WO2023098117A1 - 一种双层模组的集成化电池总成、电动车辆及设计方法 - Google Patents

一种双层模组的集成化电池总成、电动车辆及设计方法 Download PDF

Info

Publication number
WO2023098117A1
WO2023098117A1 PCT/CN2022/108505 CN2022108505W WO2023098117A1 WO 2023098117 A1 WO2023098117 A1 WO 2023098117A1 CN 2022108505 W CN2022108505 W CN 2022108505W WO 2023098117 A1 WO2023098117 A1 WO 2023098117A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
water
box
assembly
battery pack
Prior art date
Application number
PCT/CN2022/108505
Other languages
English (en)
French (fr)
Inventor
卢军
孙焕丽
于长虹
许立超
刘鹏
李黎黎
赵名翰
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023098117A1 publication Critical patent/WO2023098117A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of automobiles, and in particular relates to an integrated battery assembly of a double-layer module, an electric vehicle and a design method.
  • the invention provides a battery pack including more than two battery modules; the battery modules each include a frame and a plurality of battery cells accommodated in the frame; sleeves are fixedly arranged between adjacent frames; The sleeve has a channel for passing through the fixing piece; the fixing piece is used for fixing the battery pack to the whole vehicle.
  • the battery pack provided by the present application includes more than two battery modules, which not only reduces the weight of the battery pack, but also improves the connection strength of the battery pack in the vehicle.
  • the technical solution adopted in this application has deficiencies in sealing and preventing thermal diffusion.
  • the purpose of the present invention is to provide an integrated battery assembly of a double-layer module, an electric vehicle and a design method, through
  • the module double-layer layout scheme design realizes the high integration of the liquid cooling plate, the lower box body and the module fixing bracket; and through the arrangement of porous flow channels on the water cooling plate assembly, it is connected with the front end plate of the box body and the rear end plate of the box body
  • the internal flow channel structure forms a technical solution for a closed heat management coolant flow channel circuit, which can realize the separation of dry and wet inside the battery pack.
  • the design without water pipes improves assembly performance and reduces the risk of leakage caused by water pipe conversion joints.
  • the present invention realizes through following technical scheme:
  • the present invention provides an integrated battery assembly of double-layer modules, including a battery box and a battery pack arranged inside it, the battery pack includes a plurality of battery modules 1, and the plurality of The battery module 1 is arranged in upper and lower layers;
  • the battery box includes a box front end plate 4, a box rear end plate 6, a box side beam 9 and a box bottom plate, and the box front end plate 4 is arranged on the battery
  • the front end of the battery pack, the box rear end plate 6 is arranged at the rear end of the battery pack, the box side beams 9 are arranged on the left and right sides of the battery pack, arranged along the length direction of the battery pack;
  • the box bottom plate It is arranged at the bottom of the battery pack;
  • a water-cooled plate assembly 3 is arranged between the two-layer battery modules 1, and the flow channel inside the water-cooled plate assembly 3 is connected to the flow channel inside the front end plate 4 and the rear end plate 6 of the box body.
  • the channel structure forms a closed thermal management coolant flow channel circuit
  • the inside of the battery box is provided with a box beam 2 and a box longitudinal beam 8, the box beam 2 and the box longitudinal beam 8 form a grid, and the box beam 2 is arranged along the width direction of the battery pack , the box longitudinal beams 8 are arranged along the length direction of the battery pack; the battery module 1 is located in a grid-like structure.
  • the battery module 1 and the water-cooled plate assembly 3 are bonded by a thermally conductive structural adhesive 5, the thermally conductive structural adhesive 5 is used for fixing and heat transfer, and both sides of the water-cooled plate assembly 3 can conduct heat transfer , improve thermal management efficiency.
  • the longitudinal beam 8 of the box is provided with a lateral structure 801, through which the lateral structure 801 is clamped with the battery module 1 to ensure the installation of the battery module 1, improve the installation accuracy of the battery module 1, and improve the structure strength.
  • the material of the water-cooled plate assembly 3 includes but not limited to aluminum alloy, iron alloy, titanium alloy and other high-strength, easy-to-form metal materials with good thermal conductivity.
  • water pipe joints 7 there are two water pipe joints 7, one is a water inlet and the other is a water outlet.
