WO2023098633A1 - 一种通信方法和装置 - Google Patents

一种通信方法和装置 Download PDF

Info

Publication number
WO2023098633A1
WO2023098633A1 PCT/CN2022/134777 CN2022134777W WO2023098633A1 WO 2023098633 A1 WO2023098633 A1 WO 2023098633A1 CN 2022134777 W CN2022134777 W CN 2022134777W WO 2023098633 A1 WO2023098633 A1 WO 2023098633A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
time
frequency resource
target
communication
Prior art date
Application number
PCT/CN2022/134777
Other languages
English (en)
French (fr)
Inventor
栗忠峰
张长
冯奇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023098633A1 publication Critical patent/WO2023098633A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the technical field of wireless communication, and in particular to a communication method and device.
  • the communication device adopts the mechanism of listen before talk (LBT) to communicate, that is, the communication device performs passive communication first. monitoring, resource selection and communication transmission are performed according to the monitored information.
  • LBT listen before talk
  • the frequency supported by the communication system gradually increases, so the path loss gradually increases, resulting in a gradual decrease in coverage.
  • the impact of path loss needs to be reduced.
  • One way is to increase the transmission power, but the transmission power will be limited by the device size, energy loss and radiation index.
  • Embodiments of the present application provide a communication method and device, which are used to improve coverage and improve transmission performance.
  • a communication method is provided. The method can be performed by the first communication device.
  • the first communication device may be a network device or a terminal device.
  • the first communication device acquires a first time-frequency resource and a first beam, and the first beam is used for sensing.
  • the first communication device sends a first beam on a first time-frequency resource.
  • the first communication device determines the target beam according to the reflected beam of the first beam. Wherein, the target beam corresponds to the first beam that receives the reflected beam.
  • the first communication device determines the second time-frequency resource according to the target beam.
  • the first communication device can perform active sensing based on the first beam, thereby determining the direction of the target, obtaining frequency multiplexing gain, improving coverage, reducing interference, and improving transmission performance. Due to the active sensing used, blind beam scanning of broadcasting services can be reduced, overhead and network interference can be reduced, and energy consumption of the first communication device can also be reduced.
  • target beams are used for competitive resource selection.
  • the first communication device may monitor the first information on the target beam, such as control information, reference signal, data, and so on.
  • the first communication device may determine occupied time-frequency resources based on the first information, so that the first communication device may determine available time-frequency resources.
  • the first communication device can determine the occupied time-frequency resource by performing competitive resource selection through the target beam, so that the interference to the data transmission of the first communication device can be reduced.
  • the first communication device monitors the first information within the first time window.
  • the first information is used to determine the occupied third time-frequency resource.
  • the first time-frequency resource here does not include the third time-frequency resource.
  • the first time-frequency resource is not occupied, that is, an available time-frequency resource.
  • the first time-frequency resources include part or all of the third time-frequency resources.
  • the first time-frequency resources may include time-frequency resources occupied by services whose priority is lower than the first threshold, or the first time-frequency resources may include third time-frequency resources whose energy is lower than the second threshold.
  • the first communication device monitors the first information and determines that the first time-frequency resource can reduce the interference of other communication devices to the first communication device, or reduce the interference of information transmitted by other communication devices to the first beam.
  • the first beam is a preconfigured beam.
  • the first beam includes at least one of a synchronization beam and a pilot beam.
  • the first beam may be a predefined beam, and the maximum number of first beams may be defined on different frequencies.
  • the first communication device monitors the first information according to the second beam within the first time window.
  • the second beam corresponds to the first beam.
  • the second beams correspond to the first beams one by one, or one second beam corresponds to multiple first beams.
  • the first communication device determines the first time-frequency resource by monitoring the first information according to the second beam, which can reduce the interference of other communication devices to the first communication device, or reduce the impact of information transmitted by other communication devices on the first communication device. beam interference.
  • the second beam that has not heard the first information corresponds to the first beam.
  • the second beams that have not heard the first information correspond to the first beams one by one, or one second beam that has not heard the first information corresponds to multiple first beams.
  • the first communication device can determine the first beam for sensing by monitoring the first information according to the second beam, which can reduce the number of first beams, that is, can reduce the number of first beams used by the first communication device. Sensing latency.
  • the first time-frequency resource is located in the second time window in the time domain.
  • the first time window and the second time window appear alternately in the time domain.
  • the first time window is located before the second time window in the time domain.
  • the first time window and the second time window appear alternately, that is, the first beam is determined by monitoring the first information based on the second beam, so the number of the first beam can be reduced, that is, the first beam can be reduced.
  • a time delay for the communication device to perform sensing based on the first beam If the first time window and the second time window appear alternately in the time domain, that is, the first communication device first monitors the first information based on all the second beams, and then performs active sensing based on all the first beams, the performance of active sensing can be improved , in other words the first communication device can detect potential targets through all the first beams.
  • the length of the first time window is proportional to the quantity of the second beams, and/or the length of the second time window is proportional to the quantity of the first beams.
  • the first communication device may have sufficient time to monitor based on the second beam, and transmit the first beam and monitor the reflected beam of the first beam.
  • the first communication device monitors the first information according to the target beam.
  • the first information is used to determine the occupied third time-frequency resource.
  • the second time-frequency resource does not include the third time-frequency resource.
  • the second time-frequency resources include unoccupied time-frequency resources, that is, available time-frequency resources.
  • the second time-frequency resources include part or all of the third time-frequency resources.
  • the second time-frequency resources may include time-frequency resources occupied by services whose priority is lower than the first threshold, or the second time-frequency resources may include third time-frequency resources whose energy is lower than the second threshold.
  • the first communication device can determine the occupied time-frequency resource according to the target beam monitoring first information, so that the interference to the data transmission of the first communication device can be reduced.
  • the time window is related to the priority of the service.
  • the time window here may include one or more of the above-mentioned first time window and second time window. For example, a shorter length can be configured for a high priority, and a larger length can be configured for a low priority.
  • the second time-frequency resource is used for communication.
  • the first communication device may transmit control information, reference signals, data, etc. on the second time-frequency resource.
  • the first communication device performs active sensing based on the first beam to determine the direction of the target, and determines the second time-frequency resource for communication through the target beam, which can improve coverage, reduce interference, and improve transmission performance.
  • At least one of the following items is randomly selected: the first time-frequency resource and the second time-frequency resource.
  • the first communication device randomly selects the first time-frequency resource to send the first beam, which can reduce the time delay for determining the first time-frequency resource.
  • the first communication device randomly selects the second time-frequency resource, which can reduce the time delay for determining the second time-frequency resource.
  • the frequency of the first time-frequency resource is different from the frequency of the second time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource are located on different carriers, or the first time-frequency resource and the second time-frequency resource are located on different frequency bands.
  • the frequency of the carrier where the first time-frequency resource is located is higher than the frequency of the carrier where the second time-frequency resource is located.
  • the frequency of the frequency band where the first time-frequency resource is located is higher than the frequency of the frequency band where the second time-frequency resource is located.
  • a frequency band may include one or more frequency domain resources.
  • the first beam is sent through the first time-frequency resource, and the second time-frequency resource is determined according to the target beam. Since the first time-frequency resource and the second time-frequency resource are located on different frequencies, that is, active sensing can be used Higher-frequency time-frequency resources are used, and passive sensing is performed using lower-frequency time-frequency resources, which can reduce the delay of the active sensing process.
  • a communication method is provided.
  • the method may be executed by a second communication device, and the second communication device may be a network device or a terminal device.
  • the second communication device sends indication information of the third beam to the third communication device.
  • the third beam is used for at least one of the following: communication by the third communication device, and perception by the third communication device.
  • the second communication device acquires a measurement result according to the third beam.
  • the second communication device sends the indication information of the target beam to the third communication device and the fourth communication device.
  • the target beam is determined according to the measurement result, the target beam corresponds to the third beam, and the target beam is used for communication between the third communication device and the fourth communication device.
  • the third communication device since the indication information of the third beam is sent by the second communication device to the third communication device, the third communication device does not need to perform sensing on the configured beam set, that is, the third communication device may not need Performing a blind scan on the configured beam set to determine the target beam can reduce the overhead of the third communication device and save energy consumption of the third communication device.
  • the second communication device sends indication information of the first time-frequency resource to the third communication device.
  • the first time-frequency resource is used to transmit the third beam.
  • the second communication device sends the first time-frequency resource for transmitting the third beam to the third communication device, which can reduce interference to the third beam, and does not require the third communication device to determine the first time-frequency resource by itself,
  • the overhead of the third communication device can be reduced, and the energy consumption of the third communication device can be saved.
  • the second communication device sends the indication information of the feedback resource to the third communication device.
  • the second communication device obtains the measurement result on the feedback resource.
  • the third beam corresponds to the fourth beam
  • the fourth beam is used for sensing.
  • the second communication device may indicate the third beam to the third communication device, and the third beam corresponds to the fourth beam, that is, the second communication device indicates the fourth beam by indicating the third beam, and the third communication device may Sensing is performed through the third and fourth beams.
  • the second communication device acquires the measurement result according to the fourth beam.
  • the third communication device may perform sensing based on the fourth beam, so as to determine the measurement result of the fourth beam.
  • the second communication device sends indication information of a fourth time window to the third communication device, where the fourth time window is a time window for the third communication device to monitor based on the third beam.
  • the second communication device indicates the indication information of the fourth time window to the third communication device, so that the third communication device can monitor based on the third beam within the fourth time window, that is, inform the third communication device to listen based on the third beam.
  • the duration of beam monitoring can reduce the overhead and energy consumption of the third communication device.
  • the second communication device sends the indication information of the fifth time window to the third communication device.
  • the fifth time window is a time window sensed by the third communication device based on the fourth beam.
  • the fifth time window is a time window for the third communication apparatus to communicate and sense based on the fourth beam.
  • the second communication device indicates the indication information of the fifth time window to the third communication device, so that the third communication device can perform sensing and/or communication based on the fourth beam within the fifth time window, that is, inform the third communication device
  • the device can reduce overhead and energy consumption of the third communication device based on the fourth beam sensing and/or communication duration.
  • the second communication device sends the fifth beam.
  • the second communication device determines the sixth beam according to the reflected beam of the fifth beam.
  • the sixth beam is used for at least one of the following: communication by the second communication device, and perception by the second communication device.
  • the second communication device can sense the fourth communication device by sending the fifth beam, and communicate with the fourth communication device through the sixth beam, so that the second communication device can determine the third communication device sent to the third communication device. Beam indication information.
  • the indication information of the third beam is determined according to location information of the second communication device, location information of the third communication device, and location information of the fourth communication device.
  • the indication information of the third beam is based on the distance between the second communication device and the third communication device, the distance between the second communication device and the fourth communication device, and the communication method used by the second communication device and the third communication device. The included angle between the beam and the beams used by the second communication device and the fourth communication device is determined.
  • the second communication device can determine the general direction of the third beam through the information of the second communication device, the third communication device and the fourth communication device, so as to determine the indication information of the third beam.
  • a communication method is provided.
  • the method may be performed by a third communication device, and the third communication device may be a network device or a terminal device.
  • the third communication device acquires indication information of the third beam and the first time-frequency resource.
  • the third beam is used for at least one of the following: communication by the third communication device, and perception by the third communication device.
  • the third communication device sends a third beam on the first time-frequency resource.
  • the third communication device measures the reflected beam of the third beam, and obtains a measurement result of the reflected beam of the third beam.
  • the third communication device sends the measurement result to the second communication device.
  • the third communication device since the indication information of the third beam is sent by the second communication device to the third communication device, the third communication device does not need to perform sensing on the configured beam set, that is, the third communication device may not need Blind scanning on the configured beam set can reduce the overhead of the third communication device, and can save the energy consumption of the third communication device.
  • the third communication device acquires indication information of the target beam.
  • the target beam is determined according to the measurement result, the target beam corresponds to the third beam, and the target beam is used for communication between the third communication device and the fourth communication device.
  • the second communication device determines the target beam for the fourth communication device to communicate with the fourth communication device, that is, the second communication device can select another communication link for the third communication device to improve transmission reliability sex.
  • the third communication device acquires indication information of feedback resources.
  • the third communications device sends the measurement result to the second communications device on the feedback resource.
  • the third beam corresponds to the fourth beam
  • the fourth beam is used for sensing.
  • the second communication device may indicate the third beam to the third communication device, and the third beam corresponds to the fourth beam, that is, the second communication device indicates the fourth beam by indicating the third beam, and the third communication device may Sensing is performed through the third and fourth beams.
  • the third communication device sends the fourth beam in the first time-frequency resource.
  • the third communication device measures the reflected signal of the fourth beam to obtain a measurement result of the reflected signal of the fourth beam.
  • the third communication device may perform sensing based on the fourth beam, so as to determine the measurement result of the fourth beam.
  • the third communication device monitors first information on a third beam, where the first information is used to determine an occupied third time-frequency resource.
  • the first time-frequency resource does not include the third time-frequency resource.
  • the first time-frequency resources include part or all of the third time-frequency resources.
  • the third communication device can monitor the first information on the first beam, determine available time-frequency resources, and reduce interference on the available time-frequency resources.
  • the third communication device acquires the indication information of the fourth time window, where the fourth time window is a time window for the third communication device to monitor based on the third beam.
  • the second communication device indicates the indication information of the fourth time window to the third communication device, so that the third communication device can monitor based on the third beam within the fourth time window, that is, inform the third communication device to listen based on the third beam.
  • the duration of beam monitoring can reduce the overhead and energy consumption of the third communication device.
  • the third communication device acquires the indication information of the fifth time window.
  • the indication information of the fifth time window is the duration of sensing by the third communication device based on the fourth beam.
  • the fifth time window is a time window for the third communication apparatus to communicate and sense based on the fourth beam.
  • the second communication device indicates the indication information of the fifth time window to the third communication device, so that the third communication device can perform sensing and/or communication based on the fourth beam within the fifth time window, that is, inform the third communication device
  • the device can reduce overhead and energy consumption of the third communication device based on the fourth beam sensing and/or communication duration.
  • the target beam includes a target sending beam and a target receiving beam.
  • the third communication device acquires indication information of the target sending beam.
  • the third communication device acquires indication information of the target receiving beam.
  • sending the indication information of the target receiving beam to the destination node and sending the indication information of the target sending beam to the sending node can save transmission resources.
  • a communication device including: a transceiver unit and a processing unit;
  • the transceiver unit is configured to acquire the first time-frequency resource and the first beam, and send the first beam on the first time-frequency resource, where the first beam is used for perception.
  • the processing unit is configured to determine a target beam in the first beam according to a reflected beam of the first beam, and determine a second time-frequency resource according to the target beam.
  • the target beam corresponds to the first beam from which the reflected beam was received.
  • target beams are used for competitive resource selection.
  • first information is monitored within a first time window, and the first information is used to determine occupied third time-frequency resources.
  • the first beam is a preconfigured beam.
  • the processing unit is further configured to: monitor the first information according to the second beam within the first time window. Wherein, the second beam corresponds to the first beam.
  • the second beam that does not hear the first information corresponds to the first beam.
  • the first time-frequency resource is located within the second time window in the time domain.
  • the first time window and the second time window appear alternately in the time domain.
  • the first time window is located before the second time window in the time domain.
  • the length of the first time window is proportional to the number of the second beams, and/or the length of the second time window is proportional to the number of the first beams.
  • the processing unit is further configured to: monitor the first information according to the target beam, and the first information is used to determine the occupied third time-frequency resource. Wherein, the second time-frequency resource does not include the third time-frequency resource.
  • the time window is related to the priority of the traffic.
  • the second time-frequency resource is used for communication.
  • At least one of the following items is randomly selected: the first time-frequency resource and the second time-frequency resource.
  • the frequency of the first time-frequency resource is different from the frequency of the second time-frequency resource.
  • a communication device including: a transceiver unit and a processing unit;
  • the transceiving unit is configured to: send indication information of the third beam to the third communication device.
  • the third beam is used for at least one of the following: communication by the third communication device, and perception by the third communication device.
  • the transceiver unit is further configured to acquire a measurement result according to the third beam.
  • the processing unit is configured to determine the target beam according to the measurement result.
  • the transceiver unit is further configured to send indication information of the target beam to the third communication device and the fourth communication device. Wherein, the target beam is determined according to the measurement result, the target beam corresponds to the third beam, and the target beam is used for communication between the third communication device and the fourth communication device.
  • the transceiver unit is further configured to: send indication information of the first time-frequency resource to the third communication device, where the first time-frequency resource is used to transmit the third beam.
  • the transceiving unit is further configured to: send indication information of the feedback resource to the third communication device.
  • the transceiver unit is specifically configured to: obtain a measurement result on the feedback resource.
  • the third beam corresponds to the fourth beam, which is used for sensing.
  • the transceiver unit when the transceiver unit acquires the measurement result according to the third beam, it is specifically configured to: acquire the measurement result according to multiple fourth beams.
  • the transceiver unit is further configured to: send indication information of a fourth time window to the third communication device, where the fourth time window is a time window for the third communication device to monitor based on the third beam.
  • the transceiving unit is further configured to: send indication information of the fifth time window to the third communication device.
  • the fifth time window is a time window sensed by the third communication device based on the fourth beam.
  • the fifth time window is a time window for the third communication apparatus to communicate and sense based on the fourth beam.
  • the transceiver unit is further configured to: transmit a fifth beam.
  • the processing unit is further configured to: determine the sixth beam according to the reflected beam of the fifth beam. Wherein, the sixth beam is used for at least one of the following: communication by the second communication device, and perception by the second communication device.
  • the indication information of the third beam is determined according to the location information of the second communication device, the location information of the third communication device, and the location information of the fourth communication device.
  • the indication information of the third beam is based on the distance between the second communication device and the third communication device, the distance between the second communication device and the fourth communication device, and the communication method used by the second communication device and the third communication device. The included angle between the beam and the beams used by the second communication device and the fourth communication device is determined.
  • a communication device including: a transceiver unit and a processing unit;
  • the transceiver unit is configured to acquire the indication information of the third beam and the first time-frequency resource.
  • the third beam is used for at least one of the following: communication by the third communication device, and perception by the third communication device.
  • the transceiver unit is further configured to send the third beam on the first time-frequency resource.
  • the processing unit is configured to measure a reflected beam of the third beam, and obtain a measurement result of the reflected beam of the third beam.
  • the transceiver unit is further configured to send the measurement result to the second communication device.
  • the transceiver unit is further configured to: acquire indication information of the target beam.
  • the target beam is determined according to the measurement result, and the target beam corresponds to the third beam.
  • the target beam is used for communication between the third communication device and the fourth communication device.
  • the transceiving unit is further configured to: acquire indication information of the feedback resource, and send the measurement result to the second communication device on the feedback resource.
  • the third beam corresponds to the fourth beam, which is used for sensing.
  • the transceiver unit when the transceiver unit sends the third beam on the first time-frequency resource, it is specifically configured to: send the fourth beam on the first time-frequency resource.
  • the processing unit is specifically configured to: measure the reflected signal of the fourth beam, and obtain a measurement result of the reflected signal of the fourth beam.
  • the processing unit is specifically configured to: monitor first information on a third beam, where the first information is used to determine an occupied third time-frequency resource. Wherein, the first time-frequency resource does not include the third time-frequency resource.
  • the transceiver unit is further configured to: acquire indication information of a fourth time window, where the fourth time window is a time window for the third communication device to monitor based on the third beam.
  • the transceiver unit is further configured to: acquire indication information of the fifth time window.
  • the indication information of the fifth time window is the duration of sensing by the third communication device based on the fourth beam.
  • the fifth time window is a time window for the third communication apparatus to communicate and sense based on the fourth beam.
  • the target beams include target transmit beams and target receive beams.
  • the transceiving unit is specifically configured to: the third communication device acquires indication information of a target transmission beam.
  • the transceiver unit is specifically configured to: acquire indication information of the target receiving beam.
  • the present application provides a communication device, including a processor, the processor is coupled to a memory, the memory is used to store computer programs or instructions, and the processor is used to execute the computer programs or instructions to perform the first to third aspects above each implementation method.
  • the memory may be located within the device or external to the device.
  • the number of the processors is one or more.
  • the present application provides a communication device, including: a processor and an interface circuit, the interface circuit is used for communicating with other devices, and the processor is used for implementing the methods of the first aspect to the third aspect above.
  • a communication device in a ninth aspect, includes a logic circuit and an input and output interface.
  • a logic circuit is used to acquire a first time-frequency resource and a first beam.
  • the first beam is used for perception.
  • the input and output interface is used to output the first beam on the first time-frequency resource.
  • the logic circuit is also used to determine the target beam according to the reflected beam of the first beam. Wherein, the target beam corresponds to the first beam that receives the reflected beam.
  • the logic circuit is also used to determine the second time-frequency resource according to the target beam.
  • the input-output interface is used to output the indication information of the third beam to the third communication device.
  • the third beam is used for at least one of the following: communication by the third communication device, and perception by the third communication device.
  • the I/O interface is also used to input measurement results.
  • the logic circuit is used to determine the target beam according to the measurement result.
  • the input and output interface is also used to output the instruction information of the target beam to the third communication device and the fourth communication device.
  • the target beam is determined according to the measurement result, the target beam corresponds to the third beam, and the target beam is used for communication between the third communication device and the fourth communication device.
  • the input and output interface is used to input indication information of the third beam and the first time-frequency resource.
  • the third beam is used for at least one of the following: communication by the third communication device, and perception by the third communication device.
  • the input-output interface is also used to output the third beam on the first time-frequency resource.
  • the logic circuit is used to measure the reflected beam of the third beam, and obtain the measurement result of the reflected beam of the third beam.
  • the input-output interface is also used to output measurement results to the second communication device.
  • the present application provides a communication system, including: a first communication device and at least one other communication device configured to execute each implementation method of the first aspect.
  • the present application provides a communication system, including: a second communication device for implementing the implementation methods of the second aspect above, and a third communication device and a fourth communication device for performing the implementation methods of the third aspect above.
  • communication device may be a destination node, and the fourth communication device may be a sending node. That is, the fourth communication device sends information to the third communication device, and the third communication device receives information from the fourth communication device.
  • the third communication device may be a sending node, and the fourth communication device may be a destination node. That is, the third communication device sends information to the fourth communication device, and the fourth communication device receives information from the third communication device.
  • the communication system may include a second communication device, a third communication device, and a fourth communication device.
  • the second communication device sends indication information of the third beam to the third communication device;
  • the third beam is used for at least one of the following: communication by the third communication device, perception by the third communication device;
  • the third communication device acquires the indication information of the third beam and the first time-frequency resource
  • the third communication device sends a third beam on the first time-frequency resource
  • the third communication device measures the reflected beam of the third beam, and obtains the measurement result of the reflected beam of the third beam;
  • the third communication device sends the measurement result to the second communication device
  • the second communication device obtains the measurement result according to the third beam; the second communication device sends the indication information of the target beam to the third communication device and the fourth communication device; the target beam is determined according to the measurement result, and the target beam corresponds to the third beam; the target beam Used for communication between the third communication device and the fourth communication device;
  • the third communication device acquires indication information of the target beam
  • the fourth communication device acquires indication information of the target beam.
  • the target beam includes a target receive beam and a target transmit beam
  • the second communication device sends indication information of the target receive beam to the third communication device
  • the second communication device sends indication information of the target transmit beam to the fourth communication device.
  • the second communication device sends the indication information of the target transmission beam to the third communication device
  • the second communication device sends the indication information of the target reception beam to the fourth communication device.
  • the present application further provides a chip system, including: a processor, configured to execute the implementation methods of the first aspect to the third aspect above.
  • the present application also provides a computer program product, including computer-executable instructions, which, when the computer-executable instructions are run on a computer, enable the implementation methods of the first aspect to the third aspect to be executed.
  • the present application also provides a computer-readable storage medium, in which computer programs or instructions are stored, and when the instructions are run on the computer, the implementations of the above-mentioned first aspect to the third aspect are realized method.
  • FIG. 1 is a schematic diagram of a beam provided by an embodiment of the present application.
  • FIG. 2(a) is one of the schematic diagrams of the V2X communication system provided by the embodiment of the present application.
  • FIG. 2(b) is a schematic diagram of the V2X communication system provided by the embodiment of the present application.
  • FIG. 3A is a schematic diagram of the corresponding relationship between the target beam and the first beam provided by the embodiment of the present application;
  • FIG. 3B is a schematic diagram of active sensing by communication device A provided in the embodiment of the present application.
  • FIG. 3C is a schematic diagram of active sensing + resource selection provided by the embodiment of the present application.
  • FIG. 4A is a schematic diagram of omnidirectional passive sensing performed by a communication device A provided in an embodiment of the present application;
  • FIG. 4B is a schematic diagram of omnidirectional passive sensing + BF resource selection provided by the embodiment of the present application.
  • FIG. 5 is a schematic diagram of continuous BF passive sensing provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of alternate BF passive sensing provided by an embodiment of the present application.
  • FIG. 7 is one of the exemplary flowcharts of the communication method provided by the embodiment of the present application.
  • FIG. 8A is a schematic diagram of omnidirectional passive sensing + active sensing + resource selection provided by the embodiment of the present application.
  • FIG. 8B is a schematic diagram of active sensing + BF passive sensing + resource selection provided by the embodiment of the present application.
  • FIG. 8C is a schematic diagram of active and passive alternate sensing + resource selection provided by the embodiment of the present application.
  • FIG. 9A is a schematic diagram of omnidirectional passive sensing + active sensing + BF passive sensing + resource selection provided by the embodiment of the present application;
  • FIG. 9B is a schematic diagram of BF passive sensing + active sensing + BF passive sensing + resource selection provided by the embodiment of the present application;
  • FIG. 9C is a schematic diagram of active and passive alternating sensing + BF passive sensing + resource selection provided by the embodiment of the present application;
  • FIG. 10 is one of the exemplary flowcharts of the communication method provided by the embodiment of the present application.
  • FIG. 11 is a schematic diagram of a method for determining a third beam provided in an embodiment of the present application.
  • FIG. 12A is one of the schematic diagrams of scenarios where N2 assists N3 in determining the target beam provided by the embodiment of the present application;
  • FIG. 12B is one of the schematic diagrams of scenarios where N2 assists N3 in determining the target beam provided by the embodiment of the present application;
  • FIG. 12C is one of the schematic diagrams of scenarios where N2 assists N3 in determining the target beam provided by the embodiment of the present application;
  • FIG. 13 is one of the schematic diagrams of a communication device provided in the embodiment of the present application.
  • FIG. 14 is one of the schematic diagrams of a communication device provided in the embodiment of the present application.
  • FIG. 15 is one of the schematic diagrams of a communication device provided in the embodiment of the present application.
  • FIG. 16 is one of schematic diagrams of a communication device provided by an embodiment of the present application.
  • Beams for the transmitting end or the receiving end, can form beams through their respective multiple antennas, as shown in Figure 1, the transmitting end (Tx)/receiving end (Rx) forms one or more beams through multiple antennas beams. Wherein, the more antennas are used, the narrower the beam width will be.
  • the narrower beam width may be called a narrow beam, and the wider beam width may be called a wide beam.
  • a beam can correspond to an angular direction range, and the angular direction range corresponding to the narrow wave is smaller than that corresponding to the wide wave.
  • multiple antennas on the sending end/receiving end may form one or more narrow beams; optionally, multiple antennas on the sending end/receiving end may form one or more wide beams.
  • the correspondence of the two beams can also be referred to as the quasi co-location (QCL) of the spatial reception parameter of one beam relative to the other beam. That is, the receiving angle of one beam can be obtained from the other beam.
  • QCL quasi co-location
  • a wide beam it can be understood as a beam covering all directions, that is, a quasi-omni beam; or, a wide beam can also be an angular direction that is smaller than all directions in the range of angular directions but corresponds to the angular direction covered by multiple narrow beams scope.
  • the beam in this embodiment of the present application may also be referred to as a signal, a beam signal, or a channel.
  • Perception which can include active perception and passive perception.
  • active sensing may be understood as a communication device sensing a target by sending beams.
  • a communications device may transmit a beam, and listen for reflected beams of that beam. When the reflected beam is detected, it is considered that there is a target in the direction of the beam, and when the reflected beam is not detected, it can be considered that there is no target in the direction of the beam.
  • the process of sensing a target by the communication device sending a beam and listening to a reflected beam of the beam can be understood as an active sensing process.
  • the process of monitoring the reflected beam by the communication device may be understood as an active sensing process.
  • the beam sending process of the communication device may be understood as an active sensing process.
  • Passive sensing can be understood as a communication device listening to information transmitted by other communication devices in time units, such as control information, so as to determine available time-frequency resources.
  • the time unit may be a time slot, a symbol, a mini-slot, a frame, a subframe or a half frame.
  • Monitoring means that a communication device receives information transmitted by other communication devices, such as control information, reference signals, and data. It should be noted that the listening mentioned in the embodiments of the present application may also be expressed as detection, monitoring, and the like.
  • a plurality referred to in the embodiments of this application refers to two or more.
  • "And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character "/" generally indicates that the contextual objects are an "or” relationship.
  • first, second, etc. may be used to describe various objects in the embodiments of the present invention, these objects should not be limited to these terms. These terms are only used to distinguish one object from another.
  • the time-domain symbol can be an Orthogonal Frequency Division Multiplexing (OFDM) symbol, or a Discrete Fourier Transform-spread-OFDM (DFT- s-OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DFT- s-OFDM Discrete Fourier Transform-spread-OFDM
  • the symbols in the embodiments of the present application refer to time-domain symbols.
  • the communication device involved in the embodiment of this application can be a network device, a terminal device (such as a mobile phone or a drone, etc.), a vehicle (such as a vehicle, a ship, an airplane, a robot, an electric vehicle, etc.), a wearable device (such as , glasses, earphones, watches, head mount display (HMD) equipment, etc.), or the communication device can also be a chip or a sensing device, etc.
  • a terminal device such as a mobile phone or a drone, etc.
  • vehicle such as a vehicle, a ship, an airplane, a robot, an electric vehicle, etc.
  • a wearable device such as , glasses, earphones, watches, head mount display (HMD) equipment, etc.
  • HMD head mount display
  • the network device is an entity used to transmit or receive signals on the network side, such as a new generation base station (generation Node B, gNB).
  • a network device may be a device used to communicate with mobile devices.
  • the network device can be an access point (access point, AP) in a wireless local area network (wireless local area networks, WLAN), a global system for mobile communications (global system for mobile communications, GSM) or a code division multiple access (code division multiple access,
  • the base station (base transceiver station, BTS) in CDMA) may also be the base station (NodeB, NB) in wideband code division multiple access (wideband code division multiple access, WCDMA), and it may also be the long term evolution (long term evolution, LTE ) in the evolved base station (evolutional Node B, eNB or eNodeB), or relay station or access point or integrated access and backhaul (integrated access and backhaul, IAB), or vehicle equipment, wearable equipment and the future fifth generation Network equipment in the mobile communication technology
  • the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (eg, frequency domain resources, or spectrum resources) used by the cell.
  • the network device in this embodiment of the present application may refer to a central unit (central unit, CU) or a distributed unit (distributed unit, DU), or the network device may also be composed of a CU and a DU. Wherein, the CU and the DU may be physically separated or deployed together, which is not specifically limited in this embodiment of the present application.
  • the network equipment may be other devices that provide wireless communication functions for the terminal equipment.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device. For convenience of description, in this embodiment of the application, an apparatus that provides a wireless communication function for a terminal device is called a network device.
  • the terminal device may be a wireless terminal device capable of receiving network device scheduling and instruction information
  • the wireless terminal device may be a device that provides voice and/or data connectivity to users, or a handheld device with a wireless connection function, or connected to Other processing equipment for wireless modems.
  • the wireless terminal device can communicate with one or more core networks or the Internet via the radio access network (RAN), and the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone, a mobile phone (mobile phone)), computers and data cards, such as portable, pocket, hand-held, built-in computer or vehicle-mounted mobile devices, which exchange voice and/or data with the radio access network.
  • RAN radio access network
  • PCS personal communications service
  • cordless phone cordless phone
