WO2023097871A1 - 电池单体及其制造方法和设备、电池以及用电装置 - Google Patents

电池单体及其制造方法和设备、电池以及用电装置 Download PDF

Info

Publication number
WO2023097871A1
WO2023097871A1 PCT/CN2022/070810 CN2022070810W WO2023097871A1 WO 2023097871 A1 WO2023097871 A1 WO 2023097871A1 CN 2022070810 W CN2022070810 W CN 2022070810W WO 2023097871 A1 WO2023097871 A1 WO 2023097871A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
pressure relief
bottom wall
relief member
battery
Prior art date
Application number
PCT/CN2022/070810
Other languages
English (en)
French (fr)
Inventor
徐良帆
周文林
张倩倩
李星
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023097871A1 publication Critical patent/WO2023097871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4214Arrangements for moving electrodes or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/005Devices for making primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/50Methods or arrangements for servicing or maintenance, e.g. for maintaining operating temperature
    • H01M6/5022Arrangements for moving electrodes or separating elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of battery manufacturing, in particular, to a battery cell, its manufacturing method and equipment, a battery, and an electrical device.
  • placing the power battery upside down can improve the safety performance of the power battery. Based on the internal structure of the existing power battery, if the power battery is directly used upside down, there will be certain safety hazards and the service life will be affected.
  • the present application proposes a battery cell and its manufacturing method and equipment, battery and electrical device, which can have better safety performance and longer service life when used upside down.
  • the embodiment of the first aspect of the present application provides a battery cell, including: a casing, the casing includes a top wall, a side wall and a bottom wall, the top wall and the bottom wall are oppositely arranged, and the side wall is connected to the a top wall and the bottom wall; a pressure relief member disposed on the bottom wall, the pressure relief member configured to be actuated to discharge the battery cell when the internal pressure or temperature of the battery cell reaches a threshold value The pressure inside the body; wherein, the pressure relief member has a first surface facing the interior of the battery cell, and the first surface is configured to guide the electrolyte to the periphery of the pressure relief member.
  • the pressure relief member has a first surface facing the inside of the battery cell.
  • the first surface of the pressure relief member can guide the electrolyte to diffuse to the periphery of the pressure relief member. , and accumulate in other parts of the battery cell. Since the electrolyte is not accumulated on the first surface of the pressure relief part, the pressure relief part will not be corroded to cause the battery cell to leak liquid in advance, thereby improving the safety performance and effective service life of the battery cell.
  • the first surface is a slope inclined relative to a thickness direction of the bottom wall.
  • the thickness direction of the bottom wall extends along the direction of gravity, and one side edge of the first surface is higher than the other side edge, which can guide the electrolyte from the high side edge of the first surface. Flow toward the lower side edge to prevent the electrolyte from accumulating on the first surface of the pressure relief member.
  • the first surface is a curved surface protruding toward the inside of the battery cell.
  • the bottom wall is located at the bottom of the battery cell, and the first surface is an upwardly protruding curved surface, which can guide the electrolyte to flow from the middle of the first surface to the periphery, avoiding the electrolyte Accumulated on the first surface of the pressure relief member.
  • the bottom wall is provided with a pressure relief hole, and the pressure relief member covers the pressure relief hole from a side of the bottom wall facing the interior of the battery cell.
  • the pressure relief member is disposed on the side of the bottom wall facing the inside of the battery cell, which can reduce the possibility of the pressure relief member being damaged due to contact with external foreign objects.
  • annular protrusion is formed on the side of the bottom wall facing the inside of the battery cell, the annular protrusion is arranged around the pressure relief hole, and the edge of the pressure relief member is connected to on the annular protrusion.
  • the annular protrusion protrudes upwards from the bottom wall, and the edge of the pressure relief member is connected to the annular protrusion and covers the pressure relief hole, which not only realizes that the first surface is located on the bottom wall
  • the upper side prevents the electrolyte from immersing into the first surface of the pressure relief member, and also enables the pressure relief member to be disposed on the side of the bottom wall facing the inside of the battery cell, thereby improving the safety performance of the battery cell.
  • annular groove is provided on the end surface of the annular protrusion, the annular groove is arranged around the pressure relief hole, and the edge of the pressure relief member is arranged in the annular groove .
  • This arrangement can not only reduce the extent of the pressure relief part protruding from the end surface of the annular protrusion, avoid excessive occupation of the internal space of the battery cell by the pressure relief part, improve the energy density of the battery cell, but also facilitate the installation of the pressure relief part on the Locate when the ring is raised.
  • the end surface of the annular protrusion is an inclined surface inclined relative to the thickness direction of the bottom wall, and the edge of the pressure relief member is connected to the end surface of the annular protrusion.
  • the pressure relief hole has a smaller aperture, thereby reducing the aperture of the pressure relief hole and reducing the influence of the arrangement of the pressure relief hole on the strength of the bottom wall .
  • the battery cell further includes: a protective film covering the pressure relief hole from a side of the bottom wall facing away from the interior of the battery cell.
  • the bottom wall includes a first part and a second part, the second part is arranged around the first part, and along the thickness direction of the bottom wall, the first part is formed by the second part.
  • a part protrudes toward the outside of the battery cell, a recess is formed at a position corresponding to the first part on the side of the bottom wall facing the inside of the battery cell, and the pressure relief member is arranged on the first part.
  • the space of the concave part of the bottom wall facing the inside of the battery cell can be used to set the pressure relief member, avoiding the internal space of the battery cell occupied by the pressure relief member, so that there is more space inside the battery cell Arranging the electrode assembly improves the energy density of the battery cell.
  • the first surface does not protrude beyond a side of the second portion facing the interior of the battery cell.
  • the maximum outer dimension of the assembly of the bottom wall and the pressure relief component will not exceed the maximum external dimension of the pressure relief component, so that there is more space to arrange the electrode assembly inside the battery cell, improving the efficiency of the battery cell.
  • the energy density of the body is not exceed the maximum external dimension of the pressure relief component, so that there is more space to arrange the electrode assembly inside the battery cell, improving the efficiency of the battery cell.
  • the top wall and the side wall are integrally formed, and the bottom wall and the side wall are separately provided.
  • the bottom wall and the side wall are integrally formed and configured as a shell with an opening, the bottom wall and the pressure relief part are assembled into one, and then connected to the side wall, which simplifies the assembly process of the pressure relief part and the bottom wall. The manufacturing cost of the battery cell is reduced.
  • the battery cell further includes: an electrode terminal disposed on the bottom wall.
  • the electrode terminals are arranged on the bottom wall, and the electrode terminals are used to lead out the electric energy of the battery cells to the outside of the battery cells.
  • the embodiment of the second aspect of the present application provides a battery, including the battery cell provided by the embodiment of the first aspect of the present application.
  • the battery in the embodiment of the second aspect of the present application also has better safety performance.
  • the embodiment of the third aspect of the present application provides an electric device, including the battery provided in the embodiment of the second aspect of the present application, and the battery is used to provide electric energy.
  • the electric device in the embodiment of the third aspect of the present application also has better safety performance.
  • the embodiment of the fourth aspect of the present application proposes a method for manufacturing a battery cell, including:
  • the housing comprising a top wall, a side wall and a bottom wall, the top wall and the bottom wall are oppositely arranged, and the side wall connects the top wall and the bottom wall;
  • a pressure relief member configured to be actuated to relieve pressure inside the battery cell when the internal pressure or temperature of the battery cell reaches a threshold, the pressure relief member having a first surface , the first surface is configured to guide electrolyte toward the periphery of the pressure relief member;
  • the pressure relief member is disposed on the bottom wall so that the first surface faces the inside of the battery cell.
  • the embodiment of the fifth aspect of the present application proposes a battery cell manufacturing equipment, including:
  • the first providing device is used to provide a casing, the casing includes a top wall, a side wall and a bottom wall, the top wall and the bottom wall are arranged opposite, and the side wall connects the top wall and the bottom wall;
  • the second providing means is for providing a pressure relief member configured to be activated to release the pressure inside the battery cell when the internal pressure or temperature of the battery cell reaches a threshold value, the a pressure relief member having a first surface configured to direct electrolyte toward a periphery of the pressure relief member;
  • An assembly module is used for disposing the pressure relief member on the bottom wall so that the first surface faces the inside of the battery cell.
  • FIG. 1 shows is a simple schematic diagram of a vehicle in an embodiment of the present application
  • Fig. 2 shows a schematic structural view of the battery of the vehicle in Fig. 1;
  • Figure 3 shows an exploded view of a battery cell in some embodiments of the present application
  • FIG. 4 shows a cross-sectional view of a form of end cap assembly of a battery cell 10 according to some embodiments of the present application (the first insulator is not shown);
  • FIG. 5 shows is the partial enlarged view of place A in Fig. 4;
  • FIG. 6 shows a cross-sectional view of another form of end cap assembly of a battery cell 10 according to some embodiments of the present application (the first insulator is not shown);
  • FIG. 7 shows is the partial enlarged view of place B in Fig. 6;
  • Fig. 8 shows a structural schematic view of an end cap assembly of a battery cell according to some embodiments of the present application (the first insulator is not shown);
  • FIG. 9 shows a schematic structural view of the bottom wall of the battery cell in some embodiments of the present application.
  • FIG. 10 shows a schematic diagram of a method for manufacturing a battery cell according to some embodiments of the present application.
  • Fig. 11 shows a schematic structural view of a battery cell manufacturing equipment according to some embodiments of the present application.
  • Icons 1000-vehicle; 100-battery; 10-battery unit; 11-housing; 111-bottom wall; 1111-first side; 1112-second side; 1113-pressure relief hole; 1114-second surface; 1115 1116-first part; 1117-second part; 1118-recess; 1119-third surface; 112-side wall; 113-top wall; 114-annular protrusion; 12-electrode assembly; 121-main body; 122-first tab; 123-second tab; 13-electrode terminal; One edge; 1512-second edge; 1513-circumferential edge; 1514-curved surface center; 16-first insulating member; 17-protective film; 20-box; 21-first box; 22-second box 200-controller; 300-motor; 2000-battery unit manufacturing equipment; 2100-first providing device; 2200-second providing device; 2300-assembly module.
  • connection should be understood in a broad sense unless otherwise clearly specified and limited, for example, it can be a fixed connection or a Detachable connection, or integral connection; can be directly connected, can also be indirectly connected through an intermediary, and can be internal communication of two components.
  • connection can be a fixed connection or a Detachable connection, or integral connection; can be directly connected, can also be indirectly connected through an intermediary, and can be internal communication of two components.
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to the way of packaging: cylindrical battery cells, square battery cells and pouch battery cells.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • a battery generally includes a box for encapsulating one or more battery cells, and the box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the battery cell also includes a pressure relief member that is actuated when the internal pressure of the battery cell reaches a threshold.
  • Threshold design varies according to design requirements.
  • the threshold may depend on the material of one or more of the positive electrode sheet, negative electrode sheet, electrolyte and separator of the battery cell.