  • One end of the water pipe joint 7 is connected to the flow channel of the water cooling plate assembly 3 and the front end plate 4 of the box body, and the other end is connected to the vehicle
  • the thermal manager system is connected to form a complete coolant circuit.
  • the water-cooled plate assembly 3 is formed by an extrusion process, and the water-cooled plate assembly 3 is arranged with a porous flow channel, which forms a closed heat flow channel structure with the flow channel structure inside the front end plate 4 and the rear end plate 6 of the box body. Manage coolant flow circuits.
  • the present invention provides an electric vehicle, including an integrated battery assembly of double-layer modules.
  • the present invention also provides a method for designing an integrated battery assembly of a double-layer module, including the following steps:
  • C Arrange the size of the battery module reasonably according to the number of battery cells, and adjust the length and size of the module according to the number of battery cells;
  • the number of water-cooled plate assemblies 3 is determined by the number of battery modules 1, and a battery module 1 is arranged on the top and bottom of one water-cooled plate assembly 3;
  • E Design the size of the lateral structure 801 based on the weight of the battery module 1 to ensure that the structural strength of the lateral structure 801 is within the safety factor range;
  • G Design the flow channels inside the front and rear end plates through the flow channels of the water cooling plate assembly 3, and connect them to the water pipe joints;
  • H Design the size of battery side beams, front-end panels, and rear-end panels based on the size and height of the double-layer module;
  • the total length of the battery cells in step C accounts for more than 95% of the length of the battery module. If the length of the module needs to be increased or decreased, the number of cells can be increased or decreased.
  • advantage of the present invention is as follows:
  • the present invention realizes the high integration of the liquid cooling plate, the lower box body, and the module fixing bracket, and solves the problem that the existing battery components are complicated and cannot be integrated;
  • the present invention forms a closed thermal management cooling liquid flow channel loop technical scheme by arranging porous flow channels on the water-cooled plate assembly, and the flow channel structure inside the front end plate of the box body and the rear end plate of the box body, which can Realize the separation of dry and wet inside the battery pack, no water pipe design, improve assembly performance, and reduce the risk of leakage caused by water pipe conversion joints.
  • the present invention has simple structure, high integration degree, and can realize modular design.
  • Fig. 1 is a structural schematic diagram of an integrated battery assembly of a double-layer module of the present invention
  • FIG. 2 is a schematic structural view of the battery pack inside the integrated battery assembly of a double-layer module of the present invention
  • Fig. 3 is a partial top view of an integrated battery assembly of a double-layer module of the present invention.
  • FIG. 4 is a schematic diagram of a cooling circuit of an integrated battery assembly of a double-layer module according to the present invention.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • this embodiment provides an integrated battery assembly of double-layer modules, including a battery box and a battery pack arranged inside it, and the battery pack includes a plurality of battery modules 1, so The plurality of battery modules 1 are arranged in upper and lower layers;
  • the battery box includes a box front end plate 4, a box rear end plate 6, a box side beam 9 and a box bottom plate, and the box front end plate 4 It is arranged at the front end of the battery pack, the rear end plate 6 of the box is arranged at the rear end of the battery pack, and the side beams 9 of the box are arranged on the left and right sides of the battery pack and arranged along the length direction of the battery pack;
  • the bottom plate of the box is arranged at the bottom of the battery pack;
  • the water-cooled plate assembly 3 is arranged between the two layers of battery modules 1, and the flow channel inside the water-cooled plate assembly 3 is connected with the front end plate 4 of the box and the rear end plate 6 of the box.
  • the internal flow channel structure forms a closed thermal management coolant flow channel
  • the material of the water-cooled plate assembly 3 includes but not limited to aluminum alloy, iron alloy, titanium alloy and other metal materials with high strength, easy forming and good thermal conductivity.
