digital light processor (digital light processing, DLP) light engine or a liquid crystal on silicon (liquid crystal on silicon, LCOS) light engine.
  • DLP digital light processing
  • LCOS liquid crystal on silicon
  • the light engine 410 mainly includes a light source 411 , a lens group 412 , a concave mirror 413 , a reflective display screen 414 , a total reflection prism 415 , and a lens group 416 .
  • the total reflection prism 415, the lens group 416 and the optical waveguide 420 can be optical devices, which can turn the light path emitted by the reflective display screen 414, so as to present the light emitted by the reflective display screen 414 to the user at a specified angle, so that the Display a virtual image.
  • the lens group 412 and the concave mirror 413 constitute the second mirror group, which is used to transmit the light emitted from the light source 411 to the reflective display screen 414 at a specified angle; the total reflection prism 415 and the lens group 416 constitute the first mirror group, which is used for The light output from the reflective display screen 414 is transmitted to the coupling region 421 of the optical waveguide 420 at a specified angle.
  • the light source 411 can be a light emitting diode (LED) or other light sources that can adjust the lighting area;
  • the reflective display screen 414 can be a digital micromirror display (digital micromirror device, DMD) or an LCOS display screen;
  • a lens group 412 and lens group 416 may each include one or more lenses.
  • the reflective display screen 414 is a DMD display
  • the light engine 410 is a DLP light engine
  • the reflective display screen 414 is an LCOS display screen
  • the light engine 410 is an LCOS light engine.
  • the working principle of the optical display module 400 is as follows: the light source 411 emits a light beam; the light beam emitted by the light source 411 passes through the lens group 412 and then enters the concave mirror 413; the light beam emitted by the concave mirror enters the reflective display screen 414; The beam on 414 is reflected by the display screen 414 to obtain an imaging beam; the imaging beam emitted by the display screen 414 is incident on the total reflection prism 415; the imaging beam output by the total reflection prism 415 is incident on the coupling area of the optical waveguide 420 through the lens group 416 421; the imaging beam propagates in the optical waveguide 420 and exits in the coupling-out region 422, and finally can be received by the human eye, thereby realizing the image display function.
  • optical display module 400 in this embodiment is only a schematic representation of the optical display module, which may also include more or less components, or some components may also be replaced by other components having the same function.
  • Component replacement for example, the concave mirror 413 and the total reflection prism 415 can be replaced by a prism group or a polarization beam splitter (PBS).
  • PBS polarization beam splitter
  • Scenarios such as large-screen movie viewing or large-screen office usually need to display larger images, and scenarios such as incoming calls, message reminders, and simple navigation usually only need to display smaller images. It can be seen that the electronic device needs to have the ability to display an image with a larger screen and an image with a smaller screen, and be able to switch between displaying an image with a larger screen and an image with a smaller screen.
  • the diagonal FOV of the display module when the diagonal FOV of the display module is relatively large, a larger image can be displayed. For example, when the diagonal FOV of the display module is greater than or equal to 30 degrees, the image displayed by the display module is relatively large. Large; when the diagonal FOV of the display module is small, the display module can display an image with a small screen. For example, when the diagonal FOV of the display module is less than 30 degrees, the image displayed by the display module is small. Therefore, the present application proposes a technical solution that the screen size of the displayed image can be adjusted by adjusting the diagonal FOV of the display module.
  • the electronic device can switch between different FOVs, for example, switch between a large FOV and a small FOV.
  • the image displayed by the display module under the large FOV is referred to as the large FOV image
  • the image displayed by the display module under the small FOV is referred to as the small FOV image.
  • the present application proposes a technical solution for adjusting or switching the FOV based on the power state of the electronic device.
  • the power state in this application may include the connection state of the external power supply device or the power state of the battery, wherein the connection state of the external power supply device may also be referred to as the charging state.
  • the present application proposes a technical solution for displaying a small FOV image when the power of the electronic device is low or is not connected to an external power supply device, so as to ensure the high-quality display of the image. .
  • the power of the electronic device is low or not.
  • the small FOV image is only displayed when an external power supply is connected.
  • the electronic device can determine whether to display a large FOV or a small FOV based on whether it is connected to an external power supply device, or can determine whether to display a large FOV or a small FOV based on the remaining power value of the electronic device FOV.
  • FIG. 5a is a schematic diagram of a large FOV image according to an embodiment of the present application, indicating that the image seen by the human eye of the user through the head-mounted electronic device is a large FOV image, and the large FOV image may be a virtual image.
  • FIG. 5b is a schematic diagram of a small FOV image according to an embodiment of the present application, indicating that the image seen by the user's human eyes through the head-mounted electronic device is a small FOV image, and the small FOV image may be a virtual image.
  • the diagonal angle ⁇ 1 of the large FOV image displayed by the head mounted electronic device is larger than the diagonal angle ⁇ 2 of the small FOV image displayed by the head mounted electronic device.
  • the head-mounted electronic device can determine whether to display a large FOV image or a small FOV image based on whether it is connected to an external power supply device to determine the power state.
  • the external power supply device can be understood as a device that can provide power for the electronic device.
  • the external power supply device can be connected to the electronic device in a wired manner (ie, wired charging), or it can be connected with the electronic device in a wireless manner (that is, wireless charging).
  • the method is not limited.
  • Examples of the external power supply device may include a mobile phone, a notebook computer, a tablet computer or a desktop computer, and the like.
  • the head-mounted electronic device can determine whether it is connected to an external power supply device by detecting its input and output interface. For example, the processor of the head-mounted electronic device detects whether the input and output interface of the head-mounted electronic device has a voltage input. If there is a voltage input, it can be determined that the head-mounted electronic device is connected to an external power supply device; otherwise, it can be determined that the head-mounted electronic device is not connected. External power supply equipment.
  • FIGS. 6a-6c are schematic diagrams of an image display flow of a head-mounted electronic device according to an embodiment of the present application. As shown in Fig. 6a, the head-mounted electronic device is in a closed state and is connected to an external power supply device.
  • the head-mounted electronic device When the user presses the start button (or power switch key) of the head-mounted electronic device, the head-mounted electronic device enters the power-on state, and it is detected that the head-mounted electronic device is currently connected to an external power supply device, so it can be displayed as shown in Figure 6b Large FOV image shown.
  • the head-mounted electronic device if the head-mounted electronic device detects that the connection with the external power supply device is disconnected, the head-mounted electronic device can display a small FOV image as shown in FIG. 6c.
  • the image display method in this embodiment displays a large FOV when the head-mounted electronic device is connected to an external power supply device, which can improve the display capability of the head-mounted electronic device and meet the user's demand for the FOV of the image; when the head-mounted electronic device is not connected Switching to a small FOV in the case of an external power supply device can save the power consumption of the head-mounted electronic device and prolong the use time of the head-mounted electronic device.
  • FIGS. 7a-7c are schematic diagrams of an image display flow of a head-mounted electronic device according to still another embodiment of the present application. As shown in Fig. 7a, the head mounted electronic device is in a closed state, and no external power supply device is connected.
  • the head-mounted electronic device When the user presses the start button (or power switch key) of the head-mounted electronic device, the head-mounted electronic device enters the power-on state, and it is detected that the head-mounted electronic device is not currently connected to an external power supply device, so the display as shown in Figure 7b Small FOV image shown.
  • the head-mounted electronic device is connected to a peripheral device, but the peripheral device cannot provide power for the head-mounted electronic device, and can only perform data transmission with the head-mounted electronic device.
  • the electronic device is not connected to an external power source, and in this case, the headset can display a small FOV image.
  • the head-mounted electronic device if the head-mounted electronic device detects that an external power supply device is connected, the head-mounted electronic device can display a large FOV image as shown in FIG. 7c.
  • a large FOV image is displayed under the condition of ensuring sufficient power supply, which can provide a better display effect for users, thereby improving user experience;
  • the working hours of the headset which can improve the user experience.
  • the image display method in this embodiment displays a small FOV when the head-mounted electronic device is not connected to an external power supply device, which can save the power consumption of the head-mounted electronic device and prolong the use time of the head-mounted electronic device; Switching to a large FOV when an external power supply device is connected can improve the display capability of the head-mounted electronic device and meet the user's demand for the FOV of the image.
  • the user can set the FOV of the head-mounted electronic device.
  • the user sets the FOV of the headset to a large FOV, an intermediate FOV, or a small FOV.
  • the FOV of the electronic device includes five kinds of FOVs, and the FOVs represented by the five circles from left to right increase in turn, that is, the smallest circle represents a small FOV, the largest circle represents a large FOV, and a small FOV There are also three intermediate FOVs between the maximum FOVs.
  • the image displayed by the head mounted electronic device is a large FOV image, a small FOV image or an intermediate FOV image.
  • the FOV is set to the first FOV
  • the FOV when the electronic device is connected to an external power supply device is set to the second FOV
  • the first FOV is smaller than the second FOV
  • the power level of the electronic device is lower than the first power level.
  • the FOV is set to the third FOV
  • the FOV when the power level of the electronic device is higher than the first power level is set to the fourth FOV
  • the third FOV is smaller than the fourth FOV.
  • the size relationship between the first FOV, the third FOV, and the fourth FOV is not limited, and the size relationship between the second FOV, the third FOV, and the fourth FOV is not limited.
  • the third FOV is equal to the first FOV, and/or the second FOV is equal to the fourth FOV.
  • the third FOV is less than the first FOV.
  • the FOV of the electronic device can be switched from the first FOV to a third FOV smaller than the first FOV.
  • the second FOV is greater than the fourth FOV.
  • the remaining power value is greater than the first power value
  • the fourth FOV is displayed, if the electronic device is connected to an external power supply device, the The FOV can be switched from the fourth FOV to the second FOV greater than the fourth FOV to provide the user with a better image experience.
  • the following describes the setting process and setting result of the FOV of the electronic device by taking the FOV of the electronic device only including the large FOV and the small FOV as an example.
  • the head-mounted electronic device when the head-mounted electronic device is in the working state as shown in FIG. 6b, if the user sets the FOV of the head-mounted electronic device to a small FOV, the head-mounted electronic device switches to a small FOV, that is, a small FOV image is displayed.
  • the interface diagram of the user setting the FOV of the head-mounted electronic device is shown in Fig. 8b, and the working state of the head-mounted electronic device after switching to the small FOV image is shown in Fig. 8c.
  • the head-mounted electronic device continues to display a large FOV image.
  • the head-mounted electronic device when the head-mounted electronic device is in the working state as shown in FIG. 7b, if the user sets the FOV of the head-mounted electronic device to a large FOV, the head-mounted electronic device switches to a large FOV, that is, a large FOV image is displayed.
  • the interface diagram of the user setting the FOV of the head-mounted electronic device is shown in FIG. 9a, and the working state of the head-mounted electronic device after switching to the large FOV image is shown in FIG. 9b.
  • the head-mounted electronic device continues to display the small FOV image.
  • the number of times the user sets the FOV of the head-mounted electronic device is not limited.
  • the working state of the head-mounted electronic device is the working state shown in Fig. 8b, or in the working state shown in Fig. 9b, the user can also set the FOV of the head-mounted electronic device.
  • the user can switch the FOV of the head-mounted electronic device to a large FOV, so that the head-mounted electronic device displays a large FOV image.
  • the user can switch the FOV of the head-mounted electronic device to a small FOV, so that the head-mounted electronic device displays a small FOV image.
  • the head-mounted electronic device may decide which FOV image to display based on the remaining power value. As shown in Figure 10a, the head-mounted electronic device displays a large FOV image when the remaining power value exceeds the first power value; as shown in Figure 10b, when the remaining power value of the head-mounted electronic device is lower than the first power value Below, a small FOV image is displayed.
  • This embodiment can provide users with a better display effect when the power supply is sufficient, thereby improving user experience; and in the case of insufficient power supply, energy consumption can be saved, and the working time of the head-mounted electronic device can be extended, so that the Improve user experience.
  • the first power value may be a value set by default on the head-mounted electronic device before leaving the factory, or the first power value may also be set by a user for the head-mounted electronic device.
  • the user when the head-mounted electronic device is running, the user can also set the FOV of the head-mounted electronic device, so as to switch the FOV according to the user's needs and provide the user with an image of the corresponding FOV.
  • the head-mounted electronic device when the current remaining power value of the head-mounted electronic device exceeds the first power value and a large FOV image is displayed, if the user sets the FOV of the head-mounted electronic device to a small FOV, the head-mounted electronic device switches to a small FOV, That is, a small FOV image is displayed, and if the user sets the FOV of the head-mounted electronic device to a large FOV, the head-mounted electronic device continues to display the large FOV image.
  • the head-mounted electronic device when the current remaining power of the head-mounted electronic device is lower than the first power value and a small FOV image is displayed, if the user sets the FOV of the head-mounted electronic device to a large FOV, the head-mounted electronic device switches to a large FOV , that is, a large FOV image is displayed. If the user sets the FOV of the head-mounted electronic device to a small FOV, the head-mounted electronic device continues to display the small FOV image.
  • the number of times the user sets the FOV of the head-mounted electronic device is not limited.
  • any one of the above settings performed by the user on the head-mounted electronic device may be implemented through a setting button and/or a setting page provided by the head-mounted electronic device, or through a connection with the head-mounted electronic device.
  • Connected terminal devices such as mobile phones, computers to achieve, this application does not limit.
  • an FOV switching method of the head-mounted electronic device is introduced by taking the optical display module 200 shown in FIG. 2 as an example in the head-mounted electronic device.
  • Correspondence relationships between multiple FOVs and multiple binary values may be preset in the memory of the head-mounted electronic device, wherein the binary value corresponding to the large FOV is greater than the binary value corresponding to the small FOV. In some implementations, these binary values are between 0 and 255.
  • the processor of the head-mounted electronic device can find a target binary value matching the target FOV based on the corresponding relationship between the FOV and the binary value, and output a representation to the optical display module 200. Control signal for the target binary value.
  • the head-mounted electronic device when the head-mounted electronic device determines that the target FOV is a large FOV, it can find the first target binary value corresponding to the large FOV based on the correspondence between the FOV and the binary value, and output to the optical display module indicating the first target.
  • a binary-valued control signal when the head-mounted electronic device determines that the target FOV is a large FOV, it can find the first target binary value corresponding to the large FOV based on the correspondence between the FOV and the binary value, and output to the optical display module indicating the first target.
  • a binary-valued control signal when the head-mounted electronic device determines that the target FOV is a large FOV, it can find the first target binary value corresponding to the large FOV based on the correspondence between the FOV and the binary value, and output to the optical display module indicating the first target.
  • the head-mounted electronic device when it determines that the target FOV is a small FOV, it can search for a second target binary value corresponding to the small FOV based on the correspondence between the FOV and the binary value, and output to the optical display module indicating the second target FOV. Control signal for the target binary value.
