WO2023098322A1 - 热管理部件、电池及用电设备 - Google Patents

热管理部件、电池及用电设备 Download PDF

Info

Publication number
WO2023098322A1
WO2023098322A1 PCT/CN2022/125958 CN2022125958W WO2023098322A1 WO 2023098322 A1 WO2023098322 A1 WO 2023098322A1 CN 2022125958 W CN2022125958 W CN 2022125958W WO 2023098322 A1 WO2023098322 A1 WO 2023098322A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
branch
flow channel
management component
channels
Prior art date
Application number
PCT/CN2022/125958
Other languages
English (en)
French (fr)
Inventor
李全国
刘倩
叶永煌
何建福
喻春鹏
黄发军
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023098322A1 publication Critical patent/WO2023098322A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a thermal management component, a battery and an electrical device.
  • the present application aims to provide a thermal management component, a battery and an electrical device, so as to improve the safety of the battery.
  • the embodiment of the present application provides a thermal management component, which includes:
  • the first main flow channel can be used to supply the heat exchange medium
  • the second main flow channel can be used to recover the heat exchange medium
  • the heat exchange medium enters multiple first branch flow channels respectively through the first main flow channel , and then enter the second main flow channel from a plurality of first branch channels.
  • the flow rate of the heat exchange medium is the same. Since the cross-sectional area of the middle section is reduced, the heat exchange medium in the middle section The increased flow rate can quickly take away the heat absorbed in the middle section, so that there is a larger temperature difference between the heat exchange medium and the heat source in the middle section, and the heat transfer efficiency is improved.
  • the central area of the battery is more difficult to dissipate heat than the outer area of the battery, and the temperature in the central area of the battery is relatively high.
  • the heat management component provided by the application is used in the battery, wherein the middle section of the first branch channel Corresponding to the middle area of the battery, the end section corresponds to the area near the outer side of the battery.
  • the heat exchange efficiency of the middle section is higher, the cooling rate of the middle area of the battery is accelerated, so that the temperature rise in the middle area of the battery is reduced, and the battery's The maximum temperature is reduced, which alleviates the problem of runaway caused by excessive battery temperature, and the temperature difference between the central area of the battery and the outer area of the battery is reduced, which alleviates the problem of overcharging and decomposing lithium caused by excessive temperature differences in different areas of the battery, effectively improving battery safety.
  • the heat exchange medium in the first branch channel is disturbed to form turbulence, and the heat exchange medium fully participates in the heat exchange, which further improves the heat exchange efficiency of the heat management components.
  • the heat management provided by this application The component can not only reduce the local maximum temperature of the battery, but also reduce the average temperature of the battery, the battery is not easy to thermal runaway, and the safety is further improved.
  • the first branch flow channel further includes a transition section, the transition section connects the middle section and the end section, and the cross-sectional area of the transition section is close to the One end of the end section tapers toward an end close to the middle section.
  • a transition section is provided to connect the middle section and the end section, so as to prevent the step surface formed between the middle section and the end section from blocking the flow of the heat exchange medium and reducing the flow velocity.
  • the battery can dissipate heat from the entire outer circumference.
  • the farther away from the outer circumference the less likely it is to dissipate heat outward.
  • the farther away from the outer circumference the higher the temperature of the area near the middle.
  • the longer the middle section of the branch flow channel, the middle sections of multiple first branch flow channels form a structure similar to a rhombus or a circle, which plays a role in rapidly cooling the area away from the outer periphery in a targeted manner, and effectively alleviates the excessive temperature difference between different areas of the battery. It greatly causes the problem of overcharge and analysis of lithium, which improves the safety of the battery.
  • the lengths of the middle sections of the first branch flow channels of each of the first heat exchange flow channels are equal.
  • the body includes a bottom plate, a top plate, a side plate and a plurality of partitions, the side plate surrounds the bottom plate, the bottom plate and the top plate are oppositely arranged and pass through the
  • the side plates are connected to form an accommodating space, the plurality of baffles are arranged side by side in the accommodating space, and the first branch flow channel is formed between two adjacent baffles;
  • the protrusion is located in the middle section of the first branch channel, so as to reduce the cross-sectional area of the middle section.
  • the cross-sectional area of the middle section is reduced by forming protrusions on the bottom plate, the structure is simple, the production is convenient, and the processing cost is low.
  • the protrusion connects the adjacent partitions, which also enhances the structural strength of the partitions, and the partitions are not easily deformed.
  • the protrusion connects two adjacent partitions.
  • the protrusion connects two adjacent partitions, the surface of the protrusion is higher than the surface of the bottom plate, and the height of the cross section of the middle section is reduced without changing the width of the cross section of the middle section. Therefore, under the condition that the heat exchange area remains unchanged, the cross-sectional area is reduced, the flow rate of the heat exchange medium is accelerated, and the heat exchange speed and efficiency are improved. Moreover, the protrusion is supported between two adjacent partitions, which enhances the structural strength of the partitions, prevents deformation of the partitions, and ensures the structural stability of the first branch flow channel.
  • At least two second branch flow channels are further provided in the heat management component, and the second branch flow channels are equal-section flow channels, along which the plurality of first branch flow channels The arrangement direction of the channels, the at least two second branch channels are respectively located on both sides of the plurality of first branch channels, and the two ends of each of the second branch channels are respectively connected to the first total flow channel and the second total flow channel.
  • the second branch flow channel is used to cool down the regions near both ends. Since the regions at both ends can dissipate heat outward, the heat transfer rate of the regions at both ends is consistent by setting the second branch flow channel with equal cross-section. , the temperature difference is small.
  • the cross-sectional area of the end section of the first branch flow channel is equal to the cross-sectional area of the second branch flow channel.
  • the area corresponding to the end section of the first branch flow channel and the area corresponding to the second branch flow channel are both close to the outer periphery, by combining the cross-sectional area of the end section of the first branch flow channel and the second The cross-sectional areas of the branch flow channels are set to be equal, so that the heat exchange rate of the entire periphery is consistent and the temperature difference is small.
  • the embodiment of the present application also provides a battery, which includes:
  • a battery pack comprising a plurality of stacked battery cells
  • the thermal management component is arranged on one side of the battery pack, and is used for containing fluid to adjust the temperature of the battery pack.
  • the heat exchange efficiency of the heat management component is high, and the heat exchange efficiency of the middle area is greater than that of the outer area, which can not only effectively reduce the maximum temperature of the battery, but also alleviate the excessive temperature difference caused by the large temperature difference between different areas of the battery.
  • the problem of charging and analyzing lithium effectively improves the safety of the battery.
  • the stacking direction of the plurality of battery cells is the same as the arrangement direction of the plurality of first branch channels of the heat management component.
  • the length direction of the battery cell is consistent with the extension direction of the first branch flow channel, the battery cell and the first branch flow channel overlap, and the effective heat exchange area is large.
  • the embodiment of the present application further provides an electric device, which includes the aforementioned battery.
  • the safety of the battery is higher, and the safety of the electrical equipment is higher.
  • FIG. 1 is a schematic diagram of electrical equipment provided by an embodiment of the present application.
  • Fig. 2 is a three-dimensional schematic diagram of a battery provided by an embodiment of the present application.
  • Fig. 3 is an exploded view of a battery provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of temperature recording of a battery provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the external structure of a thermal management component provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the internal structure of a thermal management component provided by an embodiment of the present application.
  • Fig. 7 is a flow channel layout diagram of a thermal management component provided by an embodiment of the present application.
  • Fig. 8 is a flow channel layout diagram of a thermal management component provided by another embodiment of the present application.
  • Fig. 9 is the A-A sectional view of Fig. 5;
  • Fig. 10 is the B-B sectional view of Fig. 5;
  • Fig. 11 is a schematic diagram of the internal structure of a thermal management component provided by another embodiment of the present application.
  • Fig. 12 is a cross-sectional view of a thermal management component provided by another embodiment of the present application.
  • Fig. 13 is a schematic diagram of the internal structure of a thermal management component provided in yet another embodiment of the present application.
  • Fig. 14 is a flow channel layout diagram of a thermal management component provided by another embodiment of the present application.
  • Figure 15 is a C-C sectional view of Figure 14;
  • Fig. 16 is a schematic diagram of the flow path of the test group in the heat exchange capacity detection test
  • Fig. 17 is a schematic diagram of flow passages of a control group in a heat exchange capacity detection test.
  • Marking description 1000-vehicle; 100-battery; 200-motor; 300-controller; 1-box assembly; 11-first box part; 12-second box part; 13-third box part; 2-battery pack; 21-battery unit; 22-confluence components; 3-thermal management components; 31-body; 311-bottom plate; 312-top plate; 313-side plate; 314-baffle; - the first raised part; 3152-the second raised part; 32-inlet; 33-outlet; 34-the first main flow channel; 35-the second main flow channel; 36-the first branch flow channel; segment; 362-end segment; 37-second branch flow channel.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the same reference numerals represent the same components, and for the sake of brevity, detailed descriptions of the same components are omitted in different embodiments. It should be understood that the thickness, length, width and other dimensions of the various components in the embodiments of the application shown in the drawings, as well as the overall thickness, length and width of the integrated device, are for illustrative purposes only, and should not constitute any limitation to the application .
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector; the positive electrode current collector includes a positive electrode current collector and a positive electrode tab, and the positive electrode current collector is coated with a positive electrode active material layer , the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, the positive electrode active material layer includes the positive electrode active material, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collector and a negative electrode tab, and the negative electrode current collector is coated with a negative electrode active material layer , the negative electrode tab is not coated with the negative electrode active material layer.
