WO2023098204A1 - 一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法 - Google Patents

一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法 Download PDF

Info

Publication number
WO2023098204A1
WO2023098204A1 PCT/CN2022/117531 CN2022117531W WO2023098204A1 WO 2023098204 A1 WO2023098204 A1 WO 2023098204A1 CN 2022117531 W CN2022117531 W CN 2022117531W WO 2023098204 A1 WO2023098204 A1 WO 2023098204A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
speed
stirring
electrode
stirring paddle
Prior art date
Application number
PCT/CN2022/117531
Other languages
English (en)
French (fr)
Inventor
王达彤
徐婷
王灏
卢福军
郭鹏
周长海
杨旭
岳涛
Original Assignee
青岛科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛科技大学 filed Critical 青岛科技大学
Publication of WO2023098204A1 publication Critical patent/WO2023098204A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed

Definitions

  • the invention relates to the technical field of critical rotational speed determination, in particular to a critical suspension rotational speed determination system and determination method for stirring paddles in a solid-liquid two-phase stirred tank.
  • Critical suspension means that all solid particles in the reaction kettle just reach complete suspension from the bottom during the reaction, and the corresponding agitator speed is the critical suspension speed.
  • the determination of the critical suspension speed is of great significance to the solid-liquid two-phase agitation.
  • solid particles will be deposited, and there are many dead zones in the stirring tank, which will affect the mass transfer effect.
  • the stirring speed exceeds the critical suspension speed, if the speed continues to increase, the power consumption will increase greatly. The durability of the paddle will be reduced, and the mass transfer effect on the solid surface will not be improved proportionally. Therefore, setting the speed of the agitator to the critical suspension speed is the most economical effect, and the determination of the critical suspension speed has important practical significance.
  • the Zwietering criterion is usually used in the experiment, that is, the time for solid particles to accumulate at the bottom of the stirring vessel does not exceed 1-2s as the criterion for complete suspension from the bottom.
  • the suspension system with high particle concentration it often presents an opaque state, which affects the judgment of the suspension state.
  • most of the stirred tanks are opaque and cannot be directly observed.
  • the judgment of the critical suspension speed using empirical formulas is generally restricted by various factors such as paddle type, size, height from the bottom, and particle diameter distribution. The actual situation deviates greatly. Therefore, it is of great practical significance to develop a quantifiable and widely applicable critical levitation speed determination method.
  • the object of the present invention is to provide a judgment system and a judgment method for the critical suspension speed of the stirring paddle in the solid-liquid two-phase stirred tank.
  • a system for judging the critical suspension speed of a stirring paddle in a solid-liquid two-phase stirring tank comprising a stirring tank in which a
  • a group of electrodes is composed of two first excitation electrodes and two first measurement electrodes
  • the second group of electrodes is composed of two second excitation electrodes and two second measurement electrodes, the first excitation electrodes and the second excitation electrodes
  • the electrodes are all connected to a constant current source, and the first measuring electrode and the second measuring electrode are connected to a computer through an analog-to-digital converter.
  • the constant current source is an AC constant current source.
  • the first excitation electrodes are arranged equidistantly between the first measurement electrodes, and the second excitation electrodes are arranged equidistantly between the second measurement electrodes.
  • the present invention also includes a method for determining the critical suspension speed of the stirring paddle by the above-mentioned critical suspension speed determination system of the stirring paddle in the solid-liquid two-phase stirred tank, including the following steps:
  • the present invention has the following advantages:
  • the system and method for judging the critical suspension speed of the stirring paddle in the solid-liquid two-phase stirred tank of the present invention solve the problem of relying on empirical formulas and human eyes to determine the critical suspension speed by establishing the relationship between the measurement electrode voltage and the state of solid-liquid suspension.
  • the problem of strong subjectivity and large deviation, the judgment system and judgment method of the critical suspension speed of the stirring paddle in the solid-liquid two-phase stirred tank of the present invention has good adaptability, and is a quantitative judgment method of the critical suspension speed , and the electrode voltage ratio as a judgment standard is only related to the space density of solid particles in the liquid phase, and can be used in a wide range of viscosity and solid content for solid-liquid two-phase.