  • session initiation protocol phone wireless local loop (wireless local loop, WLL) station
  • PDA personal digital assistant
  • PDA tablet computer
  • computers computers and other equipment with wireless transceiver function.
  • the wireless terminal equipment may also be called a system, a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile station, MS), a remote station (remote station), an access point ( access point (AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), subscriber station (subscriber station, SS), user terminal equipment (customer premises equipment, CPE), terminal (terminal), user equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • the wireless terminal device can also be a wearable device and a next-generation communication system, for example, a terminal device in a 5G network or a terminal device in a future evolved PLMN network, a terminal device in an NR communication system, and the like.
  • a next-generation communication system for example, a terminal device in a 5G network or a terminal device in a future evolved PLMN network, a terminal device in an NR communication system, and the like.
  • the embodiments of the present application may be applicable to direct link/side chain/side link (Sidelink) scenarios and other scenarios requiring fast access.
  • the embodiment of the present application can also be applied to other two peer-to-peer user nodes directly communicating (Device to Device Communication, D2D) scenarios, such as interconnection of mobile phones and watches, vehicle-to-everything (V2X ), etc., generally, the embodiments of the present application are applicable to scenarios where beams are used to send signals.
  • D2D Device to Device Communication
  • V2X vehicle-to-everything
  • V2X sidelink data can be sent directly between two terminal devices.
  • the originator does not need to send the data to the network device first, and then forwards the data to the receiver through the core network, so the delay of data transmission can be greatly reduced.
  • the communication scenarios of V2X sidelink are shown in Figure 2(a) and Figure 2(b).
  • gNB, ng-eNB (next generation evolutional Node B) or eNB is the long term evolution vehicle-to-everything sidelink (LTE V2X SL) between two vehicles Provide control or configuration with the new radio evolution vehicle-to-everything sidelink (NR V2X SL).
  • LTE V2X SL long term evolution vehicle-to-everything sidelink
  • NR V2X SL new radio evolution vehicle-to-everything sidelink
  • the 5GC (5G core network) in Figure 2(a) is the core network of the 5G NR system
  • the EPC (Evolved Packet Core) is the 4G core network.
  • the NR V2X SL between the two vehicles is the main link
  • the NR V2X SL between the two vehicles The LTE V2X SL is the secondary link.
  • E-UTRA NR-Dual Connectivity NGEN-DC
  • E-UTRA NR-Dual Connectivity EN-DC
  • the LTE V2X SL between the two vehicles is the main link
  • the NR V2X SL between the two vehicles is the auxiliary link. Link.
  • sidelink broadcast, multicast and unicast transmission between terminal devices are supported within the coverage of network devices, out of coverage and in partial coverage.
  • the physical channels used for transmission include physical sidelink control channel (physical sidelink control channel, PSCCH), physical direct link shared channel (physical sidelink shared channel, PSSCH) and physical direct link feedback channel (physical sidelink feedback channel, PSFCH).
  • sidelink transmission is based on resource pools.
  • the so-called resource pool is a logical concept, and a resource pool includes multiple physical resources.
  • This resource selection process may include but not limited to the following two situations: one is that the terminal device randomly selects a resource for data transmission; the other is that the terminal device listens to the control information, reference signals and data sent by other terminal devices through the LBT mechanism. information, and identify unoccupied resources for data transfer.
  • an embodiment of the present application provides a communication method, which can perform data transmission based on beams, thereby improving coverage, increasing frequency reuse, and improving efficiency.
  • the method performs sensing based on beams, reduces beam transmission in unnecessary directions, thereby avoiding waste of resources, reducing energy consumption and reducing interference.
  • the perception methods involved in the embodiments of the present application are explained and described below.
  • the perception by the first communication device is taken as an example for description.
  • Active sensing can be understood as that the first communication device sends a beam and monitors whether there is a reflected beam, so as to determine a target beam. For example, the first communication device may transmit a first beam and listen to whether the first beam is a reflected beam. If the first communication device monitors the reflected beam, it considers that there is a target in the direction of the first beam. If there are other communication devices, the first communication device may determine the target beam according to the detected reflected beam.
  • the target beam may correspond to the first beam from which the reflected beam is heard.
  • the target beam may be the first beam that receives the reflected beam.
  • the target beam may correspond to the first beam one-to-one, that is, one target beam may correspond to one first beam.
  • the target beam may correspond to multiple first beams, that is, the target beam may be one wide beam, the first beam may be one narrow beam, and one wide beam may correspond to multiple narrow beams.
  • the combined effect of the multiple first beams may be equivalent to one target beam.
  • a target beam may be considered determined when reflected beams are received by one or more first beams. When multiple first beams correspond to one target beam, it helps to reduce the problem of missing effective targets due to bad reflections received by some of the first beams.
  • the first beam may also use a larger subcarrier spacing than that of the data or the synchronization signal, so as to shorten the transmission in the time domain and reduce the delay of the active sensing process. Therefore, the first telecommunications device may also determine the subcarrier spacing for transmitting the first beam.
  • the first beam may also use a higher carrier or frequency band than the target beam.
  • a higher carrier frequency or frequency band can support more antennas, have a larger bandwidth, have better target recognition resolution, and can even send more power to reduce missed detection targets. Therefore, the first telecommunications device may also determine a carrier or a frequency band for transmitting the first beam.
  • the first beam may include a preconfigured beam or a predefined beam.
  • the first beam may include a synchronization beam, and the synchronization beam may be used to transmit synchronization signals.
  • the first beam may also include a pilot beam, and the pilot beam may be used to send a pilot signal.
  • the first beam may also include a reference signal beam, and the reference signal beam may be used to send a reference signal.
  • the reference signal may be a positioning reference signal used for positioning, or may also be a sounding reference signal, or may also be a reference signal for other purposes, which is not specifically limited in this application.
  • the first beam may also be a beam determined through passive sensing, and this example will be introduced in detail later, and details will not be described here.
  • the first communication device may send the first beam in a polling manner, for example, send the first beam according to a sequence of beams in preconfigured beams or predefined beams. If the first beam determined through the above two examples includes the first beam A, the first beam B, and the first beam C, the first communication device may send the first beam A and monitor the reflected beam of the first beam A. Afterwards, the first communication device may send the first beam B, and monitor the reflected signal of the first beam B, and so on, until all the first beams are sent.
  • the first communication device sends the time-frequency resource of the first beam, for example, the first time-frequency resource may be randomly selected.
  • the first communication device may randomly select a time-frequency resource, and send the first beam on the time-frequency resource.
  • the time-frequency resource for sending the first beam by the first communication device may be obtained through passive sensing and monitoring. This situation will be described in detail later and will not be repeated here.
  • randomly selecting the first time-frequency resource can reduce time delay and reduce energy consumption, but random resource selection may cause interference to the first beam.
  • interference can be reduced by determining the first time-frequency resource through passive sensing and monitoring.
  • the first communication device may perform active sensing within the second time window. That is to say, the first communication device may transmit the first beam and monitor the reflected beam of the first beam within the second time period.
  • the length of the second time window is configurable.
  • the length of the second time window may be positively correlated with the number of the first beams, that is, if the number of the first beams is large, the length of the second time window may be longer, so that the first communication device has enough time to send the first beam. a beam.
  • the length of the second time window may be related to service priorities, for example, different lengths may be configured for different priorities.
  • a higher priority can be configured with a longer length, and a lower priority can be configured with a smaller length.
  • a shorter length can be configured for a high priority, and a larger length can be configured for a low priority.
  • the length of the second time window may be related to the delay requirement of the service. Assuming that the delay requirement of the service is relatively high, the length of the second time window can be configured to be shorter, so as to reduce the delay of the active sensing process.
  • the length of the second time window may be flexibly configured according to empirical values, which is not specifically limited in this application.
  • communication device A may send a first beam on a first time-frequency resource.
  • the communication device A may listen to the reflected beam of the first beam, so that the communication device A may consider that there is an object in the direction of the first beam receiving the reflected beam, such as the communication device B.
  • the communication device A can determine the target beam, for example, it can determine that the first beam that receives the reflected beam is the target beam, or it can determine that the target beam corresponds to the first beam that receives the reflected beam.
  • the target beam determined through the above active sensing may be used for resource selection, or may be used for further sensing, such as passive sensing.
  • the target beam may be used for resource selection
  • the first communication device may randomly select time-frequency resources through the target beam, and the first communication device may communicate through the target beam and the selected time-frequency resource.
  • the first communication device performs active sensing based on the first beam, and determines the target beam.
  • the first communication device may randomly select an available time-frequency resource on the target beam for communication.
  • the above-mentioned target beam can be used for further perception. For example, the first communication device can monitor based on the target beam to determine available time-frequency resources.
  • determining the target beam based on active sensing and randomly selecting time-frequency resources for communication can concentrate beam energy in the target direction, with low delay and low energy consumption. But random resource selection may increase interference, which can be reduced by further sensing.
  • the first beam may be a beam dedicated to active sensing or detection of a target, or may also be a synchronization beam, or may also be a reference signal beam, which is not specifically limited in this application.
  • the number of first beams may be less than or equal to the number of synchronization beams, or the number of first beams may be less than or equal to the number of reference signal beams.
  • the first communication device may perform active sensing multiple times based on the first beam. For example, the first communication device may perform active sensing once or twice. Specifically, assuming that the first beam includes the first beam A, the first beam B, and the first beam C, the first communication device may use the first beam A, the first beam B, and the first beam when performing active sensing for the first time. Sequential polling of a beam C for active sensing. After reaching a certain period of time, the first communication device may perform active sensing for the second time. Likewise, the first communication device may poll the first beam A, the first beam B, and the first beam C in order to perform active sensing.
  • the number of active sensing performed by the first communication device may be predefined, such as once, twice, or three times.
  • fewer times of active sensing may be defined to reduce delay.
  • a communication device sensitive to power consumption may define fewer active sensing times to reduce power consumption of the communication device.
  • the first communication device may determine a period of active sensing, and in each period the first communication device may perform active sensing based on the first beam.
  • the period of active sensing may be related to service priority. For example, a high-priority service may correspond to a shorter period, and a low-priority service may correspond to a longer period. For another example, delay-sensitive services may correspond to a shorter period.
  • the second way is passive perception.
  • Passive sensing can be understood as the first communication device monitors first information transmitted by other communication devices in time units, and determines available time-frequency resources according to the first information.
  • the first information here may include one or more of control information, reference signals and data. It should be noted that passive sensing can be divided into omnidirectional passive sensing and beam passive sensing, which will be described in detail below.
  • Omni-directional passive sensing can be understood as when the communication device listens to the first information, beams are not considered. Omnidirectional passive sensing is sensing based on wide beams or omnidirectional receiving beams. Wherein, the first communication device may monitor one or more of control information, reference signal and data sent to other communication devices based on each time unit (for example, one or several symbols at the beginning).
  • the first communication device may monitor control information, which may be transmitted by other communication devices, for example, may be transmitted from communication device B to communication device C.
  • the control information can be used to schedule the third time-frequency resource, and the third time-frequency resource can be used to transmit the service data of the aforementioned other communication devices, for example, it can be used to transmit the service data of the communication device B and/or to transmit the communication device C business data.
  • the first communication device may analyze the control information to determine the third time-frequency resource.
  • the first communication device may determine that the third time-frequency resource is an already occupied time-frequency resource.
  • the third time-frequency resource may include multiple periodically reserved time-frequency resources.
  • the first communication device may determine the period of the service data by parsing the control information. That is to say, the above-mentioned communication device B and/or communication device C will transmit service data on the time-frequency resource scheduled by the control information every other cycle, so the third time-frequency resource may include these time-frequency resources scheduled every cycle time-frequency resources.
  • the time-frequency resources on which the control information is monitored may also be regarded as unavailable time-frequency resources. In this way, the communication device selects unoccupied time-frequency resources as available time-frequency resources for communication or perception, which can reduce interference to other communication devices and itself.
  • the first communication device may determine that unscheduled time-frequency resources are available time-frequency resources. In another possible situation, the first communication device may determine the priority of the service data through the control information. When the priority of the service data is lower than the first threshold, the first communication device may also consider the third time-frequency resource scheduled by the control information as an available time-frequency resource. For example, it is determined that the third time-frequency resource for transmitting data and/or the time-frequency resource for transmitting pilot among the third time-frequency resources scheduled by the control information are available time-frequency resources. In this way, when the resource occupancy rate is high, the first communication device may also select an available time-frequency resource for communication or perception.
  • the first telecommunications device may listen for reference signals and/or data.
  • the first communication device may measure the energy of time-frequency resources carrying reference signals and/or data, such as reference signal power (reference signal received power, RSRP), reference signal received quality (reference signal received quality, RSRQ) or signal and interference Noise ratio (signal to interference plus noise ratio, SINR).
  • the first communication device may determine that time-frequency resources with energy less than or equal to the second threshold are available time-frequency resources.
  • the time-frequency resource whose energy is less than or equal to the second threshold may be understood as that the first communication device has monitored the reference signal and/or data on the time-frequency resource, but the energy of the time-frequency resource is less than or equal to the second threshold.
  • the communication device transmitting the reference signal and/or data is far away from the first communication device, so the first communication device communicates or performs sensing on the time-frequency resource, and the interference is relatively small. In this way, when the resource occupancy rate is high, the first communication device may also select available time-frequency resources for communication or perception.
  • the time-frequency resource whose energy is less than or equal to the second threshold can also be understood as that the first communication device has not heard any of the reference signal, data, and control information on the time-frequency resource, that is, on the time-frequency resource No information is transmitted.
  • the first communication device selects an unoccupied time-frequency resource as an available time-frequency resource for communication or perception, which can reduce interference to other communication devices and itself.
  • the first communication device may monitor the first information within the first time window.
  • the length of the first time window may be related to the priority of service data, and may be implemented with reference to the above-mentioned relationship between the second time window and the priority of service data.
  • the length of the first time window may be flexibly configured according to empirical values, which will not be repeated here.
  • the length of the first time window can be configured to be shorter, such as 100ms, which can reduce the time delay of omnidirectional passive sensing.
  • the communication device A can monitor the first information. For example, communication device A may monitor the control information transmitted from communication device B to communication device C. The communication device A may determine the occupied third time-frequency resource according to the control information, so as to determine the available time-frequency resource. For another example, the communication device A may monitor the data sent by the communication device C, and measure the energy of the time-frequency resource occupied by the data. If the energy of the time-frequency resource is less than or equal to the second threshold, it may be considered that the time-frequency resource is also an available time-frequency resource.
  • the available time-frequency resources determined through the omni-directional passive sensing can be used to transmit the first beam used for active sensing in the foregoing manner 1.
  • the first communication device may transmit the first beam on available time-frequency resources.
  • the use of the third time-frequency resource with greater interference can be avoided, thus reducing the interference to the data transmission of the first communication device and also reducing the interference to the reflected beam.
  • the available time-frequency resources determined through the omni-directional passive sensing may be used for beam resource selection.
  • the first communication device may perform full-beam scanning based on the configured beam set on available time-frequency resources.
  • the first communication device may broadcast beams in the configured beam set on available time-frequency resources, so as to implement full beam scanning. In this way, the first communication device improves coverage and improves data transmission performance through full-beam scanning.
  • the BF passive sensing can be understood as that when the first communication device monitors the first information, it may be based on beam monitoring. For example, the first communications device may listen for the first information based on the second beam. When the first communication device performs BF passive sensing, the first communication device may monitor the first information based on one second beam in one time unit, or may monitor the first information based on multiple second beams in one time unit. Wherein, the first communication device may monitor one or more of control information, reference signal and data sent to other communication devices based on each time unit (for example, one or several symbols at the beginning) based on the second beam.
  • the beams used in BF passive sensing may include preconfigured beams or predefined beams.
  • the second beam may include a synchronization beam, a pilot beam, or a reference signal beam, etc., and may be implemented with reference to the above-mentioned first beam.
  • the beams used in BF passive sensing may be determined through active sensing. For example, when the first communication device monitors the first information, it may monitor the first information based on the target beam determined through active sensing.
  • the first communication device can determine the target beam through active sensing, that is, determine the direction of the target, and then the first communication device performs monitoring based on the target beam to determine the available time-frequency resources, which can reduce the number of beams monitored by the first communication device, and also Interference to the first communication device when communicating based on the target beam can be reduced.
  • the second beam may correspond to the target beam.
  • the second beam may be a target beam.
  • the second beam may correspond to the target beam one-to-one, that is, one second beam may correspond to one target beam.
  • the second beam may also correspond to the first beam.
  • the second beam may be the first beam.
  • the second beams may have a one-to-one correspondence with the first beams, that is, one second beam corresponds to one first beam.
  • the second beam may correspond to multiple first beams, that is, the second beam may be one wide beam, the first beam may be one narrow beam, and one wide beam may correspond to multiple narrow beams. When one second beam corresponds to multiple first beams, the combined effect of the multiple first beams may be equivalent to one second beam.
  • the first communication device may monitor the first information based on the second beam in an alternate monitoring manner.
  • the first communication device may perform alternate monitoring based on the second beam according to a sequence of preconfigured beams or predefined beams.
  • the second beam may include a second beam A, a second beam B, and a second beam C.
  • the first communication device may monitor the first information based on the second beam A.
  • the first communication device may monitor the first information based on the second beam B, and so on.
  • the first communication device After the first communication device detects the second beam, the first communication device can also monitor based on the second beam again in the order of the second beam A, the second beam B, and the second beam C, until the first communication device performs BF The number of times of passive monitoring satisfies a certain number of times, or reaches a certain duration.
  • the first communication device may continuously monitor one second beam, and then continuously monitor the next second beam until monitoring is performed based on all second beams.
  • the first communication device may perform continuous monitoring based on the second beam according to the sequence of preconfigured beams or predefined beams.
  • the second beam may include a second beam A, a second beam B, and a second beam C.
  • the first communication device may monitor the first information based on the second beam A.
  • the number of times the first communication device monitors the first information based on the second beam A may satisfy a predefined number of times (3 times are taken as an example in FIG. 6 ), such as 3 times, 4 times, and so on.
  • the first communication device may continue to monitor the first information based on the second beam B. Likewise, the number of times the first communication device monitors the first information based on the second beam B may also satisfy the predefined number of times. By analogy, until the first communication device monitors the first information based on all the second beams, the first communication device may determine available time-frequency resources in each second beam direction.
  • the number and cycle of BF passive sensing performed by the first communication device based on the second beam may be implemented with reference to the number and cycle of active sensing, which will not be repeated here.
  • different periods can be configured on the same second beam, so as to monitor the service transmission corresponding to different period configurations, identify the resources occupied by the corresponding services, and the received signal energy, which is convenient for resource selection. for reference.
  • the first communication device may determine available time-frequency resources, such as the third time-frequency resource, by monitoring the first information.
  • the first communication device may determine available time-frequency resources of the second beam based on the first information monitored by the second beam.
  • the monitoring of the first information by the first communication device may be implemented with reference to the above-mentioned omnidirectional passive sensing.
  • BF passive sensing can determine available time-frequency resources in a beam direction
  • omnidirectional passive sensing can determine available omnidirectional time-frequency resources. Determining the available time-frequency resources through omnidirectional passive sensing can determine the available time-frequency resources in all directions, but it may not be possible to determine the time-frequency resources occupied by other communication devices far away from the first communication device, that is to say, through omnidirectional
  • the available time-frequency resources determined by passive sensing may also have minor interference.
  • Determining the available time-frequency resources through BF passive sensing can determine the available time-frequency resources in each beam direction, even if other communication devices are far away from the first communication device, the first communication device can also determine the other communication device based on BF passive sensing Therefore, the available time-frequency resources determined through BF passive sensing have less interference, and may even achieve no interference.
  • the first communication device may monitor the first information based on the second beam, so as to determine the first beam used for active sensing. For example, the first communication device can determine that there is a beam direction of the third time-frequency resource based on the second beam, then the first communication device can determine that there is a target in the beam direction of the second beam, so the first communication device can no longer Active sensing is performed based on the second beam, which can reduce overhead of the first communication device and also reduce time delay.
  • the first communication device monitors the first information based on the second beam and determines that there is no beam direction of the third time-frequency resource, that is to say, the first communication device does not monitor the first information based on a second beam, then that is to say, the There may be no target present in the beam direction of a second beam.
  • the first communication device may perform active sensing based on the second beam, which may be implemented with reference to the active sensing in Mode 1, which will not be repeated here.
  • the first beam may correspond to the second beam for which the first information is not heard.
  • the first beam may be a second beam that has not heard the first information, or it may be understood that the first beam may be a remaining beam after excluding the second beam that has heard the first information in the preconfigured beam set.
  • a first beam may correspond to a second beam that has not heard the first information, or it may be understood that the first beam may be the remaining beam after excluding the second beam that has heard the first information in the preconfigured beam set.
  • the multiple first beams may correspond to a second beam that does not hear the first information, or it may be understood that the multiple first beams may be related to the second beam that excludes the first information from the preconfigured beam set
  • the first beam can be a narrow beam
  • the second beam can be a wide beam.
  • the first communication device can actively perform an operation based on the narrow beam. Perception, the effect of combining multiple narrow beams can be equivalent to a wide beam.
  • the first beam may be located in a different carrier or frequency band from the second beam, for example, the first beam is located in a higher carrier or frequency band. Usually higher carriers or frequency bands correspond to more antennas and larger bandwidths. And may have independent power configuration. It can have a relatively narrow beam and have higher resolution for target direction recognition. Even if the first beam and the second beam are located in the same carrier or frequency band, a higher transmission power may be configured for the transmission of the first beam, so as to better monitor the reflected beam.
  • the available time-frequency resource determined by the first communication device based on the second beam may be used for communication.
  • the first communication device monitors the first information based on the second beam A, and determines that available time-frequency resources include the fourth time-frequency resource. Then, the first communication device may transmit data or control information on the fourth time-frequency resource based on the second beam A for communication.
  • the first communication device may monitor the first information based on the second beam within the third time window, that is to say, the first communication device may monitor the first information based on the second beam in multiple time units.
  • the number of time units can be limited, that is, the length of the third time window can be controlled.
  • the length of the third time window may be related to the priority of service data, and may be implemented with reference to the above-mentioned relationship between the second time window and the priority of service data.
  • the length of the third time window may be flexibly configured according to empirical values, which will not be repeated here.
  • the length of the third time window may be related to the quantity of the second beams, for example, the greater the number of the second beams, the longer the length of the third time window may be.
  • the length of the third time window is small, it is beneficial to the transmission of delay-type services and power-sensitive services.
  • the length of the third time window is greater than the length of the first time window.
  • the first communication device may determine whether the current time unit is available based on monitoring the time unit.
  • the first communication device can judge the average strength of the received signal, the degree of system interference or the load of the current system through relatively long-term monitoring, so as to adjust data transmission parameters such as resource selection and coding scheme selection.
  • the first communication device can determine the available time-frequency resources in the direction of the beam, and perform communication based on the beam and the available time-frequency resources, which can improve coverage, thereby improving the performance of data transmission.
  • the embodiment of the present application provides a communication method.
  • FIG. 7 it is an exemplary flow chart of a communication method provided in an embodiment of the present application, which may include the following operations.
  • the first communication device may be a terminal device or may also be a network device.
  • the first communication device acquires a first time-frequency resource and a first beam.
  • the first communications apparatus sends a first beam on a first time-frequency resource.
  • the first communication device determines a target beam according to the reflected beam of the first beam.
  • the target beam may correspond to the first beam that receives the reflected beam.
  • the target beam may include the first beam that received the reflected beam.
  • a target beam may correspond to multiple first beams that receive reflected beams.
  • a target beam may correspond to a first beam that receives a reflected beam.
  • the first communication device determines a second time-frequency resource according to the target beam.
  • the target beam determined by the first communication device may be used for further sensing.
  • the first communication device may perform BF passive sensing based on the target beam, so as to determine the second time-frequency resource.
  • the second time-frequency resource here, reference may be made to the relevant description of the available time-frequency resource determined through the BF passive sensing of the foregoing manner 2.
  • the second time-frequency resource may not include the third time-frequency resource.
  • the second time-frequency resource may include a third time-frequency resource occupied by a service whose priority is lower than the first threshold, and/or the second time-frequency resource may include a third time-frequency resource whose energy is lower than the second threshold.
  • the target beam can also be used for resource selection.
  • the first communication device may randomly select the second time-frequency resource based on the target beam.
  • the above-mentioned second time-frequency resource may be used for communication by the first communication device.
  • the first communication device may transmit control information, data or reference signals, etc. on the second time-frequency resource.
  • the first communication device can perform active sensing based on the first beam, thereby determining the direction of the target, obtaining frequency reuse gain, improving coverage, reducing interference, and improving transmission performance. Due to the active sensing used, blind beam scanning of broadcasting services can be reduced, overhead and network interference can be reduced, and energy consumption of the first communication device can also be reduced.
  • the first time-frequency resource in S701 may be an available time-frequency resource determined through the passive sensing shown in the second manner above.
  • the first time-frequency resource may include an available time-frequency resource determined by omnidirectional passive sensing, and/or the first time-frequency resource may include an available time-frequency resource determined by BF passive sensing.
  • the first time-frequency resource may not include the third time-frequency resource, that is, the first time-frequency resource may include unoccupied time-frequency resources.
  • the first time-frequency resource may include a third time-frequency resource with energy lower than the second threshold.
  • the first time-frequency resources may include time-frequency resources occupied by services with priorities lower than the first threshold.
  • the first time-frequency resource may be a randomly selected time-frequency resource. If the first time-frequency resource is an available time-frequency resource determined through passive sensing, compared with randomly selected time-frequency resources, it can reduce the interference of other communication devices on the first communication device, or reduce the transmission rate of other communication devices. The interference of information on the first beam can improve the transmission performance of the first beam.
  • the first beam in S701 may be used for perception.
  • the first beam can be used for active sensing.
  • the first beam may be a preconfigured beam or a predefined beam, such as a synchronization beam or a pilot beam, and reference may be made to the related description of active sensing in the first manner.
  • the first beam may be determined based on the second beam used for BF passive sensing.
  • the first beam may correspond to the second beam that has not heard the first information, and reference may be made to related descriptions in the foregoing BF passive sensing, and details are not repeated here. If the first beam corresponds to the second beam that has not heard the first information, the number of first beams used by the first communication device for active sensing will be less, which can reduce the time delay of the active sensing process.
  • FIG. 8A it is a schematic diagram of determining a first time-frequency resource through omnidirectional passive sensing provided by an embodiment of the present application.
  • the first communication device can perform omnidirectional passive sensing within the first time window, that is to say, the first communication device can monitor the first information within the first time window.
  • the first communication device can monitor the first information in all directions.
  • the first communication device may determine the occupied time-frequency resource, that is, the third time-frequency resource, by monitoring the first information.
  • the first communication device may determine an available time-frequency resource, such as the first time-frequency resource in S701, and reference may be made to related descriptions in the aforementioned omnidirectional passive sensing.
  • the first communication device may transmit a first beam on the determined first time-frequency resource, and in S703, the first communication device may monitor a reflected beam of the first beam for active sensing.
  • the first communication device may determine that a target exists on the first beam of the received reflected beams, then in S704 the first communication device may determine the target beam based on the received first beam of the reflected beams. For a manner in which the first communication device determines the target beam based on the first beam, reference may be made to relevant descriptions in the aforementioned active sensing.
  • Figure 8A shows first time windows of two different lengths.
  • the first communication device can more comprehensively monitor the first information of different services, so that the third time-frequency resource can be relatively comprehensively determined. Therefore, the determined available time-frequency resource has less interference.
  • the first communication device can determine the third time-frequency resource relatively quickly, thus reducing the time delay of the omnidirectional passive sensing process.
  • the target beam in S704 can be used for further perception and resource selection.
  • FIG. 8B it is a manner in which the first communication device determines the second time-frequency resource based on the target beam.
  • the first communication device may perform random resource selection based on the target beam, and determine the second time-frequency resource. It should be understood that, when performing random resource selection, the first communication device may select available time-frequency resources determined through omnidirectional passive sensing.
  • FIG. 8B it is a schematic diagram of determining the first time-frequency resource through BF passive sensing provided by the embodiment of the present application.
  • the first communication device can perform BF passive sensing within the third time window, that is to say, the first communication device can monitor the first information based on the second beam within the third time window, and determine that the The occupied time-frequency resource is the third time-frequency resource.
  • the first communication device may determine an available time-frequency resource, such as the first time-frequency resource in S701, and reference may be made to related descriptions in BF passive sensing.
  • the first communication device since the first communication device can monitor the first information of the beam direction of the second beam through BF passive sensing, compared with omnidirectional passive sensing, even if the target is far away from the first communication device, the first communication device may The first information transmitted by the target is monitored. Therefore, the interference on the available time-frequency resources determined through BF passive sensing is smaller.
  • the first communication device may transmit a first beam on the determined first time-frequency resource, and in S703, the first communication device may monitor a reflected beam of the first beam for active sensing.
  • the first communication device may determine that a target exists on the first beam of the received reflected beams, then in S704 the first communication device may determine the target beam based on the received first beam of the reflected beams.
  • the first communication device determines the target beam based on the first beam.
  • the first beam used for active sensing in S701 may also be determined through BF passive sensing, which may be implemented with reference to the manner in which the first beam is determined through the second beam in BF passive sensing.
  • the target beam in S704 can be used for further perception and resource selection.
  • FIG. 8B it is a manner in which the first communication device determines the second time-frequency resource based on the target beam.
  • the first communication device may perform random resource selection based on the target beam to determine the second time-frequency resource. It should be understood that, when performing random resource selection in S704, the first communication device may select available time-frequency resources determined through BF passive sensing.
  • the order of active sensing and BF passive sensing may exist in the following two cases.
  • the first communication device may determine the first time-frequency resource based on the first information monitored by the second beam. After monitoring the first information based on all the second beams, the first communication device may send the first beams on the first time-frequency resource for active sensing. In other words, the third time window is located before the second time window in the time domain. In the embodiment shown in FIG. 8B , the first communication device first performs BF passive sensing based on the second beam, and then performs active sensing based on the first beam as an example for illustration.
  • the first communication device may determine the first time-frequency resource based on the first information monitored by the second beam.
  • the first communication device may send the first beam corresponding to the second beam that has not heard the first information, so as to perform active sensing.
  • the first communication device may send the first beam on the first time-frequency resource, or may randomly select a time-frequency resource to send the first beam.
  • the third time window and the second time window appear alternately in the time domain. It should be understood that the alternate appearance of the third time window and the second time window in the time domain does not necessarily mean that a third time window is followed by a second time window, and a second time window is followed by a third time window .
  • the alternate appearance of the third time window and the second time window in the time domain may mean that there is a second time window after the third time window, and there may be a third time window after the second time window.
  • the first communication device monitors first information based on a second beam, and determines available time-frequency resources. If the first communication device detects the first information on the second beam, the first communication device may poll the next second beam, and monitor the first information based on the second beam. If the first communication device does not monitor the first information on the one second beam, the first communication device may send the first beam corresponding to the one second beam. By analogy, until the BF passive perception and active perception are completed.
  • the target beam is used for resource selection as an example for illustration.
  • the first communication device first monitors the first information based on all the second beams, and then performs active sensing based on all the first beams, which can improve the performance of active sensing. In other words, the first communication device can pass all the first beams Detect potential targets. In addition, since the first time-frequency resource used for sending the first beam during active sensing is determined through BF passive sensing, the interference of the first beam to other communication devices can be reduced, and the interference to the reflected beam of the first beam can also be reduced .
  • the first communication device can alternately perform BF passive sensing and active sensing, and perform active sensing based on the first beam corresponding to the second beam that has not heard the first information, which can reduce the delay of the active sensing process.
  • the target beam in S704 above may also be used for further sensing, such as BF passive sensing, to determine the second time-frequency resource.
  • the first communication device may determine an occupied time-frequency resource, such as a third time-frequency resource, based on the target beam monitoring first information.
  • the first communication device may determine the second time-frequency resource based on the third time-frequency resource, and refer to related descriptions in BF passive sensing, which will not be repeated here.
