WO2023098567A1 - 一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法 - Google Patents

一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法 Download PDF

Info

Publication number
WO2023098567A1
WO2023098567A1 PCT/CN2022/134102 CN2022134102W WO2023098567A1 WO 2023098567 A1 WO2023098567 A1 WO 2023098567A1 CN 2022134102 W CN2022134102 W CN 2022134102W WO 2023098567 A1 WO2023098567 A1 WO 2023098567A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
corundum
titanium
resistant castable
cement kiln
Prior art date
Application number
PCT/CN2022/134102
Other languages
English (en)
French (fr)
Inventor
康剑
高长贺
马淑龙
马飞
王浩杰
张积礼
张康康
周新功
倪高金
张海波
Original Assignee
北京金隅通达耐火技术有限公司
巩义通达中原耐火技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金隅通达耐火技术有限公司, 巩义通达中原耐火技术有限公司 filed Critical 北京金隅通达耐火技术有限公司
Publication of WO2023098567A1 publication Critical patent/WO2023098567A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/1015Refractories from grain sized mixtures containing refractory metal compounds other than those covered by C04B35/103 - C04B35/106
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the disclosure belongs to the technical field of refractory materials, and in particular relates to a titanium composite corundum silicon carbide wear-resistant castable for the mouth of a cement kiln and a preparation method thereof.
  • the kiln mouth of the cement kiln is the key part of the new dry process cement firing system.
  • a large amount of sand and dust carried by the secondary air will cause severe erosion and wear to the refractory lining of the kiln mouth.
  • the refractory lining of the kiln mouth will be thermally damaged by thermal shock.
  • the replacement of the kiln mouth lining refractory material needs to be carried out after the kiln is stopped and cooled. Therefore, the quality of the kiln lining refractory material directly affects the operation period of the firing system equipment and the output of cement clinker.
  • the present disclosure provides a titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth, expressed in mass percentage, the titanium composite corundum silicon carbide wear-resistant castable is mainly composed of (take titanium composite corundum for cement kiln mouth Based on the total mass of silicon carbide wear-resistant castables) 15% to 20% of fused white corundum of 3mm to 5mm raw material, 15% to 25% of fused white corundum of 1mm to 3mm, 15% of fused white corundum of 0mm to 1mm ⁇ 25%, 1mm ⁇ 3mm 97 silicon carbide 2% ⁇ 8%, 0mm ⁇ 1mm 97 silicon carbide 5% ⁇ 10%, 200 mesh 97 silicon carbide 2% ⁇ 8%, 0mm ⁇ 1mm titanium reinforced corundum refractory It consists of 5%-15% of materials, 10%-20% of 200-mesh titanium reinforced corundum refractory material, 5%-10% of activated alumina powder and 5%-8% of aluminate cement.
  • the main components and their mass percentages in the fused white corundum are Al 2 O 3 ⁇ 98%, Fe 2 O 3 ⁇ 0.2%, K 2 O ⁇ 0.1% and Na 2 O ⁇ 0.5% .
  • the mass percentage of SiC in the 97 silicon carbide is ⁇ 97%, and the mass percentage of Fe 2 O 3 is ⁇ 1.0%.
  • the mass percentage of Al 2 O 3 in the titanium-reinforced corundum-based refractory material is 80.76%
  • the mass percentage of SiO 2 is 1.54%
  • the mass percentage of Fe 2 O 3 is ⁇ 2.0%
  • the mass percentage of TiO 2 is 16.73%
  • the mass percentage of K 2 O is ⁇ 0.1%
  • the mass percentage of Na 2 O is ⁇ 0.1%.
  • the mass percentage of Al 2 O 3 in the activated alumina powder is ⁇ 98%, the mass percentage of Fe 2 O 3 is ⁇ 0.1%, and the mass percentage of Na 2 O is ⁇ 0.5%.
  • the particle size of the activated alumina powder is 325 mesh.
  • the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth has an apparent bulk density of ⁇ 2.95g/cm 3 , a compressive strength of ⁇ 105MPa, and a flexural strength of ⁇ 12MPa.
  • High temperature wear loss ⁇ 3.0cm 3 .
  • the present disclosure also provides a preparation method of a titanium composite corundum silicon carbide wear-resistant castable for cement kiln kilns, the preparation method comprising the following steps:
  • the addition of the water reducing agent sodium tripolyphosphate is 0.2% of the total weight of various raw materials, the addition of the retarder sodium fluorosilicate is 0.005% of the total weight of various raw materials, the addition of the water 3% to 5% of the total weight of various raw materials;
  • the product obtained after molding is cured at 20°C to 25°C, and the curing time is 24h to 48h;
  • the obtained product After curing, the obtained product is dried, and the product titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth is obtained after drying.
  • the drying is carried out in an oven, the drying temperature is 100°C-120°C, and the drying time is 12h-24h.
  • the corundum-silicon carbide castable disclosed in the present disclosure is used as an excellent lining refractory material for the kiln mouth of a cement kiln because of its excellent volume stability, corrosion resistance, high temperature resistance and other properties.
  • a small amount of additives are usually added to the castable.
  • TiO2 admixture into the corundum castable can promote the sintering of the corundum castable and generate aluminum titanate at high temperature, reduce the thermal expansion coefficient of the material, inhibit the rapid growth of corundum crystals, and further improve the thermal shock resistance of the material .
  • the disclosure provides a titanium-composite corundum-silicon carbide wear-resistant castable for a cement kiln mouth and a preparation method thereof.
  • the titanium composite corundum used in the disclosed technical solution is a new type of titanium composite corundum raw material that is re-synthesized from the by-product of ferro-titanium slag produced in the ferro-titanium alloy smelting process and can be used as a substitute for part of white corundum, and Through different particle sizes and dosage ratios, the castable strength and wear resistance of white corundum plus TiO 2 can be made higher than that of white corundum plus TiO 2 ; thus, it can greatly save raw material costs, increase the profit of traditional refractory products, and achieve better use effects.
  • the present disclosure provides a titanium-composite corundum-silicon carbide wear-resistant castable for the mouth of a cement kiln, which is expressed in mass percentage, and is expressed as a percentage of the total mass of the titanium-composite corundum silicon carbide wear-resistant castable for the mouth of a cement kiln.
  • the titanium composite corundum silicon carbide wear-resistant castable is mainly composed of 15% to 20% of fused white corundum of 3mm to 5mm, 15% to 25% of fused white corundum of 1mm to 3mm, and 15% of fused white corundum of 0mm to 1mm.
  • the present disclosure also provides a titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth, expressed in mass percentage, expressed as a percentage of the total mass of the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth,
  • the titanium composite corundum silicon carbide wear-resistant castable is mainly composed of 15% to 20% of fused white corundum of 3mm to 5mm, 15% to 25% of fused white corundum of 1mm to 3mm, and 15% to 25% of fused white corundum of 0mm to 1mm.
  • the sizes mentioned in this context are the particle size ranges of the raw materials.
  • 0mm to 1mm or 1mm to 0mm does not include the endpoint value 0mm, that is, it can be understood that the particle size is greater than 0mm and less than or equal to 1mm.
  • the % mentioned in the context of this article is the mass percentage based on the total amount of castable.
  • the content of fused white corundum with a particle size in the range of 3 mm to 5 mm can be, for example, 3 mm, 3.5 mm, 4 mm, 4.5 mm or 5 mm, or an interval value between any two endpoints
  • the particle size can be, for example, 3 mm, 3.5 mm, 4 mm, 4.5 mm or 5 mm, or an interval value between any two endpoints
  • the particle size can be, for example, 3 mm, 3.5 mm, 4 mm, 4.5 mm or 5 mm, or an interval value between any two endpoints
  • 15.5%-19.5%, 16%-19% or 17%-18% such as 15%, 15.5%, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5% or 20%, or any interval value between the two endpoints.
  • the content of fused white corundum with a particle size in the range of 1 mm to 3 mm can be for example 15.5%-19.5%, 16%-19% or 17%-18%, such as 15%, 15.5%, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5% , 20%, 21%, 22%, 23%, 24%, 25%, or an interval between any two endpoints.
  • the particle size can be such as 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm, 0.9 mm or 1 mm, or an interval value between any two endpoints
  • the content of white corundum can be, for example, 15.5% to 19.5%, 16% to 19%, or 17% to 18%, such as 15%, 15.5%, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5%, 20%, 21%, 22%, 23%, 24%, 25%, or an interval value between any two endpoints.
  • the particle size of fused white corundum does not include the endpoint value of 0 mm, which can be understood as a particle size greater than 0 mm and less than or equal to 1 mm.