  • the material of the negative electrode current collector may be copper, the negative electrode active material layer includes the negative electrode active material, and the negative electrode active material may be carbon or silicon.
  • the separator is used to be arranged between the positive pole piece and the negative pole piece to insulate the positive pole piece and the negative pole piece and avoid short circuit.
  • the material of the spacer can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the battery cell also includes a casing, which is used to accommodate the electrode assembly and electrolyte, etc., and the casing is also provided with an electrode lead-out part, which is connected to the tab of the electrode assembly to realize charging and discharging of the electrode assembly.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including multiple battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. Multiple battery cells are stacked inside the box, and the box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • Batteries may also include other structures.
  • the battery may further include a confluence part, which is used to realize the electrical connection between a plurality of battery cells, such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells by connecting the electrode lead-out parts of the battery cells.
  • the current collecting member may be fixed to the electrode lead-out portion of the battery cell by welding. The electric energy of the plurality of battery cells can be further drawn out through the box through the conductive mechanism.
  • the conduction means can also belong to the current-collecting part.
  • thermal management components are generally also included in the battery.
  • the thermal management component is used to contain fluid to adjust the temperature of multiple battery cells, so that the battery is in a suitable temperature range to ensure better charge and discharge capabilities and higher safety.
  • the fluid here can be liquid or gas, regulating temperature refers to heating or cooling a plurality of battery cells, and the fluid can be called a heat exchange medium.
  • the thermal management component is used to contain cooling fluid to lower the temperature of multiple battery cells.
  • the thermal management component can also be called a cooling component, a cooling system or a cooling plate, etc.
  • the fluid it contains can also be called cooling medium or cooling fluid, more specifically, it can be called cooling liquid or cooling gas.
  • the thermal management component can also be used for heating to raise the temperature of multiple battery cells, which is not limited in this embodiment of the present application.
  • the fluid may circulate in order to achieve a better effect of temperature regulation.
  • the fluid may be water, a mixture of water and glycol, or air.
  • the speed of the sheet is slow, and metal ions are easy to accumulate on the outside of the pole piece, resulting in the precipitation of metal ions.
  • the precipitated metal ions crystallize on the surface of the pole piece. It can lead to explosion and fire.
  • the battery cells with high temperature have strong charge and discharge capabilities, they are prone to thermal runaway and cause explosion and fire. Therefore, they can only be charged with a small current to avoid excessive temperature rise. Due to the problem that the temperature of the battery cells in different regions of the same battery varies greatly, in order to ensure safety, the charging and discharging current of the battery is greatly limited, and the safety and charging and discharging capabilities of the battery cannot be considered.
  • the embodiment of the present application provides a technical solution, in which a first main flow channel, a second main flow channel and a plurality of first sub-channels arranged side by side are provided in the heat management component.
  • Branch channels the first main flow channel is used to supply the heat exchange medium
  • the second main flow channel is used to recover the heat exchange medium
  • the two ends of each first branch flow channel are respectively connected to the first main flow channel and the second main flow channel
  • each first branch channel includes a middle section and two end sections, the cross-sectional area of the middle section is smaller than the cross-sectional area of the end sections.
  • the heat exchange medium flows from the first main flow channel to the second main flow channel through the first branch flow channel.
  • the flow rate of the heat exchange medium is the same. Since the cross-sectional area of the middle section is reduced, the heat exchange medium The increased flow velocity in the middle section can quickly take away the heat absorbed in the middle section, and there is always a large temperature difference between the heat exchange medium and the heat source (such as a battery) in the middle section, and the heat transfer efficiency is improved.
  • the thermal management component provided by the present application when used in a battery, it can accelerate the reduction of the temperature in the middle area of the battery, so that the temperature rise in the middle area of the battery is reduced, the maximum temperature in the middle area of the battery is reduced, and the excessive temperature is alleviated.
  • the battery cells in the central area and the battery cells in the outer area are at suitable temperatures, both the battery cells in the central area and the battery cells in the outer area have high charge and discharge capabilities, and the battery cells in the central area The temperature difference between the battery cells in the area and the battery cells in the outer area is reduced, and the charge and discharge capabilities are roughly the same, which alleviates the problem of overcharging lithium caused by the excessive temperature difference of the battery cells in different areas, and has higher safety.
  • the technical solution provided by the present application can not only reduce the local maximum temperature of the battery, but also reduce the average temperature of the battery.
  • the technical solutions described in the embodiments of the present application are applicable to various batteries, such as lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries or magnesium-ion batteries, etc., used to form batteries
  • the battery cells can be cylindrical, flat, cuboid or other shapes.
  • the battery in the technical solution described in the embodiments of the present application is applicable to various electrical equipment using batteries, such electrical equipment may be ships, vehicles, drones, and the like.
  • the vehicle is a new energy vehicle, which may be a pure electric vehicle, or a hybrid vehicle or an extended-range vehicle.
  • the main body of the vehicle is provided with a driving motor, which is electrically connected to the battery as a power source, and the battery provides electric energy.
  • the driving motor is connected to the wheels on the main body of the vehicle through a transmission mechanism, thereby driving the vehicle to move forward.
  • batteries can also be used in energy storage cabinets to provide electrical energy as a power source.
  • FIG. 1 shows a schematic structural diagram of an electrical device according to an embodiment of the present application.
  • the electrical device is a vehicle 1000.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle. Automobiles, hybrid electric vehicles or extended-range vehicles, etc.
  • Battery 100 is provided inside vehicle 1000 .
  • the battery 100 may be provided at the bottom or front or rear of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 , used for the circuit system of the vehicle 1000 , for example, used for starting, navigating, and operating power requirements of the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • a controller 300 and a motor 200 may also be provided inside the vehicle 1000 .
  • the controller 300 is used to control the battery 100 to supply power to the motor 200 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery 100 module, and then a plurality of battery 100 modules can be connected in series, parallel or mixed to form a battery pack. That is to say, a plurality of battery cells can directly form a battery pack, or firstly form a battery 100 module, and then form a battery pack after the battery 100 module.
  • the battery 100 may include a plurality of battery cells 21 and a box assembly 1 .
  • the box assembly 1 constitutes a space for accommodating a plurality of battery cells 21 , so that the plurality of battery cells 21 are arranged in the space of the box assembly 1 .
  • the type of the box assembly 1 is not limited, and may be a frame-shaped box, a disc-shaped box, or a box-shaped box.
  • the box assembly 1 may include a first box part 11, a second box part 12 and a third box part 13, the two ends of the second box part 12 are open, the first box part 11 and the third box part
  • the box parts 13 respectively cover the openings at both ends of the second box part 12 to form the box assembly 1 with spaces for accommodating the battery cells 21 .
  • the first box body part 11, the second box body part 12 and the third box body part 13 may be arranged separately, or any two of them may be arranged integrally, and the remaining one may be arranged separately, such as the second
  • the box part 12 and the third box part 13 are connected as one, the second box part 12 has an opening opposite to the third box part 13, the first box part 11 closes the opening of the second box part 12, wherein
  • the first box body part 11 can be a cover plate structure, or the first box body part 11 can also have an opening, and the opening of the first box body part 11 is arranged opposite to the opening of the second box body part 12, and the first box body part 11 Fastened to the second box part 12 to form the box assembly 1 .
  • the first box body part 11, the second box body part 12 and the third box body part 13 are arranged separately
  • the second box body part 12 is a frame structure with openings at both ends
  • the first box body part 11 and the third box body part 13 are arranged separately.
  • the third box part 13 is a cover plate structure covering openings at both ends of the second box part 12 respectively.
  • a plurality of battery cells 21 are combined in parallel, in series or in parallel and placed in the box assembly 1 formed by connecting the first box part 11 , the second box part 12 and the third box part 13 . As shown in FIG. 3 , a plurality of battery cells 21 are sequentially stacked, and then connected in parallel or in series or in parallel through a converging component 22 to form a battery pack 2 , and the battery pack 2 is placed in the box assembly 1 .
  • the thermal management component 3 is arranged on one side of the battery pack 2 for adjusting the temperature of the battery pack 2 .
  • the thermal management component 3 is located on a side of the battery pack 2 close to the third box portion 13 .
  • the X direction, the Y direction and the Z direction are defined according to the placement method of the battery 100 in normal use, and the three directions are perpendicular to each other.
  • a square battery cell is taken as an example, wherein: the X direction is the stacking direction of the battery cells 21, which is also the thickness direction of the battery cells 21; the Y direction is the width direction of the battery cells 21; the Z direction is The height direction of the battery cells 21 is also the stacking direction of the battery pack 2 and the heat management component 3 .
  • the temperature sensor placed in the battery in advance, the temperature sensor automatically records the temperature of each place after the battery is charged and discharged for 30 minutes, and a schematic diagram of the temperature zone shown in Figure 4 is obtained.
  • three rows of stacked battery cells in the battery are placed side by side along the Y direction. In other embodiments, there may be more than three rows of stacked battery cells, or only two rows or one row .
  • the temperature of the battery cells in the central region is higher, and the temperature of the battery cells in the outer region is lower.
  • the temperature of the battery cells in the middle of the stacked position is relatively high, and the temperature of the battery cells at the two ends of the stacked position is relatively low; along the Y direction, the battery cells in the middle of the stacked position
  • the temperature of the single cells is relatively high, and the temperature of the battery cells arranged on both sides is relatively low.
  • the temperature of the battery cells in the most central area is as high as 55°C, while the temperature of the battery cells in the four corners is the lowest and the temperature is about 32°C to 35°C, with a temperature difference of more than 20°C.
  • the thermal management component 3 provided by the embodiment of the present application can effectively reduce the temperature difference in different regions of the battery 100.