  • Fig. 1 is the structure schematic diagram of critical suspending rotational speed judgment system of agitating paddle in the solid-liquid two-phase stirred tank of the present invention
  • Fig. 2 adopts the method for judging the critical suspension speed of stirring paddle of the present invention in embodiment 2, takes the ratio of the second measuring electrode voltage and the first measuring electrode voltage as the ordinate, and takes the corresponding rotating speed as the curve drawn by the abscissa;
  • Fig. 3 adopts the method for judging the critical suspension rotational speed of agitating paddle of the present invention in embodiment 3, take the ratio of the second measuring electrode voltage and the first measuring electrode voltage as the ordinate, and take the corresponding rotating speed as the curve drawn by the abscissa;
  • Fig. 4 is the method for judging the critical levitation speed of the stirring paddle in embodiment 4, with the ratio of the voltage of the second measuring electrode to the voltage of the first measuring electrode as the ordinate and the corresponding rotational speed as the curve drawn on the abscissa.
  • the object of the present invention is to provide a system and a method for judging the critical suspension speed of a stirring paddle in a solid-liquid two-phase stirred tank, which is achieved through the following technical solutions:
  • a system for judging the critical suspension speed of a stirring paddle in a solid-liquid two-phase stirring tank includes a stirring tank 1, a stirring paddle 11 is arranged in the stirring tank 1, the stirring paddle 11 is connected to a motor 12, and the motor 12 is connected to a speed control Connected to the device 2, the first group of electrodes 3 is set on the side wall of the stirring tank 1 and the stirring paddle 11, and the second group of electrodes 7 is set at the middle position of the bottom of the stirring tank 1, and the first group of electrodes 3 is composed of two second An excitation electrode 31 and two first measurement electrodes 32 are formed, and the second set of electrodes 7 is composed of two second excitation electrodes 71 and two second measurement electrodes 72.
  • the first excitation electrode 31 and the second excitation electrode 71 are all connected to the constant current source 4, and the first measuring electrode 32 and the second measuring electrode 72 are connected with the computer 6 through the analog-to-digital converter 5;
  • the constant current source 4 may be an AC constant current source.
  • the first excitation electrodes 31 are equidistantly arranged between the first measurement electrodes 32
  • the second excitation electrodes 71 are equidistantly arranged between the second measurement electrodes 72 .
  • a method for judging the critical suspension speed of the stirring paddle adopts the critical suspension speed determination system of the paddle in the solid-liquid two-phase stirred tank of embodiment 1, comprising the following steps:
  • the first set of electrodes 3 is installed on the side wall of the stirring tank 1 and the stirring paddle 11 is horizontally flush, and the second set of electrodes 7 is installed in the middle of the bottom of the stirring tank 1.
  • the stirring paddle 11 passes through the motor and
  • the speed controller adjusts the speed;
  • the first group of electrodes 3 is composed of two first excitation electrodes 31 and two first measurement electrodes 32
  • the second group of electrodes 7 is composed of two second excitation electrodes 71 and two
  • the second measuring electrode 72 is composed of;
  • the height of the stirred tank used is 0.6m, the diameter is 0.4m, the liquid level is 0.4m, the liquid phase medium is tap water, the conductivity is 360 ⁇ S/cm, the density is 998kg/m3, and the dynamic viscosity is 1 ⁇ 10- 3Pa ⁇ s
  • the solid particles are glass beads with a diameter of 250-500 ⁇ m, a density of 2500kg/m3, and a solid content of 10%.
  • the sheet electrodes are evenly arranged with a
  • a constant current source is passed into the first excitation electrode 31 and the second excitation electrode 71 respectively with a value of 5mA excitation current, and the analog-to-digital converter 5 is connected to the computer 6 to record the difference between the first measurement electrode 32 and the second measurement electrode 72.
  • the ratio of the voltage signal corresponds to the concentration change of solid particles in the measurement space.
  • the point on the curve where the slope is zero or negative corresponds to the solid phase between the measurement electrodes has completely left the bottom of the bottom measurement electrode surface and reached a critical suspension state. Then increase the speed of the solid in the measurement space. The concentration of particles will not change significantly, and the speed corresponding to this point is the critical suspension speed of stirring under this condition.
  • the critical off-bottom suspension rotation speed Njs is 210rpm.
  • a method for judging the critical suspension speed of the stirring paddle adopts the critical suspension speed determination system of the paddle in the solid-liquid two-phase stirred tank of embodiment 1, comprising the following steps:
  • the first set of electrodes 3 is installed on the side wall of the stirring tank 1 and the stirring paddle 11 is horizontally flush, and the second set of electrodes 7 is installed in the middle of the bottom of the stirring tank 1.
  • the stirring paddle 11 passes through the motor and
  • the speed controller adjusts the speed;
  • the first group of electrodes 3 is composed of two first excitation electrodes 31 and two first measurement electrodes 32, and the second group of electrodes 7 is composed of two second excitation electrodes 71 and two
  • the second measuring electrode 72 consists of;
  • the height of the stirred tank is 0.6m
  • the diameter of the stirred tank is 0.4m
  • the height of the liquid level is 0.4m
  • the liquid medium is tap water with 2% sodium carboxymethyl cellulose
  • the dynamic viscosity is 4000mPa s
  • the solid particles are glass beads with a diameter of 250 -500 ⁇ m, density 2500kg/m3, solid content 0.5%
  • the stirring impeller is an axial flow type with 6 inclined blades
  • the height of the stirring impeller from the bottom is 0.15m
  • the 4 electrodes of each group are evenly distributed, the distance is 1cm
  • the first excitation electrode is 31 and the second excitation electrode 71 are passed through the constant current source 4 into the excitation current AC constant current 5mA
  • glass beads are added to the stirring tank 1, the stirring controller 2 is started, and the stirring speed is adjusted from small to large, and each adjustment increment is 30r /min, and record the voltage of the first measuring electrode 32 and the voltage of the second measuring electrode 72, the corresponding stirring paddle rotating
  • the ratio of the voltage signal corresponds to the concentration change of solid particles in the measurement space.
  • the point on the curve where the slope is zero or negative corresponds to the solid phase between the measurement electrodes has completely left the bottom of the bottom measurement electrode surface and reached a critical suspension state. Then increase the speed of the solid in the measurement space. The concentration of particles will not change significantly, and the speed corresponding to this point is the critical suspension speed of stirring under this condition.
  • the critical off-bottom suspension rotation speed Njs is 120rpm.
  • a method for judging the critical suspension speed of the stirring paddle adopts the critical suspension speed determination system of the paddle in the solid-liquid two-phase stirred tank of embodiment 1, comprising the following steps:
  • the first set of electrodes 3 is installed on the side wall of the stirring tank 1 and the stirring paddle 11 is horizontally flush, and the second set of electrodes 7 is installed in the middle of the bottom of the stirring tank 1.
  • the stirring paddle 11 passes through the motor and
  • the speed controller adjusts the speed;
  • the first group of electrodes 3 is composed of two first excitation electrodes 31 and two first measurement electrodes 32, and the second group of electrodes 7 is composed of two second excitation electrodes 71 and two
  • the second measuring electrode 72 consists of;
  • the height of the stirred tank is 0.6m
  • the diameter of the stirred tank is 0.4m
  • the height of the liquid level is 0.4m
  • the liquid medium is tap water with 2% hydroxyethyl cellulose
  • the dynamic viscosity is 2200mPa ⁇ s
  • the solid particles are glass beads with a diameter of 250- 500 ⁇ m, density 2500kg/m3, solid content 30%
  • the stirring impeller is an axial-flow 6-blade impeller
  • the height of the stirring impeller from the bottom is 0.15m.
  • the 4 electrodes of each group are evenly distributed, with a distance of 1 cm.
  • the first excitation electrode 31 and the second excitation electrode 71 are fed with an excitation current of 5 mA through a constant current source 4, glass beads are added to the stirring tank 1, and the stirring is started.
  • the controller 2 adjusts the stirring speed from small to large, and adjusts the increment 30r/min each time, and records the voltage of the first measuring electrode 32 and the voltage of the second measuring electrode 72 through the analog-to-digital converter 5 and the computer 6. Corresponding impeller speed;
  • the ratio of the voltage signal corresponds to the concentration change of solid particles in the measurement space.
  • the point on the curve where the slope is zero or negative corresponds to the solid phase between the measurement electrodes has completely left the bottom of the bottom measurement electrode surface and reached a critical suspension state. Then increase the speed of the solid in the measurement space. The concentration of particles will not change significantly, and the speed corresponding to this point is the critical suspension speed of stirring under this condition.
  • the critical off-bottom suspension rotation speed Njs is 330rpm.
  • each adjustment increment of the rotation speed of the agitator can also be selected as 20-40 r/min, which does not affect the determination of the final critical off-bottom suspension speed Njs.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法,属于临界转速判定技术领域。通过建立测量电极电压与固液悬浮状态的关系,解决了目前依靠经验公式和人眼观察判定临界悬浮转速带来的主观性强,偏差较大的问题,作为判定标准的电极电压比只与固体颗粒在液相中的空间密度有关。