  • the particle size is between 1mm and 3mm (the particle size can be such as 0.5mm, 0.8mm, 1mm, 1.5mm, 1.8mm, 2mm, 2.5mm, 2.8mm or 3mm, or an interval value between any two endpoints range)
  • the content of silicon carbide within the range can be, for example, 2%, 3%, 4%, 5%, 6%, 7% or 8%, or an interval value between any two endpoints.
  • silicon carbide with a particle size in the range of 0mm to 1mm (the particle size can be such as 0.1mm, 0.3mm, 0.5mm, 0.7mm, 0.9mm or 1mm, or an interval value between any two endpoints)
  • the content of can be, for example, 5%, 6%, 7%, 8%, 9% or 10%, or an interval value between any two endpoints.
  • the particle size of silicon carbide does not include the endpoint value of 0 mm, which can be understood as a particle size greater than 0 mm and less than or equal to 1 mm.
  • the content of 200-mesh silicon carbide may be 2%, 3%, 4%, 5%, 6%, 7% or 8%, or an interval value between any two endpoints.
  • titanium-reinforced corundum with a particle size of 0 mm to 1 mm (the particle size can be such as 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm, 0.9 mm or 1 mm, or an interval value between any two endpoints)
  • the content of refractory material can be, for example, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14% or 15%, or an interval value between any two endpoints .
  • the particle size of the titanium-reinforced corundum-based refractory material does not include the endpoint value of 0 mm, which can be understood as a particle size greater than 0 mm and less than or equal to 1 mm.
  • the content of the 200-mesh titanium-reinforced corundum-based refractory material may be 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20%, or An interval value between any two endpoints.
  • the particle size of the titanium-reinforced corundum-based refractory material disclosed in the present disclosure can further reduce the volume expansion in the reaction system within the above range.
  • the content of activated alumina powder can be 5%, 6%, 7%, 8%, 9% or 10%, or an interval value between any two endpoints.
  • the content of aluminate cement can be 5%, 6%, 7% or 8%, or an interval value between any two endpoints.
  • the main component and its mass percentage content in the fused white corundum in terms of the mass percentage of fused white corundum, is Al 2 O 3 ⁇ 98%, Fe 2 O 3 ⁇ 0.2%, K 2 O ⁇ 0.1%, and Na 2 O ⁇ 0.5%.
  • the mass percentage of SiC is ⁇ 97%, and the mass percentage of Fe2O3 Content ⁇ 1.0%.
  • the mass percentage of Al2O3 is calculated by the mass percentage of the titanium-enhanced corundum refractory material . 80.76%, the mass percentage of SiO 2 is 1.54%, the mass percentage of Fe 2 O 3 is ⁇ 2.0%, the mass percentage of TiO 2 is 16.73%, the mass percentage of K 2 O is ⁇ 0.1% and The mass percentage of Na 2 O is ⁇ 0.1%.
  • the titanium-reinforced corundum-based refractory material used in this disclosure is prepared by the technical solution disclosed in CN 202010567012.8.
  • the mass percentage of activated alumina powder in terms of the mass percentage of activated alumina powder, the mass percentage of Al 2 O 3 is ⁇ 98%, Fe The mass percentage of 2 O 3 is ⁇ 0.1%, and the mass percentage of Na 2 O is ⁇ 0.5%.
  • the particle size of the activated alumina powder is 325 mesh.
  • a method for preparing a titanium-composite corundum silicon carbide wear-resistant castable for cement kiln mouth includes the following steps:
  • the addition of the water reducing agent sodium tripolyphosphate is 0.2% of the total weight of various raw materials, the addition of the retarder sodium fluorosilicate is 0.005% of the total weight of various raw materials, the addition of the water 3% to 5% of the total weight of various raw materials;
  • step b Vibrating the mixed material obtained in step b;
  • the obtained product is dried, and the product titanium composite corundum silicon carbide wear-resistant castable for cement kiln kiln mouth is obtained after drying.
  • the drying in step e is carried out in an oven at a drying temperature of 100-120° C. and a drying time of 12-24 hours.
  • the titanium-composite corundum silicon carbide wear-resistant castable prepared by using the disclosed technical solution has excellent wear resistance, is suitable for the kiln mouth of a cement kiln, can effectively increase the safe operation period of a cement rotary kiln, and realize increased production and reduced consumption of cement enterprises. Therefore, the present disclosure has significant economic and social benefits.
  • the introduction of titanium-reinforced corundum-based refractory material promotes the sintering of the material, and significantly improves the compressive strength and flexural strength of the material after calcination at medium and low temperatures. It reduces the over-burning and volume shrinkage of the material under high-temperature calcination due to the introduction of additional TiO 2 , and enhances the high-temperature wear resistance of the material.
  • the product titanium composite corundum silicon carbide wear-resistant castable prepared by using the disclosed technical scheme has an apparent bulk density ⁇ 2.95g/cm 3 , a compressive strength of 110-150MPa, and a flexural strength of 12-17MPa; the test temperature is 1200°C
  • the high temperature wear loss is ⁇ 3cm 3 .
  • the main components and mass percentages of fused white corundum used in the following examples are Al 2 O 3 ⁇ 98%, Fe 2 O 3 ⁇ 0.2%, K 2 O ⁇ 0.1% and Na 2 O ⁇ 0.5% ;
  • the mass percentage content of Fe2O3 is 1.54%, the mass percentage content of Fe2O3 ⁇ 2.0 %, the mass percentage content of TiO2 is 16.73%, the mass percentage content of K2O ⁇ 0.1 % and the mass percentage content of Na2O
  • the percentage content is ⁇ 0.1% (the titanium-reinforced corundum-based refractory material is prepared by the technical scheme disclosed in CN202010567012.8); the mass percentage content of Al 2 O 3 in the activated alumina powder is ⁇ 98%, Fe 2 O The mass percentage content of 3 is
  • the titanium-composited corundum silicon carbide wear-resistant castable for the cement kiln mouth of the present disclosure is represented by mass percentage, consisting of 15% of fused white corundum of 3-5mm in raw material, 25% of fused white corundum of 1mm-3mm in thickness, 1-3mm in fused white corundum 0mm fused white corundum 15%, 1mm ⁇ 3mm 97 silicon carbide 8%, 1 ⁇ 0mm 97 silicon carbide 10%, 200 mesh 97 silicon carbide 2%, 0mm ⁇ 1mm titanium reinforced corundum refractories 5%,
  • the 200-mesh titanium-reinforced corundum-based refractory material consists of 10%, activated alumina powder 5%, and aluminate cement 5%.
  • A at first take various raw materials according to the proportioning ratio of titanium composite corundum silicon carbide wear-resistant castable for cement kiln kiln mouth described in embodiment 1;
  • the addition of the water reducing agent sodium tripolyphosphate is 0.2% of the total weight of various raw materials, the addition of the retarder sodium fluorosilicate is 0.005% of the total weight of various raw materials, the addition of the water 5% of the total weight of various raw materials;
  • step b Vibrating the mixed material obtained in step b;
  • the obtained product is dried (the drying temperature is 100-120° C., and the drying time is 24 hours). After drying, the product titanium composite corundum silicon carbide wear-resistant castable for cement kiln kiln mouth is obtained.
  • the apparent bulk density of the prepared product is ⁇ 2.95g/cm 3
  • the compressive strength is 115MPa
  • the flexural strength is 13MPa
  • the high temperature wear loss at a test temperature of 1200°C is 2.36cm 3 .
  • the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth of the present disclosure is represented by mass percentage, consisting of 17% of fused white corundum of 3mm to 5mm, 16% of fused white corundum of 1mm to 3mm, and 16% of fused white corundum of 0mm to 16% fused white corundum of 1mm, 5% of 97 silicon carbide of 1mm ⁇ 3mm, 8% of 97 silicon carbide of 0mm ⁇ 1mm, 5% of 97 silicon carbide of 200 mesh, 8% of titanium reinforced corundum refractory material of 0mm ⁇ 1mm, 200-mesh titanium reinforced corundum refractory material 12%, activated alumina powder 6% and aluminate cement 7%.
  • Example 3 of the present disclosure The preparation method of the titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth described in Example 3 of the present disclosure is the same as that in Example 2.
  • the apparent bulk density of the prepared product is ⁇ 2.95g/cm 3 , the compressive strength is 140MPa, and the flexural strength is 13MPa; the high-temperature abrasion loss at a test temperature of 1200°C is 1.96cm 3 .