  • the water-cooled plate assembly 3 is formed by an extrusion process, and the water-cooled plate assembly 3 is arranged with a porous flow channel, which forms a closed heat management cooling liquid with the flow channel structure inside the front end plate 4 and the rear end plate 6 of the box body. Runner circuit.
  • the inside of the battery box is provided with a box beam 2 and a box longitudinal beam 8, the box beam 2 and the box longitudinal beam 8 form a grid, and the box beam 2 runs along the battery pack.
  • the box longitudinal beams 8 are arranged along the length direction of the battery pack; the battery module 1 is located in a grid-like structure.
  • the battery module 1 and the water-cooled plate assembly 3 are bonded by a thermally conductive structural adhesive 5, which is used for fixing and heat transfer, and both sides of the water-cooled plate assembly 3 can be Conduct heat transfer and improve thermal management efficiency.
  • the longitudinal beam 8 of the box body is provided with a lateral structure 801, and the lateral structure 801 is clamped with the battery module 1 to ensure the installation of the battery module 1 and improve the installation accuracy of the battery module 1. , enhance the structural strength.
  • water pipe joints 7 there are two water pipe joints 7, one is the water inlet and the other is the water outlet.
  • One end of the water pipe joint 7 is connected with the flow channel of the water cooling plate assembly 3 and the front end plate 4 of the box body, and the other end Connect with the vehicle thermal manager system to form a complete coolant circuit.
  • This embodiment provides an electric vehicle, including the integrated battery assembly of a double-layer module in Embodiment 1.
  • the electric vehicle adopts an integrated battery assembly of a double-layer module in Embodiment 1.
  • a high degree of integration of the liquid cooling plate, the lower box body, and the fixing bracket of the module is realized.
  • the present invention By arranging a porous flow channel on the water-cooled plate assembly, and forming a closed heat management cooling liquid flow channel circuit with the flow channel structure inside the front end plate of the box body and the rear end plate of the box body, the dry and wet inside of the battery pack can be realized. Separate, no water pipe design, improve assembly performance, and reduce the risk of leakage caused by water pipe conversion joints.
  • This embodiment provides that the present invention also provides a design method for an integrated battery assembly of a double-layer module, including the following steps:
  • C Arrange the size of the battery module reasonably according to the number of battery cells, and adjust the length and size of the module according to the number of battery cells;
  • the number of water-cooled plate assemblies 3 is determined by the number of battery modules 1, and a battery module 1 is arranged on the top and bottom of one water-cooled plate assembly 3;
  • E Design the size of the lateral structure 801 based on the weight of the battery module 1 to ensure that the structural strength of the lateral structure 801 is within the safety factor range; the size of the lateral structure can be calculated through CAE simulation, if the strength is not enough, increase the size ;
  • G Design the flow channels inside the front and rear end plates through the flow channels of the water cooling plate assembly 3, and connect them to the water pipe joints;
  • H Design the size of battery side beams, front-end panels, and rear-end panels based on the size and height of the double-layer module;
  • the sum of the lengths of the battery cells in step C accounts for more than 95% of the length of the battery module. If the length of the module needs to be increased or decreased, the number of cells can be increased or decreased.
  • an integrated battery assembly of double-layer modules is designed with this design method.
  • a battery pack consisting of eight battery modules 1 is designed, divided into upper and lower There are two layers, and each layer is equipped with four battery modules 1.
  • the bottom of each battery module 1 is bonded with a water-cooled plate assembly 3.
  • the water-cooled plate assembly is arranged with a porous flow channel, which is connected with the front panel of the box body and the box body.
  • the flow channel structure inside the rear end plate forms a closed thermal management coolant flow channel circuit, which can realize the separation of dry and wet inside the battery pack.
  • the design without water pipes improves assembly performance and reduces the risk of leakage caused by water pipe conversion joints.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种双层模组的集成化电池总成、电动车辆及设计方法,属于汽车技术领域,包括电池箱体及布置在其内部的电池包,所述电池包包括多个电池模组,所述多个电池模组呈上下两层布置;所述电池箱体包括箱体前端板、箱体后端板、箱体侧边梁及箱体底板,所述两层电池模组之间设置有水冷板总成;箱体前端板上设置有水管接头,水管接头与水冷板总成的流道形成冷却液回路;本发明通过模组双层布置及在水冷板总成上布置有多孔流道,与箱体前端板、箱体后端板内部的流道结构形成封闭的热管理冷却液流道回路的技术方案,可以实现电池包内部干湿分离,无水管设计,提升装配性能,减少了因水管转换接头带来的泄露风险。