  • the driving chip of the MEMS galvanometer in the optical display module After receiving the control signal, the driving chip of the MEMS galvanometer in the optical display module converts the control signal to generate a voltage signal, and outputs the voltage signal to the MEMS galvanometer.
  • the smaller the binary value represented by the control signal the smaller the value of the converted voltage signal. For example, the voltage signal value obtained by 0 conversion is the smallest, and the voltage signal value obtained by 255 conversion is the largest.
  • the energized coil in the motor will generate an electromagnetic torque in the magnetic field, and the electromagnetic torque will cause the rotor in the motor to rotate; during the rotation of the rotor, the rotor will pass the mechanical torsion spring or electronic method.
  • a reset torque is added, and the reset torque increases with the increase of the rotation angle of the rotor.
  • the reset torque increases to the same as the electromagnetic torque, the rotor will move in the opposite direction; the reset torque gradually decreases during the movement of the rotor. is small until the reset torque is zero; then the rotor will rotate in the opposite direction under the action of the electromagnetic torque, and the rotation process of the rotor in this direction is similar to the previous rotation process, and will not be repeated here.
  • the driver chip outputs the first target binary value to the motor of the MEMS galvanometer based on the first target binary value.
  • the voltage signal is greater than the second voltage signal output by the driving chip to the motor of the MEMS galvanometer based on the second target binary value, so that the first electromagnetic torque generated by the motor based on the first voltage signal is greater than the second electromagnetic torque generated by the motor based on the second voltage signal torque, so that the first deflection angle ⁇ 1 of the MEMS galvanometer based on the first electromagnetic moment is greater than the second deflection angle ⁇ 2 of the MEMS galvanometer based on the second electromagnetic moment.
  • the larger the maximum deflection angle of the MEMS galvanometer the larger the angle at which the beam emitted by the MEMS galvanometer enters the coupling-in area of the optical waveguide, so that the angle of the exit angle of the light beam in the coupling-out area of the optical waveguide is larger, and then Makes the FOV of the electronic device larger.
  • FIG. 11a When the physical deflection angle of the MEMS galvanometer is ⁇ 1, the schematic diagram of the light beam in the optical display module 200 is shown in FIG. 11a, where the FOV is denoted as ⁇ 1.
  • FIG. 11b When the physical deflection angle of the MEMS galvanometer is ⁇ 2, the schematic diagram of the light beam in the optical display module 200 is shown in FIG. 11b, where the FOV is denoted as ⁇ 2.
  • outputting different values to the driving chip of the MEMS galvanometer can enable the driving chip of the MEMS galvanometer to output voltage signals of different sizes, thereby making the maximum deflection angle ⁇ of the MEMS galvanometer different.
  • the maximum incident angles of the light beams in the coupling-in region of the optical waveguide can be made different, and the maximum exit angles of the light beams in the coupling-out region of the optical waveguide can be made different, so that different FOVs can be realized.
  • the technical solution of this embodiment can realize switching between FOVs of different sizes of the head-mounted electronic device, so as to meet the usage requirements of the head-mounted electronic device in different scenarios. For example, in a scenario where a user needs a large FOV, an image that meets the user's needs is provided; in a scenario where the user does not need a large FOV, power consumption can be saved.
  • FIG. 3 a and FIG. 3 b another FOV switching method of the head-mounted electronic device according to the embodiment of the present application is introduced by taking the optical display module 300 shown in FIG. 3 a and FIG. 3 b as an example as an example.
  • the display screen in the optical display module in this embodiment is a display screen with adjustable resolution, and the memory of the head-mounted electronic device can be set with the correspondence between various FOVs and various resolutions.
  • the resolution value corresponding to a large FOV is larger than the resolution corresponding to a small FOV.
  • the processor of the head-mounted electronic device After the processor of the head-mounted electronic device determines its target FOV, it can find the target resolution matching the target FOV based on the above-mentioned correspondence between the FOV and the resolution, and report the target resolution to the control chip of the display screen in the optical display module.
  • a control signal is output, and the control signal is used to control the resolution of the display screen to be adjusted to the target resolution.
  • the head-mounted electronic device when the head-mounted electronic device determines that the target FOV is a large FOV, it can search for the first resolution corresponding to the large FOV based on the correspondence between the FOV and the resolution, and output the first resolution to the optical display module indicating the first resolution.
  • the second resolution corresponding to the small FOV when the head-mounted electronic device determines that the target FOV is a small FOV, the second resolution corresponding to the small FOV can be found based on the correspondence between the FOV and the resolution, and the second resolution corresponding to the small FOV can be found to the optical display mode.
  • the group outputs a control signal representing the second resolution. Wherein, the first resolution is greater than the second resolution.
  • the control chip of the display screen in the optical display module After receiving the control signal sent by the processor of the head-mounted electronic device, the control chip of the display screen in the optical display module adjusts its own resolution according to the control signal. Wherein, when the resolutions of the display screens are different, the sizes of the active working areas (active area, AA) of the display screens are different, and the AA corresponding to the large resolution is larger than the AA corresponding to the small resolution.
  • the control chip of the display screen adjusts the resolution to the first resolution.
  • An example of AA1 of the display screen at this time is shown in FIG. 12a.
  • the optical path diagram of the light beam emitted by the self-luminous display screen in the optical display module is shown in Figure 13a, wherein the FOV Denoted as ⁇ 1.
  • the control chip of the display screen adjusts the resolution to the second resolution.
  • an example of AA2 of the display screen is shown in Figure 12b, and AA2 is smaller than the second resolution. AA1.
  • Figure 12b the optical path diagram of the light beam emitted by the self-luminous display screen in the optical display module is shown in Figure 13b, wherein the FOV Denoted as ⁇ 1.
  • the AA of the display screen is smaller, and the angle of the light beam emitted by the display screen is small, and the light beam passes through the lens, the concave mirror and the semi-transparent lens.
  • the exit angle behind the half mirror is smaller, thereby achieving a smaller FOV, that is, providing the user with an image with a smaller field of view.
  • the head-mounted electronic device can be switched between different FOVs, In particular, the head-mounted electronic device can be switched to a large FOV in a scenario requiring a large FOV to meet user requirements, and the head-mounted electronic device can be switched to a small FOV in a scenario where the FOV is not required to save energy consumption.
  • the method of this embodiment will not cause problems such as stray light caused by leakage current in the region with a grayscale of 0.
  • the image is not a problem of a completely black state, so that the display effect of the head-mounted electronic product when switching to a small FOV can be improved.
  • the FOV switching method of the head-mounted electronic device can refer to the switching method of FIG. 3a, which will not be repeated here.
  • FOV switching method of the head-mounted electronic device is introduced by taking the optical display module 400 shown in FIG. 4 as an example in the head-mounted electronic device.
  • the light source of the display screen is an LED array, and each sub-LED in the array can be individually controlled or lit.
  • the memory of the head-mounted electronic device is provided with correspondence between various FOVs and various control modes of the LED array, wherein the LED array control modes corresponding to different FOVs are different, and the LED array control modes are Below, the area of the illuminated sub-LEDs in the LED array varies in size.
  • all sub-LEDs can be illuminated, so that the display area of the display screen can be in the AA area; for another example, in the LED control mode corresponding to the small FOV, some sub-LEDs are illuminated. Only part of the display screen is illuminated, so that part of the display screen is the AA area.
  • the processor of the head-mounted electronic device determines its target FOV, it can find a target control mode that matches the target FOV based on the correspondence between the above-mentioned FOV and the control mode of the LED array, and report it to the optical display module.
  • the control chips of the illumination light sources in the group output control signals, and the control signals are used to control the light sources to illuminate according to the target control mode.
  • the head-mounted electronic device when the head-mounted electronic device determines that the target FOV is a large FOV, it can search for the first control mode corresponding to the large FOV based on the corresponding relationship between the FOV and the control mode, and output to the optical display module indicating the first control mode
  • the control signal of the first control method is to control all sub-LEDs to illuminate; for another example, when the head-mounted electronic device determines that the target FOV is a small FOV, it can be searched based on the corresponding relationship between the FOV and the control method. to a second control mode corresponding to the small FOV, and output a control signal representing the second control mode to the optical display module.
  • An example of the second control mode is to control the illumination of sub-LEDs in the middle area of the LED array.
  • the control chip of the LED array in the optical display module After receiving the control signal sent by the processor of the head-mounted electronic device, the control chip of the LED array in the optical display module lights up the corresponding sub-LED according to the control signal. Wherein, when the size of the illuminated area in the LED array is different, the size of the AA of the display screen is different.
  • FIG. 15a For example, after the control chip of the LED array receives the control signal indicating the first control mode, all sub-LEDs are turned on, and an example of the AA of the LED array and the display screen is shown in FIG. 15a.
  • FIG. 16a a schematic diagram of an optical path of the optical display module is shown in FIG. 16a, wherein the FOV is denoted as ⁇ 1.
  • control chip of the display screen After the control chip of the display screen receives the control signal indicating the second control mode, it lights up some of the sub-LEDs. At this time, an example of the LED array and the AA of the display screen is shown in Figure 15b.
  • FIG. 15b When the light source and the AA of the display screen in the optical display module shown in FIG. 4 are shown in FIG. 15b, a schematic diagram of an optical path of the optical display module is shown in FIG. 16b, wherein the FOV is denoted as ⁇ 2, and ⁇ 1> ⁇ 2 .
  • AA1 of the display screen when the LED array is fully lit is greater than the AA2 of the display screen when the LED array is partially lit.
  • the head-mounted The electronic device can switch between different FOVs, especially enabling the head-mounted electronic device to switch to a large FOV in a scenario that requires a large FOV to meet user needs, and enabling the head-mounted electronic device to switch to a small FOV in a scenario where FOV is not required to save energy.
  • the method of adjusting the FOV of the image by adjusting the resolution of the display screen or adjusting the light-emitting area of the light source is only an example, and other methods are also proposed in this application, such as , you can adjust the FOV by adjusting the size of the pixels on the image.
  • FIG. 17 is a schematic flowchart of an image display method of an electronic device according to an embodiment of the present application.
  • the method may include S1710 and S1720.
  • the external power supply device refers to a device that can provide power for the electronic device after being connected to the electronic device.
  • the external power supply device may be connected to the electronic device in a wired manner, or may be connected with the electronic device in a wireless manner, which is not limited in this embodiment.
  • the processor of the electronic device detects whether the input and output interface of the electronic device has a voltage input, and if there is a voltage input, it is determined that the electronic device is connected to an external power supply device, otherwise it is determined that the electronic device is not connected to an external power supply device.
  • the processor of the electronic device determines that the electronic device is not connected to an external power supply device, it determines that the target FOV of the electronic device is a small FOV, and controls the display module to display a small FOV image.
  • the display module controls the display module to display a small FOV image.
  • the FOV of the image displayed when the remaining battery power is less than the preset first power value is smaller than the FOV of the image displayed when the remaining battery power is greater than or equal to the first power value the FOV.
  • S1730 may also be included, that is, when the electronic device is connected to an external power supply device, a large FOV image is displayed.
  • a large FOV image is displayed.
  • the electronic device may also receive an instruction input by the user, and switch the FOV of the image according to the user's instruction. For example, the electronic device switches from a large FOV to a small FOV based on a user's instruction, or switches from a small FOV to a large FOV based on the user's instruction.
  • the electronic device receives the user's instruction, and then determines whether the FOV indicated by the user's instruction is consistent with the current FOV of the electronic device. If they are consistent, the electronic device maintains the current FOV. If not, the electronic device's FOV is updated to The FOV indicated by the user instruction, and the FOV switching operation is performed based on the updated FOV.
  • the electronic device receives an instruction from the user, and if the FOV indicated by the user instruction is a large FOV, the FOV of the electronic device is set to a large FOV, and the FOV switching operation is performed.
  • the electronic device receives an instruction from the user, and if the FOV indicated by the user instruction is a small FOV, the FOV of the electronic device is set to a small FOV, and the FOV switching operation is performed.
  • the electronic device receives an instruction from the user, and if the FOV indicated by the user's instruction is a small FOV, the electronic device continues to maintain the small FOV. In this example, the electronic device may not perform the FOV switching operation.
  • the electronic device receives an instruction from the user, and if the FOV indicated by the user's instruction is a large FOV, the electronic device continues to maintain the large FOV. In this example, the electronic device may not perform the FOV switching operation.
  • the electronic device may provide the user with a FOV setting button and/or a FOV setting page; or, the electronic device may provide the user with a FOV setting page through a terminal device to which data is connected.
  • the electronic device may receive an instruction input by the user, and based on the instruction, set the FOV when the electronic device is connected to an external power supply device to be a large FOV or a small FOV, or, based on the instruction, set the electronic device to have no FOV. Whether the FOV when connecting an external power supply is a large FOV or a small FOV.
  • the electronic device may periodically detect whether the electronic device is connected to an external power supply device, and perform corresponding operations according to the detection result.
  • FIG. 19 is a schematic flowchart of an image display method of an electronic device according to another embodiment of the present application.
  • the method may include S1910 and S1920.
  • a large FOV image is displayed.
  • the electronic device displays the large FOV image reference may be made to the relevant content in the foregoing embodiments, which will not be repeated here.
  • the FOV of the image displayed when the electronic device is not connected to the external power supply device is smaller than the FOV of the image displayed when the electronic device is connected to the external power supply device. FOV.
  • the electronic device may also receive an instruction input by the user, and switch the FOV of the image according to the user's instruction.
  • FOV switching for the manner in which the electronic device performs FOV switching in this embodiment, reference may be made to the relevant content in the embodiment shown in FIG. 15 , which will not be repeated here.
  • the electronic device may receive an instruction input by the user, and set the first power value according to the instruction.
  • the electronic device may periodically detect the remaining power value of the electronic device, and perform corresponding operations according to the detection result.
  • the display of the large FOV image and the small FOV image by the electronic device described in the various embodiments of the present application is only an example. or multiple FOV images.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center by wire (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “plurality” means two or more.
  • At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • at least one item (a) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the sequence of execution, and the execution sequence of each process should be determined by its functions and internal logic, and should not be dealt with in the embodiments of the present application. implementation constitutes any limitation.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are illustrative, for example, the division of the units is a logical function division, and other division methods may be used in actual implementation, for example, multiple units or components may be combined or integrated to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions, if implemented in the form of software functional units and sold or used as independent products, may be stored in a computer-readable storage medium.
  • the part of the technical solution of the present application that contributes in essence or the part of the technical solution may be embodied in the form of a software product, and the computer software product is stored in a storage medium and includes several instructions to make a
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