  • the first communication device performs omnidirectional passive sensing within the first time window to determine occupied time-frequency resources, such as a third time-frequency resource. Based on the third time-frequency resource, the first communication device may determine the first time-frequency resource in S701. Through S702 to S703, the first communication device may send the first beam on the first time-frequency resource within the second time window to perform active sensing. The first communication device may listen to reflected beams of the first beam, thereby determining the target beam. In S704, the first communication device may monitor the first information based on the target beam within the third time window, so as to determine occupied time-frequency resources in the direction of the target beam, such as third time-frequency resources. Based on the third time-frequency resource, the first communication device may determine available time-frequency resources in the direction of the target beam. Therefore, the first communication device may perform communication based on the available time-frequency resources in the direction of the target beam and the target beam.
  • the target beam can be used for further sensing, that is, the first communication device can perform BF passive sensing based on the target beam, so that the target can be determined Available time-frequency resources in the beam direction, even if the target in the target beam direction is far away from the first communication device, the first communication device can also determine the third time-frequency resource occupied by the target transmission information through BF passive sensing . Therefore, the second time-frequency resource determined through FIG. 9A has less interference than the second time-frequency resource determined by random resource selection.
  • the first communication device may monitor the first information based on the second beam within the third time window, and determine occupied time-frequency resources, such as third time-frequency resources. Based on the third time-frequency resource, the first communication device may determine an available time-frequency resource, such as the first time-frequency resource in S701. The first communication device may determine available time-frequency resources in each beam direction based on the first information about all second beam monitoring. Through S702 to S703, the first communication device transmits the first beam on the first time-frequency resource within the second time window to perform active sensing. The first communication device may listen to reflected beams of the first beam, thereby determining the target beam.
  • the first communication device may monitor the first information based on the target beam within the third time window, so as to determine occupied time-frequency resources in the direction of the target beam, such as third time-frequency resources. Based on the third time-frequency resource, the first telecommunications device may determine available time-frequency resources in the direction of the target beam. Therefore, the first communication device may perform communication based on the available time-frequency resources in the direction of the target beam and the target beam.
  • the first time-frequency resource used to transmit the first beam is determined based on BF passive sensing, so the interference on the first time-frequency resource is smaller. Small.
  • the overhead of BF passive sensing by the first communication device is smaller, which can reduce power consumption of the first communication device.
  • the first communication device can determine the occupied time-frequency resources again through BF passive sensing, so it can determine the potential occupied time-frequency resources in the direction of the target beam multiple times, so the determined second time-frequency resources less interference.
  • the first communication device performs BF passive sensing and active sensing in the second time window and the third time window that appear alternately in the time domain. That is, the first communication device alternately performs BF passive sensing and active sensing to determine the target beam.
  • the first communication device may monitor the first information based on the target beam within the third time window, so as to determine time-frequency resources occupied in the direction of the target beam, such as the third time-frequency resource. Based on the third time-frequency resource, the first communication device may determine available time-frequency resources in the direction of the target beam. Therefore, the first communication device may perform communication based on the available time-frequency resources in the direction of the target beam and the target beam.
  • the first communication device may alternately perform BF passive sensing and active sensing, thus reducing the time delay of the active sensing process.
  • the beam used for active sensing such as the first beam
  • the beam used for passive sensing such as the second beam and/or the target beam
  • a first beam may transmit on a first frequency
  • a second beam may transmit on a second frequency
  • the first frequency and the second frequency may be different.
  • the first frequency may be higher than the second frequency.
  • the first frequency may be lower than the second frequency.
  • the passive sensing prior to the active sensing may use the same frequency as the active sensing.
  • the first communication device first performs omnidirectional passive sensing to determine the first time-frequency resource. Then, when the first communication device performs active sensing, it may send the first beam on the first time-frequency resource, that is, the same frequency is used for active sensing and omnidirectional passive sensing.
  • the passive sensing after the active sensing such as BF passive sensing, can adopt a different frequency from the active sensing.
  • the first communication device performs active sensing through the first beam to determine the target beam, and the target beam is used for BF passive sensing. At this time, the frequency of the target beam can be lower than the frequency of the first beam, that is, the target beam and the first beam beam correspondence.
  • the time windows in the above sensing methods are configured with corresponding periods before periodical service resource selection. If the period can be the same as that of periodical services, multiple periods of periodical services can be configured.
  • the time windows in each of the above sensing methods are configured with corresponding time lengths before aperiodic service resource selection. For example, different time lengths can be configured according to QoS requirements, and different time lengths can be configured according to multiple service QoS.
  • the first communication device may combine omnidirectional passive sensing and BF passive sensing to obtain available time-frequency resources, such as first time-frequency resources.
  • the first communication device may perform active sensing based on the first time-frequency resource and the first beam, so as to determine the target beam.
  • the omnidirectional passive sensing can determine the time-frequency resources occupied from all directions, and the BF passive sensing can determine the time-frequency resources occupied by other communication devices far away from the first communication device, the determined first time-frequency resource Less distraction.
  • target beams can be used for resource selection as well as for further sensing.
  • the embodiment of the present application also provides another communication method.
  • the second communication device may select another communication link for the third communication device, that is, select the fourth communication device for the third communication device, and select the link with the fourth communication link for the third communication device.
  • the target beam for communication of the communication device Referring to FIG. 10 , it is an exemplary flow chart of a communication method provided in an embodiment of the present application, which may include the following operations.
  • the second communication device may be a network device or a terminal device, and the third communication device and the fourth communication device are the same.
  • the second communication device sends indication information of a third beam to a third communication device.
  • the foregoing third beam may be used for third communication device perception and/or third communication device communication.
  • the third communication device may perform active sensing and/or passive sensing based on the third beam.
  • the third communication apparatus acquires indication information of a third beam and a first time-frequency resource.
  • the third communication device may receive indication information of the third beam from the second communication device.
  • the first time-frequency resource may be randomly selected by the third communication device, or the first time-frequency resource may be determined by the third communication device through omnidirectional passive sensing and/or BF passive sensing.
  • the third communication device may perform omnidirectional passive sensing to determine the first time-frequency resource.
  • the third communication device may monitor the first information based on the third beam, so as to determine the first time-frequency resource.
  • the manner of determining the first time-frequency resource by the third communication device may be implemented with reference to the aforementioned first time-frequency resource used in active sensing.
  • the above-mentioned first time-frequency resource may be indicated by the second communication device.
  • the second communication device may send indication information of the first time-frequency resource to the third communication device.
  • the manner of determining the first time-frequency resource by the second communication device may be implemented with reference to the aforementioned first time-frequency resource used in active sensing.
  • the second communication device may perform resource selection according to an available resource pool of the third communication device to determine the first time-frequency resource.
  • the third communication device may continue to determine available time-frequency resources in the first time-frequency resources indicated by the second communication device, that is, further monitor the first information, and exclude from the first time-frequency resources Occupied time-frequency resources, such as the third time-frequency resource. In this way, simultaneous resource selection by the second communication device and the third communication device can minimize interference to the fourth communication device and/or other communication devices.
  • the third communications apparatus sends a third beam on the first time-frequency resource.
  • the third beam here may be a beam used for active sensing, which may be implemented with reference to the aforementioned first beam.
  • the third beam may include a synchronization beam, a reference signal beam and/or a pilot beam.
  • the third communication device measures a reflected beam of the third beam.
  • the third communication device may monitor the reflected beam of the third beam, and if the reflected beam is detected, the third communication device may measure the reflected beam to obtain a measurement result of the reflected beam, such as RSRP, RSRQ or SINR of the reflected beam. If the third communication device receives the reflected beam of the third beam, it may be considered that there is a target in the direction of the third beam, such as the fourth communication device.
  • the foregoing third beam may correspond to the fourth beam.
  • the third beam may be a beam used by the third communication device to perform passive sensing, such as BF passive sensing.
  • the fourth beam may be a beam used by the third communication device for active sensing.
  • the third communication device may transmit a fourth beam on the first time-frequency resource, and measure a reflected beam of the fourth beam in S1004.
  • one third beam may correspond to one fourth beam, or one third beam may correspond to multiple fourth beams.
  • the third beam may be equivalent to a wide beam
  • the fourth beam is a narrow beam
  • the combined effect of multiple fourth beams is equivalent to the effect of a corresponding third beam.
  • the fourth beam may correspond to the third beam that has not heard the first information.
  • the corresponding relationship between the above-mentioned third beam and the fourth beam can be implemented by referring to the corresponding relationship between the beam used for passive sensing and the beam used for active sensing, such as the corresponding relationship between the second beam and the first beam, and will not be repeated here. .
  • the second communication device may send indication information of the fourth time window to the third communication device.
  • the fourth time window here is a time window for the third communication device to monitor based on the third beam.
  • the third communication device monitors the first information based on the third beam within the fourth time window.
  • the second communication device may send indication information of the fifth time window to the third communication device.
  • the fifth time window here is a time window sensed by the third communication device based on the fourth beam.
  • the third communication device sends the fourth beam within the fifth time window, and monitors or measures the reflected beam of the fourth beam.
  • S1005 The third communication device sends the measurement result to the second communication device.
  • the second communication device may send feedback resource indication information to the third communication device.
  • This feedback information can be used to send measurement results.
  • the third telecommunications device may send the measurement result to the second telecommunications device on the feedback resource.
  • the foregoing result may be a measurement result obtained based on the fourth beam, or may also be a measurement result mapped to the third beam.
  • the third communication device may measure the reflected beam of the fourth beam to obtain a measurement result.
  • the third communication device may send the measurement result of the reflected beam of the fourth beam to the second communication device.
  • the third communication device may map the fourth beam to the third beam, that is, map the measurement result of the reflected beam of the fourth beam to the measurement result of the third beam, and send it to the second communication device.
  • the third communication device may send the measurement results of reflected beams of the multiple fourth beams to the second communication device.
  • the third communication device may map the multiple fourth beams to the third beam, map the measurement results of reflected beams of the multiple fourth beams into a measurement result of the third beam, and send it to the second communication device.
  • the third communication device may determine a measurement result of a corresponding third beam based on measurement results of reflected beams of multiple fourth beams.
  • the first communication device may determine the corresponding one by selecting the largest or smallest measurement result from the measurement results of the reflected beams of multiple fourth beams, or averaging the measurement results of the reflected beams of multiple fourth beams. Measurement results for the third beam.
  • the third communication device may send the determined measurement result of each third beam to the second communication device.
  • the second communication device acquires a measurement result according to the third beam.
  • the second communication device may receive the measurement result from the third communication device.
  • the second communication device sends indication information of the target beam to the third communication device and the fourth communication device.
  • the third communication device and the fourth communication device acquire the indication information of the target beam, for example, receive the indication information of the target beam from the second communication device.
  • the third communication device since the indication information of the third beam is sent by the second communication device to the third communication device, the third communication device does not need to perform active sensing and/or passive sensing on the configured beam set. Sensing means that the third communication device does not need to blindly scan the configured beam set to determine the target beam, which can reduce the overhead of the third communication device and save energy consumption of the third communication device.
  • the indication information of the third beam is determined according to the location information of the second communication device, the location information of the third communication device, and the location information of the fourth communication device.
  • the second communication device may determine location information of the third communication device, location information of the fourth communication device, and location information of the second communication device.
  • the second communication device can determine the third communication device and a beam direction that the third communication device can use for communication according to the three pieces of position information, so that the second communication device can determine the third beam.
  • the second communication device may take the connection line between the second communication device and the fourth communication device as one side of the triangle, and use the connection line between the second communication device and the third communication device as the second side of the triangle. side, then the second communication device can determine the remaining side according to the two sides of the triangle, that is, the second communication device can determine the general direction of the third beam.
  • the location information of the third communication device may be sent by the third communication device to the second communication device, and the location information of the fourth communication device is the same.
  • the indication information of the third beam is based on the distance between the second communication device and the third communication device, the distance between the second communication device and the fourth communication device, and the distance between the second communication device and the third communication device.
  • the beam used by the communication device for communication (referred to as the seventh beam) and the beam used for communication between the second communication device and the fourth communication device (referred to as the sixth beam).
  • the second communication device communicates with the fourth communication device through the sixth beam, and the second communication device communicates with the third communication device through the seventh beam.
  • the second communication device may determine a distance between the second communication device and the third communication device, and a distance between the second communication device and the fourth communication device.
  • the second communication device can use these two distances and the angle between the sixth beam and the seventh beam to determine the third communication device and the beam direction that the third communication device can use for communication, so that the second communication device can determine the third beam.
  • the second communication device may take the connection line between the second communication device and the fourth communication device as one side of the triangle, and use the connection line between the second communication device and the third communication device as the second side of the triangle. side, then the second communication device can determine the remaining side according to the two sides of the triangle, that is, the second communication device can determine the general direction of the third beam.
  • the distance between the second communication device and the third communication device may be determined by the second communication device based on the location information of the second communication device and the location information of the third communication device. The distance between them is the same.
  • the location information of the third communication device may be sent by the third communication device to the second communication device, and the location information of the fourth communication device is the same.
  • the target beam is determined by the second communication device according to the measurement result.
  • the second communication device may select the beam with the largest measurement result as the target beam according to the measurement result.
  • the embodiment of the present application does not specifically limit the manner in which the second communication device determines the target beam according to the measurement result.
  • the target beam may correspond to the third beam.
  • the target beam may be one of the third beams.
  • multiple target beams may correspond to one third beam.
  • the third beam is a wide beam
  • the target beam may be a narrow beam.
  • one target beam may correspond to multiple third beams.
  • the third beam is a narrow beam
  • the target beam is a wide beam.
  • the second communication device may perform active sensing to detect the fourth communication device.
  • the second communications device may transmit a fifth beam and listen to reflected beams of the fifth beam.
  • the second communication device may determine the sixth beam based on the reflected beam of the fifth beam.
  • the sixth beam may be used by the second communication device to communicate with the fourth communication device, or the sixth beam may be used by the second communication device for further sensing, such as BF passive sensing.
  • the beams and time-frequency resources used by the second communication device for active sensing reference may be made to the aforementioned implementation manners of the first beam and the first time-frequency resources.
  • the active sensing process of the second communication device may refer to the aforementioned active sensing process of the first communication device, which will not be repeated here.
  • N2 is regarded as the second communication device
  • N1 is regarded as the fourth communication device
  • N3 is regarded as the third communication device.
  • N2 and N3 have a communication link
  • N2 and N1 also have a communication link.
  • N2 can select the target beam for communication for N3 and N1.
  • N2 may send indication information of the third beam to N3.
  • N3 may perform sensing based on the third beam, such as active sensing and/or BF passive sensing, and determine the measurement result of the third beam.
  • N3 can send the measurement result of the third beam to N2, and through S1006, N2 can select target beams for N3 and N1 according to the measurement result of the third beam. For example, N2 may select the beam with the largest value in the measurement results as the target beam for communication between N1 and N3.
  • N2 may send the indication information of the target beam to N1 and N3. In this way, N1 and N3 can communicate through the target beam.
  • the second communication device may select another communication link for the third communication device, so as to improve the reliability of data transmission. Since the indication information of the third beam is sent by the second communication device to the third communication device, the third communication device does not need to blind scan on the configured beam set, which can reduce the overhead of the third communication device and save the cost of the third communication device. The energy consumption of the three communication devices.
  • N2 is regarded as the second communication device
  • both N1 and N4 are regarded as the fourth communication device
  • N3 is regarded as the third communication device.
  • N2 has a communication link with N3
  • N2 has a communication link with N4
  • N2 has a communication link with N1.
  • N2 selects a communication device from N4 and N1 to communicate with N3.
  • N2 may send indication information of the third beam to N3.
  • the indication information of the third beam sent by N2 may include a beam that may be used when N3 communicates with N4 and a beam that may be used when N3 communicates with N1.
  • the third beam is used for sensing N3, such as sensing N4 and/or N1.
  • N3 may perform sensing based on the third beam, such as active sensing and/or BF passive sensing, and determine the measurement result of the third beam.
  • N3 can send the measurement result of the third beam to N2, and through S1006 to S1007, N2 can select a target beam for N1 according to the measurement result of the third beam.
  • N2 selects a target beam, it may be considered that a communication device has been selected from N4 and N1 to communicate with N3.
  • N2 may select the beam with the largest value in the measurement result as the target beam.
  • N2 can send the indication information of the target beam to N3 and N4. Then N3 and N4 can communicate through the target beam. If the target beam is determined based on the measurement result of the third beam that N3 may use when communicating with N1, then it can be considered that N2 has selected N1 to communicate with N3. Then through S1007, N2 can send the indication information of the target beam to N1 and N3. Then N1 and N3 can communicate through the target beam.
  • the second communication device may select a communication device to communicate with the third communication device from a plurality of fourth communication devices.
  • the second communication device may determine a communication device to communicate with the third communication device by selecting a target beam.
  • N2 as the second communication device
  • both N1 and N4 as the fourth communication device
  • N3 as the third communication device.
  • N2 and N3 have a communication link
  • N2 and N4 have no communication link
  • N2 and N1 have a communication link.
  • N2 needs to select another communication device for communicating with N3.
  • N2 can perform active sensing to detect the target.
  • the process of active sensing performed by N2 and the beam and time-frequency resources used in the active sensing may refer to the process of active sensing performed by the first communication device and the beam and time-frequency resources used in the active sensing. In this way, N2 can detect N4 and establish a communication link with N4.
  • N2 may send the indication information of the third beam to N3.
  • the indication information of the third beam sent by N2 may include a beam that may be used when N3 communicates with N4 and a beam that may be used when N3 communicates with N1. That is to say, the third beam is used for sensing N3, such as sensing N4 and/or N1.
  • N3 may perform sensing based on the third beam, such as active sensing and/or BF passive sensing, and determine the measurement result of the third beam.
  • N3 can send the measurement result of the third beam to N2, and through S1006 to S1007, N2 can select a target beam for N1 according to the measurement result of the third beam.
  • N2 when N2 selects a target beam, it may be considered that a communication device has been selected from N4 and N1 to communicate with N3. For example, N2 can select the beam with the largest value in the measurement results as the target beam. If the target beam is determined based on the measurement results of the third beam that N3 may use when communicating with N4, then it can be considered that N2 has selected N4 for Communicate with N3. Then through S1007, N2 can send the indication information of the target beam to N1 and N4. Then N1 and N4 can communicate through the target beam. If the target beam is determined based on the measurement result of the third beam that N3 may use when communicating with N1, then it can be considered that N2 has selected N1 to communicate with N3. Then through S1007, N2 can send the indication information of the target beam to N1 and N3. Then N1 and N3 can communicate through the target beam.
  • N2 may also refer to the quality of the communication link between N2 and N4 and the quality of the communication link between N2 and N1.
  • N2 can first take the quality of the communication link between N2 and N4, and the minimum value of the quality of the communication link between N3 and N4, and then refer to the quality of the communication link between N2 and N1, and the quality of the communication link between N3 and N1 The minimum value of , and then select the path with the greater value among the two selected minimum values as the determined path.
  • the second communication device may perform active sensing to detect targets, such as the fourth communication device, before sending the indication information of the third beam. In this way, the second communication device can select a communication device to communicate with the third communication device from among the plurality of fourth communication devices. Wherein, the second communication device may determine a communication device to communicate with the third communication device by selecting a target beam.
  • the third communication device (such as N3) may be a sending node
  • the fourth communication device (such as N1 or N4) may be a destination node. That is, the third communication device sends information, such as control information and data, to the fourth communication device.
  • the second communication device may send the indication information of the target receiving beam among the target beams to the fourth communication device, and send the indication information of the target transmission beam among the target beams to the third communication device.
  • the target beam may be a beam pair, including a target transmitting beam and a target receiving beam. In this way, sending the indication information of the target receiving beam to the destination node and sending the indication information of the target sending beam to the sending node can save transmission resources.
  • the third communication device (such as N3) may be the destination node, and the fourth communication device (such as N1 or N4) may be the sending node. That is, the third communication device receives information, such as control information and data, etc. from the fourth communication device. Then the second communication device may send the indication information of the target receiving beam among the target beams to the third communication device, and send the indication information of the target transmission beam among the target beams to the fourth communication device. That is, the target beam may be a beam pair, including a target transmitting beam and a target receiving beam.
  • the second communication device obtains The measurement result is more in line with the measurement result of the beam received by the destination node, and can better reflect the quality and interference situation when the destination node receives the beam.
  • an embodiment of the present application provides a communication device 1300 , where the device 1300 includes a processing unit 1301 and a transceiver unit 1302 .
  • the device 1300 may be a first communication device, or may be a device applied to the first communication device and capable of supporting the first communication device to execute a communication method.
  • the device 1300 may be a second communication device, or may be a device applied to the second communication device and capable of supporting the second communication device to execute the method.
  • the device 1300 may be a third communication device, or may be a device applied to the third communication device and capable of supporting the third communication device to execute the method.
  • the transceiver unit may also be referred to as a transceiver module, a transceiver, a transceiver, a transceiver device, and the like.
  • a processing unit may also be called a processor, a processing board, a processing unit, a processing device, and the like.
  • the device used to implement the receiving function in the transceiver unit can be regarded as a receiving unit. It should be understood that the transceiver unit is used to perform the sending and receiving operations on the terminal device side or the network device side in the above method embodiments, and transmit and receive
  • the device used to implement the sending function in the unit is regarded as the sending unit, that is, the sending and receiving unit includes a receiving unit and a sending unit.
  • the receiving unit included in the transceiver unit 1302 is used to perform receiving operations on the side of the first communication device, such as acquiring the first time-frequency resource and the first beam; the sending unit included in the transceiver unit 1302 The unit is configured to perform a sending operation on the side of acquiring the first time-frequency resource and the first beam, for example, sending the first beam.
  • the receiving unit included in the transceiver unit 1302 is used to perform a receiving operation on the side of the second communication device, such as acquiring a measurement result, specifically, receiving a measurement result from a third communication device.
  • the sending unit included in the transceiver unit 1302 is configured to perform a sending operation on the side of the second communication device, such as sending the indication information of the third beam, specifically, sending the indication information of the third beam to the third communication device.
  • the receiving unit included in the transceiver unit 1302 is used to perform receiving operations on the side of the third communication device, such as acquiring the indication information of the third beam, which may be specifically received from the second communication device. Indication information for the third beam.
  • the sending unit included in the transceiver unit 1302 is configured to perform a sending operation on the side of the third communication device, such as sending a measurement result, specifically, sending a measurement result to the second communication device.
  • the transceiver unit can be an input and output circuit and/or a communication interface, and performs input operations (corresponding to the aforementioned receiving operations) and output operations (corresponding to the aforementioned sending operations); the processing unit An integrated processor or microprocessor or integrated circuit.
  • the apparatus 1300 is applied to the first communication apparatus, and the operations performed by each unit thereof are described in detail.
  • the transceiver unit 1302 is configured to acquire a first time-frequency resource and a first beam, and send a first beam on the first time-frequency resource, where the first beam is used for sensing.
  • the processing unit 1301 is configured to determine a target beam in the first beam according to a reflected beam of the first beam, and determine a second time-frequency resource according to the target beam.
  • the target beam corresponds to the first beam from which the reflected beam was received.
  • the transceiving unit 1302 is configured to send indication information of the third beam to the third communication device.
  • the third beam is used for at least one of the following: communication by the third communication device, and perception by the third communication device.
  • the transceiver unit 1302 is further configured to acquire a measurement result according to the third beam.
  • the processing unit 1301 is configured to determine the target beam according to the measurement result.
  • the transceiving unit 1302 is further configured to send indication information of the target beam to the third communication device and the fourth communication device.
  • the target beam is determined according to the measurement result, the target beam corresponds to the third beam, and the target beam is used for communication between the third communication device and the fourth communication device.
  • the measurement result and the target beam refer to the related description in the method embodiment shown in FIG. 10 .
  • the transceiving unit 1302 is configured to acquire indication information of the third beam and the first time-frequency resource. Wherein, the third beam is used for at least one of the following: communication by the third communication device, and perception by the third communication device.
  • the transceiver unit 1302 is further configured to send a third beam on the first time-frequency resource.
  • the processing unit 1301 is configured to measure a reflected beam of the third beam, and obtain a measurement result of the reflected beam of the third beam.
  • the transceiver unit 1302 is further configured to send the measurement result to the second communication device.
  • the measurement result and the target beam refer to the related description in the method embodiment shown in FIG. 10 .
  • an embodiment of the present application provides a communication device 1400 .
  • the communication device 1400 includes a processor 1410 .
  • the communication device 1400 may further include a memory 1420 for storing instructions executed by the processor 1410 or storing input data required by the processor 1410 to execute the instructions or storing data generated by the processor 1410 after executing the instructions.
  • the processor 1410 may implement the methods shown in the foregoing method embodiments through instructions stored in the memory 1420 .
  • an embodiment of the present application provides a communication device 1500 , where the communication device 1500 may be a chip or a chip system.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the communication device 1500 may include at least one processor 1510, and the processor 1510 is coupled to a memory.
  • the memory may be located inside the device or outside the device.
  • the communication device 1500 may further include at least one memory 1520 .
  • the memory 1520 stores necessary computer programs, configuration information, computer programs or instructions and/or data for implementing any of the above embodiments; the processor 1510 may execute the computer programs stored in the memory 1520 to complete the methods in any of the above embodiments.
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1510 may operate in cooperation with the memory 1520 .
  • a specific connection medium among the transceiver 1530, the processor 1510, and the memory 1520 is not limited.
  • the communication apparatus 1500 may further include a transceiver 1530, and the communication apparatus 1500 may perform information exchange with other devices through the transceiver 1530.
  • the transceiver 1530 may be a circuit, a bus, a transceiver or any other device that can be used for information exchange, or called a signal transceiving unit. As shown in FIG. 15 , the transceiver 1530 includes a transmitter 1531 , a receiver 1532 and an antenna 1533 .
  • the transceiver in the communication device 1500 can also be an input and output circuit and/or a communication interface, which can input data (or receive data) and output data ( Or referred to as sending data), the processor is an integrated processor or a microprocessor or an integrated circuit, and the processor can determine the output data according to the input data.
  • the communication device 1500 can be applied to a first communication device, and the specific communication device 1500 can be a first communication device, or can support the first communication device, so as to realize any of the above-mentioned embodiments A device that functions as a first communication device.
  • the memory 1520 stores necessary computer programs, computer programs or instructions and/or data for realizing the functions of the first communication device in any of the above-mentioned embodiments.
  • the processor 1510 may execute the computer program stored in the memory 1520 to complete the method performed by the first communication device in any of the foregoing embodiments.
  • the transmitter 1531 in the communication device 1500 may be used to transmit the first beam through the antenna 1533
  • the receiver 1532 may be used to receive the reflected beam of the first beam through the antenna 1533 .
  • the communication device 1500 can be applied to a second communication device, and the specific communication device 1500 can be a second communication device, or can support a second communication device, so as to realize any of the above-mentioned implementations A device that functions as a second communication device in the example.
  • the memory 1520 stores necessary computer programs, computer programs or instructions and/or data for realizing the functions of the second communication device in any of the above-mentioned embodiments.
  • the processor 1510 may execute the computer program stored in the memory 1520 to complete the method performed by the second communication device in any of the foregoing embodiments.
  • the receiver 1532 in the communication device 1500 may be used to obtain measurement results through the antenna 1533, and the transmitter 1531 may be used to send indication information of the third beam to the third communication device through the antenna 1533.
  • the communication device 1500 can be applied to a third communication device, and the specific communication device 1500 can be a third communication device, or can support a third communication device, so as to realize any of the above-mentioned implementations A device that functions as a third communication device in an example.
  • the memory 1520 stores necessary computer programs, computer programs or instructions and/or data for realizing the functions of the third communication device in any of the above-mentioned embodiments.
  • the processor 1510 may execute the computer program stored in the memory 1520 to complete the method performed by the third communication device in any of the foregoing embodiments.
  • the receiver 1532 in the communication device 1500 may be used to obtain indication information of the third beam through the antenna 1533, and the transmitter 1531 may be used to send the measurement result to the second communication device through the antenna 1533.
  • the communication device 1500 provided in this embodiment can be applied to the first communication device to complete the method performed by the first communication device above, or to the second communication device to complete the method performed by the second communication device, or to be applied to the third communication device
  • the device implements the method performed by the third communication device. Therefore, the technical effects that can be obtained can refer to the above-mentioned method embodiments, and will not be repeated here.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or Execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • the memory may also be, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing computer programs, computer programs or instructions and/or data.
  • the embodiment of the present application also provides another communication device 1600, including: an input and output interface 1610 and a logic circuit 1620; the input and output interface 1610 is used to receive code instructions and transmit them to the logic circuit 1620; The logic circuit 1620 is configured to execute code instructions to execute the method executed by the first communication device, the second communication device or the third communication device in any of the above embodiments.
  • the communication device 1600 can be applied to a first communication device to execute the above method performed by the first communication device, specifically, for example, the method performed by the first communication device in the embodiment shown in FIG. 7 Methods.
  • a logic circuit 1620 configured to acquire a first time-frequency resource and a first beam.
  • the input and output interface 1610 is configured to output the first beam on the first time-frequency resource. Among them, the first beam is used for perception.
  • the logic circuit 1620 is further configured to determine the target beam according to the reflected beam of the first beam, and determine the second time-frequency resource according to the target beam. Wherein, the target beam corresponds to the first beam that receives the reflected beam.
  • the communication device 1600 can be applied to a second communication device to execute the above method performed by the second communication device, specifically, for example, the second communication device in the method embodiment shown in FIG. 10 The method executed.
  • the input and output interface 1610 is configured to output the indication information of the third beam to the third communication device.
  • the third beam is used for at least one of the following: communication by the third communication device, and perception by the third communication device.
  • the input and output interface 1610 is also used for inputting measurement results.
  • the logic circuit 1620 is configured to determine the target beam according to the measurement result.
  • the input and output interface 1610 is further configured to output the indication information of the target beam to the third communication device and the fourth communication device. Wherein, the target beam is determined according to the measurement result, the target beam corresponds to the third beam, and the target beam is used for communication between the third communication device and the fourth communication device.
  • the communication device 1600 can be applied to a third communication device to execute the method performed by the above-mentioned third communication device, specifically, for example, the third communication device in the method embodiment shown in FIG. 10 The method executed.
  • the input and output interface 1610 is configured to input the indication information of the third beam and the first time-frequency resource. Wherein, the third beam is used for at least one of the following: communication by the third communication device, and perception by the third communication device.
  • the input and output interface 1610 is further configured to output a third beam on the first time-frequency resource.
  • the logic circuit 1620 is configured to measure a reflected beam of the third beam, and obtain a measurement result of the reflected beam of the third beam.
  • the input and output interface 1610 is also used to output the measurement results to the second communication device.
  • the communication device 1600 provided in this embodiment can be applied to the first communication device to execute the method performed by the above-mentioned first communication device, or to be applied to the second communication device to complete the method performed by the second communication device, or to be applied to the third communication device
  • the communication device completes the method performed by the third communication device. Therefore, the technical effects that can be obtained can refer to the above-mentioned method embodiments, and will not be repeated here.
  • an embodiment of the present application further provides a communication system, where the system includes at least one communication device applied to a first communication device and at least one communication device applied to other communication devices.
  • this embodiment of the present application further provides a communication system.
  • the communication system comprises at least one communication device applied to the second communication device and at least one communication device applied to the third communication device.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores computer programs or instructions, and when the instructions are executed, the terminal device in any of the above-mentioned embodiments executes the method A method implemented or performed by a network device is implemented.
  • the computer-readable storage medium may include: a U disk, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk, and other media capable of storing program codes.
  • an embodiment of the present application further provides a chip, including a processor, configured to support the communication device to implement the functions involved in the sending end or the receiving end in the above method embodiments.
  • the chip is connected to a memory or the chip includes a memory for storing necessary computer programs or instructions and data of the communication device.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer programs or instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the The instruction means implements the functions specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Abstract