Description

一种双层模组的集成化电池总成、电动车辆及设计方法 技术领域
本发明属于汽车技术领域,具体涉及一种双层模组的集成化电池总成、电动车辆及设计方法。
背景技术
当前,新能源汽车的发展前景非常广阔,但随着技术的发展,各种新能源汽车安全问题频出。动力电池作为新能源汽车的关键核心零部件,其集成化一直是行业难题。目前锂离子电池的零部件复杂繁多,无法实现集成化设计。
CN209389112U该发明提供一种电池包包括两个以上的电池模组;电池模组均包括框架和容置于所述框架内的多个电池单体;相邻的框架之间固定设置有套筒;套筒具有用于穿设固定件的通道;固定件用于将所述电池包固定于整车。本申请提供的电池包,包括两个以上的电池模组,在实现电池包轻量化的同时,也提高了电池包在整车的连接强度。但该申请采用的技术方案在密封、防止热扩散方面存在不足。
发明内容
针对现有技术中存在的锂离子电池的零部件复杂繁多,无法实现集成化设计等问题,本发明的目的在于提供一种双层模组的集成化电池总成、电动车辆及设计方法,通过模组双层布置方案设计,实现液冷板与下箱体、模组固定支架的高度集成;并通过在水冷板总成上布置有多孔流道,与箱体前端板、箱体后端板内部的流道结构形成封闭 的热管理冷却液流道回路的技术方案,可以实现电池包内部干湿分离,无水管设计,提升装配性能,减少了因水管转换接头带来的泄露风险。
本发明通过如下技术方案实现:
第一方面,本发明提供了一种双层模组的集成化电池总成,包括电池箱体及布置在其内部的电池包,所述电池包包括多个电池模组1,所述多个电池模组1呈上下两层布置;所述电池箱体包括箱体前端板4、箱体后端板6、箱体侧边梁9及箱体底板,所述箱体前端板4设置在电池包的前端,所述箱体后端板6设置在电池包的后端,所述箱体侧边梁9设置在电池包的左右两侧,沿着电池包长度方向布置;所述箱体底板设置在电池包的底部;所述两层电池模组1之间设置有水冷板总成3,水冷板总成3内部的流道与箱体前端板4、箱体后端板6内部的流道结构形成封闭的热管理冷却液流道回路;箱体前端板4上设置有水管接头7,水管接头7与水冷板总成3的流道形成冷却液回路。
进一步地,所述电池箱体内部设置有箱体横梁2及箱体纵梁8,箱体横梁2及箱体纵梁8形成网格状,所述箱体横梁2沿着电池包宽度方向布置,所述箱体纵梁8沿着电池包长度方向布置;电池模组1位于网格状的结构内。
进一步地,所述电池模组1与水冷板总成3之间通过导热结构胶5粘接,所述导热结构胶5用于固定和传热,水冷板总成3的两面都可以进行热量传递,提升热管理效率。
进一步地,所述箱体纵梁8上设置有横边结构801,通过横边结构801与电池模组1卡接,保证电池模组1的安装,提升电池模组1的安装精度,提升结构强度。
进一步地,所述水冷板总成3的材料包括但不限于铝合金、铁合金、钛合金等高强度、易成型、导热性能好的金属材料。
进一步地,所述水管接头7有两个,一个为入水口,另一个为出水口,水管接头7的一端与水冷板总成3的流道及箱体前端板4连接,另一端与整车热管理器系统连接,形成完整的冷却液回路。
进一步地,所述水冷板总成3采用挤压工艺成型,水冷板总成3上布置有多孔流道,与箱体前端板4、箱体后端板6内部的流道结构形成封闭的热管理冷却液流道回路。
第二方面,本发明提供了一种电动车辆,包括一种双层模组的集成化电池总成。