  • the second main flow channel 35 and a plurality of first branch flow channels 36 the plurality of first branch flow channels 36 are arranged side by side, and the two ends of each first branch flow channel 36 communicate with the first main flow channel 34 and the second main flow channel respectively.
  • the flow channel 35 wherein, the first branch flow channel 36 includes a middle section 361 and two end sections 362 , the cross-sectional area of the middle section 361 is smaller than the cross-sectional area of the end sections 362 .
  • the body 31 is provided with an inlet 32 and an outlet 33 , and the inlet 32 and the outlet 33 communicate with the outside of the body 31 and the inside of the body 31 .
  • the first main flow channel 34, the second main flow channel 35 and a plurality of first branch flow channels 36 are all formed inside the body 31, wherein the inlet 32 is used to communicate with the first main flow channel 34 and the outside
  • the heat exchange medium supply equipment, the outlet 33 is used to communicate with the second total flow channel 35 and the external heat exchange medium recovery equipment, so that the first total flow channel 34 can be used to supply the heat exchange medium, and the second total flow channel 35 can be used for recovery
  • the heat exchange medium, the heat exchange medium enters the plurality of first branch flow channels 36 respectively through the first main flow channel 34 , and then enters the second main flow channel 35 through the plurality of first branch flow channels 36 .
  • the heat exchange medium supply equipment and the heat exchange medium recovery equipment are the same equipment, which includes a heat exchange medium storage chamber and a power plant, and the inlet 32 and outlet 33 on the body 31 are connected to the heat exchange medium storage chamber through pipelines , the power device is used to drive the heat exchange medium to flow from the receiving chamber to the inlet 32, thereby forming a multi-dimensional structure of "accommodating chamber-first main flow channel 34-multiple first branch flow channels 36-second main flow channel 35-accommodating chamber" Parallel loops.
  • Both the first total flow channel 34 and the second total flow channel 35 are filled with heat exchange medium, and the pressure of the first total flow channel 34 is greater than the pressure of the second total flow channel 35, thereby forcing the heat exchange medium to pass through the first branch flow channel 36 It flows from the first main flow channel 34 to the second main flow channel 35 and makes the heat exchange medium fill the first branch flow channel 36 .
  • the cross-section of the flow channel refers to the section perpendicular to the extending direction of the flow channel, and the cross-sectional area of the flow channel refers to the flow area of the flow channel on the cross-section.
  • the cross-sectional area of the middle section 361 refers to the flow area perpendicular to the section made by the middle section 361
  • the cross-sectional area of the end section 362 refers to the flow area perpendicular to the section made by the end section 362 .
  • the instantaneous flow rate of the heat exchange medium is the same at different cross sections. Since the cross-sectional area of the middle section 361 is reduced, the flow velocity of the heat exchange medium in the middle section 361 increases, which can quickly The heat absorbed at the middle section 361 is taken away, and there is always a large temperature difference between the heat exchange medium and the heat source at the middle section 361, and the heat transfer efficiency is improved.
  • the central area of the battery 100 is more difficult to dissipate heat than the outer area of the battery 100, and the temperature in the central area of the battery 100 is relatively high.
  • the middle section 361 of the first branch channel 36 corresponds to the middle area of the battery 100
  • the end section 362 corresponds to the outer area of the battery 100. Since the heat exchange efficiency of the middle section 361 is higher, the cooling speed of the middle area of the battery 100 is accelerated.
  • the thermal management component 3 provided by the embodiment also has a better cooling effect, not only can reduce the local maximum temperature of the battery 100 , but can also reduce the average temperature of the battery 100 .
  • the first branch flow channel 36 also includes a transition section (not shown in the figure), the transition section connects the middle section 361 and the end section 362, and the cross-sectional area of the transition section is changed from near the end section 362 One end of it gradually decreases toward the end close to the middle section 361.
  • the cross-sectional area of the transition section refers to the flow area perpendicular to the section made by the transition section.
  • the cross-sectional area of the transition section gradually decreases from one end close to the end section 362 to one end close to the middle section 361 , which means that the transition section forms a tapered structure with one end large and the other end small.
  • the overall shape of the transition section is a frustum-shaped cavity, and the inner wall of the transition section is set as a slope or an arc.
  • the inner wall of the flow channel will form a step surface perpendicular to the extending direction of the flow channel between the middle section 361 and the end section 362, and the step surface will block heat exchange.
  • the medium flow reduces the flow rate of the heat exchange medium, which is not conducive to the rapid removal of heat.
  • the transition section is used to make a smooth transition between the middle section 361 and the end section 362, so as to prevent the formation of a stepped surface between the middle section 361 and the end section 362 to block the flow of the heat exchange medium and reduce the flow velocity.
  • the lengths of the middle sections 361 of each first branch channel 36 are equal.
  • the first main flow channel 34 and the second main flow channel 35 extend along the X direction
  • the plurality of first branch flow channels 36 extend along the Y direction and are arranged along the X direction. It is known that "along the Y direction, the temperature of the battery cells 21 arranged in the middle is relatively high, and the temperature of the battery cells 21 arranged on both sides is relatively low", through the above settings, the multiple end sections 362 corresponds to the two rows of battery cells 21 arranged on both sides, and the plurality of intermediate segments 361 corresponds to one or more rows of battery cells 21 arranged in the middle, so as to speed up heat exchange for the battery cells 21 arranged in the middle.
  • the adjacent area of the two rows of battery cells 21 is the middle area, where the temperature is relatively high.
  • the multiple end sections 362 correspond to the two rows In the areas where the battery cells 21 are far away from each other, a plurality of intermediate sections 361 correspond to the adjacent areas of the two rows of battery cells 21, so as to speed up the heat exchange between the adjacent areas of the two rows of battery cells 21, so as to prevent the two rows of battery cells 21 from The temperature rise of the adjacent area is relatively large, which improves the safety of the battery 100 .
  • a plurality of intermediate sections 361 correspond to the middle of the row of battery cells 21 to speed up the heat transfer to the middle region of the row of battery cells 21, so as to avoid a large temperature rise in the middle region of the battery cells 21 and improve the battery 100. security.
  • the arrangement direction of the plurality of first branch channels 36 may be the X direction or the Y direction, or may be a linear direction between the X direction and the Y direction. In this embodiment, the plurality of first branch channels 36 are arranged along the X direction.
  • the middle section 361 of the first branch flow channel 36 is arranged closer to the middle, the length of the middle section 361 is greater, and the middle section 361 of the first branch flow channel 36 forms a diamond-like structure, and in some embodiments, it can also form a similar circular shape. Structure.
  • the temperature of the battery cells 21 in the middle area is higher, the temperature of the battery cells 21 in the outer area is lower, and the temperature near the periphery of the entire battery 100 is lower, especially the battery cells 21 at the four corners.
  • the temperature of the battery cell 21 is the lowest, the farther away from the periphery of the battery 100, the higher the temperature of the battery cells 21 in the area away from the four corners of the battery 100.
  • Targeted acceleration of the cooling of the battery cells 21 in areas far away from the periphery of the battery 100 and the four corners of the battery 100 can effectively alleviate the problem of overcharging lithium caused by excessive temperature differences between different areas of the battery 100 and improve the safety of the battery 100 .
  • the body 31 includes a bottom plate 311 , a top plate 312 , a side plate 313 and a plurality of partitions 314 , the side plate 313 is surrounded by the bottom plate 311 , the bottom plate 311 and the top plate 312 They are oppositely arranged and connected by side plates 313 to form an accommodating space, and a plurality of partitions 314 are arranged side by side in the accommodating space, and a first branch flow channel 36 is formed between two adjacent partitions 314; a protrusion is formed on the bottom plate 311 315 , the protrusion 315 is located at the middle section 361 of the first branch channel 36 to reduce the cross-sectional area of the middle section 361 .
  • the side plate 313 includes a plurality of sub-plates, which are connected end to end to form the side plate 313.
  • the side plate 313 is a polygonal hollow cylinder with open ends.
  • the side plate 313 can also be open at both ends.
  • a circular hollow cylinder, in this embodiment, the side plate 313 is a quadrilateral hollow cylinder with two ends open.
  • the bottom plate 311 and the top plate 312 are opposite to each other at intervals, respectively covering and closing openings at both ends of the side plate 313 , thereby forming a space for accommodating heat exchange medium.
  • the side panel 313 connects edges of the bottom panel 311 and the top panel 312 to form a receiving space.
  • the top plate 312 is located on the side of the thermal management component 3 close to the battery pack 2
  • the bottom plate 311 is located on the side of the thermal management component 3 away from the battery pack 2
  • the inlet 32 of the thermal management component 3 is arranged on one of the top plate 312 and the bottom plate 311, and the same
  • the outlet 33 of the thermal management component 3 is disposed on one of the top plate 312 and the bottom plate 311 , and in this embodiment, both the inlet 32 and the outlet 33 of the thermal management component 3 are disposed on the top plate 312 .
  • a heat-conducting adhesive layer can be provided between the top plate 312 and the battery pack 2, and the gap between the top plate 312 and the battery pack 2 can be filled with the heat-conducting adhesive layer to ensure that there is a sufficient contact area between the thermal management component 3 and the battery pack 2 to ensure heat transfer efficiency.
  • a plurality of partitions 314 are arranged side by side in the accommodating space, and the two ends of each partition 314 form a space with the side plate 313 respectively, and the space between one end of the plurality of partitions 314 and the side plate 313 forms the first total flow channel 34 The distance between the other ends of the plurality of partitions 314 and the side plate 313 forms the second total flow channel 35 .
  • the protrusion 315 can be integrally formed on the bottom plate 311 , or the protrusion 315 can be separately formed and installed on the bottom plate 311 .