一种通信方法和装置,该方法包括:第一通信装置获取第一时频资源和第一波束,第一波束用于感知;第一通信装置在第一时频资源上发送第一波束;第一通信装置根据第一波束的反射波束,确定目标波束,目标波束与接收到反射波束的第一波束对应;第一通信装置根据目标波束确定第二时频资源。

Description

一种通信方法和装置
相关申请的交叉引用
本申请要求在2021年12月02日提交中国专利局、申请号为202111461301.0、申请名称为“一种通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种通信方法和装置。
背景技术
当前第三代合作伙伴技术(3 rd generation partnership project,3GPP)的侧行链路通信中,通信装置采用先监听再通信(listen before talk,LBT)的机制进行通信,也就是通信装置先进行被动的监听,在根据监听到的信息进行资源选择和通信传输。
由于随着无线通信系统的演进,通信系统支持的频率逐渐升高,因此路径损耗逐渐增大,导致覆盖逐渐降低。为了保持具有一定程度的覆盖,需要降低路径损耗的影响。一种方式是增加传输功率,但是传输功率会受到设备尺寸、能量损耗和辐射指标的限制。
因此,如何提升覆盖成为亟待解决的问题。
发明内容
本申请实施例提供一种通信方法和装置,用来提升覆盖,提高传输性能。
第一方面,提供了一种通信方法。该方法可以由第一通信装置执行。第一通信装置可以是网络设备或者终端设备。该方法中,第一通信装置获取第一时频资源和第一波束,第一波束用于感知。第一通信装置在第一时频资源上发送第一波束。第一通信装置根据第一波束的反射波束,确定目标波束。其中,目标波束与接收到反射波束的第一波束对应。第一通信装置根据目标波束确定第二时频资源。
基于上述方案,第一通信装置可以基于第一波束进行主动感知,从而确定目标的方向,可以获得频率复用的增益,以及可以提高覆盖,可以降低干扰,提升了传输性能。由于使用的主动感知,可以减少广播类业务盲波束扫描,可以降低开销以及降低网络干扰,也可以降低第一通信装置的能耗。
在一种可能的实现方式中,目标波束用于竞争性资源选择。例如,第一通信装置可以在目标波束上监听第一信息,如控制信息、参考信号和数据等。第一通信装置可以基于第一信息,确定被占用的时频资源,从而第一通信装置可以确定可用的时频资源。
基于上述方案,第一通信装置通过目标波束进行竞争性资源选择,可以确定已经被占用的时频资源,因此可以降低对第一通信装置的数据传输的干扰。
在一种可能的实现方式中,第一通信装置在第一时间窗内监听第一信息。其中,第一信息用于确定被占用的第三时频资源。这里的第一时频资源不包括第三时频资源。例如,第一时频资源为没有被占用,也就是可用的时频资源。或者,第一时频资源包括第三时频资源中的部分时频资源或全部时频资源。例如,第一时频资源可以包括优先级低于第一阈 值的业务占用的时频资源,或者第一时频资源可以包括能量低于第二阈值的第三时频资源。
基于上述方案,第一通信装置通过监听第一信息,确定第一时频资源可以降低其他通信装置对第一通信装置的干扰,或者说可以降低其他通信装置传输的信息对第一波束的干扰。
在一种可能的实现方式中,第一波束是预配置的波束。例如,第一波束包括同步波束,和导频波束中的至少一种。可选的,第一波束可以是预定义的波束,可以在不同的频率上定义第一波束的最大数量。
在一种可能的实现方式中,第一通信装置在第一时间窗内根据第二波束监听第一信息。其中,第二波束与第一波束对应。例如,第二波束与第一波束一一对应,或者一个第二波束对应多个第一波束。
基于上述方案,第一通信装置通过根据第二波束监听第一信息确定第一时频资源,可以降低其他通信装置对第一通信装置的干扰,或者说可以降低其他通信装置传输的信息对第一波束的干扰。
在一种可能的实现方式中,未监听到第一信息的第二波束与第一波束对应。例如,未监听到第一信息的第二波束与第一波束一一对应,或者一个未监听到第一信息的第二波束对应多个第一波束。
基于上述方案,第一通信装置通过根据第二波束监听第一信息,从而可以确定用于感知的第一波束,这样可以降低第一波束的数量,也就是可以降低第一通信装置基于第一波束进行感知的时延。
在一种可能的实现方式中,第一时频资源在时域上位于第二时间窗内。其中,第一时间窗和第二时间窗在时域上交替出现。或者,第一时间窗在时域上位于第二时间窗之前。
基于上述方案,如果第一时间窗和第二时间窗交替出现,也就是第一波束是通过基于第二波束监听第一信息确定的,因此可以降低第一波束的数量,也就是可以降低第一通信装置基于第一波束进行感知的时延。如果第一时间窗和第二时间窗在时域上交替出现,也就是第一通信装置先基于全部第二波束监听第一信息,再基于全部第一波束进行主动感知,可以提高主动感知的性能,换句话说第一通信装置可以通过全部第一波束探测潜在的目标。
在一种可能的实现方式中,第一时间窗的长度与第二波束的数量成正比,和/或第二时间窗的长度与第一波束的数量成正比。
基于上述方案,让第一通信装置可以有充足的时间基于第二波束进行监听,以及发送第一波束并监听第一波束的反射波束。
在一种可能的实现方式中,第一通信装置根据目标波束监听第一信息。其中,第一信息用于确定被占用的第三时频资源。第二时频资源不包括第三时频资源。例如,第二时频资源包括未被占用的时频资源,也就是可用的时频资源。或者,第二时频资源包括第三时频资源中的部分时频资源或全部时频资源。例如,第二时频资源可以包括优先级低于第一阈值的业务占用的时频资源,或者第二时频资源可以包括能量低于第二阈值的第三时频资源。
基于上述方案,第一通信装置根据目标波束监听第一信息,可以确定已经被占用的时频资源,因此可以降低对第一通信装置的数据传输的干扰。
在一种可能的实现方式中,时间窗与业务的优先级相关。这里的时间窗可以包括上述第一时间窗和第二时间窗中的一个或多个。例如,高优先级可以配置较短的长度,低优先 级可以配置较大的长度。
基于上述方案,通过业务的优先级配置不同长度的时间窗,可以满足不同业务的需求。
在一种可能的实现方式中,第二时频资源用于通信。例如,第一通信装置可以在第二时频资源上传输控制信息、参考信号和数据等。
基于上述方案,第一通信装置基于第一波束进行主动感知,从而确定目标的方向,并通过目标波束确定用于通信的第二时频资源,可以提高覆盖,可以降低干扰,提升了传输性能。
在一种可能的实现方式中,以下至少一项是随机选择的:第一时频资源、第二时频资源。
基于上述方案,第一通信装置随机选择第一时频资源发送第一波束,可以降低确定第一时频资源的时延。同样的,第一通信装置随机选择第二时频资源,可以降低确定第二时频资源的时延。
在一种可能的实现方式中,第一时频资源的频率与第二时频资源的频率不同。例如,第一时频资源与第二时频资源位于不同的载波上,或者第一时频资源与第二时频资源位于不同的频带上。例如,第一时频资源所在的载波的频率高于第二时频资源所在的载波的频率。或者,第一时频资源所在的频带的频率高于第二时频资源所在的频带的频率。本申请实施例中,频带可以包括一个或多个频域资源。
基于上述方案,通过第一时频资源发送第一波束,并根据目标波束确定第二时频资源,由于第一时频资源和第二时频资源位于不同的频率上,也就是主动感知可以采用较高频率的时频资源进行,被动感知使用较低频率的时频资源进行,可以降低主动感知过程的时延。
第二方面,提供了一种通信方法。该方法可以由第二通信装置执行,第二通信装置可以是网络设备或者终端设备。该方法中,第二通信装置向第三通信装置发送第三波束的指示信息。其中,第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知。第二通信装置根据第三波束获取测量结果。第二通信装置向第三通信装置和第四通信装置发送目标波束的指示信息。其中,目标波束根据测量结果确定,目标波束与第三波束对应,且目标波束用于第三通信装置和第四通信装置通信。
基于上述方案,由于第三波束的指示信息是由第二通信装置发送给第三通信装置的,因此第三通信装置不需要在配置的波束集合上进行感知,也就是第三通信装置可以不需要在配置的波束集合上盲扫,从而确定目标波束,可以降低第三通信装置的开销,可以节省第三通信装置的能耗。
在一种可能的实现方式中,第二通信装置向第三通信装置发送第一时频资源的指示信息。其中,第一时频资源用于传输第三波束。
基于上述方案,第二通信装置向第三通信装置发送用于传输第三波束的第一时频资源,可以降低对第三波束的干扰,且无需第三通信装置自行确定第一时频资源,可以降低第三通信装置的开销,可以节省第三通信装置的能耗。
在一种可能的实现方式中,第二通信装置向第三通信装置发送反馈资源的指示信息。第二通信装置在反馈资源上获取测量结果。
在一种可能的实现方式中,第三波束与第四波束对应,第四波束用于感知。例如,第三波束与第四波束可以一一对应,或者一个第三波束可以与多个第四波束对应。
基于上述方案,第二通信装置可以向第三通信装置指示第三波束,第三波束与第四波束对应,也就是第二通信装置通过指示第三波束实现指示第四波束,第三通信装置可以通过第三波束和第四波束进行感知。
在一种可能的实现方式中,第二通信装置根据第四波束获取测量结果。
基于上述方案,第三波束与第四波束对应时,第三通信装置可以基于第四波束进行感知,从而可以确定第四波束的测量结果。
在一种可能的实现方式中,第二通信装置向第三通信装置发送第四时间窗的指示信息,第四时间窗是第三通信装置基于第三波束监听的时间窗。
基于上述方案,第二通信装置向第三通信装置指示第四时间窗的指示信息,让第三通信装置在第四时间窗内基于第三波束进行监听,也就是告知第三通信装置基于第三波束监听的时长,可以降低第三通信装置的开销和能耗。
在一种可能的实现方式中,第二通信装置向第三通信装置发送第五时间窗的指示信息。其中,第五时间窗是第三通信装置基于第四波束感知的时间窗。或者,第五时间窗是第三通信装置基于第四波束通信和感知的时间窗。
基于上述方案,第二通信装置向第三通信装置指示第五时间窗的指示信息,让第三通信装置在第五时间窗内基于第四波束进行感知和/或通信,也就是告知第三通信装置基于第四波束感知和/或通信的时长,可以降低第三通信装置的开销和能耗。
在一种可能的实现方式中,第二通信装置发送第五波束。第二通信装置根据第五波束的反射波束,确定第六波束。其中,第六波束用于以下中的至少一种:第二通信装置通信、第二通信装置感知。
基于上述方案,第二通信装置可以通过发送第五波束感知第四通信装置,并通过第六波束与第四通信装置进行通信,这样第二通信装置就可以确定向第三通信装置发送的第三波束的指示信息。
在一种可能的实现方式中,第三波束的指示信息是根据第二通信装置的位置信息、第三通信装置的位置信息和第四通信装置的位置信息确定的。或者,第三波束的指示信息是根据第二通信装置与第三通信装置之间的距离、第二通信装置和第四通信装置间的距离、第二通信装置和第三通信装置通信所采用的波束和第二通信装置和第四通信装置所采用的波束的夹角确定的。
基于上述方案,第二通信装置可以通过第二通信装置、第三通信装置和第四通信装置的信息,可以确定第三波束的大致方向,从而可以确定第三波束的指示信息。
第三方面,提供了一种通信方法。该方法可以由第三通信装置,第三通信装置可以是网络设备或者终端设备。该方法中,第三通信装置获取第三波束的指示信息和第一时频资源。其中,第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知。第三通信装置在第一时频资源上发送第三波束。第三通信装置测量第三波束的反射波束,得到第三波束的反射波束的测量结果。第三通信装置向第二通信装置发送测量结果。
基于上述方案,由于第三波束的指示信息是由第二通信装置发送给第三通信装置的,因此第三通信装置不需要在配置的波束集合上进行感知,也就是第三通信装置可以不需要在配置的波束集合上盲扫,可以降低第三通信装置的开销,可以节省第三通信装置的能耗。
在一种可能的实现方式中,第三通信装置获取目标波束的指示信息。其中,目标波束 根据测量结果确定,目标波束与第三波束对应,且目标波束用于第三通信装置和第四通信装置通信。
基于上述方案,由第二通信装置为第四通信装置确定目标波束,用于与第四通信装置通信,也就是第二通信装置可以为第三通信装置选择另一条通信链路,以提高传输可靠性。
在一种可能的实现方式中,第三通信装置获取反馈资源的指示信息。第三通信装置在反馈资源上向第二通信装置发送测量结果。
在一种可能的实现方式中,第三波束与第四波束对应,第四波束用于感知。
基于上述方案,第二通信装置可以向第三通信装置指示第三波束,第三波束与第四波束对应,也就是第二通信装置通过指示第三波束实现指示第四波束,第三通信装置可以通过第三波束和第四波束进行感知。
在一种可能的实现方式中,第三通信装置在第一时频资源发送第四波束。第三通信装置测量第四波束的反射信号,得到第四波束的反射信号的测量结果。
基于上述方案,第三波束与第四波束对应时,第三通信装置可以基于第四波束进行感知,从而可以确定第四波束的测量结果。
在一种可能的实现方式中,第三通信装置在第三波束上监听第一信息,第一信息用于确定被占用的第三时频资源。其中,第一时频资源不包括第三时频资源。或者,第一时频资源包括第三时频资源中的部分时频资源或全部时频资源。
基于上述方案,第三通信装置可以在第一波束监听第一信息,确定可用的时频资源,可以降低可用的时频资源上的干扰。
在一种可能的实现方式中,第三通信装置获取第四时间窗的指示信息,第四时间窗是第三通信装置基于第三波束监听的时间窗。
基于上述方案,第二通信装置向第三通信装置指示第四时间窗的指示信息,让第三通信装置在第四时间窗内基于第三波束进行监听,也就是告知第三通信装置基于第三波束监听的时长,可以降低第三通信装置的开销和能耗。
在一种可能的实现方式中,第三通信装置获取第五时间窗的指示信息。其中,第五时间窗的指示信息是第三通信装置基于第四波束感知的时长。或者,第五时间窗是第三通信装置基于第四波束通信和感知的时间窗。
基于上述方案,第二通信装置向第三通信装置指示第五时间窗的指示信息,让第三通信装置在第五时间窗内基于第四波束进行感知和/或通信,也就是告知第三通信装置基于第四波束感知和/或通信的时长,可以降低第三通信装置的开销和能耗。
在一种可能的实现方式中,目标波束包括目标发送波束和目标接收波束。第三通信装置获取目标发送波束的指示信息。或者,第三通信装置获取目标接收波束的指示信息。
基于上述方案,向目的节点发送目标接收波束的指示信息,向发送节点发送目标发送波束的指示信息,可以节省传输资源。
第四方面,提供了一种通信装置,包括:收发单元和处理单元;
收发单元,用于获取第一时频资源和第一波束,以及在第一时频资源上发送第一波束,第一波束用于感知。处理单元,用于根据第一波束的反射波束,在第一波束中确定目标波束,以及根据目标波束确定第二时频资源。目标波束与接收到反射波束的第一波束对应。
在一种设计中,目标波束用于竞争性资源选择。
在一种设计中,在第一时间窗内监听第一信息,第一信息用于确定被占用的第三时频资源。
在一种设计中,第一波束是预配置的波束。
在一种设计中,处理单元还用于:在第一时间窗内根据第二波束监听第一信息。其中,第二波束与第一波束对应。
在一种设计中,未监听到第一信息的第二波束与第一波束对应。
在一种设计中,第一时频资源在时域上位于第二时间窗内。其中,第一时间窗和第二时间窗在时域上交替出现。或者,第一时间窗在时域上位于第二时间窗之前。
在一种设计中,第一时间窗的长度与第二波束的数量成正比,和/或第二时间窗的长度与第一波束的数量成正比。
在一种设计中,处理单元还用于:根据目标波束监听第一信息,第一信息用于确定被占用的第三时频资源。其中,第二时频资源不包括第三时频资源。
在一种设计中,时间窗与业务的优先级相关。
在一种设计中,第二时频资源用于通信。
在一种设计中,以下至少一项是随机选择的:第一时频资源、第二时频资源。
在一种设计中,第一时频资源的频率与第二时频资源的频率不同。
第五方面,提供了一种通信装置,包括:收发单元和处理单元;
收发单元,用于:向第三通信装置发送第三波束的指示信息。其中,第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知。收发单元,还用于根据第三波束获取测量结果。处理单元,用于根据测量结果,确定目标波束。收发单元,还用于向第三通信装置和第四通信装置发送目标波束的指示信息。其中,目标波束根据测量结果确定,目标波束与第三波束对应,目标波束用于第三通信装置和第四通信装置通信。
在一种设计中,收发单元还用于:向第三通信装置发送第一时频资源的指示信息,第一时频资源用于传输第三波束。
在一种设计中,收发单元还用于:向第三通信装置发送反馈资源的指示信息。收发单元具体用于:在反馈资源上获取测量结果。
在一种设计中,第三波束与第四波束对应,第四波束用于感知。
在一种设计中,收发单元根据第三波束获取测量结果时,具体用于:根据多个第四波束获取测量结果。
在一种设计中,收发单元还用于:向第三通信装置发送第四时间窗的指示信息,第四时间窗是第三通信装置基于第三波束监听的时间窗。
在一种设计中,收发单元还用于:向第三通信装置发送第五时间窗的指示信息。其中,第五时间窗是第三通信装置基于第四波束感知的时间窗。或者,第五时间窗是第三通信装置基于第四波束通信和感知的时间窗。
在一种设计中,收发单元还用于:发送第五波束。处理单元还用于:根据第五波束的反射波束,确定第六波束。其中,第六波束用于以下中的至少一种:第二通信装置通信、第二通信装置感知。
在一种设计中,第三波束的指示信息是根据第二通信装置的位置信息、第三通信装置的位置信息和第四通信装置的位置信息确定的。或者,第三波束的指示信息是根据第二通 信装置与第三通信装置之间的距离、第二通信装置和第四通信装置间的距离、第二通信装置和第三通信装置通信所采用的波束和第二通信装置和第四通信装置所采用的波束的夹角确定的。
第六方面,提供了一种通信装置,包括:收发单元和处理单元;
收发单元,用于获取第三波束的指示信息和第一时频资源。其中,第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知。收发单元,还用于在第一时频资源上发送第三波束。处理单元,用于测量第三波束的反射波束,得到第三波束的反射波束的测量结果。收发单元,还用于向第二通信装置发送测量结果。
在一种设计中,收发单元还用于:获取目标波束的指示信息。其中,目标波束根据测量结果确定,目标波束与第三波束对应。目标波束用于第三通信装置和第四通信装置通信。
在一种设计中,收发单元还用于:获取反馈资源的指示信息,在反馈资源上向第二通信装置发送测量结果。
在一种设计中,第三波束与第四波束对应,第四波束用于感知。
在一种设计中,收发单元在第一时频资源上发送第三波束时,具体用于:在第一时频资源发送第四波束。处理单元具体用于:测量第四波束的反射信号,得到第四波束的反射信号的测量结果。
在一种设计中,处理单元具体用于:在第三波束上监听第一信息,第一信息用于确定被占用的第三时频资源。其中,第一时频资源不包括第三时频资源。
在一种设计中,收发单元还用于:获取第四时间窗的指示信息,第四时间窗是第三通信装置基于第三波束监听的时间窗。
在一种设计中,收发单元还用于:获取第五时间窗的指示信息。其中,第五时间窗的指示信息是第三通信装置基于第四波束感知的时长。或者,第五时间窗是第三通信装置基于第四波束通信和感知的时间窗。
在一种设计中,目标波束包括目标发送波束和目标接收波束。收发单元具体用于:第三通信装置获取目标发送波束的指示信息。或者,收发单元具体用于:获取目标接收波束的指示信息。
第七方面,本申请提供一种通信装置,包括处理器,处理器和存储器耦合,存储器用于存储计算机程序或指令,处理器用于执行计算机程序或指令,以执行上述第一方面至第三方面的各实现方法。该存储器可以位于该装置之内,也可以位于该装置之外。该处理器的数量为一个或多个。
第八方面,本申请提供一种通信装置,包括:处理器和接口电路,接口电路用于与其它装置通信,处理器用于上述第一方面至第三方面的各实现方法。
第九方面,提供了一种通信装置。该装置包括逻辑电路和输入输出接口。
在一种设计中,逻辑电路用于获取第一时频资源和第一波束。其中,第一波束用于感知。输入输出接口用于在第一时频资源上输出第一波束。逻辑电路还用于根据第一波束的反射波束,确定目标波束。其中,目标波束与接收到反射波束的第一波束对应。逻辑电路还用于根据目标波束确定第二时频资源。
在一种设计中,输入输出接口用于向第三通信装置输出第三波束的指示信息。其中, 第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知。输入输出接口还用于输入测量结果。逻辑电路用于根据测量结果,确定目标波束。输入输出接口还用于向第三通信装置和第四通信装置输出目标波束的指示信息。其中,目标波束根据测量结果确定,目标波束与第三波束对应,目标波束用于第三通信装置和第四通信装置通信。
在一种设计中,输入输出接口用于输入第三波束的指示信息和第一时频资源。其中,第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知。输入输出接口还用于在第一时频资源上输出第三波束。逻辑电路用于测量第三波束的反射波束,得到第三波束的反射波束的测量结果。输入输出接口还用于向第二通信装置输出测量结果。
第十方面,本申请提供一种通信系统,包括:用于执行上述第一方面各实现方法的第一通信装置和至少一个其他通信装置。
第十一方面,本申请提供一种通信系统,包括:用于执行上述第二方面各实现方法的第二通信装置,和用于执行上述第三方面各实现方法的第三通信装置和第四通信装置。其中,第三通信装置可以是目的节点,第四通信装置可以是发送节点。也就是说,由第四通信装置向第三通信装置发送信息,第三通信装置从第四通信装置接收信息。或者,第三通信装置可以是发送节点,第四通信装置可以是目的节点。也就是说,由第三通信装置向第四通信装置发送信息,第四通信装置从第三通信装置接收信息。
具体的,该通信系统可以包括第二通信装置、第三通信装置和第四通信装置。其中,第二通信装置向第三通信装置发送第三波束的指示信息;第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知;
第三通信装置获取第三波束的指示信息和第一时频资源;
第三通信装置在第一时频资源上发送第三波束;
第三通信装置测量第三波束的反射波束,得到第三波束的反射波束的测量结果;
第三通信装置向第二通信装置发送测量结果;
第二通信装置根据第三波束获取测量结果;第二通信装置向第三通信装置和第四通信装置发送目标波束的指示信息;目标波束根据测量结果确定,目标波束与第三波束对应;目标波束用于第三通信装置和第四通信装置通信;
第三通信装置获取目标波束的指示信息;
第四通信装置获取目标波束的指示信息。
在一个示例中,目标波束包括目标接收波束和目标发送波束,第二通信装置向第三通信装置发送目标接收波束的指示信息,第二通信装置向第四通信装置发送目标发送波束的指示信息。或者,第二通信装置向第三通信装置发送目标发送波束的指示信息,第二通信装置向第四通信装置发送目标接收波束的指示信息。
第十二方面,本申请还提供一种芯片系统,包括:处理器,用于执行上述第一方面至第三方面的各实现方法。
第十三方面,本申请还提供一种计算程序产品,包括计算机执行指令,当计算机执行指令在计算机上运行时,使得上述第一方面至第三方面的各实现方法被执行。
第十四方面,本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序或指令,当指令在计算机上运行时,实现上述第一方面至第三方面的各实现方法。
上述第四方面至第十四方面达到的技术效果可以参考第一方面或第二方面或第三方 面中的技术效果,此处不再重复赘述。
附图说明
图1为本申请实施例提供的波束示意图;
图2(a)为本申请实施例提供的V2X通信系统示意图之一;
图2(b)为本申请实施例提供的V2X通信系统示意图;
图3A为本申请实施例提供的目标波束与第一波束对应关系示意图;
图3B为本申请实施例提供的通信装置A进行主动感知示意图;
图3C为本申请实施例提供的主动感知+资源选择的示意图;
图4A为本申请实施例提供的通信装置A进行全向被动感知示意图;
图4B为本申请实施例提供的全向被动感知+BF资源选择的示意图;
图5为本申请实施例提供的连续BF被动感知示意图;
图6为本申请实施例提供的交替BF被动感知示意图;
图7为本申请实施例提供的通信方法的示例性流程图之一;
图8A为本申请实施例提供的全向被动感知+主动感知+资源选择示意图;
图8B为本申请实施例提供的主动感知+BF被动感知+资源选择示意图;
图8C为本申请实施例提供的主被动交替感知+资源选择示意图;
图9A为本申请实施例提供的全向被动感知+主动感知+BF被动感知+资源选择示意图;
图9B为本申请实施例提供的BF被动感知+主动感知+BF被动感知+资源选择示意图;
图9C为本申请实施例提供的主被动交替感知+BF被动感知+资源选择示意图;
图10为本申请实施例提供的通信方法的示例性流程图之一;
图11为本申请实施例提供的第三波束的确定方法示意图;
图12A为本申请实施例提供的N2协助N3确定目标波束的场景示意图之一;
图12B为本申请实施例提供的N2协助N3确定目标波束的场景示意图之一;
图12C为本申请实施例提供的N2协助N3确定目标波束的场景示意图之一;
图13为本申请实施例提供的一种通信装置示意图之一;
图14为本申请实施例提供的一种通信装置示意图之一;
图15为本申请实施例提供的一种通信装置示意图之一;
图16为本申请实施例提供的一种通信装置示意图之一。
具体实施方式
为了便于理解本申请实施例提供的技术方案,以下,对本申请实施例涉及的专业术语进行解释和说明。
1、波束,对于发送端或者是接收端而言,均可通过其各自的多根天线形成波束,参见图1示意,发送端(Tx)/接收端(Rx)通过多根天线形成一个或多个波束。其中,使用天线数量越多所形成的波束宽度越窄,波束宽度较窄的可以称作窄波束,波束宽度较宽的可以称作宽波束。空间概念上,一个波束可以对应一个角度方向范围,窄波对应的角度方向范围小于宽波对应的角度方向范围。可选的,发送端/接收端上的多根天线可以形成一个或多个窄波束;可选的,发送端/接收端上的多根天线可以形成一个或多个宽波束。二个 波束的对应也可以称为一个波束相对于另一个波束的空间接收参数是准共址(quasi co-location,QCL)的。也即一个波束的接收角度可从另一个波束得到。
针对宽波束,可以理解是覆盖全部方向的波束,即准全向(quasi-omni)波束;或者,宽波束也可以是在角度方向范围上小于全部方向但对应多个窄波束所覆盖的角度方向范围。
应当理解的是,本申请实施例中的波束也可以称之为信号、波束信号或者信道。
2、感知,可以包括主动感知和被动感知。其中,主动感知可以理解为通信装置通过发送波束感知目标。例如,通信装置可以发送波束,并监听该波束的反射波束。在监听到反射波束时,认为该波束方向上有目标,在未监听到反射波束时,可以认为该波束方向上无目标。本申请实施例中,可以将通信装置发送波束,并监听该波束的反射波束,从而感知目标的过程理解为主动感知的过程。或者,可以将通信装置监听反射波束的过程理解为主动感知的过程。或者,可以将通信装置发送波束的过程理解为主动感知的过程。
被动感知可以理解为通信装置在时间单元上监听其他通信装置传输的信息,如控制信息等,从而确定可用时频资源。在本申请实施例中,时间单元可以是时隙、符号、微时隙、帧、子帧或半帧。
3、监听,指通信装置接收其他通信装置传输的信息,如控制信息、参考信号和数据等。需要说明的是,本申请实施例中提及的监听还可以表示为检测、监测等。
4、本申请实施例中涉及的多个,是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。另外,应当理解,尽管在本发明实施例中可能采用术语第一、第二等来描述各对象、但这些对象不应限于这些术语。这些术语仅用来将各对象彼此区分开。
5、本申请实施例的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
在本申请的实施例中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是离散傅里叶变换扩频(Discrete Fourier Transform-spread-OFDM,DFT-s-OFDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
本申请实施例中涉及的通信装置可以为网络设备、终端设备(例如,手机或无人机等)、交通工具(例如,车辆、船、飞机,机器人,电动车等),可穿戴设备(例如,眼镜、耳机、手表,头戴式可视(head mount display,HMD)设备等),或者通信装置还可以为芯片或传感设备等。
其中,网络设备是网络侧中一种用于发射或接收信号的实体,如新一代基站(generation Node B,gNB)。网络设备可以是用于与移动设备通信的设备。网络设备可以是无线局域 网(wireless local area networks,WLAN)中的接入点(access point,AP),全球移动通信系统(global system for mobile communications,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(NodeB,NB),还可以是长期演进(long term evolution,LTE)中的演进型基站(evolutional Node B,eNB或eNodeB),或者中继站或接入点或接入回传一体化(integrated access and backhaul,IAB),或者车载设备、可穿戴设备以及未来第五代移动通信技术(5 th generation mobile technology,5G)网络中的网络设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的网络设备,或新无线(new radio,NR)系统中的gNodeB等。另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信。本申请实施例中的网络设备可以是指集中单元(central unit,CU)或者分布式单元(distributed unit,DU)或者,网络设备也可以是CU和DU组成的。其中,CU和DU在物理上可以是分离的,也可以部署在一起,本申请实施例对此不做具体限定。此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。
其中,终端设备可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网或者互联网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communications service,PCS)电话、无绳电话、会话发起协议话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。无线终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G网络中的终端设备或者未来演进的PLMN网络中的终端设备,NR通信系统中的终端设备等。
本申请实施例可以适用于直通链路/旁链/侧行链路(Sidelink)场景和其他有快速接入需求的场景。此外,本申请实施例还可以适用于其他两个对等的用户节点之间直接进行通信(Device to Device Communication,D2D)场景,如手机手表互连,车联万物(vehicle-to-everything,V2X)等,一般地,针对应用波束发送信号的场景,本申请实施例均可适用。
在sidelink场景中,两个终端设备之间可以直接发送数据,发端不需要先把数据发送给网络设备,再通过核心网转发给收端,因此可以大大减少数据传输的时延。V2X sidelink 的通信场景如图2(a)和图2(b)所示。在图2(a)中,gNB、ng-eNB(next generation evolutional Node B)或eNB为两车之间的长期演进车联万物侧链(long term evolution vehicle-to-everything sidelink,LTE V2X SL)和新无线车联万物侧链(new radio evolution vehicle-to-everything sidelink,NR V2X SL)提供控制或配置。图2(a)中的5GC(5G core network)为5G NR系统的核心网,EPC(Evolved Packet Core)为4G核心网。在图2(b)中,在5G NR与4G无线接入网的双连接(NR EUTRA-Dual Connectivity,NE-DC)场景下,两车之间的NR V2X SL为主链接,两车之间的LTE V2X SL为辅链接。在5G核心网下的4G无线接入网与5G NR的双连接(next generation E-UTRA NR-Dual Connectivity,NGEN-DC)场景下,两车之间的LTE V2X SL为主链接,两车之间的NR V2X SL为辅链接。在4G无线接入网与5G NR的双连接(E-UTRA NR-Dual Connectivity,EN-DC)场景下,两车之间的LTE V2X SL为主链接,两车之间的NR V2X SL为辅链接。