  • the pressure relief member may take the form of an explosion-proof valve, gas valve, pressure relief valve or safety valve, etc., and may specifically adopt a pressure-sensitive or temperature-sensitive element or configuration, that is, when the internal pressure or temperature of the battery cell reaches a threshold , the pressure relief member performs an action or the weak structure provided in the pressure relief member is destroyed, thereby forming an opening or passage for internal pressure or temperature release.
  • the "actuation" mentioned in this application means that the pressure relief member acts or is activated to a certain form, so that the internal pressure and temperature of the battery cells can be released.
  • Actions by the pressure relief member may include, but are not limited to, at least a portion of the pressure relief member rupture, crumble, be torn, or open, among others.
  • the pressure relief member When the pressure relief member is actuated, the high-temperature and high-pressure material inside the battery cell will be discharged from the opened part as discharge. In this way, the pressure and temperature of the battery cells can be released under the condition of controllable pressure or temperature, so as to avoid potential more serious accidents.
  • the battery cell also includes a current collecting member, which is used to electrically connect the tabs of the battery cell to the electrode terminals, so as to transmit electric energy from the electrode assembly to the electrode terminals, and then to the outside of the battery cell through the electrode terminals;
  • the electrical connection between the battery cells is realized through the busbar, so as to realize the series connection, parallel connection or mixed connection of multiple battery cells.
  • the pressure relief part is activated to release the temperature or pressure inside the battery cell when the internal pressure of the battery cell reaches a threshold. Since the high-temperature and high-pressure gas is ejected from the pressure relief part, it is easy to enter the passenger compartment, scald the passengers and cause a fire. In order to improve the safety performance of the battery cell, there is currently a battery cell that is used upside down, so that the pressure relief part is located at the bottom of the battery cell. damage to the passenger compartment.
  • the electrode assembly and the shell are short-circuited, it will The shell and the parts that are conductively connected to the shell and accumulate electrolyte cause electrochemical corrosion, resulting in leakage of these parts.
  • the pressure relief part is located at the bottom of the battery cell, and the thickness of the pressure relief part is smaller than the thickness of the casing. In the case of electrochemical corrosion, it may leak first, resulting in premature failure of the battery cell .
  • this application proposes a new technical solution to guide the electrolyte to flow to the periphery of the pressure relief part during the upside-down use of the battery, avoiding the accumulation of electrolyte in the pressure relief part, and preventing the leakage of the pressure relief part due to electrochemical corrosion. leakage, thereby improving the safety performance of the battery cell and ensuring the service life of the battery cell.
  • the battery cells described in the embodiments of the present application can directly supply power to electric devices, and can also be connected in parallel or in series to form battery modules or batteries, and supply power to various electric devices in the form of battery 100 modules or batteries. powered by.
  • the electric devices that use battery cells, battery modules or batteries described in the embodiments of the present application can be in various forms, for example, mobile phones, portable devices, notebook computers, battery cars, electric cars, ships, Spacecraft, electric toys and electric tools, etc.
  • spacecraft include airplanes, rockets, space shuttles and spaceships, etc.
  • Electric toys include fixed or mobile electric toys, such as game consoles, electric car toys, electric Ship toys and electric airplane toys, etc.
  • Electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, such as electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, Concrete vibrator and planer.
  • the battery cells, battery modules or batteries described in the embodiments of the present application are not only limited to the above-described electric devices, but also applicable to all electric devices that use battery cells, battery modules, and batteries.
  • the following embodiments are all described by taking an electric vehicle as an example.
  • FIG. 1 shows a simplified schematic diagram of a vehicle in an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a battery of the vehicle in FIG. 1 .
  • a battery 100 , a controller 200 and a motor 300 are disposed inside the vehicle 1000 , for example, the battery 100 may be disposed at the bottom, front or rear of the vehicle 1000 .
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 .
  • the controller 200 is used to control the power supply of the battery 100 to the motor 300 , for example, for starting, navigating, and working power requirements of the vehicle 1000 during driving.
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 mentioned in the embodiment of the present application refers to a single physical module including one or more battery cells 10 to provide higher voltage and capacity.
  • a plurality of battery cells 10 may be connected in series, parallel or mixed to form the battery 100 directly.
  • the mixed connection means that the plurality of battery cells 10 are both connected in series and in parallel.
  • a plurality of battery cells 10 may also be connected in series, parallel or mixed first to form a battery module, and then multiple battery modules are connected in series, parallel or mixed to form a battery 100 .
  • the battery 100 includes a plurality of battery cells 10 and a case 20 , and the plurality of battery cells 10 are placed in the case 20 .
  • the box body 20 includes a first box body 21 and a second box body 22 , and the first box body 21 and the second box body 22 are closed together to form a battery cavity, and a plurality of battery modules are placed in the cavity of the battery 100 .
  • the shapes of the first box body 21 and the second box body 22 may be determined according to the combined shape of a plurality of battery modules, and each of the first box body 21 and the second box body 22 may have an opening.
  • both the first box body 21 and the second box body 22 can be hollow cuboids and only one face is an opening face, the openings of the first box body 21 and the second box body 22 are arranged oppositely, and the first box body 21 and the second box body 22 are arranged oppositely.
  • the second boxes 22 are interlocked to form the box 20 with a closed chamber.
  • a plurality of battery cells 10 are connected in parallel or connected in series or mixed and placed in the box 20 formed by fastening the first box 21 and the second box 22 .
  • FIG. 3 shows an exploded view of a battery cell in some embodiments of the present application.
  • the battery cell 10 includes a case 11 , an electrode assembly 12 , an electrode terminal 13 , a current collecting member 14 , a pressure relief member 15 (please refer to FIG. 5 ) and a first insulating member 16 .
  • the shell 11 includes a shell and an end cover, the shell is provided with an opening, and the end cover covers the opening to seal the electrode assembly 12 inside the shell.
  • the housing 11 includes a bottom wall 111, a side wall 112 and a top wall 113, the side wall 112 and the top wall 113 are oppositely arranged, the side wall 112 is surrounded by the bottom wall 111, and the side wall 112 connects the top wall 113 and the bottom
  • the wall 111 and the electrode assembly 12 are disposed inside the housing 11 , at least one of the bottom wall 111 and the top wall 113 is provided with an electrode lead-out hole, and the electrode terminal 13 is insulated and installed in the electrode lead-out hole.
  • the top wall 113 and the side wall 112 are integrally formed to form a housing, one end of the housing has an opening, the bottom wall 111 and the side wall 112 are separately provided, the bottom wall 111 is configured as an end cover, and the bottom wall 111 is configured as an end cover.
  • the wall 111 covers the opening of the casing to seal the electrode assembly 12 inside the casing.
  • the bottom wall 111 is provided with two electrode lead-out holes, and the number of electrode terminals 13 is two.
  • the two electrode terminals 13 are both arranged on the bottom wall 111 to lead out the electric energy to the outside of the battery cell 10 .
  • the pressure relief member 15 is disposed on the bottom wall 111, and the pressure relief member 15 is configured to be activated to release the pressure inside the battery cell 10 when the internal pressure or temperature of the battery cell 10 reaches a threshold value, the bottom wall 111, the bottom wall 111 Components such as the electrode terminal 13 and the pressure relief member 15 and the first insulator 16 provided on the top are jointly configured to form an end cap assembly.
  • the bottom wall 111 and the side wall 112 can also be integrally formed to form a shell, one end of the shell has an opening, the top wall 113 and the side wall 112 are separately provided, the top wall 113 is configured as an end cover, and the two sides
  • Each of the electrode terminals 13 is disposed on the top wall 113, and the top wall 113, the electrode terminals 13 disposed on the top wall 113 and other components are jointly constructed into an end cover assembly.
  • the shell can be hexahedral, cylindrical or elliptical cylindrical.
  • the housing may be made of metallic material such as aluminum, aluminum alloy or nickel plated steel.
  • the end cap is a plate-shaped structure, the size and shape of the end cap match the opening of the casing, and the end cap is fixed to the opening of the casing, so as to seal the electrode assembly 12 and the electrolyte in the containing cavity of the casing.
  • the end caps are made of metal materials, such as aluminum, steel and other materials.
  • the housing may be a hexahedron, and the end cap may be a square or rectangular plate structure.
  • the length direction of the casing extends along the first direction X
  • the width direction extends along the second square Y
  • the height direction extends along the third direction Z.
  • the shape of the end cover matches the opening of the housing, the length direction of the end cover extends along the first direction X, the width direction extends along the second direction Y, and the thickness direction extends along the third direction Z.
  • the casing can also be a cylinder or an elliptical cylinder
  • the end cap can be a circular plate or an elliptical plate-shaped structure.
  • the electrode assembly 12 is disposed in the casing 11 , and the electrode assembly 12 includes a main body 121 , a first tab 122 and a second tab 123 .
  • the main body 121 includes a positive electrode piece, a negative electrode piece and a separator, and the separator is located between the positive electrode piece and the negative electrode piece to separate the positive electrode piece from the negative electrode piece.
  • the polarities of the first tab 122 and the second tab 123 are opposite, and there are two electrode terminals 13. The polarities of the two electrode terminals 13 are opposite.
  • the current member 14 is connected, and the second tab 123 is electrically connected to the electrode terminal 13 of the same polarity through the other.
  • the first tab 122 is a positive tab
  • the second tab 123 is a negative tab
  • the current collecting member 14 corresponding to the first tab 122 is made of aluminum.
  • the material of the current collecting member 14 corresponding to the second tab 123 is copper.
  • the first insulating member 16 is disposed between the bottom wall 111 and the electrode assembly 12 for insulating and isolating the bottom wall 111 and the electrode assembly 12 .
  • the first insulator 16 is made of lower plastic, the first insulator 16 is connected to the bottom wall 111, and insulates and isolates the current collecting member 14 from the bottom wall 111, and the first insulator 16 has a via hole so that the bottom wall 111
  • the pressure relief member 15 is in gas communication with the electrode assembly 12 , and when thermal runaway occurs inside the battery cell 10 , the high temperature and high pressure gas inside the battery cell 10 can smoothly actuate the pressure relief member 15 .
  • the first insulating member 16 may also be disposed between the top wall 113 and the electrode assembly 12 for insulating the top wall 113 from the electrode assembly 12 .
  • FIG. 4 shows a cross-sectional view of a form of end cover assembly of a battery cell 10 according to some embodiments of the present application (the first insulator is not shown);
  • Fig. 5 shows the position at A in Fig. 4 Partial enlarged view;
  • FIG. 6 shows a cross-sectional view of another form of end cap assembly of a battery cell 10 according to some embodiments of the present application (the first insulator is not shown);
  • FIG. 7 shows a diagram Partial enlarged view of B in 6.
  • some embodiments of the present application provide a battery cell 10 , including a casing 11 and a pressure relief member 15 .
  • the housing 11 includes a top wall 113 , a side wall 112 and a bottom wall 111 , the top wall 113 is opposite to the bottom wall 111 , and the side wall 112 is connected to the top wall 113 and the bottom wall 111 .
  • the pressure relief member 15 is disposed on the bottom wall 111 , and the pressure relief member 15 is configured to be activated to release the pressure inside the battery cell 10 when the internal pressure or temperature of the battery cell 10 reaches a threshold.