  • the cross-sectional area of the middle section 361 is reduced by providing the protrusion 315 on the bottom plate 311, which has a simple structure, is convenient for manufacturing, and has low processing cost.
  • the protrusion 315 includes a first protrusion 3151 and a second protrusion 3152, the first protrusion 3151 is connected to one side of the partition 314, and the second protrusion 3151
  • the raised portion 3152 is connected to the partition plate 314 on the other side, the first raised portion 3151 and the second raised portion 3152 are triangular in shape, the apex of the triangle is close to the top plate 312, and the bottom edge of the triangle is connected to the bottom plate 311, so that the middle section 361
  • the maximum width of the cross section is constant, but the width of the cross section decreases gradually along the direction away from the top plate 312 .
  • the heat exchange area of the heat exchange channel is the product of the width of the cross section and the length of the heat exchange channel
  • the maximum heat exchange area of the heat exchange channel is the product of the maximum width of the cross section and the length of the heat exchange channel.
  • the protrusion 315 connects two adjacent partitions 314 .
  • the bottom edges of the first raised portion 3151 and the second raised portion 3152 are connected, and the protrusion 315 is supported between two adjacent partitions 314, which strengthens the structure of the partition 314 Strength, the partition plate 314 is not easily deformed, and ensures the structural stability of the first branch channel 36 .
  • the flow channel of the middle section 361 is raised, the cross-sectional area of the middle section 361 is reduced, and the heat exchange medium is improved. flow rate.
  • the protrusion 315 can also be a rectangular body, a group of opposite faces of the rectangular body are respectively connected to the separators 314 on both sides, and one face in the other group of opposite faces of the rectangular body is connected to The other side of the bottom plate 311 is higher than the surface of the bottom plate 311 .
  • the protrusion 315 can be integrally formed on the bottom plate 311 , or the protrusion 315 can be separately formed and installed on the bottom plate 311 .
  • the width of the cross-section of the middle section 361 is constant, and the height of the cross-section of the middle section 361 is reduced, thereby reducing the cross-sectional area and increasing the flow rate of the heat exchange medium while the heat exchange area is constant.
  • the protrusion 315 is supported between two adjacent partitions 314 , which enhances the structural strength of the partitions 314 , the partitions 314 are not easy to deform, and ensures the structural stability of the first branch channel 36 .
  • At least two second branch flow channels 37 are provided in the heat management component 3, and the second branch flow channels 37 are flow channels with equal cross-sections.
  • the branch channels 36 In the arrangement direction of the branch channels 36, at least two second branch channels 37 are respectively located on both sides of a plurality of first branch channels 36, and the two ends of each second branch channel 37 communicate with the first main flow channel 34 and the The second total runner 35.
  • the second branch flow channel 37 is used to cool down the battery cells 21 stacked on both ends along the X direction. Since the areas at both ends can dissipate heat outward, the second branch flow channel 37 with equal cross-section is provided to make the area at both ends cool. The heat exchange rate is consistent, reducing the temperature difference between the two ends.
  • the cross-sectional area of the end segment 362 of the first branch flow channel 36 is equal to the cross-sectional area of the second branch flow channel 37 .
  • the second branch channel 37 is used to cool down the battery cells 21 stacked at both ends along the X direction, and the end section 362 of the first branch channel 36 is used to cool down the battery cells 21 arranged on both sides along the Y direction.
  • the battery cells 21 stacked at both ends along the X direction and the battery cells 21 arranged on both sides along the Y direction are close to the outer periphery of the battery 100, or in other words, the battery cells 21 stacked at both ends along the X direction and along the Y direction
  • the battery cells 21 arranged on both sides in the direction form the outer periphery of the battery 100, and the battery cells 21 in these two regions are easy to dissipate heat outward.
  • the cross-sectional area of the second branch flow channel 37 is set to be equal to prevent the temperature difference between the two regions due to the inconsistent heat transfer efficiency of the heat management component 3, so that the heat transfer rate of the entire periphery is consistent and the temperature difference is small.
  • the embodiment of the present application also provides a battery 100, which includes:
  • a battery pack 2 comprising a plurality of stacked battery cells 21;
  • the thermal management component 3 is disposed on one side of the battery pack 2 for containing fluid to regulate the temperature of the battery pack 2 .
  • the thermal management component 3 provided by the present application has high heat exchange efficiency, and the heat exchange efficiency of the middle area is greater than that of the outer area, which can not only effectively reduce the maximum temperature of the battery 100, but also alleviate the difference of the battery 100. Excessive regional temperature difference causes the problem of lithium overcharge and deposition, which effectively improves the safety of the battery 100 .
  • the stacking direction of the plurality of battery cells 21 is the same as the arrangement direction of the plurality of first branch channels 36 of the heat management component 3 .
  • first main flow channel 34 and the second main flow channel 35 extend along the X direction
  • a plurality of first branch flow channels 36 extend along the Y direction and are arranged along the X direction
  • a plurality of battery cells 21 are stacked along the X direction. in rows. This makes the length direction of the battery cell 21 consistent with the extension direction of the first branch flow channel 36 , the battery cell 21 and the first branch flow channel 36 overlap, and the effective heat exchange area is large.
  • the embodiment of the present application further provides an electric device, which includes the aforementioned battery 100 .
  • the safety of the battery 100 is higher, and the safety of the electrical equipment is higher.
  • the present application provides a thermal management component 3, the thermal management component 3 is arranged in the box assembly 1 of the battery 100, and the thermal management
  • the component 3 includes a body 31, the body 31 is provided with a first main flow channel 34, a second main flow channel 35 and a plurality of first branch flow channels 36, the first main flow channel 34 and the second main flow channel 35 are all along the X direction Extending, a plurality of first branch flow channels 36 extend along the Y direction, a plurality of first branch flow channels 36 are arranged along the X direction, and the two ends of the plurality of first branch flow channels 36 are connected to the first main flow channel 34 and the first main flow channel 34 respectively.
  • each first branch channel 36 includes a middle section 361 and two end sections 362, the middle section 361 has a protrusion 315, so that the cross-sectional area of the middle section 361 is smaller than that of the end sections 362 of cross-sectional area.
  • the thermal management component 3 provided by the embodiment of the present application was used as the test group, and the thermal management component of the prior art was used as the control group, and a comparative test was carried out as follows.
  • Test group as shown in Figure 16, the first branch flow channel 36 of the heat management component 3 is numbered 1a, 2a, 3a...12a in sequence along the X direction, and the battery 100 is placed in a constant temperature room at 25°C.
  • the motor is charged and discharged with a current of 195A.
  • cooling water at 20°C is passed into the thermal management component 3.
  • the flow sensor previously installed in the first branch flow channel 36 and the temperature sensor previously installed in the battery , record the flow rate of the heat exchange medium in each first branch channel 36 after charging and discharging the battery 100 for 30 minutes, and the maximum temperature of the battery pack 2, and obtain Table 1 as follows:
  • Table 1 The heat exchange capacity detection table of the thermal management component 3 in this embodiment
  • Control group all the branch flow channels in the existing thermal management components are equal-section flow channels, as shown in Figure 17, the branch flow channels of the existing thermal management components are numbered 1b, 2b, 3b...12b in sequence along the X direction , put the battery installed with the existing thermal management components in a constant temperature room at 25°C, charge and discharge with a charge-discharge machine at a current of 195A, and pass cooling water at 20°C to the existing thermal management components during the charging and discharging process.
  • the flow sensor placed in the branch flow channel and the temperature sensor placed in the battery in advance record the flow rate of the heat exchange medium in each branch flow channel and the maximum temperature of the battery pack after charging and discharging the battery for 30 minutes.