在NR系统中,在网络设备的覆盖范围内,覆盖范围外和部分覆盖情况下均支持终端设备之间的sidelink广播,组播和单播传输。用于传输的物理信道包括物理直连链路控制信道(physical sidelink control channel,PSCCH)、物理直连链路共享信道(physical sidelink shared channel,PSSCH)和物理直连链路反馈信道(physical sidelink feedback channel,PSFCH)。在NR中,sidelink传输是基于资源池的。所谓资源池,是一个逻辑上的概念,一个资源池包括多个物理资源。
在无网络设备覆盖或分布式调度模式的场景下,终端设备进行数据传输时,终端设备需要选择一个物理资源进行传输。这个资源选择的过程,可以包括但不限于以下两种情况:一是终端设备随机选择一个资源进行数据传输;二是终端设备通过LBT机制,监听其他终端设备发送的控制信息、参考信号和数据等信息,并确定未被占用的资源进行数据传输。
但是,通过上述第一种情况进行数据传输,会对终端设备的数据传输造成较大的干扰,影响数据传输的性能。通过上述第二种情况进行数据传输,覆盖较差,数据传输的性能较低。
有鉴于此,本申请实施例提供一种通信方法,可以基于波束进行数据传输,从而提升覆盖,增加频率重用,提高效率。该方法基于波束进行感知,减少不必要方向的波束传输,从而避免资源浪费、降低能耗也可以降低干扰。
为了便于理解本申请实施例提供的技术方案,以下对本申请实施例中涉及的感知方式进行解释和说明。本申请实施例中以第一通信装置进行感知为例进行说明。
方式一、主动感知。
主动感知可以理解为第一通信装置发送波束,并监听是否有反射波束,从而确定目标波束。例如,第一通信装置可以发送第一波束,并监听是否第一波束的反射波束。如果第一通信装置监听到反射波束,则认为该第一波束的方向上存在目标,如存在其他通信装置,那么第一通信装置可以根据监听到的反射波束确定目标波束。
可以理解的是,目标波束可以与监听到反射波束的第一波束对应。例如,参阅图3A,目标波束可以是接收到反射波束的第一波束。又例如,目标波束可以与第一波束一一对应,也就是一个目标波束可以对应一个第一波束。再例如,目标波束可以对应多个第一波束,也就是说目标波束可以是一个宽波束,第一波束可以是一个窄波束,一个宽波束可以对应多个窄波束。当一个目标波束对应多个第一波束时,多个第一波束组合起来的效果可以相当于一个目标波束。
当一个或多个第一波束接收到反射波束时,可以认为确定了一个目标波束。多个第一波束对应一个目标波束时,有助于减少由于部分第一波束接收到的不良反射导致漏掉有效目标的问题。
可选的,第一波束也可以采用相对于数据或同步信号更大的子载波间隔,以缩短时域的传输,降低主动感知过程的时延。因此,第一通信装置还可以确定用于发送第一波束的子载波间隔。
可选的,第一波束也可以采用相对于目标波束更高的载波或频带。更高的载频或频带可以支持更多的天线,有更大的带宽,有更好的目标识别分辨率,甚至可以发送更大的功率,降低漏检目标。因此,第一通信装置还可以确定用于发送第一波束的载波或频带。
在一个示例中,第一波束可以包括预配置的波束或者预定义的波束。例如,第一波束可以包括同步波束,同步波束可以用于发送同步信号。可选的,第一波束也可以包括导频波束,导频波束可以用于发送导频信号。或者,第一波束也可以包括参考信号波束,参考信号波束可以用于发送参考信号。应当理解的是,参考信号可以是用于定位的定位参考信号或者也可以是探测参考信号,或者也可以是其他用途的参考信号,本申请不做具体限定。
另一个示例中,第一波束也可以是通过被动感知确定的波束,该示例在后续会详细介绍,此处不赘述。
应当理解的是,第一通信装置可以通过轮询的方式发送第一波束,例如按照预配置的波束或者预定义的波束中波束的顺序,发送第一波束。如通过上述两个示例确定的第一波束中包括第一波束A、第一波束B和第一波束C,第一通信装置可以发送第一波束A,并监听第一波束A的反射波束。之后,第一通信装置可以发送第一波束B,并监听第一波束B的反射信号,以此类推,直至发送全部第一波束。
一种可能的情况中,第一通信装置发送第一波束的时频资源,如第一时频资源可以是随机选择的。例如,第一通信装置可以随机选择时频资源,并在该时频资源上发送第一波束。另一种可能的情况中,第一通信装置发送第一波束的时频资源可以是通过被动感知监听得到的,该种情况在后续会详细介绍,此处不赘述。其中,随机选择第一时频资源可以降低时延降低能耗,但是由于随机资源选择可能会对第一波束带来干扰。但是通过被动感知监听确定第一时频资源则可以降低干扰。
在一种可能的实现方式中,第一通信装置可以在第二时间窗内进行主动感知。也就是说,第一通信装置可以在第二时间长内发送第一波束,并监听第一波束的反射波束。该第二时间窗的长度是可以配置的。例如,第二时间窗的长度可以与第一波束的数量正相关,也就是如果第一波束的数量较多第二时间窗的长度可以较长,以便于第一通信装置有足够的时间发送第一波束。又例如,第二时间窗的长度可以与业务优先级相关,如不同的优先级可以配置不同的长度。如从可靠性角度,高优先级可以配置较长的长度,低优先级可以配置较小的长度。从时延角度,高优先级可以配置较短的长度,低优先级可以配置较大的长度。再例如,第二时间窗的长度可以与业务的时延要求相关。假设业务的时延要求较高,那么第二时间窗的长度可以配置的较短一些,以减少主动感知过程的时延。又或者,第二时间窗的长度可以根据经验值灵活配置,本申请不做具体限定。
参阅图3B,通信装置A可以在第一时频资源上发送第一波束。通信装置A可以监听第一波束的反射波束,这样通信装置A可以认为接收到反射波束的第一波束的方向存在目标,如通信装置B。这样,通信装置A可以确定目标波束,如可以确定接收到反射波束的 第一波束为目标波束,或者可以确定目标波束与接收到反射波束的第一波束对应。
应当理解的是,通过上述主动感知确定的目标波束可以用于资源选择,也可以用于进一步的感知,如被动感知。一种可能的情况中,上述目标波束可以用于资源选择,第一通信装置可以通过目标波束随机进行时频资源选择,第一通信装置可以通过目标波束以及选择的时频资源进行通信。参阅图3C,第一通信装置基于第一波束进行主动感知,确定了目标波束。第一通信装置可以在目标波束上随机选择可用的时频资源进行通信。另一种可能的情况中,上述目标波束可以用于进一步的感知,如第一通信装置可以基于目标波束进行监听,以确定可用的时频资源,该种情况在后续会详细介绍,此处不赘述。其中,基于主动感知确定目标波束并随机选择时频资源进行通信可以集中波束能量在目标方向上,时延低且能耗低。但是随机资源选择可能会增加干扰,如果通过进一步的感知,则可以降低干扰。
在本申请实施例中,第一波束可以是专用于主动感知或者说探测目标的波束,或者也可以是同步波束,或者也可以是参考信号波束,本申请不做具体限定。其中,第一波束的数量可以小于或等于同步波束的数量,或者第一波束的数量可以小于或等于参考信号波束的数量。
一种可能的情况中,第一通信装置可以基于第一波束进行多次主动感知。例如,第一通信装置可以进行一次或两次的主动感知。具体的,假设第一波束包括第一波束A、第一波束B和第一波束C,第一通信装置在进行第一次的主动感知时,可以以第一波束A、第一波束B和第一波束C的顺序轮询进行主动感知。在达到一定时长后,第一通信装置可以进行第二次的主动感知。同样的,第一通信装置可以以第一波束A、第一波束B和第一波束C的顺序轮询进行主动感知。需要说明的是,第一通信装置进行主动感知的次数可以是预先定义的,如一次、两次或三次等。可选的,时延敏感的业务可以定义较少的主动感知次数,以减少时延。再例如,功耗敏感的通信装置可以定义较少的主动感知次数,以减少通信装置的功耗。
应当理解的是,第一通信装置可以确定主动感知的周期,每个周期第一通信装置可以基于第一波束进行主动感知。其中,主动感知的周期可以与业务优先级相关。例如,高优先级的业务可以对应较短的周期,低优先级的业务可以对应较长的周期。又例如,时延敏感的业务可以对应较短的周期。
方式二、被动感知。
被动感知可以理解为第一通信装置在时间单元上监听其他通信装置传输的第一信息,并根据第一信息确定可用的时频资源。这里的第一信息可以包括控制信息、参考信号和数据中的一个或多个。需要说明的是,被动感知可以分为全向被动感知和波束被动感知,以下进行详细介绍。
1)、全向被动感知。
全向被动感知可以理解为通信装置监听第一信息时,不考虑波束。全向被动感知是基于宽波束或全向接收波束的感知。其中,第一通信装置可以基于每个时间单元(如开始1个或几个符号)监听发给其他通信装置的控制信息、参考信号和数据中的一个或多个。
在一种可能的实现方式中,第一通信装置可以监听控制信息,该控制信息可以是其他通信装置传输的,如可以是通信装置B传输给通信装置C的。该控制信息可以用于调度第 三时频资源,第三时频资源可以用于传输前述其他通信装置的业务数据,如可以用于传输通信装置B的业务数据和/或用于传输通信装置C的业务数据。
在一个示例中,第一通信装置可以解析控制信息,确定第三时频资源。第一通信装置可以确定第三时频资源是已经被占用的时频资源。可选的,第三时频资源可以包括多个周期性预约的时频资源。例如,第一通信装置可以通过解析控制信息,确定上述业务数据的周期。也就是说,上述通信装置B和/或通信装置C,每隔一个周期都会在该控制信息调度的时频资源上传输业务数据,因此第三时频资源可以包括这些每个周期都被调度的时频资源。应当理解的是,监听到控制信息的时频资源也可以认为是非可用的时频资源。这样,通信装置选择未被占用的时频资源作为可用的时频资源,用来通信或者感知,可以降低对其他通信装置以及自身的干扰。
一种可能的情况中,第一通信装置可以确定未被调度的时频资源为可用的时频资源。另一种可能的情况中,第一通信装置可以通过控制信息,确定业务数据的优先级。在业务数据的优先级低于第一阈值时,第一通信装置也可以认为该控制信息调度的第三时频资源为可用的时频资源。例如,确定控制信息调度的第三时频资源中传输数据的第三时频资源和/或传输导频的时频资源等为可用的时频资源。这样,在资源的占用率较高时,第一通信装置也可以选择可用的时频资源用于通信或者感知。
另一个示例中,第一通信装置可以监听参考信号和/或数据。第一通信装置可以测量承载参考信号和/或数据的时频资源的能量,如参考信号功率(reference signal received power,RSRP)、参考信号接收质量(reference signal received quality,RSRQ)或信号与干扰加噪声比(signal to interference plus noise ratio,SINR)。第一通信装置可以确定能量小于或等于第二阈值的时频资源为可用的时频资源。这里的能量小于或等于第二阈值的时频资源可以理解为第一通信装置在时频资源上监听到了参考信号和/或数据,但是该时频资源的能量小于或等于第二阈值。这种情况可以认为传输参考信号和/或数据的通信装置与第一通信装置的距离较远,因此第一通信装置在该时频资源上进行通信或者进行感知,干扰也较小。这样,在资源占用率较高时,第一通信装置也可以选择可用的时频资源用于通信或者感知。
或者,能量小于或等于第二阈值的时频资源也可以理解为第一通信装置在时频资源上未监听到参考信号、数据和控制信息中的任意一种,也就是在该时频资源上无信息传输。这样,第一通信装置选择未被占用的时频资源作为可用的时频资源,用来通信或者感知,可以降低对其他通信装置以及自身的干扰。
可选的,第一通信装置可以在第一时间窗内监听第一信息。其中,第一时间窗的长度可以与业务数据的优先级相关,可以参照上述第二时间窗与业务数据的优先级的关系实施。或者,第一时间窗的长度可以是根据经验值灵活配置的,此处不再赘述。一种可能的情况中,为了尽快确定可用的时频资源,可以将第一时间窗的长度配置的较短一些,如100ms等,可以减少全向被动感知的时延。
参阅图4A,通信装置A可以监听第一信息。例如,通信装置A可以监听通信装置B传输给通信装置C的控制信息。通信装置A可以根据该控制信息确定被占用的第三时频资源,从而确定可用的时频资源。又例如,通信装置A可以监听通信装置C发送的数据,并对该数据占用的时频资源的能量进行测量。如果该时频资源的能量小于或等于第二阈值,则可以认为该时频资源也是可用的时频资源。
一种可能的实现方式中,通过上述全向被动感知确定的可用的时频资源可以用于传输 前述方式一中的用于主动感知的第一波束。例如,第一通信装置可以在可用的时频资源上发送第一波束。通过在可用的时频资源上发送第一波束,可以避免使用干扰较大的第三时频资源,因此减少了对第一通信装置的数据传输的干扰,也减少了对反射波束的干扰。
另一种可能的实现方式中,通过上述全向被动感知确定的可用的时频资源可以用于波束的资源选择。参阅图4B,第一通信装置可以在可用的时频资源上,基于配置的波束集合进行全波束扫描。第一通信装置可以在可用的时频资源上广播配置的波束集合中的波束,从而实现全波束扫描。这样,第一通信装置通过全波束扫描,提升了覆盖,提高了数据传输性能。
2)、波束赋形(beamforming,BF)被动感知。
BF被动感知可以理解为第一通信装置监听第一信息时,可以基于波束监听。例如,第一通信装置可以基于第二波束监听第一信息。第一通信装置进行BF被动感知时,第一通信装置在一个时间单元上可以基于一个第二波束监听第一信息,或者在一个时间单元上可以基于多个第二波束监听第一信息。其中,第一通信装置可以基于每个时间单元(如开始1个或几个符号)基于第二波束监听发给其他通信装置的控制信息、参考信号和数据中的一个或多个。
一种可能的情况中,BF被动感知所采用的波束可以包括预配置的波束或者预定义的波束。例如,第二波束可以包括同步波束、导频波束或者参考信号波束等,可以参照上述第一波束实施。另一种可能的情况中,BF被动感知所采用的波束可以是通过主动感知确定的。例如,第一通信装置监听第一信息时,可以基于通过主动感知确定的目标波束监听第一信息。第一通信装置通过主动感知可以确定目标波束,也就是确定有目标的方向,继而第一通信装置基于目标波束进行监听确定可用的时频资源,可以减少第一通信装置监听的波束的数量,也可以降低对第一通信装置基于目标波束通信时的干扰。
可以理解的是,第二波束可以与目标波束对应。例如,第二波束可以是目标波束。又例如,第二波束可以与目标波束一一对应,也就是一个第二波束可以对应一个目标波束。可选的,第二波束也可以与第一波束对应。例如,第二波束可以是第一波束。又例如,第二波束可以与第一波束一一对应,也就是一个第二波束对应一个第一波束。再例如,第二波束可以对应多个第一波束,也就是说第二波束可以是一个宽波束,第一波束可以是一个窄波束,一个宽波束可以对应多个窄波束。当一个第二波束对应多个第一波束时,多个第一波束组合起来的效果可以相当于一个第二波束。
在一种可能的实现方式中,第一通信装置可以通过交替监听的方式基于第二波束监听第一信息。例如,第一通信装置可以按照预配置的波束或者预定义的波束的顺序,基于第二波束进行交替的监听。参阅图5,假设第二波束可以包括第二波束A、第二波束B和第二波束C。第一通信装置可以基于第二波束A,监听第一信息。之后,第一通信装置可以基于第二波束B监听第一信息,以此类推。在第一通信装置检测完第二波束后,第一通信装置还可以再次以第二波束A、第二波束B和第二波束C的顺序基于第二波束进行监听,直至第一通信装置进行BF被动监听的次数满足一定次数,或者达到一定时长。
另一种可能的实现方式中,第一通信装置可以对一个第二波束进行连续的监听,再对下一个第二波束进行连续的监听,直至基于全部的第二波束进行监听。例如,第一通信装置可以按照预配置的波束或者预定义的波束的顺序,基于第二波束进行连续的监听。参阅 图6,假设第二波束可以包括第二波束A、第二波束B和第二波束C。第一通信装置可以基于第二波束A,监听第一信息。其中,第一通信装置基于第二波束A监听第一信息的次数可以满足预定义的次数(图6中以3次为例),如3次、4次等。第一通信装置可以继续基于第二波束B监听第一信息。同样的,第一通信装置基于第二波束B监听第一信息的次数也可以满足预定义的次数。以此类推,直至第一通信装置基于全部的第二波束监听第一信息,第一通信装置可以确定各个第二波束方向上的可用的时频资源。
一种可能的情况中,第一通信装置基于第二波束进行BF被动感知的次数以及周期可以参照主动感知的次数和周期实施,此处不再赘述。对于连续监听或交替监听,可以在相同的第二波束上配置不同的周期,以能监听对应不同周期配置的业务传输,识别出相应业务占用资源情况,接收到的信号能量情况,便于资源选择上进行参考。
应当理解的是,第一通信装置可以通过监听第一信息,确定可用的时频资源,如第三时频资源。第一通信装置基于第二波束监听第一信息,可以确定第二波束的可用的时频资源。其中,第一通信装置监听第一信息可以参照上述全向被动感知实施。
需要说明的是,BF被动感知与全向被动感知的不同点在于BF被动感知可以确定波束方向上的可用时频资源,全向被动感知可以确定全向的可用时频资源。通过全向被动感知确定可用时频资源,可以确定各个方向上的可用时频资源,但是可能无法确定距离第一通信装置较远的其他通信装置所占用的时频资源,也就是说通过全向被动感知确定的可用时频资源,也有可能会存在较小的干扰。通过BF被动感知确定可用时频资源,可以确定各个波束方向上的可用时频资源,即使是其他通信装置距离第一通信装置较远,第一通信装置也可以基于BF被动感知确定该其他通信装置所占用的时频资源,因此通过BF被动感知确定的可用时频资源的干扰较小,甚至可能达到无干扰。
一种可能的情况中,第一通信装置可以基于第二波束监听第一信息,从而确定用于主动感知的第一波束。例如,第一通信装置基于第二波束可以确定存在第三时频资源的波束方向,那么第一通信装置可以确定在该第二波束的波束方向上存在目标,因此第一通信装置就可以不再基于该第二波束进行主动感知,这样可以减少第一通信装置的开销,也可以减少时延。假设第一通信装置基于第二波束监听第一信息,确定不存在第三时频资源的波束方向,也就是说第一通信装置基于一个第二波束未监听到第一信息,那么也就是说该一个第二波束的波束方向上可能不存在目标。为了准确的确定该一个第二波束的波束方向上是否存在目标,第一通信装置可以基于该第二波束进行主动感知,可以参照方式一中的主动感知实施,此处不再赘述。
在上述情况中,第一波束可以与未监听到第一信息的第二波束对应。例如,第一波束可以是未监听到第一信息的第二波束,或者可以理解为第一波束可以是在预配置的波束集合中排除监听到第一信息的第二波束后剩余的波束。又例如,一个第一波束可以与未监听到第一信息的第二波束对应,或者可以理解为第一波束可以与在预配置的波束集合中排除监听到第一信息的第二波束后剩余的波束一一对应。再例如,多个第一波束可以对应一个未监听到第一信息的第二波束,或者可以理解为多个第一波束可以与在预配置的波束集合中排除监听到第一信息的第二波束后剩余的波束相对应,换句话说第一波束可以是一个窄波束,第二波束可以是一个宽波束,在基于宽波束未监听到第一信息时,第一通信装置可以基于窄波束进行主动感知,多个窄波束组合起来的效果可以相当于一个宽波束。第一波束可以与第二波束位于不同载波或频段,如第一波束位于更高的载波或频段。通常更高的 载波或频段对应更多的天线,更大的带宽。且可能有独立的功率配置。可以有相对窄的波束,对目标方向识别有更高的分辨率。当第一波束与第二波束即使位于相同的载波或频段,也可以对第一波束的发送配置更高的发送功率,以便于能较好的监听反射波束。
另一种可能的情况中,第一通信装置基于第二波束确定的可用的时频资源可以用于通信。例如,假设第一通信装置基于第二波束A监听第一信息,确定可用的时频资源包括第四时频资源。那么,第一通信装置可以基于第二波束A,在第四时频资源上传输数据或者控制信息等进行通信。
可选的,第一通信装置可以在第三时间窗内基于第二波束监听第一信息,也就是说第一通信装置可以在多个时间单元上基于第二波束监听第一信息。为了控制时延,可以限定时间单元个数,也就是可以控制第三时间窗的长度。其中,第三时间窗的长度可以与业务数据的优先级相关,可以参照上述第二时间窗与业务数据的优先级的关系实施。或者,第三时间窗的长度可以是根据经验值灵活配置的,此处不再赘述。一种可能的情况中,第三时间窗的长度可以与第二波束的数量相关,如第二波束的数量越大第三时间窗的长度可以越长。当第三时间窗的长度较小时,有利于时延类业务和功率敏感类业务传输。
通常来说,第三时间窗的长度大于第一时间窗的长度。在第一时间窗内第一通信装置可以基于时间单元的监听判断当前时间单元是否可用。在第三时间窗内第一通信装置可以通过相对长时间的监听判断接收信号的平均强度,系统的干扰程度或当前系统的负载,从而调整数据传输的参数如资源选择,调整编码方案选择等。
基于上述感知方式,第一通信装置能够确定波束方向上的可用的时频资源,并基于波束和可用的时频资源进行通信,可以提升覆盖,从而可以提升数据传输的性能。
结合上述感知方式,将主动感知、全向被动感知和BF被动感知进行组合,可以减小干扰、提升覆盖,从而可以提升数据传输的性能。以下示出本申请实施例提供一种通信方法。参阅图7,为本申请实施例提供的一种通信方法的示例性流程图,可以包括以下操作。在图7所示的方法实施例中,第一通信装置可以是终端设备或者也可以是网络设备。
S701:第一通信装置获取第一时频资源和第一波束。
S702:第一通信装置在第一时频资源上发送第一波束。
S703:第一通信装置根据第一波束的反射波束,确定目标波束。
其中,目标波束可以与接收到反射波束的第一波束对应。例如,目标波束可以包括接收到反射波束的第一波束。又例如,一个目标波束可以与多个接收到反射波束的第一波束对应。再例如,一个目标波束可以与一个接收到反射波束的第一波束对应。目标波束与第一波束的对应关系可以参照前述方式一中的主动感知中的相关描述,此处不再赘述。
S704:第一通信装置根据目标波束确定第二时频资源。
第一通信装置确定的目标波束可以用于进一步感知。例如,第一通信装置可以基于目标波束进行BF被动感知,从而确定第二时频资源。其中,这里的第二时频资源可以参照通过前述方式二的BF被动感知确定的可用的时频资源的相关描述。例如,第二时频资源可以不包括第三时频资源。又例如,第二时频资源可以包括优先级低于第一阈值的业务占用的第三时频资源,和/或第二时频资源可以包括能量低于第二阈值的第三时频资源。另一种可能的情况中,目标波束也可以用于资源选择。例如,第一通信装置可以基于目标波束,随机选择第二时频资源。
上述第二时频资源可以用于第一通信装置进行通信。例如,第一通信装置可以在第二 时频资源上传输控制信息、数据或参考信号等。
基于图7示出的方案,第一通信装置可以基于第一波束进行主动感知,从而确定目标的方向,可以获得频率复用的增益,以及可以提高覆盖,可以降低干扰,提升了传输性能。由于使用的主动感知,可以减少广播类业务盲波束扫描,可以降低开销以及降低网络干扰,也可以降低第一通信装置的能耗。
一种可能的情况中,S701中的第一时频资源可以是通过前述方式二示出的被动感知确定的可用的时频资源。例如,第一时频资源可以包括全向被动感知确定的可用的时频资源,和/或第一时频资源可以包括BF被动感知确定的可用的时频资源。
举例来说,第一时频资源可以不包括第三时频资源,也就是第一时频资源可以包括未被占用的时频资源。可选的,第一时频资源可以包括能量低于第二阈值的第三时频资源。和/或,第一时频资源可以包括优先级低于第一阈值的业务所占用的时频资源。其中,第一时频资源可以参照全向被动感知中可用的时频资源的相关描述,此处不再赘述。
另一种可能的情况中,第一时频资源可以是随机选择的时频资源。如果第一时频资源是通过被动感知确定的可用的时频资源,相较于随机选择的时频资源,可以降低其他通信装置对第一通信装置的干扰,或者说可以降低其他通信装置传输的信息对第一波束的干扰,可以提高第一波束的传输性能。
S701中的第一波束可以用于感知。例如,第一波束可以用于主动感知。一个示例中,第一波束可以是预配置的波束或者预定义的波束,如同步波束或导频波束,可以参照方式一中主动感知的相关描述。另一个示例中,第一波束可以基于用于BF被动感知的第二波束确定。例如,第一波束可以与未监听到第一信息的第二波束对应,可以参照前述BF被动感知中的相关描述,此处不再赘述。如果第一波束与未监听到第一信息的第二波束对应,那么第一通信装置进行主动感知时采用的第一波束的数量会少一些,可以减少主动感知过程的时延。
以下,结合图8A和8B对通过被动感知确定第一时频资源和/或第一波束的方式进行介绍。
参阅图8A,为本申请实施例提供的通过全向被动感知确定第一时频资源的示意图。图8A所示的实施例中,第一通信装置可以在第一时间窗内进行全向被动感知,也就是说第一通信装置可以在第一时间窗内监听第一信息。其中,由于是全向被动感知第一通信装置可以监听到各个方向的第一信息。第一通信装置可以通过监听第一信息,确定被占用的时频资源,也就是第三时频资源。基于第三时频资源,第一通信装置可以确定可用的时频资源,如S701中的第一时频资源,可以参照前述全向被动感知中的相关描述。S702中第一通信装置可以在确定的第一时频资源上发送第一波束,并在S703中第一通信装置可以监听第一波束的反射波束,以进行主动感知。第一通信装置通过主动感知,可以确定接收到反射波束的第一波束上有目标存在,那么S704中第一通信装置可以基于接收到反射波束的第一波束确定目标波束。第一通信装置基于第一波束确定目标波束的方式可以参照前述主动感知中的相关描述。
应当理解的是,第一时间窗的长度可以灵活的配置。图8A示出了两种不同长度的第一时间窗。如图8A中的a所示,在第一时间窗的长度较长时,第一通信装置可以较为全面的监听到不同业务的第一信息,从而可以较为全面的确定第三时频资源。因此,确定的可用的时频资源干扰较小。如图8A中的b所示,在第一时间窗的长度较短时,第一通信 装置可以较为快速的确定第三时频资源,因此可以降低全向被动感知过程的时延。
正如前面所述,S704中的目标波束可以用于进一步感知也可以用于资源选择。参阅图8B,为第一通信装置基于目标波束确定第二时频资源的方式。在图8A示出的方式中,在S704中第一通信装置可以基于目标波束进行随机资源选择,确定第二时频资源。应当理解的是,第一通信装置在进行随机资源选择时,可以在通过全向被动感知确定的可用的时频资源中进行选择。
参阅图8B,为本申请实施例提供的通过BF被动感知确定第一时频资源的示意图。图8B所示的实施例中,第一通信装置可以在第三时间窗内进行BF被动感知,也就是说第一通信装置可以在第三时间窗内基于第二波束监听第一信息,确定被占用的时频资源,也就是第三时频资源。基于第三时频资源,第一通信装置可以确定可用的时频资源,如S701中的第一时频资源,可以参照BF被动感知中的相关描述。其中,由于是BF被动感知第一通信装置可以监听到第二波束的波束方向的第一信息,相较于全向被动感知,即使是目标距离第一通信装置较远,第一通信装置也可能监听到该目标传输的第一信息。因此,通过BF被动感知确定的可用的时频资源上干扰更小。S702中第一通信装置可以在确定的第一时频资源上发送第一波束,并在S703中第一通信装置可以监听第一波束的反射波束,以进行主动感知。第一通信装置通过主动感知,可以确定接收到反射波束的第一波束上有目标存在,那么S704中第一通信装置可以基于接收到反射波束的第一波束确定目标波束。第一通信装置基于第一波束确定目标波束的方式可以参照前述主动感知中的相关描述。
可选的,S701中用于主动感知的第一波束,也可以是通过BF被动感知确定的,可以参照BF被动感知中通过第二波束确定第一波束的方式实施。
正如前面所述,S704中的目标波束可以用于进一步感知也可以用于资源选择。参阅图8B,为第一通信装置基于目标波束确定第二时频资源的方式。在图8B示出的方式中,第一通信装置可以基于目标波束进行随机资源选择,确定第二时频资源。应当理解的是,在S704中第一通信装置在进行随机资源选择时,可以在通过BF被动感知确定的可用的时频资源中进行选择。
如果S701中的第一波束通过BF被动感知确定,也就是通过图8B所示的方式确定,主动感知和BF被动感知的先后顺序可能存在以下两种情况。
情况1:先进行BF被动感知再进行主动感知。
第一通信装置可以基于第二波束监听第一信息,确定第一时频资源。在基于所有第二波束监听第一信息后,第一通信装置可以在第一时频资源上发送第一波束,以进行主动感知。换句话说,第三时间窗在时域上是位于第二时间窗之前的。在图8B示出的实施例中,是以第一通信装置先基于第二波束进行BF被动感知,再基于第一波束进行主动感知为例进行说明的。
情况2:BF被动感知和主动感知交替出现。
第一通信装置可以基于第二波束监听第一信息,确定第一时频资源。第一通信装置可以发送未监听到第一信息的第二波束对应的第一波束,以进行主动感知。其中,第一通信装置可以在第一时频资源上发送上述第一波束,或者可以随机选择时频资源发送第一波束。换句话说,第三时间窗与第二时间窗在时域上是交替出现的。应当理解的是,第三时间窗和第二时间窗在时域上交替出现并不一定是指一个第三时间窗之后就是一个第二时间窗,一个第二时间窗之后就是一个第三时间窗。第三时间窗和第二时间窗在时域上交替出现可 以是指第三时间窗之后有第二时间窗,第二时间窗之后可以有第三时间窗。例如,两个第三时间窗之后有一个第二时间窗,在该第二时间窗之后有三个第三时间窗,也可以称为第三时间窗和第二时间窗在时域上交替出现。
参阅图8C,第一通信装置基于一个第二波束监听第一信息,并确定可用的时频资源。如果第一通信装置在该第二波束上监听到第一信息,那么第一通信装置可以轮询到下一个第二波束,并基于该第二波束监听第一信息。如果第一通信装置未在上述一个第二波束上监听到第一信息,那么第一通信装置可以发送上述一个第二波束对应的第一波束。以此类推,直至完成BF被动感知和主动感知。
同样的,图8C中以目标波束用于资源选择为例进行说明。
上述情况1中,第一通信装置先基于全部第二波束监听第一信息,再基于全部第一波束进行主动感知,可以提高主动感知的性能,换句话说第一通信装置可以通过全部第一波束探测潜在的目标。另外,由于主动感知时发送第一波束采用的第一时频资源是通过BF被动感知确定的,因此可以减少第一波束对其他通信装置的干扰,也可以减少对第一波束的反射波束的干扰。
上述情况2中,第一通信装置可以交替进行BF被动感知和主动感知,基于未监听到第一信息的第二波束所对应的第一波束进行主动感知,可以降低主动感知过程的时延。
一种可能的实现方式中,上述S704中的目标波束还可以用于进一步的感知,如BF被动感知,确定第二时频资源。例如,第一通信装置可以基于目标波束监听第一信息,确定被占用的时频资源,如第三时频资源。第一通信装置可以基于第三时频资源,确定第二时频资源可以参照BF被动感知中的相关描述,此处不再赘述。
参阅图9A,第一通信装置在第一时间窗内进行全向被动感知,确定被占用的时频资源,如第三时频资源。基于第三时频资源,第一通信装置可以确定S701中的第一时频资源。通过S702至S703第一通信装置可以在第二时间窗内在第一时频资源上发送第一波束,进行主动感知。第一通信装置可以监听第一波束的反射波束,从而确定目标波束。在S704中,第一通信装置可以在第三时间窗内基于目标波束监听第一信息,以确定目标波束方向上被占用的时频资源,如第三时频资源。基于第三时频资源,第一通信装置可以确定目标波束方向上的可用的时频资源。因此,第一通信装置可以基于目标波束方向的可用的时频资源以及目标波束进行通信。
相较于图8A至图8C示出的实施例,图9A示出的实施例中,目标波束可以用于进一步感知,也就是第一通信装置可以基于目标波束进行BF被动感知,从而可以确定目标波束方向上的可用的时频资源,即使是目标波束方向上的目标距离第一通信装置较远,第一通信装置也可以通过BF被动感知确定出该目标传输信息所占用的第三时频资源。因此,通过图9A确定的第二时频资源,相较于随机资源选择确定的第二时频资源干扰更小。
参阅图9B,第一通信装置可以在第三时间窗内基于第二波束监听第一信息,确定被占用的时频资源,如第三时频资源。基于第三时频资源,第一通信装置可以确定可用的时频资源,如S701中的第一时频资源。第一通信装置可以基于全部第二波束监听第一信息,确定各个波束方向上的可用的时频资源。通过S702至S703,第一通信装置在第二时间窗内在第一时频资源上发送第一波束,进行主动感知。第一通信装置可以监听第一波束的反射波束,从而确定目标波束。在S704中,第一通信装置可以在第三时间窗内基于目标波束监听第一信息,以确定目标波束方向上被占用的时频资源,如第三时频资源。基于第三 时频资源,第一通信装置可以确定目标波束方向上的可用的时频资源。因此,第一通信装置可以基于目标波束方向的可用的时频资源以及目标波束进行通信。