本申请提供一种图像显示方法和电子设备。本申请提出的技术方法中,电子设备的电源状态不同时,显示不同视场角FOV的图像,以为用户提供更合适的显示效果,其中,电源状态包括外界电源设备的连接状态和/或电池电量状态。本申请的技术方案中,当电子设备没有连接外界电源设备或电子设备的剩余电量值小于第一电量值时,电子设备可以显示小FOV的图像;当电子设备连接外界电源设备或电子设备的剩余电量值大于或等于第一电量值时,电子设备显示大FOV的图像,使得电子设备能够在图像显示效果和电源状态之间达到平衡态。

Description

电子设备及其图像显示方法
本申请要求于2021年04月30日提交中国专利局、申请号为202110481159.X、申请名称为“电子设备及其图像显示方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及电子设备及其图像显示方法。
背景技术
头戴电子设备的视场角(field of view,FOV)决定了该头戴电子设备的视野范围。具体地,电子设备的视场角越大,视野就越大;反之,电子设备的视场角越小,视野就越小。
发明内容
本申请提供一种图像显示方法和电子设备,可以在不同的情况下显示不同的FOV,以满足不同情况下用户的需求。
第一方面,本申请提供了一种图像显示方法,所述方法应用于电子设备,所述方法包括:所述电子设备的电源状态不同时,所述电子设备显示不同视场角FOV的图像,其中,所述电源状态包括所述电子设备与外界电源设备的连接状态,和/或,所述电子设备的电池电量状态。
在一些实施例中,当所述电子设备没有连接外界电源设备或电子设备的剩余电量小于第一电量值时,显示第一FOV的图像;当所述电子设备连接外界电源设备或电子设备的剩余电量大于或等于第一电量值时,显示第二FOV的图像,所述第一FOV小于所述第二FOV。
实施上述的图像显示方法,在没有连接外界电源设备的情况时,显示小FOV图像,可以节省能耗,延长电子设备的工作时间,提高用户体验,在连接外界电源设备的情况时,显示大FOV图像,可以为用户提供更好的显示效果。
该实施例中,在电子设备的剩余电量值小于第一电量值的情况下,显示小FOV图像,可以节省能耗,延长电子设备的工作时间,提高用户体验,在电子设备的剩余电量值大于或等于第一电量值的情况下,显示大FOV图像,可以为用户提供更好的显示效果。
在一些实施例中,当所述电子设备没有连接所述外界电源设备且所述电子设备的剩余电量值大于或等于第一电量值时,所述电子设备显示所述第一FOV的图像;当所述电子设备连接所述外界电源设备时,所述电子设备显示所述第二FOV的图像,所述第二FOV大于或等于所述第一FOV;当所述电子设备没有连接所述外界电源设备且所述电子设备的剩余电量值小于所述第一电量值时,所述电子设备显示第三FOV的图像,所述第三FOV小于所述第一FOV。
在一些实施例中,所述电子设备包括光学显示模组,所述光学显示模组包括激光束扫描显示LBS光引擎,所述LBS光引擎包括微机电系统MEMS振镜,当所述MEMS振镜 在振动旋转过程中的最大偏转角度为第一角度时,所述电子设备显示第一FOV图像;当所述MEMS振镜在振动旋转过程中的最大偏转角度为第二角度时,所述电子设备显示第二FOV图像,且所述第一角度小于所述第二角度。
该实施例中,当需要调整电子设备的FOV的大小时,可以通过调整MEMS振镜的最大偏转角度来实现,大FOV(例如第二FOV)对应的最大偏转角度(例如第二角度)大于小FOV(例如第一FOV)对应的最大偏转角(例如第一角度)。
可以理解的是,通过调整MEMS振镜的最大旋转角度来调整电子设备的FOV大小这种方法不限于应用于上述电子设备有无外界电源设备和上述电子设备剩余电量值是否低于一定电量值的场景,在其他任意需要切换FOV大小的场景下,均可以使用本实施例的方法。
在一些实施例中,所述光学显示模组还包括激光模组,所述LBS光引擎还包括光波导,所述光波导包括耦入区和耦出区;所述激光模组用于向所述MEMS振镜出射光束;所述MEMS振镜用于入射所述光膜模组出射的光束,并通过振动旋转向所述耦入区出射光束;所述光波导用于将所述耦入区入射的光束传输至所述耦出区,并通过所述耦出区出射光束。
在一些实施例中,所述电子设备还包括驱动芯片,可以通过调整MEMS振镜的驱动芯片向MEMS振镜输出的电压信号的大小来调整MEMS振镜的最大偏转角度。例如,当所述驱动芯片向所述MEMS振镜输出第一电压信号时,所述MEMS振镜的最大偏转角度为所述第一角度;当所述驱动芯片向所述MEMS振镜输出第二电压信号时,所述MEMS振镜的最大偏转角度调整为所述第二角度,其中,所述第一电压信号小于所述第二电压信号。
在一些实施例中,所述电子设备包括光学显示模组,所述光学显示模组包括显示屏;其中,当所述显示屏的有效区域为第一区域时,所述电子设备显示第一FOV图像;当所述显示屏的有效区域为第二区域时,所述电子设备显示第二FOV图像,其中,所述第一区域小于所述第二区域。
该实施例中,当需要调整电子设备的FOV的大小时,可以通过调整显示屏的有效区域的大小来实现,大FOV(例如第二FOV)对应的有效区域(例如第二区域)大于小FOV(例如第一FOV)对应的有效区域(例如第一区域)。
可以理解的是,通过显示屏的有效区域来调整电子设备的FOV大小这种方法不限于应用于上述电子设备有无外界电源设备和上述电子设备剩余电量值是否低于一定电量值的场景,在其他任意需要切换FOV大小的场景下,均可以使用本实施例的方法。
在一些实施例中,该显示屏为自发光显示屏,此时,可以通过该自发光显示屏的分辨率来调整其有效区域。例如,当所述自发光显示屏的分辨率调整为第一分辨率时,所述自发光显示屏的有效区域为所述第一区域;当所述自发光显示屏的分辨率调整为第二分辨率时,所述显示屏的有效区域为第二区域,所述第一分辨率低于所述第二分辨率。
在一些实施例中,所述光学显示模组还包括第一镜组,所述第一镜组包括一个或多个镜片,所述第一镜组用于入射所述自发光显示屏的有效区域发出的光束并出射所述光束。
在一些实施例中,该显示屏为反射型显示屏,所述光学显示模组还包括光源,所述反射型显示屏用于反射所述光源的光。此时,可以通过调节光源的发光区域来调节反射型显示屏的有效区域。例如,当所述光源的发光区域调整为第一发光区域时,所述反射型显示屏的有效区域为所述第一区域;当所述光源的发光区域调整为第二发光区域,所述反射想 显示屏的有效区域为所述第二区域,所述第二反射区域大于所述第一发光区域。
在一些实施例中,所述光学显示模组还包括第一镜组、第二镜组和光波导,所述光波导包括耦入区和耦出区,所述第一镜组和所述第二镜组分别包括一个或多个镜片;所述第一镜组用于入射所述光源出射的光束,并将所述光束出射至所述反射型显示屏;所述第二镜组用于入射所述反射型显示屏出射的光束,并将所述光束出射至所述耦入区;所述光波导用于将所述耦入区入射的光束传输至所述耦出区,并从所述耦出区出射光束。
在一些实施例中,所述电子设备为头戴显示设备。在一些实施例中,所述图像为虚拟图像。
当电子设备显示的图像为虚拟图像且电子设备为头戴显示设备时,因为头戴显示设备中包含固定组件,该固定组件可以将头戴显示设备固定在用户头部,从而可以将人眼瞳孔固定到合适接收头戴显示设备显示的虚拟图像的位置上,进而可以保证虚拟图像能够准确进入人眼瞳孔,最终提高电子设备的图像显示效果。
第二方面,本申请提供了一种电子设备,包括:一个或多个处理器、一个或多个存储器;所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,所述终端执行如第一方面、第一方面任一种可能的实施方式提供的图像显示方法。
第三方面,本申请提供了一种计算机可读存储介质,包括计算机指令,当所述计算机指令在终端上运行时,使得所述终端执行如第一方面、第一方面任一种可能的实施方式提供的图像显示方法。
第四方面,本申请提供一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机实现如第一方面、第一方面任一种可能的实施方式提供的图像显示方法。
附图说明
图1是本申请实施例提供的一种头戴电子设备的结构示意图;
图2为本申请实施例提供的一种光学显示模组的示意图;
图3a至图3b为本申请实施例提供的另一种光学显示模组的结构示意图;
图4为本申请实施例提供的又一种光学显示模组的结构示意图;
图5a为本申请一个实施例的大FOV图像的示意图;
图5b为本申请一个实施例的小FOV图像的示意图;
图6a至图6c为本申请一个实施例提供一些头戴电子设备的图像显示流程示意图;
图7a至图7c为本申请又一个实施例提供一些头戴电子设备的图像显示流程示意图;
图8a为本申请一个实施例提供的头戴电子设备的FOV设置示意图;
图8b为本申请一个实施例提供的用户设置头戴电子设备的FOV的界面图;
图8c为本申请实施例的头戴电子设备切换至小FOV图像之后的工作状态图;
图9a为本申请另一实施例提供的用户设置头戴电子设备的FOV的界面图;
图9b为本申请实施例的头戴电子设备切换至大FOV图像之后的工作状态图;
图10a为本申请实施例提供的头戴电子设备在剩余电量值超过第一电量值的情况下, 显示大FOV图像的工作状态图;
图10b为本申请实施例提供的头戴电子设备在剩余电量值低于第一电量值的情况下,显示小FOV图像的工作状态图;
图11a为本申请实施例提供的在MEMS振镜物理偏转角度较大时光束走向示意图;
图11b为本申请实施例提供的在MEMS振镜物理偏转角度较小时光束走向示意图;
图12a为本申请本实施例提供的显示屏分辨率较大时AA区的示意图;
图12b为本申请本实施例提供的显示屏分辨率较小时AA区的示意图;
图13a为本申请实施例提供的光学显示模组300显示大FOV图像的一种光束走向示意图;
图13b为本申请实施例提供的光学显示模组300显示小FOV图像的一种光束走向示意图;
图14a为本申请实施例提供的光学显示模组300显示大FOV图像的另一种光束走向示意图;
图14b为本申请实施例提供的光学显示模组300显示小FOV图像的另一种光束走向示意图;
图15a为本申请一个实施例提供所有子LED点亮时LED阵列和AA区的示意图;
图15b为本申请另一个实施例提供部分子LED点亮LED阵列和AA区的示意图;
图16a为本申请实施例提供的光学显示模组400显示大FOV图像的一种光束走向示意图;
图16b为本申请实施例提供的光学显示模组400显示小FOV图像的一种光束走向示意图;
图17为本申请一个实施例的电子设备的图像显示方法的示意性流程图;
图18为本申请另一个实施例的电子设备的图像显示方法的示意性流程图;
图19为本申请另一个实施例的电子设备的图像显示方法的示意性流程图。
具体实施方式
为了更好地介绍本申请的实施例,下面对本申请的实施例中的一些概念进行介绍。可以理解的是,这些介绍本意在于帮助读者更好地理解本申请的技术方案,而非对本申请构成限制。
本申请实施例中的电子设备可以是任意包含显示屏的设备,例如可以是头戴电子设备。头戴电子设备可以实现虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、混合现实(mixed reality,MR)等不同效果。头戴电子设备的示例可以是VR眼镜、AR眼镜、MR眼镜或护目镜等。除此之外,电子设备还可以是手机、车载设备、计算机、笔记本等电子设备。
本申请后续实施例中,以电子设备为头戴电子设备为例进行介绍,但是本申请实施例中的电子设备不限于头戴电子设备,还可以是其他设备。
图1是本申请实施例提供的一种头戴电子设备的结构示意图。如图1所示,头戴电子设备100可以包括处理器110,存储器120,传感器模块130,麦克风140,按键150,输入输出接口160,通信模块170,摄像头180,电池190以及光学显示模组1100等。
可以理解的是,本申请实施例示意的结构并不构成对头戴电子设备100的具体限定。 在本申请另一些实施例中,头戴电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110通常用于控制头戴电子设备100的整体操作,可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),视频处理单元(video processing unit,VPU)控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口,串行外设接口(serial peripheral interface,SPI)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与通信模块170。例如:处理器110通过UART接口与通信模块170中的蓝牙模块通信,实现蓝牙功能。