第三方面,本发明还提供了一种双层模组的集成化电池总成的设计方法,包括以下步骤:
A:将电池包布置边界和性能需求做为设计输入;
B:根据电池包布置边界和性能需求的匹配确定电池单体的数量;
C:通过电池单体的数量合理布置电池模组的尺寸,可以根据电池单体的数量调整模组的长度尺寸;
D:通过电池模组1的数量确定水冷板总成3的数量,其中一个水冷板总成3的上下面均布置有一个电池模组1;
E:通过电池模组1的重量设计横边结构801的尺寸,保证横边结构801的结构强度在安全系数范围内;
F:通过CFD热管理计算和CAE的强度计算确定水冷板总成3的厚度和流道结构;
G:通过水冷板总成3的流道设计前后端板内部的流道,与水管接头相连;
H:通过双层模组的尺寸高度设计电池侧边梁、前端板、后端板的尺寸;
I:对电池包进行电气安全、结构强度校核。
进一步地,步骤C中电池单体的长度总和占电池模组长度的95%以上,如果模组的长度需要变长或者变短,可以增加或者减少单体的个数实现。
与现有技术相比,本发明的优点如下:
(1)、本发明通过双层电池模组的结构设计,实现液冷板与下箱体、模组固定支架的高度集成,解决了现有电池零部件复杂繁多,无法实现集成化的问题;
(2)、本发明通过在水冷板总成上布置有多孔流道,与箱体前端板、箱体后端板内部的流道结构形成封闭的热管理冷却液流道回路的技术方案,可以实现电池包内部干湿分离,无水管设计,提升装配性能,减少了因水管转换接头带来的泄露风险。
(3)、本发明结构简单、集成度高、可以实现模块化设计。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1为本发明的一种双层模组的集成化电池总成的结构示意图;
图2为本发明的一种双层模组的集成化电池总成的内部的电池包的结构示意图;
图3为本发明的一种双层模组的集成化电池总成的局部俯视图;
图4为本发明的一种双层模组的集成化电池总成的冷却回路的示意图;
图中:
电池模组1;
箱体横梁2;
水冷板总成3;
箱体前端板4;
导热结构胶5;
箱体后端板6;
水管接头7;
箱体纵梁8;
横边结构801;
箱体侧边梁9。
具体实施方式
为清楚、完整地描述本发明所述技术方案及其具体工作过程,结合说明书附图,本发明的具体实施方式如下:
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征 “上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
实施例1
如图1所示,本实施例提供了一种双层模组的集成化电池总成,包括电池箱体及布置在其内部的电池包,所述电池包包括多个电池模组1,所述多个电池模组1呈上下两层布置;所述电池箱体包括箱体前端板4、箱体后端板6、箱体侧边梁9及箱体底板,所述箱体前端板4设置在电池包的前端,所述箱体后端板6设置在电池包的后端,所述箱体侧边梁9设置在电池包的左右两侧,沿着电池包长度方向布置;所述箱体底板设置在电池包的底部;所述两层电池模组1之间设置有水冷板总成3,水冷板总成3内部的流道与箱体前端板4、箱体后端板6 内部的流道结构形成封闭的热管理冷却液流道回路;箱体前端板4上设置有水管接头7,水管接头7与水冷板总成3的流道形成冷却液回路。
所述水冷板总成3的材料包括但不限于铝合金、铁合金、钛合金等高强度、易成型、导热性能好的金属材料。