  • the pressure relief member 15 has a first surface 151 facing the interior of the battery cell 10 , and the first surface 151 is configured to guide the electrolyte to the periphery of the pressure relief member 15 .
  • the bottom wall 111 is located at the bottom of the battery cell 10
  • the pressure relief member 15 is disposed at the bottom of the battery cell 10
  • the top wall 113 is located at the top of the battery cell 10
  • the bottom wall 111 and the top wall 113 are along the first
  • the three directions Z are oppositely arranged, and the electrode assembly 12 is arranged between the bottom wall 111 and the top wall 113 .
  • the third direction Z extends along the direction of gravity, and the first surface 151 of the pressure relief member 15 is set upward. It will accumulate on the pressure relief member 15.
  • the side of the bottom wall 111 facing the interior of the battery cell 10 has a second surface 1114, along the XY direction, the projection of the pressure relief member 15 The contour falls into the projected contour of the second surface 1114 .
  • the first surface 151 of the pressure relief member 15 is located on the upper side of the second surface 1114 of the bottom wall 111 , and the first surface 151 guides the electrolyte to the periphery of the pressure relief member 15 .
  • the periphery of the member 15 flows to the second surface 1114 of the bottom wall 111 .
  • the pressure relief member 15 is a sheet metal structure, the thickness of the pressure relief member 15 is smaller than the thickness of the casing 11, and when the internal pressure or temperature of the battery cell 10 reaches a threshold value, it ruptures before the casing 11 to release The pressure inside the battery cell 10.
  • the pressure relief member 15 can be a sheet structure of equal thickness, and the thickness of the pressure relief member 15 corresponds to the preset actuation pressure or temperature; the pressure relief member 15 can also have a weak structure, and the pressure or temperature inside the battery cell 10 When the threshold is reached, the weak structure ruptures before the rest of the pressure relief member 15 to release the pressure inside the battery cell 10 .
  • the pressure relief member 15 can be integrally formed with the bottom wall 111, or a pressure relief hole 1113 can be provided on the bottom wall 111.
  • the pressure relief member 15 and the bottom wall 111 are separately provided and connected in a welded form.
  • the pressure relief member 15 Cover the pressure relief hole 1113 .
  • the pressure relief member 15 can be disposed at the middle of the bottom wall 111 and between the two electrode terminals 13 ; the pressure relief member 15 can also be disposed at other positions of the bottom wall 111 .
  • the shape of the pressure relief member 15 may be a circular, oval or square sheet structure, or a sheet structure of other shapes.
  • the first surface 151 of the pressure relief member 15 can guide the electrolyte to flow to the periphery of the pressure relief member 15 .
  • the first surface 151 can be substantially flat, guiding the electrolyte to flow from one side of the pressure relief member 15 to the other side; for example, the first surface 151 can be a curved surface, guiding the electrolyte from the middle of the pressure relief member 15 to the periphery flow.
  • the pressure relief member 15 has a first surface 151 facing the inside of the battery cell 10.
  • the first surface 151 of the pressure relief member 15 can guide the electrolyte. It spreads to the periphery of the pressure release member 15 and accumulates in other parts of the battery cell 10 . Since the electrolyte does not accumulate on the first surface 151 of the pressure relief member 15 , it will not corrode the pressure relief member 15 and cause the battery cell 10 to leak in advance, thereby improving the safety performance and effective service life of the battery cell 10 .
  • the first surface 151 is an inclined surface inclined relative to the thickness direction of the bottom wall 111 .
  • the thickness direction of the bottom wall 111 extends along the third direction Z
  • the first surface 151 is a plane
  • the normal direction of the first surface 151 is inclined to the third direction.
  • the first surface 151 may be inclined along the length direction of the bottom wall 111 (ie, the first direction X), or be inclined along the width direction of the bottom wall 111 (ie, the second direction Y) or other directions.
  • the two opposite edges of the first surface 151 are respectively a first edge 1511 and a second edge 1512,
  • the distance between the first surface 151 and the second surface 1114 gradually decreases from the first edge 1511 to the second edge 1512 .
  • the first edge 1511 is located on the upper side of the second edge 1512 , and the electrolyte flows from the first edge 1511 to the second edge 1512 of the first surface 151 under the force of gravity.
  • the distance between the first surface 151 and the second surface 1114 may also gradually decrease along the second direction Y from one side edge to the other side edge, and the electrolyte moves along the second side under the action of gravity.
  • the direction Y flows from one side edge to the other side edge of the first surface 151 .
  • the thickness direction of the bottom wall 111 extends along the direction of gravity, and the first edge 1511 of the first surface 151 is higher than the second edge 1512, which can guide the electrolyte from the first surface 151
  • the high side edge of the high side flows to the low side edge, preventing the electrolyte from accumulating on the first surface 151 of the pressure relief member 15 .
  • the first surface 151 is a curved surface protruding toward the inside of the battery cell 10 .
  • the thickness direction of the bottom wall 111 extends along the third direction Z
  • the first surface 151 includes a curved center 1514 and a peripheral edge 1513
  • the peripheral edge 1513 is arranged around the curved center 1514 .
  • the center of the curved surface 1514 can be aligned with the geometric center of the insulator along the third direction Z, so as to guide the electrolyte to flow uniformly to the circumferential edge 1513; the center of the curved surface 1514 can also be aligned with the geometric center of the first surface 151 along the third direction Z.
  • the three directions Z are staggered to avoid other components inside the battery cell 10 and make reasonable use of the space inside the battery cell 10 .
  • the bottom wall 111 is located at the bottom of the battery cell 10, and the first surface 151 is a curved surface protruding upward, which can guide the electrolyte from the center 1514 of the curved surface of the first surface 151 to the
  • the peripheral edge 1513 flows to prevent the electrolyte from accumulating on the first surface 151 of the pressure relief member 15 .
  • a pressure relief hole 1113 is provided on the bottom wall 111 , and the pressure relief member 15 covers the pressure relief from the side of the bottom wall 111 facing the inside of the battery cell 10 Hole 1113.
  • the opposite sides of the bottom wall 111 are respectively a first side 1111 and a second side 1112, wherein the first side 1111 of the bottom wall 111 is facing the battery cell One side inside the battery cell 10 , the second side 1112 is the side facing away from the inside of the battery cell 10 .
  • the projection contour of the pressure relief hole 1113 is located inside the projection contour of the second surface 1114 of the bottom wall 111, and the edge of the pressure relief member 15 is directly or indirectly connected with the second surface 1114 of the bottom wall 111 to obtain The first side 1111 of the wall 111 covers the pressure relief hole 1113 .
  • the edge of the pressure relief member 15 can be directly connected to the second surface 1114 of the bottom wall 111, and the edge of the pressure relief member 15 is arranged flush with the second surface 1114 of the bottom wall 111; the bottom wall 111 can also have a boss structure (such as a lower The above-mentioned annular boss), the pressure relief member 15 is arranged at the end of the boss structure, so that the edge of the pressure relief member 15 is closer to the interior of the battery cell 10 relative to the second surface 1114, so that the battery cell 10 is turned upside down In use, there is a height difference between the edge of the first surface 151 and the second surface 1114 to prevent the electrolyte from accumulating on the edge of the first surface 151 .
  • the pressure relief member 15 is disposed on the side of the bottom wall 111 facing the inside of the battery cell 10 , which can reduce the possibility of damage to the pressure relief member 15 due to contact with external foreign matter.
  • annular protrusion 114 is formed on the side of the bottom wall 111 facing the interior of the battery cell 10 , and the annular protrusion 114 is arranged around the pressure relief hole 1113 .
  • the pressure relief member 15 The edge of is connected to the annular protrusion 114.
  • the annular protrusion 114 is disposed on the first side 1111 of the bottom wall 111, along the axial direction of the annular protrusion 114, one end of the annular protrusion 114 is connected to the second surface 1114 of the bottom wall 111, and the other end has an end surface 1141 , the pressure relief hole 1113 runs through the annular protrusion 114 and the bottom wall 111 along the axial direction of the annular protrusion 114 .
  • the central axis of the pressure relief hole 1113 and the central axis of the annular protrusion 114 can be arranged coincidently, and the central axis of the pressure relief hole 1113 and the central axis of the annular protrusion 114 can also be arranged parallel and side by side, or arranged obliquely.
  • the central axis of the annular protrusion 114 may be parallel to the thickness direction of the bottom wall 111 (ie, the third direction Z), or may be inclined to the thickness direction of the bottom wall 111 .
  • the annular protrusion 114 and the bottom wall 111 can be integrally formed, or the annular protrusion 114 and the bottom wall 111 can also be arranged separately and assembled into one body by welding or bonding.
  • the annular protrusion 114 may be a cylindrical or elliptical cylindrical protrusion, or a square cylindrical protrusion or other shaped protrusions.
  • the end surface 1141 of the annular protrusion 114 and the second surface 1114 can be arranged in parallel, and the edge of the pressure relief member 15 is connected to the end surface 1141 of the annular protrusion 114.
  • the distance between the first surface 151 and the second surface 1114 is changed by changing the thickness of the pressure relief member 15 , so as to guide the electrolyte to flow to the periphery of the pressure relief member 15 .
  • the end surface 1141 of the annular protrusion 114 can also be inclined to the second surface 1114 , and the first surface 151 and the second surface 1114 are inclined to be realized by the angle of inclination between the end surface 1141 and the second surface 1114 .
  • the annular protrusion 114 protrudes upwards from the bottom wall 111, and the edge of the pressure relief member 15 is connected to the annular protrusion 114 and covers the pressure relief hole 1113, which not only realizes the first
  • the surface 151 is located on the upper side of the bottom wall 111, so as to prevent the electrolyte from being immersed in the first surface 151 of the pressure relief member 15, and it is also possible to arrange the pressure relief member 15 on the first side 1111 of the bottom wall 111 to improve the stability of the battery cell 10. safety performance.
  • annular groove 1142 is provided on the end surface 1141 of the annular protrusion 114, and the annular groove 1142 is arranged around the pressure relief hole 1113, and the edge of the pressure relief member 15 is arranged in the annular groove 1142 .
  • the annular groove 1142 is formed by recessing the end surface 1141 of the annular protrusion 114, the shape of the annular groove 1142 matches the edge profile of the pressure relief piece 15, and the annular groove 1142 is used to accommodate the pressure relief piece 15, so that the The pressure piece 15 covers the pressure relief hole 1113 from the first side 1111 of the bottom wall 111 .
  • the central axis of the annular groove 1142 and the central axis of the pressure relief hole 1113 can coincide, so that the pressure relief member 15 covers the pressure relief hole 1113 in the center; the central axis of the annular groove 1142 and the central axis of the pressure relief hole 1113 can also be staggered .
  • the depth of the annular groove 1142 can be equal to the thickness of the edge of the pressure relief member 15, so that the height of the annular protrusion 114 will not be additionally increased after the pressure relief member 15 is installed on the end face 1141 of the annular protrusion 114; the depth of the annular groove 1142 It can also be larger than the thickness of the edge of the pressure relief piece 15 , so as to accommodate the pressure relief piece 15 and also accommodate the welding bump when the pressure relief piece 15 is welded to the bottom wall 111 .