  • the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth of the present disclosure is represented by mass percentage, consisting of 20% of fused white corundum of 3mm to 5mm, 15% of fused white corundum of 1mm to 3mm, and 0mm to 1mm fused white corundum 25%, 1mm ⁇ 3mm 97 silicon carbide 2%, 0mm ⁇ 1mm 97 silicon carbide 5%, 200 mesh 97 silicon carbide 8%, 0mm ⁇ 1mm titanium reinforced corundum refractories 5%,
  • the 200-mesh titanium-reinforced corundum-based refractory material consists of 10%, activated alumina powder 5%, and aluminate cement 5%.
  • A at first take various raw materials according to the proportioning ratio of titanium composite corundum silicon carbide wear-resistant castable for cement kiln kiln mouth described in embodiment 5;
  • the addition of the water reducing agent sodium tripolyphosphate is 0.2% of the total weight of various raw materials, the addition of the retarder sodium fluorosilicate is 0.005% of the total weight of various raw materials, the addition of the water 4% of the total weight of various raw materials;
  • step b Vibrating the mixed material obtained in step b;
  • the obtained product is dried (the drying temperature is 100-120° C., and the drying time is 20 hours). After drying, the product titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth is obtained.
  • the apparent bulk density of the prepared product is ⁇ 2.95g/cm 3 , the compressive strength is 124MPa, and the flexural strength is 15MPa; the high-temperature wear loss at a test temperature of 1200°C is 2.09cm 3 .
  • the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth of the present disclosure is represented by mass percentage, consisting of 15% of fused white corundum of 3mm-5mm, 20% of fused white corundum of 1mm-3mm, and 0mm- 18% fused white corundum of 1mm, 2% of 97 silicon carbide of 1mm to 3mm, 5% of 97 silicon carbide of 0mm to 1mm, 5% of 97 silicon carbide of 200 mesh, 15% of titanium reinforced corundum refractory material of 0mm to 1mm,
  • the 200-mesh titanium-reinforced corundum-based refractory material consists of 10%, activated alumina powder 5%, and aluminate cement 5%.
  • Example 7 of the present disclosure The preparation method of the titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth described in Example 7 of the present disclosure is the same as that in Example 2.
  • the apparent bulk density of the prepared product is ⁇ 2.95g/cm 3
  • the compressive strength is 105MPa
  • the flexural strength is 12MPa
  • the high temperature wear loss at a test temperature of 1200°C is 2.28cm 3 .
  • the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth of the present disclosure is represented by mass percentage, consisting of 15% of fused white corundum of 3mm-5mm, 20% of fused white corundum of 1mm-3mm, and 0mm- 1mm fused white corundum 20%, 1mm ⁇ 3mm 97 silicon carbide 3%, 0mm ⁇ 1mm 97 silicon carbide 5%, 200 mesh 97 silicon carbide 2%, 0mm ⁇ 1mm titanium reinforced corundum refractories 5%,
  • the 200-mesh titanium reinforced corundum refractory material consists of 20%, activated alumina powder 5% and aluminate cement 5%.
  • Example 9 The preparation method of the titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth described in Example 9 of the present disclosure is the same as that in Example 2.
  • the apparent bulk density of the prepared product is ⁇ 2.95g/cm 3 , the compressive strength is 147MPa, and the flexural strength is 16MPa; the high-temperature wear loss at a test temperature of 1200°C is 1.98cm 3 .
  • the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth of the present disclosure is represented by mass percentage, consisting of 15% of fused white corundum of 3mm-5mm, 20% of fused white corundum of 1mm-3mm, and 0mm- 18% fused white corundum of 1mm, 2% of 97 silicon carbide of 1mm ⁇ 3mm, 5% of 97 silicon carbide of 0mm ⁇ 1mm, 2% of 97 silicon carbide of 200 mesh, 5% of titanium reinforced corundum refractory material of 0mm ⁇ 1mm, 200-mesh titanium reinforced corundum refractory material 15%, activated alumina powder 10% and aluminate cement 8%.
  • Example 11 of the present disclosure The preparation method of the titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth described in Example 11 of the present disclosure is the same as that of Example 6.
  • the apparent bulk density of the prepared product is ⁇ 2.95g/cm 3 , the compressive strength is 110MPa, and the flexural strength is 12MPa; the high-temperature wear loss at a test temperature of 1200°C is 2.97cm 3 .
  • the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth of the present disclosure is represented by mass percentage, consisting of 20% of fused white corundum of 3mm to 5mm, 20% of fused white corundum of 1mm to 3mm, and 20% of fused white corundum of 0mm to 15% of fused white corundum of 1mm, 5% of 97 silicon carbide of 1mm to 3mm, 5% of 97 silicon carbide of 0mm to 1mm, 5% of 97 silicon carbide of 200 mesh, 5% of titanium reinforced corundum refractory material of 0mm to 1mm,
  • the 200-mesh titanium reinforced corundum refractory material is composed of 10%, activated alumina powder 8% and aluminate cement 7%.
  • Example 13 of the present disclosure The preparation method of the titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth described in Example 13 of the present disclosure is the same as in Example 6.
  • the apparent bulk density of the prepared product is ⁇ 2.95g/cm 3 , the compressive strength is 135MPa, and the flexural strength is 15MPa; the high-temperature abrasion loss at a test temperature of 1200°C is ⁇ 2.19m 3 .
  • the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth of the present disclosure is represented by mass percentage, consisting of 15% of fused white corundum of 3mm-5mm, 25% of fused white corundum of 1mm-3mm, and 0mm- 15% fused white corundum of 1mm, 5% of 97 silicon carbide of 1mm ⁇ 3mm, 10% of 97 silicon carbide of 0mm ⁇ 1mm, 5% of 97 silicon carbide of 200 mesh, 5% of titanium reinforced corundum refractory material of 0mm ⁇ 1mm,
  • the 200-mesh titanium-reinforced corundum-based refractory material consists of 10%, activated alumina powder 5%, and aluminate cement 5%.
  • Example 15 of the present disclosure The preparation method of the titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth described in Example 15 of the present disclosure is the same as in Example 6.
  • the apparent bulk density of the prepared product is ⁇ 2.95g/cm 3 , the compressive strength is 121MPa, and the flexural strength is 13MPa; the high-temperature wear loss at a test temperature of 1200°C is 2.31cm 3 .
  • the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth of the present disclosure is represented by mass percentage, consisting of 18% of fused white corundum of 3mm-5mm, 20% of fused white corundum of 1mm-3mm, and 0mm- 18% of fused white corundum of 1mm, 4% of 97 silicon carbide of 1mm to 3mm, 9% of 97 silicon carbide of 0mm to 1mm, 4% of 97 silicon carbide of 200 mesh, 7% of titanium reinforced corundum refractory material of 0mm to 1mm,
  • the 200-mesh titanium-reinforced corundum-based refractory material consists of 10%, activated alumina powder 5%, and aluminate cement 5%.
  • Example 17 of the present disclosure The preparation method of the titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth described in Example 17 of the present disclosure is the same as that of Example 6.
  • the apparent bulk density of the prepared product is ⁇ 2.95g/cm 3 , the compressive strength is 127MPa, and the flexural strength is 15MPa; the high-temperature wear loss at a test temperature of 1200°C is 2.17cm 3 .
  • the titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth of the present disclosure is represented by mass percentage, consisting of 17% of fused white corundum of 3mm to 5mm, 20% of fused white corundum of 1mm to 3mm, and 0mm to 1mm fused white corundum 20%, 1mm ⁇ 3mm 97 silicon carbide 5%, 0mm ⁇ 1mm 97 silicon carbide 5%, 200 mesh 97 silicon carbide 5%, 0mm ⁇ 1mm titanium reinforced corundum refractories 5%,
  • the 200-mesh titanium reinforced corundum refractory material is composed of 10%, activated alumina powder 8% and aluminate cement 5%.
  • A at first take various raw materials according to the proportioning ratio of titanium composite corundum silicon carbide wear-resistant castable for cement kiln kiln mouth described in embodiment 19;
  • the addition of the water reducing agent sodium tripolyphosphate is 0.2% of the total weight of various raw materials, the addition of the retarder sodium fluorosilicate is 0.005% of the total weight of various raw materials, the addition of the water 4% of the total weight of various raw materials;
  • step b Vibrating the mixed material obtained in step b;
  • the obtained product is dried (the drying temperature is 100-120° C., and the drying time is 16 hours). After drying, the product titanium composite corundum silicon carbide wear-resistant castable for cement kiln mouth is obtained.
  • the apparent bulk density of the prepared product is ⁇ 2.95g/cm 3 , the compressive strength is 150MPa, and the flexural strength is 17MPa; the high-temperature abrasion loss at a test temperature of 1200°C is 1.81cm 3 .