  • Table 2 is obtained as follows:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种热管理部件(3)、电池(100)及用电设备,热管理部件(3)包括:本体(31),本体(31)内设有第一总流道(34)、第二总流道(35)和多个第一分支流道(36),多个第一分支流道(36)并排设置,每个第一分支流道(36)的两端分别连通第一总流道(34)和第二总流道(35);其中,第一分支流道(36)包括中间段(361)和两个端部段(362),中间段(361)的横截面积小于端部段(362)的横截面积。提供的热管理部件(3)用于电池(100),其换热效率高,能够降低电池(100)的平均温度,缓解电池(100)温度过高导致失控的问题,还使得电池(100)的中部区域的温升减小,电池(100)的中部区域和电池(100)的外侧区域的温差减小,缓解了电池(100)的不同区域温差过大引起过充析锂的问题,有效提高了电池(100)的安全性。

Description

热管理部件、电池及用电设备
相关申请的交叉引用
本申请要求享有2021年11月30日提交的名称为“热管理部件、电池及用电设备”的中国专利申请(202122992307.2)的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种热管理部件、电池及用电设备。
背景技术
在追求节能减排的大环境下,电动车辆由于节能环保的优势,成为汽车产业的发展新趋势,是汽车产业可持续发展的重要组成部分。电动车辆使用中,以及在其他用电设备使用中,其所携带的电池的安全性关乎设备安全和使用者人身安全,如何提高电池的安全性是重要的研发方向。
发明内容
本申请旨在提供一种热管理部件、电池及用电设备,以提升电池的安全性。
本申请的实施例是这样实现的:
第一方面,本申请实施例提供一种热管理部件,其包括:
本体,所述本体内设有第一总流道、第二总流道和多个第一分支流道,所述多个第一分支流道并排设置,每个所述第一分支流道的两端分别连通所述第一总流道和所述第二总流道;其中,所述第一分支流道包括中间段和两个端部段,所述中间段的横截面积小于所述端部段的横截面积。
本申请提供的技术方案中,第一总流道可用于供应换热介质,第二总流道可用于回收换热介质,换热介质通过第一总流道分别进入多个第一分支流道,再由多个第一分支流道进入第二总流道,在同一个第一分支流道中,换热介质的流量相同,由于中间段的横截面积减小,使得换热介质在中间段的流速增加,能够快速带走中间段处所吸收的热量,使得中间段处的换热介质和热源之间具有较大的温差,传热效率提高。在电池中,电池的中部区域相对电池的外侧区域较难向外散热,电池的中部区域的温度相对较高,本申请提供的热管理部件用于电池,其中,第一分支流道的中间段与电池的中部区域对应,端部段与电池靠近外侧的区域对应,由于中间段的换热效率更高,电池的中部区域的降温速度加快,使得电池的中部区域的温升减小,电池的最高温度减小,缓解了电池温度过高导致失控的问题,并且电池的中部区域和电池的外侧区域的温差减小,缓解了电池的不同区域温差过大引起过充析锂的问题,有效提高了电池的安全性。
另外,由于换热介质的流速发生改变,第一分支流道中的换热介质受到扰动形成湍流,换热介质充分参与换热,进一步提高了热管理部件的换热效率,本申请提供的热管理部件不仅能够降低电池的局部最大温度,还能够降低电池的平均温度,电池不容易热失控,安全性得到进一步提高。
在本申请的一种实施例中,所述第一分支流道还包括过渡段,所述过渡段连接所述中间段和所述端部段,所述过渡段的横截面积由靠近所述端部段的一端向靠近所述中间段的一端逐渐减小。
在上述技术方案中,通过设置过渡段连接中间段和端部段,以免中间段和端部段之间形成台阶面阻挡换热介质流动,降低流速。
在本申请的一种实施例中,在所述多个第一分支流道的排列方向上,所述第一分支流道的位置越靠近中间,所述第一分支流道的所述中间段的长度越大。
电池能够从整个外周面向外散热,越远离外周越不容易向外散热,越远离外周而靠近中部的区域的温度越高,在上述技术方案中,越远离外周而靠近中部的区域,第一分支流道的中间段越 长,多个第一分支流道的中间段形成类似菱形或圆形的结构,起到针对性地对远离外周的区域快速降温的作用,有效缓解电池的不同区域温差过大引起过充析锂的问题,提高了电池的安全性。
在本申请的一种实施例中,各个所述第一换热流道第一分支流道的所述中间段的长度相等。
在上述技术方案中,针对性地对排列在中间区域的电池单体加速换热,以免电池单体的中部温升较大,提高电池的安全性。
在本申请的一种实施例中,所述本体包括底板、顶板、侧板和多个隔板,所述侧板围设于所述底板,所述底板和所述顶板相对设置并通过所述侧板连接以形成容纳空间,所述多个隔板并排设置在所述容纳空间内,相邻的两个所述隔板之间形成所述第一分支流道;所述底板上形成有凸起,所述凸起位于所述第一分支流道的中间段,以减小所述中间段的横截面积。
在上述技术方案中,通过在底板上形成凸起的方式来减小中间段的横截面积,结构简单,便于生产制造,加工成本小。另一方面,凸起连接相邻的隔板,还增强了隔板的结构强度,隔板不容易变形。
在本申请的一种实施例中,所述凸起连接相邻的两个所述隔板。
在上述技术方案中,凸起连接相邻的两个隔板,凸起的表面高出底板的表面,在不改变中间段的横截面宽度的情况下,减小中间段的横截面的高度,从而在换热面积不变的情况下,减小横截面积,加快换热介质流速,提高换热速度和效率。并且,凸起支撑在相邻的两个隔板之间,增强了隔板的结构强度,隔板不容易变形,保证第一分支流道的结构稳定。
在本申请的一种实施例中,所述热管理部件内还设有至少两个第二分支流道,所述第二分支流道为等截面流道,沿所述多个第一分支流道的排列方向,所述至少两个第二分支流道分别位于所述多个第一分支流道的两侧,每个所述第二分支流道的两端分别连通所述第一总流道和所述第二总流道。
在上述技术方案中,第二分支流道用于对靠近两端的区域降温,由于两端的区域都能够向外散热,通过设置等截面的第二分支流道,使得两端的区域的换热速度一致,温差小。
在本申请的一种实施例中,所述第一分支流道的所述端部段的横截面积与所述第二分支流道的横截面积相等。
在上述技术方案中,第一分支流道的端部段所对应的区域和第二分支流道所对应的区域均靠近外周,通过将第一分支流道的端部段横截面积和第二分支流道的横截面积设置为相等,使得整个外周的换热速度一致,温差小。
第二方面,本申请实施例还提供一种电池,其包括:
电池组,包括多个堆叠的电池单体;
如前所述的热管理部件,所述热管理部件设置于所述电池组的一侧,用于容纳流体以给所述电池组调节温度。
在上述技术方案中,热管理部件的换热效率高,且中部区域的换热效率大于外侧区域的换热效率,不仅能够有效降低电池的最高温度,还缓解电池的不同区域温差过大引起过充析锂的问题,有效提高了电池的安全性。
在本申请的一种实施例中,所述多个电池单体的堆叠方向与所述热管理部件的所述多个第一分支流道的排列方向相同。
在上述技术方案中,电池单体的长度方向和第一分支流道的延伸方向一致,电池单体和第一分支流道重合,有效换热面积大。
第三方面,本申请实施例还提供一种用电设备,其包括如前所述的电池。
本申请提供的用电设备中,电池的安全性较高,用电设备的安全性较高。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一实施例提供的用电设备的示意图;
图2为本申请一实施例提供的电池的立体示意图;
图3为本申请一实施例提供的电池的分解图;
图4为本申请一实施例提供的电池的温度记录示意图;
图5为本申请一实施例提供的热管理部件的外部结构示意图;
图6为本申请一实施例提供的热管理部件的内部结构示意图;
图7为本申请一实施例提供的热管理部件的流道布置图;
图8为本申请另一实施例提供的热管理部件的流道布置图;
图9为图5的A-A剖面图;
图10为图5的B-B剖面图;
图11为本申请又一实施例提供的热管理部件的内部结构示意图;
图12为本申请又一实施例提供的热管理部件的剖面图;
图13为本申请再一实施例提供的热管理部件的内部结构示意图;
图14为本申请再一实施例提供的热管理部件的流道布置图;
图15为图14的C-C剖面图;
图16为换热能力检测试验的试验组流道示意图;
图17为换热能力检测试验的对照组流道示意图。
在附图中,附图并未按照实际的比例绘制。
标记说明:1000-车辆;100-电池;200-马达;300-控制器;1-箱体组件;11-第一箱体部;12-第二箱体部;13-第三箱体部;2-电池组;21-电池单体;22-汇流部件;3-热管理部件;31-本体;311-底板;312-顶板;313-侧板;314-隔板;315-凸起;3151-第一凸起部;3152-第二凸起部;32-进口;33-出口;34-第一总流道;35-第二总流道;36-第一分支流道;361-中间段;362-端部段;37-第二分支流道。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长 方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括电极组件和电解质,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和正极极耳,正极集流部涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和负极极耳,负极集流部涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件用于设置在正极极片和负极极片之间,以绝缘正极极片和负极极片,避免短路。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池单体还包括外壳,外壳用于容纳电极组件和电解质等,外壳还设有电极引出部,电极引出部与电极组件的极耳连接,以实现电极组件的充放电。
本申请的实施例所提到的电池是指包括多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。多个电池单体叠放设置在箱体内部,箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池还可以包括其他结构。例如,该电池还可以包括汇流部件,汇流部件用于实现多个电池单体之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体的电极引出部实现电池单体之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体的电极引出部。多个电池单体的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。对于电池来说,主要的安全危险来自于充电和放电过程,同时还有适宜的环境温度设计。
电池单体的温度过低时,电池单体内的金属离子的移动速度较小,金属离子嵌入极片的能力也较低,充放电能力较低。但电池单体的温度过高时,又会容易导致热失控,产生鼓包、爆炸等安全隐患。因此,适宜的温度设计是保证电池充放电能力和安全性的关键之一。