Description

一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法 技术领域
本发明涉及临界转速判定技术领域,具体说是固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法。
背景技术
临界悬浮是指在反应中所有固体颗粒在反应釜中刚好达到完全离底悬浮,对应的搅拌器转速即为临界悬浮转速。临界悬浮转速的判定对固液两相搅拌具有重要的意义。没达到临界悬浮转速时,固体颗粒会沉积,搅拌釜内的搅拌死区较多等都影响传质效果,而搅拌的速度超过临界悬浮转速时,继续增大转速,功耗会大大增加,搅拌桨的耐久度会降低,固体表面传质效果并不能成比例的提高,因此,将搅拌器的速度设置为临界悬浮转速为最经济的效果,临界悬浮转速的的判定具有重要的实际意义。
对临界悬浮转速的判定,在实验中通常采用Zwietering准则,即以固体颗粒在搅拌容器底部堆积的时间不超过1~2s为完全离底悬浮的判据。这需要反应罐为透明容器,且结果存在主观性强的天然缺陷。另外,对于颗粒浓度较高的悬浮体系,往往呈现出不透明的状态,影响对悬浮状态的判断。在工业生产中,搅拌釜大多是不透明的,无法直接进行观察,使用经验公式进行临界悬浮转速的判断又普遍受到桨型、尺寸、离底高度以及颗粒直径分布等多种因素的制约,往往与实际情况偏差较大。因此研发一种可量化的、适用范围广的临界悬浮转速判定方法,具有重要的实用意义。
发明内容
为解决上述问题,本发明的目的是提供固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法。
本发明为实现上述目的,通过以下技术方案实现:
一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统,包括搅拌釜,搅拌釜中设
置搅拌桨,搅拌桨与电机连接,电机与转速控制器连接,搅拌釜与搅拌桨水平齐平的侧壁上设置第一组电极,搅拌釜的底部中间位置设置第二组电极,所述第一组电极由两个第一激励电极和两个第一测量电极组成,所述第二组电极均由两个第二激励电极和两个第二测量电极组成,第一激励电极和第二激励电极均连接恒流源,第一测量电极和第二测量电极均通过模数转换器和计算机连接。
优选的,所述恒流源为交流恒流源。
优选的,所述第一激励电极在第一测量电极之间等距排布,所述第二激励电极在第二测量电极之间等距排布。
本发明还包括采用上述固液两相搅拌釜中搅拌桨临界悬浮转速判定系统判定搅拌桨临界悬浮转速的方法,包括以下步骤:
①在搅拌釜与搅拌桨水平齐平的侧壁上安装第一组电极,在搅拌釜的底部中间位置安装第二组电极,搅拌桨通过电机和转速控制器调节转速;所述第一组电极由两个第一激励电极和两个第一测量电极组成,所述第二组电极均由两个第二激励电极和两个第二测量电极组成,由恒流源分别向第一激励电极和第二激励电极通入激励电流,同步通 过模数转换器连接计算机分别记录第一测量电极和第二测量电极之间的电压值;
②启动转速控制器,从小到大逐步调节搅拌桨转速,并在两组测量电极电压信号稳定后记录电极电压的数值和对应的转速;
③以第二测量电极电压与第一测量电极电压的比值为纵坐标,以对应的转速为横坐标绘制曲线,曲线上出现拐点时对应的转速即为搅拌桨临界悬浮转速。
本发明相比现有技术具有以下优点:
本发明的固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法,通过建立测量电极电压与固液悬浮状态的关系,解决了目前依靠经验公式和人眼观察判定临界悬浮转速带来的主观性强,偏差较大的问题,本发明的固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法,具有较好的适应性,是一种量化的的临界悬浮转速判定方法,且作为判定标准的电极电压比只与固体颗粒在液相中的空间密度有关,适用于固液两相宽泛的黏度、固含量范围均可以采用。