相较于图9A示出的实施例,图9B示出的实施例中,用于发送第一波束的第一时频资源是基于BF被动感知确定的,因此第一时频资源上的干扰更小。另外,相较于全向被动感知,第一通信装置进行BF被动感知的开销更小,可以减小第一通信装置的功耗。在主动感知过后,第一通信装置可以通过BF被动感知再次确定被占用的时频资源,因此可以多次确定目标波束方向上潜在的被占用的时频资源,因此确定的第二时频资源上的干扰较小。
参阅图9C,第一通信装置在时域上交替出现的第二时间窗和第三时间窗内进行BF被动感知和主动感知。也就是,第一通信装置交替进行BF被动感知和主动感知,以确定目标波束。第一通信装置可以在第三时间窗内基于目标波束监听第一信息,以确定目标波束方向上被占用的时频资源,如第三时频资源。基于第三时频资源,第一通信装置可以确定目标波束方向上的可用的时频资源。因此,第一通信装置可以基于目标波束方向的可用的时频资源以及目标波束进行通信。
相较于图9B示出的实施例,图9C示出的实施例中,第一通信装置可以交替进行BF被动感知和主动感知,因此可以减小主动感知过程的时延。
在本申请实施例中,用于主动感知的波束,如第一波束,与用于被动感知的波束,如第二波束和/或目标波束,可以采用不同的频率。例如,第一波束可以在第一频率上发送,第二波束可以在第二频率上发送,第一频率和第二频率可以不同。例如,第一频率可以高于第二频率。或者,第一频率可以低于第二频率。
可选的,在主动感知之前的被动感知采用的频率可以与主动感知的频率相同。例如,第一通信装置首先进行了全向被动感知,确定了第一时频资源。那么第一通信装置进行主动感知时,可以在该第一时频资源上发送第一波束,也就是主动感知与全向被动感知采用相同的频率进行。而在主动感知之后的被动感知,如BF被动感知,可以与主动感知采用不同的频率。例如,第一通信装置通过第一波束进行主动感知,确定了目标波束,而目标波束用于BF被动感知,这时目标波束的频率可以低于第一波束的频率,也就是目标波束与第一波束对应。
对于周期类业务,上述各个感知方式中的时间窗在周期业务资源选择前配置相应的周期,如可以与周期类业务的周期相同,可以配置多个周期类业务的周期。对于非周期业务,上述各个感知方式中的时间窗在非周期业务资源选择前配置相应的时间长度,如可以根据QoS需求配置不同的时间长度,可以根据多个业务QoS配置不同的时间长度。
应当理解的是,上述全向被动感知、BF被动感知和主动感知的各种组合感知方式仅作为示例性说明,并不构成对本申请实施例的限定。本领域技术人员可以将上述全向被动感知、BF被动感知和主动感知进行组合,以得到提高覆盖的技术方案。例如,第一通信装置可以将全向被动感知和BF被动感知进行组合,以得到可用的时频资源,如第一时频资源。第一通信装置可以基于第一时频资源和第一波束进行主动感知,以确定目标波束。由于全向被动感知可以确定来自各个方向上被占用的时频资源,而BF被动感知可以确定距离第一通信装置较远的其他通信装置占用的时频资源,因此确定的第一时频资源的干扰更小。如前面所述,目标波束可用于资源选择也可以用于进一步感知。
本申请实施例还提供另一种通信方法。该方法中,第二通信装置为了提高传输可靠性,可以为第三通信装置选择另一条通信链路,也就是为第三通信装置选择第四通信装置,以及为第三通信装置选择与第四通信装置通信的目标波束。参阅图10,为本申请实施例提供的一种通信方法的示例性流程图,可以包括以下操作。图10示出的实施例中,第二通信装置可以是网络设备或者也可以是终端设备,第三通信装置和第四通信装置同理。
S1001:第二通信装置向第三通信装置发送第三波束的指示信息。
上述第三波束可以用于第三通信装置感知和/或第三通信装置通信。例如,第三通信装置可以基于第三波束进行主动感知和/或被动感知。
S1002:第三通信装置获取第三波束的指示信息和第一时频资源。
例如,通过S1001,第三通信装置可以从第二通信装置接收第三波束的指示信息。
一种可能的情况中,上述第一时频资源可以是第三通信装置随机选择的,或者第一时频资源可以是第三通信装置通过全向被动感知和/或BF被动感知确定的。例如,第三通信装置可以进行全向被动感知,确定第一时频资源。又例如,第三通信装置可以基于第三波束监听第一信息,以确定第一时频资源。其中,第三通信装置确定第一时频资源的方式可以参照前述主动感知时采用的第一时频资源实施。
另一种可能的情况中,上述第一时频资源可以是由第二通信装置指示的。例如,第二通信装置可以向第三通信装置发送第一时频资源的指示信息。其中,第二通信装置确定第一时频资源的方式可以参照前述主动感知时采用的第一时频资源实施。例如,第二通信装置可以根据第三通信装置的可用资源池进行资源选择确定第一时频资源。
应当理解的是,第三通信装置可以在第二通信装置指示的第一时频资源中,继续确定可用的时频资源,也就是进一步监听第一信息,从第一时频资源中排除已经被占用的时频资源,如第三时频资源。这样,由第二通信装置和第三通信装置同时进行资源选择可以最大可能的减少对第四通信装置和/或其它通信装置产生干扰。
S1003:第三通信装置在第一时频资源上发送第三波束。
这里的第三波束可以是用于主动感知的波束,可以参照前述第一波束实施。例如,第三波束可以包括同步波束、参考信号波束和/或导频波束。
S1004:第三通信装置测量第三波束的反射波束。
例如,第三通信装置可以监听第三波束的反射波束,如果监听到反射波束那么第三通信装置可以测量该反射波束,得到该反射波束的测量结果,如反射波束的RSRP、RSRQ或SINR等。如果第三通信装置接收到第三波束的反射波束,那么可以认为该第三波束的方向上存在目标,如第四通信装置。
在一个示例中,上述第三波束可以与第四波束对应。其中,第三波束可以是第三通信装置进行被动感知,如BF被动感知时采用的波束。第四波束可以是第三通信装置进行主动感知时采用的波束。在该示例中,S1003中第三通信装置可以在第一时频资源上发送第四波束,并在S1004中测量第四波束的反射波束。
应当理解的是,一个第三波束可以与一个第四波束对应,或者一个第三波束可以对应多个第四波束。在一个第三波束对应多个第四波束时,第三波束可以相当于一个宽波束,第四波束是窄波束,多个第四波束组合起来的效果相当于对应的一个第三波束的效果。又或者,第四波束可以与未监听到第一信息的第三波束对应。上述第三波束与第四波束的对应关系,可以参照前述用于被动感知的波束和用于主动感知的波束的对应关系,如第二波 束与第一波束的对应关系实施,此处不再赘述。
可选的,第二通信装置可以向第三通信装置发送第四时间窗的指示信息。这里的第四时间窗是第三通信装置基于第三波束监听的时间窗。第三通信装置在第四时间窗内基于第三波束监听第一信息。
可选的,第二通信装置可以向第三通信装置发送第五时间窗的指示信息。这里的第五时间窗是第三通信装置基于第四波束感知的时间窗。第三通信装置在第五时间窗内发送第四波束,并监听或者测量第四波束的反射波束。
S1005:第三通信装置向第二通信装置发送测量结果。
一种可能的情况中,第二通信装置可以向第三通信装置发送反馈资源的指示信息。该反馈信息可以用于发送测量结果。因此,第三通信装置可以在反馈资源上向第二通信装置发送测量结果。
在一个示例中,如果第三波束与第四波束对应,那么上述结果可以是基于第四波束获得的测量结果,或者也可以是映射到第三波束的测量结果。例如,在第三波束与第四波束一一对应时,第三通信装置可以测量第四波束的反射波束,得到测量结果。第三通信装置可以将第四波束的反射波束的测量结果发送给第二通信装置。或者,第三通信装置可以将第四波束映射至第三波束,也就是将第四波束的反射波束的测量结果映射为第三波束的测量结果,发送给第二通信装置。
又例如,在一个第三波束对应多个第四波束时,第三通信装置可以将多个第四波束的反射波束的测量结果发送给第二通信装置。或者,第三通信装置可以将多个第四波束映射至第三波束,将多个第四波束的反射波束的测量结果映射为一个第三波束的测量结果,发送给第二通信装置。或者,第三通信装置可以基于多个第四波束的反射波束的测量结果,确定对应的一个第三波束的测量结果。例如,第一通信装置可以通过从多个第四波束的反射波束的测量结果选择测量结果最大的、最小的,或者对多个第四波束的反射波束的测量结果求平均的方式确定对应的一个第三波束的测量结果。第三通信装置可以将确定的每个第三波束的测量结果发送给第二通信装置。
S1006:第二通信装置根据第三波束获取测量结果。
例如,通过S1005,第二通信装置可以从第三通信装置接收测量结果。
S1007:第二通信装置向第三通信装置和第四通信装置发送目标波束的指示信息。
相应的,第三通信装置和第四通信装置获取目标波束的指示信息,如从第二通信装置接收目标波束的指示信息。
在图10所示的方案中,由于第三波束的指示信息是由第二通信装置发送给第三通信装置的,因此第三通信装置不需要在配置的波束集合上进行主动感知和/或被动感知,也就是第三通信装置可以不需要在配置的波束集合上盲扫,从而确定目标波束,可以降低第三通信装置的开销,可以节省第三通信装置的能耗。
一种可能的情况中,第三波束的指示信息是根据第二通信装置的位置信息、第三通信装置的位置信息和第四通信装置的位置信息确定的。
参阅图11,假设第二通信装置与第三通信装置存在通信链路,第二通信装置与第四通信装置存在通信链路。第二通信装置可以确定第三通信装置的位置信息、第四通信装置的位置信息以及第二通信装置的位置信息。第二通信装置可以根据这三个位置信息,确定第三通信装置和第三通信装置可以用于通信的波束方向,从而第二通信装置可以确定第三波 束。换句话说,第二通信装置可以将第二通信装置与第四通信装置之间的连线作为三角形的一个边,将第二通信装置与第三通信装置之间的连线作为三角形的第二个边,那么第二通信装置可以根据三角形的两个边,确定剩余的一条边,也就是第二通信装置可以确定第三波束的大致方向。
可选的,第三通信装置的位置信息可以是第三通信装置发送给第二通信装置的,第四通信装置的位置信息同理。
另一种可能的情况中,第三波束的指示信息是根据第二通信装置与第三通信装置之间的距离、第二通信装置和第四通信装置间的距离、第二通信装置和第三通信装置通信所采用的波束(称为第七波束)和第二通信装置和第四通信装置通信时所采用的波束(称为第六波束)。参阅图11,假设第二通信装置与第四通信装置通过第六波束通信,第二通信装置与第三通信装置采用第七波束通信。第二通信装置可以确定第二通信装置与第三通信装置之间的距离,以及第二通信装置和第四通信装置之间的距离。那么第二通信装置可以通过这两个距离以及第六波束与第七波束的夹角,确定第三通信装置和第三通信装置可以用于通信的波束方向,从而第二通信装置可以确定第三波束。换句话说,第二通信装置可以将第二通信装置与第四通信装置之间的连线作为三角形的一个边,将第二通信装置与第三通信装置之间的连线作为三角形的第二个边,那么第二通信装置可以根据三角形的两个边,确定剩余的一条边,也就是第二通信装置可以确定第三波束的大致方向。
可选的,第二通信装置与第三通信装置间的距离可以是第二通信装置基于第二通信装置的位置信息和第三通信装置的位置信息确定的,第二通信装置与第四通信装置间的距离同理。可选的,第三通信装置的位置信息可以是第三通信装置发送给第二通信装置的,第四通信装置的位置信息同理。
上述目标波束是第二通信装置根据测量结果确定的。例如,第二通信装置可以通过测量结果,选择测量结果最大的波束作为目标波束。本申请实施例对第二通信装置根据测量结果确定目标波束的方式不做具体限定。目标波束可以与第三波束对应。例如,目标波束可以是第三波束中的一个。或者多个目标波束可以对应一个第三波束。此时,第三波束是一个宽波束,目标波束可以是窄波束。或者,一个目标波束可以对应多个第三波束。此时,第三波束是窄波束,目标波束是宽波束。
需要说明的是,上述图11示出的实施例中,第二通信装置与第四通信装置之间具有通信链路。一种可能的情况中,第二通信装置与第四通信装置之间无通信链路,也就是第二通信装置可能只与第三通信装置具有通信链路,那么如果第二通信装置想要为第三通信装置选择另一条通信链路,以提高传输可靠性时,第二通信装置可以进行主动感知,以探测第四通信装置。例如,第二通信装置可以发送第五波束,并监听第五波束的反射波束。第二通信装置可以基于第五波束的反射波束,确定第六波束。该第六波束可以用于第二通信装置与第四通信装置通信,或者该第六波束可以用于第二通信装置进行进一步感知,如BF被动感知。其中,第二通信装置进行主动感知时采用的波束和时频资源可以参照前述第一波束和第一时频资源的实施方式。另外,第二通信装置主动感知的过程可以参照前述第一通信装置主动感知的过程,此处不再赘述。
以下,结合附图对上述通信方法进行详细说明。
参阅图12A,将N2视为第二通信装置,将N1视为第四通信装置,将N3视为第三通信装置。假设N2与N3具有通信链路,N2与N1也具有通信链路。为了提高传输的可靠 性,N2可以为N3和N1选择用于通信的目标波束。在S1001中N2可以将第三波束的指示信息发送给N3。通过S1002至S1004,N3可以基于第三波束进行感知,如主动感知和/或BF被动感知,确定第三波束的测量结果。通过S1005,N3可以将第三波束的测量结果发送给N2,通过S1006,N2则可以根据第三波束的测量结果,为N3和N1选择目标波束。例如,N2可以选择测量结果中取值最大的波束作为N1和N3之间通信的目标波束。通过S1007,N2可以将目标波束的指示信息发送给N1和N3。这样,N1和N3就可以通过目标波束进行通信。
在图12A的方案中,第二通信装置可以为第三通信装置再选择一条通信链路,以提高数据传输的可靠性。由于第三波束的指示信息是由第二通信装置发送给第三通信装置的,因此第三通信装置可以不需要在配置的波束集合上盲扫,可以降低第三通信装置的开销,可以节省第三通信装置的能耗。
参阅图12B,将N2视为第二通信装置,将N1和N4均视为第四通信装置,将N3视为第三通信装置。假设N2与N3具有通信链路,N2与N4具有通信链路,N2与N1也具有通信链路。为了提高传输的可靠性,N2从N4和N1中选择一个通信装置,用于与N3通信。在S1001中,N2可以将第三波束的指示信息发送给N3。其中,N2发送的第三波束的指示信息,可以包含N3与N4通信时可能会采用的波束以及N3与N1通信时可能会采用的波束。也就是说第三波束是用于N3进行感知的,如感知N4和/或N1。通过S1002至S1004,N3可以基于第三波束进行感知,如主动感知和/或BF被动感知,确定第三波束的测量结果。通过S1005,N3可以将第三波束的测量结果发送给N2,通过S1006至S1007,N2则可以根据第三波束的测量结果,为N1选择目标波束。其中,N2在选择目标波束时,可以认为已经从N4和N1中选择了一个通信装置,用来与N3通信。例如,N2可以选择测量结果中取值最大的波束作为目标波束。该目标波束如果是基于N3与N4通信时可能会采用的第三波束的测量结果确定的,那么可以认为N2选择了N4,用来与N3通信。那么通过S1007,N2可以将目标波束的指示信息发送给N3和N4。则N3和N4可以通过目标波束进行通信。该目标波束如果是基于N3与N1通信时可能会采用的第三波束的测量结果确定的,那么可以认为N2选择了N1,用来与N3通信。那么通过S1007,N2可以将目标波束的指示信息发送给N1和N3。则N1和N3可以通过目标波束进行通信。
相较于图12A示出的实施例,图12B示出的实施例中,第二通信装置可以从多个第四通信装置中选择与第三通信装置通信的通信装置。其中,第二通信装置可以通过选择目标波束,确定与第三通信装置通信的通信装置。
参阅图12C,将N2视为第二通信装置,将N1和N4均视为第四通信装置,将N3视为第三通信装置。假设N2与N3具有通信链路,N2与N4无通信链路,N2与N1具有通信链路。为了提高传输的可靠性,N2需要再选择一个通信装置,用于与N3通信。在N2将第三波束的指示信息发送给N3之前,N2可以进行主动感知探测目标。其中,N2进行主动感知的过程以及主动感知采用的波束和时频资源可以参照第一通信装置进行主动感知的过程以及采用的波束和时频资源。这样,N2可以探测到N4,并与N4建立通信链路。
继而在S1001中,N2可以将第三波束的指示信息发送给N3。其中,N2发送的第三波束的指示信息,可以包含N3与N4通信时可能会采用的波束以及N3与N1通信时可能会采用的波束。也就是说第三波束是用于N3进行感知的,如感知N4和/或N1。通过S1002至S1004,N3可以基于第三波束进行感知,如主动感知和/或BF被动感知,确定第三波束 的测量结果。通过S1005,N3可以将第三波束的测量结果发送给N2,通过S1006至S1007,N2则可以根据第三波束的测量结果,为N1选择目标波束。其中,N2在选择目标波束时,可以认为已经从N4和N1中选择了一个通信装置,用来与N3通信。例如,N2可以选择测量结果中取值最大的波束作为目标波束该目标波束如果是基于N3与N4通信时可能会采用的第三波束的测量结果确定的,那么可以认为N2选择了N4,用来与N3通信。那么通过S1007,N2可以将目标波束的指示信息发送给N1和N4。则N1和N4可以通过目标波束进行通信。该目标波束如果是基于N3与N1通信时可能会采用的第三波束的测量结果确定的,那么可以认为N2选择了N1,用来与N3通信。那么通过S1007,N2可以将目标波束的指示信息发送给N1和N3。则N1和N3可以通过目标波束进行通信。
需要说明的是,N2除了参考测量结果,N2还可以参考了N2和N4之间通信链路的质量以及N2和N1之间通信链路的质量。如N2可以先取N2和N4之间通信链路质量,以及N3和N4之间通信链路质量的最小值,再参考N2和N1之间通信链路质量,以及N3和N1之间通信链路质量的最小值,然后在选出的两个最小值中选则取值更大的路径作为确定的路径。
相较于图12B示出的实施例,图12C示出的实施例中,第二通信装置在发送第三波束的指示信息前,可以进行主动感知以探测目标,如第四通信装置。这样,第二通信装置可以从多个第四通信装置中选择与第三通信装置通信的通信装置。其中,第二通信装置可以通过选择目标波束,确定与第三通信装置通信的通信装置。
在上述各个实施例中,第三通信装置(如N3)可以是发送节点,第四通信装置(如N1或N4)可以是目的节点。也就是,第三通信装置向第四通信装置发送信息,如控制信息和数据等。那么第二通信装置可以将目标波束中目标接收波束的指示信息发送给第四通信装置,将目标波束中目标发送波束的指示信息发送给第三通信装置。也就是,目标波束可以是一个波束对,包括了目标发送波束和目标接收波束。这样,向目的节点发送目标接收波束的指示信息,向发送节点发送目标发送波束的指示信息,可以节省传输资源。
另一个示例中,第三通信装置(如N3)可以是目的节点,第四通信装置(如N1或N4)可以是发送节点。也就是,第三通信装置从第四通信装置接收信息,如控制信息和数据等。那么第二通信装置可以将目标波束中目标接收波束的指示信息发送给第三通信装置,将目标波束中目标发送波束的指示信息发送给第四通信装置。也就是,目标波束可以是一个波束对,包括了目标发送波束和目标接收波束。
相较于第二通信装置向发送节点发送第三波束的指示信息让发送节点进行感知,第二通信装置向目的节点发送第三波束的指示信息让目的节点进行感知的方式,第二通信装置获得的测量结果,更加符合目的节点接收到的波束的测量结果,可以更能够反映目的节点接收波束时的质量和干扰情况。
基于同一构思,参见图13,本申请实施例提供了一种通信装置1300,该装置1300包括处理单元1301和收发单元1302。该装置1300可以是第一通信装置,也可以是应用于第一通信装置,能够支持第一通信装置执行通信方法的装置。或者,该装置1300可以是第二通信装置,也可以是应用于第二通信装置,能够支持第二通信装置执行方法的装置。或者,该装置1300可以是第三通信装置,也可以是应用于第三通信装置,能够支持第三通信装置执行方法的装置。
其中,收发单元也可以称为收发模块、收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理单元、处理装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,应理解,收发单元用于执行上述方法实施例中终端设备侧或网络设备侧的发送操作和接收操作,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元。该装置1300应用于第一通信装置时,其收发单元1302包括的接收单元用于执行第一通信装置侧的接收操作,例如获取第一时频资源和第一波束;其收发单元1302包括的发送单元用于执行获取第一时频资源和第一波束侧的发送操作,例如发送第一波束。该装置1300应用于第二通信装置时,其收发单元1302包括的接收单元用于执行第二通信装置侧的接收操作,例如获取测量结果,具体的可以是从第三通信装置接收测量结果。其收发单元1302包括的发送单元用于执行第二通信装置侧的发送操作,例如发送第三波束的指示信息,具体的可以是向第三通信装置发送第三波束的指示信息。该装置1300应用于第三通信装置时,其收发单元1302包括的接收单元用于执行第三通信装置侧的接收操作,例如获取第三波束的指示信息,具体的可以是从第二通信装置接收第三波束的指示信息。其收发单元1302包括的发送单元用于执行第三通信装置侧的发送操作,例如发送测量结果,具体的可以是向第二通信装置发送测量结果。
此外需要说明的是,若该装置采用芯片/芯片电路实现,收发单元可以是输入输出电路和/或通信接口,执行输入操作(对应前述接收操作)、输出操作(对应前述发送操作);处理单元为集成的处理器或者微处理器或者集成电路。
以下对于将该装置1300应用于第一通信装置、第二通信装置或第三通信装置的实施方式进行详细说明。
示例性的,对该装置1300应用于第一通信装置,其各单元执行的操作进行详细说明。
收发单元1302,用于获取第一时频资源和第一波束,以及在第一时频资源上发送第一波束,第一波束用于感知。处理单元1301,用于根据第一波束的反射波束,在第一波束中确定目标波束,以及根据目标波束确定第二时频资源。目标波束与接收到反射波束的第一波束对应。其中,第一时频资源、第一波束、目标波束和第二时频资源可以参见图7所示的方法实施例中的相关说明。
示例性的,对装置1300应用于第二通信装置,其各单元执行的操作进行详细说明。
收发单元1302,用于向第三通信装置发送第三波束的指示信息。其中,第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知。收发单元1302,还用于根据第三波束获取测量结果。处理单元1301,用于根据测量结果,确定目标波束。收发单元1302,还用于向第三通信装置和第四通信装置发送目标波束的指示信息。其中,目标波束根据测量结果确定,目标波束与第三波束对应,目标波束用于第三通信装置和第四通信装置通信。有关第三波束、测量结果和目标波束可以参见图10所示的方法实施例中的相关描述。
示例性的,对装置1300应用于第三通信装置,其各单元执行的操作进行详细说明。
收发单元1302,用于获取第三波束的指示信息和第一时频资源。其中,第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知。收发单元1302,还用于在第一时频资源上发送第三波束。处理单元1301,用于测量第三波束的反射波束,得到第三波束的反射波束的测量结果。收发单元1302,还用于向第二通信装置发送测量结果。有关第三波束、测量结果和目标波束可以参见图10所示的方法实施例中的相关描述。
基于同一构思,如图14所示,本申请实施例提供一种通信装置1400。该通信装置1400包括处理器1410。可选的,通信装置1400还可以包括存储器1420,用于存储处理器1410执行的指令或存储处理器1410运行指令所需要的输入数据或存储处理器1410运行指令后产生的数据。处理器1410可以通过存储器1420存储的指令实现上述方法实施例所示的方法。
基于同一构思,如图15所示,本申请实施例提供一种通信装置1500,该通信装置1500可以是芯片或者芯片系统。可选的,在本申请实施例中芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
通信装置1500可以包括至少一个处理器1510,该处理器1510与存储器耦合,可选的,存储器可以位于该装置之内,也可以位于该装置之外。例如,通信装置1500还可以包括至少一个存储器1520。存储器1520保存实施上述任一实施例中必要计算机程序、配置信息、计算机程序或指令和/或数据;处理器1510可能执行存储器1520中存储的计算机程序,完成上述任一实施例中的方法。
本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1510可能和存储器1520协同操作。本申请实施例中不限定上述收发器1530、处理器1510以及存储器1520之间的具体连接介质。
通信装置1500中还可以包括收发器1530,通信装置1500可以通过收发器1530和其它设备进行信息交互。收发器1530可以是电路、总线、收发器或者其它任意可以用于进行信息交互的装置,或称为信号收发单元。如图15所示,该收发器1530包括发射机1531、接收机1532和天线1533。此外,当该通信装置1500为芯片类的装置或者电路时,该通信装置1500中的收发器也可以是输入输出电路和/或通信接口,可以输入数据(或称,接收数据)和输出数据(或称,发送数据),处理器为集成的处理器或者微处理器或者集成电路,处理器可以根据输入数据确定输出数据。
在一种可能的实施方式中,该通信装置1500可以应用于第一通信装置,具体通信装置1500可以是第一通信装置,也可以是能够支持第一通信装置,实现上述涉及的任一实施例中第一通信装置的功能的装置。存储器1520保存实现上述任一实施例中的第一通信装置的功能的必要计算机程序、计算机程序或指令和/或数据。处理器1510可执行存储器1520存储的计算机程序,完成上述任一实施例中第一通信装置执行的方法。应用于第一通信装置,该通信装置1500中的发射机1531可以用于通过天线1533向传输第一波束,接收机1532可以用于通过天线1533接收第一波束的反射波束。
在另一种可能的实施方式中,该通信装置1500可以应用于第二通信装置,具体通信装置1500可以是第二通信装置,也可以是能够支持第二通信装置,实现上述涉及的任一实施例中第二通信装置的功能的装置。存储器1520保存实现上述任一实施例中的第二通信装置的功能的必要计算机程序、计算机程序或指令和/或数据。处理器1510可执行存储器1520存储的计算机程序,完成上述任一实施例中第二通信装置执行的方法。应用于第二通信装置,该通信装置1500中的接收机1532可以用于通过天线1533获取测量结果,发射机1531可以用于通过天线1533向第三通信装置发送第三波束的指示信息。
在另一种可能的实施方式中,该通信装置1500可以应用于第三通信装置,具体通信装置1500可以是第三通信装置,也可以是能够支持第三通信装置,实现上述涉及的任一 实施例中第三通信装置的功能的装置。存储器1520保存实现上述任一实施例中的第三通信装置的功能的必要计算机程序、计算机程序或指令和/或数据。处理器1510可执行存储器1520存储的计算机程序,完成上述任一实施例中第三通信装置执行的方法。应用于第三通信装置,该通信装置1500中的接收机1532可以用于通过天线1533获取第三波束的指示信息,发射机1531可以用于通过天线1533向第二通信装置发送测量结果。
由于本实施例提供的通信装置1500可应用于第一通信装置,完成上述第一通信装置执行的方法,或者应用于第二通信装置,完成第二通信装置执行的方法,或者应用于第三通信装置,完成第三通信装置执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实施或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实施存储功能的装置,用于存储计算机程序、计算机程序或指令和/或数据。
基于以上实施例,参见图16,本申请实施例还提供另一种通信装置1600,包括:输入输出接口1610和逻辑电路1620;输入输出接口1610,用于接收代码指令并传输至逻辑电路1620;逻辑电路1620,用于运行代码指令以执行上述任一实施例中第一通信装置、第二通信装置或者第三通信装置执行的方法。
以下,对该通信装置应用于第一通信装置、第二通信装置或者第三通信装置所执行的操作进行详细说明。
一种可选的实施方式中,该通信装置1600可应用于第一通信装置,执行上述第一通信装置所执行的方法,具体的例如前述图7所示的实施例中第一通信装置所执行的方法。逻辑电路1620,用于获取第一时频资源和第一波束。输入输出接口1610,用于在第一时频资源上输出第一波束。其中,第一波束用于感知。逻辑电路1620,还用于根据第一波束的反射波束,确定目标波束,以及根据目标波束确定第二时频资源。其中,目标波束与接收到反射波束的第一波束对应。
另一种可选的实施方式中,该通信装置1600可应用于第二通信装置,执行上述第二通信装置所执行的方法,具体的例如前述图10所示的方法实施例中第二通信装置所执行的方法。输入输出接口1610,用于向第三通信装置输出第三波束的指示信息。其中,第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知。输入输出接口1610,还用于输入测量结果。逻辑电路1620,用于根据测量结果,确定目标波束。输入输出接口1610,还用于向第三通信装置和第四通信装置输出目标波束的指示信息。其中,目标波束根据测量结果确定,目标波束与第三波束对应,目标波束用于第三通信装置和第四通信装 置通信。
另一种可选的实施方式中,该通信装置1600可应用于第三通信装置,执行上述第三通信装置所执行的方法,具体的例如前述图10所示的方法实施例中第三通信装置所执行的方法。输入输出接口1610,用于输入第三波束的指示信息和第一时频资源。其中,第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知。输入输出接口1610,还用于在第一时频资源上输出第三波束。逻辑电路1620,用于测量第三波束的反射波束,得到第三波束的反射波束的测量结果。输入输出接口1610,还用于向第二通信装置输出测量结果。
由于本实施例提供的通信装置1600可应用于第一通信装置,执行上述第一通信装置所执行的方法,或者应用于第二通信装置,完成第二通信装置执行的方法,或者应用于第三通信装置,完成第三通信装置执行的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种通信系统,该系统包括至少一个应用于第一通信装置的通信装置和至少一个应用于其他通信装置的通信装置。所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种通信系统。该通信系统包括至少一个应用于第二通信装置的通信装置和至少一个应用于第三通信装置的通信装置。所能获得的技术效果可参考上述方法实施例,在此不再赘述。
基于以上实施例,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当指令被执行时,使上述任一实施例中终端设备执行的方法被实施或者网络设备执行的方法被实施。该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
为了实现上述图13~图16的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中发送端或者接收端所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的计算机程序或指令和数据。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序或指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序或指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序或指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令 装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序或指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (40)