MIPI接口可以被用于连接处理器110与光学显示模组1100中的显示屏,摄像头180等外围器件。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头180,光学显示模组1100中的显示屏,通信模块170,传感器模块130,麦克风140等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口可以用于连接充电器为头戴电子设备100充电,也可以用于头戴电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如手机等。USB接口可以是USB3.0,用于兼容高速显示接口(display port,DP)信号传输,可以传输视音频高速数据。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并 不构成对头戴电子设备100的结构限定。在本申请另一些实施例中,头戴电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
另外,头戴电子设备100可以包含无线通信功能。通信模块170可以包含无线通信模块和移动通信模块。无线通信功能可以通过天线(未示出)、移动通信模块(未示出),调制解调处理器(未示出)以及基带处理器(未示出)等实现。
天线用于发射和接收电磁波信号。头戴电子设备100中可以包含多个天线,每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块可以提供应用在头戴电子设备100上的包括第二代(2th generation,2G)网络/第三代(3th generation,3G)网络/第四代(4th generation,4G)网络/第五代(5th generation,5G)网络等无线通信的解决方案。移动通信模块可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块可以由天线接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块还可以对经调制解调处理器调制后的信号放大,经天线转为电磁波辐射出去。在一些实施例中,移动通信模块的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器等)输出声音信号,或通过光学显示模组1100中的显示屏显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块或其他功能模块设置在同一个器件中。
无线通信模块可以提供应用在头戴电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。
在一些实施例中,头戴电子设备100的天线和移动通信模块耦合,使得头戴电子设备100可以通过无线通信技术与网络以及其他设备通信。该无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT, GNSS,WLAN,NFC,FM,和/或IR技术等。GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
头戴电子设备100通过GPU,光学显示模组1100,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接光学显示模组1100和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
存储器120可以用于存储计算机可执行程序代码,该可执行程序代码包括指令。处理器110通过运行存储在存储器120的指令,从而执行头戴电子设备100的各种功能应用以及数据处理。存储器120可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储头戴电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
头戴电子设备100可以通过音频模块,扬声器,麦克风140,耳机接口,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块还可以用于对音频信号编码和解码。在一些实施例中,音频模块可以设置于处理器110中,或将音频模块的部分功能模块设置于处理器110中。
扬声器,也称“喇叭”,用于将音频电信号转换为声音信号。头戴电子设备100可以通过扬声器收听音乐,或收听免提通话。
麦克风140,也称“话筒”,“传声器”,用于将声音信号转换为电信号。头戴电子设备100可以设置至少一个麦克风140。在另一些实施例中,头戴电子设备100可以设置两个麦克风140,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,头戴电子设备100还可以设置三个,四个或更多麦克风140,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口用于连接有线耳机。耳机接口可以是USB接口,也可以是3.5毫米(mm)的开放移动头戴电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
在一些实施例中,头戴电子设备100可以包括一个或多个按键150,这些按键可以控制头戴电子设备,为用户提供访问头戴电子设备100上的功能。按键150的形式可以是按钮、开关、刻度盘和触摸或近触摸传感设备(如触摸传感器)。具体的,例如,用户可以通过按下按钮来打开头戴电子设备100的光学显示模组1100。按键150包括开机键,音量键等。按键150可以是机械按键。也可以是触摸式按键。头戴电子设备100可以接收按键输入,产生与头戴电子设备100的用户设置以及功能控制有关的键信号输入。
在一些实施例中,头戴电子设备100可以包括输入输出接口160,输入输出接口160可以通过合适的组件将其他装置连接到头戴电子设备100。组件例如可以包括音频/视频插 孔,数据连接器等。
光学显示模组1100用于在处理器的控制下,为用户呈现图像。光学显示模组1100可以通过反射镜、透射镜或光波导等中的一种或几种光学器件,将实像素图像显示转化为近眼投影的虚拟图像显示,实现虚拟的交互体验,或实现虚拟与现实相结合的交互体验。例如,光学显示模组1100接收处理器发送的图像数据信息,并向用户呈现对应的图像。下面介绍本申请实施例中的几种光学显示模组的示例性结构图以及图像显示方法。
作为一种示例,光学显示模组1100可以包括振镜,该振镜可以在驱动信号的控制下进行转动。该振镜的一种示例为微机电系统(micro-electronic-mechanical system,MEMS)振镜。本申请中的MEMS振镜可以是静电驱动、电磁驱动、电热驱动或压电驱动的MEMS振镜。
下面以光学显示模组包括MEMS振镜为例,结合图2,介绍本申请一个实施例的光学显示模组的图像显示方法。
如图2所述,该光学显示模组200包括激光束扫描显示(laser beam scanning,LBS)光引擎210和光波导220。
在一些实现方式中,LBS光引擎210可以包括激光模组211和微机电系统(micro-electronic-mechanical system,MEMS)振镜212。针对该实现方式中的LBS光引擎,该电子设备还可以包括MEMS振镜212的驱动芯片(图中未示出)。
激光模组211可以发射出实像素图像,激光模组211包含一个或多个激光光源,以及一个或多个光学镜组。激光光源可以是同一种颜色,也可以是多种颜色。光学镜组可以包括但不限于聚光镜、准直镜、合束棱镜、合束波导。光学镜组用于对激光器发出的激光进行整形,即使激光束成为具有圆形光斑的平行光束,或具有其他光斑形状和发散角的光束。在一些实施例中,激光模组还可以包括激光功率探测器、温度探测器等其他相关器件。
MEMS振镜212是一种基于微机电系统技术制作而成的微小可驱动反射镜,MEMS振镜212的镜面直径通常只有几毫米。MEMS振镜212可以以旋转轴213为中心进行旋转,以改变入射MEMS振镜的光束从MEMS出射的角度,从而改变激光模组211出射的光束入射到波光导的耦入区221的角度,进而改变光束从光波导220的耦出区222出射的角度,最终改变光学显示模组200显示的图像的FOV。
在一些实施例中,MEMS振镜212可以是一维振镜,一维振镜只有一个旋转轴。在一些实施例中,MEMS振镜212可以是二维振镜,二维振镜有两个互相垂直的旋转轴。
以MEMS振镜包含如图2所示的一个旋转轴213为例,对MEMS振镜的旋转过程进行介绍。如图2所示,MEMS振镜的电机接收到电信号之后,电机中的通电线圈会产生电磁力矩,该电磁力矩使得电机中的转子可以带动MEMS振镜从初始位置按照图中虚线箭头指示的方向1,以旋转轴为中心进行转动;在转子转动的过程中,转子会受到机械纽簧或电子方法施加的复位力矩,且转子转动的角度越大,该复位力矩越大;转子在方向1带动MEMS振镜转动到位置1,即复位力矩的数值等于电磁力矩的数值时,向方向2转动,并且复位力矩越来越小;MEMS在转子的带动下回到初始位置之后,电磁力矩又会使得转子带动MEMS振镜向方向2继续转动直到位置2,转子在位置2时的复位力矩的数值等于电磁力矩的数值,转子从初始位置转动到位置2的过程与转子从初始位置转动到位置1的过程类似,此处不再赘述;MEMS在转子的带动下继续从位置2转动到位置2,且重复执行 转动过程,该转动过程可以称为振动旋转。本实施例中,MEMS振镜212在振动旋转过程中的最大旋转角,即位置1与位置2之间的角度,例如MEMS振镜从图2中的实线框的位置旋转至虚线框的位置的旋转角记为β。
光波导220是指引导光波在其中传播的介质装置,又可以称为介质光波导。本实施例中的光波导可以为衍射光波导、全息光波导或阵列光波导等,光波导至少包含一个光线耦入区221和一个光线耦出区222。
图2所示的光学显示模组进行图像显示的工作原理如下:激光模组211中的激光光源在处理器的控制下发射与待显示图像对应的激光束,该激光束经过激光模组211中光学镜组整形之后出射至到MEMS振镜212;MEMS振镜212接收驱动芯片发送的信号之后,基于该信号进行旋转振动,从而将入射到MEMS振镜212上的激光束在不同的时刻以不同的角度反射至光波导220的光线耦入区221;光波导220的光线耦入区221入射激光束之后,将激光束传输至光线耦出区222,以使得人眼可以接收到光线耦合区222出射的光线,从而实现虚拟图像的显示。
其中,驱动信号向MEMS振镜输出的信号不同时,振镜212的最大旋转角度不同,光波导220的耦合区221入射振镜212反射的光线的区域大小不同,耦出区222上出射光线的区域大小也就不同,从而使得光显示模组显示的图像的FOV大小不同。
作为另一种示例,本申请中的光学显示模组可以包括显示屏,显示屏用于显示实像素图像。例如,该显示屏可以是自发光显示屏或反射型显示屏。
可选地,该光学显示模组还可以包括第一镜组,该第一镜组用于将从显示屏出射的光线以指定的角度呈现给用户,以显示虚拟图像。该第一镜组可以包括透镜、反射镜等一个或多个镜片。
可选地,该光学显示模组还可以包括光波导,该光波导用于将从第一镜组出射的光线呈现给用户,以显示虚拟图像。
该显示屏为反射型显示屏时,该光学显示模块还可以包括光源,此时,该显示屏用于反射光源发射的光波。
可选地,该光学显示模组包括反射型显示屏和光源时,还可以包括第二镜组,该第二镜组用于将从光源出射的光线以指定角度输出至反射型显示屏。该第二镜组可以包括透镜、反射镜等一个或多个镜片。
下面以光学显示模组包括自发光显示屏和第一镜组,且第一镜组包括半透半反镜、凹面反射镜和透镜为例,结合图3a,介绍本申请另一个实施例的光学显示模组的图像显示方法。
如图3a所示,光学显示模组300包括半透半反镜301、凹面反射镜302、透镜303和自发光显示屏304。其中,半透半反镜301、凹面反射镜302和透镜303可以为光学器件,可以对自发光显示屏304发出的光路进行转折,半透半反镜301、凹面反射镜302、透镜303用于将自发光显示屏304射出的光线以指定角度呈现给用户,以显示虚拟图像,该指定角度由半透半反镜301、凹面反射镜302、透镜303的位置决定。
自发光显示屏304可以为有机发光二极管(organic light emitting diode,OLED)、液晶显示器(liquid crystal display,LCD)或微型发光二极管(micro light emitting diode,Micro LED)等。应注意的是,该自发光显示屏304为分辨率可调的显示屏。