因此,电池中一般还包括热管理部件。热管理部件用于容纳流体以给多个电池单体调节温度,以使电池处于适宜的温度范围内,保证较好的充放电能力和较高的安全性。这里的流体可以是液体或气体,调节温度是指给多个电池单体加热或者冷却,流体可被称为换热介质。在给电池单体冷却或降温的情况下,该热管理部件用于容纳冷却流体以给多个电池单体降低温度,此时,热管理部件也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。另外,热管理部件也可以用于加热以给多个电池单体升温,本申请实施例对此并不限定。可选的,所述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
然而,尽管设置了热管理部件,目前仍时有电池充放电能力较低的情况,也时有电池燃烧、爆炸的情况发生。经研究发现,这是由于电池中不同部位的电池单体的温度差异较大造成的,例如,叠放的多个电池单体中,靠近外部的电池单体的热量易于向外散发,而位于中间的电池单体的热量不容易向外散发,这就导致位于中间的电池单体的温度相对较高,在设置了热管理部件之后,热管理部件对所有区域的电池单体都以同样的速度降温,同一电池中的不同区域的电池单体的温度差异仍然较大,当采用同样大小的电流对电池进行充电时,温度较低的电池单体由于金属离子移动速度低、金属离子嵌入极片的速度慢,金属离子容易堆积在极片外部导致出现金属离子析出现象,析出的金属离子在极片表面结晶,该结晶容易刺穿隔离件导致正极极片和负极极片搭接短路,进而导致爆炸、起火,而温度较高的电池单体虽然充放电能力强,但容易热失控导致爆炸、起火,因此也只能采用较小电流充电,以免温升过大。由于存在同一电池中的不同区域的电池单体的温度差异较大的问题,为保证安全性,电池的充放电电流大小受到较大限制,无法兼顾电池的安全性和充放电能力。
鉴于此,为增强电池的安全性和充放电能力,本申请实施例提供一种技术方案,在热管理部件中设置第一总流道、第二总流道和多个并排设置的第一分支流道,第一总流道用于供应换热介 质,第二总流道用于回收换热介质,每个第一分支流道的两端分别连通第一总流道和第二总流道,其中每个第一分支流道包括中间段和两个端部段,中间段的横截面积小于端部段的横截面积。
换热介质由第一总流道经第一分支流道流向第二总流道,同一个第一分支流道中,换热介质的流量相同,由于中间段的横截面积减小,换热介质在中间段的流速增加,能够快速带走中间段处所吸收的热量,中间段处的换热介质和热源(例如电池)之间始终具有较大的温差,传热效率提高。因此,本申请提供的热管理部件用于电池时,能够加速降低电池的中部区域的温度,使得电池的中部区域的温升减小,电池的中部区域的最高温度减小,缓解了温度过高导致失控的问题,中部区域的电池单体和外侧区域的电池单体都处于适宜的温度,无论是中部区域的电池单体和外侧区域的电池单体都具有较高的充放电能力,并且中部区域的电池单体和外侧区域的电池单体的温差减小,充放电能力大致相当,缓解了不同区域的电池单体的温差过大引起过充析锂的问题,具有较高的安全性。
另一方面,由于第一分支流道中的换热介质的流速发生改变,第一分支流道中的换热介质受到扰动形成湍流,使得换热介质充分参与换热,热管理部件的换热效率得到有效提高,因此本申请提供的技术方案不仅能够降低电池的局部最大温度,还能够降低电池的平均温度。
本申请实施例描述的技术方案均适用于各种电池,譬如锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,用于组成电池的电池单体可呈圆柱体、扁平体、长方体或其它形状。
本申请实施例描述的技术方案中的电池适用于各种使用电池的用电设备,该用电设备可为轮船、车辆、无人机等。车辆为新能源汽车,其可以为纯电动汽车,也可以为混合动力汽车或增程式汽车。车辆的主体设置有驱动电机,驱动电机作为动力源与电池电连接,由电池提供电能,驱动电机通过传动机构与车辆的主体上的车轮连接,从而驱动汽车行进。另外,电池还可用于储能电柜中,以作为电源提供电能。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,图1示出了本申请实施例的一种用电设备的结构示意图,该用电设备为车辆1000,车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置电池100。例如,在车辆1000的底部或车头或车尾可以设置电池100。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如用于车辆1000的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分替代燃油或天然气为车辆1000提供驱动力。
车辆1000的内部还可以设置控制器300以及马达200,控制器300用来控制电池100为马达200的供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
为了满足不同的使用电力需求,电池100可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。在一些实施例中,多个电池单体可以先串联或并联或混联组成电池100模块,多个电池100模块再串联或并联或混联组成电池组。也就是说,多个电池单体可以直接组成电池组,也可以先组成电池100模块,电池100模块再组成电池组。
如图2和图3所示,电池100可以包括多个电池单体21和箱体组件1。箱体组件1构成用于容纳多个电池单体21的空间,以使多个电池单体21排列布置于箱体组件1的空间内。箱体组件1的类型不受限制,可为框状箱体、盘状箱体或盒状箱体等。
具体地,箱体组件1可包括第一箱体部11、第二箱体部12和第三箱体部13,第二箱体部12的两端开口,第一箱体部11和第三箱体部13分别盖设在第二箱体部12的两端的开口,以形成具有容纳电池单体21的空间的箱体组件1。其中,第一箱体部11、第二箱体部12和第三箱体部13可以是三者分体设置,也可以是其中任意两者一体设置、剩余一者分体设置,例如第二箱体部12和第三箱体部13连接为一体,第二箱体部12具有与第三箱体部13相对的开口,第一箱体部11封闭第二箱体部12的开口,其中第一箱体部11可以是盖板结构,或者第一箱体部11也可以具有开口,第一箱体部11的开口与第二箱体部12的开口相对设置,第一箱体部11扣合于第二箱体部12形成箱体组件1。
本实施例中,第一箱体部11、第二箱体部12和第三箱体部13分体设置,第二箱体部12 为两端开口的框架结构,第一箱体部11和第三箱体部13为分别覆盖第二箱体部12两端开口的盖板结构。
多个电池单体21相互并联或串联或混联组合后置于第一箱体部11、第二箱体部12和第三箱体部13连接形成的箱体组件1内。如图3所示,多个电池单体21依次叠放后,通过汇流部件22连接相互并联或串联或混联组合后形成电池组2,电池组2被放置在箱体组件1内。
热管理部件3设置在电池组2的一侧,以用于给电池组2调节温度。例如,热管理部件3位于电池组2靠近第三箱体部13的一侧。
为便于说明,按照电池100正常使用时的放置方式为基准,定义X方向、Y方向和Z方向,三个方向两两垂直。本实施例中以方形的电池单体为例,其中:X方向为电池单体21的叠放方向,也是电池单体21的厚度方向;Y方向为电池单体21的宽度方向;Z方向为电池单体21的高度方向,也是电池组2和热管理部件3的层叠方向。
将现有电池放在25℃的恒温房内,用充放电机以195A的电流进行充放电,充放电过程中向热管理部件通入20℃的冷却水。根据事先安置在电池中的温度传感器,温度传感器自动记录电池充放电30分钟后的各处温度,并得到如图4所示的温度分区示意图。结合图3和图4所示,电池中三排叠放的电池单体沿Y方向并排放置,在其他实施例中叠放的电池单体还可以有三排以上,或者仅有两排、一排。图4中电池单体的颜色越深代表其温度越高,反之,温度越浅代表其温度越低。总体而言,中部区域的电池单体的温度较高、外侧区域的电池单体的温度较低。具体而言,沿X方向上,叠放位置处于中部的电池单体的温度相对较高,叠放位置处于两端的电池单体的温度相对较低;沿Y方向上,排列位置处于中间的电池单体的温度相对较高,排列位置处于两侧的电池单体的温度相对较低。其中,最中心区域的电池单体的温度高达55℃,而四角处的电池单体的温度最低且温度约为32℃~35℃,温差达到20℃以上。
采用本申请实施例提供的热管理部件3能够有效降低电池100不同区域的温差,如图5和图6所示,热管理部件3包括本体31,本体31内设有第一总流道34、第二总流道35和多个第一分支流道36,多个第一分支流道36并排设置,每个第一分支流道36的两端分别连通第一总流道34和第二总流道35;其中,第一分支流道36包括中间段361和两个端部段362,中间段361的横截面积小于端部段362的横截面积。
如图5所示,本体31设有进口32和出口33,进口32和出口33连通本体31的外部和本体31的内部。
如图6所示,第一总流道34、第二总流道35和多个第一分支流道36均形成在本体31的内部,其中进口32用于连通第一总流道34和外部的换热介质供应设备,出口33用于连通第二总流道35和外部的换热介质回收设备,从而第一总流道34可用于供应换热介质,第二总流道35可用于回收换热介质,换热介质通过第一总流道34分别进入多个第一分支流道36,再由多个第一分支流道36进入第二总流道35。可选地,换热介质供应设备和换热介质回收设备为同一设备,该设备包括换热介质容纳腔和动力装置,本体31上的进口32和出口33均通过管路连接换热介质容纳腔,动力装置用于驱动换热介质从容纳腔流向进口32,从而形成“容纳腔-第一总流道34-多个第一分支流道36-第二总流道35-容纳腔”的多条并联循环回路。
第一总流道34和第二总流道35中均充满换热介质,第一总流道34的压力大于第二总流道35的压力,从而迫使换热介质经第一分支流道36由第一总流道34流向第二总流道35,并使得换热介质充满第一分支流道36。
流道的横截面是指垂直于流道的延伸方向所做的截面,流道的横截面积是指流道在横截面上的流通面积。中间段361的横截面积是指垂直于中间段361所做截面的流通面积,端部段362的横截面积是指垂直于端部段362所做截面的流通面积。
在同一个第一分支流道36中,不同的横截面处,换热介质的瞬时流量相同,由于中间段361的横截面积减小,使得换热介质在中间段361的流速增加,能够快速带走中间段361处所吸收的热量,中间段361处的换热介质和热源之间始终具有较大的温差,传热效率提高。
结合图4和图6,在电池100中,电池100的中部区域相对电池100的外侧区域较难向外散热,电池100的中部区域的温度相对较高,本申请提供的热管理部件3中,第一分支流道36的中间段361与电池100的中部区域对应,端部段362与电池100的外侧区域对应,由于中间段361的换热效率更高,电池100的中部区域的降温速度加快,使得电池100的中部区域的温升减小,电池100的最高温度减小,缓解了电池100温度过高导致失控的问题,并且电池100的中部区域和电 池100的外侧区域的温差减小,缓解了电池100的不同区域温差过大引起过充析锂的问题,有效提高了电池100的安全性。
另外,由于换热介质的流速发生改变,第一分支流道36中的换热介质受到扰动形成湍流,换热介质充分参与换热,进一步提高了热管理部件3的换热效率,因此本申请实施例提供的热管理部件3还具有更好地降温效果,不仅能够降低电池100的局部最大温度,还能够降低电池100的平均温度。
根据本申请的一些实施例,第一分支流道36还包括过渡段(图中未示出),过渡段连接中间段361和端部段362,过渡段的横截面积由靠近端部段362的一端向靠近中间段361的一端逐渐减小。