  1. 一种通信方法,其特征在于,该方法应用于第一通信装置,所述方法包括:
    获取第一时频资源和第一波束;所述第一波束用于感知;
    在所述第一时频资源上发送所述第一波束;
    根据所述第一波束的反射波束,确定目标波束;所述目标波束与接收到所述反射波束的第一波束对应;
    根据所述目标波束确定第二时频资源。
  2. 根据权利要求1所述的方法,其特征在于,所述目标波束用于竞争性资源选择。
  3. 根据权利要求1或2所述的方法,其特征在于,所述获取第一时频资源,包括:
    在第一时间窗内监听第一信息;所述第一信息用于确定被占用的第三时频资源;
    其中,所述第一时频资源不包括所述第三时频资源。
  4. 根据权利要求1~3任一所述的方法,其特征在于,所述第一波束是预配置的波束。
  5. 根据权利要求3所述的方法,其特征在于,所述在第一时间窗内监听第一信息,包括:
    在所述第一时间窗内根据第二波束监听所述第一信息;其中,所述第二波束与所述第一波束对应。
  6. 根据权利要求5所述的方法,其特征在于,未监听到所述第一信息的第二波束与所述第一波束对应。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一时频资源在时域上位于第二时间窗内;
    所述第一时间窗和所述第二时间窗在时域上交替出现;或者,所述第一时间窗在时域上位于所述第二时间窗之前。
  8. 根据权利要求7所述的方法,其特征在于,所述第一时间窗的长度与所述第二波束的数量成正比,和/或所述第二时间窗的长度与所述第一波束的数量成正比。
  9. 根据权利要求1~8任一所述的方法,其特征在于,所述根据所述目标波束确定第二时频资源,包括:
    根据所述目标波束监听第一信息;所述第一信息用于确定被占用的第三时频资源;
    其中,所述第二时频资源不包括所述第三时频资源。
  10. 根据权利要求3~8任一所述的方法,其特征在于,时间窗与业务的优先级相关。
  11. 根据权利要求1所述的方法,其特征在于,所述第二时频资源用于通信。
  12. 根据权利要求1所述的方法,其特征在于,以下至少一项是随机选择的:第一时频资源、第二时频资源。
  13. 根据权利要求1~12任一所述的方法,其特征在于,所述第一时频资源的频率与所述第二时频资源的频率不同。
  14. 一种通信方法,其特征在于,包括:
    第二通信装置向第三通信装置发送第三波束的指示信息;所述第三波束用于以下中的至少一种:所述第三通信装置通信,所述第三通信装置感知;
    所述第二通信装置根据所述第三波束获取测量结果;
    所述第二通信装置向所述第三通信装置和第四通信装置发送目标波束的指示信息;所述目标波束根据所述测量结果确定,所述目标波束与所述第三波束对应;所述目标波束用于所述第三通信装置和所述第四通信装置通信。
  15. 根据权利要求14所述的方法,其特征在于,还包括:
    所述第二通信装置向所述第三通信装置发送第一时频资源的指示信息;所述第一时频资源用于传输所述第三波束。
  16. 根据权利要求14或15所述的方法,其特征在于,还包括:
    所述第二通信装置向所述第三通信装置发送反馈资源的指示信息;
    所述第二通信装置在所述反馈资源上获取所述测量结果。
  17. 根据权利要求14~16任一所述的方法,其特征在于,所述第三波束与第四波束对应;所述第四波束用于感知。
  18. 根据权利要求17所述的方法,其特征在于,所述第二通信装置根据所述第三波束获取测量结果,包括:
    所述第二通信装置根据所述第四波束获取所述测量结果。
  19. 根据权利要求14~18任一所述的方法,其特征在于,还包括:
    所述第二通信装置向所述第三通信装置发送第四时间窗的指示信息,所述第四时间窗是所述第三通信装置基于所述第三波束监听的时间窗。
  20. 根据权利要求17所述的方法,其特征在于,还包括:
    所述第二通信装置向所述第三通信装置发送第五时间窗的指示信息,所述第五时间窗是所述第三通信装置基于所述第四波束感知的时间窗;或者,所述第五时间窗是所述第三通信装置基于所述第四波束通信和感知的时间窗。
  21. 根据权利要求14~20任一所述的方法,其特征在于,还包括:
    所述第二通信装置发送第五波束;
    所述第二通信装置根据所述第五波束的反射波束,确定第六波束;所述第六波束用于以下中的至少一种:第二通信装置通信、第二通信装置感知。
  22. 根据权利要求21所述的方法,其特征在于,所述第三波束的指示信息是根据所述第二通信装置的位置信息、所述第三通信装置的位置信息和所述第四通信装置的位置信息确定的;或者,所述第三波束的指示信息是根据所述第二通信装置与所述第三通信装置之间的距离、所述第二通信装置和所述第四通信装置间的距离、所述第二通信装置和所述第三通信装置通信所采用的波束和所述第二通信装置和所述第四通信装置所采用的波束的夹角确定的。
  23. 一种通信方法,其特征在于,包括:
    第三通信装置获取第三波束的指示信息和第一时频资源;所述第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知;
    所述第三通信装置在所述第一时频资源上发送所述第三波束;
    所述第三通信装置测量所述第三波束的反射波束,得到所述第三波束的反射波束的测量结果;
    所述第三通信装置向第二通信装置发送所述测量结果。
  24. 根据权利要求23所述的方法,其特征在于,还包括:
    所述第三通信装置获取目标波束的指示信息;所述目标波束根据所述测量结果确定,所述目标波束与所述第三波束对应;所述目标波束用于所述第三通信装置和第四通信装置通信。
  25. 根据权利要求23或24所述的方法,其特征在于,还包括:
    所述第三通信装置获取反馈资源的指示信息;
    所述第三通信装置在所述反馈资源上向所述第二通信装置发送所述测量结果。
  26. 根据权利要求23所述的方法,其特征在于,还包括:
    所述第三通信装置在所述第三波束上监听第一信息,所述第一信息用于确定被占用的第三时频资源;
    其中,所述第一时频资源不包括所述第三时频资源。
  27. 根据权利要求26所述的方法,其特征在于,所述第三波束与第四波束对应;所述第四波束用于感知。
  28. 根据权利要求27所述的方法,其特征在于,所述第三通信装置在所述第一时频资源上发送所述第三波束,包括:
    所述第三通信装置在所述第一时频资源发送所述第四波束;
    所述第三通信装置测量所述第三波束的反射信号,得到所述第三波束的反射信号的测量结果,包括:
    所述第三通信装置测量所述第四波束的反射信号,得到所述第四波束的反射信号的测量结果。
  29. 根据权利要求26所述的方法,其特征在于,还包括:
    所述第三通信装置获取第四时间窗的指示信息,所述第四时间窗是所述第三通信装置基于所述第三波束监听的时间窗。
  30. 根据权利要求28所述的方法,其特征在于,还包括:
    所述第三通信装置获取第五时间窗的指示信息,所述第五时间窗的指示信息是所述第三通信装置基于所述第四波束感知的时长;或者,所述第五时间窗是所述第三通信装置基于所述第四波束通信和感知的时间窗。
  31. 根据权利要求23~30任一所述的方法,其特征在于,所述目标波束包括目标发送波束和目标接收波束;
    所述第三通信装置获取所述目标波束的指示信息,包括:
    所述第三通信装置获取所述目标发送波束的指示信息;或者
    所述第三通信装置获取所述目标接收波束的指示信息。
  32. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于获取第一时频资源和第一波束;所述第一波束用于感知;以及,在所述第一时频资源上发送所述第一波束;
    所述处理单元,用于根据所述第一波束的反射波束,在所述第一波束中确定目标波束;所述目标波束与接收到所述反射波束的第一波束对应;以及,根据所述目标波束确定第二时频资源。
  33. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于向第三通信装置发送第三波束的指示信息;所述第三波束用于以 下中的至少一种:第三通信装置通信,第三通信装置感知;以及,所述第二通信装置根据所述第三波束获取测量结果;
    所述处理单元,用于根据所述测量结果确定目标波束;所述目标波束与所述第三波束对应;所述目标波束用于所述第三通信装置和所述第四通信装置通信;
    所述收发单元,还用于向所述第三通信装置和第四通信装置发送目标波束的指示信息。
  34. 一种通信装置,其特征在于,包括:处理单元和收发单元;
    所述收发单元,用于获取第三波束的指示信息和第一时频资源;所述第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知;以及,在所述第一时频资源上发送所述第三波束;
    所述处理单元,用于测量所述第三波束的反射信号,得到所述第三波束的反射信号的测量结果;
    所述收发单元,还用于向第二通信装置发送所述测量结果。
  35. 一种通信装置,其特征在于,包括:至少一个处理器,所述处理器和存储器耦合;
    所述存储器用于存储计算机程序或指令;
    所述处理器用于执行所述计算机程序或指令,以实现权利要求1~13任一项所述的方法或者实现权利要求14~22任一项所述的方法,或者实现权利要求23~31任一项所述的方法。
  36. 一种通信装置,其特征在于,包括:逻辑电路和输入输出接口;
    所述逻辑电路用于获取第一时频资源和第一波束;所述第一波束用于感知;
    所述输入输出接口用于在所述第一时频资源上输出所述第一波束;
    所述逻辑电路还用于根据所述第一波束的反射波束,确定目标波束;以及,根据所述目标波束确定第二时频资源;所述目标波束与接收到所述反射波束的第一波束对应。
  37. 一种通信装置,其特征在于,包括:逻辑电路和输入输出接口;
    所述输入输出接口用于向第三通信装置发送第三波束的指示信息;并根据所述第三波束获取测量结果;所述第三波束用于以下中的至少一种:第三通信装置通信,第三通信装置感知;
    所述逻辑电路用于根据所述测量结果,确定目标波束;所述目标波束根据所述测量结果确定,所述目标波束与所述第三波束对应;所述目标波束用于所述第三通信装置和所述第四通信装置通信;
    所述输入输出接口还用于向所述第三通信装置和第四通信装置发送所述目标波束的指示信息。
  38. 一种通信装置,其特征在于,包括:逻辑电路和输入输出接口
    所述输入输出接口用于输入获取第三波束的指示信息和第一时频资源;并在所述第一时频资源上发送所述第三波束;所述第三波束用于以下中的至少一种:所述通信装置通信,所述通信装置感知;
    所述逻辑电路用于测量所述第三波束的反射波束,得到所述第三波束的反射波束的测量结果;
    所述输入输出接口还用于向第二通信装置输出所述测量结果。
  39. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机 程序或指令,当所述指令在计算机上运行时,实现权利要求1~13任一项所述的方法或者实现权利要求14~22任一项所述的方法,或者实现权利要求23~31任一项所述的方法。
  40. 一种计算机程序产品,其特征在于,包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得所述计算机执行如权利要求1~13任一项所述的方法或者如权利要求14~22任一项所述的方法或者如权利要求23~31任一项所述的方法。
PCT/CN2022/134777 2021-12-02 2022-11-28 一种通信方法和装置 WO2023098633A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111461301.0 2021-12-02
CN202111461301.0A CN116234012A (zh) 2021-12-02 2021-12-02 一种通信方法和装置