附图说明
图1为本发明固液两相搅拌釜中搅拌桨临界悬浮转速判定系统的结构示意图;
图2为实施例2中采用本发明判定搅拌桨临界悬浮转速的方法,以第二测量电极电压与第一测量电极电压的比值为纵坐标,以对应的转速为横坐标绘制的曲线;
图3为实施例3中采用本发明判定搅拌桨临界悬浮转速的方法, 以第二测量电极电压与第一测量电极电压的比值为纵坐标,以对应的转速为横坐标绘制的曲线;
图4为实施例4中采用本发明判定搅拌桨临界悬浮转速的方法,以第二测量电极电压与第一测量电极电压的比值为纵坐标,以对应的转速为横坐标绘制的曲线。
具体实施方式
本发明的目的是提供固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法,通过以下技术方案实现:
以下结合具体实施例来对本发明作进一步的描述。
实施例1
一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统,如图1所示,包括搅拌釜1,搅拌釜1中设置搅拌桨11,搅拌桨11与电机12连接,电机12与转速控制器2连接,搅拌釜1与搅拌桨11水平齐平的侧壁上设置第一组电极3,搅拌釜1的底部中间位置设置第二组电极7,所述第一组电极3由两个第一激励电极31和两个第一测量电极32组成,所述第二组电极7均由两个第二激励电极71和两个第二测量电极72组成,第一激励电极31和第二激励电极71均连接恒流源4,第一测量电极32和第二测量电极72均通过模数转换器5和计算机6连接;
所述恒流源4可以为交流恒流源。
所述第一激励电极31在第一测量电极32之间等距排布,所述第二激励电极71在第二测量电极72之间等距排布。
实施例2
一种判定搅拌桨临界悬浮转速的方法,采用实施例1的固液两相搅拌釜中搅拌桨临界悬浮转速判定系统,包括以下步骤:
①如图1所示,在搅拌釜1与搅拌桨11水平齐平的侧壁上安装第一组电极3,在搅拌釜1的底部中间位置安装第二组电极7,搅拌桨11通过电机和转速控制器调节转速;所述第一组电极3由两个第一激励电极31和两个第一测量电极32组成,所述第二组电极7均由两个第二激励电极71和两个第二测量电极72组成;采用的搅拌釜高度0.6m,直径0.4m,液位高度0.4m,液相介质为自来水,电导率360μS/cm,密度为998kg/m3,动力粘度为1×10-3Pa·s,固体颗粒为玻璃微珠直径为250-500μm,密度2500kg/m3,固含量10%,搅拌桨为轴流式6片斜叶桨,搅拌桨离底高度0.15m,各组的4片电极均匀布置,间距1cm。
由恒流源分别向第一激励电极31和第二激励电极71通入数值为5mA的激励电流,同步通过模数转换器5连接计算机6分别记录第一测量电极32和第二测量电极72之间的电压值;
②启动转速控制器2,从小到大逐步调节搅拌桨转速,每次调节增量为30r/min,并在两组测量电极电压信号稳定后,记录第一测量电极32的电压和第二测量电极72的电压的数值、对应的搅拌桨转速;
③以第二测量电极电压与第一测量电极电压的比值为纵坐标,以对应的转速为横坐标绘制曲线,曲线上出现拐点时对应的转速即为搅 拌桨临界悬浮转速。
电压信号之比对应测量空间内固体颗粒的浓度变化,在曲线上斜率为零或负数的点对应测量电极间固相已经完全离开底部测量电极表面底达到临界悬浮状态,再增加转速测量空间内固体颗粒的浓度不会再出现明显变化,该点对应的转速即为该条件下的搅拌临界悬浮转速。如图2所示,当转速为210rpm时,曲线上出现拐点,因此临界离底悬浮转速Njs为210rpm。