  • the pressure relief member 15 can be prevented from excessively occupying the internal space of the battery cell 10, and the energy density of the battery cell 10 can be improved, but also It is easy to locate when the pressure relief member 15 is installed on the annular protrusion 114 .
  • the end surface 1141 of the annular protrusion 114 is an inclined surface inclined relative to the thickness direction of the bottom wall 111 , and the edge of the pressure relief member 15 is connected to the end surface 1141 of the annular protrusion 114 .
  • the pressure relief member 15 can be a sheet structure of equal thickness, and the end face 1141 of the annular protrusion 114 is arranged parallel to the first surface 151;
  • the member 15 can also be a sheet structure of non-uniform thickness, and the end surface 1141 of the annular protrusion 114 is inclined to the first surface 151, so as to reasonably adapt to the thickness change of the pressure relief member 15, so that the gap between the first surface 151 and the second surface 1114 The angle of inclination meets the requirements.
  • the pressure relief hole 1113 has a smaller aperture, so that the aperture of the pressure relief hole 1113 can be reduced, and the impact of the pressure relief hole 1113 on the bottom wall 111 is reduced. influence of the intensity.
  • the battery cell 10 further includes a protective film 17 covering the pressure relief hole 1113 from the side of the bottom wall 111 facing away from the interior of the battery cell 10 .
  • the protection film 17 covers the pressure relief hole 1113 by the second side 1112 of the bottom wall 111 .
  • the protective film 17 can be a plastic film, or a silicone film or a waterproof paper film.
  • the protective film 17 can be pasted on the bottom wall 111 , or can be connected with the bottom wall 111 using a ring-shaped connector, so as to fix the protective film 17 to the bottom wall 111 .
  • the protective film 17 can cover the pressure relief hole 1113 in various implementation forms.
  • the surface of the second side 1112 of the bottom wall 111 corresponding to the pressure relief hole 1113 is recessed to form a sinking groove 1115, the protective film 17 is arranged in the sinking groove 1115, and the edge of the pressure relief hole 1113 is convex.
  • the protective film 17 covers the edge of the pressure relief hole 1113 and is accommodated inside the sinker 1115 .
  • the surface of the second side 1112 of the bottom wall 111 corresponding to the pressure relief hole 1113 may be a plane, and the protective film 17 protrudes from the second side 1112 of the bottom wall 111 .
  • Fig. 8 shows a schematic view of the structure of an end cap assembly of a battery cell in some embodiments of the present application (the first insulator is not shown);
  • Fig. 9 shows the structure of some embodiments of the present application Schematic diagram of the structure of the bottom wall of the battery cell.
  • the bottom wall 111 includes a first portion 1116 and a second portion 1117 , and the second portion 1117 is arranged around the first portion 1116 along the thickness of the bottom wall 111 direction (that is, the third direction Z), the first part 1116 protrudes from the second part 1117 toward the outside of the battery cell 10, and the position corresponding to the first part 1116 on the side of the bottom wall 111 facing the inside of the battery cell 10 is formed.
  • There is a concave portion 1118 and the pressure relief member 15 is disposed on the first portion 1116 .
  • the second side 1112 of the bottom wall 111 has a convex portion
  • the first side 1111 of the bottom wall 111 forms a concave portion 1118 corresponding to the convex portion
  • the second surface 1114 is the bottom surface of the concave portion 1118 .
  • the second surface 1114 is the lowest surface of the first side 1111 of the bottom wall 111
  • the annular protrusion 114 protrudes upward from the second surface 1114
  • the other end is provided with a pressure relief member 15, the first The surface 151 is located on the upper side of the second surface 1114 .
  • the electrolyte flows from the first surface 151 to the edge of the pressure relief member 15 and accumulates in the recess 1118 .
  • the pressure relief member 15 is disposed in the recess 1118 of the bottom wall 111 to prevent the internal space of the battery cell 10 from being occupied by the pressure relief member 15, so that there is more space inside the battery cell 10 to arrange the electrode assembly 12, The energy density of the battery cell 10 is increased.
  • the first surface 151 does not exceed the side of the second portion 1117 facing the inside of the battery cell 10 .
  • the first side 1111 of the bottom wall 111 further includes a third surface 1119, and the third surface 1119 is the surface on which the second portion 1117 is located on the first side 1111.
  • Surface 1119 is connected to sidewall 112 (shown in FIG. 3 ).
  • the first surface 151 does not protrude beyond the third surface 1119 .
  • the bottom wall 111 is located on the lower side of the top wall 113
  • the third surface 1119 is located on the upper side of the first surface 151 .
  • the maximum outer dimension of the assembly of the bottom wall 111 and the pressure relief member 15 will not exceed the maximum outer dimension of the pressure relief member 15, so that there is more space inside the battery cell 10 to arrange the electrode assembly 12, The energy density of the battery cell 10 is increased.
  • the top wall 113 and the side wall 112 are integrally formed, and the bottom wall 111 and the side wall 112 are separately provided.
  • the bottom wall 111 and the side wall 112 are integrally formed and configured as a shell with an opening.
  • the bottom wall 111 is assembled with the pressure relief member 15 and then connected to the side wall 112, which simplifies the connection between the pressure relief member 15 and the bottom.
  • the assembly process of the wall 111 reduces the manufacturing cost of the battery cell 10 .
  • the battery cell 10 further includes: an electrode terminal 13 disposed on the bottom wall 111 .
  • the electrode terminal 13 is disposed on the bottom wall 111 , and the electrode terminal 13 is used to lead out the electric energy of the battery cell 10 to the outside of the battery cell 10 .
  • Some embodiments of the present application provide a battery 100 , including the battery cells 10 provided by some embodiments of the present application.
  • the battery 100 of some embodiments of the present application also has better safety performance.
  • Some embodiments of the present application provide an electric device, including the battery 100 provided by some embodiments of the present application, and the battery 100 is used to provide electric energy.
  • the electric device in some embodiments of the present application also has better safety performance.
  • FIG. 10 is a schematic diagram of a method for manufacturing a battery cell according to some embodiments of the present application.
  • some embodiments of the present application propose a method for manufacturing a battery cell, including:
  • the housing 11 includes a top wall 113, a side wall 112 and a bottom wall 111, the top wall 113 and the bottom wall 111 are arranged oppositely, and the side wall 112 connects the top wall 113 and the bottom wall 111;
  • the pressure relief member 15 is configured to be activated to release the pressure inside the battery cell 10 when the internal pressure or temperature of the battery cell 10 reaches a threshold value, the pressure relief member 15 has a first surface 151 , the first surface 151 is configured to guide the electrolyte to the periphery of the pressure relief member 15;
  • FIG. 11 shows a schematic structural diagram of a battery cell manufacturing equipment according to some embodiments of the present application.
  • a battery cell manufacturing equipment 2000 including:
  • the first providing device 2100 is used to provide the casing 11, the casing 11 includes a top wall 113, a side wall 112 and a bottom wall 111, the top wall 113 and the bottom wall 111 are arranged oppositely, and the side wall 112 connects the top wall 113 and the bottom wall 111;
  • the second providing device 2200 is used to provide the pressure relief member 15, the pressure relief member 15 is configured to be activated to release the pressure inside the battery cell 10 when the internal pressure or temperature of the battery cell 10 reaches a threshold, the pressure relief member 15 has a first surface 151 configured to guide the electrolyte towards the periphery of the pressure relief member 15;
  • the assembly module 2300 is used for disposing the pressure relief member 15 on the bottom wall 111 so that the first surface 151 faces the interior of the battery cell 10 .
  • a battery cell 10 including a casing 11, an electrode assembly 12, an electrode terminal 13, a pressure relief member 15 and a protective film 17, and the casing 11 includes an end cap and
  • the casing, the end cover is a bottom wall 111
  • the casing includes a side wall 112 and a top wall 113
  • the casing has an opening
  • the bottom wall 111 covers the opening to seal the electrode assembly 12 inside the casing.
  • the first side of the bottom wall 111 is provided with an annular protrusion 114
  • the end surface 1141 of the annular protrusion 114 is provided with an annular groove 1142
  • the edge of the pressure relief member 15 is welded to the annular groove 1142 .
  • the pressure relief member 15 can be arranged obliquely, or can be in a shape protruding toward the inside of the battery cell 10 .
  • the surface of the pressure relief member 15 facing the inside of the battery cell 10 is the first surface 151, and under the action of gravity, the first surface 151 can guide the electrolyte to flow to the edge of the pressure relief member 15, Therefore, it will not accumulate on the surface of the pressure relief member 15 .