  • An embodiment of the present disclosure provides a composition, which mainly consists of (based on the total mass of the composition) 15% to 20% of fused white corundum of 3mm to 5mm, and 15% to 25% of fused white corundum of 1mm to 3mm. %, 0mm ⁇ 1mm fused white corundum 15% ⁇ 25%, 1mm ⁇ 3mm 97 silicon carbide 2% ⁇ 8%, 0mm ⁇ 1mm 97 silicon carbide 5% ⁇ 10%, 200 mesh 97 silicon carbide 2% ⁇ 8%, 0mm ⁇ 1mm titanium reinforced corundum refractories 5% ⁇ 15%, 200 mesh titanium reinforced corundum refractories 10% ⁇ 20%, activated alumina powder 5% ⁇ 10% and aluminate cement 5% ⁇ 8% composition.
  • This comparative example provides a corundum silicon carbide wear-resistant castable that does not use titanium-reinforced corundum, expressed in mass percentage, consisting of 17% of fused white corundum of 3 mm to 5 mm in raw material, and 20% of fused white corundum of 1 mm to 3 mm in size , 0mm ⁇ 1mm fused white corundum 25%, 1mm ⁇ 3mm 97 silicon carbide 5%, 0mm ⁇ 1mm 97 silicon carbide 5%, 200 mesh 97 silicon carbide 5%, 200 mesh fused white corundum 10%, activity 8% alumina powder and 5% aluminate cement.
  • A first take various raw materials according to the proportioning ratio of the corundum silicon carbide wear-resistant castable described in Comparative Example 1;
  • the addition of the water reducing agent sodium tripolyphosphate is 0.2% of the total weight of various raw materials, the addition of the retarder sodium fluorosilicate is 0.005% of the total weight of various raw materials, the addition of the water 4% of the total weight of various raw materials;
  • step b Vibrating the mixed material obtained in step b;
  • the obtained product is dried (the drying temperature is 100-120° C., and the drying time is 16 hours), and the product of Comparative Example 1 is obtained after drying.
  • the apparent bulk density of the prepared product of ratio 1 is ⁇ 2.90g/cm 3 , the compressive strength is 100MPa, and the flexural strength is 10MPa; the high-temperature abrasion loss at a test temperature of 1200°C is 3.61cm 3 .
  • This comparative example provides a corundum silicon carbide wear-resistant castable with TiO 2 added, expressed in mass percentage, consisting of 17% of fused white corundum of 3mm to 5mm, 20% of fused white corundum of 1mm to 3mm, and 0mm ⁇ 1mm fused white corundum 25%, 1mm ⁇ 3mm 97 silicon carbide 5%, 0mm ⁇ 1mm 97 silicon carbide 5%, 200 mesh 97 silicon carbide 5%, 200 mesh fused white corundum 8%, 200 mesh titanium It consists of 2% white powder, 8% activated alumina powder and 5% aluminate cement.
  • the addition of the water reducing agent sodium tripolyphosphate is 0.2% of the total weight of various raw materials, the addition of the retarder sodium fluorosilicate is 0.005% of the total weight of various raw materials, the addition of the water 4% of the total weight of various raw materials;
  • step b Vibrating the mixed material obtained in step b;
  • the obtained product is dried (the drying temperature is 100-120° C., and the drying time is 16 hours), and the product of Comparative Example 2 is obtained after drying.
  • the apparent bulk density of the prepared product of ratio 2 is ⁇ 2.92g/cm 3 , the compressive strength is 102MPa, and the flexural strength is 11MPa; the high-temperature wear loss at a test temperature of 1200°C is 3.23cm 3 .
  • the wear-resistant castables prepared in Example 1-2 of the present disclosure not only obtain the new energy of apparent bulk density ⁇ 2.92g/cm 3 , and Both high compressive strength and flexural strength have been improved, especially at the high temperature test temperature of 1200°C, the high temperature wear loss is significantly reduced, so it has excellent wear resistance and can more effectively increase the safety of the cement rotary kiln
  • the operation cycle is realized to increase production and reduce consumption of cement enterprises.
  • the wear loss of the material at high temperature is ⁇ 3cm 3 , so that the resistant
  • the apparent bulk density of the grinding castable is ⁇ 2.95g/cm 3 , the compressive strength and flexural strength are further increased, the high-temperature wear loss is further reduced, and the wear resistance is further effectively improved.
  • the disclosure provides a titanium composite corundum silicon carbide wear-resistant castable for the cement kiln mouth and a preparation method thereof.
  • the product prepared in the disclosure has excellent wear resistance, is suitable for the kiln mouth of the cement kiln, and can effectively increase the wear resistance of the cement rotary kiln.