实施例3
一种判定搅拌桨临界悬浮转速的方法,采用实施例1的固液两相搅拌釜中搅拌桨临界悬浮转速判定系统,包括以下步骤:
①如图1所示,在搅拌釜1与搅拌桨11水平齐平的侧壁上安装第一组电极3,在搅拌釜1的底部中间位置安装第二组电极7,搅拌桨11通过电机和转速控制器调节转速;所述第一组电极3由两个第一激励电极31和两个第一测量电极32组成,所述第二组电极7均由两个第二激励电极71和两个第二测量电极72组成;
搅拌釜高度0.6m,搅拌釜直径0.4m,液位高度0.4m,液相介质为添加2%羧甲基纤维素钠的自来水,动力粘度为4000mPa·s,固体颗粒为玻璃微珠直径为250-500μm,密度2500kg/m3,固含量0.5%,搅拌桨为轴流式6片斜叶桨,搅拌桨离底高度0.15m,各组的4片电极均布,间距1cm,第一激励电极31和第二激励电极71均通过恒流源4通入激励电流交流恒流5mA,向搅拌釜1中加入玻璃微珠,启动搅拌控制器2,从小到大调节搅拌转速,每次调节增量 30r/min,并在通过模数转换器5和计算机6记录第一测量电极32的电压和第二测量电极72的电压的数值、对应的搅拌桨转速;
③以第二测量电极电压与第一测量电极电压的比值为纵坐标,以对应的转速为横坐标绘制曲线,曲线上出现拐点时对应的转速即为搅拌桨临界悬浮转速。
电压信号之比对应测量空间内固体颗粒的浓度变化,在曲线上斜率为零或负数的点对应测量电极间固相已经完全离开底部测量电极表面底达到临界悬浮状态,再增加转速测量空间内固体颗粒的浓度不会再出现明显变化,该点对应的转速即为该条件下的搅拌临界悬浮转速。如图3所示,当转速为120rpm时,曲线上出现拐点,因此临界离底悬浮转速Njs为120rpm。
实施例4
一种判定搅拌桨临界悬浮转速的方法,采用实施例1的固液两相搅拌釜中搅拌桨临界悬浮转速判定系统,包括以下步骤:
①如图1所示,在搅拌釜1与搅拌桨11水平齐平的侧壁上安装第一组电极3,在搅拌釜1的底部中间位置安装第二组电极7,搅拌桨11通过电机和转速控制器调节转速;所述第一组电极3由两个第一激励电极31和两个第一测量电极32组成,所述第二组电极7均由两个第二激励电极71和两个第二测量电极72组成;
搅拌釜高度0.6m,搅拌釜直径0.4m,液位高度0.4m,液相介质为添加2%羟乙基纤维素的自来水,动力粘度为2200mPa·s,固体颗粒为玻璃微珠直径为250-500μm,密度2500kg/m3,固含量30%, 搅拌桨为轴流式6片斜叶桨,搅拌桨离底高度0.15m。各组的4片电极均布,间距1cm,第一激励电极31和第二激励电极71均通过恒流源4通入激励电流交流恒流5mA,向搅拌釜1中加入玻璃微珠,启动搅拌控制器2,从小到大调节搅拌转速,每次调节增量30r/min,并在通过模数转换器5和计算机6记录第一测量电极32的电压和第二测量电极72的电压的数值、对应的搅拌桨转速;
③以第二测量电极电压与第一测量电极电压的比值为纵坐标,以对应的转速为横坐标绘制曲线,曲线上出现拐点时对应的转速即为搅拌桨临界悬浮转速。
电压信号之比对应测量空间内固体颗粒的浓度变化,在曲线上斜率为零或负数的点对应测量电极间固相已经完全离开底部测量电极表面底达到临界悬浮状态,再增加转速测量空间内固体颗粒的浓度不会再出现明显变化,该点对应的转速即为该条件下的搅拌临界悬浮转速。如图4所示,当转速为330rpm时,曲线上出现拐点,因此临界离底悬浮转速Njs为330rpm。
实施例2~4中的搅拌桨转速每次调节增量的数值也可以选择20~40r/min,不影响最后临界离底悬浮转速Njs的确定。