  • the pressure relief member 15 is obliquely welded to the bottom wall 111, or is designed to have a shape that protrudes upwards in the middle, which can prevent the pressure relief member 15 from being soaked in the electrolyte for a long time, so that it is not necessary to Increasing the thickness of the pressure relief member 15 and the thickness of the weak structure of the pressure relief member 15 can prolong the time required for the electrochemical corrosion to cause the leakage of the pressure relief member 15 , so that the safety performance and service life of the battery cell 10 are improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请涉及一种电池单体及其制造方法和设备、电池以及用电装置,属于电池制造技术领域。本申请提出一种电池单体,包括:外壳,所述外壳包括顶壁、侧壁和底壁,顶壁和底壁相对设置,侧壁连接顶壁和底壁;泄压件,设置于底壁,泄压件被配置为在电池单体的内部压力或温度达到阈值时致动以泄放电池单体内部的压力;其中,泄压件具有面向电池单体内部的第一表面,第一表面被配置为将电解液向泄压件的周边引导。该电池单体在倒置使用时具有较好的安全性能和较长的使用寿命。本申请还提出一种电池以及用电装置,包括该电池单体。本申请还提出一种电池单体的制造方法和设备。

Description

电池单体及其制造方法和设备、电池以及用电装置
相关申请的交叉引用
本申请要求享有于2021年11月30日提交的名称为“电池单体及其制造方法和设备、电池以及用电装置”的中国专利申请202111453190.9的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池制造技术领域,具体而言,涉及一种电池单体及其制造方法和设备、电池以及用电装置。
背景技术
随着新能源汽车行业的迅速崛起,动力电池的技术水平也在迅速提高,如何提高动力电池的安全性能是动力电池技术的主要研发趋势之一。
目前,将动力电池倒置放置使用能够提高动力电池的安全性能。而基于现有的动力电池的内部构造,如果直接将动力电池倒置使用,存在一定的安全隐患,使用寿命也会受到影响。
发明内容
为此,本申请提出一种电池单体及其制造方法和设备、电池以及用电装置,能够在倒置使用时具有较好的安全性能和较长的使用寿命。
本申请第一方面实施例提出一种电池单体,包括:外壳,所述外壳包括顶壁、侧壁和底壁,所述顶壁和所述底壁相对设置,所述侧壁连接所述顶壁和所述底壁;泄压件,设置于所述底壁,所述泄压件被配置为在所述电池单体的内部压力或温度达到阈值时致动以泄放所述电池单体内部的压力;其中,所述泄压件具有面向所述电池单体内部的第一表面,所述第一表面被配置为将电解液向所述泄压件的周边引导。
本申请实施例的电池单体中,泄压件具有面向电池单体内部的第一表面,当电池单体倒置使用时,泄压件的第一表面能够引导电解液向泄压件的周边扩散,并积存于电池单体的其他部位。由于电解液没有积存于泄压件的第一表面,不会腐蚀泄压件而导致电池单体提前漏液,从而提高了电池单体的安全性能和有效使用寿命。
根据本申请的一些实施例,所述第一表面为相对于所述底壁的厚度方向倾斜设置的斜面。
通过该种布置形式,在电池单体倒置使用时,底壁的厚度方向沿重力方向延伸,第一表面的一侧边缘高于另一侧边缘,能够引导电解液由第一表面的高侧边缘向低侧边缘流动,避免电解液积存于泄压件的第一表面。
根据本申请的一些实施例,所述第一表面为朝向所述电池单体内部凸出的曲面。
通过该种布置形式,在电池单体倒置使用时,底壁位于电池单体的底部,第一表面为向上凸出的曲面,能够引导电解液由第一表面的中部向周边流动,避免电解液积存于泄压件的第一表面。
根据本申请的一些实施例,所述底壁上设置有泄压孔,所述泄压件从所述底壁的面向所述电池单体内部的一侧覆盖所述泄压孔。
通过该种布置形式,泄压件设置于底壁的面向电池单体的内部的一侧,能够降低泄压件与外部的异物接触而导致破损的可能性。
根据本申请的一些实施例,所述底壁的面向所述电池单体内部的一侧形成有环形凸起,所述环形凸起环绕所述泄压孔设置,所述泄压件的边缘连接于所述环形凸起。
通过该种布置形式,当电池单体倒置使用时,环形凸起向上凸出于底壁,泄压件的边缘连 接于环形凸起且覆盖泄压孔,不仅能够实现第一表面位于底壁的上侧,避免电解液浸没至泄压件的第一表面,还能够实现将泄压件设置于底壁的面向电池单体的内部的一侧,提高电池单体的安全性能。
根据本申请的一些实施例,所述环形凸起的端面上设置有环形凹槽,所述环形凹槽围绕所述泄压孔设置,所述泄压件的边缘设置于所述环形凹槽内。
通过该种布置形式,不仅能够降低泄压件凸出于环形凸起的端面的程度,避免泄压件过度占用电池单体内部空间,提高电池单体的能量密度,还易于泄压件安装于环形凸起时进行定位。
根据本申请的一些实施例,所述环形凸起的端面为相对于所述底壁的厚度方向倾斜设置的斜面,所述泄压件的边缘连接于所述环形凸起的端面。
通过该种布置形式,在泄压件的相同致动面积的情况下,泄压孔具有更小的孔径,从而能够降低泄压孔的孔径,降低由于布置泄压孔对底壁的强度的影响。
根据本申请的一些实施例,所述电池单体还包括:保护膜,所述保护膜从所述底壁的背离所述电池单体内部的一侧覆盖所述泄压孔。
通过该种布置形式,能够从电池单体的外部防护异物进入泄压孔,从而避免外部的异物与泄压件接触以导致泄压件破损或划伤,还能够防止水分或者其他液体进入泄压孔以腐蚀泄压件。
根据本申请的一些实施例,所述底壁包括第一部分和第二部分,所述第二部分围绕所述第一部分设置,沿所述底壁的厚度方向,所述第一部分由所述第二部分朝向所述电池单体外部的方向凸出,所述底壁的面向所述电池单体内部的一侧的与所述第一部分对应的位置形成有凹部,所述泄压件设置于所述第一部分。
通过该种布置形式,能够利用底壁面向电池单体内部的一侧凹部的空间设置泄压件,避免泄压件挤占的电池单体的内部空间,从而在电池单体内部有更多的空间布置电极组件,提高了电池单体的能量密度。
根据本申请的一些实施例,沿所述底壁指向所述顶壁的方向,所述第一表面不超出所述第二部分的面向所述电池单体内部的一侧。
通过该种布置形式,底壁与泄压件的组装体的最大外尺寸不会超出泄压件的最大外尺寸,从而在电池单体的内部有更多的空间布置电极组件,提高了电池单体的能量密度。
根据本申请的一些实施例,所述顶壁和所述侧壁一体成型,所述底壁和所述侧壁分体设置。
通过该种布置形式,底壁和侧壁一体成型且构造成具有开口的壳体,底壁与泄压件组装为一体,再与侧壁连接,简化了泄压件与底壁的组装过程,降低了电池单体的制造成本。
根据本申请的一些实施例,所述电池单体还包括:电极端子,所述电极端子设置于所述底壁。
通过该种布置形式,电极端子设置于底壁,电极端子用于将电池单体的电能引出至电池单体的外部。
本申请第二方面实施例提出一种电池,包括本申请第一方面实施例提出的电池单体。
由于本申请第一方面实施例提出的电池单体的特性,本申请第二方面实施例的电池也具备较好的安全性能。
本申请第三方面实施例提出一种用电装置,包括本申请第二方面实施例提出的电池,所述电池用于提供电能。
由于本申请第一方面实施例提出的电池单体的特性,本申请第三方面实施例的用电装置也具备较好的安全性能。
本申请第四方面实施例提出一种电池单体的制造方法,包括:
提供外壳,所述外壳包括顶壁、侧壁和底壁,所述顶壁和所述底壁相对设置,所述侧壁连接所述顶壁和所述底壁;
提供泄压件,所述泄压件被配置为在所述电池单体的内部压力或温度达到阈值时致动以泄放所述电池单体内部的压力,所述泄压件具有第一表面,所述第一表面被配置为将电解液向所述泄压件的周边引导;
将所述泄压件设置于所述底壁,使所述第一表面面向所述电池单体内部设置。
本申请第五方面实施例提出一种电池单体的制造设备,包括:
第一提供装置,用于提供外壳,所述外壳包括顶壁、侧壁和底壁,所述顶壁和所述底壁相对设置,所述侧壁连接所述顶壁和所述底壁;
第二提供装置,用于提供泄压件,所述泄压件被配置为在所述电池单体的内部压力或温度达到阈值时致动以泄放所述电池单体内部的压力,所述泄压件具有第一表面,所述第一表面被配置为将电解液向所述泄压件的周边引导;
组装模块,用于将所述泄压件设置于所述底壁,使所述第一表面面向所述电池单体内部设置。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出的是本申请一实施例中的一种车辆的简易示意图;
图2示出的是图1中车辆的电池的结构示意图;
图3示出的是本申请一些实施例的电池单体的爆炸图;
图4示出的是本申请的一些实施例的电池单体10的一种形式的端盖组件的剖面图(未示出第一绝缘件);
图5示出的是图4中A处的局部放大图;
图6示出的是本申请的一些实施例的电池单体10的另一种形式的端盖组件的剖面图(未示出第一绝缘件);
图7示出的是图6中B处的局部放大图;
图8示出的是本申请的一些实施例的电池单体的端盖组件的一种视角的结构示意图(未示出第一绝缘件);
图9示出的是本申请的一些实施例的电池单体的底壁的结构示意图;
图10示出的是本申请的一些实施例的电池单体的制造方法的示意图;
图11示出的是本申请的一些实施例的一种电池单体的制造设备的结构示意图;
上述附图未按比例提供。
图标:1000-车辆;100-电池;10-电池单体;11-外壳;111-底壁;1111-第一侧;1112-第二侧;1113-泄压孔;1114-第二表面;1115-沉槽;1116-第一部分;1117-第二部分;1118-凹部;1119-第三表面;112-侧壁;113-顶壁;114-环形凸起;1141-端面;1142-环形凹槽;12-电极组件;121-主体;122-第一极耳;123-第二极耳;13-电极端子;14-集流构件;15-泄压件;151-第一表面; 1511-第一边缘;1512-第二边缘;1513-周向边缘;1514-曲面中心;16-第一绝缘件;17-保护膜;20-箱体;21-第一箱体;22-第二箱体;200-控制器;300-马达;2000-电池单体的制造设备;2100-第一提供装置;2200-第二提供装置;2300-组装模块。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中需要说明的是除非另有明确的规定和限定术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:圆柱电池单体、方形电池单体和软包电池单体。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体,箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体还包括泄压件,泄压件在电池单体内部压力达到阈值时致动。阈值设计根据设计需求不同而不同。阈值可能取决于电池单体的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压件可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到阈值时,泄压件执行动作或者泄压件中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指泄压件产生动作或被激活至一定的形态,从而使得电池单体的内部压力及温度得以被泄放。泄压件产生的动作可以包括但不限于:泄压件中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压件在致动时,电池单体的内部的高温高压物质作为排放物会从开启的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压及泄温,从而避免潜在的更严重的事故发生。
电池单体还包括集流构件,集流构件用于将电池单体的极耳和电极端子电连接,以将电能从电极组件输送至电极端子,经电极端子输送至电池单体的外部;多个电池单体之间通过汇流部件实现电连接,以实现多个电池单体的串联、并联或者混联。
相关技术中,泄压部在电池单体内部压力达到阈值时致动以释放电池单体内部的温度或者压力。由于高温高压的气体从泄压部处向外喷射,很容易进入乘客舱,烫伤乘客以及引起火灾。为了提高电池单体的安全性能,目前存在一种倒置使用电池单体,使泄压部位于电池单体的底部,当泄压部致动时,高温高压的气体朝向下侧喷射,不会对乘客舱造成伤害。