过渡段的横截面积是指垂直于过渡段所做截面的流通面积。过渡段的横截面积由靠近端部段362的一端向靠近中间段361的一端逐渐减小是指,过渡段形成一端大、一端小的渐变型结构。例如,过渡段的整体形状为圆台状的腔体,过渡段的内壁设置为斜面或弧面。
由于中间段361的横截面积小于端部段362的横截面积,流道的内壁在中间段361和端部段362之间会形成垂直于流道延伸方向的台阶面,台阶面会阻挡换热介质流动,降低换热介质的流速,不利于快速带走热量。
过渡段用于使中间段361和端部段362平滑过渡,以免中间段361和端部段362之间形成台阶面阻挡换热介质流动,降低流速。
根据本申请的一些实施例,如图7所示,各个第一分支流道36的中间段361的长度相等。
结合图4已知,无论从X方向或Y方向来看,电池100的中间区域的温度都相对较高,无论多个第一分支流道36沿X方向或Y方向排列,都能够起到一定的均衡电池100温度的效果。
例如,第一总流道34、第二总流道35沿X方向延伸,多个第一分支流道36均沿Y方向延伸且沿X方向排布。已知“沿Y方向上,排列位置处于中间的电池单体21的温度相对较高,排列位置处于两侧的电池单体21的温度相对较低”,通过上述设置,使得多个端部段362对应排列位置在两侧的两排电池单体21,多个中间段361对应排列位置在中间的一排或多排电池单体21,以加快对排列在中间的电池单体21换热,以免排列在中间的电池单体21的温升较大,提高电池100的安全性。若沿Y方向上仅有两排电池单体21,两排电池单体21的相邻区域的为中间区域,该处温度相对较高,通过上述设置,使得多个端部段362对应两排电池单体21的相互远离的区域,多个中间段361对应两排电池单体21的相邻区域,以加快对两排电池单体21的相邻区域换热,以免两排电池单体21的相邻区域的温升较大,提高电池100的安全性。若沿Y方向上仅有一排电池单体21,该排电池单体21的两侧温度较高、中间温度较低,通过上述设置,使得多个端部段362对应这排电池单体21的两侧,多个中间段361对应这排电池单体21的中间,以加快对这排电池单体21的中间区域换热,以免电池单体21的中间区域的温升较大,提高电池100的安全性。
根据本申请的一些实施例,如图8所示,在多个第一分支流道36的排列方向上,第一分支流道36的位置越靠近中间,第一分支流道36的中间段361的长度越大。
多个第一分支流道36的排列方向可以是X方向或Y方向,也可以是位于X方向和Y方向之间的直线方向。本实施例中,多个第一分支流道36沿X方向排列。
由于排列位置越靠近中间的第一分支流道36的中间段361长度越大,多个第一分支流道36的中间段361形成类似菱形的结构,在一些实施例中也可以形成类似圆形的结构。
结合图4,中部区域的电池单体21的温度较高、外侧区域的电池单体21的温度较低,整个电池100中的外周附近的温度都较低,尤其是四角处的电池单体21的温度最低,越是远离电池100的外周、远离电池100的四角的区域的电池单体21的温度越高,通过将多个第一分支流道36的中间段361组成菱形或圆形,进一步针对性的加快对远离电池100的外周、远离电池100的四角的区域的电池单体21降温,有效缓解电池100的不同区域温差过大引起过充析锂的问题,提高电池100的安全性。
根据本申请的一些实施例,结合图5和图6所示,本体31包括底板311、顶板312、侧板313和多个隔板314,侧板313围设于底板311,底板311和顶板312相对设置并通过侧板313连接以形成容纳空间,多个隔板314并排设置在容纳空间内,相邻的两个隔板314之间形成第一分支流道36;底板311上形成有凸起315,凸起315位于第一分支流道36的中间段361,以减小中间 段361的横截面积。
侧板313包括多个分板,多个分板首尾相连形成侧板313,换言之,侧板313为两端开口的多边形空心柱体,在一些实施例中,侧板313也可以是两端开口的圆形空心柱体,本实施例中,侧板313为两端开口的四边形空心柱体。
底板311和顶板312间隔相对,分别覆盖并封闭侧板313的两端开口,从而形成容纳换热介质的空间。换言之,侧板313连接底板311和顶板312的边缘形成容纳空间。
顶板312位于热管理部件3靠近电池组2的一侧,底板311位于热管理部件3远离电池组2的一侧,热管理部件3的进口32设置在顶板312和底板311中的一者,同样地,热管理部件3的出口33设置在顶板312和底板311中的一者,本实施例中,热管理部件3的进口32和出口33均设置在顶板312上。顶板312与电池组2之间可以设置导热胶层,利用导热胶层填满顶板312和电池组2之间的间隙,以保证热管理部件3和电池组2之间具有足够的接触面积,保证换热效率。
多个隔板314并排设置在容纳空间内,每个隔板314的两端分别与侧板313形成间隔,多个隔板314的一端与侧板313之间的间隔形成第一总流道34,多个隔板314的另一端与侧板313之间的间隔形成第二总流道35。
凸起315可以是一体成型于底板311,凸起315也可以是单独成型后安装于底板311。
通过在底板311上设置凸起315的方式来减小中间段361的横截面积,结构简单,便于生产制造,加工成本小。
如图9和图10所示,在一实施例中,凸起315包括第一凸起部3151和第二凸起部3152,第一凸起部3151连接于一侧隔板314,第二凸起部3152连接于另一侧的隔板314,第一凸起部3151和第二凸起部3152分别为三角形,三角形的顶点靠近顶板312,三角形的底边连接底板311,使得中间段361的横截面的最大宽度不变,但横截面的宽度沿远离顶板312的方向逐渐减小。换热流道的换热面积是横截面的宽度和换热流道的长度之积,换热流道的最大换热面积是横截面的最大宽度和换热流道的长度之积,通过上述设置,中间段361的换热介质流速增加,且中间段361的最大换热面积不变,最大换热面积的位置还靠近顶板312,即靠近电池组2,能够起到较好的换热效果。另一方面,凸起315连接相邻的隔板314,还增强了隔板314的结构强度,隔板314不容易变形,第一分支流道36的结构稳定。
根据本申请的一些实施例,凸起315连接相邻的两个隔板314。
如图11和图12所示,第一凸起部3151和第二凸起部3152的底边相连,凸起315支撑在相邻的两个隔板314之间,增强了隔板314的结构强度,隔板314不容易变形,保证第一分支流道36的结构稳定。另一方面,通过使第一凸起部3151和第二凸起部3152的底边相连,抬高了中间段361的流道,减小了中间段361的横截面积,提高了换热介质的流速。
如图13、图14和图15所示,凸起315还可以为矩形体,矩形体的一组相对面分别连接两侧的隔板314,矩形体的另一组相对面中的一个面连接底板311、另一面高出底板311的表面。该凸起315可以是一体成型于底板311,凸起315也可以是单独成型后安装于底板311。在该方案中,中间段361的横截面的宽度不变,中间段361的横截面的高度减小,从而在换热面积不变的情况下,减小横截面积,加快换热介质流速,提高换热速度和效率。并且,凸起315支撑在相邻的两个隔板314之间,增强了隔板314的结构强度,隔板314不容易变形,保证第一分支流道36的结构稳定。
根据本申请的一些实施例,请再参照图8,热管理部件3内还设有至少两个第二分支流道37,第二分支流道37为等截面流道,沿多个第一分支流道36的排列方向,至少两个第二分支流道37分别位于多个第一分支流道36的两侧,每个第二分支流道37的两端分别连通第一总流道34和第二总流道35。
第二分支流道37用于对沿X方向叠放在两端的电池单体21降温,由于两端的区域都能够向外散热,通过设置等截面的第二分支流道37,使得两端的区域的换热速度一致,减小两端区域的温差。
根据本申请的一些实施例,请再参照图8,第一分支流道36的端部段362的横截面积与第二分支流道37的横截面积相等。
第二分支流道37用于对沿X方向叠放在两端的电池单体21降温,第一分支流道36的端部段362用于对沿Y方向排列在两侧的电池单体21降温,沿X方向叠放在两端的电池单体21和沿 Y方向排列在两侧的电池单体21都靠近电池100的外周,或者说沿X方向叠放在两端的电池单体21和沿Y方向排列在两侧的电池单体21围成了电池100的外周,这两个区域的电池单体21都容易向外散热,通过将第一分支流道36的端部段362的横截面积与第二分支流道37的横截面积设置为相等,以免这两个区域由于热管理部件3换热效率不一致产生温差,使得整个外周的换热速度一致,温差小。
第二方面,本申请实施例还提供一种电池100,其包括:
电池组2,包括多个堆叠的电池单体21;
如前的热管理部件3,热管理部件3设置于电池组2的一侧,用于容纳流体以给电池组2调节温度。
如前所述,本申请提供的热管理部件3的换热效率高,且中部区域的换热效率大于外侧区域的换热效率,不仅能够有效降低电池100的最高温度,还缓解电池100的不同区域温差过大引起过充析锂的问题,有效提高了电池100的安全性。
根据本申请的一些实施例,多个电池单体21的堆叠方向与热管理部件3的多个第一分支流道36的排列方向相同。
例如,第一总流道34、第二总流道35沿X方向延伸,多个第一分支流道36均沿Y方向延伸且沿X方向排布,多个电池单体21沿X方向堆叠成排。这使得电池单体21的长度方向和第一分支流道36的延伸方向一致,电池单体21和第一分支流道36重合,有效换热面积大。
第三方面,本申请实施例还提供一种用电设备,其包括如前所述的电池100。
本申请提供的用电设备中,电池100的安全性较高,用电设备的安全性较高。
根据本申请的一些实施例,如图2、图3、图5、图6所示,本申请提供一种热管理部件3,热管理部件3设置在电池100的箱体组件1内,热管理部件3包括本体31,本体31设有第一总流道34、第二总流道35和多个第一分支流道36,第一总流道34和第二总流道35均沿X方向延伸,多个第一分支流道36沿Y方向延伸,多个第一分支流道36沿X方向排布,多个第一分支流道36的两端分别连接于第一总流道34和第二总流道35,其中,每个第一分支流道36包括中间段361和两个端部段362,中间段361具有凸起315,使得中间段361的横截面积小于端部段362的横截面积。
为验证本申请实施例提供的热管理部件3的换热能力,以本申请实施例提供的热管理部件3作为试验组,以现有技术的热管理部件作为对照组,进行对比试验如下。
试验组:如图16所示,沿X方向对热管理部件3的第一分支流道36依次编号1a、2a、3a……12a,将电池100放在25℃的恒温房内,用充放电机以195A的电流进行充放电,充放电过程中向热管理部件3通入20℃的冷却水,根据事先安置在第一分支流道36中的流量传感器和事先安置在电池100中的温度传感器,记录电池100充放电30分钟后各个第一分支流道36中的换热介质流速,以及电池组2的最高温度,得到表1如下:
表1 本实施例热管理部件3的换热能力检测表
Figure PCTCN2022125958-appb-000001
对照组:现有热管理部件中的所有分支流道均为等截面流道,如图17所示,沿X方向对 现有热管理部件的分支流道依次编号1b、2b、3b……12b,将安装现有热管理部件的电池放在25℃的恒温房内,用充放电机以195A的电流进行充放电,充放电过程中向现有热管理部件通入20℃的冷却水,根据事先安置在分支流道中的流量传感器和事先安置在电池中的温度传感器,记录电池充放电30分钟后各个分支流道中的换热介质流速,以及电池组的最高温度,得到表2如下:
表2 对照组的热管理部件的换热能力检测表
Figure PCTCN2022125958-appb-000002