Claims (4)

  1. 一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统,其特征在于:包括搅拌釜(1),搅拌釜(1)中设置搅拌桨(11),搅拌桨(11)与电机(12)连接,电机(12)与转速控制器(2)连接,搅拌釜(1)与搅拌桨(11)水平齐平的侧壁上设置第一组电极(3),搅拌釜(1)的底部中间位置设置第二组电极(7),所述第一组电极(3)由两个第一激励电极(31)和两个第一测量电极(32)组成,所述第二组电极(7)均由两个第二激励电极(71)和两个第二测量电极(72)组成,第一激励电极(31)和第二激励电极(71)均连接恒流源(4),第一测量电极(32)和第二测量电极(72)均通过模数转换器(5)和计算机(6)连接。
  2. 根据权利要求1所述的一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统,其特征在于:所述恒流源(4)为交流恒流源。
  3. 根据权利要求1所述的一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统,其特征在于:所述第一激励电极(31)在第一测量电极(32)之间等距排布,所述第二激励电极(71)在第二测量电极(72)之间等距排布。
  4. 采用权利要求1所述的一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统判定搅拌桨临界悬浮转速的方法,其特征在于:包括以下步骤:
    ①在搅拌釜与搅拌桨水平齐平的侧壁上安装第一组电极,在搅拌釜的底部中间位置安装第二组电极,搅拌桨通过电机和转速控制器调节转速;所述第一组电极由两个第一激励电极和两个第一测量电极组成,所述第二组电极均由两个第二激励电极和两个第二测量电极组成, 由恒流源分别向第一激励电极和第二激励电极通入激励电流,同步通过模数转换器连接计算机分别记录第一测量电极和第二测量电极之间的电压值;
    ②启动转速控制器,从小到大逐步调节搅拌桨转速,并在两组测量电极压信号稳定后记录电极电压的数值和对应的转速;
    ③以第二测量电极电压与第一测量电极电压的比值为纵坐标,以对应的转速为横坐标绘制曲线,曲线上出现拐点时对应的转速即为搅拌桨临界悬浮转速。
PCT/CN2022/117531 2021-12-04 2022-09-07 一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法 WO2023098204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111468033.5A CN114236169B (zh) 2021-12-04 2021-12-04 一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法
CN202111468033.5 2021-12-04

Publications (1)

Publication Number Publication Date
WO2023098204A1 true WO2023098204A1 (zh) 2023-06-08

Family

ID=80752998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117531 WO2023098204A1 (zh) 2021-12-04 2022-09-07 一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法

Country Status (2)