  • the safe operation cycle realizes the increase of production and consumption reduction of cement enterprises, and has excellent industrial practical performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本公开提供了一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法。以质量百分含量表示,钛复合刚玉碳化硅耐磨浇注料主要由原料3mm~5mm的电熔白刚玉15~20%、1mm~3mm的电熔白刚玉15~25%、0mm~1mm的电熔白刚玉15~25%、1mm~3mm的97碳化硅2~8%、0mm~1mm的97碳化硅5~10%、200目的97碳化硅2~8%、0mm~1mm的钛增强刚玉系耐火材料5~15%、200目的钛增强刚玉系耐火材料10~20%、活性氧化铝粉5~10%和铝酸盐水泥5~8%组成。本公开制备所得产品具有优异的耐磨性能,适用于水泥窑窑口部位,能够有效增加水泥回转窑的安全运转周期,实现水泥企业的增产降耗。

Description

一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法
相关申请的交叉引用
本公开要求于2021年12月01日提交中国专利局的申请号为CN202111456639.7、名称为“一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于耐火材料技术领域,具体涉及一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法。
背景技术
水泥窑窑口是新型干法水泥烧成系统中的关键部位,其所处工况条件恶劣,高温熟料在高速旋转筒体的作用下到达窑口部位,同时具有极高风速的一次风、二次风携带大量砂尘均会对窑口内衬耐火材料产生严重冲刷和磨损。此外,窑口部位处在高温一次风、二次风与冷空气作用下会使窑口内衬耐火材料产生热震损伤。而更换窑口内衬耐火材料需在停窑冷却后进行。因此,窑口内衬耐火材料性能的好坏直接影响着烧成系统设备的运转周期以及水泥熟料的产量。
发明内容
本公开提供一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,所述钛复合刚玉碳化硅耐磨浇注料主要由(以水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的总质量计)原料3mm~5mm的电熔白刚玉15%~20%、1mm~3mm的电熔白刚玉15%~25%、0mm~1mm的电熔白刚玉15%~25%、1mm~3mm的97碳化硅2%~8%、0mm~1mm的97碳化硅5%~10%、200目的97碳化硅2%~8%、0mm~1mm的钛增强刚玉系耐火材料5%~15%、200目的钛增强刚玉系耐火材料10%~20%、活性氧化铝粉5%~10%和铝酸盐水泥5%~8%组成。
可选地,所述电熔白刚玉中的主要成分及其质量百分含量为Al 2O 3≥98%、Fe 2O 3≤0.2%、K 2O≤0.1%和Na 2O≤0.5%。
可选地,所述97碳化硅中SiC的质量百分含量≥97%,Fe 2O 3的质量百分含量≤1.0%。
可选地,所述钛增强刚玉系耐火材料中Al 2O 3的质量百分含量为80.76%、SiO 2的质量百分含量为1.54%、Fe 2O 3的质量百分含量≤2.0%、TiO 2的质量百分含量为16.73%、K 2O的质量百分含量≤0.1%和Na 2O的质量百分含量≤0.1%。
可选地,所述活性氧化铝粉中Al 2O 3的质量百分含量≥98%、Fe 2O 3的质量百分含量≤0.1%、Na 2O的质量百分含量≤0.5%。
可选地,所述活性氧化铝粉的粒度为325目。
可选地,所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的显体积密度≥2.95g/cm 3,耐压强度≥105MPa,抗折强度≥12MPa,在测试温度1200℃下的高温磨失量≤3.0cm 3
本公开还提供一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,所述制备方法包括以下步骤:
首先按照权利要求1所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的配比比例称取各种原料;
将称取的各种原料与减水剂三聚磷酸钠和缓凝剂氟硅酸钠进行混合,混合均匀后倒入搅拌锅中,然后加入水搅拌均匀,得到混合物料;
所述减水剂三聚磷酸钠的加入量为各种原料总重量的0.2%,所述缓凝剂氟硅酸钠的加入量为各种原料总重量的0.005%,所述水的加入量为各种原料总重量的3%~5%;
将所述混合物料振动成型;
成型后所得产品在20℃~25℃条件下进行养护,养护时间为24h~48h;
养护后所得产品进行干燥,干燥后得到产品水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料。
可选地,所述干燥是在烘箱中进行干燥,所述干燥的温度为100℃~120℃、所述干燥的时间为12h~24h。
具体实施方式
本公开的刚玉-碳化硅浇注料因其具有优良的体积稳定性、抗侵蚀、耐高温等性能,被作为优良的内衬耐火材料应用于水泥窑窑口部位。为了改善浇注料的烧结性能以及其他使用性能,通常会在浇注料中加入少量外加剂。刚玉浇注料中引入适量的TiO 2外加剂,可促进刚玉浇注料的烧结并在高温下生成钛酸铝,降低材料的热膨胀系数,同时抑制刚玉晶体的快速生长,进一步提高材料的抗热震性能。
本公开提供一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法。本公开技 术方案中采用的钛复合刚玉,是在钛铁合金冶炼过程中产生的钛铁渣副产物并通过工艺优化重新合成的一种新型钛复合刚玉原料,可作为部分白刚玉的替代品,并通过不同粒度、用量配比使其高于白刚玉外加TiO 2的浇注料强度、耐磨等性能;从而能够大大节省原料成本、提高传统耐火产品的利润,取得较好的使用效果。
本公开提供一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,以水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料总质量的百分计,所述钛复合刚玉碳化硅耐磨浇注料主要由原料3mm~5mm的电熔白刚玉15%~20%、1mm~3mm的电熔白刚玉15%~25%、0mm~1mm的电熔白刚玉15%~25%、1mm~3mm的碳化硅2%~8%、0mm~1mm的碳化硅5%~10%、200目的碳化硅2%~8%、0mm~1mm的钛增强刚玉系耐火材料5%~15%、200目的钛增强刚玉系耐火材料10%~20%、活性氧化铝粉5%~10%和铝酸盐水泥5%~8%组成。
本公开还提供一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,以水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料总质量的百分计,所述钛复合刚玉碳化硅耐磨浇注料主要由原料3mm~5mm的电熔白刚玉15%~20%、1mm~3mm的电熔白刚玉15%~25%、0mm~1mm的电熔白刚玉15%~25%、1mm~3mm的97碳化硅2%~8%、0mm~1mm的97碳化硅5%~10%、200目的97碳化硅2%~8%、0mm~1mm的钛增强刚玉系耐火材料5%~15%、200目的钛增强刚玉系耐火材料10%~20%、活性氧化铝粉5%~10%和铝酸盐水泥5%~8%组成。
本文上下文中提及的尺寸为原料的粒径范围。
需要说明的是,本文上下文中,0mm~1mm或1mm~0mm中不包括端点值0mm,即可以理解为粒径为大于0mm且小于等于1mm。
本文上下文中提及的%为基于浇注料总量的质量百分比。可选地,粒径在3mm~5mm(粒径可以为诸如3mm、3.5mm、4mm、4.5mm或5mm,或任意两个端点之间的区间值范围)范围内的电熔白刚玉的含量可以为例如15.5%~19.5%、16%~19%或17%~18%,诸如15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%或20%,或任意两个端点之间的区间值。
可选地,粒径在1mm~3mm(粒径可以为诸如3mm、3.5mm、4mm、4.5mm或5mm,或任意两个端点之间的区间值范围)范围内的电熔白刚玉的含量可以为例如15.5%~19.5%、16%~19%或17%~18%,诸如15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、21%、22%、23%、24%、25%,或任意两个端点之间的区间值。
可选地,粒径在0mm~1mm(粒径可以为诸如0.1mm、0.3mm、0.5mm、0.7mm、0.9mm或1mm,或任意两个端点之间的区间值范围)范围内的电熔白刚玉的含量可以为例如15.5%~19.5%、16%~19%或17%~18%,诸如15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、21%、22%、23%、24%、25%,或任意两个端点之间的区间值。需要说明的是,本文上下文中,电熔白刚玉的粒径不包括端点值0mm,可以理解为粒径大于0mm且小于等于1mm。
可选地,粒径在1mm~3mm(粒径可以为诸如0.5mm、0.8mm、1mm、1.5mm、1.8mm、2mm、2.5mm、2.8mm或3mm,或任意两个端点之间的区间值范围)范围内的碳化硅的含量可以为例如2%、3%、4%、5%、6%、7%或8%,或任意两个端点之间的区间值。
可选地,粒径在0mm~1mm(粒径可以为诸如0.1mm、0.3mm、0.5mm、0.7mm、0.9mm或1mm,或任意两个端点之间的区间值范围)范围内的碳化硅的含量可以为例如5%、6%、7%、8%、9%或10%,或任意两个端点之间的区间值。需要说明的是,本文上下文中,碳化硅的粒径不包括端点值0mm,可以理解为粒径大于0mm且小于等于1mm。
可选地,200目的碳化硅的含量可以为2%、3%、4%、5%、6%、7%或8%,或任意两个端点之间的区间值。
可选地,粒径在0mm~1mm(粒径可以为诸如0.1mm、0.3mm、0.5mm、0.7mm、0.9mm或1mm,或任意两个端点之间的区间值范围)的钛增强刚玉系耐火材料的含量可以为例如5%、6%、7%、8%、9%、10%、11%、12%、13%、14%或15%,或任意两个端点之间的区间值。需要说明的是,钛增强刚玉系耐火材料的粒径不包括端点值0mm,可以理解为粒径大于0mm且小于等于1mm。
可选地,200目的钛增强刚玉系耐火材料的含量可以为10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%,或任意两个端点之间的区间值。
不受理论的约束,本公开的钛增强刚玉系耐火材料的粒径在上述范围内可以进一步减少反应系统中的体积膨胀。
可选地,活性氧化铝粉的含量可以5%、6%、7%、8%、9%或10%,或任意两个端点之间的区间值。
可选地,铝酸盐水泥的含量可以为5%、6%、7%或8%,或任意两个端点之间的区间值。
根据上述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,所述电熔白刚玉中的主要成分及其质量百分含量,以电熔白刚玉的质量百分比计,为Al 2O 3≥98%、Fe 2O 3≤0.2%、K 2O≤0.1%和Na 2O≤0.5%。