图3a对应的光学显示模组300的工作原理如下:自发光显示屏304接收处理器发送的图像信息和分辨率信息,该分辨率信息用于指示显示屏304的分辨率;自发光显示屏304使用分辨率信息指示的分辨率发出待显示图像对应的光束;显示屏304出射的光束经过透镜303、半透半反镜301以及凹面反射镜302之后出射并可以为人眼接收,从而实现为用户显示图像的功能。
光学显示模组的另一个示例如图3b所示,其中,光学显示模组300包括自发光显示屏304和自由曲面棱镜305。自由曲面棱镜305可以为光学器件,可以对自发光显示屏304发出的光路进行转折,用于将自发光显示屏304射出的光线以指定角度呈现给用户,以显示虚拟图像。
下面以光学显示模组包括自发光显示屏和第一镜组,且第一镜组包括自由曲面棱镜为例,结合图3b,介绍本申请又一个实施例的光学显示模组的图像显示方法。
由图3b可知,光学显示模组300包括自发光显示屏304和自由曲面棱镜305,其中,自由曲面棱镜用于将从自发光显示屏出射的光线以指定角度呈现给用户,该指定角度由自由曲面棱镜的位置来决定。
图3b对应的光学显示模组300的工作原理如下:自发光显示屏304接收处理器发送的图像信息和分辨率信息,该分辨率信息用于指示显示屏304的分辨率;自发光显示屏304使用分辨率信息指示的分辨率发出待显示图像对应的光束;显示屏304出射的光束经过自由曲面棱镜305之后出射并可以为人眼接收,从而实现为用户显示图像的功能。
下面以光学显示模组包括光源、第二镜组、反射型显示屏、第一镜组和光波导,且第一镜组包括全反射棱镜、多个透镜,第二镜组包括凹面反射镜和多个透镜为例,结合图4,介绍本申请另一个实施例的光学显示模组的图像显示方法。
如图4所示,光学显示模组400包括光引擎410和光波导420。其中,光引擎410可以包括数字光处理器(digital light processing,DLP)光引擎或硅基液晶(liquid crystal on Silicon,LCOS)光引擎。
光引擎410主要包括光源411、透镜组412、凹面反射镜413、反射型显示屏414、全反射棱镜415、透镜组416。其中,全反射棱镜415、透镜组416和光波导420可以为光学器件,可以对反射型显示屏414发出的光路进行转折,用于将反射型显示屏414射出的光线以指定角度呈现给用户,以显示虚拟图像。透镜组412和凹面反射镜413构成第二镜组,用于将从光源411出射的光线以指定角度传输至反射型显示屏414;全反射棱镜415和透镜组416构成第一镜组,用于将从反射型显示屏414输出的光线以指定角度传输至光波导420的耦入区421。
其中,光源411可以是可调整点亮区域的发光二极管(light emitting diode,LED)或其他光源;反射型显示屏414可以是数字微镜显示器(digital micromirror device,DMD)或LCOS显示屏;透镜组412和透镜组416可以分别包括一个或多个透镜。反射型显示屏414为DMD显示器时,光引擎410为DLP光引擎;反射型显示屏414为LCOS显示屏时,光引擎410为LCOS光引擎。
光学显示模组400的工作原理如下:光源411发射光束;光源411发射的光束经过透镜组412之后入射到凹面反射镜413;凹面反射镜出射的光束入射到反射型显示屏414;入射到显示屏414上的光束经显示屏414的反射后得到成像光束;显示屏414出射的成像光束入 射到全反射棱镜415;全反射棱镜415输出的成像光束经过透镜组416入射至光波导420的耦入区421;成像光束在光波导420中传播后在耦出区422出射,最终可由人眼接收,从而实现图像显示功能。
可以理解的是,本实施例中光学显示模组400仅为光学显示模组的一种示意,其还可以包括更多或更少的组件,或者,有的组件也可以被具有相同功能的其他组件替换,例如凹面反射镜413和全反射棱镜415可以被替换为棱镜组或者偏振分束器(polarization beam splliter,PBS)。
近年来,随着电子设备(例如AR眼镜)的技术发展,其功能也越来越多样化,例如包括光学显示、音频,交互等等更多样的功能。应用领域也非常多,如工业领域,消费者产品。应用场景也多种多样,拿消费者领域来说,可以是大屏观影,也可以是大屏办公、也有来电\信息提醒\简单导航等。
大屏观影或大屏办公等场景通常需要显示画面较大的图像,来电\信息提醒\简单导航等场景通常只用显示画面较小的图像即可。由此可知,电子设备需要具备显示画面较大的图像和显示画面较小的图像的能力,且能够在显示画面较大的图像和显示画面较小的图像之间进行切换。
对于电子设备来说,显示模组的对角线FOV较大时可以显示画面较大的图像,例如,显示模组的对角线FOV大于或等于30度时,显示模组显示的图像画面较大;显示模组的对角线FOV较小时,显示模组可以显示画面较小的图像,例如,显示模组的对角线FOV小于30度时,显示模组显示的图像画面较小。因此,本申请提出可以通过调整显示模组的对角线FOV来调整显示的图像的画面大小的技术方案。
换句话说,本申请提出的技术方案中,电子设备可以在不同FOV之间切换,例如在大FOV与小FOV之间进行切换。本申请的实施例中,为了描述方便,将显示模组在大FOV下显示的图像称为大FOV图像,将显示模组在小FOV下显示的图像称为小FOV图像。
因为电子设备在显示不同FOV图像时所需的功耗不同,因此本申请提出了基于电子设备的电源状态来调整或者说切换FOV的技术方案。本申请中的电源状态可以包括外界电源设备的连接状态或电池的电量状态,其中,外界电源设备的连接状态也可以称为充电状态。
由于电子设备在显示大FOV图像时所需的功耗较大,因此本申请提出了在电子设备电量较低或者没有连接外接电源设备时显示小FOV图像的技术方案,以保证图像的高质量显示。
进一步地,本申请提出的技术方案中,在一些不是必须显示大FOV图像的场景下,例如,电子设备在显示交互类应用或办公类应用中的图像的场景下,电子设备电量较低或者没有连接外接电源设备时,才显示小FOV图像。
本申请提出的技术方案的一些实现方式中,电子设备可以基于其是否外接了电源设备来确定显示大FOV还是显示小FOV,或者,可以基于电子设备的剩余电量值来判断是显示大FOV还是小FOV。
图5a为本申请一个实施例的大FOV图像的示意图,示意用户的人眼通过头戴电子设备看到的图像为大FOV图像,大FOV图像可以为虚拟图像。图5b为本申请一个实施例的小FOV图像的示意图,示意用户的人眼通过头戴电子设备看到的图像为小FOV图像,小FOV图像可以为虚拟图像。由图5a和图5b可以看出,头戴电子设备显示的大FOV图像的对角线 角度α1比头戴电子设备显示的小FOV图像的对角线角度α2大。
本申请的一些实施例中,头戴电子设备可以根据自身是否连接有外界电源设备来判断的电量状态,从而确认是显示大FOV图像还是显示小FOV图像。其中,外界电源设备可以理解为能够为电子设备提供电源的设备。外界电源设备可以是通过有线方式与电子设备连接(即有线充电),也可以是通过无线方式与电子设备连接(即无线充电),本申请的实施例对电子设备与外界电源设备之间的连接方式不作限制。该外界电源设备的示例可以包括手机、笔记面电脑、平板电脑或台式电脑等等。
在一些实现方式中,头戴电子设备可以通过检测其输入输出接口来判断其是否连接有外界电源设备。例如,头戴电子设备的处理器检测头戴电子设备的输入输出接口是否有电压输入,若有电压输入,则可以确定头戴电子设备连接有外界电源设备,否则可以确定头戴电子设备没有接连外界电源设备。
图6a-图6c为本申请一个实施例的头戴电子设备的图像显示流程示意图。如图6a所示,头戴电子设备处于关闭状态,并连接有外界电源设备。
当用户摁下该头戴电子设备的启动键(或电源开关键)之后,该头戴电子设备进入开机状态,并且检测到该头戴电子设备当前连接有外界电源设备,因此可以显示如图6b所示的大FOV图像。
在头戴电子设备运行过程中,若头戴电子设备检测到与外界电源设备之间断开了连接,则头戴电子设备可以显示如图6c所示的小FOV图像。
本实施例中的图像显示方法,在头戴电子设备连接外界电源设备的情况显示大FOV,可以提高头戴电子设备的显示能力,满足用户对图像的FOV的需求;在头戴电子设备没有连接外界电源设备的情况下切换至小FOV,可以节省头戴电子设备的功耗,延长头戴电子设备的使用时间。
图7a-图7c为本申请又一个实施例的头戴电子设备的图像显示流程示意图。如图7a所示,头戴电子设备处于关闭状态,且没有连接外界电源设备。
当用户摁下该头戴电子设备的启动键(或电源开关键)之后,该头戴电子设备进入开机状态,并且检测到该头戴电子设备当前没有连接外界电源设备,因此可以显示如图7b所示的小FOV图像。
可以理解的是,头戴电子设备连接有外围设备,但该外围设备不能够为该头戴电子设备提供电源,仅能够与头戴电子设备进行数据传输的情况下,也可以等同于该头戴电子设备没有连接外界电源设备,这种情况下,头戴电子设备可以显示小FOV图像。
在头戴电子设备运行过程中,若头戴电子设备检测到连接了外界电源设备,则头戴电子设备可以显示如图7c所示的大FOV图像。
本实施例在保证电源充足的情况下显示大FOV图像,可以为用户提供更好的显示效果,从而可以提高用户体验;在没有外界电源设备的情况下显示小FOV图像,可以节省能耗,延长头戴电子设备的工作时间,从而可以提高用户体验。
本实施例中的图像显示方法,在头戴电子设备没有连接外界电源设备的情况下显示小FOV,可以节省头戴电子设备的功耗,延长头戴电子设备的使用时间;在头戴电子设备连接外界电源设备的情况下切换至大FOV,可以提高头戴电子设备的显示能力,满足用户对图像的FOV的需求。
本实施例的一些实现方式中,头戴电子设备连接外界电源设备时的FOV为大FOV或小FOV,可以是头戴电子设备出厂默认设置好的,或者,也可以是用户为头戴电子设备设置的。同理,头戴电子设备没有连接外界电源设备时的FOV为大FOV或小FOV,可以是头戴电子设备出厂默认设置好的,或者,也可以是用户为头戴电子设备设置的。
本实施例的一些实现方式中,在头戴电子设备运行的过程中,用户可以设置头戴式电子设备的FOV。例如,用户将头戴式电子设备的FOV设置为大FOV、中间态FOV或小FOV。如图8a所示,电子设备的FOV包括五种FOV,从左到右的五个圆形表示的FOV依次增大,即最小的圆形表示小FOV,最大的圆形表示大FOV,小FOV至大FOV之间还包括三种中间态FOV。相应地,头戴电子设备显示的图像为大FOV图像、小FOV图像或中间态FOV图像。
例如,电子设备没有外接电源设备时的FOV设置为第一FOV,电子设备连接外界电源设备时的FOV设置为第二FOV,第一FOV小于第二FOV;电子设备电量值低于第一电量值时的FOV设置为第三FOV,电子设备电量值高于第一电量值时的FOV设置为第四FOV,第三FOV小于第四FOV。
其中,第一FOV与第三FOV以及第四FOV之间的大小关系不作限制,第二FOV与第三FOV以及第四FOV之间的大小关系不作限制。
作为一种示例,第三FOV等于第一FOV,和/或,第二FOV等于第四FOV。
作为另一种示例,第三FOV小于第一FOV,例如,电子设备在没有外接电源设备且显示第一FOV时,若剩余电量值小于预设的第一电量值,为什么延长电子设备的使用时间,电子设备的FOV可以从第一FOV切换至比第一FOV更小的第三FOV。
作为又一种示例,第二FOV大于第四FOV,例如电子设备在没有外接电源设备、剩余电量值大于第一电量值且显示第四FOV时,若电子设备外接了电源设备,则电子设备的FOV可以从第四FOV切换至大于第四FOV的第二FOV,以为用户提供更好的图像体验。
下面以电子设备的FOV仅包含大FOV和小FOV为例,对电子设备的FOV的设置过程和设置结果进行介绍。
作为一个示例,头戴电子设备在如图6b所示的工作状态时,若用户将头戴电子设备的FOV设置为小FOV,则头戴电子设备切换至小FOV,即显示小FOV图像。其中,用户设置头戴电子设备的FOV的界面图如图8b所示,头戴电子设备切换至小FOV图像之后的工作状态如图8c所示。
该示例中,若用户将头戴电子设备的FOV设置为大FOV,则头戴电子设备继续显示大FOV图像。
作为又一个示例,头戴电子设备在如图7b所示的工作状态时,若用户将头戴电子设备的FOV设置为大FOV,则头戴电子设备切换至大FOV,即显示大FOV图像。其中,用户设置头戴电子设备的FOV的界面图如图9a所示,头戴电子设备切换至大FOV图像之后的工作状态如图9b所示。
该示例中,若用户将头戴电子设备的FOV设置为小FOV,则头戴电子设备继续显示小FOV图像。
本实施例中不限制用户设置头戴电子设备的FOV的设置次数。作为示例,头戴电子 设备的工作状态为图8b所示的工作状态,或为图9b所示的工作状态下,用户还可以设置头戴电子设备的FOV。