所述水冷板总成3采用挤压工艺成型,水冷板总成3上布置有多孔流道,与箱体前端板4、箱体后端板6内部的流道结构形成封闭的热管理冷却液流道回路。
如图2所示,所述电池箱体内部设置有箱体横梁2及箱体纵梁8,箱体横梁2及箱体纵梁8形成网格状,所述箱体横梁2沿着电池包宽度方向布置,所述箱体纵梁8沿着电池包长度方向布置;电池模组1位于网格状的结构内。
如图2所示,所述电池模组1与水冷板总成3之间通过导热结构胶5粘接,所述导热结构胶5用于固定和传热,水冷板总成3的两面都可以进行热量传递,提升热管理效率。
如图3所示,所述箱体纵梁8上设置有横边结构801,通过横边结构801与电池模组1卡接,保证电池模组1的安装,提升电池模组1的安装精度,提升结构强度。
如图4所示,所述水管接头7有两个,一个为入水口,另一个为出水口,水管接头7的一端与水冷板总成3的流道及箱体前端板4连接,另一端与整车热管理器系统连接,形成完整的冷却液回路。
实施例2
本实施例提供了一种电动车辆,包括实施例1中的一种双层模组的集成化电池总成。电动车辆采用实施例1的一种双层模组的集成化电池总成,通过采用双层电池模组的结构设计,实现液冷板与下箱体、模组固定支架的高度集成,本发明通过在水冷板总成上布置有多孔流 道,与箱体前端板、箱体后端板内部的流道结构形成封闭的热管理冷却液流道回路的技术方案,可以实现电池包内部干湿分离,无水管设计,提升装配性能,减少了因水管转换接头带来的泄露风险。
实施例3
本实施例提供了本发明还提供了一种双层模组的集成化电池总成的设计方法,包括以下步骤:
A:将电池包布置边界和性能需求做为设计输入;
B:根据电池包布置边界和性能需求的匹配确定电池单体的数量;
C:通过电池单体的数量合理布置电池模组的尺寸,可以根据电池单体的数量调整模组的长度尺寸;
D:通过电池模组1的数量确定水冷板总成3的数量,其中一个水冷板总成3的上下面均布置有一个电池模组1;
E:通过电池模组1的重量设计横边结构801的尺寸,保证横边结构801的结构强度在安全系数范围内;可通过CAE仿真计算出横边结构的尺寸,强度不够,就将尺寸增加;
F:通过CFD热管理计算和CAE的强度计算确定水冷板总成3的厚度和流道结构;CFD是温度场仿真,CAE是结构强度仿真,通过仿真模型调整结构尺寸,看看仿真结果是否符合设计要求,如果不符合需要不断迭代调整尺寸,直到符合设计要求;
G:通过水冷板总成3的流道设计前后端板内部的流道,与水管接头相连;
H:通过双层模组的尺寸高度设计电池侧边梁、前端板、后端板的尺寸;
I:对电池包进行电气安全、结构强度校核。
步骤C中电池单体的长度总和占电池模组长度的95%以上,如果模组的长度需要变长或者变短,可以增加或者减少单体的个数实现。
如图1所示,用本设计方法设计的一种双层模组的集成化电池总成,根据电池包的布置边界和性能需求设计了由八组电池模组1组成的电池包,分上下两层设置,每层设置四个电池模组1,每个电池模组1底部均粘接有水冷板总成3,水冷板总成上布置有多孔流道,与箱体前端板、箱体后端板内部的流道结构形成封闭的热管理冷却液流道回路,可以实现电池包内部干湿分离,无水管设计,提升装配性能,减少了因水管转换接头带来的泄露风险。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