Country Link
CN (1) CN114236169B (zh)
WO (1) WO2023098204A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236169B (zh) * 2021-12-04 2024-01-26 青岛科技大学 一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法
CN115624947B (zh) * 2022-12-21 2023-03-14 广州市凯闻食品发展有限公司 一种高粘度固液混合分散的反应方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100356A (zh) * 1985-04-01 1986-08-13 冶金工业部长沙黑色冶金矿山设计研究院 浆体管道输送设计参数的模拟方法及其装置
CN102049208A (zh) * 2009-10-27 2011-05-11 中国科学院过程工程研究所 一种产生向心流动的搅拌桨装置
CN102109455A (zh) * 2009-12-25 2011-06-29 中国科学院过程工程研究所 一种测量液固两相体系局部浓度的新方法
CN105675902A (zh) * 2016-01-12 2016-06-15 浙江大学 多相搅拌釜中搅拌器临界离底悬浮转速的判定方法
JP2019211354A (ja) * 2018-06-05 2019-12-12 有限会社マグネオ技研 回転数測定方法及びシステム、並びに回転計
CN114236169A (zh) * 2021-12-04 2022-03-25 青岛科技大学 一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078413A1 (en) * 2015-03-27 2016-10-12 Uniflex Co., Ltd. Mixing capacity measuring device
JP2017138123A (ja) * 2016-02-01 2017-08-10 トヨタ自動車株式会社 気液二相流のシミュレーション方法
CN106706951B (zh) * 2016-11-23 2023-04-28 浙江大学 基于釜底压力测量的多相搅拌釜搅拌器气泛转速测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100356A (zh) * 1985-04-01 1986-08-13 冶金工业部长沙黑色冶金矿山设计研究院 浆体管道输送设计参数的模拟方法及其装置
CN102049208A (zh) * 2009-10-27 2011-05-11 中国科学院过程工程研究所 一种产生向心流动的搅拌桨装置
CN102109455A (zh) * 2009-12-25 2011-06-29 中国科学院过程工程研究所 一种测量液固两相体系局部浓度的新方法
CN105675902A (zh) * 2016-01-12 2016-06-15 浙江大学 多相搅拌釜中搅拌器临界离底悬浮转速的判定方法
JP2019211354A (ja) * 2018-06-05 2019-12-12 有限会社マグネオ技研 回転数測定方法及びシステム、並びに回転計
CN114236169A (zh) * 2021-12-04 2022-03-25 青岛科技大学 一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法

Also Published As

Publication number Publication date
CN114236169A (zh) 2022-03-25
CN114236169B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
WO2023098204A1 (zh) 一种固液两相搅拌釜中搅拌桨临界悬浮转速判定系统和判定方法
Kouda et al. Characterization of non-Newtonian behavior during mixing of bacterial cellulose in a bioreactor
Tahvildarian et al. Using electrical resistance tomography images to characterize the mixing of micron-sized polymeric particles in a slurry reactor
JP4081478B2 (ja) 攪拌機
CN208878974U (zh) 一种锂离子电池挤压涂布浆料自动输送及过滤系统
Khalili et al. Hydrodynamic performance of the ASI impeller in an aerated bioreactor containing the biopolymer solution through tomography and CFD
JP4195491B2 (ja) ビール等の発酵食品類の製造方法
CN208005965U (zh) 水泥浆液搅拌罐
JP4195250B2 (ja) ビール等の発酵食品類の製造方法
JP2000325068A (ja) 酵母液貯留用攪拌槽と、その攪拌槽を用いたビール等の発酵食品類の製造方法、並びにその攪拌槽に具備された攪拌翼
WO2000055295A1 (fr) Bac de brassage pour stocker une solution de levure, procede pour produire des aliments fermentes comme de la biere dans ce bac de brassage, et pales de brassage situees dans ce bac de brassage
CN109317014A (zh) 一种环保高效的多功能搅拌设备
CN109554293A (zh) 一种生物发酵系统
CN209276529U (zh) 一种立式多级厌氧反应器
Broniarz-Press et al. Determination of the flow and heat transfer characteristics in non-Newtonian media agitated using the electrochemical technique
CN102643739B (zh) 一种干法厌氧发酵装置
CN209397222U (zh) 一种可调温的微生物发酵罐
CN112226335B (zh) 一种益生菌生产制备方法
CN208217512U (zh) 一种电解液静置罐
WO1999013052A1 (fr) Bac de brassage destine a stocker une solution de levure et procede de production de produits alimentaires fermentes tels que la biere au moyen dudit bac de brassage
CN208471961U (zh) 一种废旧橡胶双螺旋常压脱硫系统
CN205550315U (zh) 一种新型均匀加热自动搅拌的烧杯
Kondo et al. The influence of the bottom shape of an agitated vessel stirred by dual impellers on the distribution of solid concentration
CN209162069U (zh) 食用菌液体发酵罐
CN219291130U (zh) 一种鱼饵搅拌配料罐

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900015

Country of ref document: EP

Kind code of ref document: A1