例如,头戴电子设备的工作状态为图8b所示的工作状态下,用户可以将头戴电子设备的FOV切换为大FOV,从而使得头戴电子设备显示大FOV图像。
又如,头戴电子设备的工作状态为图9b所示的工作状态下,用户可以将头戴电子设备的FOV切换为小FOV,从而使得头戴电子设备显示小FOV图像。
本申请的另一些实施例中,头戴电子设备可以基于剩余电量值来决定显示哪种FOV的图像。如图10a所示,头戴电子设备在剩余电量值超过第一电量值的情况下,显示大FOV图像;如图10b所示,头戴电子设备在剩余电量值低于第一电量值的情况下,显示小FOV图像。
本实施例可以在保证电源充足的情况下为用户提供更好的显示效果,从而可以提高用户体验;并在电源不足的情况下,可以节省能耗,延长头戴电子设备的工作时间,从而可以提高用户体验。
本实施例中,第一电量值可以是头戴电子设备在出厂前默认设置好的值,或者,第一电量值还可以是用户为头戴电子设备设置的。
本实施例的一些实现方式中,头戴电子设备在运行状态下,用户也可以对头戴电子设备的FOV进行设置,以便于根据用户的需求切换FOV,为用户提供相应FOV的图像。
作为一个示例,头戴电子设备当前剩余电量值超过第一电量值且显示大FOV图像的情况下,若用户将头戴电子设备的FOV设置为小FOV,则头戴电子设备切换至小FOV,即显示小FOV图像,若用户将头戴电子设备的FOV设置为大FOV,则头戴电子设备继续显示大FOV图像。
作为又一个示例,头戴电子设备当前剩余电量低于第一电量值且显示小FOV图像的情况下,若用户将头戴电子设备的FOV设置为大FOV,则头戴电子设备切换至大FOV,即显示大FOV图像,若用户将头戴电子设备的FOV设置为小FOV,则头戴电子设备继续显示小FOV图像。
本实施例中不限制用户设置头戴电子设备的FOV的设置次数。
本申请的实施例中,用户对头戴电子设备进行的上述任意一项设置,可以是通过头戴电子设备提供的设置按钮和/或设置页面来实现,也可以是通过与头戴电子设备相连接的终端设备(例如手机、电脑)来实现,本申请对此不作限制。
下面以头戴电子设备包含为图2所示的光学显示模组200为例,介绍本申请实施例的头戴电子设备的一种FOV切换方式。
头戴电子设备的存储器中可以预先设置多个FOV与多个二进制数值之间的对应关系,其中,大FOV对应的二进制数值大于小FOV对应的二进制数值。在一些实现方式中,这些二进制数值位于0至255之间。
头戴电子设备的处理器在确定头戴电子设备的目标FOV之后,可以基于FOV与二进制数值之间的对应关系查找到与该目标FOV匹配的目标二进制数值,并向光学显示模组200输出表示该目标二进制数值的控制信号。
例如,头戴电子设备确定目标FOV为大FOV的情况下,可以基于FOV与二进制数值的对应关系查找到与大FOV对应的第一目标二进制数值,以及向光学显示模组输出表 示该第一目标二进制数值的控制信号。
又如,头戴电子设备确定目标FOV为小FOV的情况下,可以基于FOV与二进制数值的对应关系查找到与小FOV对应的第二目标二进制数值,以及向光学显示模组输出表示该第二目标二进制数值的控制信号。
光学显示模组中的MEMS振镜的驱动芯片接收到控制信号之后,对该控制信号进行转换,以生成电压信号,并向MEMS振镜输出该电压信号。通常来说,控制信号表示的二进制数值越小,则转换得到的电压信号值越小。例如,0转换得到电压信号值最小,255转换得到的电压信号值最大。
MEMS振镜的电机接收到电压信号之后,电机中通电的线圈会在磁场中产生电磁力矩,电磁力矩会使得电机中的转子发生转动;在转子转动过程中,转子会通过机械扭簧或电子方法添加有复位力矩,且该复位力矩随着转子转动角度的增大而增大,当复位力矩增大到与电磁力矩相同时,转子又会向相反方向移动;转子移动过程中的复位力矩逐渐减小,直到复位力矩为零;然后转子又会在电磁力矩的作用下向反方向转动,转子在该方向上的转动过程与之前的转动过程类似,此处不再赘述。
其中,电压信号越大,电磁力矩就越大,使得MEMS振镜的复位力矩与电磁力矩相同的偏转角就越大,即MEMS振镜的最大偏转角度就越大。
例如,头戴电子设备的处理器向MEMS振镜的驱动芯片输入的第一目标二进制值大于第二目标二进制值,则该驱动芯片基于第一目标二进制值向MEMS振镜的电机输出的第一电压信号大于驱动芯片基于第二目标二进制值向MEMS振镜的电机输出的第二电压信号,从而使得电机基于第一电压信号产生的第一电磁力矩大于电机基于第二电压信号产生的第二电磁力矩,进而使得MEMS振镜基于第一电磁力矩的第一偏转角度β1大于MEMS振镜基于第二电磁力矩的第二偏转角度β2。
进一步地,MEMS振镜的最大偏转角度越大,MEMS振镜出射的光束入射至光波导耦入区的角度就越大,从而使得光波导耦出区的光束的出射角的角度越大,进而使得电子设备的FOV越大。
MEMS振镜的物理偏转角度为β1时,光学显示模组200中的光束走向示意图如图11a所示,其中的FOV记为α1。MEMS振镜的物理偏转角度为β2时,光学显示模组200中的光束走向示意图如图11b所示,其中的FOV记为α2。
由图11a和图11b可以看出,向MEMS振镜的驱动芯片输出不同的数值,可以使得MEMS振镜的驱动芯片能够输出不同大小的电压信号,从而可以使得MEMS振镜的最大偏转角度β不同,进而可以使得光波导耦入区的光束的最大入射角不同,进一步可以使得光波导耦出区的光束的最大出射角不同,从而可以实现不同的FOV。
由此可以看出,本实施例的技术方案可以实现头戴电子设备在不同大小FOV之间的切换,以满足头戴电子设备在不同场景中的使用需求。例如,在用户需要大FOV的场景下,为用户提供满足需求的图像;在用户不需要大FOV的场景下,可以节省功耗。
可以理解的是,本实施例中,MEMS振镜只是头戴电子设备中的振镜的一种示例,相应地,通过向MEMS振镜输出不同电压信号来调整MEMS振镜的物理偏转角度也仅是一种示例,只要是通过向头戴电子设备中的振镜输出不同的信号来调整振镜的最大物理偏转角度的实现方式,都应纳入本实施例的保护范围。
下面以头戴电子设备包含为图3a和图3b所示的光学显示模组300为例,介绍本申请实施例的头戴电子设备的另一种FOV切换方式。
该实施例中的光学显示模组中的显示屏为分辨率可调的显示屏,并且头戴电子设备的存储器中可以设置有多种FOV与多种分辨率之间的对应关系。通常来说,大FOV对应的分辨率值大于小FOV对应的分辨率。
当头戴电子设备的处理器确定其目标FOV之后,可以基于上述FOV与分辨率之间的对应关系找到与该目标FOV匹配的目标分辨率,并向光学显示模组中的显示屏的控制芯片输出控制信号,该控制信号用于控制显示屏的分辨率调整为该目标分辨率。
例如,头戴电子设备确定目标FOV为大FOV的情况下,可以基于FOV与分辨率之间的对应关系查找与大FOV对应的第一分辨率,以及向光学显示模组输出表示该第一分辨率的控制信号;又如,头戴电子设备确定目标FOV为小FOV的情况下,可以基于FOV与分辨率之间的对应关系查找到与小FOV对应的第二分辨率,以及向光学显示模组输出表示该第二分辨率的控制信号。其中,第一分辨率大于第二分辨率。
光学显示模组中的显示屏的控制芯片接收到头戴电子设备的处理器发送的控制信号之后,根据该控制信号调整自己的分辨率。其中,该显示屏的分辨率不同时,该显示屏的有效工作区(active area,AA)的大小不同,大分辨率对应的AA大于小分辨率对应的AA。
例如,显示屏的控制芯片接收指示较大的第一分辨率的控制信号之后,将分辨率调整为第一分辨率,此时显示屏的AA1的一种示例如图12a所示。图3a所示的光学显示模组中的自发光显示屏的AA如图12a所示时,该光学显示模组中由自发光显示屏发出的光束的光路图如图13a所示,其中的FOV记为α1。图3b所示的光学显示模组中的自发光显示屏的AA如图12a所示时,该光学显示模组中由自发光显示屏发出的光束的光路图如图14a所示,其中的FOV记为α2,α1>α2。
又如,显示屏的控制芯片接收指示较小的第二分辨率的控制信号之后,将分辨率调整为第二分辨率,此时显示屏的AA2的一种示例如图12b所示,AA2小于AA1。图3a所示的光学显示模组中的自发光显示屏的AA如图12b所示时,该光学显示模组中由自发光显示屏发出的光束的光路图如图13b所示,其中的FOV记为α1。图3b所示的光学显示模组中的自发光显示屏的AA如图12a所示时,该光学显示模组中由自发光显示屏发出的光束的光路图如图14b所示,其中的FOV记为α2,α1>α2。
由图13a和图14a可以看出,显示屏将分辨率调整为第一分辨率时,显示屏的AA较大,显示屏出射的光束的角度较大,该光束经过透镜、凹面反射镜和半透半反镜之后的出射角较大,从而实现较大的FOV,即为用户提供具有较大视野范围的图像。
由图13b和图14b可以看出,显示屏将分辨率调整第二分辨率时,显示屏的AA较小,显示屏出射的光束的角度较小,该光束经过透镜、凹面反射镜和半透半反镜之后的出射角较小,从而实现较小的FOV,即为用户提供具有较小视野范围的图像。
由上述内容可以看出,自发光显示屏的分辨率为固定值相比,由于本申请实施例中的显示屏的分辨率可调,因此使得头戴电子设备可以在不同的FOV之间切换,尤其使得头戴电子设备在需要大FOV的场景下切换至大FOV以满足用户需求,并且使得头戴电子设备在不需要FOV的场景下切换至小FOV以节省能耗。
此外,本实施例的方法与通过给显示屏输入部分灰度为0的图片来实现类似FOV切 换的方法相比,不会出现灰度为0的区域因漏电流产生杂光等影响所导致的图像不是全黑状态的问题,从而可以提高头戴电子产品在切换至小FOV时的显示效果。
当头戴电子设备的光学显示模组为图3b所示的光学显示模组300时,头戴电子设备的FOV切换方式可以参考图3a的切换方式,此处不再赘述。
下面以头戴电子设备包含为图4所示的光学显示模组400为例,介绍本申请实施例的头戴电子设备的又一种FOV切换方式。
本实施例的一种示例中,显示屏的光源为LED阵列,该阵列中的每一颗子LED均可单独控制或点亮。本实施例中,头戴电子设备的存储器中设置有多种FOV和该LED阵列的多种控制方式之间的对应关系,其中,不同FOV对应的LED阵列控制方式不同,不同的LED阵列控制方式下,该LED阵列中照亮的子LED的区域大小不同。
例如,大FOV对应的LED控制方式下,全部子LED可以照亮,从而可以使得显示屏的显示区域均为AA区;又如,小FOV对应的LED控制方式下,部分子LED照亮,这使得只有部分显示屏被照亮,从而使得显示屏的部分区域为AA区。
本实施例中,当头戴电子设备的处理器确定其目标FOV之后,可以基于上述FOV与LED阵列的控制方式之间的对应关系找到与该目标FOV匹配的目标控制方式,并向光学显示模组中的照明光源的控制芯片输出控制信号,该控制信号用于控制光源按照该目标控制方式照亮。
例如,头戴电子设备确定目标FOV为大FOV的情况下,可以基于FOV与控制方式之间的对应关系查找与大FOV对应的第一控制方式,以及向光学显示模组输出表示该第一控制方式的控制信号,第一控制方式的一种示例为控制所有子LED照亮;又如,头戴电子设备确定目标FOV为小FOV的情况下,可以基于FOV与控制方式之间的对应关系查找到与小FOV对应的第二控制方式,以及向光学显示模组输出表示该第二控制方式的控制信号,第二控制方式的一种示例为控制LED阵列中中间区域的子LED照亮。
光学显示模组中的LED阵列的控制芯片接收到头戴电子设备的处理器发送的控制信号之后,根据该控制信号亮起相应的子LED。其中,该LED阵列中亮起的区域大小不同时,该显示屏的AA的大小不同。
例如,LED阵列的控制芯片接收指示第一控制方式的控制信号之后,亮起所有子LED,此时LED阵列和显示屏的AA的一种示例如图15a所示。图4所示的光学显示模组中的光源和显示屏的AA如图15a所示时,该光学显示模组的一种光路示意图如图16a所示,其中,FOV记为α1。
又如,显示屏的控制芯片接收指示第二控制方式的控制信号之后,亮起部分子LED,此时LED阵列和显示屏的AA的一种示例如图15b所示。图4所示的光学显示模组中的光源和显示屏的AA如图15b所示时,该光学显示模组的一种光路示意图如图16b所示,其中,FOV记为α2,α1>α2。
由图13可知,LED阵列全部亮起时显示屏的AA1大于LED阵列部分亮起时显示屏的AA2。
由图16a可以看出,显示屏AA较大时,显示屏出射的光束经过各种透镜和/或反射镜之后的出射角较大,从而实现较大的FOV,即为用户提供具有较大视野范围的图像;由图16b可以看出,显示屏的AA较小时,显示屏出射的光束经过各种透镜和/或反射镜之后的出射 角较小,从而实现较小的FOV,即为用户提供具有较小视野范围的图像。