根据上述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,所述碳化硅中,以碳化硅的质量百分比计,SiC的质量百分含量≥97%,Fe 2O 3的质量百分含量≤1.0%。
根据上述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,所述钛增强刚玉系耐火材料中,以钛增强刚玉系耐火材料的质量百分比计,Al 2O 3的质量百分含量为80.76%、SiO 2的质量百分含量为1.54%、Fe 2O 3的质量百分含量≤2.0%、TiO 2的质量百分含量为16.73%、K 2O的质量百分含量≤0.1%和Na 2O的质量百分含量≤0.1%。
本公开采用的钛增强刚玉系耐火材料是CN 202010567012.8公开的技术方案制备而成的。
根据上述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,所述活性氧化铝粉中,以活性氧化铝粉的质量百分比计,Al 2O 3的质量百分含量≥98%、Fe 2O 3的质量百分含量≤0.1%、Na 2O的质量百分含量≤0.5%。
根据上述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,活性氧化铝粉的粒度为325目。
另外,提供一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,所述制备方法包括以下步骤:
a、首先按照上述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的配比比例称取各种原料;
b、将称取的各种原料与减水剂三聚磷酸钠和缓凝剂氟硅酸钠进行混合,混合均匀后倒入搅拌锅中,然后加入水搅拌均匀,得到混合物料;
所述减水剂三聚磷酸钠的加入量为各种原料总重量的0.2%,所述缓凝剂氟硅酸钠的加入量为各种原料总重量的0.005%,所述水的加入量为各种原料总重量的3%~5%;
c、将步骤b所得混合物料振动成型;
d、成型后所得产品在20℃~25℃条件下进行养护,养护时间为24~48h;
e、养护后所得产品进行干燥,干燥后得到产品水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料。
根据上述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,步骤e中所述干燥是在烘箱中进行干燥,干燥温度为100~120℃、干燥时间为12~24h。
利用本公开技术方案制备的钛复合刚玉碳化硅耐磨浇注料具有优异的耐磨性能,适用于水泥窑窑口部位,能够有效增加水泥回转窑的安全运转周期,实现水泥企业的增产降耗。 所以,本公开具有显著的经济效益和社会效益。
本公开技术方案中,钛增强刚玉系耐火材料的引入促进了材料的烧结,显著提升了材料在中低温煅烧后的耐压强度和抗折强度。降低了由于外加TiO 2的引入在材料高温煅烧下出现的过烧以及体积收缩,增强了材料的高温耐磨性能。
利用本公开技术方案制备的产品钛复合刚玉碳化硅耐磨浇注料,其显体积密度≥2.95g/cm 3,耐压强度为110~150MPa,抗折强度12~17MPa;测试温度1200℃下的高温磨失量为≤3cm 3
实施例
以下结合实施例进一步阐述本公开,但并不限制本公开技术方案保护的范围。
以下实施例中采用的电熔白刚玉中的主要成分及其质量百分含量为Al 2O 3≥98%、Fe 2O 3≤0.2%、K 2O≤0.1%和Na 2O≤0.5%;97碳化硅中SiC的质量百分含量≥97%,Fe 2O 3的质量百分含量≤1.0%;钛增强刚玉系耐火材料中Al 2O 3的质量百分含量为80.76%、SiO 2的质量百分含量为1.54%、Fe 2O 3的质量百分含量≤2.0%、TiO 2的质量百分含量为16.73%、K 2O的质量百分含量≤0.1%和Na 2O的质量百分含量≤0.1%(钛增强刚玉系耐火材料是CN202010567012.8公开的技术方案制备而成的);所述活性氧化铝粉中Al 2O 3的质量百分含量≥98%、Fe 2O 3的质量百分含量≤0.1%、Na 2O的质量百分含量≤0.5%,活性氧化铝粉的粒度为325目。
实施例1
本公开水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3~5mm的电熔白刚玉15%、1mm~3mm的电熔白刚玉25%、1~0mm的电熔白刚玉15%、1mm~3mm的97碳化硅8%、1~0mm的97碳化硅10%、200目的97碳化硅2%、0mm~1mm的钛增强刚玉系耐火材料5%、200目的钛增强刚玉系耐火材料10%、活性氧化铝粉5%和铝酸盐水泥5%组成。
实施例2
本公开实施例1所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,其详细步骤如下:
a、首先按照实施例1所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的配比比例称取各种原料;
b、将称取的各种原料、减水剂三聚磷酸钠和缓凝剂氟硅酸钠进行混合,混合均匀后倒入搅拌锅中,然后加入水搅拌均匀,得到混合物料;
所述减水剂三聚磷酸钠的加入量为各种原料总重量的0.2%,所述缓凝剂氟硅酸钠的加入量为各种原料总重量的0.005%,所述水的加入量为各种原料总重量的5%;
c、将步骤b所得混合物料振动成型;
d、成型后所得产品在20℃~25℃条件下进行养护,养护时间为36h;
e、养护后所得产品进行干燥(干燥温度为100~120℃、干燥时间为24h),干燥后得到产品水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料。
制备所得产品的显体积密度≥2.95g/cm 3,耐压强度为115MPa,抗折强度13MPa,测试温度1200℃下的高温磨失量为2.36cm 3
实施例3
本公开水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉17%、1mm~3mm的电熔白刚玉16%、0mm~1mm的电熔白刚玉16%、1mm~3mm的97碳化硅5%、0mm~1mm的97碳化硅8%、200目的97碳化硅5%、0mm~1mm的钛增强刚玉系耐火材料8%、200目的钛增强刚玉系耐火材料12%、活性氧化铝粉6%和铝酸盐水泥7%组成。
实施例4
本公开实施例3所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,与实施例2相同。
制备所得产品的显体积密度≥2.95g/cm 3,耐压强度为140MPa,抗折强度13MPa;测试温度1200℃下的高温磨失量为1.96cm 3
实施例5
本公开水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉20%、1mm~3mm的电熔白刚玉15%、0mm~1mm的电熔白刚玉25%、1mm~3mm的97碳化硅2%、0mm~1mm的97碳化硅5%、200目的97碳化硅8%、0mm~1mm的钛增强刚玉系耐火材料5%、200目的钛增强刚玉系耐火材料10%、活性氧化铝粉5%和铝酸盐水泥5%组成。
实施例6
本公开实施例5所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,其详细步骤如下:
a、首先按照实施例5所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的配比比例称取各种原料;
b、将称取的各种原料、减水剂三聚磷酸钠和缓凝剂氟硅酸钠进行混合,混合均匀后倒入搅拌锅中,然后加入水搅拌均匀,得到混合物料;
所述减水剂三聚磷酸钠的加入量为各种原料总重量的0.2%,所述缓凝剂氟硅酸钠的加入量为各种原料总重量的0.005%,所述水的加入量为各种原料总重量的4%;
c、将步骤b所得混合物料振动成型;
d、成型后所得产品在20℃~25℃条件下进行养护,养护时间为28h;
e、养护后所得产品进行干燥(干燥温度为100~120℃、干燥时间为20h),干燥后得到产品水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料。
制备所得产品的显体积密度≥2.95g/cm 3,耐压强度为124MPa,抗折强度15MPa;测试温度1200℃下的高温磨失量为2.09cm 3
实施例7
本公开水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉15%、1mm~3mm的电熔白刚玉20%、0mm~1mm的电熔白刚玉18%、1mm~3mm的97碳化硅2%、0mm~1mm的97碳化硅5%、200目的97碳化硅5%、0mm~1mm的钛增强刚玉系耐火材料15%、200目的钛增强刚玉系耐火材料10%、活性氧化铝粉5%和铝酸盐水泥5%组成。
实施例8
本公开实施例7所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,与实施例2相同。
制备所得产品的显体积密度≥2.95g/cm 3,耐压强度为105MPa,抗折强度12MPa,测试温度1200℃下的高温磨失量为2.28cm 3
实施例9
本公开水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉15%、1mm~3mm的电熔白刚玉20%、0mm~1mm的电熔白刚玉20%、1mm~3mm的97碳化硅3%、0mm~1mm的97碳化硅5%、200目的97碳化硅2%、0mm~1mm的钛增强刚玉系耐火材料5%、200目的钛增强刚玉系耐火材料20%、活性氧化铝粉5%和铝酸盐水泥5%组成。
实施例10
本公开实施例9所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,与实施例2相同。
制备所得产品的显体积密度≥2.95g/cm 3,耐压强度为147MPa,抗折强度16MPa;测试温度1200℃下的高温磨失量为1.98cm 3
实施例11
本公开水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉15%、1mm~3mm的电熔白刚玉20%、0mm~1mm的电熔白刚玉18%、1mm~3mm的97碳化硅2%、0mm~1mm的97碳化硅5%、200目的97碳化硅2%、0mm~1mm的钛增强刚玉系耐火材料5%、200目的钛增强刚玉系耐火材料15%、活性氧化铝粉10%和铝酸盐水泥8%组成。
实施例12
本公开实施例11所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,与实施例6相同。
制备所得产品的显体积密度≥2.95g/cm 3,耐压强度为110MPa,抗折强度12MPa;测试温度1200℃下的高温磨失量为2.97cm 3
实施例13
本公开水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉20%、1mm~3mm的电熔白刚玉20%、0mm~1mm的电熔白刚玉15%、1mm~3mm的97碳化硅5%、0mm~1mm的97碳化硅5%、200目的97碳化硅 5%、0mm~1mm的钛增强刚玉系耐火材料5%、200目的钛增强刚玉系耐火材料10%、活性氧化铝粉8%和铝酸盐水泥7%组成。