Publications (1)

Publication Number Publication Date
WO2023098633A1 true WO2023098633A1 (zh) 2023-06-08

Family

ID=86587756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134777 WO2023098633A1 (zh) 2021-12-02 2022-11-28 一种通信方法和装置

Country Status (2)

Country Link
CN (1) CN116234012A (zh)
WO (1) WO2023098633A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543443A (zh) * 2019-09-20 2021-03-23 华为技术有限公司 通信方法和通信装置
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN113630225A (zh) * 2021-06-28 2021-11-09 中国信息通信研究院 一种边链路感知信号发送方法和设备
CN113727446A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号动态发送方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112543443A (zh) * 2019-09-20 2021-03-23 华为技术有限公司 通信方法和通信装置
CN112748425A (zh) * 2019-10-31 2021-05-04 华为技术有限公司 感知方法及装置
CN113630225A (zh) * 2021-06-28 2021-11-09 中国信息通信研究院 一种边链路感知信号发送方法和设备
CN113727446A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号动态发送方法和设备

Also Published As

Publication number Publication date
CN116234012A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
CN108809370B (zh) 用于使用无线网络中的多个频带进行通信的系统
CN110475279B (zh) 通信的方法和通信装置
WO2018141272A1 (zh) 终端、网络设备和通信方法
CN111867094B (zh) 数据接收和发送方法及装置
EP3592078A1 (en) Channel aware resource allocation
JP2019526990A (ja) Mmw wlanシステム中での複数のチャネル送信
CN111866936A (zh) 辅小区激活方法和装置
CN113453268A (zh) 空间复用的方法、装置、计算机可读存储介质和芯片
CN116158171A (zh) 用于全双工系统中的接收和发送波束配对的方法和系统
CN110999148B (zh) 用于提供实况反馈的方法和装置
JP7399190B2 (ja) 通信方法及び通信装置
JP2018528709A (ja) 無線通信システムにおいて制御情報を送信するための方法、基地局、及びユーザ機器
EP3920434A1 (en) Communication method and device
CN111052802B (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
CN110719642B (zh) 用于数据传输的方法和装置
US11895517B2 (en) Enhanced fragmented sector level sweep procedure in MMW WLAN systems
KR20160140350A (ko) 빔 스케줄링 방법 및 장치
CN108141892A (zh) 用于选择用于多用户传输的增强型分布式信道接入参数的方法和装置
WO2015172838A1 (en) Wireless backhaul configuration
EP3975637B1 (en) Method and device for adjusting pdcch monitoring period
EP3535854B1 (en) Flexible beam configurations for disparate deployment scenarios
CN109906649B (zh) 具有用于先说后听方案的协调信令的自包含通信
WO2023098633A1 (zh) 一种通信方法和装置
WO2018059309A1 (zh) 接入信息的发送、接收方法及装置,传输系统和存储介质
US20220201620A1 (en) System and Method for Uplink Power Control in Multi-AP Coordination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900437

Country of ref document: EP

Kind code of ref document: A1