  1. 一种双层模组的集成化电池总成,其特征在于,包括电池箱体及布置在其内部的电池包,所述电池包包括多个电池模组(1),所述多个电池模组(1)呈上下两层布置;所述电池箱体包括箱体前端板(4)、箱体后端板(6)、箱体侧边梁(9)及箱体底板,所述箱体前端板(4)设置在电池包的前端,所述箱体后端板(6)设置在电池包的后端,所述箱体侧边梁(9)设置在电池包的左右两侧,沿着电池包长度方向布置;所述箱体底板设置在电池包的底部;所述两层电池模组(1)之间设置有水冷板总成(3),水冷板总成(3)内部的流道与箱体前端板(4)、箱体后端板(6)内部的流道结构形成封闭的热管理冷却液流道回路;箱体前端板(4)上设置有水管接头(7),水管接头(7)与水冷板总成(3)的流道形成冷却液回路。
  2. 如权利要求1所述的一种双层模组的集成化电池总成,其特征在于,所述电池箱体内部设置有箱体横梁(2)及箱体纵梁(8),箱体横梁(2)及箱体纵梁(8)形成网格状,所述箱体横梁(2)沿着电池包宽度方向布置,所述箱体纵梁(8)沿着电池包长度方向布置;电池模组(1)位于网格状的结构内。
  3. 如权利要求1所述的一种双层模组的集成化电池总成,其特征在于,所述电池模组(1)与水冷板总成(3)之间通过导热结构胶(5)粘接,所述导热结构胶(5)用于固定和传热,水冷板总成(3)的两面都可以进行热量传递,提升热管理效率。
  4. 如权利要求1所述的一种双层模组的集成化电池总成,其特征在于,所述箱体纵梁(8)上设置有横边结构(801),通过横边结构(801)与电池模组(1)卡接,保证电池模组(1)的安装,提升电池模组(1)的安装精度,提升结构强度。
  5. 如权利要求1所述的一种双层模组的集成化电池总成,其特 征在于,所述水冷板总成(3)的材料为铝合金、铁合金或钛合金。
  6. 如权利要求1所述的一种双层模组的集成化电池总成,其特征在于,所述水管接头(7)有两个,一个为入水口,另一个为出水口,水管接头(7)的一端与水冷板总成(3)的流道及箱体前端板(4)连接,另一端与整车热管理器系统连接,形成完整的冷却液回路。
  7. 如权利要求1所述的一种双层模组的集成化电池总成,其特征在于,所述水冷板总成(3)采用挤压工艺成型,水冷板总成(3)上布置有多孔流道,与箱体前端板(4)、箱体后端板(6)内部的流道结构形成封闭的热管理冷却液流道回路。
  8. 一种电动车辆,其特征在于,包括如权利要求1=7任一一项所述的一种双层模组的集成化电池总成。
  9. 一种双层模组的集成化电池总成的设计方法,用于设计权利要求1-7任一项所述的集成化电池总成,其特征在于,包括以下步骤:
    A:将电池包布置边界和性能需求做为设计输入;
    B:根据电池包布置边界和性能需求的匹配确定电池单体的数量;
    C:通过电池单体的数量合理布置电池模组的尺寸,可以根据电池单体的数量调整模组的长度尺寸;
    D:通过电池模组(1)的数量确定水冷板总成(3)的数量,其中一个水冷板总成3的上下面均布置有一个电池模组(1);
    E:通过电池模组(1)的重量设计横边结构(801)的尺寸,保证横边结构801的结构强度在安全系数范围内;
    F:通过CFD热管理计算和CAE的强度计算确定水冷板总成(3)的厚度和流道结构;
    G:通过水冷板总成(3)的流道设计前后端板内部的流道,与水管接头相连;
    H:通过双层模组的尺寸高度设计电池侧边梁、前端板、后端板的尺寸;
    I:对电池包进行电气安全、结构强度校核。
  10. 如权利要求9所述的一种双层模组的集成化电池总成的设计方法,其特征在于,步骤C中电池单体的长度总和占电池模组长度的95%以上,如果模组的长度需要变长或者变短,可以增加或者减少单体的个数实现。
PCT/CN2022/108505 2021-11-30 2022-07-28 一种双层模组的集成化电池总成、电动车辆及设计方法 WO2023098117A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111444106.7A CN114335795A (zh) 2021-11-30 2021-11-30 一种双层模组的集成化电池总成、电动车辆及设计方法
CN202111444106.7 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098117A1 true WO2023098117A1 (zh) 2023-06-08