发明人经研究发现,电池单体在使用过程中,电池单体的内部可能会有游离的电解液,电解液积存于电池单体的内部,当电极组件与外壳之间短接时,会对外壳以及与外壳导电连接且积存有电解液部位造成电化学腐蚀,导致这些部位漏液。当电池单体倒置使用时,泄压件位于电池单体的底部,且泄压件的厚度小于外壳的厚度,在存在电化学腐蚀的情况下可能会最先渗漏,导致电池单体提前失效。
基于上述思路,本申请提出一种新的技术方案,在电池倒置使用过程中引导电解液向泄压件的周边流动,避免电解液积存于泄压件,避免泄压件由于电化学腐蚀发生渗漏,进而提高了电池单体的安全性能,保障了电池单体的使用寿命。
可以理解的是,本申请实施例描述的电池单体可以直接对用电装置供电,也可以通过并联或者串联的方式形成电池模块或者电池,以电池100模块或者电池的形式对各种用电装置供电。
可以理解的是,本申请实施例中描述的使用电池单体、电池模块或者电池所适用的用电装置可以为多种形式,例如,手机、便携式设备、笔记本电脑、电瓶车、电动汽车、轮船、航天器、电动玩具和电动工具等等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等等,电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨。
本申请的实施例描述的电池单体、电池模块或者电池不仅仅局限适用于上述所描述的用电装置,还可以适用于所有使用电池单体、电池模块以及电池的用电装置,但为描述简洁,下述实施例均以电动汽车为例进行说明。
图1示出的是本申请一实施例中的一种车辆的简易示意图;图2示出的是图1中车辆的电池的结构示意图。
如图1所示,车辆1000的内部设置有电池100、控制器200和马达300,例如,在车辆1000的底部或车头或车尾可以设置电池100。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。
在本申请的一些实施例中,电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。控制器200用来控制电池100为马达300的供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在其他实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分地替代燃油或天然气为车辆1000提供驱动动力。
其中,本申请的实施例所提到的电池100是指包括一个或多个电池单体10以提供更高的电压和容量的单一的物理模块。其中,多个电池单体10之间可以串联、并联或者混联直接组成电池100,混联指的是,多个电池单体10中既有串联又有并联。多个电池单体10也可以先串联、并联或者混联组成电池模块,多个电池模块再串联、并联或者混联组成电池100。
如图2所示,电池100包括多个电池单体10和箱体20,多个电池单体10放置于箱体20内。箱体20包括第一箱体21和第二箱体22,第一箱体21和第二箱体22相互盖合后形成电池腔,多个电池模块放置于电池100腔内。其中,第一箱体21和第二箱体22的形状可以根据多个电池模块组合的形状而定,第一箱体21和第二箱体22可以均具有一个开口。例如,第一箱体21和第二箱体22均可以为中空长方体且各自只有一个面为开口面,第一箱体21和第二箱体22的开口相对设置,并且第一箱体21和第二箱体22相互扣合形成具有封闭腔室的箱体20。多个电池单体10相互并联或串联或混联组合后置于第一箱体21和第二箱体22扣合后形成的箱体20内。
图3示出的是本申请一些实施例的电池单体的爆炸图。
如图3所示,电池单体10包括外壳11、电极组件12、电极端子13、集流构件14、泄压件15(请参照图5)和第一绝缘件16。
外壳11包括壳体和端盖,壳体设有开口,端盖覆盖开口以将电极组件12封闭于壳体的内部。具体而言,外壳11包括底壁111、侧壁112和顶壁113,侧壁112和顶壁113相对设置,侧壁112围设在底壁111的周围,侧壁112连接顶壁113和底壁111,电极组件12设置于外壳11的内部,底壁111和顶壁113中的至少一者设有电极引出孔,电极端子13绝缘安装于电极引出孔。
在本申请的一些实施例中,顶壁113和侧壁112一体成型并形成壳体,壳体的一端具有开口,底壁111与侧壁112分体设置,底壁111构造成端盖,底壁111覆盖壳体的开口以将电极组件12封闭于壳体的内部。底壁111设有两个电极引出孔,电极端子13的数量为两个,两个电极端子13均设置于底壁111,以将电能引出电池单体10的外部。泄压件15设置于底壁111,泄压件15被配置为在电池单体10的内部压力或温度达到阈值时致动以泄放电池单体10内部的压力,底壁111、底壁111上设置的电极端子13和泄压件15等部件以及第一绝缘件16共同构造成端盖组件。
在其他实施例中,也可以是底壁111和侧壁112一体成型并形成壳体,壳体的一端具有开口,顶壁113与侧壁112分体设置,顶壁113构造成端盖,两个电极端子13均设置于顶壁113,顶壁113、顶壁113上设置的电极端子13等部件共同构造成端盖组件。
壳体可以为六面体形,也可以为圆柱形或者椭圆柱形。壳体可由金属材料制成,诸如铝、铝合金或者镀镍钢。端盖为板状结构,端盖的尺寸和形状与壳体的开口匹配,端盖固定于壳体的开口,从而将电极组件12和电解液封闭于壳体的容纳腔。端盖采用金属材料制成,例如铝、钢等材料。
在本申请的一些实施例中,壳体可以为六面体,端盖为正方形或者长方形板状结构。
具体而言,壳体的长度方向沿第一方向X延伸,宽度方向沿第二方形Y延伸,高度方向沿第三方向Z延伸。端盖的形状与壳体的开口匹配,端盖的长度方向沿第一方向X延伸,宽度方向沿第二方向Y延伸,厚度方向沿第三方向Z延伸。
在其他实施例中,壳体也可以为圆柱体或者椭圆柱体,端盖为圆板或者椭圆板状结构。
电极组件12设置于外壳11内,电极组件12包括主体121、第一极耳122和第二极耳123。主体121包括正极极片、负极极片和隔离膜,隔离膜位于正极极片与负极极片之间,用于隔开正极极片与负极极片。第一极耳122和第二极耳123的极性相反,电极端子13设置有两个,两个电极端子13的极性相反,第一极耳122与同一极性的电极端子13通过一个集流构件14连接,第二极耳123与同一极性的电极端子13通过另一个电连接。第一极耳122和第二极耳123中,第一极耳122为正极极耳,第二极耳123为负极极耳,与第一极耳122对应的集流构件14的材料为铝,与第二极耳123对应的集流构件14的材料为铜。
在本申请的一些实施例中,第一绝缘件16设置于底壁111与电极组件12之间,用于绝缘隔离底壁111与电极组件12。例如,第一绝缘件16为下塑胶,第一绝缘件16与底壁111连接,并绝缘隔离集流构件14与底壁111,且第一绝缘件16具有过孔,以使底壁111的泄压件15与电极组件12气体连通,在电池单体10内部发生热失控时,电池单体10内部的高温高压气体能够顺利致动泄压件15。在其他实施例中,第一绝缘件16也可以设置于顶壁113与电极组件12之间,用于绝缘隔离顶壁113与电极组件12。
图4示出的是本申请的一些实施例的电池单体10的一种形式的端盖组件的剖面图(未示出第一绝缘件);图5示出的是图4中A处的局部放大图;图6示出的是本申请的一些实施例的电池单体10的另一种形式的端盖组件的剖面图(未示出第一绝缘件);图7示出的是图6中B处的局部放大图。
如图3所示,本申请的一些实施例提出一种电池单体10,包括外壳11和泄压件15。外壳11包括顶壁113、侧壁112和底壁111,顶壁113和底壁111相对设置,侧壁112连接顶壁113和底壁111。泄压件15设置于底壁111,泄压件15被配置为在电池单体10的内部压力或温度达到阈值时致动以泄放电池单体10内部的压力。如图4、图5、图6和图7所示,泄压件15具有面向电池单体10内部的第一表面151,第一表面151被配置为将电解液向泄压件15的周边引导。
可以理解的是,底壁111位于电池单体10的底部,泄压件15设置于电池单体10的底部,顶壁113位于电池单体10的顶部,底壁111与顶壁113沿着第三方向Z相对设置,电极组件12设置于底壁111与顶壁113之间。当电池单体10倒置使用时,第三方向Z沿重力方向延伸,泄压件15的第一表面151朝上设置,在重力的作用下,电解液向泄压件15的周边流动,从而不会积存于泄压件15上。
具体而言,沿着底壁111的厚度方向(即第三方向Z),底壁111的面向电池单体10内部的一侧具有第二表面1114,沿着XY方向,泄压件15的投影轮廓落入第二表面1114的投影轮廓。当电池单体10倒置使用时,泄压件15的第一表面151位于底壁111的第二表面1114的上侧,第一表面151引导电解液向泄压件15的周边引导,从泄压件15的周边流动至底壁111的第二表面1114。
可以理解的是,泄压件15为金属材质的薄片结构,泄压件15的厚度小于外壳11的厚度,在电池单体10的内部压力或者温度达到阈值时先于外壳11破裂,以泄放电池单体10内部的压力。泄压件15可以为等厚度的薄片结构,泄压件15的厚度与预设的致动压力或者温度对应;泄压件15上也可以具有薄弱结构,在电池单体10内部的压力或者温度达到阈值时,薄弱结构先于泄压件15的其余位置破裂,以释放电池单体10内部的压力。
泄压件15可以是与底壁111一体成型的部件,也可以在底壁111上设置泄压孔1113,泄压件15与底壁111分体设置且以焊接的形式连接,泄压件15覆盖泄压孔1113。泄压件15可以设置于底壁111的中部,并位于两个电极端子13之间;泄压件15也可以设置于底壁111的其他位置。泄压件15的形状可以为圆形、椭圆形或者方形的薄片结构,也可以为其他形状的薄片结构。
泄压件15的第一表面151实现引导电解液向泄压件15的周边流动的实施方式有多种。例如,第一表面151可以大致为平面,引导电解液从泄压件15的一侧向另一侧流动;例如,第一表面151可以为曲面,引导电解液从泄压件15的中部向周边流动。
本申请实施例的电池单体10中,泄压件15具有面向电池单体10内部的第一表面151,当电池单体10倒置使用时,泄压件15的第一表面151能够引导电解液向泄压件15的周边扩散,并积存于电池单体10的其他部位。由于电解液没有积存于泄压件15的第一表面151,不会腐蚀泄压件15而导致电池单体10提前漏液,从而提高了电池单体10的安全性能和有效使用寿命。
在本申请的一些实施例中,第一表面151为相对于底壁111的厚度方向倾斜设置的斜面。
具体而言,底壁111的厚度方向沿第三方向Z延伸,第一表面151为平面,第一表面151的法向与第三方向倾斜设置。
第一表面151可以沿着底壁111的长度方向(即第一方向X)倾斜设置,也可以沿着底壁111的宽度方向(即第二方向Y)或者其他方向倾斜设置。
例如,如图4和图5所示,在本申请的一些实施例中,沿着第一方向X,第一表面151的相对设置的两个边缘分别为第一边缘1511和第二边缘1512,第一表面151与第二表面1114之间的间距由第一边缘1511朝向第二边缘1512的方向逐渐变小。在电池单体10倒置使用时,第一边缘1511位于第二边缘1512的上侧,电解液在重力作用下由第一表面151的第一边缘1511向第二边缘1512流动。在其他实施例中,第一表面151与第二表面1114之间的间距也可以沿着第二方向Y 由一侧边缘向另一侧边缘逐渐变小,电解液在重力作用下沿着第二方向Y由第一表面151的一侧边缘向另一侧边缘流动。
在上述方案中,在电池单体10倒置使用时,底壁111的厚度方向沿重力方向延伸,第一表面151的第一边缘1511高于第二边缘1512,能够引导电解液由第一表面151的高侧边缘向低侧边缘流动,避免电解液积存于泄压件15的第一表面151。
在本申请的一些实施例中,第一表面151为朝向电池单体10内部凸出的曲面。
具体而言,如图6和图7所示,底壁111的厚度方向沿第三方向Z延伸,第一表面151包括曲面中心1514和周向边缘1513,周向边缘1513围绕曲面中心1514设置。当电池单体10倒置使用时,曲面中心1514高于周向边缘1513,电解液在重力作用下由曲面中心1514向周向边缘1513流动。
曲面中心1514可以与绝缘件的几何中心沿着第三方向Z对齐设置,以引导电解液周向均匀地向周向边缘1513流动;曲面中心1514也可以与第一表面151的几何中心沿着第三方向Z错开设置,以避让电池单体10内部的其他部件,合理利用电池单体10内部的空间。
在上述方案中,在电池单体10倒置使用时,底壁111位于电池单体10的底部,第一表面151为向上凸出的曲面,能够引导电解液由第一表面151的曲面中心1514向周向边缘1513流动,避免电解液积存于泄压件15的第一表面151。
如图4和图5所示,在本申请的一些实施例中,底壁111上设置有泄压孔1113,泄压件15从底壁111的面向电池单体10内部的一侧覆盖泄压孔1113。
沿着底壁111的厚度方向(即第三方向Z),底壁111的相对的两侧分别为第一侧1111和第二侧1112,其中底壁111的第一侧1111为面向电池单体10内部的一侧,第二侧1112为背离电池单体10内部的一侧。