对比表1和表2可知,在环境温度相同、电池100的发热量相同,且换热介质的流量和初始温度相同的情况下,通过使用本实施例提供的热管理部件3,换热介质的换热效率大大提高,换热介质的温升增大,带走的热量更多,使得电池100的温升减小,且电池100的最高温度降低,使得电池100中不同区域的电池单体21的最大温差降低。
需要说明的是,在不冲突的情况下,本申请中的实施例的特征可以相互结合。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种热管理部件,其特征在于,包括:
    本体,所述本体内设有第一总流道、第二总流道和多个第一分支流道,所述多个第一分支流道并排设置,每个所述第一分支流道的两端分别连通所述第一总流道和所述第二总流道;
    其中,所述第一分支流道包括中间段和两个端部段,所述中间段的横截面积小于所述端部段的横截面积。
  2. 根据权利要求1所述的热管理部件,其特征在于,所述第一分支流道还包括过渡段,所述过渡段连接所述中间段和所述端部段,所述过渡段的横截面积由靠近所述端部段的一端向靠近所述中间段的一端逐渐减小。
  3. 根据权利要求1或2所述的热管理部件,其特征在于,在所述多个第一分支流道的排列方向上,所述第一分支流道的位置越靠近中间,所述第一分支流道的所述中间段的长度越大。
  4. 根据权利要求1-3中任一项所述的热管理部件,其特征在于,各个所述第一分支流道的所述中间段的长度相等。
  5. 根据权利要求1-4中任一项所述的热管理部件,其特征在于,所述本体包括底板、顶板、侧板和多个隔板,所述侧板围设于所述底板,所述底板和所述顶板相对设置并通过所述侧板连接以形成容纳空间,所述多个隔板并排设置在所述容纳空间内,相邻的两个所述隔板之间形成所述第一分支流道;
    所述底板上形成有凸起,所述凸起位于所述第一分支流道的中间段,以减小所述中间段的横截面积。
  6. 根据权利要求5所述的热管理部件,其特征在于,所述凸起连接相邻的两个所述隔板。
  7. 根据权利要求1-6中任一项所述的热管理部件,其特征在于,所述热管理部件内还设有至少两个第二分支流道,所述第二分支流道为等截面流道,沿所述多个第一分支流道的排列方向,所述至少两个第二分支流道分别位于所述多个第一分支流道的两侧,每个所述第二分支流道的两端分别连通所述第一总流道和所述第二总流道。
  8. 根据权利要求7所述的热管理部件,其特征在于,所述第一分支流道的所述端部段的横截面积与所述第二分支流道的横截面积相等。
  9. 一种电池,其特征在于,包括:
    电池组,包括多个堆叠的电池单体;
    如权利要求1-8中任一项所述的热管理部件,所述热管理部件设置于所述电池组的一侧,用于容纳流体以给所述电池组调节温度。
  10. 根据权利要求9所述的电池,其特征在于,所述多个电池单体的堆叠方向与所述热管理部件的所述多个第一分支流道的排列方向相同。
  11. 一种用电设备,其特征在于,包括权利要求9或10所述的电池。
PCT/CN2022/125958 2021-11-30 2022-10-18 热管理部件、电池及用电设备 WO2023098322A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202122992307.2 2021-11-30
CN202122992307.2U CN217114533U (zh) 2021-11-30 2021-11-30 热管理部件、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2023098322A1 true WO2023098322A1 (zh) 2023-06-08

Family

ID=82589094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125958 WO2023098322A1 (zh) 2021-11-30 2022-10-18 热管理部件、电池及用电设备

Country Status (2)

Country Link
CN (1) CN217114533U (zh)
WO (1) WO2023098322A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117458042A (zh) * 2023-12-25 2024-01-26 长春众升科技发展有限公司 一种用于新能源汽车的电池放置仓

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217114533U (zh) * 2021-11-30 2022-08-02 宁德时代新能源科技股份有限公司 热管理部件、电池及用电设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6253835B1 (en) * 2000-02-11 2001-07-03 International Business Machines Corporation Isothermal heat sink with converging, diverging channels
CN102054948A (zh) * 2009-10-30 2011-05-11 三洋电机株式会社 电源装置及具备该电源装置的车辆
JP2012164456A (ja) * 2011-02-04 2012-08-30 Kawasaki Heavy Ind Ltd 二次電池用の放熱板およびその製造方法、ならびに放熱板を配した二次電池モジュール
JP2013118153A (ja) * 2011-12-05 2013-06-13 Toyota Industries Corp 電池モジュール
CN110970681A (zh) * 2018-09-28 2020-04-07 罗伯特·博世有限公司 用于对至少一个电池单元进行调温的冷却板以及电池系统
WO2022069537A1 (de) * 2020-09-29 2022-04-07 Miba Emobility Gmbh Kühlvorrichtung für eine wiederaufladbare batterie
CN217114533U (zh) * 2021-11-30 2022-08-02 宁德时代新能源科技股份有限公司 热管理部件、电池及用电设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6253835B1 (en) * 2000-02-11 2001-07-03 International Business Machines Corporation Isothermal heat sink with converging, diverging channels
CN102054948A (zh) * 2009-10-30 2011-05-11 三洋电机株式会社 电源装置及具备该电源装置的车辆
JP2012164456A (ja) * 2011-02-04 2012-08-30 Kawasaki Heavy Ind Ltd 二次電池用の放熱板およびその製造方法、ならびに放熱板を配した二次電池モジュール
JP2013118153A (ja) * 2011-12-05 2013-06-13 Toyota Industries Corp 電池モジュール
CN110970681A (zh) * 2018-09-28 2020-04-07 罗伯特·博世有限公司 用于对至少一个电池单元进行调温的冷却板以及电池系统
WO2022069537A1 (de) * 2020-09-29 2022-04-07 Miba Emobility Gmbh Kühlvorrichtung für eine wiederaufladbare batterie
CN217114533U (zh) * 2021-11-30 2022-08-02 宁德时代新能源科技股份有限公司 热管理部件、电池及用电设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117458042A (zh) * 2023-12-25 2024-01-26 长春众升科技发展有限公司 一种用于新能源汽车的电池放置仓
CN117458042B (zh) * 2023-12-25 2024-05-14 长春众升科技发展有限公司 一种用于新能源汽车的电池放置仓

Also Published As

Publication number Publication date
CN217114533U (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023098322A1 (zh) 热管理部件、电池及用电设备
US7014949B2 (en) Battery pack and rechargeable vacuum cleaner
CN216872114U (zh) 电池和用电设备
US6953638B2 (en) Fluid-cooled battery pack system
JP5292663B2 (ja) 組電池及び該組電池を搭載した車輌
CN217182265U (zh) 电池和用电设备
WO2022006897A1 (zh) 电池及其相关装置、制备方法和制备设备
JP2000067825A (ja) 組電池
KR20130102713A (ko) 신규한 공냉식 구조의 전지팩
KR20190001410A (ko) 배터리 모듈
US20240204317A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
CN219144347U (zh) 一种大容量电池壳体及大容量电池
WO2023226201A1 (zh) 箱体组件、电池和用电设备
WO2023155207A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023092363A1 (zh) 电池箱体、电池、用电装置及电池箱体制造方法
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022205080A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023004726A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2023004779A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022082388A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022082390A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022082391A1 (zh) 电池、用电装置、制备电池的方法和设备
WO2024065814A1 (zh) 集流体、热管理组件、电池以及用电装置
US20240222758A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900127

Country of ref document: EP

Kind code of ref document: A1