Family

ID=81048658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108505 WO2023098117A1 (zh) 2021-11-30 2022-07-28 一种双层模组的集成化电池总成、电动车辆及设计方法

Country Status (2)

Country Link
CN (1) CN114335795A (zh)
WO (1) WO2023098117A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335795A (zh) * 2021-11-30 2022-04-12 中国第一汽车股份有限公司 一种双层模组的集成化电池总成、电动车辆及设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210379150U (zh) * 2019-07-19 2020-04-21 芜湖天量电池系统有限公司 一种新能源动力电池模组支架结构
CN210467944U (zh) * 2019-10-28 2020-05-05 北京金茂绿建科技有限公司 一种液冷电池包
CN113113694A (zh) * 2021-02-26 2021-07-13 合肥国轩高科动力能源有限公司 一种集成液冷功能的锂电池模组
CN214477776U (zh) * 2021-01-29 2021-10-22 比亚迪股份有限公司 电池模组及电池包
CN114335795A (zh) * 2021-11-30 2022-04-12 中国第一汽车股份有限公司 一种双层模组的集成化电池总成、电动车辆及设计方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150081579A (ko) * 2014-01-06 2015-07-15 주식회사 엘지화학 간접 냉각 구조를 포함하는 전지모듈
CN111048708A (zh) * 2018-10-12 2020-04-21 郑州深澜动力科技有限公司 电池箱下箱体
KR102205662B1 (ko) * 2019-09-20 2021-01-21 주식회사 성우하이텍 전기 자동차용 배터리 케이스
CN211265671U (zh) * 2019-12-30 2020-08-14 合肥国轩高科动力能源有限公司 一种锂电池模组的液冷箱体
CN212161896U (zh) * 2020-04-29 2020-12-15 蜂巢能源科技有限公司 集成水冷电池模组及动力电池包
CN213905488U (zh) * 2020-12-25 2021-08-06 中国第一汽车股份有限公司 一种动力电池散热结构及电动汽车
CN113113708A (zh) * 2021-04-12 2021-07-13 中国第一汽车股份有限公司 一种固态电池模组、电池包及电池包的设计方法
CN113410542A (zh) * 2021-06-15 2021-09-17 东风海博新能源科技有限公司 一种双层模组的液冷系统及电池包

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210379150U (zh) * 2019-07-19 2020-04-21 芜湖天量电池系统有限公司 一种新能源动力电池模组支架结构
CN210467944U (zh) * 2019-10-28 2020-05-05 北京金茂绿建科技有限公司 一种液冷电池包
CN214477776U (zh) * 2021-01-29 2021-10-22 比亚迪股份有限公司 电池模组及电池包
CN113113694A (zh) * 2021-02-26 2021-07-13 合肥国轩高科动力能源有限公司 一种集成液冷功能的锂电池模组
CN114335795A (zh) * 2021-11-30 2022-04-12 中国第一汽车股份有限公司 一种双层模组的集成化电池总成、电动车辆及设计方法

Also Published As

Publication number Publication date
CN114335795A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
CN205159464U (zh) 动力电池组液冷板及液冷系统
CN107039706A (zh) 动力电池液冷板
CN105990621A (zh) 一种应用于电动汽车的水冷板结构
WO2019034097A1 (zh) 具有换热功能的电池包壳体和电池包
CN206441787U (zh) 一种电动汽车电池箱
CN208478522U (zh) 一种液冷动力电池系统
CN108847509A (zh) 一种冷却结构及电池模组
WO2023098117A1 (zh) 一种双层模组的集成化电池总成、电动车辆及设计方法
WO2023103880A1 (zh) 电池冷却系统、电池包及车辆
CN213026251U (zh) 一种液冷板及动力电池包
CN204424406U (zh) 一种应用于电动汽车的水冷板结构
CN207690852U (zh) 一种动力电池水冷结构
TWM574763U (zh) 具有換熱功能的電池包殼體和電池包
CN208723049U (zh) 一体化散热结构动力电池pack箱
CN206742452U (zh) 一种电池模组散热结构
CN206789658U (zh) 动力电池液冷板
WO2024098684A1 (zh) 一种液冷板、电池总成、电动车辆及设计方法
CN210040305U (zh) 水冷电池箱体
CN208835137U (zh) 车辆及其电池模组
CN219476785U (zh) 电池模组及电池系统和电动汽车
CN216671792U (zh) 一种多层热管理结构的电池包及电动汽车
CN114361690A (zh) 一种ctp构型的电池总成、电动车辆及设计方法
CN209822831U (zh) 一种新能源汽车用电池组热管理系统
CN210136989U (zh) 双层通道动力电池液冷板
CN109786885A (zh) 电池模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899937

Country of ref document: EP

Kind code of ref document: A1