由上述内容可以看出,与光源阵列的控制方式固定相比,即与光源阵列只能亮起固定区域相比,由于本申请实施例中的光源阵列亮起的区域可调,因此使得头戴电子设备可以在不同的FOV之间切换,尤其使得头戴电子设备在需要大FOV的场景下切换至大FOV以满足用户需求,并且使得头戴电子设备在不需要FOV的场景下切换至小FOV以节省能耗。
可以理解的是,上述包含显示屏的光学显示模组中,通过调节显示屏的分辨率或调节光源的发光区域来调节图像的FOV的方法仅是示例,本申请中还提出了其他方法,例如,可以通过调节图像上的像素点的大小来调节FOV。
图17为本申请一个实施例的电子设备的图像显示方法的示意性流程图。该方法可以包括S1710和S1720。
S1710,检测电子设备是否连接外界电源设备。
本实施例中,外界电源设备是指与电子设备连接之后能够为电子设备提供电源的设备。外界电源设备可以通过有线方式与电子设备连接,也可以通过无线方式与电子设备连接,本实施例对此不作限制。
例如,电子设备的处理器检测电子设备的输入输出接口有无电压输入,若有电压输入,则确定电子设备连接有外界电源设备,否则确定电子设备没有连接外界电源设备。
S1720,在电子设备没有连接外界电源设备的情况下,显示小FOV图像。
例如,电子设备的处理器确定电子设备没有连接外界电源设备的情况下,确定电子设备的目标FOV为小FOV,并控制显示模组显示小FOV图像。电子设备显示小FOV图像的方式可以参考前述实施例中的相关内容,此处不再赘述。
在一些实现方式中,电子设备没有连接外界电源设备的情况下,电池剩余电量小于预设的第一电量值时显示的图像的FOV,小于电池剩余电量大于或等于第一电量值时显示的图像的FOV。
本实施例中,可选地,如图18所示,还可以包括S1730,即在电子设备连接外界电源设备的情况下,显示大FOV图像。电子设备显示大FOV图像的方式可以参考前述实施例中的相关内容,此处不再赘述。
本实施例中,可选地,电子设备还可以接收用户输入的指令,并根据用户的指令切换图像的FOV。例如,电子设备基于用户的指令从大FOV切换至小FOV,或基于用户的指令从小FOV切换至大FOV。
在一些实现方式中,电子设备接收用户的指令,然后判断用户指令指示的FOV与电子设备当前的FOV是否一致,若一致,则电子设备保持当前FOV,若不一致,则将电子设备的FOV更新为用户指令指示的FOV,并基于该更新后的FOV执行FOV切换操作。
作为一个示例,电子设备当前FOV为小FOV的场景下,电子设备接收用户的指令,若用户指令指示的FOV为大FOV,则将电子设备的FOV设置为大FOV,并执行FOV切换操作。
作为又一个示例,电子设备当前FOV为大FOV的场景下,电子设备接收用户的指令,若用户指令指示的FOV为小FOV,则将电子设备的FOV设置为小FOV,并执行FOV切换操作。
作为第三个示例,电子设备当前FOV为小FOV的场景下,电子设备接收用户的指令,若用户指令指示的FOV为小FOV,则电子设备继续保持小FOV。该示例中,电子设备可以不执行FOV切换操作。
作为第四个示例,电子设备当前FOV为大FOV的场景下,电子设备接收用户的指令,若用户指令指示的FOV为大FOV,则电子设备继续保持大FOV。该示例中,电子设备可以不执行FOV切换操作。
本实施例中,可选地,电子设备可以为用户提供FOV设置按钮和/或FOV设置页面;或者,电子设备通过与其进行数据连接的终端设备来为用户提供FOV设置页面。
本实施例中,可选地,电子设备可以接收用户输入的指令,并基于该指令设置电子设备连接有外界电源设备时的FOV为大FOV还是为小FOV,或,基于该指令设置电子设备没有连接外界电源设备时的FOV为大FOV还是为小FOV。
本实施例中,可选地,电子设备可以周期地检测电子设备是否连接有外界电源设备,并根据检测结果执行相应操作。
图19为本申请另一个实施例的电子设备的图像显示方法的示意性流程图。该方法可以包括S1910和S1920。
S1910,检测电子设备的剩余电量值。
S1920,在电子设备的剩余电量值小于第一电量值的情况下,显示小FOV图像。
电子设备显示小FOV图像的方式可以参考前述实施例中的相关内容,此处不再赘述。
本实施例中,可选地,在电子设备的剩余电量值大于或等于第一电量值的情况下,显示大FOV图像。电子设备显示大FOV图像的方式可以参考前述实施例中的相关内容,此处不再赘述。
在一些实现方式中,电子设备的电池剩余电量小于预设的第一电量值的情况下,电子设备没有连接外界电源设备时显示的图像的FOV,小于电子设备连接外界电源设备时显示的图像的FOV。
本实施例中,可选地,电子设备还可以接收用户输入的指令,并根据用户的指令切换图像的FOV。本实施例中电子设备进行FOV切换的方式可以参考图15所示的实施例中的相关内容,此处不再赘述。
本实施例中,可选地,电子设备可以接收用户输入的指令,并根据该指令设置第一电量值。
本实施例中,可选地,电子设备可以周期地检测电子设备的剩余电量值,并根据检测结果执行相应操作。
可以理解的是,本申请各个实施例中所述的电子设备显示大FOV图像和小FOV图像仅是示例,本申请任意实施例中,电子设备还可以显示在大FOV至小FOV之间的一个或多个FOV图像。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存 储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例是示意性的,例如,所述单元的划分,为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包 括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种图像显示方法,其特征在于,所述方法应用于电子设备,所述方法包括:
    当所述电子设备的电源状态不同时,所述电子设备显示不同视场角FOV的图像,其中,所述电源状态包括所述电子设备与外界电源设备的连接状态,和/或,所述电子设备的电池电量状态。
  2. 根据权利要求1所述的方法,其特征在于,当所述电子设备没有连接所述外界电源设备或所述电子设备的剩余电量值小于第一电量值时,所述电子设备显示第一视场角FOV的图像;
    当所述电子设备连接所述外界电源设备或所述电子设备的剩余电量值大于或等于所述第一电量值时,所述电子设备显示第二FOV的图像,所述第一FOV小于所述第二FOV。
  3. 根据权利要求1所述的方法,其特征在于,当所述电子设备没有连接所述外界电源设备且所述电子设备的剩余电量值大于或等于第一电量值时,所述电子设备显示所述第一FOV的图像;
    当所述电子设备连接所述外界电源设备时,所述电子设备显示所述第二FOV的图像,所述第二FOV大于或等于所述第一FOV;
    当所述电子设备没有连接所述外界电源设备且所述电子设备的剩余电量值小于所述第一电量值时,所述电子设备显示第三FOV的图像,所述第三FOV小于所述第一FOV。
  4. 根据权利要求2或3所述的方法,其特征在于,所述电子设备包括光学显示模组,所述光学显示模组包括激光束扫描显示LBS光引擎,所述LBS光引擎包括微机电系统MEMS振镜;
    其中,当所述MEMS振镜在振动旋转过程中的最大偏转角度为第一角度时,所述电子设备显示所述第一FOV的图像;
    当所述MEMS振镜在振动旋转过程中的最大偏转角度为第二角度时,所述电子设备显示所述第二FOV的图像,且所述第一角度小于所述第二角度。
  5. 根据权利要求4所述的方法,其特征在于,所述光学显示模组还包括激光模组,所述LBS光引擎还包括光波导,所述光波导包括耦入区和耦出区;
    所述激光模组用于向所述MEMS振镜出射光束;
    所述MEMS振镜用于入射所述光膜模组出射的光束,并通过振动旋转向所述耦入区出射光束;
    所述光波导用于将所述耦入区入射的光束传输至所述耦出区,并通过所述耦出区出射光束。
  6. 根据权利要求4或5所述的方法,其特征在于,所述电子设备还包括驱动芯片,所述驱动芯片向所述MEMS振镜输出电压信号;
    当所述驱动芯片向所述MEMS振镜输出第一电压信号时,所述MEMS振镜的最大偏转角度为所述第一角度;
    当所述驱动芯片向所述MEMS振镜输出第二电压信号时,所述MEMS振镜的最大偏转角度调整为所述第二角度,其中,所述第一电压信号小于所述第二电压信号。
  7. 根据权利要求2或3所述的方法,其特征在于,所述电子设备包括光学显示模组,所述光学显示模组包括显示屏;
    其中,当所述显示屏的有效区域为第一区域时,所述电子设备显示第一FOV图像;
    当所述显示屏的有效区域为第二区域时,所述电子设备显示第二FOV图像,其中,所述第一区域小于所述第二区域。
  8. 根据权利要求7所述的方法,其特征在于,所述显示屏为自发光显示屏;
    当所述自发光显示屏的分辨率调整为第一分辨率时,所述自发光显示屏的有效区域为所述第一区域;
    当所述自发光显示屏的分辨率调整为第二分辨率时,所述显示屏的有效区域为第二区域,所述第一分辨率低于所述第二分辨率。
  9. 根据权利要求8所述的方法,其特征在于,所述光学显示模组还包括第一镜组,所述第一镜组包括一个或多个镜片,所述第一镜组用于入射所述自发光显示屏的有效区域发出的光束并出射所述光束。
  10. 根据权利要求7所述的方法,其特征在于,所述显示屏包括反射型显示屏,所述光学显示模组还包括光源,所述反射型显示屏用于反射所述光源发射的光;
    当所述光源的发光区域调整为第一发光区域时,所述反射型显示屏的有效区域为所述第一区域;
    当所述光源的发光区域调整为第二发光区域,所述反射想显示屏的有效区域为所述第二区域,所述第二反射区域大于所述第一发光区域。
  11. 根据权利要求10所述的方法,其特征在于,所述光学显示模组还包括第一镜组、第二镜组和光波导,所述光波导包括耦入区和耦出区,所述第一镜组和所述第二镜组分别包括一个或多个镜片;
    所述第一镜组用于入射所述光源出射的光束,并将所述光束出射至所述反射型显示屏;
    所述第二镜组用于入射所述反射型显示屏出射的光束,并将所述光束出射至所述耦入区;
    所述光波导用于将所述耦入区入射的光束传输至所述耦出区,并从所述耦出区出射光束。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述图像为虚拟图像,其中,所述电子设备为头戴显示设备。
  13. 一种电子设备,其特征在于,包括:一个或多个处理器、一个或多个存储器;
    所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述一个或多个处理器执行所述计算机指令时,所述电子设备执行如权利要求1至12中任一项所述的图像显示方法。
  14. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在终端上运行,使得所述终端执行如权利要求1至12中任一项所述的图像显示方法。
  15. 一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,其特征在于,当所述计算机程序代码在计算机上运行时,使得计算机实现如权利要求1至12中任一项所述的图像显示方法。
  16. 一种程序产品,其特征在于,所述程序产品包括计算机程序,所述计算机程序存储在可读存储介质中,通信装置的至少一个处理器可以从所述可读存储介质读取所述计算机程序,所述至少一个处理器执行所述计算机程序使得通信装置实施如权利要求1-12任意 一项所述的方法。
PCT/CN2022/085255 2021-04-30 2022-04-06 电子设备及其图像显示方法 WO2022228055A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/558,096 US20240219733A1 (en) 2021-04-30 2022-04-06 Electronic Device and Image Display Method Thereof
EP22794526.8A EP4318205A4 (en) 2021-04-30 2022-04-06 ELECTRONIC DEVICE AND IMAGE DISPLAY METHOD THEREFOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110481159.XA CN115268806A (zh) 2021-04-30 2021-04-30 电子设备及其图像显示方法
CN202110481159.X 2021-04-30