在XY平面上,泄压孔1113的投影轮廓位于底壁111的第二表面1114的投影轮廓的内部,泄压件15的边缘与底壁111的第二表面1114直接或者间接连接,以从底壁111的第一侧1111覆盖泄压孔1113。
泄压件15的边缘可以直接与底壁111的第二表面1114连接,泄压件15的边缘与底壁111的第二表面1114平齐设置;底壁111也可以具有凸台结构(例如下述的环形凸台),泄压件15设置于凸台结构的端部,以使泄压件15的边缘相对于第二表面1114更靠近电池单体10的内部,以使电池单体10倒置使用时第一表面151的边缘与第二表面1114之间具有高度差,避免电解液积存于第一表面151的边缘。
在上述方案中,泄压件15设置于底壁111的面向电池单体10的内部的一侧,能够降低泄压件15与外部的异物接触而导致破损的可能性。
如图5所示,在本申请的一些实施例中,底壁111的面向电池单体10内部的一侧形成有环形凸起114,环形凸起114环绕泄压孔1113设置,泄压件15的边缘连接于环形凸起114。
具体而言,环形凸起114设置于底壁111的第一侧1111,沿着环形凸起114的轴线方向,环形凸起114的一端与底壁111的第二表面1114连接,另一端具有端面1141,泄压孔1113沿着环形凸起114的轴线方向贯穿环形凸起114和底壁111。
泄压孔1113的中心轴线与环形凸起114的中心轴线可以重合设置,泄压孔1113的中心轴线与环形凸起114的中心轴线也可以平行并排设置,或者倾斜设置。环形凸起114的中心轴线可以与底壁111的厚度方向(即第三方向Z)平行,也可以与底壁111的厚度方向倾斜设置。环形凸起114与底壁111可以为一体成型的结构,环形凸起114与底壁111也可以分体设置,以焊接或者粘接的形式组装为一体。环形凸起114可以为圆柱形或者椭圆柱形的凸起,也可以为方柱形的凸起或者其他形状的凸起。
基于“第一表面151为平面”的实施形式,环形凸起114的端面1141与第二表面1114可以平行设置,泄压件15的边缘连接于环形凸起114的端面1141,通过控制泄压件15的厚度变化 来实现第一表面151与第二表面1114的间距变化,以引导电解液向泄压件15的周边流动。环形凸起114的端面1141也可以与第二表面1114倾斜设置,通过端面1141与第二表面1114的倾斜角度来实现第一表面151与第二表面1114倾斜设置。
在上述方案中,当电池单体10倒置使用时,环形凸起114向上凸出于底壁111,泄压件15的边缘连接于环形凸起114且覆盖泄压孔1113,不仅能够实现第一表面151位于底壁111的上侧,避免电解液浸没至泄压件15的第一表面151,还能够实现将泄压件15设置于底壁111的第一侧1111,提高电池单体10的安全性能。
如图5所示,在本申请的一些实施例中,环形凸起114的端面1141上设置有环形凹槽1142,所述环形凹槽1142围绕泄压孔1113设置,泄压件15的边缘设置于环形凹槽1142内。
具体而言,环形凹槽1142由环形凸起114的端面1141凹陷形成,环形凹槽1142的形状与泄压件15的边缘轮廓匹配,环形凹槽1142用于容纳泄压件15,以使泄压件15从底壁111的第一侧1111覆盖泄压孔1113。
环形凹槽1142的中心轴线与泄压孔1113的中心轴线可以重合,以使泄压件15居中覆盖泄压孔1113;环形凹槽1142的中心轴线与泄压孔1113的中心轴线也可以错开设置。环形凹槽1142的深度可以等于泄压件15的边缘的厚度,以使泄压件15安装于环形凸起114的端面1141以后不会额外增加环形凸起114的高度;环形凹槽1142的深度也可以大于泄压件15的边缘的厚度,在容纳泄压件15的同时也容纳泄压件15与底壁111焊接时的焊印凸起。
在上述方案中,不仅能够降低泄压件15凸出于环形凸起114的端面1141的程度,避免泄压件15过度占用电池单体10的内部空间,提高电池单体10的能量密度,还易于泄压件15安装于环形凸起114时进行定位。
在本申请的一些实施例中,环形凸起114的端面1141为相对于底壁111的厚度方向倾斜设置的斜面,泄压件15的边缘连接于环形凸起114的端面1141。
如图5所示,基于前述的“第一表面151为平面”的实施方式,泄压件15可以为等厚度的薄片结构,环形凸起114的端面1141与第一表面151平行设置;泄压件15也可以为非等厚度的薄片结构,环形凸起114的端面1141与第一表面151倾斜设置,以合理适应泄压件15的厚度变化,使第一表面151与第二表面1114之间的倾斜角度符合要求。
在上述方案中,在泄压件15的相同致动面积的情况下,泄压孔1113具有更小的孔径,从而能够降低泄压孔1113的孔径,降低由于布置泄压孔1113对底壁111的强度的影响。
如图5所示,在本申请的一些实施例中,电池单体10还包括保护膜17,保护膜17从底壁111的背离电池单体10内部的一侧覆盖泄压孔1113。
具体而言,保护膜17由底壁111的第二侧1112覆盖泄压孔1113。保护膜17可以为塑料膜,也可以为硅胶膜或者防水纸膜。保护膜17可以粘贴于底壁111,也可以使用环状的连接件与底壁111连接,以将保护膜17固定于底壁111。
保护膜17可以以多种实施形式覆盖泄压孔1113。在本申请的一些实施例中,底壁111的第二侧1112的与泄压孔1113对应的表面凹陷形成有沉槽1115,保护膜17设置于沉槽1115内,泄压孔1113的边缘凸出于沉槽1115的底面,保护膜17覆盖泄压孔1113的边缘,且容纳于沉槽1115内部。在其他实施例中,底壁111的第二侧1112的与泄压孔1113对应的表面可以为平面,保护膜17凸出于底壁111的第二侧1112。
在上述方案中,能够从电池单体10的外部防护异物进入泄压孔1113,从而避免外部的异物与泄压件15接触以导致泄压件15破损或划伤,还能够防止水分或者其他液体进入泄压孔1113以腐蚀泄压件15。
图8示出的是本申请的一些实施例的电池单体的端盖组件的一种视角的结构示意图(未示出第一绝缘件);图9示出的是本申请的一些实施例的电池单体的底壁的结构示意图。
如图7、图8和图9所示,在本申请的一些实施例中,底壁111包括第一部分1116和第二 部分1117,第二部分1117围绕第一部分1116设置,沿底壁111的厚度方向(即第三方向Z),第一部分1116由第二部分1117朝向电池单体10外部的方向凸出,底壁111的面向电池单体10内部的一侧的与第一部分1116对应的位置形成有凹部1118,泄压件15设置于第一部分1116。
具体而言,底壁111的第二侧1112具有凸部,底壁111的第一侧1111的与凸部对应的位置形成凹部1118,第二表面1114为凹部1118的底面。当电池单体10倒置使用时,第二表面1114为底壁111的第一侧1111的最低表面,环形凸起114由第二表面1114向上凸出,另一端设置有泄压件15,第一表面151位于第二表面1114的上侧。当电池单体10内部具有游离的电解液时,电解液由第一表面151流动至泄压件15的边缘,并积存于凹部1118。
在上述方案中,泄压件15设置于底壁111的凹部1118,避免泄压件15挤占的电池单体10的内部空间,从而在电池单体10内部有更多的空间布置电极组件12,提高了电池单体10的能量密度。
在本申请的一些实施例中,沿底壁111指向顶壁113的方向,第一表面151不超出第二部分1117的面向电池单体10内部的一侧。
如图6、图7和图9所示,具体而言,底壁111的第一侧1111还包括第三表面1119,第三表面1119为第二部分1117位于第一侧1111的表面,第三表面1119与侧壁112(如图3所示)连接。沿着底壁111指向顶壁113的方向,第一表面151不超出第三表面1119。当电池单体10倒置使用时,底壁111位于顶壁113的下侧,第三表面1119位于第一表面151的上侧。
在上述方案中,底壁111与泄压件15的组装体的最大外尺寸不会超出泄压件15的最大外尺寸,从而在电池单体10的内部有更多的空间布置电极组件12,提高了电池单体10的能量密度。
在本申请的一些实施例中,顶壁113和侧壁112一体成型,底壁111和侧壁112分体设置。
在上述方案中,底壁111和侧壁112一体成型且构造成具有开口的壳体,底壁111与泄压件15组装为一体,再与侧壁112连接,简化了泄压件15与底壁111的组装过程,降低了电池单体10的制造成本。
在本申请的一些实施例中,电池单体10还包括:电极端子13,电极端子13设置于底壁111。
在上述方案中,电极端子13设置于底壁111,电极端子13用于将电池单体10的电能引出至电池单体10的外部。
本申请的一些实施例提出一种电池100,包括本申请的一些实施例提出的电池单体10。
由于本申请的一些实施例的电池单体10的特性,本申请的一些实施例的电池100也具备较好的安全性能。
本申请的一些实施例提出一种用电装置,包括本申请的一些实施例提出的电池100,电池100用于提供电能。
由于本申请的一些实施例提出的电池单体10的特性,本申请的一些实施例的用电装置也具备较好的安全性能。
图10示出的是本申请的一些实施例的一种电池单体的制造方法的示意图。
如图10所示,本申请的一些实施例提出一种电池单体的制造方法,包括:
S100:提供外壳11,外壳11包括顶壁113、侧壁112和底壁111,顶壁113和底壁111相对设置,侧壁112连接顶壁113和底壁111;
S200:提供泄压件15,泄压件15被配置为在电池单体10的内部压力或温度达到阈值时致动以泄放电池单体10内部的压力,泄压件15具有第一表面151,第一表面151被配置为将电解液向泄压件15的周边引导;
S300:将泄压件15设置于底壁111,使第一表面151面向电池单体10内部设置。
图11示出的是本申请的一些实施例的一种电池单体的制造设备的结构示意图。
如图11所示,本申请的一些实施例提出一种电池单体的制造设备2000,包括:
第一提供装置2100,用于提供外壳11,外壳11包括顶壁113、侧壁112和底壁111,顶壁113和底壁111相对设置,侧壁112连接顶壁113和底壁111;
第二提供装置2200,用于提供泄压件15,泄压件15被配置为在电池单体10的内部压力或温度达到阈值时致动以泄放电池单体10内部的压力,泄压件15具有第一表面151,第一表面151被配置为将电解液向泄压件15的周边引导;
组装模块2300,用于将泄压件15设置于底壁111,使第一表面151面向电池单体10内部设置。
如图1至图10所示,本申请的一些实施例提出一种电池单体10,包括外壳11、电极组件12、电极端子13、泄压件15和保护膜17,外壳11包括端盖和壳体,端盖为底壁111,壳体包括侧壁112和顶壁113,壳体具有开口,底壁111覆盖开口,以将电极组件12封闭于壳体的内部。其中,底壁111的第一侧设有环形凸起114,环形凸起114的端面1141设有环形凹槽1142,泄压件15的边缘焊接于环形凹槽1142。泄压件15可以倾斜设置,也可以为向电池单体10内部凸出的形状。在电池单体10倒置使用时,泄压件15的面向电池单体10内部的表面为第一表面151,在重力作用下,第一表面151可以引导电解液向泄压件15的边缘流动,从而不会积存于泄压件15的表面。
本申请实施例的电池单体10中,泄压件15倾斜焊接于底壁111,或者设计为中部向上凸出的形状,均能够避免泄压件15长时间浸泡在电解液中,从而不必可以增加泄压件15的厚度以及泄压件15的薄弱结构的厚度即可以延长电化学腐蚀导致泄压件15漏液所需要的时间,使电池单体10的安全性能和使用寿命均得到提高。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种电池单体,其中,包括:
    外壳,所述外壳包括顶壁、侧壁和底壁,所述顶壁和所述底壁相对设置,所述侧壁连接所述顶壁和所述底壁;
    泄压件,设置于所述底壁,所述泄压件被配置为在所述电池单体的内部压力或温度达到阈值时致动以泄放所述电池单体内部的压力;
    其中,所述泄压件具有面向所述电池单体内部的第一表面,所述第一表面被配置为将电解液向所述泄压件的周边引导。
  2. 根据权利要求1所述的电池单体,其中,所述第一表面为相对于所述底壁的厚度方向倾斜设置的斜面。
  3. 根据权利要求1所述的电池单体,其中,所述第一表面为朝向所述电池单体内部凸出的曲面。
  4. 根据权利要求1-3任一项所述的电池单体,其中,所述底壁上设置有泄压孔,所述泄压件从所述底壁的面向所述电池单体内部的一侧覆盖所述泄压孔。
  5. 根据权利要求4所述的电池单体,其中,所述底壁的面向所述电池单体内部的一侧形成有环形凸起,所述环形凸起环绕所述泄压孔设置,所述泄压件的边缘连接于所述环形凸起。
  6. 根据权利要求5所述的电池单体,其中,所述环形凸起的端面上设置有环形凹槽,所述环形凹槽围绕所述泄压孔设置,所述泄压件的边缘设置于所述环形凹槽内。
  7. 根据权利要求5所述的电池单体,其中,所述环形凸起的端面为相对于所述底壁的厚度方向倾斜设置的斜面,所述泄压件的边缘连接于所述环形凸起的端面。
  8. 根据权利要求4-7任一项所述的电池单体,其中,所述电池单体还包括:
    保护膜,所述保护膜从所述底壁的背离所述电池单体内部的一侧覆盖所述泄压孔。
  9. 根据权利要求1-8任一项所述的电池单体,其中,所述底壁包括第一部分和第二部分,所述第二部分围绕所述第一部分设置,沿所述底壁的厚度方向,所述第一部分由所述第二部分朝向所述电池单体外部的方向凸出,所述底壁的面向所述电池单体内部的一侧的与所述第一部分对应的位置形成有凹部,所述泄压件设置于所述第一部分。
  10. 根据权利要求9所述的电池单体,其中,沿所述底壁指向所述顶壁的方向,所述第一表面不超出所述第二部分的面向所述电池单体内部的一侧。
  11. 根据权利要求1-8任一项所述的电池单体,其中,所述顶壁和所述侧壁一体成型,所述底壁和所述侧壁分体设置。
  12. 根据权利要求1-8任一项所述的电池单体,其中,所述电池单体还包括:
    电极端子,所述电极端子设置于所述底壁。
  13. 一种电池,其中,包括如权利要求1-12任一项所述的电池单体。
  14. 一种用电装置,其中,包括如权利要求13所述的电池,所述电池用于提供电能。
  15. 一种电池单体的制造方法,其中,包括:
    提供外壳,所述外壳包括顶壁、侧壁和底壁,所述顶壁和所述底壁相对设置,所述侧壁连接所述顶壁和所述底壁;
    提供泄压件,所述泄压件被配置为在所述电池单体的内部压力或温度达到阈值时致动以泄放所述电池单体内部的压力,所述泄压件具有第一表面,所述第一表面被配置为将电解液向所述泄压件的周边引导;
    将所述泄压件设置于所述底壁,使所述第一表面面向所述电池单体内部设置。
  16. 一种电池单体的制造设备,其中,包括:
    第一提供装置,用于提供外壳,所述外壳包括顶壁、侧壁和底壁,所述顶壁和所述底壁相对设置,所述侧壁连接所述顶壁和所述底壁;
    第二提供装置,用于提供泄压件,所述泄压件被配置为在所述电池单体的内部压力或温度达到阈值时致动以泄放所述电池单体内部的压力,所述泄压件具有第一表面,所述第一表面被配置为将电解液向所述泄压件的周边引导;
    组装模块,用于将所述泄压件设置于所述底壁,使所述第一表面面向所述电池单体内部设置。
PCT/CN2022/070810 2021-11-30 2022-01-07 电池单体及其制造方法和设备、电池以及用电装置 WO2023097871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111453190.9A CN116207436A (zh) 2021-11-30 2021-11-30 电池单体及其制造方法和设备、电池以及用电装置
CN202111453190.9 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023097871A1 true WO2023097871A1 (zh) 2023-06-08

Family

ID=86506528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070810 WO2023097871A1 (zh) 2021-11-30 2022-01-07 电池单体及其制造方法和设备、电池以及用电装置

Country Status (2)

Country Link
CN (1) CN116207436A (zh)
WO (1) WO2023097871A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116780034A (zh) * 2023-08-09 2023-09-19 中科开创(广州)智能科技发展有限公司 全浸没非循环流动液冷式电池储能热管理系统
CN117352947A (zh) * 2023-12-04 2024-01-05 宁德时代新能源科技股份有限公司 一种电池及用电装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056507A (ja) * 2008-07-29 2010-03-11 Nok Corp 圧力開放弁
CN203536491U (zh) * 2013-09-26 2014-04-09 王文林 动力电池安全阀
CN212991189U (zh) * 2020-07-10 2021-04-16 宁德时代新能源科技股份有限公司 电池盒、电池单体、电池和用电设备
CN213546446U (zh) * 2020-07-10 2021-06-25 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备
CN213583979U (zh) * 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 泄压机构、电池盒、电池单体、电池和用电设备
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1494177A (zh) * 2002-10-31 2004-05-05 台达电子工业股份有限公司 可补充电解液的可充式电池及其安全阀
JP4702640B2 (ja) * 2008-04-18 2011-06-15 トヨタ自動車株式会社 電池
JP5243184B2 (ja) * 2008-10-29 2013-07-24 ニチコン株式会社 電解コンデンサ
US9287539B2 (en) * 2010-10-13 2016-03-15 Soode Nagano Co., Ltd. Manufacturing method for battery case lid including explosion-proof valve
KR101078351B1 (ko) * 2011-03-09 2011-10-31 (주)열린기술 안전밸브를 구비하는 이차전지 및 그 제조방법
JP5656745B2 (ja) * 2011-05-31 2015-01-21 日立オートモティブシステムズ株式会社 角形蓄電池
JP6327069B2 (ja) * 2014-09-01 2018-05-23 株式会社豊田自動織機 蓄電装置
JP6697685B2 (ja) * 2017-02-06 2020-05-27 トヨタ自動車株式会社 密閉型電池および組電池
US20200028134A1 (en) * 2018-07-18 2020-01-23 Sf Motors, Inc. Battery cell for an electric vehicle battery pack
CN113113707A (zh) * 2018-12-29 2021-07-13 宁德时代新能源科技股份有限公司 电池包
CN210668111U (zh) * 2019-11-20 2020-06-02 常州华威电子有限公司 一种含导流支架结构的阻燃型铝电解电容器
CN112713345B (zh) * 2021-03-26 2021-07-16 江苏时代新能源科技有限公司 电池单体、电池、用电装置、制造方法及制造设备
CN214898799U (zh) * 2021-06-30 2021-11-26 宁德时代新能源科技股份有限公司 端盖组件、电池及用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010056507A (ja) * 2008-07-29 2010-03-11 Nok Corp 圧力開放弁
CN203536491U (zh) * 2013-09-26 2014-04-09 王文林 动力电池安全阀
CN212991189U (zh) * 2020-07-10 2021-04-16 宁德时代新能源科技股份有限公司 电池盒、电池单体、电池和用电设备
CN213546446U (zh) * 2020-07-10 2021-06-25 宁德时代新能源科技股份有限公司 电池单体、电池和用电设备
CN213583979U (zh) * 2020-07-10 2021-06-29 宁德时代新能源科技股份有限公司 泄压机构、电池盒、电池单体、电池和用电设备
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116780034A (zh) * 2023-08-09 2023-09-19 中科开创(广州)智能科技发展有限公司 全浸没非循环流动液冷式电池储能热管理系统
CN116780034B (zh) * 2023-08-09 2024-03-12 中科开创(广州)智能科技发展有限公司 全浸没非循环流动液冷式电池储能热管理系统
CN117352947A (zh) * 2023-12-04 2024-01-05 宁德时代新能源科技股份有限公司 一种电池及用电装置
CN117352947B (zh) * 2023-12-04 2024-04-16 宁德时代新能源科技股份有限公司 一种电池及用电装置

Also Published As

Publication number Publication date
CN116207436A (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
US20240079693A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
WO2023098258A1 (zh) 电池单体、电池以及用电装置
CN216054941U (zh) 电池单体、电池以及用电设备
US20230261312A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
WO2023097871A1 (zh) 电池单体及其制造方法和设备、电池以及用电装置
US20230012207A1 (en) Battery cell, battery, power consumption device, and battery cell manufacturing method and device
CN216354620U (zh) 电池单体、电池以及用电装置
CN216288669U (zh) 端盖、电池单体、电池以及用电装置
WO2023273390A1 (zh) 集流构件、电池单体、电池以及用电装置
US20240055705A1 (en) Battery cell, battery, power consuming apparatus, and method and apparatus for manufacturing battery cell
KR20230001010A (ko) 전지 셀 및 그의 제조 방법, 제조 시스템, 전지 및 전기 장치
US20230411746A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
CN219626726U (zh) 电极组件、电池单体、电池及用电设备
US20230207992A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
WO2023185327A1 (zh) 端盖、电池单体、电池及用电设备
WO2023141842A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023028864A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023141902A1 (zh) 端盖组件、电池单体、电池以及用电装置
EP4235922A1 (en) Battery box, battery, electrical device, method and device for preparing battery
WO2023028867A1 (zh) 壳体、电池单体、电池及用电设备
WO2023004829A1 (zh) 电池单体、电池、用电装置及电池单体的制造方法和设备
CN116325329A (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20230369711A1 (en) End cap, battery cell, battery and power consuming device
WO2023097469A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20240106039A1 (en) Battery cell, battery, electrical device, and method and device for manufacturing battery cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22899697

Country of ref document: EP

Kind code of ref document: A1