实施例14
本公开实施例13所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,与实施例6相同。
制备所得产品的显体积密度≥2.95g/cm 3,耐压强度为135MPa,抗折强度15MPa;测试温度1200℃下的高温磨失量为≤2.19m 3
实施例15
本公开水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉15%、1mm~3mm的电熔白刚玉25%、0mm~1mm的电熔白刚玉15%、1mm~3mm的97碳化硅5%、0mm~1mm的97碳化硅10%、200目的97碳化硅5%、0mm~1mm的钛增强刚玉系耐火材料5%、200目的钛增强刚玉系耐火材料10%、活性氧化铝粉5%和铝酸盐水泥5%组成。
实施例16
本公开实施例15所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,与实施例6相同。
制备所得产品的显体积密度≥2.95g/cm 3,耐压强度为121MPa,抗折强度13MPa;测试温度1200℃下的高温磨失量为2.31cm 3
实施例17
本公开水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉18%、1mm~3mm的电熔白刚玉20%、0mm~1mm的电熔白刚玉18%、1mm~3mm的97碳化硅4%、0mm~1mm的97碳化硅9%、200目的97碳化硅4%、0mm~1mm的钛增强刚玉系耐火材料7%、200目的钛增强刚玉系耐火材料10%、活性氧化铝粉5%和铝酸盐水泥5%组成。
实施例18
本公开实施例17所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,与实施例6相同。
制备所得产品的显体积密度≥2.95g/cm 3,耐压强度为127MPa,抗折强度15MPa;测试温度1200℃下的高温磨失量为2.17cm 3
实施例19
本公开水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉17%、1mm~3mm的电熔白刚玉20%、0mm~1mm的电熔白刚玉20%、1mm~3mm的97碳化硅5%、0mm~1mm的97碳化硅5%、200目的97碳化硅5%、0mm~1mm的钛增强刚玉系耐火材料5%、200目的钛增强刚玉系耐火材料10%、活性氧化铝粉8%和铝酸盐水泥5%组成。
实施例20
本公开实施例19所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,其详细步骤如下:
a、首先按照实施例19所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的配比比例称取各种原料;
b、将称取的各种原料、减水剂三聚磷酸钠和缓凝剂氟硅酸钠进行混合,混合均匀后倒入搅拌锅中,然后加入水搅拌均匀,得到混合物料;
所述减水剂三聚磷酸钠的加入量为各种原料总重量的0.2%,所述缓凝剂氟硅酸钠的加入量为各种原料总重量的0.005%,所述水的加入量为各种原料总重量的4%;
c、将步骤b所得混合物料振动成型;
d、成型后所得产品在20℃~25℃条件下进行养护,养护时间为48h;
e、养护后所得产品进行干燥(干燥温度为100~120℃、干燥时间为16h),干燥后得到产品水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料。
制备所得产品的显体积密度≥2.95g/cm 3,耐压强度为150MPa,抗折强度17MPa;测试温度1200℃下的高温磨失量为1.81cm 3
实施例21
本公开实施例提供一种组合物,该组合物主要由(以组合物的总质量计)3mm~5mm 的电熔白刚玉15%~20%、1mm~3mm的电熔白刚玉15%~25%、0mm~1mm的电熔白刚玉15%~25%、1mm~3mm的97碳化硅2%~8%、0mm~1mm的97碳化硅5%~10%、200目的97碳化硅2%~8%、0mm~1mm的钛增强刚玉系耐火材料5%~15%、200目的钛增强刚玉系耐火材料10%~20%、活性氧化铝粉5%~10%和铝酸盐水泥5%~8%组成。
对比例
对比例1
本对比例提供一种不使用钛增强刚玉的刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉17%、1mm~3mm的电熔白刚玉20%、0mm~1mm的电熔白刚玉25%、1mm~3mm的97碳化硅5%、0mm~1mm的97碳化硅5%、200目的97碳化硅5%、200目的电熔白刚玉10%、活性氧化铝粉8%和铝酸盐水泥5%组成。
其制备方法的详细步骤如下:
a、首先按照对比例1所述刚玉碳化硅耐磨浇注料的配比比例称取各种原料;
b、将称取的各种原料、减水剂三聚磷酸钠和缓凝剂氟硅酸钠进行混合,混合均匀后倒入搅拌锅中,然后加入水搅拌均匀,得到混合物料;
所述减水剂三聚磷酸钠的加入量为各种原料总重量的0.2%,所述缓凝剂氟硅酸钠的加入量为各种原料总重量的0.005%,所述水的加入量为各种原料总重量的4%;
c、将步骤b所得混合物料振动成型;
d、成型后所得产品在20℃~25℃条件下进行养护,养护时间为48h;
e、养护后所得产品进行干燥(干燥温度为100~120℃、干燥时间为16h),干燥后得到对比例1的产品。
制备所得比例1产品的显体积密度≥2.90g/cm 3,耐压强度为100MPa,抗折强度10MPa;测试温度1200℃下的高温磨失量为3.61cm 3
对比例2
本对比例提供一种加入TiO 2的刚玉碳化硅耐磨浇注料,以质量百分含量表示,由原料3mm~5mm的电熔白刚玉17%、1mm~3mm的电熔白刚玉20%、0mm~1mm的电熔白刚玉25%、1mm~3mm的97碳化硅5%、0mm~1mm的97碳化硅5%、200目的97碳化硅5%、200目的电熔白刚玉8%、200目的钛白粉2%、活性氧化铝粉8%和铝酸盐水泥5%组成。
其制备方法的详细步骤如下:
a、首先按照对比例2所述配比比例称取各种原料;
b、将称取的各种原料、减水剂三聚磷酸钠和缓凝剂氟硅酸钠进行混合,混合均匀后倒入搅拌锅中,然后加入水搅拌均匀,得到混合物料;
所述减水剂三聚磷酸钠的加入量为各种原料总重量的0.2%,所述缓凝剂氟硅酸钠的加入量为各种原料总重量的0.005%,所述水的加入量为各种原料总重量的4%;
c、将步骤b所得混合物料振动成型;
d、成型后所得产品在20℃~25℃条件下进行养护,养护时间为48h;
e、养护后所得产品进行干燥(干燥温度为100~120℃、干燥时间为16h),干燥后得到对比例2的产品。
制备所得比例2产品的显体积密度≥2.92g/cm 3,耐压强度为102MPa,抗折强度11MPa;测试温度1200℃下的高温磨失量为3.23cm 3
通过比较本公开实施例1-2与对比例1-2制备的耐磨浇注料,可以看出,本公开制备的耐磨浇注料不仅获得显体积密度≥2.92g/cm 3的新能,且在高耐压强度、抗折强度均获得提高,特别是在1200℃下的高温测试温度下,高温磨失量明显降低,从而具有优异的耐磨性能,能够更有效地增加水泥回转窑的安全运转周期,实现水泥企业的增产降耗。
通过比较本公开实施例19和20与对比例1制备的耐磨浇注料,可以看出,通过添加钛增强刚玉系耐火材料,可以不仅可以促进材料的烧结,显著提升了材料在中低温煅烧后的耐压强度和抗折强度,在测试的高温条件(即1200℃)下,高温磨失量显著降低。
通过比较本公开实施例19和20与对比例2制备的耐磨浇注料,可以看出,相比于通过添加TiO 2来发挥其促进烧结的特性,本公开通过添加钛增强刚玉系耐火材料来取代单纯添加TiO 2,可以有效降低了由于外加TiO 2的引入在材料高温煅烧下出现的过烧以及体积收缩,本公开提供显著增强了材料的高温耐磨性能。同时本公开实施例中,通过调控电熔白刚玉、碳化硅以及钛增强刚玉系耐火材料不同粒径下的不同配比,可以进一步保证材料在高温磨失量≤3cm 3的前提下,使得耐磨浇注料的显体积密度均≥2.95g/cm 3,耐压强度和抗折强度进一步增大,高温磨失量进一步减小,耐磨性能进一步有效提升。
工业实用性
本公开提供了一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法,本公开制备所得产品具有优异的耐磨性能,适用于水泥窑窑口部位,能够有效增加水泥回转窑的安全运转周期,实现水泥企业的增产降耗,具有优异的工业实用性能。

Claims (9)

  1. 一种水泥窑窑口用的钛复合刚玉碳化硅耐磨浇注料,其特征在于:以质量百分含量表示,所述钛复合刚玉碳化硅耐磨浇注料主要由原料3mm~5mm的电熔白刚玉15%~20%、1mm~3mm的电熔白刚玉15%~25%、0mm~1mm的电熔白刚玉15%~25%、1mm~3mm的97碳化硅2%~8%、0mm~1mm的97碳化硅5%~10%、200目的97碳化硅2%~8%、0mm~1mm的钛增强刚玉系耐火材料5%~15%、200目的钛增强刚玉系耐火材料10%~20%、活性氧化铝粉5%~10%和铝酸盐水泥5%~8%组成。
  2. 根据权利要求1所述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,其特征在于:所述电熔白刚玉中的主要成分及其质量百分含量为Al 2O 3≥98%、Fe 2O 3≤0.2%、K 2O≤0.1%和Na 2O≤0.5%。
  3. 根据权利要求1或2所述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,其特征在于:所述97碳化硅中SiC的质量百分含量≥97%,Fe 2O 3的质量百分含量≤1.0%。
  4. 根据权利要求1-3中任一项所述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,其特征在于:所述钛增强刚玉系耐火材料中Al 2O 3的质量百分含量为80.76%、SiO 2的质量百分含量为1.54%、Fe 2O 3的质量百分含量≤2.0%、TiO 2的质量百分含量为16.73%、K 2O的质量百分含量≤0.1%和Na 2O的质量百分含量≤0.1%。
  5. 根据权利要求1-4中任一项所述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,其特征在于:所述活性氧化铝粉中Al 2O 3的质量百分含量≥98%、Fe 2O 3的质量百分含量≤0.1%、Na 2O的质量百分含量≤0.5%。
  6. 根据权利要求1-5中任一项所述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,其特征在于:所述活性氧化铝粉的粒度为325目。
  7. 根据权利要求1-6中任一项所述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料,其特征在于:所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的显体积密度≥2.95g/cm 3,耐压强度≥105MPa,抗折强度≥12MPa,在测试温度1200℃下的高温磨失量≤3.0cm 3