Publications (1)

Publication Number Publication Date
WO2022228055A1 true WO2022228055A1 (zh) 2022-11-03

Family

ID=83745703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085255 WO2022228055A1 (zh) 2021-04-30 2022-04-06 电子设备及其图像显示方法

Country Status (4)

Country Link
US (1) US20240219733A1 (zh)
EP (1) EP4318205A4 (zh)
CN (1) CN115268806A (zh)
WO (1) WO2022228055A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505411A (zh) * 2006-04-05 2009-08-12 哥瑞考儿童产品公司 视频婴孩监视器系统
CN101656795A (zh) * 2008-08-22 2010-02-24 Lg电子株式会社 移动终端和减少移动终端中的功耗的方法
US20140092140A1 (en) * 2012-09-28 2014-04-03 Avaya Inc. Screen resize for reducing power consumption
CN208111045U (zh) * 2017-09-21 2018-11-16 昆山龙腾光电有限公司 具有省电功能的显示装置
CN112419986A (zh) * 2019-08-20 2021-02-26 Oppo广东移动通信有限公司 头戴式显示设备的图像显示方法、装置及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014101085A1 (en) * 2012-12-28 2014-07-03 Intel Corporation Displaying area adjustment
CN107111469B (zh) * 2015-12-23 2020-01-21 华为技术有限公司 一种调整显示屏显示界面的方法、用户界面、装置、电子设备及存储介质
KR102623391B1 (ko) * 2017-01-10 2024-01-11 삼성전자주식회사 영상 출력 방법 및 이를 지원하는 전자 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505411A (zh) * 2006-04-05 2009-08-12 哥瑞考儿童产品公司 视频婴孩监视器系统
CN101656795A (zh) * 2008-08-22 2010-02-24 Lg电子株式会社 移动终端和减少移动终端中的功耗的方法
US20140092140A1 (en) * 2012-09-28 2014-04-03 Avaya Inc. Screen resize for reducing power consumption
CN208111045U (zh) * 2017-09-21 2018-11-16 昆山龙腾光电有限公司 具有省电功能的显示装置
CN112419986A (zh) * 2019-08-20 2021-02-26 Oppo广东移动通信有限公司 头戴式显示设备的图像显示方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4318205A4

Also Published As

Publication number Publication date
CN115268806A (zh) 2022-11-01
EP4318205A4 (en) 2024-10-09
EP4318205A1 (en) 2024-02-07
US20240219733A1 (en) 2024-07-04

Similar Documents

Publication Publication Date Title
US12105870B2 (en) Method for controlling display screen according to eye focus and head-mounted electronic device
US10095307B2 (en) Eye tracking systems and methods for virtual reality environments
CN105074537B (zh) 三件套棱镜目镜
US11847258B2 (en) Method for wireless connection in augmented reality environment and electronic device therefor
US10978008B2 (en) Electronic device including optical members that change the optical path
KR20220067128A (ko) 증강 현실 환경의 무선 연결 방법 및 이를 위한 전자 장치
US20230199328A1 (en) Method of removing interference and electronic device performing the method
CN109636715B (zh) 图像数据的传输方法、装置及存储介质
CN112106353A (zh) 用于基于环境照度调整在显示器上显示的内容的位置的电子装置及其操作方法
WO2022228055A1 (zh) 电子设备及其图像显示方法
CN218767593U (zh) 一种虚像显示设备和交通工具
JP2021106447A (ja) 画像表示装置、給電システム及び画像表示装置の給電方法
CN115543130B (zh) 显示装置以及电子设备
TWI438547B (zh) 多向穿透式彩色影像投射裝置及其方法
WO2023098228A1 (zh) 显示装置、电子设备以及交通工具
CN115561955B (zh) 显示装置、电子设备以及交通工具
US20240255757A1 (en) Display apparatus, electronic device, and transportation means
WO2023116541A1 (zh) 眼动追踪装置、显示设备及存储介质
CN117991506A (zh) 一种虚像显示设备和交通工具
KR20240095197A (ko) 확장 현실에 대한 디바이스 상호운용성을 위한 시스템들 및 방법들
CN115755390A (zh) 扩增实境眼镜装置
CN116256900A (zh) 一种图像生成装置、显示设备和交通工具
KR20160126603A (ko) 헤드 마운트 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22794526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022794526

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18558096

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022794526

Country of ref document: EP

Effective date: 20231023

NENP Non-entry into the national phase

Ref country code: DE