  8. 一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,其特征在于,所述制备方法包括以下步骤:
    首先按照权利要求1所述水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的配比比例称取各种原料;
    将称取的各种原料与减水剂三聚磷酸钠和缓凝剂氟硅酸钠进行混合,混合均匀后倒入搅拌锅中,然后加入水搅拌均匀,得到混合物料;
    所述减水剂三聚磷酸钠的加入量为各种原料总重量的0.2%,所述缓凝剂氟硅酸钠的加入量为各种原料总重量的0.005%,所述水的加入量为各种原料总重量的3%~5%;
    将所述混合物料振动成型;
    成型后所得产品在20℃~25℃条件下进行养护,养护时间为24h~48h;
    养护后所得产品进行干燥,干燥后得到产品水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料。
  9. 根据权利要求8所述的水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料的制备方法,其特征在于:所述干燥是在烘箱中进行干燥,所述干燥的温度为100℃~120℃、所述干燥的时间为12h~24h。
PCT/CN2022/134102 2021-12-01 2022-11-24 一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法 WO2023098567A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111456639.7A CN114163222B (zh) 2021-12-01 2021-12-01 一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法
CN202111456639.7 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023098567A1 true WO2023098567A1 (zh) 2023-06-08

Family

ID=80482199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134102 WO2023098567A1 (zh) 2021-12-01 2022-11-24 一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法

Country Status (2)

Country Link
CN (1) CN114163222B (zh)
WO (1) WO2023098567A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116874289A (zh) * 2023-07-25 2023-10-13 江西博丰耐火材料有限公司 一种新型耐高温、高强度铝镁浇注料的制备方法
CN117534449A (zh) * 2024-01-10 2024-02-09 洛阳铂信耐火材料有限公司 一种铜溜槽用刚玉质浇注料及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163222B (zh) * 2021-12-01 2022-08-30 北京金隅通达耐火技术有限公司 一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法
CN115819075A (zh) * 2022-12-10 2023-03-21 巩义通达中原耐火技术有限公司 一种低温烧成富钛刚玉复合碳化硅砖及其制备方法
CN116462493A (zh) * 2023-03-31 2023-07-21 巩义通达中原耐火技术有限公司 一种富钛刚玉复合碳化硅不烧砖及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1683283A (zh) * 2004-04-15 2005-10-19 宜兴市泰科耐火材料有限公司 碳化硅刚玉浇注料
JP2010275120A (ja) * 2009-05-26 2010-12-09 Ngk Insulators Ltd SiC含有キャスタブル耐火物およびSiC含有キャスタブル耐火物を用いたプレキャストブロックの製造方法およびSiC含有キャスタブル耐火物の施工方法
CN108147795A (zh) * 2017-12-31 2018-06-12 嘉兴新耐建材有限公司 一种2500t水泥窑后窑口用浇注料
CN111747761A (zh) * 2020-06-19 2020-10-09 北京科技大学 一种钛增强刚玉系耐火材料及制备方法
CN114163222A (zh) * 2021-12-01 2022-03-11 北京金隅通达耐火技术有限公司 一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117952A (ja) * 1986-11-07 1988-05-21 呉羽化学工業株式会社 高靭性コランダム−ルチル複合焼結体およびその製造方法
CN101367664B (zh) * 2008-09-28 2012-08-22 瑞泰科技股份有限公司 一种复合结合氧化铝-碳化硅-(碳)系不定形耐火材料
CN102850063B (zh) * 2012-08-23 2014-12-10 通达耐火技术股份有限公司 均化料为骨料的窑口用高强抗剥落浇注料及制备方法
CN106396707B (zh) * 2016-08-30 2019-11-12 安徽瑞泰新材料科技有限公司 一种超高温抗结皮浇注料
CN106747363B (zh) * 2016-11-16 2019-04-26 武汉科技大学 一种铬铁矿焙烧回转窑工作层浇注料及其制备方法
CN108275984A (zh) * 2017-12-31 2018-07-13 嘉兴新耐建材有限公司 一种5000t水泥窑后窑口用浇注料
CN109503135A (zh) * 2018-11-28 2019-03-22 江苏恒耐炉料集团有限公司 高强自流型防爆耐火浇注料
CN112479689A (zh) * 2020-10-30 2021-03-12 云南濮耐昆钢高温材料有限公司 一种快干防爆型高强耐磨浇注料
CN112645698A (zh) * 2021-01-15 2021-04-13 北京瑞尔非金属材料有限公司 一种炼铁高炉用铝钛碳化硅复合耐火浇注料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1683283A (zh) * 2004-04-15 2005-10-19 宜兴市泰科耐火材料有限公司 碳化硅刚玉浇注料
JP2010275120A (ja) * 2009-05-26 2010-12-09 Ngk Insulators Ltd SiC含有キャスタブル耐火物およびSiC含有キャスタブル耐火物を用いたプレキャストブロックの製造方法およびSiC含有キャスタブル耐火物の施工方法
CN108147795A (zh) * 2017-12-31 2018-06-12 嘉兴新耐建材有限公司 一种2500t水泥窑后窑口用浇注料
CN111747761A (zh) * 2020-06-19 2020-10-09 北京科技大学 一种钛增强刚玉系耐火材料及制备方法
CN114163222A (zh) * 2021-12-01 2022-03-11 北京金隅通达耐火技术有限公司 一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116874289A (zh) * 2023-07-25 2023-10-13 江西博丰耐火材料有限公司 一种新型耐高温、高强度铝镁浇注料的制备方法
CN117534449A (zh) * 2024-01-10 2024-02-09 洛阳铂信耐火材料有限公司 一种铜溜槽用刚玉质浇注料及其制备方法
CN117534449B (zh) * 2024-01-10 2024-03-26 洛阳铂信耐火材料有限公司 一种铜溜槽用刚玉质浇注料及其制备方法

Also Published As

Publication number Publication date
CN114163222A (zh) 2022-03-11
CN114163222B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023098567A1 (zh) 一种水泥窑窑口用钛复合刚玉碳化硅耐磨浇注料及其制备方法
CN101240125B (zh) 电力锅炉烟道用高温耐磨复合涂料
JP7454261B2 (ja) エネルギー貯蔵用途のためのジオポリマーコンクリート
CN106927838B (zh) 一种钢纤维增强耐磨防爆浇注料
WO2011088742A1 (zh) 高温耐磨修补涂料及其制备方法
CN107117948A (zh) 化工危废焚烧炉用刚玉莫来石复合砖及其制备方法
CN108975923B (zh) 一种抗热震及高温体积稳定的陶瓷辊棒及其制备方法
CN112456974B (zh) 一种协同处置水泥窑用镁铝尖晶石砖及其制备方法与应用
CN113321487B (zh) 一种无锂耐热日用陶瓷及其制备方法
CN104261848A (zh) 一种含氧化铬的莫来石砖及其制备方法
CN110128119A (zh) 高炉主铁沟浇注料及加工方法、及制备高炉主铁沟的方法
CN108373337A (zh) 一种高炉内衬耐磨喷补料
CN112573909A (zh) 基于纳米硅溶胶的陶瓷耐磨料及其制备方法
CN112679201A (zh) 一种以铝铬渣为主要原料的无水泥铝镁铬浇注料及其制备方法与应用
CN109970459B (zh) 一种柱状莫来石高耐磨砖及其制备方法
CN106007745A (zh) 一种红土镍矿回转窑专用浇注料及其制造方法
CN108424155A (zh) 一种利用滑板磨削泥废料制成的下水口砖及其制备方法
CN112939618A (zh) 一种水泥窑用抗结皮锆英石基耐碱砖及其制备方法
CN105218129B (zh) 一种镁铁铝尖晶石窑口浇注料
CN107602090A (zh) 中铝承重陶瓷条梁制备方法
CN101585713A (zh) 一种高纯窑口浇注料
CN108558370A (zh) 一种CMA水泥结合MgO-MA不烧砖及其制备方法
CN109608174A (zh) 可水合氧化铝结合刚玉-尖晶石浇注料及其制备方法
CN104478415A (zh) 一种氧化铝基复相耐磨板及其制备方法
CN107285752A (zh) 一种电弧炉炉盖及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE